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"Jenseits des Weihrauchs, dort wo es klar wird und heiter und durchsichtig, beginnen die
Offenbarungen; dort gibt es keine Launen, Roderigo, wie in der menschlichen Liebe; was
heute gilt, das gilt auch morgen, und wenn ich nicht mehr atme, es gilt ohne mich, ohne
euch. Nur der Niichterne ahnt das Heilige, alles andere ist Geflunker, glaub mir, nicht wert,
dafl wir uns aufhalten darin.” Don Juan.

Max Frisch: Don Juan oder die Liebe zur Geometrie
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Abstract

This dissertation contains theoretical investigations on the morphology and statistical me-
chanics of vesicles. The shapes of homogeneous fluid vesicles and inhomogeneous vesicles with
fluid and solid membrane domains are calculated. The influence of thermal fluctuations is
investigated. The obtained results are valid on mesoscopic length scales and are based on a
geometrical membrane model, where the vesicle membrane is described as either a static or a
thermal fluctuating surface. The thesis consists of three parts.

In the first part, homogeneous vesicles are considered. The focus in this part is on the
thermally induced morphological transition between vesicles with prolate and oblate shape.
With the help of Monte Carlo simulations, the free energy profile of these vesicles is determined.
It can be shown that the shape transformation between prolate and oblate vesicles proceeds
continuously and is not hampered by a free energy barrier.

The second and third part deal with inhomogeneous vesicles which contain intramembrane
domains. These investigations are motivated by experimental results on domain formation
in single or multicomponent vesicles, where phase separation occurs and different membrane
phases coexist. The resulting domains differ with regard to their membrane structure (solid,
fluid). The membrane structure has a distinct effect on the form of the domain and the mor-
phology of the vesicle. In the second part, vesicles with coexisting solid and fluid membrane
domains are studied, while the third part addresses vesicles with coexisting fluid domains. The
equilibrium morphology of vesicles with simple and complex domain forms, derived through
minimisation of the membrane energy, is determined as a function of material parameters. The
results are summarised in morphology diagrams. These diagrams show previously unknown
morphological transitions between vesicles with different domain shapes. The impact of ther-
mal fluctuations on the vesicle and the form of the domains is investigated by means of Monte
Carlo simulations.
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Zusammenfassung

Die vorliegende Arbeit enthélt theoretische Untersuchungen zur Morphologie und statistischen
Mechanik von Vesikeln. Es wird die Gestalt homogener fluider Vesikel und inhomogener Vesikel
mit fluiden und festen Membrandoménen berechnet. Der Einfluss thermischer Fluktuationen
wird untersucht. Die erzielten Ergebnisse beziehen sich auf mesoskopische Léngenskalen und
basieren auf einem geometrischen Membranmodell, in welchem die Vesikelmembran als stat-
ische, beziehungsweise thermisch fluktuierende Fliche beschrieben wird. Die Arbeit besteht
aus drei Teilen.

Im ersten Teil werden homogene fluide Vesikel betrachtet. Das Interesse gilt dem ther-
misch induzierten Morphologieiibergang zwischen prolaten und oblaten Vesikelformen. Mit
Hilfe von Monte-Carlo-Simulationen wird ein freies Energieprofil fiir diese Vesikel ermittelt.
Es kann gezeigt werden, dass die Formumwandlung zwischen prolaten und oblaten Formen
kontinuierlich verlduft und mit keiner freien Energiebarriere verbunden ist.

Der zweite und dritte Teil beschéftigt sich mit inhomogenen Vesikeln, die intramembrane
Doménen enthalten. Ausgangspunkt und Motivation der Berechnungen sind experimentelle
Studien {iber Domé&nbildung in ein- oder mehrkomponentigen Vesikelmembranen, bei denen
Phasentrennung stattfindet und unterschiedliche Membranphasen koexistieren. Die dabei
auftretenden Doménen unterscheiden sich hinsichtlich ihrer Membranstruktur (fest, fluid).
Diese beeinflusst die Form der Doméne und des gesamten Vesikels auf entscheidende Weise.
Im zweiten Teil werden Vesikel untersucht, bei denen feste und fluide Membrandoménen koex-
istieren, Teil drei widmet sich Vesikeln mit zwei koexistierenden fluiden Membranphasen.
In Abhéngigkeit von Materialparametern werden durch Minimierung der Membranenergie
die Grundzustandsformen von Vesikeln mit einfachen und komplexen Doménenformen bes-
timmt. Die Ergebnisse werden in Morphologiediagrammen zusammengefasst. Dabei werden
bisher unbekannte Morphologieiibergénge zwischen Vesikeln mit unterschiedlichen Doménfor-
men beobachtet. Die Auswirkungen thermischer Fluktuationen auf die Vesikel und die Form
ihrer Doménen werden mittels Monte-Carlo-Simulationen untersucht.
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Chapter 1

Introduction

"When a man is born, he is weak and flexible; when he dies, he is sturdy and stiff. When a
tree grows, it is soft and flexible, and when it is dry and stiff, it dies. Stiffness and strength
are companions of death, flexibility and weakness express freshness of being. Thus, what has
hardened will not win.” Stalker. !

1.1 Soft matter(s)

Soft matter physics, a relatively new and rapidly developing branch in physics, is concerned
with a vast variety of classical systems which exhibit types of order that lie in between simple
disordered fluids and simple ordered crystals [1-5]. Soft condensed matter includes supramolec-
ular assemblies or substances structured on nanoscopic to mesoscopic length scales, which —
as the name indicates — are rather soft and flexible. These materials (sometimes also referred
to as complex fluids) are ubiquitous in everyday life, and play an important role in various
technological and biological applications. Ranging from milk to butter, from paints to lubri-
cants, from beer foam to smoke, and from DNA to proteins, soft matter not only represents an
integral part of everyday life, but actually forms the physical basis of life itself. Accordingly,
especially in the last several years a major motivation for the study of such systems has come
from the fields of biomaterials and biological matter [6, 7].

Vesicles and membranes, which are the focus of this thesis, are examples of biologically
inspired soft matter. Vesicles are microscopically small, flexible bags composed of a molecular
thin bilayer (membrane) of amphiphilic molecules [8-10]. These small bags are formed in a
self-assembly process initiated when molecules with a dual hydrophilic-hydrophobic character
are dissolved in water under appropriate conditions. Vesicles are interesting from a number of
perspectives.

First, from a biological point of view, vesicles and membranes made of a bilayer of lipids
are important because they serve as model systems for the far more complex biological mem-
brane. Biological membranes are one of the fundamental structural components of all living
cells. They consist of a core phospholipid bilayer, in which various other macromolecules are

'Korma uesoBek pomutcs, oH ciab u rubOK, KOTJa yMUpaeT, OH KPemokK M uépcTsB. Korga
IEepeBO pPacTET, OHO HEKHO UM IMOKO, a KOrJa OHO CyXO U KECTKO, OHO yMupaeTr. YEpCcTBOCTL
U CUJa CIIyTHUKA CMEPTU, TMOKOCTL U CJIabOCThL BBLIPAKAIOT CBEXKECTL ObiTusa. I[losTomMy uTO
oTBepmesno, To He mobeaut. Arcady and Boris Strugatsky. Script for the film ’Stalker’. Director: Andrei
Tarkovsky. (Thanks to Peter Saparin for providing me with the Russian original.)
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embedded.

Then, from a technological point of view, research in this field has direct ramifications for
potential applications. Vesicles are utilised as microcapsules in biochemistry and pharmacology
[10]. From an experimental physicist’s point of view, vesicles are convenient to study because
they are easily visible and manipulated under an optical microscope.

Finally, vesicles and membranes have unique material and physical properties, whose the-
oretical description poses manifold scientific challenges. One intriguing property of vesicles is
that they occur in a variety of different morphologies, including spherical forms, oblate and
prolate shapes, and biconcave morphologies which resemble the shape of red blood cells. The
shapes of vesicles are found to depend on a few material and control parameters and change,
when these parameters are varied [11].

In this dissertation, we investigate selected aspects of the morphology and morphological
transitions of vesicles. The thesis consists of three parts. In each part, transitions between
vesicle shapes are caused by a different mechanism.

In the first part we study homogeneous fluid vesicles which are composed of a single com-
ponent. Besides material parameters, the shape of vesicles is strongly influenced by thermal
forces. Vesicles are not static objects, but, being embedded in an aqueous solution, they are
subject to permanent thermal collisions with the water molecules. Vesicles are soft objects in
the sense that the elastic deformation energies are in the order of the thermal energy. There-
fore, thermal fluctuations are strong enough to cause membrane deformations and to affect the
geometry of the vesicle. The first part of this dissertation centres on statistical properties of
fluid vesicles in thermal equilibrium, focussing on vesicles with prolate and oblate shapes. We
will investigate the transition between prolate and oblate shapes which is induced by thermal
fluctuations.

The second and third part concern heterogeneous vesicles, made of a mixture of different
lipid molecules. Understanding vesicles with a complex composition is important in view of
biological membranes, which consist of a large number of different molecules. Heterogeneous
vesicles made of a mixture of lipids are interesting because, under certain conditions, the lipids
do not mix homogeneously but phase segregate. As a consequence, domains are formed in the
vesicle membrane. These domains affect the shape of the vesicle in a distinct way. As a result,
morphological transitions of the vesicle occur which are caused by the formation of membrane
domains.

Beyond heterogeneities in their composition, membranes may also exhibit differences in
their internal structure. Like ordinary matter, they can exist in different thermodynamic
phases and show different degrees of internal or in-plane order. Biologically most relevant are
fluid membranes, where the membrane molecules can diffuse freely in the lateral direction.
Typically, biological membranes are fluid at physiological temperatures. At lower temper-
atures, the membrane molecules freeze and order on a crystal lattice. This in-plane order
crucially influences the membrane behaviour.

In this dissertation, two different kinds of membrane domains are distinguished, based on
the membrane structure: solid (gel) domains with longer-range positional order, and fluid
domains which are in-plane disordered. In the second part, fluid vesicles with solid domains
are studied, while in the third part, vesicles with coexisting fluid domains are investigated. We
will address the question of how these different types of membrane domains affect the vesicle
morphology.

The remainder of the introduction provides a brief introduction to the basic physical prop-
erties of vesicles and membranes, and gives an outline of the thesis.
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Figure 1.1: Sketch of a lipid bilayer membrane and image of a giant unilamellar vesicle obtained
via phase contrast microscopy; adapted from [12].

1.2 Vesicles and membranes

Vesicles 2 are fluid, semipermeable soft shells which are composed of a thin bilayer mem-
brane of amphiphilic molecules (see Fig. 1.1) [8, 9, 13-17]. Amphiphiles such as lipids consist
of two parts covalently bound together, a hydrophilic (water ’liking’) part which interacts
attractively with water molecules and a hydrophobic (water 'fearing’) part that shuns water
and aggregates with other hydrophobic molecules. Exposed to an aqueous environment, these
molecules assemble spontaneously into different structures above the so-called critical micelle
concentration. This structure formation is due to the hydrophobic effect [18, 19]. Depending
on the specific molecular properties of the amphiphile and on physical conditions such as their
concentration or the temperature, one obtains spherical and cylindrical (worm-like) micelles,
inverted micelles, hexagonal and lamellar structures.

A very prominent arrangement is the bilayer [20]. Bilayers are thin, sheet-like structures,
composed of two adjacent mono-molecular layers, which are hold together by weak, non-
covalent forces. The amphiphiles are arranged such that the hydrophobic parts are confined
in the interior and face each other, while the hydrophilic parts are oriented towards the water
surrounding. At physiological temperatures the bilayer membrane exhibits an in-plane fluid-
like nature which means that the molecules can diffuse freely within their monolayers.

At the edge of the membrane, the hydrophobic parts are exposed to water. Therefore, in
order to avoid energetic disadvantageous configurations at the edges, membranes often form
closed shells called vesicles. By closure of the membrane an inner compartment is created,
which separates the interior solvent from the exterior surrounding solvent. The size of vesicles
created in the lab can reach dimensions in the order of tens of micrometers, even though the
bilayer is only a few nanometers thick [10].

Vesicles are sometimes named according to their main constituents, for example, liposome
(when made of lipids) or polymerosome (when the basic constituents are amphiphilic diblock-
copolymers of modest molecular weight [21]), etc.

In the following, we concentrate on bilayer membranes and vesicles composed of lipids.
Phospholipid molecules are amphiphilic, with a charged or polar hydrophilic head group, and
typically one or two hydrophobic hydrocarbon tails. A schematic picture of a phospholipid
molecule is illustrated in Fig. 1.2. The importance of lipid bilayers is related to their function
in biological cells, lipid bilayers form the backbone of all biological membranes [22].

2from Latin vesicula small blister
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¢ The lipid bilayer forms
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Figure 1.2: Schematic picture of a phospholipid forming a bilayer. Phospholipids, the major
compound of biological membranes, consist of a hydrophilic phosphate-containing polar head-
group which is attached to two hydrophobic nonpolar hydrocarbon chains. These so-called
amphiphilic molecules aggregate into bilayers in aqueous solution. The lipid bilayer forms the
backbone of all cell membranes; from [23].
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Figure 1.3: Schematic picture of a cell membrane. The lipid bilayer forms a fluid matrix where
various macromolecules are embedded or associated; from [24].

1.2.1 Biological and biomimetic membranes

Biological membranes are essential structural as well as functional elements in biological
cells [23]. The so-called plasma membrane envelopes the cell and controls the interface between
the cell and its environment. Membranes also structure the interior of eukaryotic cells by
forming different intracellular compartments. Their main purpose is to act as a selectively
permeable barrier that enables enclosed spaces to maintain a biochemical environment that
differs from the surrounding medium. Biomembranes actively participate in many cellular
processes. They are involved in the communication between different compartments. Small
vesicles bud from donor compartments and fuse with others.

Biological membranes are highly organised assemblies, consisting of a multi-component
lipid bilayer core which acts as a fluid matrix for various macromolecules such as proteins
or sugars (fluid mosaic model [25]), see Fig. 1.3. Biological membranes possess hundreds of
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(a) (b) (c)

Figure 1.4: Morphologies of homogeneous fluid vesicles: (a) vesicle with prolate shape, (b)
vesicle with a small bud, (c) star-shaped vesicle; (a)-(b) from [12], (c¢) by courtesy of Rumy
Dimova.

different species of lipids, the most common lipid classes are phospholipids, sphingomyelin and
sterols.

Due to their intrinsic complexity, a systematic study of biological membranes is very com-
plicated. Therefore, one introduces model systems (biomimetic systems). These are strongly
simplified systems which are supposed to capture main physical features of biomaterials and
allow to focus more systematically on basic and generic aspects. Apart from their relevance to
basic research, biomimetic membrane systems such as vesicles are promising research objects
which lead to biotechnological applications. One example is the use of liposomes as biocom-
patible microcapsules in targeted drug delivery and gene therapy [26], another example are
vesicles which are applied as microreactors for biochemical reactions [27, 28].

Biomimetic lipid vesicles have proven to be very convenient model systems for study-
ing various aspects of biomembrane behaviour. During the past years different issues have
been investigated: equilibrium phenomena of homogeneous single-component vesicles [29-31],
polymer-decorated membranes and vesicles [32-35], inclusions in membranes [36, 37|, adhe-
sion of membranes and vesicles [38-40], fission and fusion of vesicles [41], vesicles in external
fields [42, 43]; out-of-equilibrium aspects like vesicles in shear fields [44, 45] and ’active mem-
branes’ (i.e. membranes with local dissipative elements which reflect the activity of membrane
proteins) [46-48].

In this thesis, a main focus is on vesicles which are made of a mixture of different lipids.
These vesicles have interesting properties because the different lipids do not always mix ho-
mogeneously, but under appropriate condition phase segregate and form domains within the
vesicle membrane. Before we turn to such vesicles composed of different lipids, we briefly
describe main properties of homogeneous, single-component vesicles.

1.2.2 Morphology of vesicles

An intriguing aspect of phospholipid vesicles is the multiplicity of geometrical shapes they
can attain [29-31]. Apart from spherical forms the conformations include oblate and prolate
ellipsoids, biconcave discocytes, which resemble the shape of a red blood cell under normal
physiological conditions [49], cup shaped stomatocytes, pears, dumb-bells, budded shapes,
where a smaller vesicle is expelled from a larger one and remains connected via a small neck,
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and various non-axisymmetric shapes like boomerangs or starfish [50]. Some of the observed
morphologies are illustrated in Fig. 1.4. By changing temperature or osmotic conditions,
transitions between these morphologies can be induced. Furthermore, vesicles with a more
complex topology, for example, toroidal vesicles, have been observed 3.

At first glance, the richness of vesicle shapes, including non-convexity, is rather astonishing.
One may just recall the shape of other soft surfaces like soap bubbles. Closed liquid films such
as soap bubbles are always found to be spherical. The reason for this is that soap bubbles
are governed by surface tension and try to minimise their surface area. As a consequence,
they acquire a surface of constant mean curvature. Since the only closed embedded surface
of constant mean curvature is a sphere (shown in [53]), the shape of a closed, isotropic liquid
film is unique and has to be spherical .

Fluid membranes, on the contrary, do not behave as a thin liquid film. Their properties
resemble more closely those of a smectic liquid crystal film. This fact has been recognised in the
early seventies of the last century [55-57]. Fluid membranes are primarily governed by bending
elasticity, hence they acquire shapes with minimal bending energy or, in its mathematical
formulation, minimal curvature.

1.2.3 Basic physical properties of membranes and vesicles — Surface model

Fluid membranes are remarkable materials with interesting physical properties. Like almost
all soft matter, vesicles feature a hierarchy of spatial and temporal scales. In particular, there
is a huge discrepancy in the involved length scales. While the vesicle membrane is very thin
with a thickness of a few nanometers, the lateral size of a vesicle can extend up to tens of
micrometers. We briefly describe their main material properties.

An important characteristic of fluid membranes is their resistance to bending deformations.
Although membranes are quite flexible, they tend to avoid curved configurations. This is quite
intuitive from a molecular point of view since one leaflet of the bilayer is squeezed when the
membrane is bent. For fluid membranes, bending modes are rather soft. The elastic modulus
for bending deformations is in the order of the thermal energy at room temperature.

Membranes can be bent much more easily than they can be stretched (extended) or com-
pressed. This follows from similar considerations regarding thin plates °. In contrast to liquid
interfaces, for membranes, surface tension is less relevant. The elastic modulus for chang-
ing the area per molecule is exceedingly high compared to the thermal energy. The area of
the membrane is essentially determined by the number of lipid molecules in the membrane.
This number is constant on experimentally relevant time scales because the interchange of
lipids between the membrane and the solution is negligible. Thus, the membrane area remains
approximately constant.

Fluid membranes are further characterised by a zero shear-modulus. The membrane
molecules can diffuse freely in the membrane plane. Thus, any shear deformation relaxes

3For vesicle shapes with topological genus 2 (or higher), the energetic ground state is degenerated. This fact
leads to the first theoretically predicted [51], then experimentally confirmed effect called conformal diffusion
[52].

4This holds under the assumption that the liquid film does not self-intersect. For immersions i.e. hyper-
surfaces with self-intersection, closed surfaces of constant mean curvature are not necessarily spherical. There
exist other surfaces with constant mean curvature which have a more complex topology [54].

SFor a solid plate, the ratio between stretching energy and bending energy diverges as the thickness van-
ishes [58].
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by flow within the membrane. This happens on time scales fast compared to the time scale of
shape deformations.

In this dissertation, we are interested in the morphology of vesicles with a size in the
micrometer range. On this length scale, most details of the membrane molecules become
irrelevant, and the relevant properties can be described by a few material parameters. In the
early 1970s, Canham [55] and Helfrich [56] introduced a coarse-grained continuum model which
lays the foundation for the understanding of vesicle shapes. In the Canham-Helfrich model,
the vesicle membrane is described as a flexible two-dimensional surface which resists bending.
The (free) energy of the membrane consists of bending energy and depends on the curvature
of the membrane surface

1
Hou = QK/dA (2H — 00)2 + Hg/dAK. (1.1)

The integral extends over the membrane area. In Eq. (1.1), the mean curvature H and the
Gaussian curvature K are geometric quantities and describe the curvature of the membrane
(mathematical details are recalled in appendix A.l). The bending rigidity x, the Gaussian
bending rigidity k¢ and the spontaneous curvature Cp are material parameters. Eq. (1.1)
describes the bending energy of the membrane from its preferred curvature Cy. The bending
rigidity k quantifies the energetic costs associated with bending of the membrane. For phos-
pholipid bilayers, a typical value for x is around 1071%.J [20], which is in the order of 10 —20 T
where Tp is the thermal energy at room temperature including the Boltzmann constant kg 6.
The Gaussian elastic modulus k¢ is associated with the energetic costs of deformations which
change the topology of the vesicle. It is difficult to determine experimentally, recent mea-
surements yield a value kg ~ —0.8x (for a phospholipid monolayer) [59]. A nonvanishing
spontaneous curvature Cy takes a possible asymmetry of the membrane into account.

In equilibrium, the vesicle adapts a morphology which minimises the bending energy under
given constraints on the vesicle area and, depending on the osmotic conditions, on the enclosed
volume of the vesicle.

1.2.4 Thermal fluctuations

Membranes and vesicles are not static structures. Analogously to colloid particles which
(if sufficiently small) undergo Brownian motion, they are subject to thermal forces. Fluid
membranes are soft, deformable objects with bending rigidities in the order of the thermal
energy at room temperature. Therefore, thermal fluctuations not only affect the centre of
mass and the overall orientation of the vesicle, but also excite soft internal deformation modes
and thus influence its morphology. Vesicles exhibit pronounced shape fluctuations whose long
wavelength modes are visible in the optical light microscope [60].

Typically, the shape fluctuations occur around a mean shape which corresponds to the
shape of minimum bending energy. Yet, thermal fluctuations may cause morphological tran-
sitions of the whole vesicle. Such thermally induced shape transformations are frequently
observed in experiments between vesicles with prolate and oblate shape [61]. These vesicles
with prolate and oblate shape are the subject of the first part of this dissertation where a
detailed study of this shape transition is provided.

SThroughout the thesis, the Boltzmann constant is set to one, kg = 1.
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1.3 Multi-component membranes

While homogeneous fluid membranes already give rise to a rich physical behaviour, inter-
esting new effects occur for membranes with additional (internal) degrees of freedom. In this
dissertation, we concentrate on vesicle membranes composed of a mixture of different lipid
molecules. These multi-component membranes mimic real biological membranes more closely
than single-component membranes. The interesting aspect of such vesicles is that the different
lipids do not always mix uniformly to form homogeneous membranes. Instead, at appropriate
conditions they segregate into different phases and form intramembrane domains [62].

The study of domain formation in vesicles is inspired by recent findings of biologists about
the lateral distribution of lipids in biomembranes [63]. The bilayer core of the cell membrane is
made out of a mixture of hundreds of different lipid species. In the conventional view of Singer
and Nicolson [25], these lipids were believed to be distributed laterally rather homogeneously
within the cell membrane. This picture of the cell membrane, however, has been challenged
in the recent years by the hypothesis that the lipids do not mix randomly but instead certain
saturated lipids, like sphingomyelin and cholesterol, aggregate and cluster. These lipids are
conjectured to form lateral assemblies, small microdomains called lipid ’rafts’, which float in
the sea of other (unsaturated) lipids [64, 65]. This spatial organisation of the membrane is
believed to be of vital importance in biological systems. Lipid rafts may play an important
role in the control of the activity of membrane proteins. Certain membrane proteins are found
to partition preferentially into one or the other lipid assembly.

Rafts are difficult to detect experimentally in vivo. Up to now, the evidence for their
existence in biomembranes is still rather indirect and controversial. Especially their size is
a matter of current debate, estimates range from 20 to 700 nm [66]. One has to bear in
mind that in vivo the formation of domains may not only be due to the interaction between
different lipids. When discussing biomembranes, the issue is complicated by the presence of
many components, other than lipids, and manifold active and passive processes. Therefore,
domain formation might be influenced by the interaction with other membrane molecules.

In contrast, phase separation and domain formation has been demonstrated clearly for
in vitro systems [67]. An experimentally well explored model system are vesicles composed
of a ternary mixture of cholesterol, a high-melting point lipid (such as sphingomyelin) and
a lipid whose melting point is lower. Fig. 1.5 shows the phase diagram for such a system.
Depending on the membrane composition and temperature, the membrane exists in different
phases with different type of internal order. There are fairly large regions in the phase diagram
where different phases coexist. When the vesicle is prepared at conditions providing phase
coexistence, one obtains vesicles with membrane domains. The vesicle morphology and the
shape of the domains depends decisively on the particular phase the membrane is in [62].

Before we have a closer look at the observed vesicle shapes and different domain morpholo-
gies, we discuss different lipid bilayer phases, starting first with the phases that already occur
for a single-component membrane.

1.3.1 Phases of lipids in bilayer arrangement

Similar to ordinary matter lipid bilayers can exist in different thermodynamic states and
exhibit varying degrees of internal order [69]. The generic phase at higher temperatures is the
fluid phase, also called L,-phase (or smectic A), the state of the membrane already encountered
before. Physiologically, the L, phase is the most important phase. Therefore, it has attracted
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Figure 1.5: Partial phase diagrams for vesicles composed of a ternary mixture of lipids at
different temperatures. Figures (a)-(c) correspond to a mixture of DOPC/PSM/cholesterol
(DOPC (dioleoyl-phosphatidylcholine) is a phospholipid and PSM (palmitoyl sphingomyelin)
a sphingolipid); figures (d)-(f) correspond to a mixture of POPC/PSM/cholesterol (POPC
(palmitoyl-oleoyl-phosphatidylcholine) is a different phospholipid). White symbols denote that
the membranes are in one uniform phase, either liquid (circles) or solid (squares). Black circles
denote coexisting liquid phases, and gray squares denote coexisting solid and liquid phases;
from [68].

the most interest and research activities of all the different lipid bilayer phases. As noted
before, the lipid molecules are liquid-like disordered in plane and free to diffuse in the lateral
direction. The hydrocarbon chains of the lipids are in a conformationally disordered state and
undulate due to thermal fluctuations (see Fig. 1.6a).

If the temperature is reduced below the so-called main transition temperature, the hy-
drocarbon chains freeze and positional ordering of the molecules on a lattice sets in. In the
crystalline or solid phase, diffusion of the molecules is slowed down substantially. Owing to
a usually rich defect structure, which is caused by the different packing constraints of the
hydrocarbon chains and the lipid headgroups, solid phases are commonly also referred to as
gel-phases. Most probably, crystalline phases do not have any biological implications. Never-
theless, from a physical perspective, as two-dimensional crystals with unique properties, they
certainly deserve attention. Most lipids have more than one crystalline phase. Typical phases
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Figure 1.6: Schematics of the bilayer structure of different lipid phases: the fluid phase L, (a),
and the gel phases Py (b), Lg (c) and L (d); from [14].

are the gel phases Py, Lg, and Lg 7 as well as the sub-gel phase L. (see Fig. 1.6b-Fig. 1.6d).
In the Py phase, or 'ripple’ phase, the bilayer exhibits a corrugated surface profile (asymmetric
sawtooth), and the molecules are arranged on a hexagonal lattice. In the lamellar phases Lg
and Lg the bilayer is flat with orthorhombic molecular packing. For most common lipids,
the low-temperature phase is the subgel L. ('¢’ denoting crystalline). It exhibits a greater
order in the conformation of the hydrocarbon chains as well as in the lattice arrangement. In
general, the transition to an equilibrium L. phase is a slow process and may be accompanied
by long-lived metastable intermediates.

A more complex scenario exists for membranes made of a mixture of different lipids. The
addition of cholesterol has the most striking implications. The major effect of cholesterol is
that it disturbs (respectively stimulates) the conformational order of the hydrocarbon tails in
the L, (respectively Lg) state. At sufficiently high amounts of cholesterol chain ordering and
positional ordering decouple so that a new phase appears between the solid and fluid phases —
without cholesterol both ordering transitions occur together at the main transition [70]. This
new phase is termed ’liquid-ordered’, L,. It is fluid, characterised by lateral fluid disorder such
as in the L, phase, but exhibits larger conformational order of the lipid hydrocarbon tails. In
this context, the L, state is also termed ’liquid-disordered’ phase L4. According to current
knowledge, lipid rafts are associated with liquid-ordered domains.

"In general, ’3’ represents the fact, that the bilayer is in a gel phase, and the prime denotes a tilting of the
hydrocarbon chains with respect to the bilayer normal.
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Figure 1.7: Coexisting fluid domains in a vesicle formed by a mixture of DOPC (dioleoyl-
phosphatidylcholine) /sphingomyelin/cholesterol obtained by optical microscopy. Liquid-
ordered domains (L,) are labelled blue, liquid-disordered domains (L;) domains red; in the top
row images of equatorial sections of the vesicles are shown, the vesicles have rotation symmetry
with respect to an axis in the vertical direction within the image plane; scale bars 5um; from
[67].

Figure 1.8: Vesicles composed of a mixture of DPPC (dipalmitoyl-phosphatidylcholine) /DPPE
(dipalmitoyl-phosphoethanolamine) lipids grow domains in the Lz phase: the gel domains are

predominantly round. The gel phase can be observed as dark areas on the vesicle membrane;
from [71].
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Figure 1.9: Vesicles made of a mixture of DPPC (dipalmitoyl-phosphatidylcholine)/DPPS
(dipalmitoyl-phosphatidylserine) lipids with domains in the L phase: the gel domains have
polygonal and hexagonal shape; from [71].

Figure 1.10: Vesicles with domains in the Pg (ripple) phase: the gel domains have stripe
shape; from [72].

1.4 Fluid and solid membrane domains

When a vesicle is prepared at appropriate conditions so that different phases coexist, its
membrane components segregate and form domains. Fig. 1.7 - Fig. 1.10 display examples of the
resulting vesicle shapes which have been obtained by optical microscopy. Vesicles are shown
with coexisting fluid-fluid membrane domains (Fig. 1.7) as well as with coexisting solid-fluid
domains (Fig. 1.8 - Fig. 1.10). The morphologies of the vesicle and the fluid and solid domains
differ considerably and depend on the structure of the membrane phases. We summarise the
main experimental observations:

Fluid domains are predominantly circular (see Fig. 1.7). They tend, quite generally, to
bulge and form buds. Besides vesicles with two coexisting domains, one in each phase, vesi-
cles with several cap domains are observed. At temperatures closer to the mixing/demixing
temperature, there are also vesicle-spanning ring domains. The domains are not static but
diffuse around. When two smaller fluid domains collide, they coalesce and continuously merge
into a larger circular domain. In vesicles with budding domains the fusion step sometimes
seems to be impeded. Budding domains tend to repel each other upon approach, avoiding
high curvature build-up of the membrane between [67, 73].
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The shapes of solid domains are different to the shape of fluid domains and more intricate,
see Fig. 1.8 - Fig. 1.10 [71, 72, 74-78]. The observed domain morphologies seem to be correlated
with the structure or lipid packing of the gel phase [71, 78].

In the lipid composition of Fig. 1.8, which is believed to exhibit Lg-L, coexistence, small,
round conformations of gel-domains are observed which float in the fluid vesicle membrane
[71]. Contrary to fluid domains, these gel domains do not deform or rearrange upon contact,
which is due to the slow diffusion constant of the molecules in the gel phase. Sometimes, they
are found to adhere to one another and form morphologies which resemble two-dimensional
dumbbells, or more complicated shapes if more than two domains cluster. Since many shapes
show round morphologies, the underlying phase is expected to be isotropic on the length scale
of micrometers.

Solid domains in the Lg phase are polygonal in shape [71]. At optical resolution, they
show straight edges and sharp corners (see Fig. 1.9). Many of the domains are hexagonal. The
angles of the polygons appear to be quantised close to 27/3 respectively 27/6, reflecting the
angles of the underlying orthorhombic (nearly hexagonal) lattice. It is assumed that in the
Lg phase the tilting of the molecules promotes a longer ranged positional order compared to
the previous Lg phase.

In the Pg gel phase, preferentially domains with stripe morphology are observed (see
Fig. 1.10) [72]. During growth, the stripes grow longitudinally, increasing in length while their
width remains constant. Within each vesicle, the stripes are found to be quite monodisperse
in width. It is conjectured that the strong anisotropy is due to the directional anisotropy of
the ripple phase [72].

It should be mentioned that for all the different gel-domain morphologies the domain shapes
are to a certain extent history-dependent and seem to be influenced by nucleation and growth
processes. As a consequence, the observed morphologies may be non-equilibrium in nature.

The objective of the second and third part of this dissertation is to provide a theoretical
analysis of the morphology of vesicles with coexisting solid-fluid and fluid-fluid membrane
domains, respectively.

1.5 Outline of the thesis

The present thesis is organised as follows. It consists of three parts. The first part,
including chapter 3, is concerned with homogeneous vesicles. The second and third part,
including chapter 4 and 5, investigates properties of inhomogeneous vesicles with solid and
fluid membrane domains.

The thesis starts with a short presentation on foundations. In chapter 2 we introduce
models for a mesoscopic description of fluid and crystalline membranes which are applied for
the vesicle membrane later on.

Chapter 3 is concerned with statistical properties of fluid vesicles with geometries close to
a sphere. The focus is on the transition between vesicles with prolate and oblate shape which
is induced by thermal fluctuations. We determine the free energy landscape of unconstrained
vesicles and of vesicles whose volume is fixed.

In chapter 4 we study the morphology of fluid vesicles with solid membrane domains. We
consider the limit where the solid membrane cannot undergo stretching deformations. The
equilibrium shapes of minimum energy are determined for a fluid vesicle with one or several
solid domains for various material parameters. Vesicles which can change their volume and
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vesicles with fixed volume, in particular vesicles with almost spherical geometry, are discussed.
We observe morphological transitions between vesicles with different domain shapes as the
material parameters change. The impact of thermal fluctuations on the domain shapes is
analysed.

Chapter 5 is dedicated to vesicles with coexisting fluid membrane domains. Analogous to
solid domains we calculate the equilibrium shapes of vesicles with simple and complex domain
topology. The emphasis is on vesicles with a comparably small line tension at the domain
boundary. As material parameters are varied, morphological transition between vesicles with
different domain shapes are observed.

The thesis closes with general conclusions. A short outlook is given.

Throughout the thesis, the vesicle membrane is modelled on a mesoscopic level as a static
or fluctuating geometric surface.



Chapter 2

Membranes - models and methods

In this chapter, continuum and discrete models for membranes with different types of
internal order are presented. These models are applied later on in the thesis to describe fluid
and crystalline phases of lipid bilayers. We give a brief account of known results of their
statistical mechanics.

2.1 Introduction

In this chapter we introduce models for isotropic elastic membranes which are used in
this thesis to describe the different phases of the vesicle membrane. Membranes such as lipid
bilayers can be modelled on a mesoscopic level as self-avoiding geometric surfaces [8, 79, 80].
At zero temperature, these surfaces acquire a state of minimum energy and can be regarded as
static, whereas at finite temperatures they are subject to thermal fluctuations and undulate.
The statistical mechanics of membranes is rather complex because membranes can undergo
phase transitions and exist in different states with different types of internal order. Although
thermal fluctuations act to destroy any conventional true long-range order in a two-dimensional
system with a continuous symmetry [81], membranes may exhibit longer-ranged order where
the correlations in the order parameter decay slowly in an algebraic manner. Such longer-
ranged order is commonly termed quasi-long-range (QLR) order. The shape and the fluctuation
spectra of membranes crucially depend on their internal structure.

Which types of order generically exist for a homogeneous, isotropic membrane? For a thin
planar layer of an isotropic material, which effectively constitutes a quasi two-dimensional
system, the generic phases are a crystalline or solid phase with QLR positional order at low
temperatures and a disordered fluid phase at higher temperatures. In a two-dimensional sys-
tem the transition between the solid and liquid state does not necessarily have to be of first
order, but it may also occur via two distinct continuous transitions [82]. This gives rise to an
intermediate phase, the hexatic phase. The hexatic phase is characterised by the translational
disorder of a fluid but — and this is reminiscent of the crystalline phase — exhibits QLR correla-
tions in the orientation of bonds connecting neighbouring particles (bond orientational order).
It is a unique two-dimensional feature and results from the interplay of thermal fluctuations
and defects in the melting process of a two-dimensional system.

Membranes are more complex than flat layers. They are not confined to two dimensions, but
undulate and can bend or buckle into the transversal third direction. This out-of-plane buckling
significantly lowers the energies of the conventional in-plane topological defects, which therefore
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can be initiated more easily by thermal fluctuations. Thermal fluctuations in combination with
membrane undulations may cause disruptions of the internal membrane structure. As a matter
of fact, certain defects (dislocations) will be present even at low temperatures in a very large
membrane, which can fluctuate freely and which is not stabilised by covalent bonds. Viewed on
a sufficiently large length scale, the generic low temperature phase of a fluctuating membrane
is therefore not crystalline, but hexatic.

In the present chapter, we concentrate on two different classes of membranes which will
be relevant in this thesis. First, we consider a model for fluid membranes, which are charac-
terised by short-range translational and orientational order. This membrane model is used to
describe the fluid phases of lipid bilayers, the L, phase in homogeneous lipid bilayers and the
liquid ordered L, and liquid disordered L, phase in bilayers with lipid-cholesterol mixtures.
The second membrane model considered are crystalline membranes with QLR translational
and long-range orientational order whose internal order is not affected by thermal fluctua-
tions. Due to their fixed internal connectivity, they are also called tethered or polymerised
membranes. This model has been originally devised to describe membranes where the internal
structure is guaranteed by strong (covalent) bonds between the membrane molecules. How-
ever, if thermally induced rearrangements of the internal structure can be neglected, it can
also be applied to membranes which are held together by weaker (van der Waals) forces as
in the case of gel and solid phases of lipid bilayers. This should be valid on length scales be-
low a translational correlation length & which corresponds to the typical separation distance
between free dislocations in the membrane. Using this membrane model is justified as in our
studies we do not consider defects.

Due to fluctuations the crystalline order is destroyed on large length scales, which results
in a membrane with hexatic order. The hexatic membrane exhibits short-range translational
order but QLR orientational order. For sake of completeness, we briefly touch hexatic mem-
branes at the end of this chapter, a short discussion of their properties is given in the appendix
C.1.

The membranes are modelled on a mesoscopic level as static or fluctuating geometric
surfaces with appropriate elastic energies for their conformation, in accordance with their
internal structure !'. The membranes investigated are not subject to any external forces or
constraints, but undulate freely. We consider thermal equilibrium throughout. Aspects of the
presented material can be found in a number of reviews [79, 80, 83, 86-93].

2.2 Fluid membranes

Fluid membranes are soft sheets that behave as quasi two-dimensional fluids which resist
bending. A canonical example is given by the lipid bilayer in the fluid phase. The word "fluid’
emphasises that the individual membrane molecules are free to move laterally within the plane
of the membrane. It is this fluidity which allows the membrane to adapt itself to any particular

'Field theories of fluctuating geometric objects such as the surface models for bilayer membranes are a
common and widespread theme in theoretical physics, with applications in many different areas of physics
[83]. In the realm of soft condensed matter, one considers thermally undulating, low-dimensional manifolds:
fluctuating lines describe the conformational properties of linear polymers, flexible surfaces are used to describe
interfaces and membranes on mesoscopic length scales [84]. The currently most promising attempts for a unified
theory of all known fundamental forces or interactions (gravity, electroweak and strong interaction) are based on
(quantum mechanically) fluctuating geometric objects, one-dimensional manifolds (strings) and corresponding
higher dimensional objects (branes) [83, 85].
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shape and to undergo remarkable morphological changes. In a fluid membrane, there is no low-
frequency response to shear stress. However, a fluid membrane behaves differently to a fluid
film because it involves energy to deform or bend it from its preferred curvature state. This
is because bending of the membrane causes splay of the molecules. The bending modes are
soft, involving energies in the order of the thermal energy. A fluid membrane is characterised
by a rather high compressibility modulus. Therefore, it can be considered to some extent as
incompressible. This implies that the membrane area is essentially determined by the number
of constituent molecules.

Given these main physical properties, fluid membranes can be modelled on a mesoscopic
length scale as flexible surfaces with a fixed area whose shape and fluctuations are controlled
primarily by bending (or curvature) elasticity.

2.2.1 Continuum model

The membrane is considered as a two-dimensional surface embedded in three-dimensional
Euclidean space R?. The membrane surface is parametrised by a suitable set of the coordinates
¢ = (&1, £%) € R?, its position is given by the vector function X (¢!, £2) € R3.

The free energy or Hamiltonian of a specific membrane configuration depends on geometric
quantities of its embedding. Due to the membrane’s fluidity the free energy has to be invariant
under a reparametrisation of the surface, i.e. under a change of the coordinate system £% —
5/“(5 1.¢2). Since the energy has to be invariant under translations and rotations of the whole
membrane, only scalars containing derivatives of the position vector X should contribute to
the membrane energy.

The most general free energy up to quadratic order in the curvature which respects these
symmetries reads

Houia(X(€)) = / Peyg (o + 5 (2H — Co + mokK) (2.1)

The integral extends over the membrane area, dA = d2¢ V9, where g is the determinant of
the induced metric g, = 0,X - 9,X (see appendix A.1). The functional, Eq. (2.1), equals
the Canham-Helfrich Hamiltonian which has been encountered in Eq. (1.1), extended with a
term proportional to the surface area. The expressions in this energy are geometric quantities,
the mean curvature H and the Gaussian curvature K (see appendix A.1 for a definition), and
material parameters, the bending rigidity x, the Gaussian bending rigidity (or saddle splay
modulus) k¢ and the spontaneous curvature Cjy. The bending rigidity x quantifies the energetic
costs of bending deformations. For a phospholipid bilayer, its value is typically in the order of
10-20 Ty [20]. The Gaussian bending rigidity k¢ is associated with the energetic costs related
to deformations which change the topology of the membrane. Recent measurements give
an estimate of kg ~ —0.8x [59]. For homogeneous membranes the integral over the Gaussian
curvature is a topological invariant (Gauss-Bonnet theorem). Therefore, contributions from the
Gaussian curvature can be neglected when membrane deformations which alter the topology
are not possible. The spontaneous curvature Cj describes a possible preferred curvature of the
membrane.

The interpretation of the parameter o, which is conjugate to the (microscopic) membrane
area, gives rise to conceptual problems [94]. In the context of interfaces, it is commonly re-
ferred to as a surface tension. In the context of fluctuating membranes, it is more appropriate
to regard o not as a surface tension, but rather as a chemical potential for the addition of
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new surfactant molecules to the membrane. The term surface tension — as will become clearer
further below — should be attributed to the parameter conjugated to the coarse-grained, pro-
jected area [94, 95].

In the following we are interested in the statistics of the membrane in thermal equilibrium
at temperature 7. An important quantity is given by the canonical partition function Z(7).
It is defined as the phase-space integral over all microstates that are accessible to the system,
weighted with the Boltzmann factor e~ 7/T (H stands for the energy of the microstate) 2. The
canonical partition function Z(T') is related to the free energy F(T) via

F(T) = —~TZ(T). (2.2)

For fluid membranes the partition function can be written as a functional integral and
reads

Z(T) = /D{X(f)}e_Hﬂuid(X(g))/T’ (2.3)

where the integral covers all different shapes of the membrane. With Eq. (2.3) a few comments
have to be made:

First, since any continuum theory starts to loose its validity at some short-distance scale,
the functional integral has to be supplemented with some short distance cut-off for the un-
dulation modes. This length scale represents the minimal wave length possible for any shape
deformations and is in the order or slightly above the thickness of the membrane.

Second, the measure D{X({)} deserves some care because of the reparametrisation sym-
metry of the integrand [96]. Apparently, the result of Eq. (2.3) should not depend on the
chosen parametrisation of the integrated membrane surfaces. One has to be careful when
evaluating the functional integral, Eq. (2.3), because the integral should not extend over all
different embedding functions X (), but only over embedding functions which describe physi-
cally different membrane configurations. Different embedding functions which are related via
a reparametrisation transformation must be counted only once. How this can be accomplished
at least formally is briefly sketched in appendix B.1.

Scale dependence of elastic parameters

A popular strategy in statistical mechanics to learn about a system which cannot be solved
analytically is provided by the renormalisation procedure: by iteratively thinning out degrees
of freedom in the partition function on smaller length scales one arrives at effective interactions
on larger length scales. As a result of this coarse-graining the coupling parameters have to be
adapted and depend on the length scale of interest.

In membranes thermal fluctuations become evident through the scale dependence of elastic
coefficients. The effects of fluctuations on shorter length scales can be expressed in renormalised
elastic parameters on larger length scales. If one traces in Eq. (2.3) over the short-distance
modes with wavenumber ¢ in a shell 27/qy < 27/q < 27/q; above the wavelength Ag = 27/qq
(this can be done in a perturbative expansion), one finds for the renormalised bending stiffness
k(q) a scale-dependence of the form [97, 98]

k() = k(o) + %Tm(ql Jao) + ... (2.4)

2Throughout the thesis, the temperature T is expressed in energy units so that the Boltzmann constant kg
is contained in T'.
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The bending stiffness decreases when viewed on larger length scales and becomes ineffective
beyond a ’persistence length’

g, ~ A/ BT (2.5)

The persistence length &, is a correlation length associated with the order in the local normals
n to the surface. It defines the length scale beyond which the orientations of the membrane
between two positions r; and ro become decorrelated

(n(r1) - n(ry)) ~ e~ Ir1-r2l/8 (2.6)

The persistence length separates two different regimes of the membrane: For a membrane
patch much smaller than the persistence length, the fluctuations of the normal vector around
the average orientation are small. The membrane exhibits pronounced undulations on this
scale, but globally it looks almost planar. This regime applies to membrane parts of a vesicle.
At room temperature, the persistence length of phospholipid bilayers is usually orders of
magnitude larger than the size of the vesicle. Membrane undulations relevant on the length
scales of vesicles are investigated in more detail in the next subsection.

Membrane patches, on the contrary, which are much larger than the persistence length
have a wildly fluctuating normal vector and appear crumpled. For fluid membranes, the
persistence length is finite, albeit large, at nonzero temperature. Thus, on large enough scales
they are expected to be crumpled. Since for phospholipid bilayers at ambient temperature the
persistence length by far exceeds the size of the vesicle, we do not consider fluctuations on this
length scale any further.

In the considerations so far it has been neglected that real membranes cannot self-intersect.
Self-avoidance plays a role when parts of the membrane come close to each other. This typically
occurs on length scales beyond the persistence length where the membrane is crumpled and
folds back. In fact, self-avoidance may prevent crumpling and act to stabilise the membrane.
Self-avoidance is difficult to treat theoretically, because interactions, although local in the
embedding physical space, are highly nonlocal in the coordinates that parametrise the mem-
brane. Apart from simulation studies, no real satisfactory theoretical treatment for interacting
self-avoiding fluid membranes exists.

Thermal fluctuations do not only renormalise the bending rigidity, but also amount in
entropic corrections to the surface tension and the Gaussian bending rigidity, respectively
[94]. Fluctuations tend to decrease the effective (or projected) area of the membrane. As
a consequence, the effective surface tension, in terms of this projected area, gets positive
contributions. The membrane develops a stretching elasticity which is entropic in nature. This
stretching elasticity arises from the suppression of fluctuations as the membrane is stretched
out.

Fluctuations around a flat state

Fluctuating membranes with finite bending stiffness exhibit undulations on a broad range
of length scales. They are locally smooth, rough on intermediate scales and crumpled on large
length scales. In the following we consider membrane undulations relevant on length scales of
the size of the vesicle in more detail. In this regime fluctuations do not deviate too strongly
from a planar reference plane and we can use the Monge gauge to describe the membrane
surface. As long as there are no overhangs, the membrane configuration can be described by
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its deviation from a flat plane

z1
X(x) = X(xl,xg) = o . (27)
h(IL‘l, 132)

The coordinates x = (1, x2) are Cartesian coordinates on a flat reference plane, and h(z) =
h(z1,z2) is a single valued function which measures the distance from this reference plane in
the orthogonal direction.

We start with the assumption that the membrane deviations are small so that an expansion
in powers of |[Vh(x)| can be justified. In this case the Canham-Helfrich-Hamiltonian simpli-
fies considerably. Omitting contributions from the spontaneous and Gaussian curvature and
neglecting the surface tension one gets

Heawia (h(z)) ~ %n / dz (V2h(z))® . (2.8)

With this, one can calculate the fluctuation spectrum of the undulation modes and the corre-
lation of lateral height fluctuations [80]. For a tensionless fluid membrane, one obtains for the
correlation between position r; and ra [84]

(h(r) = h(e)?) ~ ey — o, with (=1, (2.9)

The character of the shape undulations is quantified by the roughness exponent ¢ which is
¢ =1 for a fluid membrane. Its power-law form implies that the membrane undulations are
scale-invariant. This scaling relation of the correlation function holds on intermediate length
scales, a < L <& (where a is a typical molecular dimension).

2.2.2 Discrete model

In order to perform numerical calculations or simulations one needs a discrete membrane
model. Various computational approaches and techniques have been devised, which consider
different levels of microscopic details. The approaches include full atomistic simulations, which
describe the individual membrane molecules with chemical accuracy [99], coarse-grained tech-
niques, where some of the molecular degrees of freedom are integrated out and effective mem-
brane particles with effective interactions are considered [92, 93], and mesoscopic approaches,
which start from a continuum membrane model and discretise the membrane surface [79].
Microscopical detailed models are limited to small length and time scales and do not allow to
address membrane properties on the size of a micron-sized vesicle. For the numerical work
in this thesis we therefore apply a triangulated membrane surface. At zero temperature, the
triangulated surface is static and acquires a conformation with minimum energy. If thermal
fluctuations are included and the surface is fluctuating, this leads to the so-called tether and
bead model [79].

Tether and bead model

A simple and well established method, appropriate for mesoscopic length scales, is pro-
vided by triangulated surface models [79]. They have originally been developed in a different
context for discrete models in quantum gravity [100-102]. The smooth membrane surface
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Figure 2.1: Tether and bead model: The continuous membrane surface is triangulated and
replaced by a mesh of hard spheres. To assure the stability of the membrane the beads are
connected by tethers. Dynamic triangulation of the tether network guarantees fluidity of the
membrane.

is triangulated and approximated by an inscribed mesh of N, interconnected vertices, see
Fig. 2.1. The configuration of the membrane is specified by the triangulation 7y, = ({X;}, 5)
(i =1,...,N,). The vector X; denotes the position vector of the i*" vertex, and S is the
adjacency matrix which contains nearest-neighbour vertex pairs, S;; = 1 or 0 according to
whether X; and X are connected by a ’tether’ ("bond’) or not. The stability of the membrane
is accomplished by a tethering potential V;;(r), which acts between tethered nearest neighbour
vertices ¢ and j, and which in the simplest case is given by

0 if r<ly
oo otherwise

Vij(r) = { (2.10)
with r = |X; — X|. The potential Vj;(r) ensures that the distance between nearest neighbours
is less than lg. In order to guarantee self-avoidance of the membrane, one usually places at
each vertex a hard sphere. A discretised membrane surface with hard spheres at the vertices
is illustrated in Fig. 2.1. The diameter og of the hard spheres is chosen such that they cannot
pass through the network mesh. The potential V;;(r) is augmented by

_f oo if r<og
Vias () _{ 0 otherwise ’ (2.11)

which acts between all beads. Self-avoidance requires that Iy < v/30y.

Once the membrane surface is suitably triangulated, appropriate terms for the involved
energies have to be found. A general introduction to methods for discretising differential oper-
ators on triangulated random surfaces is given in [103]. As an apparent need one requires that
in the limit of an infinitesimal triangulation the values of the continuum limit are reproducible.
It turns out that the discretisation of the bending energy is quite subtle and not straightfor-
ward [104]. Some aspects of the occurring difficulties are recollected in the appendix A.2. In
this thesis we apply a discretisation of the bending energy which is based on the square of the
local average of the discretised mean curvature around a vertex as it is proposed in [105]. For
a membrane patch with vertices v;, the bending energy in Eq. (2.1) is approximated by a sum
over the vertices v; (see appendix A.2)

_\2
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Figure 2.2: Dynamic triangulation: In a bond flip the common edge between two neighbouring
triangles is cut and re-attached in such a way that the formerly unconnected vertices are
connected.

The first term in Eq. (2.12) describes the elastic bending energy. The inner sum extends over
all edges e; which are connected to the vertex v;. The length of the edge e; is denoted with
l;, ¢; is the tilting angle between the neighbouring triangles that share the edge e;. The area
A, is the area associated to the vertex v;. It is given by one third of the sum of the areas A;
of the adjacent triangles f;, A= fi %Aj where A; is the area of the triangle f;. The second
term is the discretisation of the Gaussian bending energy. The Gaussian curvature at vertex
v; is proportional to the deficit angle of the vertex v; to 2w, i.e. (27 — ij a;)i, where the
sum goes over all triangles f; adjacent to v; and «; is the angle of f; which is incident to the
vertex v;. l} is the length of edge opposed to the angle ¢ in triangle f; [106].

In the continuum model the fluidity of the membrane is reflected by the reparametrisation
invariance of the free energy functional. Apparently, one also has to account for the fluidity of
the membrane in the discrete model. In order to allow for the lateral diffusion of the membrane
molecules, in the simulations with a triangulated surface the triangulation is therefore not kept
fixed, but varies dynamically. The partition function, Eq. (2.3), is realised by an integration
over different embeddings X; and a sum over different triangulations S [100]

Z7, (T) = /H?Jldxiz e HIN)/T (2.13)
S

Monte Carlo simulations

In this dissertation, thermal averages of membrane observables are evaluated with the
help of Monte Carlo simulations. Monte Carlo simulations are stochastic techniques which
generate an appropriate random set of microstates of the phase space (i.e. different membrane
configurations) according to a desired probability distribution. In the canonical ensemble this
is the Boltzmann distribution. Thermal averages of the physical properties of interest are then
estimated as averages over a representative sequence of microstates (see appendix D.1).

Most frequently, trajectories through phase space are obtained via a Markov process which
has the desired probability density as its limiting equilibrium distribution. A Markov process
is a ‘'memoryless’ stochastic process, where only the knowledge of the current state, but not
of previous states is relevant for determining the subsequent state. The evolution of states is
specified by the probability p(x,2") which is the conditional probability that the system goes
from the microstate x to the state 2/. Provided that the Markov process is ergodic (i.e. every
microstate can be reached from every other microstate in a finite number of transition steps),
a sufficient condition that the sequence of microstates asymptotically converges towards the
desired equilibrium distribution is given by the detailed balance or microscopic reversibility
condition

plz, 2" )p(z) = p(a’, z)p(a’) . (2.14)
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Here, p(z) is the probability density that the system is in the state x. Usually, the transition
probability p(z, ') is factorised into two parts,

p(wil) = g(x>$/)pacc(x7x,) . (2.15)

It consists of the selection function g(z,z’), which is the conditional probability that a new
‘trial” state 2’ is proposed given that the current state is z, and the acceptance probability
Pacc(x, "), which gives the conditional probability that the proposed move is accepted. In
our simulations we employ the Metropolis algorithm (see appendix D.1) and use a symmetric
selection function, i.e. g(z,2’') = g(2/,z). In this case, the acceptance probability is given by

Pace (T, 2") = min][1, e_(E(I/)_E(x))/T] , (2.16)

where F(x) and F(z') are the energy of state 2 and a’, respectively. In practice, an important
step in the implementation of a Monte Carlo algorithm is the choice of the selection function,
or proposed Monte Carlo 'moves’.

In the simulations of fluid membranes, the attempted Monte Carlo moves consist of two
different classes:

First, there are vertex moves, the positions of the vertices X; are randomly displaced within
a cube of size [~Az, Ax]? centred at their former position. This corresponds to performing
the integral over X; in Eq. (2.13). By varying Az the acceptance rate can be adjusted.

Second, there are bond moves where the connectivity matrix S is changed by a local
bond flip (dynamic triangulation). The bond or edge flip proceeds as follows (cf. Fig. 2.2):
Two neighbouring triangles, which are defined by four vertices, share a common edge. In
an edge flip this common edge is cut and re-attached in such a way that it connects the
formerly unconnected vertices. It can be shown that the bond flip moves are ergodic, i.e.
every triangulation can be transformed by a finite sequence of local-bond flips into any other
with the same number of vertices [107] 3. By this dynamic triangulation, the sum over all
possible triangulations S in Eq. (2.13) is realised.

2.3 Crystalline membranes

Crystalline membranes, sometimes also termed tethered or polymerised membranes, are
membranes with a fixed internal connectivity between neighbouring membrane molecules.
They exhibit in-plane QLR positional and true long-range orientational order. Tethered mem-
branes occur naturally in a biological context, examples are the triangulated protein network
given by the spectrin skeleton in red blood cell membranes. They can also be made artificially,
such as polymerised amphiphilic bilayers or thin inorganic sheets of graphite oxide in aqueous
suspension.

In principle, crystalline membranes with a fixed internal structure have to be distinguished
from crystalline membranes like the solid or gel phases of lipid bilayers. There, the bilayers are
held together by weaker, van der Waals forces. Major distortions or even disruptions of the
crystalline order may occur in principle. Thermally induced rearrangements of the in-plane
structure are not possible in a polymerised membrane due to strong covalent forces between the
membrane molecules. However, in cases where severe rearrangements of the internal membrane

3The proof in [107] considers an arbitrary triangulation and neglects implications of the tether and bead
model, the finite size of the hard spheres at the vertices and a finite tether length.



24 Membranes - models and methods

structure can be neglected, the elastic energies derived for crystalline-tethered membranes
apply equally well to the crystalline phase of lipid bilayers. This is the case on length scales
below a translational correlation length &pr. This length scale is set by the typical distance of
thermally induced defects. Since for the gel phases of lipid bilayers we neglect defects as a first
approximation, we employ this model.

Crystalline membranes have, in contrast to fluid membranes, a preferred in-plane ground-
state which is associated with the unperturbed crystalline lattice. Deviations from this ground
state are suppressed by in-plane elastic energies. The properties of crystalline membranes are
governed by the coupling of in-plane elastic deformations (stretching and shearing) and of
out-of-plane deformations (bending).

2.3.1 Continuum model

In a continuum description the positions of the individual membrane molecules X; of the
crystalline lattice are replaced by a coarse-grained coordinate vector X(), which is a function
of the continuous internal coordinate & = (¢!, €2). Deformations from the reference frame
associated with the unperturbed lattice are described by the displacement vector field u(€).
This vector field maps the coordinates of the undeformed state X (&) to the positions of the
deformed media X(§) + u(¢).

If the membrane is stretched or sheared, the distance between two neighbouring points
changes. The change is expressed by the strain tensor u,,(£), which is defined as the differ-
ence of the metric tensor g,,(§) of the deformed state from the metric tensor ggy(ﬁ) of the
undeformed state

1
U () = 5 (90(6) — 40(6)) (217)
The mixed strain tensor u’;(g) is obtained by raising one of the indices according to 4
ul (&) = uua (€) g (6) (2.18)

where g™ (€) is the dual metric tensor, see appendix A.1. With this, we are prepared to write
down the deformation energy of an isotropic, two-dimensional material, following the elasticity
theory of thin elastic sheets [58]

Heryst (X(€)) = / /g0 (5 (2H = Co)* + haK )
+ [ @V (Ghat©u©) + b (1)) . 219)

This free energy or Hamiltonian includes a Helfrich-type bending energy, expressed by the
first term, which penalises out-of-plane deformations, as well as an in-plane elastic energy,
expressed by the second term, which penalises stretching and shearing deformations. Eq. (2.19)
is invariant under translations and rotations of the membrane in the embedding space R3. The
stretching energy is quadratic in the strain, it contains the trace of the square of the strain
tensor uy,(&)uy (§) and the square of the trace of the strain tensor (uli(£))?. The stretching
energy is a function of the metric tensor and thus depends on the intrinsic geometry of the
membrane. This form of the stretching energy is assumed to be valid for small deformations.

ko and kp are elastic moduli called Lame coefficients, k,, is also referred to as the shear modulus.

4Here and below, Einstein’s summation convention over repeated indices is implied.
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Given the statistical weight for a specific membrane conformation, one can write down the
partition function as the integral over all different embedding functions X(&) °

Z(T) — /D{X(E)} e~ Heryst(X(8))/T (2.20)

Geometrically speaking, one has a fluctuating surface with a distinguished (reference) metric.
In contrast to fluid membrane surfaces, the metric of the crystalline membrane surface fluctu-
ates only slightly and locally because larger deviations from the preferred metric are punished
by in-plane elastic energies.

Next, we explore the effects of thermal fluctuations. Since we are interested in membranes
of the size of a mesoscopic vesicle, we consider an expansion around the flat state. Contrary
to fluid membranes, such an expansion would be justified even for larger length scales because
tethered membranes — when including self-avoidance — are expected to be not only flat at small
or intermediate length scales, but remain flat, though rough, on all length scales.

Fluctuations around a flat state

We assume that the membrane at rest is flat and the reference metric 921/ is proportional to
the unit matrix d,,,. In order to describe fluctuations of the membrane with inner coordinates
x = (z1,z2) around a flat configuration, it is advantageous to use the representation

x1 4+ ui (1, x2)
X(ﬂjl,xg) = o) +UQ(.T1,$2) . (2.21)
h(l‘l,l‘Q)

In Eq. (2.21), ug(z1,22) (a = 1,2) describe in-plane phonon displacements while h(z1,z2)
denotes out-of-plane distortions. Using this ansatz, the strain tensor u,, (x) reads

1 1 1
U (2) = 3 (B (@) + Bty (@) + 5 (0uh()) (Buh(2) + 5 (Buanr (@) (Dur(e)) . (222
We assume zero spontaneous curvature and disregard effects from the Gaussian bending rigid-
ity. Then, one obtains for the elastic energy in Eq. (2.19) (expanding to lowest order in h(x)
and its derivatives)

Heryst (h(x), ug(x)) = %/ﬁ: / d*x (V2h(m))2 + ;/dzaj (2kq uil,(x) + ky u?\/\(:v)) . (2.23)

To proceed, it is useful to reformulate Eq. (2.23) only in terms of out-of-plane undulations
h(z). To this end, one has to eliminate the in-plane displacement vectors u,(z) (or phonon
modes) and calculate an effective free energy for the out-of-plane undulations

Hcryst,eff(h(x)) =—Tln </ D{ua(x)} eHcryst(h(x),ua(x))/T) . (2'24>

5Since Eq. (2.19) lacks the reparametrisation symmetry of fluid membranes, one does not encounter the
difficulties with proper counting embedding functions. Strictly speaking, the integral in Eq. (2.20) should not
extend over all different embedding functions, but cover all embedding functions modulo potential symmetries
(isometries) of the reference metric g3, (&).



26 Membranes - models and methods

Evaluating this integral, one obtains for the effective elastic energy [108]

Heryst.oft (h(2)) = %f; / d2x(V2h(m))2+%ky / P2 / 2o’ K () T(z, 2K (7). (2.25)

The elastic coupling ky is the Young’s modulus

o 4ka(ka + kb)

ky = 2.2
Y 2k;a + k;b ( 6)

In Eq. (2.25), K(z) = det (9,0,h) denotes the Gaussian curvature, and I'(x,2’) is given by
T(z,2') = 1/A% ~ (z—2')?In(|]z—2'| /a), where A is the scalar Laplacian and a is a microscopic
cut-off. The elastic energy, Eq. (2.25), is a reformulation and approximation to the general
elastic energy, Eq. (2.19), which is valid for a membrane that has a flat ground state and
undergoes only small deformations. It consists of the bending energy in the first term and an
in-plane stretching energy in the second term. Both energies are expressed only in terms of
the out-of-plane deformation h(x). The advantage of this formulation of the in-plane elastic
energy is that it directly gives the in-plane stretching energy which is caused by the out-of-plane
deformation h(z). For the initially flat membrane, which is characterised by zero Gaussian
curvature, the in-plane elastic energy has the form of an effective, long-ranged interaction
between local Gaussian curvatures. This means that all membrane distortions which alter the
local Gaussian curvature (i.e. lead to a nonzero Gaussian curvature) cause high elastic strain
and are suppressed by the Young’s modulus ky. This coupling is absent for membranes with
a vanishing shear modulus such as fluid membranes.

For an elastic membrane with an arbitrary reference metric, one can conclude that out-of-
plane deformations which change the internal metric (and thus cause in-plane distortions) are
suppressed by the elastic coupling ky ¢. Only isometric membrane deformations are possible
without extra energy cost.

Scale dependence of elastic parameters

The resistance to in-plane stretching deformations crucially influences the character of the
membrane undulations and the renormalisation behaviour of the elastic parameters. Thermal
fluctuations lead to a stiffening of a self-avoiding tethered membrane on larger length scales.
This stiffening dominates the logarithmic softening of the bending rigidity which is seen in
fluid membranes. Simulations and a self-consistent perturbative expansion in ky propose a
scale-dependence of the bending rigidity in the long wavelength limit of the form [80]

K(g) ~q ™. (2.27)

with 0 < n, < 1. At long wavelengths (¢ approaches zero) the effective bending rigidity x(q)
is expected to diverge via a power law.

It is believed that self-avoiding tethered membranes exhibit an overall flat phase at all
finite temperatures. This flat phase is characterised by an infinite persistence length and is
not found with fluid membranes.

The fluctuation spectrum of a crystalline-tethered membrane is markedly different from
a fluid membrane. This is reflected by the correlations of out-of-plane fluctuations and the

5Note that the Gaussian curvature is a measure for the intrinsic curvature of a surface and depends only on
the metric.



2.4 Hexatic membranes 27

corresponding roughness exponent (. One obtains as an estimate for the average amplitude of
the membrane undulations between position r; and ro [80]

. 1
([h(r1) = h(r2)|?) ~ 1 —r2|* with ¢=52—m). (2.28)
The currently most accurate estimates for 7, are around 7y, ~ 0.72, which gives ¢ ~ 0.64 [80].

2.3.2 Discrete model

On a discrete level, a crystalline-tethered membrane is most naturally modelled as a trian-
gulated surface with a fixed triangulation. The membrane surface is represented by a network
of hard spheres which are connected by tethers (tether and bead model presented in subsec-
tion 2.2.2 before). Unlike fluid membranes, the connectivity of the network is kept fixed. Thus,
when one samples thermal equilibrium configurations, bond flips are not performed. As Monte
Carlo moves only vertex moves are attempted where single vertices are displaced randomly.

2.4 Hexatic membranes

In the preceding section we have been concerned with crystalline membranes that exhibit
longer-ranged in-plane positional order. The obtained results hold when integrity of the inter-
nal membrane structure is given. For fluctuating membranes whose in-plane order is caused by
weak, van der Waals forces this is not guaranteed from the beginning. It turns out that in these
systems topological defects play an important role and rearrangements of the crystalline order
do occur on sufficiently large length scales in the presence of thermal fluctuations. This can be
seen from the following argument. The relevant defects are dislocations 7, which destroy trans-
lational order, and disclinations #, which disrupt bond orientational order. In two-dimensional
systems these defects are point-like, and, compared to three-dimensional systems, the energy
associated with the creation of defects is comparably small. For a planar membrane confined
to two dimensions, the crystalline phase is stable because both the energy and entropy of
dislocations increase logarithmically with the system size. The situation changes, however, if
the membrane is allowed to fluctuate and buckle out of the plane. The energy of dislocations
is significantly reduced by buckling. It turns out that it grows sub-logarithmically with the
system size. In this case, the entropy gain of the dislocations compensates the increase of en-
ergy associated with the formation of dislocations. As a consequence, fluctuating membranes
of sufficiently large size are expected to show free dislocations at any finite temperature. On
sufficiently large length scales, the resulting low-temperature phase is a hexatic [79]. Beyond a
certain translational correlation length &7 the crystalline order is disrupted and only the bond
orientational order of the original crystalline lattice preserves. This translational correlation

"Mathematically, a dislocation represents the breaking of the translational holonomy [109]. A path that
would naturally close in a perfect lattice fails to close around a dislocation by a vector b, the Burgers vector.
The vector b (its magnitude is denoted b = b) can be considered as a (vector-like) topological charge of the
dislocation.

8A disclination is associated with the breaking of the rotational holonomy. The bond angle around the
point defect is a multiple of the natural bond angle in the ground state (27/6 in a triangular lattice). The
charge s of the disclination is given by the defect angle, its sign is chosen according to the character of the
defects (positive or negative). For a positive (five-fold) coordinated disclination we have s = 427 /6, while for a
negative (sevenfold), s = —2m/6. A dislocation can be regarded as a tightly bound pair (or dipole) of opposite
disclinations.
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length &7 depends on the Young’s modulus ky, the temperature and the elastic energy to
create a defect.

The name hexatic accounts for the six-fold symmetry of the orientational order parameter.
This symmetry of the orientational order is reminiscent from the symmetry of the underlying
triangular crystal lattice. There is experimental evidence for a hexatic phase in various systems,
including free standing liquid crystal films [110]. Although bond orientational order with six-
fold symmetry is the most important one, phases with a different symmetry of the orientational
order parameter do exist. Very recently, a liquid film with an orthorhombic orientational order
has been demonstrated experimentally [111].

Undulating membranes with orientational order are comparably complex. They are gov-
erned by a coupling of in-plane elastic energies and out-of-plane bending energies. Orientational
order in a hexatic membrane leads to an in-plane elastic energy, which is different and smaller
than the in-plane elastic energy in membranes with crystalline order. It is introduced in the
appendix C.1. A theoretical description of hexatic membranes is challenging as one has to
account for a proper treatment of thermally created defects in a fluctuating surface.

Here, we do not consider hexatic membranes any further. In our investigations on solid
membrane domains thermally induced defects will be omitted. The correlation length of in-
plane translational order &7 is assumed to be larger than the membrane size of interest. This
is justified when crystalline membranes at suitable low temperature are considered. For the
solid membrane domains in vesicles, it is a reasonable approximation at room temperature.
In a vesicle, the out-of-plane fluctuations are restricted by the confined geometry. Therefore,
defects cannot be formed so easily by thermal fluctuations and out-of-plane bending.



Chapter 3

Homogeneous fluid vesicles

In this chapter we discuss statistical properties of homogeneous fluid vesicles in thermal
equilibrium. In particular, we study the morphological transition between vesicles with prolate
and oblate shape which is caused by thermal fluctuations. With the help of Monte Carlo
simulations, we determine the free energy profile of these vesicles as a function of suitable
order parameters. The shape transition between prolate and oblate vesicles is shown to be
continuous and not hampered by a free energy barrier.

3.1 Introduction

The present chapter is concerned with physical properties of homogeneous fluid vesicles.
Fluid vesicles constitute a paradigmatic soft matter system which has received intense research
interest over the last three decades [8, 9]. As soft surfaces they occur in a large variety of
different geometric shapes, undergo morphological transitions between those shapes and, due
to thermal fluctuations, exhibit pronounced undulations. The theoretical description is based
on the theory of fluid membranes, chapter 2, which requires some modification, since the vesicle
membrane is closed. In general, the Canham-Helfrich free energy works well. Yet, for a more
quantitative analysis especially near vesicle shape transitions it turns out that the bilayer aspect
of the membranes should be paid more attention. For this reason several refined (free) energy
models have been proposed [9]. Furthermore, the closing of the membrane to vesicles implies
that the membrane does not undulate freely but is subject to geometric constraints. The area
of the vesicle depends on the number of constituent molecules in the membrane and is basically
fixed. The volume enclosed by the vesicle is controlled by the osmotic conditions of the solvent.
Lipid membranes are semipermeable bilayers, they are permeable by water and small uncharged
molecules such as CO2 or No, but in experimental time-scales they are essentially impermeable
to ions and larger uncharged molecules such as glucose and macromolecules. Concentration
differences of molecules that cannot permeate the membrane give rise to an osmotic pressure
between the interior and exterior. Two experimental situations have to be distinguished: if
osmotically active solutes are absent, the vesicle volume can change. Otherwise the system
tries to equilibrate the osmotic pressure difference by the inflow or outflow of water molecules.
Since the energy associated with osmotic pressures is in general quite large compared to the
other relevant energies of the vesicle, the volume is essentially fixed at the osmotically optimal
value.

Based on these considerations, a firm understanding of the diversity of vesicle morphologies
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has been established over the past 30 years [8, 9]. Important insights have been gained by
determining the shapes of minimum bending energy, taking into account the constraints on
area and, if required, volume [8, 9]. Furthermore, thermal fluctuations of the vesicle membrane
have been included either by perturbative calculations around the shape of minimum energy,
which are possible for simple vesicle geometries [112, 113], or by computer simulations in the
general case [114, 115].

In the following we attempt to complete this picture by computing the free energy profile
of fluid vesicles. For vesicles, calculations of the free energy profile have become possible only
very recently due to increased computational power [116]. The free energy profile provides
information about the equilibrium shape of minimum energy, metastable states and on free
energy barriers in between. Knowledge of the free energy profile is therefore particularly
valuable when the vesicle undergoes a morphological transition. In this chapter the emphasis
is on the transition between vesicles with prolate and oblate shape. This shape transition is
caused by thermal fluctuations and is frequently observed in experiments [61]. The goal of this
chapter is to characterise details and the order of this transition.

The present chapter is organised as follows: We start with a brief introduction of the
three standard models for the analysis of vesicle shapes: the Canham-Helfrich or spontaneous
curvature model (SC) [55, 56], the bilayer-couple model (BC) [117, 118] and the area-difference
elasticity model (ADE) [119]. A short discussion on shapes of minimum energy follows. Then,
we turn to thermal equilibrium properties, concentrating on the transition between vesicles
with prolate and oblate shapes. We reexamine suitable asphericity parameters which enable
us to characterise prolate and oblate vesicle morphologies. Results of Monte Carlo simulations
are presented which give insight into the free energy profile between prolate and oblate vesicles.

3.1.1 Curvature models

The Canham-Helfrich or spontaneous curvature model (SC), already encountered in the
introduction, chapter 1, describes the membrane as a structure-less two-dimensional surface
which resists bending deformations. Any possible physical or chemical bilayer asymmetry is
taken into account via a nonzero spontaneous curvature. To characterise the vesicle, it is useful
to introduce two dimensionless parameters, the reduced volume v and the reduced spontaneous
curvature c¢g. The constraint on the total area A allows to define a length scale Ry which is
defined as the radius of a sphere with the same surface area, Ry = (A4/ (471'))1/ %, The reduced

volume v is defined by
Vv

= 3.1
YT A /3RS (3-1)

and the reduced spontaneous curvature is given by
cCo = R()CQ . (32)

In the SC model the vesicle shapes are characterised by v and c,.

The SC model neglects one aspect of the bilayer architecture. The exchange of lipid
molecules between the two monolayers (’flip-flop’) is suppressed for most phospholipids and
slow compared to the experimental time-scale of the experiments. Therefore, besides the total
number of molecules in the bilayer also the individual number of molecules in each monolayer
is approximately conserved. The number difference N — N of molecules in the inner
and outer leaflet of the bilayer gives a preferred area difference between the two monolayers,
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AAy = (N°" — N'™)qg, where ag is the equilibrium area per lipid molecule. In a vesicle,
the actual area difference AA is related to the integrated mean curvature AA ~ 2d [ dAH,
where d is the distance between the neutral surfaces of the two monolayers, i.e. roughly half
the bilayer thickness. In the bilayer couple model (BC) it is assumed that the area of each
molecule is strictly conserved and thus AA is conserved, too. This implies a constraint on
the total mean curvature M = [dA H. In the BC model, if a spontaneous curvature is not
considered, there are two parameters to describe the vesicle, the reduced volume v and the
reduced total mean curvature m = M/Ry.

The SC and the BC model can be seen as two limiting cases of a generalised curvature
model which is known in the literature as the area-difference-elasticity model (ADE)

R 1 — mg)? . (3.3)

HADE = ;/dA (2H)2 +

In the ADE model the hard constraint on the area difference between the two monolayers AA
of the BC model is released. Instead, a softer harmonic potential is introduced which penalises
deviations from the preferred integrated mean curvature mg. The preferred integrated mean
curvature myg is related to the optimal area difference Ay by mg = AAy/(2dRy), which is
essentially given by the number difference of lipid molecules in the two monolayers. A spon-
taneous curvature is not introduced explicitly because it is not an independent parameter. It
corresponds merely to a shift in the optimal integrated mean curvature my — mg+2CoRy/ ..
The dimensionless parameter o, is in the order of one and interpolates the ADE model be-
tween the SC and the BC model. In the limit of large ay, the ADE model becomes the BC
model, while in the limit of vanishing «, it reduces to the SC model without spontaneous
curvature. The ADE model has two independent parameters, v and mg, and one additional
material parameter a.

All experiments on vesicle shapes and shape transitions that have been performed so far
are in quantitative agreement with the ADE model. For our investigations it is sufficient to
use the simpler Canham-Helfrich free energy.

3.2 Equilibrium configurations

The vesicle performs small fluctuations around an average shape which corresponds to the
conformation of minimum bending energy. In order to determine the equilibrium morphology
of the vesicle one has to minimise the free energy functional of the vesicle for a given fixed
area and (in the presence of osmotically active particles) fixed volume. This can be done
by functional variation of the vesicle’s free energy. The constraints on area and volume are
thereby incorporated via Lagrange parameters. The parameter o is introduced as the Lagrange
parameter for the area conservation, the parameter p is introduced as the Lagrange parameter
for a fixed volume (p is related to the pressure difference between the outside and inside of the
vesicle). Extremising the Canham-Helfrich free energy with respect to a deformation directed
along the surface normal yields the Euler-Lagrange equation, or shape equation, first derived
in [120]

p—20H + k(2H + o) (2H? — coH — 2K) + kA(2H) =0, (3.4)
where A is the scalar Laplace operator, see appendix A.1. Eq. (3.4) is equivalent to the

equation which one gets when one balances the forces (stresses and bending moments) on
an infinitesimal membrane segment [121]. Thus, this equation also expresses the state of
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mechanical equilibrium of the membrane . In the limit of vanishing it reduces to the familiar
Laplace equation which describes an interface under a surface tension o. The shape equation,
Eq. (3.4), provides a necessary condition for the vesicle shape of being a local minimum. To
investigate the stability of a vesicle shape, one has to analyse the second or higher variation
of the energy functional.

It is noteworthy that in the shape equation, Eq. (3.4), the Gaussian bending modulus drops
out. This is because we have considered a closed surface with a constant Gaussian bending
modulus, where by virtue of the Gauss-Bonnet theorem the Gaussian energy term yields only
a constant contribution. In the general case of arbitrary boundary conditions the contribution
from the Gaussian energy may not be neglected. The general influence of a varying Gaussian
bending rigidity is seen in the generalised shape equation where the analysis is extended from
constant bending moduli k and k¢ to varying bending moduli, see [124].

Furthermore, we note that for vesicles the pressure inside is not necessarily larger than
outside. An inner excess pressure is required for systems governed by interfacial tension like
liquid droplets. In contrast to such systems, a homogeneous vesicle with a reduced volume
smaller than one typically exhibits an outer excess pressure at mechanical equilibrium.

For practical calculations, Eq. (3.4) has to be written in terms of a coordinate function X
that describes the membrane surface. This leads to a highly nonlinear partial differential
equation of fourth order in X, which can be solved analytically only in a few exceptional
cases. In the past years efforts have been concentrated on finding solutions to this equation
in the axisymmetrical case (which is then a second order ordinary differential equation) or
alternatively on the direct numerical minimisation of the vesicle free energy. The resulting
minimum energy shapes are arranged in morphology diagrams (bifurcation diagrams) which
give the equilibrium shape of the vesicle as a function of the parameters of the particular
vesicle model [9, 125]. As an example, which will be referred to later on, we give the results
for the simple case of the SC model with ¢y = 0. For 0.65 < v < 1, the equilibrium shape is
a prolate. For 0.58 < v < 0.65, the ground state is a biconcave discocyte, and for v < 0.58 a
stomatocyte has lowest energy. Examples of the different vesicle morphologies are displayed
in Fig. 3.1.

In summary, equilibrium morphologies of vesicles are well understood, for a detailed dis-
cussion see [9, 31].

'Recently, Eq. (3.4) has been reinterpreted as one element of the conservation law which follows from the
Euclidean symmetry of the Helfrich Hamiltonian. Generally, a continuous symmetry implies the conservation
of a corresponding Noether charge. From the translational symmetry of the functional it follows that the stress
tensor is conserved. Three equations describe the conservation of the stress tensor: The normal projection
is identified as the shape equation describing equilibrium configurations, while the tangential projections are
consistency equations on the stresses which are related to the fluid character of the membrane [122, 123].
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(a) (b) (c)

Figure 3.1: Equilibrium conformations of vesicles with different reduced volume v (spontaneous
curvature ¢g = 0): (a) stomatocyte (v = 0.57), (b) discocyte (v = 0.6), and (c) prolate
(v=10.9).

3.3 Thermal fluctuations

Vesicle membranes are not static objects. Being embedded in an aqueous solution, they
are subject to permanent thermal collisions with water molecules and thus in continuous
exchange of energy with the environment. Thermal forces lead to fluctuations of the membrane
shape. The membrane fluctuations extend over a broad range of length scales. On length
scales comparable to or smaller than the membrane thickness, thermal fluctuations give rise
to protrusion modes. These are relative displacements of the lipid molecules which change the
surface area of the lipid-water interface and which, consequently, are governed by an effective
interface tension. The roughness arising from these fluctuations occurs on the length scale
of a few angstroms. On intermediate and larger length scales the occurring fluctuations are
out-of-plane bending modes which are governed by the bending rigidity. The focus in this
dissertation is on bending modes with a longer wavelength, which are visible in the optical
microscope.

Thermal fluctuations have several effects on the vesicle. In the experiments, the analysis of
the shape fluctuations is based on the optically resolvable membrane contour. The measured
shape is an average image of the true, microscopic vesicle geometry. While the microscopic
membrane area can be assumed to be approximately constant, the optically resolvable mem-
brane area fluctuates. This leads to an entropic stretching elasticity of the vesicle membrane
[95, 126]. As explained in detail in chapter 2, the bending rigidity s gets entropic contributions.
Due to the interaction of fluctuation modes on smaller length scales the bending modulus be-
comes scale dependent. Therefore, instead of the bare microscopic (mechanic) bending rigidity
k one has to use the renormalised value for the bending rigidity adequate for the length scale
of interest.

An intriguing effect of thermal fluctuations is that they can induce changes in the mor-
phology of the vesicle. As noted above, for v > 0.65 the energetic favoured vesicle morphology
is prolate, oblate shapes always have higher bending energies. Nevertheless, in this regime
transitions between prolate and oblate shapes are frequently observed in the light microscope.
The transition is caused by thermal fluctuations [61]. The aim of this section is to provide
details and the order of this transformation between vesicle with prolate and oblate shape.

How can thermally excited shape fluctuations be included in the theoretical description? If



34 Homogeneous fluid vesicles

the equilibrium shape has a simple geometry, the fluctuations can be calculated in a (pertur-
bative) expansion around the equilibrium conformation [113]. For axisymmetric vesicles, the
spherical harmonics are a convenient basis. For a quasi-spherical vesicle in the limit of large
bending rigidities, x/7 > 1, the thermal spectrum of undulation modes can be calculated
analytically. The vesicle shape is expressed in polar coordinates 2 = (0, ®) with a normalised
radial height field h(§2) over the sphere of radius Ry

X(Q) = Ro(1+ h(Q)e, (3.5)
where e, is the radial unit vector. Expanded in spherical harmonics, h(2) reads

153 l

M) =) Y anY™(Q). (3.6)
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In Eq. (3.6), modes up to the wavenumber cutoff [, are considered. The fluctuation amplitudes

are found to be [112]
T 1

2 ~
i) = T D= D)+ (3.7)

Analytic or perturbative calculations are practicable only for special cases. For the general
case of not so simple vesicle geometries, this is not possible and one has to resort to computer
simulations. For mesoscopic length scales there is a well established Monte Carlo method in
which the shape of the fluid vesicle membrane is simulated with a dynamic network of triangles
(tether and bead model) [114, 115]. This method, presented in chapter 2, has been applied
very successfully in interpreting and fitting experimental data, for example in the analysis of
the vesicle fluctuation spectrum obtained by optical spectroscopy [127].

In the following we are interested in the free energy profile of vesicles. The free energy
profile gives information about the local minima of the free energy and free energy barriers
in between. Knowledge of the free energy profile is therefore particularly valuable when the
vesicle undergoes a morphological transition. In the article [116], the free energy profile of a
vesicle with a reduced volume v considerably smaller than one has been determined. There,
prolate-discocyte and discocyte-stomatocyte shape transformations occur. The emphasis in
this section is on the free energy profile of vesicles with a reduced volume close to one where
transitions between prolate and oblate configurations occur.

To study the free energy profile between prolate and oblate shapes, an appropriate measure
to distinguish between prolate and oblate shapes is needed. Unfortunately, the asphericity
parameter from [128] used in [116] does not permit to discriminate between prolate and oblate
conformations and cannot be applied. In the article [129] an alternative order parameter is
proposed which is capable to distinguish between prolate and oblate morphologies. However,
the order parameter in [129] has some disadvantages which make it less suited to explore the
free energy landscape of prolate and oblate shapes and to study (possible) free energy barriers
between them. The order parameter jumps discontinuously from positive to negative values
as the vesicle is deformed continuously from a prolate to an oblate shape without crossing an
exact spherical shape. Furthermore, it does not allow to distinguish intermediate vesicle shapes
which are neither exact spherical nor pronounced oblate nor pronounced prolate (intermediate
biaxial shapes) 2. These intermediate shapes, however, are important because they dominate

2The order parameter in [129] classifies these intermediate biaxial shapes (the eigenvalues of the shape
tensor Q fulfil A3 — A2 =~ A2 — A1) as pronounced prolate respectively oblate shapes or even as spheres (for
A3 — A2 = A2 — \1). For a definition of the shape tensor Q see the following subsection 3.3.1.
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the probability density of configurations for an unconstrained vesicle.
Next, we reexamine suitable asphericity parameters for vesicles with a reduced volume
close to one.

3.3.1 Asphericity parameters

We consider a triangulated vesicle described by N, vertices with the coordinate vectors
Xy (k=1,...,N,) embedded in R?. To characterise the shape of the triangulated vesicle, it
is useful to introduce a symmetric second rank tensor (shape tensor) Q with the components
[130]

1 &
Q=3 ; (Xk,i = Xi) (Xn,j = Xj) - (3.8)
Here, X}, ; denotes the i-th coordinate of the position Xj, of the k-th vertex and X with the
coordinates X; is the centre of mass

1 Ny

= — Xy . (3.9)

N,

k=1

The shape tensor Q has also been used to quantify the conformation of random walks and

polymers [128, 131, 132]. The trace of this tensor, tr Q, equals the square radius of gyration.

It is related to the vesicle’s moment of inertia tensor I, evaluated about its centre of mass X,
via

I=(trQ)1-Q. (3.10)

Information on the anisotropy of the shape is provided by the spread in the eigenvalues of Q,
A1 <o < Ag. If all the A; are equal, the shape is spherically symmetric.
To proceed, it is practical to define Q, the traceless version of Q, by

Q=Q- )1, (3.11)

where \ denotes the average eigenvalue of Q
P > A ' g (3.12)
== ;== TrQ. .
d - ‘o

For a spherical shape, Q is 0.
A measure for the deviation from spherical symmetry is given by the relative variance of
the eigenvalues \; of Q. By definition one has

PN

AN-A) L ,Tr(Q?)
Z( 5 > _d(TrQ)z. (3.13)

%

As a measure for the asphericity we define the asphericity parameter oy as a normalised version
thereof [131]
d_T(Q%)

g = ——

d—1(TrQ)%’

(3.14)
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Upon averaging over a thermal ensemble, the following inequality holds

4 (TH(Q?)
'S I T(mQp)

For d = 3, the asphericity parameter reads

ey ™Q*) 1 3 </\i—5\>2 | (3.16)

<1. (3.15)

T2 (TrQ)? 6 A

which is the order parameter used by in the article [116]. One has ag = 0 for spheres, ag = 1
for thin rods and a3 = 0.25 for thin disks.

The character of the anisotropy, whether it is prolate or oblate, is reflected by the third
order measure Tr(Q?). For d = 3,

Tr(Q%) = 3detQ = 3(A1 — A) (A2 — A ( A3 — A). (3.17)

The sign of det Q reflects the relative number of large and small eigenvalues in Q. For a
prolate shape (A3 > A1 =~ o) one has A3 — A > 0, while \; — XA < 0 and Ay — A < 0, so that
det Q is positive. In contrast, an oblate conformation (A3 ~ Ay > A1) has a negative value for
det Q Thus, the sign of det Q determines whether a shape is prolate or oblate. Its magnitude
probes how oblate or prolate a shape is. As a normalised measure of the character of the shape
anisotropy we use in the following 3 [132]

_ d? Tr(Q?)
%= D)@~ 2) Q) (3.18)

which fulfils

o £ (@)

@17 = @- 12 (mQp) = 319

For d = 3,

9Tr(Q%) 1A =N —NA3— A
== 3HQ) =N =) 520,
and
1 _9(1(QY)

8Ty < 2

3.3.2 Free energy profile

At this point, a few general remarks regarding free energy profiles are in order. To char-
acterise the free energy of a system, the phase space of the system needs to be partitioned
via an appropriate order parameter, which we denote by a. The probability density p,(7") for
the system to acquire microstates assigned to the order parameter a at temperature 7" can be

written as
Z,(T)

Z(T)

pa(T) = (3.22)

3This definition of 64 differs from that in [131] by a factor of two.
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In Eq. (3.22), Z(T) denotes the (canonical) partition function of the system and Z,(7) the
restricted partition function, defined as

ZJszi/dﬂwaVT&aaﬁ—a% (3.23)

where the integral extends over all microstates in the phase space. With this, we can define
the constrained free energy
F(T)=-TmnZ,(T). (3.24)

A free energy profile refers to the free energy F,(T') as a function of a. The free energy
difference AF, o(T) = F,(T) — F,/(T) is related to the probability densities p,(T") and py (T)
via
Z / /
«(T) _ Tlnpa (T) :
Z4(T) Pa(T)

which is in principle accessible by Monte Carlo simulations.

AF,o(T)=TIn

(3.25)

3.3.3 Simulation results

We perform Monte Carlo simulations with the Metropolis algorithm to obtain thermal
equilibrium properties of vesicles. The focus is on the free energy profile of vesicles with
reduced volumes close to one, where typically prolate and oblate morphologies occur. To
characterise the vesicle shape two different order parameters are employed, the asphericity
« = ag and the shape anisotropy d = d3. The asphericity « allows to quantify the deviation
from being a sphere, while the shape anisotropy ¢ distinguishes between prolate and oblate
morphologies. The shape anisotropy ¢ is positive for prolates, and negative for oblates. Its
magnitude quantifies how oblate or prolate the shape is.

Simulation details and units

In the simulations, the vesicle is represented by a triangulated surface with N, = 864
vertices and edge lengths according to the tether-bead model, see section 2.2.2. Fig. 3.2
shows snapshots for a prolate (Fig. 3.2a) and an oblate morphology (Fig. 3.2b) taken during
the simulation. The vesicle area is essentially fixed, up to small fluctuations in a harmonic
potential around a given optimal area. We apply two types of Monte Carlo moves in a random
order: vertex moves where the position of single vertices is displaced and bond-flips in which
an edge between two triangles is relocated to connect the formerly unconnected vertices of the
two triangles. We perform about 2 - 107 MC moves to obtain sufficient statistics. The system
is equilibrated in an initial run. Thereby, a maximum step size Az for the vertex translation
is determined such that about 50% of the proposed translation moves are accepted.

In the following, all energies, including 7', are given in units of k.

We monitor in the simulations the probability densities p(T), ps(T) and pas(T). The
probability density p,(T") gives the probability that at temperature T the vesicle acquires a
conformation with asphericity «, it is related to the constrained free energy F,,(T') by F,(T) =
—TInps(T) (up to a constant). The probability density ps(T) denotes the probability that
the vesicle has the shape anisotropy J, with the corresponding constrained free energy Fs(T').
The probability density p,s(T") gives the probability density that the vesicle has asphericity
a and shape anisotropy 6, with the corresponding constrained free energy F, 5(7T).
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(a) (b)

Figure 3.2: Snapshots of (a) a prolate ellipsoid (asphericity o = 0.060, anisotropy 6 = 0.014)
and (b) an oblate ellipsoid (a = 0.009, § = —0.0004).
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Figure 3.3: Probability density p,(T) as a function of the asphericity « for vesicles without
volume constraints at different temperatures T (in units of the bending rigidity ) T'= 0.01 &
(solid line), T' = 0.05 x (alternating dots and dashes), 7' = 0.1 s (dashed line), and T' = 0.2k
(dotted line).

In the following we investigate vesicles which can change their volume and vesicles with a
fixed reduced volume.

Vesicles without volume constraints

Vesicles embedded in a solvent without osmotically active particles can change their volume.
For these vesicles, when ¢y = 0, the energetic ground state is a sphere (v = 1, « = 0 and 6 = 0).
If one includes thermal undulations of the membrane, the vesicle shape starts to deviate from an
exact spherical geometry. This can be seen in Fig. 3.3, where the probability density p,(T') of
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Figure 3.4: Probability density ps(T") as a function of the shape anisotropy 0 for vesicles without
volume constraints at temperatures 7' (in units of the bending rigidity ) (a) 7" = 0.01 k, and
(b) T = 0.2 k. The shape anisotropy ¢ is positive for prolate shapes, negative for oblate and
vanishes for intermediate shapes or spheres, its magnitude quantifies the anisotropy of the
shape.
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Figure 3.5: Free energy profile Fy5(T) for vesicles without volume constraints as a function
of the shape anisotropy ¢ at temperatures (a) 7' = 0.01x, and (b) 7" = 0.2k. The shape
anisotropy 0 is positive for prolates, negative for oblate and vanishes for intermediate biaxial
shapes or spheres; its magnitude quantifies the anisotropy of the shape.

a vesicle with ¢y = 0 is plotted for different temperatures T varied between 0.01 k < T < 0.2 &,
corresponding to bending rigidities from x = 1007 down to xk =57

The data shows that at low temperatures or equivalently large bending rigidity, the max-
imum of p,(7T) is close to zero. The vesicle conformations are almost spherical. As the
temperature increases, the maximum of p,(7) shifts to larger values of a.. The deviation from
the spherical shape becomes larger. The asphericity is caused by thermal fluctuations and has
an entropic origin.

To characterise the anisotropy of these conformations, we determine the probability density
ps(T') for the same parameters. Fig. 3.4 displays some of this data. We assume in the following
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Figure 3.6: Contour plots of the free energy F, (1) (asphericity a on the vertical axis versus
anisotropy d on the horizontal axis) for vesicles without volume constraints at different tem-
peratures 7' (in units of the bending rigidity &), from top left (a) T'= 0.01k, (b) T'= 0.05 &,
(¢) T=0.1k, and (d) T'= 0.2 k.

A1 < Ay < A3, As a first result we find that the conformations with maximum probability
density are shapes with § = 0. These are intermediate shapes which are neither distinctly
prolate (A3 > A1 =~ A2) nor oblate (A3 ~ A; > A2), but slightly biaxial morphologies where
the eigenvalues of the shape tensor are approximately equidistant, i.e. A3 — Ao >~ Ao — Aq.
This result holds for all investigated temperatures. Furthermore, the distribution ps(7") is
found to be asymmetric with respect to the sign of 4, i.e. between prolate and oblate shapes.
It has a larger tail for prolate shapes, implying that the probability of prolate morphologies
is slightly larger than that of oblate shapes. While the form of ps(T") is quite insensitive to
the temperature — with increasing temperature the probability for prolate shapes increases
slightly —, the absolute value of the distribution width changes considerably with varying
temperature. As the temperature increases from T = 0.01k to T = 0.2k, it increases by
almost two orders of magnitude. This result is understood by recalling that the absolute
magnitude of § quantifies the anisotropy of the shape and reflects how prolate or oblate a
shape is. Thus, for higher temperatures the eccentricity (elongations) of the vesicle shape is
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7/s ) oo @)

0.01 0.0037 0.514  0.993
0.05 0.0154 0.573  0.981
0.1 0.0309 0.590  0.966
0.2 0.0651 0.600 0.935

Table 3.1: Thermal equilibrium properties of vesicles without volume constraints at different
temperatures 7' (in units of the bending rigidity ). The relative spread of the eigenvalues of

-\ 2
the shape tensor ), (%) = 6 measures the asphericity of the vesicle, pprolate gives the

probability of conformations with prolate shape, and v is the reduced volume. (The brackets
() denote thermal average.)

much more pronounced. This is of course the behaviour one would naturally expect.

To obtain the total probability for prolate conformations pprolate (1) one has to integrate the
probability density ps(7") in the interval 0 < § < co. Likewise, the total probability for oblate
conformations poplate (1) is given by the integration of ps(T') in —oo < § < 0. The probability of
prolate morphologies pprolate(17) is found to be slightly larger than poplate(7). This is a result
which has also been made in [129]. For T' = 0.01 k, we find pprolate(0.01 k) = 0.514. With
increasing temperature ppolate(7’) increases slightly. For T' = 0.2k pprolate(0.2 k) is about
Pprolate = 0.6. The findings are summarised in detail in Tab. 3.1. How can the preference of
prolate shapes be explained? This fact is due to energetic reasons. For vesicles with v close to
one, the prolate ground state energy is slightly smaller than that of the corresponding oblate
at the same v [125].

Fig. 3.5 shows the profile of the constrained free energy F3(T") for T'= 0.01 x (Fig. 3.5a)
and for T' = 0.2 (Fig. 3.5b), which are derived from ps(7T") and correspond to Fig. 3.4a and
Fig. 3.4b, respectively. The single minimum in Fj5(7") at 6 = 0 shows that the transition
between prolate and oblate morphologies is continuous and not hampered by a free energy
barrier. This is an important issue and could not be clarified in [129].

To corroborate our findings we monitor p, s(7") and determine Fy, 5(7'). The free energy
landscape as a function of o and ¢ provides more detailed information about the transition
between prolate and oblate shapes. It is shown in contour plots in Fig. 3.6 for T" = 0.01 &
(Fig. 3.6a) and T' = 0.2k (Fig. 3.6d). The data shows clearly that in the free energy land-
scape there are no barriers. The transition between prolate and oblate vesicles proceeds in a
continuous manner.

Vesicles with fixed reduced volume

For typical osmotic conditions in experiments, the osmotic energy exceeds the energy of
curvature elasticity. To a good approximation, the volume is then fixed to a value for which the
osmotic pressure is minimal. We analyse the statistics of a vesicle with vanishing spontaneous
curvature cg = 0 at temperature T' = 0.1 « for different fixed volumes v, starting from v = 0.75
up to v = 0.95. For these values of v, the minimum energy configuration is a prolate shape. The
results of our simulations are collected in Fig. 3.7, which shows histograms of p,(T"), Fig. 3.8,
which shows histograms of ps(7") and Fig. 3.9, which shows contour plots of the constrained
free energy Fy, 5(T).
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Figure 3.7: Histograms of the probability density p,(7T") as a function of the asphericity « for
vesicles with bending rigidity x and vanishing spontaneous curvature cg = 0 at temperature
T = 0.1k for different reduced volumes v, from top left (a) v = 0.8, (b) v = 0.9, (¢) v = 0.92,
(d) v =0.95.

v Poblate
0.9 0.054
0.92 0.104
0.95 0.38

Table 3.2: Thermal equilibrium properties of vesicles with bending rigidity « at different
reduced volumes v for temperature 7' = 0.1 £ and vanishing spontaneous curvature ¢y = 0.
The probability popiate gives the probability that the vesicle has a prolate shape.

Our data shows that for comparably small values of v (0.75 < v < 0.9) only prolate
configurations occur in thermal equilibrium (Fig. 3.8a). This is expected from energetic reasons
because in this range of reduced volumes the difference in the ground state energy of oblate and
prolate shapes is considerably larger than the thermal energy [125]. For vesicles with reduced
volume close to one, this energy difference is small and thermal fluctuations also excite oblate
configurations. For our parameter values chosen, this happens at about v = 0.9, above which
the statistical weight of oblate morphologies poplate(7) is significantly larger than zero. The
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Figure 3.8: Histograms of the probability density ps(7") as a function of the shape anisotropy o
for vesicles with bending rigidity x and vanishing spontaneous curvature ¢y = 0 at temperature
T = 0.1k for different reduced volumes v, from top left (a) v = 0.8, (b) v = 0.9, (¢) v = 0.92,
and (d) v =0.95.

probability poplate(T’) increases with increasing v. We find that for 7' = 0.1 &, poplate(T) = 0.054
for v = 0.9, pPoblate(T) = 0.104 for v = 0.92 and peplate(T") = 0.38 for v = 0.95, see Tab. 3.2.

A look at the distributions in Fig. 3.8 and the free energy profiles in Fig. 3.9 reveals that for
vesicles with volume constraints the transition between prolate and oblate shapes is continuous.
Again, no free energy barrier is involved. This result is similar to the observation made for
vesicles without volume constraints.
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Figure 3.9: Contour plots of the free energy Fy, 5(T") (asphericity « on the vertical axis versus
anisotropy d on the horizontal axis) for vesicles with bending rigidity « and vanishing spon-
taneous curvature ¢y = 0 at temperature T = 0.1 k for different reduced volumes v, from top
left (a) v =0.8, (b) v =0.9, (¢) v =0.92, (d) v = 0.95.
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3.4 Discussion and conclusion

In this chapter the conformation of fluid three-dimensional vesicles has been studied. Using
Monte Carlo simulations, we have determined the free energy profile of vesicles with a reduced
volume close to one. Both, unconstrained vesicles as well as vesicles with volume constraints
have been analysed.

For unconstrained vesicles whose energetic ground state is an exact sphere, we find that
in thermal equilibrium the most probable conformations deviate from an exact sphere. The
deviation becomes larger when temperature increases and it is due to thermal fluctuations. A
similar observation has also been made in the related work of [129]. We find that the shapes
with the highest probability density are neither prolate (positive anisotropy) nor oblate (nega-
tive anisotropy), but intermediate biaxial shapes with vanishing anisotropy (i.e. the eigenvalues
of the shape tensor Q fulfil A3 — Ay >~ A9 — A;). We give estimates for the probabilities for the
occurrence of prolate and oblate morphologies and show that vesicles with prolate shape are
more likely than vesicle with oblate shapes. Furthermore, as an important result, we find that
the transition between prolate and oblate shapes is smooth, i.e. it is not hampered by a free
energy barrier.

For vesicles with fixed volume whose energetic ground state is a prolate we show that
for sufficiently large v thermal fluctuations lead to shape transitions from prolate to oblate
morphologies. Our simulations for fixed reduced volumes indicate that the transition between
prolate and oblate shapes proceeds continuously without a free energy barrier. Again, we give
estimates for the probabilities for the occurrence of prolate (oblate) morphologies.

Our findings provide a natural explanation for the experimentally observed transition from
oblate to prolate morphologies [61]. It should be pointed out, however, that a direct comparison
with the experiments may be difficult. While in the simulations the full three-dimensional
information of the vesicle shape is given, in the experiments only a two-dimensional cross
section of the vesicle shape is available. Given this limited information, it may be sometimes
difficult to judge whether a vesicle is indeed prolate or oblate.
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Chapter 4

Vesicles with solid and fluid
membrane domains

This chapter surveys the morphology of fluid vesicles with solid membrane domains. The
solid membrane is considered in the limit where it cannot undergo in-plane stretching defor-
mations. We determine the equilibrium shape of fluid vesicles with one or several solid domains
for various material parameters. As the material parameters change, morphological transitions
are observed between vesicles with different domain shapes. Our results are corroborated by
Monte Carlo simulations, which take into account effects of thermal fluctuations.

4.1 Introduction

In this chapter we investigate morphologies of fluid vesicles where some parts of the vesicle
membrane exhibit in-plane order. Certain aspects of in-plane order in membranes have been
encountered in chapter 2 for unconstrained membranes which undulate freely. Compared to
free membranes, order phenomena in a closed surface such as a vesicle are more complex for
topological reasons. For vesicle shells whose total membrane area is in an ordered state (for
example the vesicle membrane is frozen in the solid (gel) phase), new vesicle morphologies
appear. In contrast to fluid vesicles, the equilibrium shape for large, in-plane ordered vesicles
is found to be non-spherical also in cases where the vesicle volume is unconstrained. This is
because even in the energy ground state defects have to be present. These topological defects
interact with each other, usually they repel and tend to be separated as far as possible, causing
membrane deformations.

The focus in this chapter is not on homogeneously ordered vesicles, but on inhomogeneous
vesicles where only a fraction of the vesicle area is in an ordered state, while the rest of the
vesicle membrane is disordered and fluid [62]. Such a scenario arises when the membrane is
prepared in a region of the phase diagram where a solid (or gel) phase coexists with a fluid
phase. Phase separation then leads to the formation of intramembrane domains [62]. In the
past, researchers did not show too much interest in solid membranes and the formation of
solid domains because, in contrast to fluid domains, solid domains are not believed to be of
immediate biological relevance. Nevertheless, from a physical point of view they certainly do
deserve special attention. As two-dimensional crystals they have unique physical properties
which are markedly different from their three-dimensional counterparts [133].

Very recently, confocal fluorescence microscopy studies allowed to investigate in detail the
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formation of solid domains on giant unilamellar vesicles made of lipid mixtures [71, 72, 74—
78]. These experiments reveal micron-sized domains with different morphologies, including
stripes of different widths and orientations, polygonal domains as well as round shapes (see
Fig. 1.8-Fig. 1.10). There is experimental indication that the shapes of the domains observed
in solid-fluid coexistence are correlated with the structure of the gel phase [71]. It is also
observed that, surprisingly, the domains do not grow beyond a limit but their size seems to be
limited. This phenomenon has remained unexplained.

In the following we study the morphology of fluid vesicles with solid domains from a
theoretical perspective. We consider phase separation in the so-called strong-segregation limit
[134, 135]. This implies that the phases are homogeneous inside the domains and that a
sharp interface separates the domains. The physics of the domain boundaries can therefore
be described by a line tension. Basing on this assumption, the formation of solid domains
in fluid vesicles has been the subject of recent work [136, 137]. In these studies the authors
focused on the limit of exact spherical vesicles, where the solid domains are stretched onto
the spherical geometry. In this case the shape of the domain is determined by an interplay
between line tension and elastic stretching energy. In this chapter we address the opposite
situation where the solid domains are considered to be essentially unstretchable and undergo
only isometric bending deformations. This regime is supposed to be more relevant for lipid
bilayer membranes. We consider non-spherical vesicle morphologies where domain shapes are
governed by a competition between bending energy and line tension contributions.

The chapter is organised as follows. We start with a summary of in-plane order in a
homogeneous vesicle membrane. Next, we turn to inhomogeneously ordered vesicles, and
determine the equilibrium energy of vesicles with different solid domain morphologies. The
shapes with minimum energy are arranged in morphology diagrams. Monte Carlo techniques
are employed to include effects of thermal fluctuations.

4.2 Order on homogeneous vesicles

Even though the main topic of this chapter is the formation of solid membrane domains,
it is instructive to have a brief look on vesicles whose whole membrane is in an ordered state.
Internal or in-plane order is coupled to the local geometry of the membrane. If a surface
has intrinsic curvature, in-plane order becomes frustrated. This affects translational order in a
crystal [138] as well as order which is described by a vector or tensor field order parameter such
as hexatic bond-orientational order or tilt (smectic C) order with two-fold rotation symmetry
[139]. For example, a two-dimensional, initially flat crystal necessarily stretches if it is forced
to lie on a surface which is curved in two directions, i.e. which has non-vanishing Gaussian
curvature, cf. section 2.3.

In-plane order is not only connected with local properties of the membrane but in addition
constrained by its topological properties. For a closed surface, new phenomena arise which
are not present in a planar membrane. A closed surface is classified according to its genus g
(number of handles) or equivalently its Euler-Poincaré characteristic xgyler = 2(1—¢) which is a
topological invariant. For these surfaces, the Poincare theorem relates the sum of the charges of
topological defects to the Euler-Poincaré characteristic xguler [140]. For a triangulated surface,
the elementary topological defects are given by disclinations. We associate the topological
charge s = +27/6 to a positive (five-fold) disclination, and s = —27/6 to a negative (seven-
fold) disclination. The other topological defects such as dislocations or grain boundaries can
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be built from these elementary imperfections. Dislocations can be considered as a bound pair
of disclinations with opposite charge and thus have a net charge s = 0. For spherical surfaces,
one has xguler = 2. The topological constraint requires a minimum number of topological
defects for a spherical membrane with crystalline, tilt or hexatic order: A triangular lattice
with translational order must be interrupted by at least twelve five-fold disclination defects.
Likewise, tilt order (bond-orientational order with two-fold rotation symmetry) necessarily
generates two antipodal defects (vortices with charge 27), and hexatic order leads to at least
twelve vortices (five-fold disclinations with charge s = 27/6). In general, the creation of
disclinations involves quite high energies. Some elastic strain around such a defect can be
reduced or screened by a deformation of the membrane which modifies the local Gaussian
curvature [141]. These defects interact with each other in a long-range way [142].

As a consequence, unconstrained vesicles with in-plane order which can adjust to their
optimal volume exhibit non-spherical equilibrium shapes. This is in contrast to fluid vesicles.
Development of tilt order leads to ellipsoidal (prolate) or cylindrical shapes. Hexatic order is
expected to induce a transition to an icosahedral morphology [143-148].

In the case of crystalline order on a small elastic shell, the equilibrium shape is believed to be
a sphere where the disclination defects are located at the vertices of an inscribed icosahedron.
If the size of the shell increases, the situation becomes more involved. For a flat plate, the
elastic energy associated with the lattice distortion around an isolated disclination grows as a
function of the area of the system. Therefore, for larger shell sizes the associated elastic energy
becomes quite large and lots of strain is created. Above a certain shell size, the spherical shape
becomes unstable and the excess strain is relieved by buckling of the membrane. Buckling is the
consequence of energy minimisation of stretching and bending contributions near a disclination.
For a spherical soft shell, it results in a morphological transition towards an icosahedron shape
[149]. The instability of an elastic shell towards buckling might provide an explanation for the
experimentally observed faceting of lecithin vesicles in a crystalline phase [150]. Furthermore,
it may be relevant for the morphology of various virus capsids where larger viruses are found
to be more faceted [149, 151]. The volume enclosed by the shell decreases during a buckling
transition. Buckling therefore can only occur if the vesicle volume can change. If the geometry
is fixed to be spherical, there is an alternative mechanism for lowering the strain energy. The
buckling instability is replaced by an instability towards the formation of extra defects. This
mechanism has been first investigated theoretically for a spherical crystal [152] and verified later
on in experiments with colloidosomes [153]. Colloidosomes (named in analogy with liposomes)
are spherical solid capsules which are formed by colloidal particles self-assembled on water
droplets in oil. The analysis of the typical arrangement of the colloidal particles reveals that
above a critical size of the colloidosome additional defects besides the defects required by
topology are present [153]. One observes dislocations, tightly bound pairs of disclinations of
opposite charge, which are aligned in strings to form grain boundaries or so-called scars. Since
their net disclination charge is zero, these extra defects still satisfy Poincaré’s theorem. Their
function is to reduce the large stresses in the vicinity of a disclination. The drastic relief of
elastic energy compensates the additional energies associated with the creation of dislocations.
If one takes interactions between dislocations into account, one can show that the dislocations
organise in grain boundaries to minimise the energy even further [152].

As an aside we may also mention that curvature-induced defect unbinding is not limited
to crystalline order or spherical topologies. In [154] it is shown to occur with hexatic bond
orientational order in toroidal geometries, for which xguler = 0.
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4.3 Solid domains in fluid vesicles

Having touched some aspects on order-phenomena extending over the whole vesicle mem-
brane, we turn to inhomogeneous vesicles where only parts of the vesicle membrane develop
ordered structures. Such a situation occurs when the membrane is quenched into a phase-
coexistence of two phases, an ordered solid (gel) phase («) and a disordered fluid phase (3).
Experimentally, this situation may be realised by a single-component membrane as well as a
multi-component membrane made of a lipid mixture. Phase-coexistence is achieved for a single-
component membrane by adapting the temperature and for a multi-component membrane by
adjusting the temperature and composition, respectively. At the appropriate conditions, the
vesicle membrane phase separates and domains of different phases form.

Since bilayer membranes consist of two monolayers, domain formation can occur, in princi-
ple, separately within both monolayers. One can have monolayer domains, which extend only
across a single monolayer, or bilayer domains, which extend across both monolayers. Mono-
layer domains usually have a nonzero spontaneous curvature, whereas bilayer domains should
be typically characterised by zero spontaneous curvature. Experimentally, for the solid-liquid
coexistence in a mixture of DLPC/DPPC lipids all domains were found to be bilayer domains
[74]. A strong coupling between domains in both monolayers is also indicated by coarse grained
molecular dynamics simulation in lipid bilayers [155].

4.4 The model

In the following we restrict ourselves to the situation where the vesicle membrane is far
from a phase transition [134, 135] and we assume that only bilayer domains form. In the
so-called strong-segregation limit spatial variations of the in-plane membrane structure are
restricted to the domain boundaries. Since the width of these boundaries is assumed to be
much smaller than the size of the domains, the domains are considered to be separated by a
sharp interface of vanishing thickness. We denote the area of the membrane which is covered
by the solid phase (a) with A, and the area of the fluid phase (3) with A®). The total area
of the vesicle is given by A = A 4+ AP Tt is useful to introduce the area fraction covered
by the solid phase x(® as an additional degree of freedom

Y@ =A@ /4. (4.1)
The area fraction x® of phase (8) is given by

X =AB) /A =1y, (4.2)

Energy contributions of the domains

To calculate the morphology of the phase separated vesicle, one has to identify the relevant
energy contributions of the different phases. For the fluid phase (), the energy is given
by the Helfrich bending energy Hguiq, Eq. (2.1). For the solid phase («), the situation is
more complex and a few clarifications are necessary. As explained in chapter 2, the generic
low temperature phase of an unconstrained membrane is hexatic. This is because, above a
certain size of the membrane, thermal fluctuations in combination with membrane undulations
induce free dislocations. In vesicles, however, membrane undulations are suppressed by the
geometry and further reduced by possible volume constraints. As a consequence, defects cannot
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be formed so easily by out-of-plane bending. Therefore, only a small number of thermally
induced dislocations should exist on average. We can assume that the correlation length
for the translational order &p is of the order or larger than the size of the solid domains.
Accordingly, the elastic energy Heryst, Eq. (2.19), derived from the continuum elasticity theory
of thin plates, can be employed for the solid domain. The energy Hcryst comprises bending
and stretching contributions. Stretching energy penalises deviations from a preferred in-plane
reference or ground state, which needs to be specified. We assume that the ground state (or
reference metric) has a flat metric which is equivalent to saying that in the ground state defects
are absent (cf. [156]).

To arrive at the full energy for the phase separated vesicle, the elastic energies have to be
supplemented by the energy which arises at the interface between the different domains. This
is incorporated by a line energy, which is proportional to the length of the domain boundary.
The proportionality factor is the line tension A(®#) [157, 158] which, for solid-like domains, is
in principle anisotropic.

Combining these energies, we obtain the total energy of the phase separated vesicle

H= / dAH)  + /ﬁ dAH), + @) /8 dl+0@A 4 gDAD L gy (4.3)
«
It consists of the elastic energies for the solid and fluid membrane domain and an interface

energy for the domain boundary. The first term describes the solid membrane and involves
(a)

cryst Over the solid membrane area A@ . The second term

describes the fluid membrane domain and involves an integral of the elastic energy Hgi)id over

the fluid membrane area A®®). The third term is the energy of the domain boundary with line
tension A(®%) and contains an integral along the domain boundary 0. In order to take the
constraints on the domain area A and A® into account, two Lagrange multipliers, o(® and
o are introduced. The parameter p is the Lagrange parameter for possible constraints on
the enclosed volume and corresponds physically to the pressure difference between the interior
and exterior of the vesicle.

The constraint imposed by the topology of the vesicle on the minimum number of defects
becomes ineffective for the solid domains. This constraint holds for the vesicle as a whole and
is easily fulfilled by the unordered fluid membrane parts.

an integral of the elastic energy H

Relative importance of bending and stretching energy

If one starts from the energy expression, Eq. (4.3), and tries to determine the equilibrium
configuration with minimum energy, for example by functional variation of Eq. (4.3), one faces
severe difficulties in the general case. The energies Hp,iq and Heryst contain second order partial
derivatives in the coordinate function parametrising the surface. Already, if one performs the
first variation for these individual energies separately, one obtains partial differential equations
of fourth order. For example, for the bending energy Hgyuiq, this leads to the already familiar
'shape equation’, Eq. (3.4) [120]. For the energy Heryst, which contains stretching and bending
energy, one obtains the Foppl-von Karmén equations, which are highly nonlinear and "very
complicated, and cannot be solved exactly, even in very simple cases [58]”. We therefore have
to narrow to some limiting cases.

To proceed, we keep in mind that the vesicle morphology is determined by a combination
of bending energy of the fluid domain, bending and in-plane stretching energy of the solid
domain and line tension contributions at the domain boundaries. In general, the different
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energy contributions differ in orders of magnitude. In the following we focus on the relation
between stretching and bending energy. The relative importance of stretching and bending
deformations is given by the dimensionless Foppl-von Karman number

_ kyR}

— (4.4)

where ky is the two-dimensional Young’s modulus, x the bending rigidity and Ry the size of
the membrane.

In the limit of small v the formation of solid domains has been addressed in the recent
articles [136] and [137]. There, the authors studied solid domains on exactly spherical ge-
ometries. The fixed spherical geometry can be enforced by dominating bending energy or by
other physical mechanism such as the interface tension between oil and water, as it is the case
with two-dimensional colloidal crystals (colloidosome). In this specific case, the shape of the
domain is determined by a competition between line tension and elastic stretching energy. For
the spherical geometry, the stretching energy has been solved for certain given domain shapes,
in the absence [136] and in the presence of defects (scars) [137]. Scars are expected to occur
in larger stretched domains, since they considerable reduce strain, see section 4.2. Given the
stretching energy for a set of different domain shapes, the equilibrium domain shapes have
been calculated [136, 137]. It is found that as the line tension in decreased, the equilibrium
domain shapes evolve from a single cap to several caps to stripes that become thinner. The
authors conclude that their results are most relevant for domain patterns in colloidosomes.

Intermediate regimes of v, where stretching and bending energies are comparable, received
current research interest in [159]. In [159] it was shown that a high line tension in combination
with spontaneous curvature leads to the budding of the crystalline domain. The budding
mechanism is conjectured to be biologically relevant for the formation of clathrin cages [159].

Limit of large Foppl-von Karman number

In this chapter, we address the limit of large ~y, i.e. when the stretching energy is distinctly
larger than the bending energy. In this limit, the membrane surface is considered unstretchable.
This limit is relevant for solid (gel) phases of lipid bilayers because for a micrometer-size vesicle
one finds v ~ 10'0. It naturally applies for a thin plate in the limit of vanishing thickness.
For a thin plate, the ratio of stretching energy over bending energy is inverse proportional to
the square of the plate thickness and hence diverges for an infinitesimal thin plate [58]. A
familiar example of such a plate with a comparably small thickness is a sheet of paper, which
easily bends but hardly stretches or shears. For these surfaces, only bending deformations
are possible which do not cause in-plane stretching. This has implications for the geometry
of the phase separated vesicle. When a solid domain which cannot be stretched forms on a
vesicle, the vesicle cannot remain spherical but has to deform. Possible vesicle morphologies
are proposed in [62] and are depicted in Fig. 4.1.

Membrane bending deformations which do not cause strain are deformations where the
distance between nearby points in the membrane remains fixed, so-called isometric deforma-
tions. In the limit of large ~, it follows from a discussion of the general Foppl-von Karman
equations that the Gaussian curvature of the crystalline surface has to equal the disclination
density [58].

If one assumes a disclination free ground state for the solid membrane, the solid membrane
acquires a conformation where the Gaussian curvature vanishes everywhere. Geometrically,
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Figure 4.1: Proposed vesicle morphologies with stripe domains containing solid («) and fluid
(6) domains. All solid («) domains (grey) have the shape of cylindrical segments with vanishing
Gaussian curvature. If the vesicle is inflated and almost spherical, the solid phase can form
narrow stripes as in (a)-(c). If the vesicle is deflated and prolate, the solid phase can form
barrels as in (d) and (e). from [62]

such a surface is called a developable surface [160]. A developable surface is a surface that can
be mapped isometrically (i.e. developed) onto a plane, i.e. be flattened onto a plane without
distortion, or reversely, made by transforming a plane without distortions. From differential
geometry it is known that locally there are only three types of developable surfaces in three-
dimensional space: normal developable (cylindrical) surfaces, binormal developable (conical)
surfaces and tangent developable surfaces (the tangent surface of a twisted curve !). Globally,
developable surfaces can be a rather complicated composition of these three surface types.

In our approach, the different membrane domains are characterised as follows. The solid
membrane domains cannot be stretched and they are flat in their ground state. Therefore,
possible conformations are developable surfaces. The solid domains are characterised by the
bending modulus #(® and the spontaneous curvature Céa). Fluid domains are governed by
bending elasticity, with the material parameters bending modulus x(®, Gaussian bending
modulus mg ) and spontaneous curvature C’éﬁ ). The domain boundary is characterised by the
line tension A(*#). The vesicle morphology and the domain shape are governed by an interplay

between the different bending energies and the line energy.
For simplicity, we neglect in the following the Gaussian bending modulus /1(6?) = 0 and

restrict ourselves to zero spontaneous curvatures C’éa) = C(()ﬁ ) = 0. We use k® as the
reference energy. As relevant parameters there remain four dimensionless quantities, the ratio
of the elastic moduli

(a)
. K
€ = m ; (4.5)
the reduced line tension
a,8) Ho

the solid area fraction x(® and the reduced volume v.

Yin German called *Torsen’
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4.5 Equilibrium configurations

As the first step we consider configurations with minimum energy. This corresponds to
T = 0. We start with a vesicle without volume constraints. We consider fluid vesicles with one
solid domain, which may be round, a cylindrical ring or a conical ring, and fluid vesicles with
two solid domains. These domain shapes are expected to be the relevant domain shapes for
the investigated material parameters. Later on, we extend our analysis to vesicles with volume
constraints. Thereby, as the vesicle geometry approaches a sphere it will become necessary to
include vesicle configurations with more than two solid domains.

4.5.1 Vesicles without volume constraints
Isotropic line tension

Given our characterisation for the solid domains and an isotropic line tension, the equilib-
rium configuration for a solid domain on a free membrane is flat, simple-connected and has
circular shape. For a solid domain on a fluid vesicle, this is not necessarily the case. Only if
the domain size is small compared to the size of the vesicle, the solid domain is circular and
remains flat. For a larger domain size, the shape of the domain is affected by the geometry
of the vesicle. The solid membrane has to bend in order to adapt to the vesicle geometry. It
may also deform its shape because a large circular domain involves high bending of the fluid
membrane near the domain boundary. As a consequence, the shape of a comparably large
solid domain becomes elongated and deviates from an exact circle. An example of a phase
separated vesicle with one solid («) and one fluid (8) domain is displayed in Fig. 4.2a (for the
parameters x(®) = 0.15, A = 0.5, € = 6). This vesicle morphology is in the following referred
to as Iy 2.

On a closed object like a vesicle, the morphology with one domain in each phase is not
always the equilibrium morphology. In particular for large area fraction of the solid membrane,
one has to consider more complex domain shapes. In the following we consider vesicle shapes
with one solid («) and two fluid () domains. These are vesicle shapes where the solid domain
is either a cylindrical ring, morphology Ia,, or a conical ring, morphology Is,. Examples are
shown in Fig. 4.2b and Fig. 4.2c, respectively. To characterise the ring domains, we use the

parameter x(g,, g,), defined as the area ratio of the two fluid domains Agﬁ ) and Aéﬁ ) (with
AP < AP and A®) = AP 4 4P,

L
X(B1,82) = AB) (4.7)

As another possibility we consider vesicles where the solid domain is split into two domains, i.e.
we consider vesicles with two solid («)) and one fluid () domains, referred to as morphology

II;. An example is depicted in Fig. 4.2d. The area ratio of the two solid domains Aga) and
Aga) (with Aga) < Aé“) and A(®) = Aga) + Aga)) is characterised by

X(Oll,OéQ) = A(O‘) . (4.8)

?Regarding notation: the Roman numerals denote the number of phase (o) domains, the subscripts with the
Arabic numerals denote the number of phase (8) domains.
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Figure 4.2: Equilibrium configurations of a vesicle with fluid () (white) and solid («) (blue)
membrane domains (solid area fraction x(® = 0.15, reduced line tension A = 0.5, and bending
rigidity ratio €® = 6): a fluid vesicle with (a) a single round («) domain (I;), (b) a cylindrical
ring () domain (Ig,), (¢) a conical ring () domain (Is), and (d) two («) domains (II1) (The
second («) domain is hidden.).

In the following we determine and compare the ground state energies of these vesicles for
different material parameters up to a solid area fraction x(® = 0.3. As the subclass of possible
solid domain forms we consider a simple-connected, round domain, type I, a cylindrical ring
domain, type Is,, a conical ring domain, type Iy, and two solid domains, type II;. These
domain shapes are expected to be the relevant domain topologies for the investigated material
parameters. For simplicity, we restrict ourselves to a cylindrical ring with x(s, g,) = 0.5, a
conical ring with x(g,, 3,) = 0.25 and two solid domains of the same size, X(q,,a,) = 0.5. Our
main interest is on the equilibrium shapes with minimum energy. Morphologies with a higher
energy are metastable. We do not perform an explicit stability analysis of metastable states.

Minimisation method

The equilibrium shapes are determined numerically by direct minimisation of the energy
functional with the help of the software package 'The Surface Evolver’ [161] 3. In this package,
the surface of the vesicle is implemented as a discretised surface (i.e. a union of triangles,
which, mathematically, corresponds to a simplicial complex). The surface evolves towards a
minimum energy state via a gradient descent method. During the minimisation procedure,
the triangulation of the surface is adapted, i.e. refined near regions of high curvature. The
constraint of the solid domain — a developable surface with vanishing Gaussian curvature — is
implemented via an auxiliary harmonic potential in the Gaussian curvature

Haux = Faux / dAK?. (4.9)

By using a sufficiently high constant K,.x, any deviation from a flat metric is strongly penalised.
This way a developable surface for the solid domain is achieved. The estimated numerical
accuracy of the obtained energy values is about ~ 1%.

3This software package has been developed by Kenneth Brakke and is freely available at
http://www.susqu.edu/facstaff/b/brakke/evolver/



56 Vesicles with solid and fluid membrane domains

E/8mkP)
E/8nkB)

0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3
x@ x@
(a) (b)

Figure 4.3: Ground state energy of a fluid vesicle with solid domains without volume con-
straints. The minimum energy E of a vesicle with a round solid domain (I;) (solid line), a
cylindrical ring, x(s,, g,) = 0.5 (I22) (dashed line), a conical ring, x(s,, g,y = 0.5 (I2) (alternat-
ing dots and dashes), and two solid domains, X(a,,a,) = 0.5 (II1) (dotted line) is plotted as

a function of solid area fraction x(® for the bending rigidity ratio ¢® = 10 and reduced line
tension (a) A = 0.5 and (b) A = 1.
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Figure 4.4: Ground state energy of a fluid vesicle with solid domains without volume con-
straints, same parameter values as in Fig. 4.3 but with bending rigidity ratio ¢® = 6. The
minimum energy F of a vesicle with a round solid domain (I;) (solid line), a cylindrical ring,

X(81,8,) = 0.5 (I24) (dashed line), a conical ring, x(s,, 3,) = 0.5 (I) (alternating dots and
dashes), and two solid domains, X

a1,a0) = 0.5 (II) (dotted line) is plotted as a function of
solid area fraction x(® for reduced line tension (a) A = 0.5 and (b) A = 1.

Numerical results

In Fig. 4.3 - Fig. 4.5 the ground state energy of a vesicle with a round domain, morphology
I;, a cylindrical ring, morphology Ia,, a conical ring, morphology Iy, and two solid domains,
morphology Iy, is shown as a function of the solid area fraction x(® for different bending
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Figure 4.5: Ground state energy of a fluid vesicle with solid domains without volume con-
straints, same parameter values as in Fig. 4.3 but with bending rigidity ratio ¢® = 1. The
minimum energy F of a vesicle with a round solid domain (I;) (solid line), a cylindrical ring,
X(81,8:) = 0.5 (I24) (dashed line), a conical ring, x(s,, 3,) = 0.5 (I) (alternating dots and
dashes), and two solid domains, X(a,,as) = 0.5 (II1) (dotted line) is plotted as a function of
solid area fraction x(® for the reduced line tension (a) A = 0.5 and (b) A = 1.

rigidity ratios and different reduced line tensions. For the typical condition that the solid
membrane is about one order of magnitude stiffer than the fluid membrane [20], morphology
I, is found to be the optimal conformation for small solid area fraction y(®. For larger
area fraction, morphology II; has the smallest energy. This is demonstrated in Fig. 4.3a
and Fig. 4.3b where the minimum energy of the different vesicle morphologies is shown as a
function of x(® for bending rigidity ratio ¢® = 10 and reduced line tension A = 0.5 and A = 1,
respectively. The value of x(®, where the crossover from one to two solid domains takes place,
depends on A. Tt is shifted towards a larger area fraction x(® as the line tension is increased.
For € = 10 and A = 0.5, the transition occurs at about X(O‘) ~ (.1, while for A = 1 it occurs
at x(® ~0.15.

The diagrams in Fig. 4.3 also include the ground state energies of the ring-like solid domains
morphologies, morphology Is, and morphology I5,. In general, the ground state energy of the
cylindrical and conical ring is found to be comparable and considerably larger than the ground
state energy of the vesicle with one, respectively two domains. The conical ring, morphology
Iop, has a slightly smaller energy than the cylindrical ring, morphology Is,. Yet, as X(a)
increases, the energies of the ring-like domains become closer.

The situation changes slightly when the difference in the bending rigidity between solid
and fluid membrane is less pronounced. As the data in Fig. 4.4 (¢® = 6) shows, morphology 1y,
respectively IIj, still remain the optimum configuration. Yet, as €” decreases, the transition
between morphology I; and II; occurs at a larger solid area fraction x(®. In addition, for
small values of A, there is a crossover in the energy between the metastable morphology I; and
the metastable morphologies I, and Iy, see Fig. 4.4a.

The crossover towards the morphologies with a ring-like solid domain, morphology Is,
and Igp, becomes relevant, if the bending rigidities of the solid and fluid membrane become
similar and the reduced line tension A is small. Fig. 4.5a shows the ground state energy for
equal bending rigidity in the solid and fluid phase, ¢ = 1, and A = 0.5. While for A = 0.5
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Figure 4.6: (a) Morphology diagram of an unconstrained fluid vesicle with solid membrane
domains at temperature 7' = 0 as a function of the area fraction y(® and the bending rigidity
ratio € for the reduced line tension A = 0.2. (b) Corresponding shapes of minimum energy
for €® = 2 and increasing area fraction ().

morphology I; is optimal for x(®) < 0.24, one finds that above x(® > 0.24 morphology I, has
the lowest ground state energy. This morphological transition does not occur for larger values
of A, see Fig. 4.5a for A = 1. For A = 1, morphology I is optimal for x(® < 0.3.

The full information as to which domain morphology has lowest energy at a given set
of parameters is shown in the morphology diagrams of Fig. 4.6 - Fig. 4.8. These diagrams
contain the main results of this subsection regarding unconstrained vesicles without volume
constraints. The equilibrium morphology is displayed as a function of the bending rigidity ratio
¢® and area fraction x(®) for the reduced line tension A = 0.2 (Fig. 4.6a), A = 0.5 (Fig. 4.7a)
and A = 1 (Fig. 4.8a). We obtain the following picture: For a stiff solid membrane, morphology
I; is the optimum configuration only at small solid area fraction. Above a certain value of x (¥,
a transition towards morphology II; occurs. The value of x(®) where the crossover towards a
vesicle with two solid domains takes place depends on €® and A. It is shifted towards a larger
solid area fraction, as the line tension \ increases and/or € decreases. For e = 10 and A = 0.2,
the transition occurs at () ~ 0.06, while for A = 1 it occurs at x(®) ~ 0.15. As €" decreases,
morphology I; becomes increasingly favourable. For ¢ = 1 and A = 0.2, the transition occurs
at y(@ ~ 0.11 (Fig. 4.6a), whereas for A = 1 it does not occur any more in the range of the
investigated solid area fraction (Fig. 4.8a).
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Figure 4.7: (a) Morphology diagram of an unconstrained fluid vesicle with solid membrane
domains at temperature 7' = 0 as a function of the solid area fraction x(® and the bending
rigidity ratio €* for the reduced line tension A = 0.5. (b) Corresponding shapes of minimum
energy for area fraction x(® = 0.275 and increasing bending rigidity ratio €".

For small line tension and similar bending rigidities of the fluid and solid membrane, there is
a transition to morphology Ia,, as the solid area fraction x(® is increased and/or € decreases.
The cylindrical domain shape, morphology Is,, is found to have a slightly smaller ground
state energy than the conical domain, morphology Is; in regions where ring-like conformations
become important. The value of X(O‘), where the transition to morphology Is, occurs, depends
on ¢ and . The transition occurs at larger x(%), as the line tension increases. For € = 1 and
A = 0.2, it occurs at () ~ 0.16 (Fig. 4.6a), whereas for e = 1 and X\ = 0.5 the transition takes
place at about y(® ~ 0.25 (Fig. 4.7a). For e = 1 and A = 1, this transition is not observed
any more in the range of investigated solid area fraction y(® (Fig. 4.8a).

How can these results be understood qualitatively? First, line energy favours the vesicle
with the round solid domain, morphology I;, because the interface length of the round do-
main is the shortest for the investigated values of x(®. This explains why the region in the
morphology diagram where morphology I; has lowest energy enlarges when the line tension
increases. Then, regarding bending energy, if the bending energy of the vesicle is dominated
by the contribution of the stiffer solid membrane, the vesicle adapts a configuration where the
solid membrane remains comparably flat. As the configurations in Fig. 4.8b show, the vesicle
is deflated. This is possible because the vesicle can change its volume. Morphology I; is the
equilibrium morphology only for small values of x(®), because for larger area fraction the solid
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Figure 4.8: (a) Morphology diagram of an unconstrained fluid vesicle with solid membrane
domains at temperature 7' = 0 as a function of the solid area fraction x(® and the bending
rigidity ratio €* for the reduced line tension A = 1. (b) Corresponding shapes of minimum
energy for ¢ = 6 and increasing area fraction ().

membrane would have to bend considerably in order to adapt to the vesicle geometry. For
large solid area fraction, the vesicle with two domains, type 111, has the smallest energy. The
higher line energy and slightly higher bending energy of the fluid membrane in morphology II;
is compensated by the smaller bending deformation of the solid membrane. The contributions
to the bending energy from the solid membrane become less relevant when the difference in
the bending rigidities of the two membrane phases diminishes. This is why for smaller values
of € the transition to the vesicle with two solid domains sets in at a larger value of y(®).

Vesicles with a ring-like domain shape, morphology Is, and Iy, are unfavourable at large
" for similar reasons. The solid membrane is bent around the vesicle which involves a high
bending energy for the solid membrane. In addition, the ring-like domain shapes have a long
domain interface and thus a high line energy. Yet, for large area fraction the cylindrical ring,
morphology Is,, causes less deformation of the fluid membrane than the other morphologies.
The smaller bending energy of the fluid membrane becomes important for similar bending
rigidities in both phases and small line tension. Therefore, a transition towards morphology
Io, occurs at small line tension, large solid area fraction and similar bending rigidities.

Regarding the different ring-like domain morphologies, for small solid area fraction the
conical shape, morphology Iy, is found to have a slightly smaller ground state energy than
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Figure 4.9: An anisotropic line tension gives rise to stripe-like domain shapes. Vesicle mor-
phologies with (a) anisotropy of the line tension A = 0.075, (b) A = 0.2, and (c¢) A = 0.3.

the cylindrical ring, morphology Is,. This is due to the smaller boundary length between the
solid and fluid membrane domain. Morphology Io;, however, causes in general larger bending
deformation. If line energy becomes less relevant and the contributions from the bending of
the solid and fluid membrane are more important, the morphology I, has a smaller ground
state energy than the morphology Io,. This applies for small A and large x(®), which is the
case when the ring-like conformations become the equilibrium morphology.

Anisotropic line tension

So far, the solid membrane has been treated as an isotropic elastic material with isotropic
bending and isotropic line energies. While this is a good approximation for many lipid phases
such as the Lg phase, the approach neglects important properties of phases like the Lg and Py
(‘rippled’) phase where due to the tilting of the molecules or the corrugation of the membrane
certain directions are distinguished. In order to describe such phases, anisotropic material
parameters must be considered. In principle, one could think of introducing anisotropy in the
bending energy [162] and in the line tension. In the following we include the effects of an
anisotropic line tension. By this, we are able to demonstrate that an anisotropic line tension
may give rise to stripe-like domain shapes as they are observed in the Pg phase.

In general, the equilibrium shape of a material is determined by the minimum of the
interfacial (free) energy. In anisotropic media, the line tension A(®#) is not a constant but
depends on the orientation of the interface with respect to the symmetry axes such as the
crystallographic axes in a solid crystal or the director in a nematic liquid crystal. If the
interfacial energy A(®#)(n) is known as a function of all orientations n, the minimisation of
the interfacial free energy can be performed by a construction proposed by Wulff long time
ago [133, 163] *.

In the limit of T' — 0, this procedure yields morphologies which consist of facets. As tem-
perature increases, the faceting of the crystals progressively disappears. Thermal fluctuations
start to smooth out the sharp edges, leaving planar facets which are connected by rounded
surfaces. Above the so-called roughening temperature, the facets disappear and the com-
plete crystal becomes rounded. It is, however, not spherical, since the surface tension remains

“Thereby, the equilibrium crystal shape is determined in a geometric way as follows: For each orientation n
a ray is drawn from the origin with length proportional to )\(“’m(n). At the end of each ray the perpendicular
plane is constructed. The crystal shape of minimum free energy is given by the inner envelope of these planes.
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anisotropic. It turns out that for two-dimensional crystals (with underlying sufficiently short-
ranged forces) the roughening temperature is zero and thus all crystal surfaces are smoothly
curved for T > 0.

For the moment we are interested in shapes of minimum energy. Thus, we neglect entropic
contributions and consider completely faceted crystal shapes. For simplicity we assume a rect-
angular domain shape which is specified by a line tension along the two sides of the rectangle,

say Ag“ﬂ ) along side a and )\,(Ja’ﬁ ) along side b. The equilibrium shape of a planar crystal is

then a rectangle with a length ratio of the a- and b- side of )\](Da’ﬂ ) ASJ’"B ). We denote the
anisotropy of the line tension by A

B )\1(30476)
Stripe-like domain shapes can be achieved by a large anisotropy of the line tension A. This is
demonstrated in Fig. 4.9 for different values of A. The obtained stripe-like domains agree well
with the domain shapes observed experimentally in the Pg phase.

4.5.2 Vesicles with volume constraints

It is interesting to ask whether volume constraints have a significant impact on the domain
shapes. For a fixed vesicle volume around v ~ 0.9, the morphology diagram is expected to be
qualitatively similar to the unconstrained case. This is because in the unconstrained case the
vesicle deflates and acquires a reduced volume around this value.

A more interesting case to study is the situation of a vesicle geometry close to a sphere,
i.e. v >~ 1. Apparently, as the vesicle geometry approaches a sphere, it becomes increasingly
difficult to adapt a single or two solid domains which cannot be stretched onto the vesicle
geometry. Therefore, for a vesicle geometry close to a sphere, the phase separation will not
lead to one or two domains but to several smaller domains which can more easily adjust to an
almost spherical geometry.

In this section we investigate vesicles with volume constraints, focussing on reduced volumes
close to one. For this geometry, the analysis needs to be extended to vesicles with a larger
number of solid domains. In the following we determine and compare the equilibrium energy
of vesicles with up to five solid domains, see Fig. 4.10. The morphologies are denoted with
I, Iy, IIIy, IVy, and Vi, respectively. Ring-like solid domains are neglected because for the
parameter values studied they do not play a role.

Minimisation Method

With the minimisation method used in the previous section numerical difficulties are en-
countered when it is applied to a larger number of domains. To circumvent problems, we
resort to a Monte Carlo annealing technique for minimisation. This is a generalisation of the
Metropolis Monte Carlo technique in which the temperature of the system is slowly decreased
in a sequence of annealing steps so that in the end the configuration with minimal energy is
obtained.

The vesicle conformation is represented by a triangulated surface according to the tether
and bead model. To describe two different phases, the model has to be generalised to two
different components A and B. Thereby, the information of the phase can be placed either
on the surface triangles [164] or on the vertices [165]. With respect to resolution in the two
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Figure 4.10: Equilibrium configurations for a vesicle with fluid (white) and several solid (blue)
domains (with reduced volume v = 0.96, solid area fraction X(O‘) = 0.3, reduced line tension
A = 1, and bending rigidity ratio € = 6): (a) single solid domain (I;), (b) two solid domains
(I11), (c) three solid domains (III;), (d) four solid domains (IVy), and (d) five solid domains
(V7). The roughness of the domain boundaries reflects the discretisation of the vesicle surface.

components, it is advantageous to associate the component information onto the triangles as
there are about twice as many triangles as vertices for the same triangulation. Yet for our
calculation, the different phases have to be assigned to the vertices because the two phases
differ (amongst others) in their properties regarding the Gaussian curvature, which is evaluated
on a vertex. The line energy is calculated by

Hline = )\Zlu (411)

where the summation extends over all edges e; which connect vertices of different species A
and B. The length I; is the length of the edge in the dual lattice associated to e;.

To obtain states with minimum energy, we proceed as follows. First, the vesicle is ini-
tialised with N, = 770 beads and the desired domain topology. For simplicity, we assume that
coexisting solid domains are approximately equal in size. During the minimisation process
single vertices are displaced at random. Bond flips are performed to improve the triangula-
tion. Besides, the type of beads is exchanged, taking care to conserve the domain topology
and approximately the area of the individual domains. This rearrangement of the bead type
optimises the shape and the distance between the different solid domains. A new configura-
tion is accepted or rejected according to the Metropolis scheme. To find the energy minimum,
the temperature is slowly decreased from T = 0.1 to T = 0.005x?), using about 20
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Figure 4.11: (a) Morphology diagram of a fluid vesicle with solid domains at temperature
T = 0 with volume constraints. The equilibrium shape of a vesicle with bending stiffness ratio
¢ =10 and reduced line tension A = 0.2 is shown as a function of the solid area fraction x(*
and the reduced volume v, focussing on v approaching one (o 1 solid domain (I;), 4+ 2 solid
domains (II;), (3 3 solid domains (III;), x 4 solid domains (IV1), A 5 solid domains (Vy)).
(b) Corresponding shapes of minimum energy for v = 0.97 and increasing area fraction x(@),

consecutive annealing steps, where in each step the system is allowed to equilibrate.

Numerical results

We focus on almost spherical vesicle geometries, i.e. v close to one. Fig. 4.11 - Fig. 4.13
display the morphology diagrams as a function of the solid area fraction y(® and the reduced
volume v for different material parameters, bending stiffness ratio € = 10 and € = 6 and
reduced line tension A = 0.2, A = 0.5 and A = 1. These diagrams contain the main results for
vesicles with fixed reduced volumes. We summarise the main findings:

First of all, as the vesicle geometry becomes more spherical, we observe morphological
transitions from vesicles with a smaller number of solid domains to vesicles with an increasing
number of solid domains. This is a general result and is seen in each of the diagrams in Fig. 4.11
- Fig. 4.13. For example, for ¢ = 10 and A = 0.2 (Fig. 4.11), at v ~ 0.9 the vesicle with one
solid domain, morphology I, has the lowest ground state energy for x(® < 0.12, followed
by the vesicle with two solid domains, morphology II, for larger x(®. As v approaches one,
the transition between morphology I and II; is shifted towards smaller values of y(®). For
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Figure 4.12: Morphology diagram of a fluid vesicle with solid domains at temperature 7' = 0
with volume constraints; same material parameters as in Fig. 4.11 (bending stiffness ratio
€” = 10), but with different reduced line tension (a) A = 0.5 and (b) A = 1. The equilibrium
shape of a vesicle is shown as a function of the solid area fraction x(® and the reduced volume
v, focussing on v approaching one (o 1 solid domain (I;), + 2 solid domains (II;), [J 3 solid
domains (III;), x 4 solid domains (IVy), A 5 solid domains (V7)).

v = 0.98, it occurs at about X(a) ~ (0.07. The effect is more pronounced for large solid area
fraction x(®. For x(® = 0.3, morphology II; is found to be optimal for v = 0.9, while above
v 2 0.955 the vesicle with five (or more — five is the largest number of solid domains considered)
solid domains, morphology V1, has the smallest energy.

Then, the number of solid domains is found to increase as the solid area fraction is increased.
The effect is most striking for a reduced volume close to one. In the above example, for v = 0.98,
there is a transition from morphology I; to morphology II; at x(® ~ 0.07, which is followed
by a transition to morphology III; at about x(® ~ 0.11. At x(® ~ 0.14, morphology IV
becomes the equilibrium morphology and finally, above (%) 2 0.18 morphology Vi has the
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smallest energy.

A higher line tension acts to favour a smaller number of domains. This is learnt by com-
paring the diagrams with different A (A = 0.2,0.5,1) in Fig. 4.11 and Fig. 4.12 (for €* = 10)
and in Fig. 4.13 (for €” = 6), respectively. In general, the line tension is found to have a larger
influence for the smaller bending rigidity ratio ¢ = 6, where the bending energy of the solid
domain is less dominant.

To study the impact of a difference in the bending rigidity between the solid and fluid
membrane, the corresponding diagrams in Fig. 4.11 and Fig. 4.12 (¢® = 10) and Fig. 4.13
(" = 6) with same A have to be compared. The data shows that a stiffer solid membrane leads
to vesicle morphologies with a larger number of solid domains. The effect is most pronounced
for vesicles with an almost spherical geometry with a large solid area fraction.

Finally, we briefly comment on the arrangement of the solid domains in mechanical equilib-
rium. The discussion remains qualitatively. By inspection of the obtained equilibrium states
we find that the domains typically tend to be separated from each other as far as possible. This
holds especially for domains which have a comparably large size and thus affect the curvature
of the fluid membrane. The effect indicates an effective repulsive interaction between the solid
domains. The repulsion between the solid domains is induced by the deformation of the fluid
membrane caused by the solid domains. A similar membrane mediated interaction is found
between stiff inclusions of extended size on a vesicle [166, 167]. For small domain sizes which
have a seemingly little impact on the curvature of the fluid domain such a repulsive interac-
tion between the individual domains is not necessarily observed. It should also be noted that
constraints of the vesicle geometry crucially affect the arrangement of the solid domains. This
is seen by comparing the vesicle morphology II; in Fig. 4.7b and Fig. 4.12b.
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Figure 4.13: Morphology diagram of a fluid vesicle with solid domains at temperature 7' = 0
with volume constraints. The equilibrium shape of a vesicle is shown as a function of the solid
area fraction x(® and the reduced volume v for the bending stiffness ratio ¢® = 6 and (a)
reduced line tension A = 0.2, (b) A = 0.5, and (¢) A = 1 (o 1 solid domain (Iy), + 2 solid
domains (II;), [ 3 solid domains (I11;), x 4 solid domains (IVy), A 5 solid domains (V1)).
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4.6 Thermal fluctuations

Up to now, the analysis was focused on equilibrium states with minimum energy, which
formally corresponds to zero temperature. At finite temperature, entropic degrees of freedom
have to be included. There are a number of effects from thermal fluctuations that influence
the domain shapes in different ways. First, entropy favours a larger number of domains due to
the larger translational and rotational in-plane degrees of freedom. Then, the different domain
morphologies alter the membrane undulations in a distinct way. The undulation spectrum
of fluctuating membranes is not only determined by the internal membrane structure, cf.
chapter 2, but also modified by imposed boundary conditions. On a vesicle they are affected
by the presence of domains. The specific arrangement of the solid domains restricts possible
undulation modes of the fluid membrane in between. It is not obvious whether this favours a
smaller or larger number of domains.

In addition, the modification of the possible fluctuation modes of the fluid membrane gives
rise to Casimir-like forces between the domains. They are purely entropic in nature and
have to be superimposed on the elastic interactions which are mediated by static membrane
deformations. Whether these additional fluctuation-induced forces are attractive or repulsive
is not clear, either. Solid domains are quite stiff and, in a first approximation, can be treated
as rigid membrane inclusions. For completely stiff membrane inclusions, Casimir forces are
shown to be attractive on almost planar membranes [37, 166, 168, 169].

4.6.1 Monte Carlo simulations

To quantify the impact of thermal fluctuations we perform Monte Carlo simulations on the
triangulated surface with two membrane components. We determine and compare the thermal
mean energy of vesicles with different domain shapes. The vesicle shapes with minimal thermal

energy are arranged in morphology diagrams °.

Simulation details

The vesicle is initialised with N, = 770 beads and the desired domain topology, cf. subsec-
tion 4.5.2. For simplicity, the coexisting solid domains are assumed to be equal in size. During
the simulation the domain topology and approximately the area of the individual domains is
kept fixed. The following Monte Carlo moves are attempted in random order: single displace-
ments of random vertices, bond flips and exchange of the type of phase between two beads. In
one simulation we typically perform about 4.5 - 10 MC moves, about half of them are used
for thermal averages. We neglect thermally excited defects, for the solid membrane only those
bending deformations are allowed which remain isometric to a plane. This is assured with
an auxiliary potential in the square of the Gaussian curvature, Eq. (4.9). Fig. 4.14 illustrates

5In principle, to include all effects of thermal fluctuations the free energy difference between vesicles with
different domain topologies has to be calculated. However, with domain formation on vesicles one faces practical
problems to determine free energy differences. For a system that in the course of a single simulation practically
does not evolve into the different states of interest (as it is the case here with different domain shapes), free energy
profile cannot be obtained directly by measuring relative frequencies. A possible alternative to compare the free
energy of different states is to compute free energy differences via thermodynamic integration from a common
reference state [170]. Applied to the vesicles, as the common reference state a homogeneous fluid vesicle can
be chosen where the differences between the membrane phases diminish. In practice, however, thermodynamic
integration was found computationally very expensive and it was not feasible to obtain sufficiently reliable
statistics.
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Figure 4.14: Snapshot of a fluctuating fluid vesicle with a (a) single solid domain (I;), (b) two
solid domains (II;), and (c) five solid domains (V1), reduced volume v = 0.95, bending rigidity
ratio €® = 10, and reduced line tension A = 0.5.
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Figure 4.15: Morphology diagram of a fluid vesicle with solid domains at finite temperature
T = 0.1 x® with volume constraints. The vesicle shape with minimum thermal mean energy
is shown as a function of the solid area fraction x(® and the reduced volume v for the bending
stiffness ratio € = 6 and (a) reduced line tension A = 0.2 (o 1 solid domain (I;), + 2 solid
domains (II;), J 3 solid domains (III;), x 4 solid domains (IVy), A 5 solid domains (V1)).

typical vesicle configurations for domain topologies considered in the simulations.

Numerical results

Fig. 4.15 displays the morphology diagram for a vesicle with volume constraints as a func-
tion of x(® and v at T = 0.1 k®) for €® = 10 and XA = 0.5. A comparison with the corresponding
data at zero temperature, diagram Fig. 4.12a, shows that thermal fluctuations only have a mi-
nor influence on the domain morphologies. The data at finite temperature agrees qualitatively
with the results for zero temperature. Only at vesicle geometries close to one, where mor-
phologies with several domains exist, the crossover to more domains occurs at slightly smaller
values of (.
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4.7 Discussion and conclusion

In this chapter we have investigated the geometry of fluid vesicles with solid membrane
domains. Unconstrained vesicles and vesicles with volume constraints are studied. For the
solid domains we have assumed that their in-plane elastic energies are exceedingly large so
that they cannot be stretched, i.e. we address the limit of a large Foppl-von Karmén number
7. Since for a realistic vesicle of radius 10um one has v =~ 10'°, this limit is reasonable for
solid domains on vesicles. Furthermore, we have assumed that the ground state of the solid
domains is free of disclinations which implies that the conformations of the solid domains are
restricted to developable surfaces.

The equilibrium morphology with minimum energy are summarised in morphology dia-
grams. Due to the restricted bending modes of the solid membrane and a competition between
line energy and bending energy various morphological transitions between vesicles with differ-
ent domain shapes are observed. For typical values of the bending rigidity, the vesicle with
one round solid domain, morphology Iy, is found to be the equilibrium shape for small solid
area fraction. As the area fraction of the solid membrane increases, vesicles with two or more
solid domains are shown to be the equilibrium shape. The tendency to more solid domains
is enforced on a constrained vesicle with almost spherical geometry. Thermal fluctuations are
found to have only minor influence on the vesicle morphology. An anisotropic line tension is
shown to lead to stripe-like solid domain shapes, as they are experimentally observed in the
Pg phase.

Comparison with related work in literature

How do our results compare with the conclusions of the related work in the articles [136] and
[137]7 In [136] and [137] the authors consider the limit of small v and study solid domain shapes
on spherical geometries. The limit of small v is relevant for domain shapes on colloidosomes.
In this case, the domain shapes are determined by a competition between line tension and
stretching energy. It is found that, analogous to our observation, at low solid area fraction
and large line tension the preferred domain morphologies are round (cap-like on a sphere),
with a tendency to an increasing number of caps as the area fraction increases. For large
solid area fraction (and/or large Young modulus), a transition from several caps to a ribbon
or ring-like structure is observed. Applied to a typical vesicle with radius 10um, the results
for small v would imply that the transition from cap-like domains to ring-like domain shapes
occurs at comparably small solid area fraction x(®, for A@# R,/ (kyR3) =~ 107 at about
x(@ ~ 0.04. In the limit of large v, for typical bending moduli of the lipid membranes we do
not observe a transition to stripe-like domains. Thus, stripe-like domain shapes in vesicles, as
experimentally observed in the Py phase, are most probably a consequence of the anisotropy
of the solid membrane, either in the bending rigidity and/or the line tension.

Comparison with experiment

Our results propose that bending elasticity may play a role in limiting the size of solid
domains on almost spherical vesicles. Whether the size limit indeed is related to the bending
elasticity of the solid membrane can be checked experimentally. One would have to inves-
tigate whether and how the domain size depends on the vesicle radius. In contrast to other
explanations such as for example electrostatic mechanisms, a size limitation caused by bending
elasticity would imply that the size of the domains varies with the size of the vesicle and does
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not favour an independent length scale. When evaluating the size dependence of the solid
domains, one should keep in mind that the reduced line tension depends on the vesicle radius,
see Eq. (4.6), which influences the results.

In this chapter we have determined the equilibrium configuration with minimum energy.
In experiments the growth of crystals typically occurs under conditions that are far from
equilibrium and the relaxation to the equilibrium configuration may be kinetically hindered
due to slow diffusion. Crystal forms are then determined by growth kinetics rather than
equilibrium considerations. Re-equilibration of a non-equilibrium mesoscopic crystal requires
transport of material over larger distances and time scales that can be unrealistically long. In
order to fully understand the experimentally observed solid domain shapes it seems promising
to account for the non-equilibrium processes of growth. This is, however, beyond the scope of
this thesis.

Of course, there are some caveat with our coarse grained approach. The basic assumption
for the solid membrane was that the ground state of the solid membrane is flat and free of
defects. This seems a sound approximation for solid membranes obtained by freezing a single-
component lipid vesicle. Such vesicles are observed to exhibit locally flat patches which are
separated with sharp edges [14, 150]. Caution is advised when this assumption is applied to
domains formed in a multi-component membrane such as in a vesicle made of a mixture of
different lipids and cholesterol. These vesicles do not always look facetted. Typically, phase
separation and domain formation is initiated by cooling a fluid vesicle. During the freezing
process the initial curvature of the membrane is frozen in and with it various defects. In
this case, the solid membrane does not acquire a perfect flat conformation without defects. It
should be noted that defects also occur naturally in the different gel phases due to the different
packing constraints of the hydrocarbon chains and the lipid headgroups. Furthermore, defects
may be excited by thermal fluctuations in combination with membrane undulations. While
many features can already be seen from our approximation, it may be worthwhile to include
certain aspects of defects in a future study.

The latest experiments indicate that the solid domain morphologies are strongly correlated
with the molecular organisation of the lipids in the different phases [78]. In order to describe
these effects theoretically, one has to go beyond a coarse-grained elasticity theory of the solid
membrane. The theory has to be refined to include more details of the underlying crystal
structure.
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Vesicles with solid and fluid membrane domains




Chapter 5

Vesicles with fluid membrane
domains

In this chapter we study the morphology of vesicles with coexisting fluid membrane do-
mains. We determine the equilibrium shape of vesicles with simple and complex domain topolo-
gies. The emphasis is on vesicles with comparably small line tension. We investigate the im-
pact of different bending rigidities and different Gaussian curvature moduli between the fluid
phases. As the material parameters are varied, morphological transitions between vesicles with
different domain shapes are observed.

5.1 Introduction

Vesicles with coexisting fluid membrane domains have been subject to increased attention
in the recent years, both experimentally [67, 171] and theoretically [62, 134, 172-176]. The
research on domain formation in fluid membranes is motivated by the recently refined picture
of the cell membrane which claims that, despite the fluidity of the lipid bilayer, the different
membrane lipids do not mix homogeneously but aggregate into small clusters or domains, so-
called lipid 'rafts’ [63]. Lipid rafts are small regions in the cell membrane with an estimated size
between 20 and 700 nm which are enriched in cholesterol and sphingolipid and float like rafts
in the sea of the other membrane lipids. The importance of rafts is related to their biological
function. Rafts are believed to participate in many biological processes and to perform various
tasks in intracellular transport and signalling.

Up to now, experimental evidence for domain formation in vivo is rather indirect and the
existence of rafts in biological membranes is still a matter of current debate. In contrast, in in
vitro systems fluid domains are observed clearly [67]. A well studied model system is given by
vesicles made of a ternary mixture of a sterol (like cholesterol), a lipid with a high melting point
(such as sphingomyelin) and a lipid with a lower melting point. This composition is supposed
to roughly reproduce raft composition. At appropriate conditions, due to the interaction with
cholesterol, the lipids separate into two fluid phases, a liquid-disordered phase, which is rich
in the low-melting point lipid, and a liquid-ordered phase, enriched with cholesterol and the
high-melting point lipid. The resulting fluid domains are of micron-size range and can be
observed by optical means, for example with fluorescence imaging techniques.

The formation of fluid membrane domains gives rise to new phenomena on vesicles. In
general, the shape of a vesicle with coexisting fluid membrane domains is determined by an
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interplay between bending energy of the membrane and line energy at the domain interface.
Fluid domains are different from solid domains because a fluid domain can rearrange easily
and adapt its shape. No in-plane stretching energy is involved when the membrane deforms.
As a consequence, fluid membrane domains are unstable against the formation of a bulge or
bud if their size is sufficiently large [134]. The budding transition is caused by line tension at
the domain interface which tends to shrink the length of the domain interface.

Although vesicles with more than two membrane domains are frequently observed in exper-
iments (cf. Fig. 1.7), it is commonly believed that, at equilibrium, a vesicle with two coexisting
fluid membrane phases has two domains, one for each phase. Such a vesicle has the short-
est domain boundary. Vesicles with more than two domains are assumed to be metastable,
albeit long-lived. This is because the fusion process of domains is kinetically impeded when
they form a more pronounced bud [73]. Previous theoretical work therefore focused mainly on
equilibrium shapes of membranes and vesicles with two coexisting domains, beginning with a
circular domain in a nearly planar membrane [134], two domains in vesicles with axial symme-
try [172, 173] or simple domain shapes in membranes with more complex topology [177]. Less
attention has been paid to vesicles with more complex domain shapes, for example stripes
or multiple domains on vesicles (these shapes have been analysed in [175] for a nearly flat
membrane). Complexer domain shapes, however, become important when the line energy is
comparably small and not the dominating factor. In this case, other material parameters such
as the different bending moduli have an increasing influence on the shape of the domains. The
aim of the present chapter is to show that in this case vesicles with one domain for each phase
are not necessarily the equilibrium state. As line tension decreases, morphological transitions
to vesicles with more complex domain shapes occur.

This chapter is organised as follows. We start with a brief discussion of the simplest vesicle
shape, an axisymmetric vesicle with two domains, one domain in each fluid phase. This vesicle
shape is relevant for large line tension. Then, we turn to vesicles with more than two domains.
These are shown to be become relevant for small line tension. Morphological diagrams of these
vesicles are determined as a function of domain sizes, line tension and ratio of bending moduli
of the fluid phases. Vesicles with and without volume constraints are considered.

5.2 The model

Analogous to our treatment of solid domains, we study in the following two fluid phases
which are well segregated and form homogeneous domains which are separated by a sharp
phase boundary. In a bilayer, phase separation can occur separately within both monolayers.
Thus, domains can form in each monolayer individually. Our model applies to the following
types of domains: monolayer domains, which lead to an asymmetric bilayer and thus can
be characterised by a spontaneous curvature, and bilayer domains, which extend over both
monolayers. The case that two monolayer domains overlap only partially is, in principle,
included since overlapping monolayer domains can be considered to be composed of subdomains
of the above domain types. We do not further consider this possibility.

Due to the coupling between membrane composition and shape, it is possible to have
composition-induced changes in shape (curvature) [178] and curvature-induced changes in
composition [179]. Unless the curvature is of a molecular scale, it is generally expected that
composition drives shape, i.e. shape changes do not affect the thermodynamics of the mixture.
This is because the curvature energy per molecule is very small compared to kgTy. A shift in
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the chemical potential caused by changes of the local curvature is expected to be insufficient
to cause a significant change in composition.

As a consequence, we can assume that the membrane area occupied by each phase is
independent of the membrane curvature. We denote the area covered by the fluid phase («)
with A, and the area covered by phase (3) with A%, The areas A(® and A® add up to
the total area A = A©@ + AP Ag with solid domains, it is useful to introduce the relative
area of the fluid phases

Y@ =A@ /4 and X =AB) /A4 =1 (), (5.1)

The membrane domain is bounded by a domain boundary with line tension A(*#). The
line tension A(®) is based on two contributions [157, 158, 180]. There is a physical-chemical
contribution to the line tension which arises from the compositional inhomogeneity across the
domain boundary, and a mechanical line-tension which results from the thickness difference
between coexisting domains. The latter leads to membrane compression and tilt at the domain
boundary to avoid that hydrophobic parts of the lipids get unscreened. For lipid bilayers, line
tension estimates are typically of the order 1072 N at physiological temperature [171]. The
value of the line tension varies with temperature and reduces to 0 at the critical point of
mixing/demixing where the difference between coexisting phases vanishes.

Energy contributions of the domains

With these assumptions, the vesicle conformation is determined by the (free) energy func-
tional

H = / dAHS) + / dAHL) + @D / dl+0@A@ £ oDAD Lpy . (5.2)
o B 0

It consists of the bending energy

(a)

Hida = "5~ (2H = VP + 53K (5.3)
and @
HP) | = %(2}1 P24 5Pk (5.4)

of the phase («)) and (f3), respectively, and a line energy which is proportional to the length of
the domain boundary. The two Lagrange multipliers, o(® and (@, are introduced in order
to take the constraints of fixed A and A into account. The parameter p is the Lagrange
parameter for the enclosed volume, or, alternatively, the pressure difference between the inside
and the outside of the vesicle.

The morphology of the vesicle is determined by an interplay of bending energy and line
energy. The competition between these energies and the fluidity of the bilayer opens the
possibility for the formation of a bulge or bud. The line energy can be lowered when the
membrane domain deforms into a bulge so that the domain boundary can shrink. If the bulge
transforms into a complete bud, the line energy becomes essentially zero. The complete bud
may leave the original vesicle or stay connected to the original vesicle via a small neck. The
formation of a bump is opposed by an increase in bending energy. However, in contrast to
line energy, which scales with the size of the bud, the bending energy is independent of the
size of the bud. Thus, above a certain size of the domain the gain in line energy outweighs
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the increase in bending energy and a bud is expected to form. The domain size above which
this happens is given by the length scale where both energies become comparable. It is set by
the ratio of the bending rigidity over the line tension. For typical lipids, this length scale is
in the order of ym. The budding transition may be triggered by other mechanism than line
tension, resulting in buds of different sizes. Budding is also induced by changes in temperature
in homogeneous vesicles [181], by phase separation in the interior of the vesicle [182], by the
adsorption of proteins [183], and by the structure of the membrane [184]. Examples for the
last mechanismn are membrane domains with a chirality, leading to buds with a significantly
smaller size ~ 50nm.

In the following we neglect spontaneous curvatures, i.e. C((]a) = C’éﬁ ) = 0 and use @ as
the reference energy. The vesicle is then characterised by five dimensionless parameters, the
ratio of the bending rigidities in phase («) and ()

(a)

GK W 5 (55)

=

the difference in the Gaussian bending moduli
() )

v Kol — K
A€t = %, (5.6)
the reduced line tension R
le% 0

the area fraction of phase (a) x(® and the reduced volume v.

In the next section we briefly review the results for a vesicle with large line tension. In this
case, the equilibrium morphology is a vesicle with two coexisting membrane domains, one in
each phase. Line tension causes the formation of a domain bud.

5.3 Vesicle with two coexisting fluid domains — Axisymmetric
case

We start with the discussion of two coexisting fluid domains, one fluid domain with
phase (a) and one domain with phase (), type Iy [173]. This case has been treated in detail
in article [173], we briefly summarise the presentation and the main conclusions. We assume
an axisymmetric vesicle conformation. The axisymmetric shape is parametrised by arclength
along the meridian as illustrated in Fig. 5.1. It is practicable to describe the contour by the
function 1 (s) together with R(s) and Z(s), where s is the arclength of the contour, R(s) the
distance from the axis of rotational symmetry, Z(s) the coordinate along this axis and (s)
denotes the tilt angle of this contour '. The axisymmetric domain boundary is located at
s = s1. The domain («) corresponds to the interval sp = 0 < s < s; and the domain () is
described by the interval s; < s < s9. In this parametrisation the energy functional Eq. (5.2)
reads

S1 52
H=2n (/ dsH —i—/ dsH'™ + AP R(s1) + Ii(Ga) + n(G/B) + (H(C?) - ﬁ(Gﬁ))cosw(sl)
’ ' (5.8)

!Note that these functions are not independent, but related via Z(s) = —sint(s) and R(s) = cosi)(s). The
advantage using the parametrisation v (s) compared to R(Z) is that points with infinite derivative dR/dZ are
regular in this parametrisation.
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R

Figure 5.1: Contour of an axialsymmetric vesicle with two coexisting domains in the arclength
parametrisation s, Z(s) is the coordinate along this symmetry axis, R(s) denotes the distance
from this axis and ¥(s) is the tangent angle of this contour. The domain boundary is located
at s = s1; adapted from [173].

with
. () . sint (s 2\ 2 .
HO(s) = “-R(s) <¢(s)+ Rﬁ)tcy) + oD R(s)
+gR(s)QSinu}(s) +(s) (R(s) —cosz,b(s)) . (5.9)

The overdots denote derivatives with respect to s. In order to fix the redundancy in the
parametrisation, a Lagrange multiplier function 7(s) needs to introduced.
5.3.1 Equilibrium configurations

Necessary conditions for a vesicle state being minimum are given by the Euler-Lagrange
equations of the functional Eq. (5.8) [173]. The variation of Eq. (5.8) leads to the shape

equations 2
i(s) = Coswgg;gw“) _ 28 cos(s) + s Rls)cosi(s) + %sin¢(s) (5.10)
k@ . i S sinZ(s : .
(o) = 5 0) — O = kOGS 4 0 s pR(spsin(s) (.11)
R(s) = cos(s), (5.12)
HO(s) = 0 (5.13)
with
. k(8 . sin)(s ~ ,
HO () = "R (3092 = () = €2 ) = O R(s) = BR(9Psing(s) + 2 ()cosi(s)

(5.14)

2In order to perform the variation it is necessary to switch to an arbitrary parametrisation ¢ with s(to) =0,
s(t1) = s1 and s(t2) = s2 [173]. The result can then be reparametrised in the arclength parametrisation.
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Figure 5.2: Domain-induced budding. (a) The ground state energy F' of an axisymmetric
vesicle with two fluid domains is plotted as a function of the area fraction x(® for reduced line
tension A = 7, equal bending rigidities ¢” = 1, vanishing Gaussian bending rigidities Ae"¢ =0
and no constraints on the volume. With increasing domain size a discontinuous budding Dyuq
occurs. The incomplete bud becomes metastable at Dy,q and unstable at M;,. At L., a
singular limit shape occurs. (b) A sequence of corresponding shapes at different values of X(O‘);
from [173].

Within each domain these equations correspond to the shape equations for a vesicle with
spherical topology. The equations are supplemented by boundary conditions at sg and si,
R(s0) = R(s2) =0, ¥(s0) = ¥(s2) =7, v(sg) = v(s2) = 0 and matching conditions connecting
the bulk equations at the boundary between the different phases (e is a positive, infinitesimally
small number)

H® = g 0, (5.15)
Y(s1+€) —7(s1—¢€) = o, (5.16)
KOs+ €) — k(s —e) = (k@ — k@ 4 £ ,{go)%
]%(81)
RO — B (5.17)

The variation of the functional Eq. (5.8) does not completely determine the conditions at
s = s1. To arrive at Eq. (5.16) and Eq. (5.17), continuity of R(s) and 1(s) needs to be
assumed. This is a reasonable assumption which can be justified more rigorously from a
mechanical point of view. In mechanical terms, Eq. (5.15) - Eq. (5.17) can be interpreted as
jump conditions for forces and moments. They follow from the balance equation for in-plane
forces, out-of-plane forces and moments across the boundary [171].

It is worth to point out that the vesicle bulk equations do not contain any term involving x.
The Gaussian bending moduli enter through matching conditions at the domain boundaries.
Only a difference in the Gaussian bending moduli gives a shape dependent contribution.

Stationary shapes are obtained by solving the shape equations, Eq. (5.10) - Eq. (5.13),
together with the boundary and matching conditions, Eq. (5.15) - Eq. (5.17) [173].

Domain-induced budding

In the following we consider an unconstrained vesicle. We start with the most simple
case of identical bending rigidities ¢® = 1, i.e. x(® = k(@ vanishing spontaneous curvatures
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Figure 5.3: Influence of a difference in the Gaussian curvature moduli on the shape of an ax-
isymmetric vesicle with two coexisting fluid domains. Fig. (a) and Fig. (b) show the minimum
energy of the vesicle as a function of the area fraction x(® with line tension A = 7, no con-
straints on the volume and (a) Ae®¢ =1, (b) Ae"¢ = —1; from [173]. T'wo-photon microscopy
image of an axially symmetric vesicle with liquid-disordered (red) and liquid-ordered (blue)
phase coexistence. The inset shows the enlarged neck region at the domain boundary which
demonstrates the influence of a difference in the Gaussian curvature moduli of both phases.
The liquid-disordered membrane bends towards the liquid-disordered membrane and forms the
neck due to its higher Gaussian bending modulus; scale bars 5um; from [67].

Co(a) = C’éﬁ ) = 0and neglect Gaussian bending rigidities Ae®¢ = 0. Fig. 5.2 depicts a sequence
of stationary shapes and the corresponding energy diagram for A = 7 [173]. As the area fraction
of phase («) increases, the membrane in phase («) develops a bulge or incomplete bud. The
growing bud becomes metastable at Dy,q and unstable above Mg towards the formation of
a complete bud. At Dyuq a transition from the incomplete bud to a complete bud occurs.
The budding transition is discontinuous. At Lcpg the contour turns into a singular limit shape
which consists of two spheres that are connected by an infinitesimal neck.

It should be noted that for vesicles with fixed volume the bud formation may be hindered
by the constraint imposed by the enclosed volume [173]. Apparently, a bud cannot develop in
a geometry close to a sphere. For sufficiently large line tension, budding may be induced by a
decrease in v at constant y(®. Experimentally, this is realisable through osmotic deflation of
the vesicle.

Influence of Gaussian bending rigidity

So far, contributions from the Gaussian bending energy of the two phases have been ne-
glected. For a homogeneous vesicle, this is justified because, unless fusion or fission processes
of vesicles are considered, this term yields a constant independent of the size or shape of the
vesicle. The Gaussian elastic modulus is associated with the energy cost of deformations that
change topology of the membrane and thus can be regarded as a chemical potential for the
formation of handles. For homogeneous vesicles, theoretical considerations on the stability
of the vesicle require —2 < kg/k < 0 [20] or, according to [185], —1 < kg/k < 0. This is
because, on the one hand, for kg > 0 the fluid membrane becomes instable to the formation
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of a membrane torus with high topological genus, while on the other hand, for kg < —k
(kg < —2k) the membrane would fission into many small vesicles. Recent measurements yield
a value kg ~ —0.8x for a monolayer of N-mono-methylated dioleoyl-phosphatidylethanolomine
(DOPE-Me) [59].

For an inhomogeneous vesicle, in the Gaussian elastic moduli of the domains does matter.
In general, a the difference in the Gaussian elastic moduli yields a shape dependent contribution
the Gaussian bending energy. By virtue of the Gauss-Bonnet theorem, the Gaussian bending
energy can be reformulated as an integral over the domain boundary (see appendix A.1). Yet,
the Gaussian bending energy is not proportional to the length of the domain boundary and
thus cannot be reduced to an effective line energy. This is evident by the fact that the Gaussian
bending modulus has the dimension of an energy and not the dimension of a line tension. For
a vesicle with liquid-ordered/liquid-disordered membrane domains, the difference between the
Gaussian bending moduli of both fluid phases was determined experimentally and estimated
to be in the same order of magnitude as the elastic bending modulus [171, 186].

The Gaussian curvature has the following impact on the shape of the phase separated

(@) )

vesicle with two domains. For Ae"¢ < 0 (k5 < k'), the budding transition of the domain

(@) occurs for smaller values of x(®) than for Ae"¢ > 0 (K}(C?) > /-f(Gﬁ)). This is seen in Fig. 5.3,

where the equilibrium energy is shown as a function of the area fraction x(® for Aefc = 1
(Fig. 5.3-a) and Ae"¢ = —1 (Fig. 5.3b). In general, a membrane domain with phase (%)
forms a bud more easily if its Gaussian bending modulus R(é) is smaller than that of the
other membrane. Furthermore, a difference in the Gaussian bending moduli leads to a more
pronounced Gibbs loop with a higher energy difference between the metastable incomplete
bud and the completely budded vesicle.

In addition, a difference in the Gaussian bending moduli significantly affects the geometry
of the neck. In the neck region, the Gaussian curvature of the membrane surface is high and
negative. For Ae"¢ = 0, the domain boundary is located at the smallest diameter of the
neck. This is a consequence of the minimisation of the boundary length. For Ae®¢ = 0,
the domain boundary is shifted away from the smallest diameter in the neck. The neck is
formed by the domain with the larger K(GZ), which is the smaller in magnitude since mg) is
negative for mechanically stable bilayers *. Qualitatively, this can be understood easily, when
one considers a completely budded vesicle with an infinitesimal neck. The contribution to
the Gaussian bending energy of an infinitesimal neck formed by a membrane with Gaussian
bending rigidity kg yields ~ —4mkg. Thus, the vesicle can gain more energy if the neck is
formed by the domain with the larger kg. This effect has been first theoretically predicted
some years ago [172, 173] and recently demonstrated experimentally [67]. The image of a
vesicle experimentally demonstrating this is shown in Fig. 5.3c.

In conclusion, line tension, a difference in bending moduli, and a difference in the Gaussian
bending moduli each affect vesicle shapes in a characteristically different way. By fitting
experimental vesicle shapes to numerically determined vesicle geometries it is possible to obtain
estimates of bending moduli of the different phases, line tension and differences in the Gaussian
curvature [171].

3The text in [173] contains a misprint in the main text in subsection C.
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Figure 5.4: Vesicles with coexisting fluid membrane domains (membrane phase («) red area,
membrane phase () white area): (a) one («) and one () domain (I), (b) two (a) and one
(6) domains (IIy), (c) three () and one () domains (III;), (d) one («) and two (3) domains
(I2), and (e) one («) and three () domains (I3); material parameters bending rigidity ratio
€ =1, reduced line tension A\ = 1, and equal Gaussian curvature moduli Ae"¢ = 0.

5.4 Vesicles with several coexisting fluid domains

In the preceding section, we have discussed the geometry of an axisymmetric vesicle mor-
phology 1; with two coexisting fluid domains, one in each phase. Vesicles with two domains
are the equilibrium configuration when line energy plays a large or dominant role because in
this configuration the domain boundary is shortest. A sufficiently large line tension leads to a
transition of the vesicle shape such as budding. In this section we address the opposite case
where contributions from line energy are small compared to the bending energy. In this case,
the axisymmetric vesicle shape with two fluid domains is not necessarily the shape of mini-
mum energy anymore. We will show in the following that for comparably small line tension
morphological transitions to vesicle shapes with more complex domain shapes occur.

A measure of the relative importance of line energy and bending energy is given by the
reduced line tension A. The reduced line tension A is proportional to the physical line tension
AM@B) and scales linearly with the radius of the vesicle, Ry. Its value can vary in orders of
magnitude as vesicles of different size or vesicles with a membrane composition close to the
critical point of phase separation, where A(®#) vanishes, are considered. The results in this
section are therefore relevant for comparably small vesicles and/or membrane compositions
with small A(®5),

We include vesicles with five different domain topologies in our analysis, see Fig. 5.4: a
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vesicle with one phase («) domain and one phase () domain (I;), a vesicle with two phase
(«) domains and one phase (3) domain (IIy), a vesicle with three phase () domains and one
phase () domain (III;), a vesicle with one phase () domain and two phase (3) domains (I2),
and a vesicle with one phase (o) domain and three phase () domains (I3) *. For simplicity,
it is assumed that for morphology III; and I3 the three domains each have the same size.

Our interest is in the equilibrium shape with minimum energy. We determine and com-
pare the minimum energy for the different vesicle morphologies. Vesicle conformations which
are found to have higher energy are metastable. As in chapter 4, we do not perform an ex-
plicit stability analysis for metastable states. The equilibrium morphologies are obtained by
direct numerical minimisation of a triangulated vesicle surface with the help of the ’Surface
Evolver’ [161]. The estimated numerical accuracy of the obtained energy values is about ~ 1%.
We investigate vesicles with and without volume constraints.

5.4.1 Vesicles without volume constraints — Equilibrium configurations
Influence of bending rigidity

We start with vesicles without volume constraints and investigate first the influence of
different bending moduli in the fluid membrane phases. Without loss of generality, we assume
€” > 1. The results for € < 1 follow from renaming the phases («) and (3). In Fig. 5.5a the
minimum energy of the different domain morphologies is displayed as a function of the bending
rigidity ratio € for area fraction x(® = 0.6, reduced line tension A = 0.2 and equal Gaussian
bending moduli Ae®¢ = 0. As one expects, for vesicles with a similar bending rigidity in both
fluid phases (¢ close to one), the vesicle with two fluid domains, morphology Iy, has lowest
energy. As the bending rigidity ratio € increases, one observes transitions to other domain
morphologies. For x(® = 0.6, at about ¢* ~ 1.55 morphology I with an (o) ring domain is
optimal. Above €® = 1.75, a vesicle with two fluid () domains, morphology II;, becomes the
configuration with lowest energy. Morphologies I1I; and I3 (their energies are not shown in
Fig. 5.5a) have always higher energies. Judging from the data in Fig. 5.5a, it seems that the
transitions are discontinuous.

The full information as to which domain morphology has the lowest energy for given x (&)
and €® is shown in the morphology diagram Fig. 5.5b. Morphology I; is the equilibrium
morphology for similar bending rigidity (¢ close to one) and small, respectively large, area
fraction y(®. In a large region of the morphology diagram, in particular with high bending
rigidity ratio €”, morphology II; has lowest energy. For large area fraction x(®), the ring domain
morphology, morphology I, is found in between morphology I; and II;. The morphology I
occurs for intermediate bending rigidity ratios €” and area fractions, depending on the line
tension, in the range of 0.4 > x(®) >0.9.

In general, the obtained equilibrium morphologies exhibit a rotational symmetry. Typically,
the shapes II; and Iy are found to have an additional top-bottom symmetry. This means
that the domains located at the poles (top and bottom) of the vesicle, i.e. («) domains for
morphology II; and () domains for morphology I, have the same size. We characterise the

4The property of the vesicle does not depend upon which of the two fluid phases is named (a) or (8),
respectively. Apparently, Eq. (5.2) is invariant when phases (a) and (3) are renamed, i.e. when x'* is
transformed into X(ﬁ) =1- X(O‘) and at the same time the material parameters of phase («), k() /ﬁ(G?‘), and
C(()‘” are exchanged with material parameters of phase (3), kP, m(GB), and Céﬁ ), respectively. It should be noted
that upon such a renaming of the phases, morphology I; remains type I, while morphologies II; and III; are

transformed into I3 and I3, respectively.
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Figure 5.5: Vesicle with fluid membrane domains without volume constraints - Influence of a
difference in the elastic bending moduli. (a) The minimum energy E of a vesicle with domain
shape type I; (solid line), type II; (dashed line) and type Iy (dotted line) as a function of
the bending rigidity ratio € for the area fraction x(® = 0.6, reduced line tension A\ = 0.2,
and equal Gaussian curvature moduli Ae"¢ = 0. (b) Morphology diagram of this vesicle as

a function of y(® and e~. (c) Corresponding shapes of minimum energy for Y@ = 0.6 and
increasing €”.
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Figure 5.6: Vesicle with fluid membrane domains without volume constraints - Influence of
a difference in the elastic bending moduli, the same as Fig. 5.5 before but with reduced line
tension A = 0.5. (a) Morphology diagram as a function of the area fraction x(@ and the
bending rigidity ratio €*. (b) Corresponding shapes of minimum energy for €® = 2.3 and
increasing area fraction x().

area ratio of the domains in morphology II; with (4, a,), defined in Eq. (4.8), and analogously
with X(3,, ), defined in Eq. (4.7), for morphology Iz. Equal domain areas at the pole of the
vesicle corresponds t0 X(ay,a,) = 0.5 and X(s,,3,) = 0.5, respectively. Vesicles with top-
bottom symmetry, X(a,,q,) = 0.5, are favoured by bending energy, yet they have a slightly
higher line energy than vesicles where this symmetry is broken, X(q,,q,) # 0.5. Whether the
top-bottom symmetry holds for all equilibrium vesicle shapes II; and Is, could not be fully
clarified. Close to the transition between morphology I; and IIj, for small area fraction (%)
and small €*, vesicle morphologies II; with a slightly asymmetric area ratio, X(a,,a,) in the
range of 0.4 ~ X(q,,a,) S 0.5 are found to have fairly equivalent energy (within numerical
accuracy) as the symmetric shape, X(a1,a2) = 0.5.

The overall picture does not change qualitatively when the line tension is increased. This
is illustrated in Fig. 5.6a where the morphology diagram for vesicles with A = 0.5 is shown. In
general, the transition from morphology I; to morphologies II; and Iy occurs at larger values
of € as the line tension increases.

The results are understood by inspection of the vesicle configurations in Fig. 5.5c and
Fig. 5.6b. The membrane phase with the higher bending rigidity avoids conformations with
large mean curvature. For small area fraction x(®), the vesicle with one domain in each
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phase, morphology I;, has lowest energy because it exhibits the shortest domain boundary.
For a small domain size, the slightly stiffer membrane can easily acquire a comparably flat
conformation without deforming the rest of the vesicle too much. As the area fraction y(®
increases (Fig. 5.6b), morphology I; becomes less favourable because the stiffer membrane
domain would have to bend more strongly in order to fit onto the vesicle geometry. There is
a transition towards morphology II;. The stiffer membrane domain splits into two domains
which are bent less and which are located at the poles of the vesicle. The gain in elastic bending
energy compensates for the higher line energy due to the larger length of the domain boundary.
For even larger area fraction y(«), morphology II; is less optimal than vesicle Iy. This is partly
due to bending energy since two large, slightly stiffer (a) domains in morphology II; lead to
a stronger deformation of the rest of the vesicle than a ring («) domain in morphology Is.
It is also due to the contributions from line energy, as for x(a) 2 0.5 the domain boundary
of the ring morphology Iy starts to be shorter than that of morphology II;. The smaller line
energy of morphology Is (compared to morphology II;) explains why the parameter region
with optimal Is morphology gets larger if the line tension increases, compare Fig. 5.5b with
Fig. 5.6a. There is a transition from morphology I» to morphology II; if the difference in the
bending rigidities of the two membrane phases becomes more pronounced, see Fig. 5.5¢. This
morphological transition is explained by the fact that in this case the bending energy of the
stiffer membrane which is lowest for morphology II; becomes more important than the line
energy or the bending energy of the other membrane domain.

Influence of Gaussian bending rigidity

Next we investigate the influence of different values of the Gaussian bending moduli. Some
aspects of the impact of Gaussian curvature on domain formation has been pointed out in the
preceding section for a vesicle with two domains. In general, since kg is negative, membrane
patches with positive Gaussian curvature (such as a spherical cap in a bud) yield a negative
contribution to the vesicle energy. Membrane patches with a negative Gaussian curvature (such
as the neck region) result in a positive term. In a homogeneous vesicle with constant g the
Gaussian bending energy sums up to a topological constant, independent of the vesicle shape.
This is, however, not the case for a phase separated vesicle with different Gaussian moduli of the
membrane domains. While the integral over the Gaussian curvature is a topological invariant,
the energy associated with the Gaussian curvature depends on the shape. The vesicle can gain
energy if the membrane part with the lower Gaussian bending modulus adapts a configuration
with a more positive (Gaussian) curvature (i.e. forms a bulge) while the membrane with the
higher Gaussian bending modulus forms a configuration which is curved more negatively (i.e.
for example forms a neck).

The bending of the membrane is opposed by the elastic bending rigidity. For a vesicle
with liquid-ordered /liquid-disordered membrane domains, the difference between the Gaussian
bending moduli of both fluid phases was estimated to be in the same order of magnitude as the
elastic bending modulus [171, 186]. Therefore, the contribution from the Gaussian bending
energy is in the same order of magnitude as the bending energy. It is independent of the
number of domains. For certain material parameters, the gain in Gaussian curvature energy
can outweigh the cost of bending the membrane.

In the following we investigate the effect of different Gaussian bending moduli, Ae"¢ #£ 0,
in detail. We first consider a vesicle with equal bending rigidities, ¢ = 1, which implies that
the two membrane phases are identical besides their Gaussian bending moduli. Fig. 5.7a
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Figure 5.7: Vesicle with fluid membrane domains without volume constraints - Influence of
a difference in the Gaussian bending moduli. (a) Morphology diagram of a vesicle with fluid
domains without volume constraints as a function of the area fraction y(® and the ratio of the
Gaussian bending rigidities Ae™@ for reduced line tension A = 0.2 and bending rigidity ratio
(a) € =1 and (b) €® = 0.8. (c) Corresponding shapes of minimum energy for Ae*¢ = —1,
"¢ = 0.8 and increasing area fraction y(®).
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depicts the morphology diagram of this vesicle as a function of the area fraction y(® and the
reduced Gaussian bending modulus Ae®¢ for A = 0.2. The diagram is symmetric when (@)
is exchanged into x(® =1 — x(®) Ae®c¢ changes sign, and morphology II; is transformed into
morphology I5. This is because the two membrane phases differ only in their Gaussian bending
moduli. The symmetry (redundancy) in the diagram corresponds to a renaming of phase («)
with (). For equal bending rigidity, ¢® = 1, one finds that the morphology I; is the equilibrium

configuration unless KZ(C?) and R(G’g ) differ considerable, |Ae"¢| > 0.9, and the area fraction of

the phase x(* with the smaller Gaussian bending modulus ﬁ(é) is around 0.2 < x(@ < 0.6.
Otherwise, the membrane with the smaller Gaussian bending modulus forms two domain caps
located at the pole of the vesicle. Morphology II;, respectively Is, become the equilibrium
conformation. The reason for this morphological transition is that for this area fraction the
two domains can form a more pronounced bud, which accumulates Gaussian curvature in the
phase with the smaller Gaussian curvature modulus, so that the overall energy of the vesicle
reduces.

The impact of a different bending rigidity ratio, €” ## 1, can be seen from Fig. 5.7b. We
assume that the membrane in phase («) is softer and easier to bend, i.e. € < 1. Fig. 5.7b
displays the morphology diagram for ¢¥ = 0.8. The two membrane phases have different
bending moduli and therefore the diagram is not symmetric any more with respect to the
exchange of the sign of Ae"¢. We find that for Ae®¢ > 0 the formation of buds and domains
is suppressed while for Ae®"¢ < 0 the vesicle has a larger propensity to form buds. For
Aee < 0 (“(c? ) < K;E;B))7 the area in the morphology diagram where a vesicle with two (o)
domains, morphology I1;, has minimum energy increases significantly. In a small region of the
morphology diagram there is even a morphological transition towards a vesicle with three («)
domains, I1I;.

In conclusion, we find a stronger tendency of the vesicle to form domains with a pronounced
bulge if the membrane which forms the bud has a smaller bending modulus and a smaller
Gaussian bending modulus. In this case, the Gaussian bending energy and the elastic bending
energy support the formation of more domains. In the other case, for a membrane domain
with larger bending modulus and smaller Gaussian bending modulus, the bending energies
compete and the formation of buds and more domains is suppressed.

Influence of line tension

Finally, we investigate the impact of the reduced line tension. To quantify the value
of A below which morphological transitions are predicted to take place we analyse a vesicle
with typical material parameters taken from experiments. For a phase separated vesicle with
liquid-ordered/liquid-disordered membrane domains recent experiments yield the material pa-
rameters € = 4 and Ae"¢ = —1.5 [186]. Fig. 5.8 depicts the morphology diagram for a vesicle
with these parameter values as a function of the area fraction x(® and reduced line tension
A. As a major result we find that above A\ > 1.68 the morphology Iy has minimum energy for
all x(®. For A < 1.68, morphology I; is found for large and small x(® while for x(® around
x(® ~ 0.5 morphology II; is favoured. In the range of x(® ~ 0.8 a region exists where I has
the lowest energy.

The reduced line tension A depends on the size of the vesicle Ry and the physical line
tension A\(®%) Eq. (5.7). If a value for the line tension A(®?) is given, one can estimate the
size of the vesicle R below which the morphological transition is predicted to occur. Or vice
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Figure 5.8: Vesicle with fluid membrane domains without volume constraints - Influence of
the reduced line tension A. (a) Morphology diagram of the vesicle as a function of the area
fraction x(® and X for bending rigidity ratio ¢® = 4 and ratio of Gaussian bending moduli
difference Ae"¢ = —1.5. (b) Corresponding shapes of minimum energy for @ = 0.75 and
increasing A.

versa, if a size for the vesicle is assumed, one can determine the critical line tension below
the transition takes place. In [186], a typical value for A(®#) is given as A(®#) ~ 1.2pN (at
T = 293 K). Then, together with kP ~ 2 .10719J the critical size of the vesicle R{ can be
estimated. For the vesicle with above material parameters we obtain for R

A
Ry <k ed) S 0.28 um, (5.18)

where A < 1.68 has been considered. The critical size of the vesicle Rjj is expected to become
larger as the temperature increases. Upon an increase in the temperature, the line tension
M) s decreased significantly while the bending rigidity is only affected modestly.

5.4.2 Vesicles with volume constraints — Equilibrium configurations

So far, vesicles which can freely adapt their volume have been analysed. In this section we
extend the analysis to vesicles which are subject to volume constraints. In general, additional
constraints such as a volume constraint lead to the existence of new morphologies which would
otherwise not be stable. Examples were encountered in chapter 4, where in the case of an
almost spherical geometry the fixed vesicle volume leads to a larger number of solid domains.
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Figure 5.9: Vesicle with fluid membrane domains with volume constraints - Influence of a
difference in the elastic bending moduli. (a) Morphology diagram of the vesicle at reduced
volume v = 0.97 as a function of the area fraction x(® and the bending rigidity ratio € for
the reduced line tension A = 0.2 and vanishing Gaussian curvature Ae"¢. (b) Corresponding
shapes of minimum energy for x(®) = 0.6 and increasing €".

We analyse the vesicle with the reduced line tension A = 0.2 and equal Gaussian bending
moduli Ae®¢ = 0 for the reduced volume v = 0.97, which has been studied in section 5.4.1
in the unconstrained case. Fig. 5.9 depicts the morphology diagram with equilibrium shapes.
Qualitatively, it looks similar to the diagram without volume constraints. However, the transi-
tion from morphology I; occurs at a slightly smaller bending rigidity ratio €. This is because,
for small differences in the bending rigidities, the unconstrained vesicle I; prefers an almost
spherical shape, v >~ 0.99. Thus, for reduced volume v = 0.97, it is forced to acquire a smaller
volume than in the unconstrained case which implies a slightly higher energy. For v = 0.97,
morphology II; and I are less affected by the constraint on the volume because they acquire
an equilibrium shape which differs from the sphere already in the unconstrained case.

Domain-induced transition between prolate and oblate morphology

Regarding vesicle morphology Iy, there is an interesting effect not present for unconstrained
vesicles. For vesicle morphology I;, the formation of the domain can induce a morphologi-
cal transition between an oblate and a prolate shape. We start with axisymmetric shapes.
Fig. 5.10a depicts the equilibrium energy of an axisymmetric prolate and an axisymmetric
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Figure 5.10: Domain-induced transition between a prolate and an oblate vesicle. (a) The
minimum energy E of an axisymmetric prolate, morphology 11 prolate (dashed line), and an ax-
isymmetric oblate vesicle, morphology I gplate (solid line), as a function of the bending rigidity
ratio €” for the area fraction X(a) = 0.3, reduced line tension A = 0.2, equal Gaussian curvature
moduli Ae"¢ = 0 and fixed reduced volume v = 0.97. (b) Different vesicle morphologies: the
axisymmetric oblate, morphology Ij gplate, the axisymmetric prolate, morphology I prolate and
an example of a non-axisymmetric shape, morphology I1 non—axisymmetric-

oblate morphology as a function of the bending rigidity ratio ® for area fraction x(® = 0.3.
For ¢ < 1.08, the prolate Ij prolate has minimum energy, while for €® 2 1.08 the oblate mor-
phology Ij gplate is optimum. At v = 0.97, the equilibrium morphology of a homogeneous
vesicle is a prolate. Accordingly, for a phase separated vesicle at low line tension, for € = 1
the equilibrium state is an axisymmetric prolate with a ’cap domain’ on its pole. This domain
configuration provides shortest domain boundary. As the bending rigidity ratio € increases,
there is a transition to an oblate morphology Ij ghlate- The transition occurs for area fraction
x(® < 0.5 and bending rigidities slightly above € = 1 and is shown in Fig. 5.10 as a dashed
line.

If non-axisymmetric shapes are included, it is possible that the transition between the
prolate and the oblate vesicle is not discontinuous but proceeds in a continuous manner via a
sequence of intermediate non-axisymmetric shapes, see Fig. 5.10b. These are biaxial shapes
where the domain is not located at the pole of the vesicle, but shifted away. For small reduced
line tension, the energy difference between the different morphologies is small and beyond the
numerical accuracy of our calculations.

For small values of X(O‘), the situation is even less clear. As the area fraction decreases,
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the energies of the different vesicle morphologies become more similar. It seems that the
region where non-axisymmetric biaxial shapes exist becomes larger. This would imply that
the transition line between Iy prolate and Iy prolate Would be smeared further and end at some
point. It should be noted that in the limit y(®) ~ 0, the prolate morphology is recovered.
In the limit €® ~ 1, the equilibrium shape is a prolate with a domain cap at the pole of the
vesicle.
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5.5 Discussion and conclusion

It was the goal of this chapter to investigate vesicle morphologies with coexisting fluid
domains. The shape of these vesicles is governed by an interplay of line energy and different
bending energies. Line tension causes shape transformations of the vesicle such as the budding
transition. In this chapter the focus was on phenomena when effects from line tension are
less relevant. It was shown that morphological transitions can be induced upon a change of
the bending and/or Gaussian bending rigidity. It was argued that for a comparable low line
tension also vesicles with more than two domains are stable configurations. We have given an
estimate for the size of a typical vesicle below which these morphological transitions should
occur.

Both, unconstrained vesicles and vesicles at fixed volume have been considered. For fixed
volume, we have observed for the vesicle with two domains a morphological transition which
between prolate and oblate conformation.

In our analysis we have determined the morphology diagrams for zero temperature. We
expect that, analogously to solid domains, the morphology diagrams will not be seriously
affected by thermal fluctuations.



Chapter 6

(General conclusions and outlook

Vesicles are fascinating due to their biological implications and the wide spectrum of
biotechnological applications, and also as a challenging topic for fundamental research. In this
thesis, several important aspects regarding the morphology of vesicles have been addressed.
Morphological transitions between different vesicle shapes were encountered which were either
induced by thermal fluctuations, as it is the case between prolate and oblate vesicles, covered
in chapter 3, or by membrane domains — lateral inhomogeneities in the membrane composi-
tions — which was the subject of chapter 4 (vesicles with coexisting solid and fluid membrane
domains) and 5 (vesicles with coexisting fluid membrane domains).

The main results of the investigations presented here are summarised as follows:

In chapter 3 the statistical mechanics of fluid vesicles is studied. While vesicles without
volume constraints acquire an exact spherical shape at zero temperature, their configurations
undergo transitions between prolate and oblate morphologies at finite temperatures. We de-
termined the free energy profile of this shape transition, revealing that the transition proceeds
continuous and there is no free energy barrier involved.

Domain formation on closed surfaces such as vesicles exhibits a rich behaviour, compared
to flat membranes. Chapter 4 considers the morphology of fluid vesicles with solid membrane
domains. Morphology diagrams for the domain shapes with minimum energy have been de-
termined for vesicles with and without volume constraints for different material parameters.
For typical membrane properties, a single round solid domain is found to have the lowest en-
ergy at small domain sizes, while a vesicle with two solid domains is optimal when the solid
area fraction increases. An almost spherical geometry of the vesicle was shown to lead to an
increasing number of solid domains as the area fraction of the solid membrane increases.

Finally, in chapter 5 vesicles with coexisting fluid domains were investigated. Vesicles with
two domains, thus with the smallest interface length between the domains, are the optimal
configurations if line tension plays a major role. In this chapter it was shown that when the
line energy is comparably small, at appropriate conditions the vesicle will not necessarily ac-
quire shapes with two domains. Upon a variation of the bending moduli and Gaussian bending
moduli of the different membranes, morphological transitions to vesicle geometries with more
complex domain shapes occur.

There are several (research) directions into which the work in this thesis may be extended.
The section on solid domains starts from the assumption that the solid membrane is flat and
free of any defects. Although many features can already be seen from this approximation, it
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may be worthwhile (and challenging) to work out the implications of defects in the membrane,
as they are can be observed in the experiments, in a future study.

In our analysis of domains we have determined morphology diagrams which give informa-
tion about the equilibrium configuration with minimum energy and the location of morpho-
logical transitions between them (corresponding to the binodal in a phase diagram). For an
understanding of the kinetics of shape transformations in addition information about the order
of the transition, the stability of metastable states (spinodal) and knowledge of the free en-
ergy barrier between the metastable state and the equilibrium configuration is necessary. This
barrier has to be overcome by thermal fluctuations when the vesicle undergoes a transition.
The Monte Carlo algorithm implemented in this thesis can serve as a starting point to address
these questions.
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Appendix A

A.1 Differential geometry and topology of surfaces

In this section we briefly review the differential geometry and topology of surfaces, thus
providing the necessary tools which are used in this thesis to describe the geometry of mem-
branes and vesicles. A more comprehensive introduction of this classical field of mathematics
can be found in textbooks [140, 187, 188].

A.1.1 Basic definitions

A surface S is defined as a two-dimensional, smooth object (submanifold) embedded into
three-dimensional Euclidean space R3. Let the variables ¢! and ¢2 denote the internal coor-
dinates of the surface. The configuration of the surface is then given by the vector function
X(eh€?) ) ,

UCR — R
X: Al
e - xee A
Provided that this mapping is sufficiently smooth (i.e. X (&1, &) differentiable), one can assign
to each point p of this submanifold its tangent space 7,5, which is a vector space spanned by
the two tangential vectors given by

X
eu|p = 6MX|p = 875# ) s (A2)
where = 1,2. This basis of T),S is denoted as the coordinate basis {e,} = {0,,}. The normal

space at p, T, pLS , is defined as the orthogonal complement of 7},S in R3 with the basis

81X X 82X

n= m 5 (A.3)

where the symbol x denotes the conventional cross-product in R®. The sign of the vector n
depends on the choice of an orientation of the surface. The so-called cotangent space T,;S
is defined as the dual space of T,S at p, T;S = (T5)", its elements are linear function-
als on T,,S. Vectors in T),S are called contravariant vectors, its components are written with
superscript ("upper”) indices; vectors in TS are called covariant vectors and are denoted by
subscripts ("lower” indices).

Once the tangent space and cotangent space are defined, one can introduce vector fields
(and one-forms) which assign in a smooth manner to every point of the manifold an element,
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a vector (or covector) from the tangent (cotangent) space at that point. Tensor fields are
multi-linear forms which provide for every point of the manifold a map from a collection of
vectors and covectors to an element of R. The map varies smoothly from point to point on
the manifold and fulfils the well known transformation properties under passing to a new
coordinate system.

In order to perform calculus on surfaces or other manifolds one has to compare elements
from infinitesimally close, but different tangent spaces. For this purpose one needs an extra
structure called (affine) connection which provides the mapping between different tangent
spaces and describes how vectors (or covectors) are parallel-transported along a curve. It
is defined via the connection coefficients Fﬁw which specify how the basis vector coefficients
change when they are parallel-transported in a certain direction. The covariant derivative of
a vector function v = v"e, along the direction e, is defined as 1

D" = 0,0" + ’UAFKH . (A.4)

The covariant derivative of a tensor field yields a tensor quantity again. The parallel-transport
of a vector between two points along a curve is fixed by demanding that the covariant deriva-
tive of the vector vanishes along the curve. In general, the result of parallel-transport is
path-dependent, i.e. it depends on the specific curve chosen between the two endpoints of the
curve. We will come back to this fact when we talk about (intrinsic) curvature and torsion
further below in the text.

The local geometry of the surface can be characterised by two tensors, the first fundamental
form (or metric tensor) and second fundamental form (the extrinsic curvature).

A.1.2 First fundamental form

A surface is the simplest object that has an own intrinsic geometry. The intrinsic properties
of the surface are described by the first fundamental form (or metric) g,,,,. The metric tensor is
a symmetric second-rank tensor (a positive-definite quadratic form on the manifold’s tangent
spaces) defined by

I = 0, X -0, X, (A.5)

where the dot is the conventional scalar product in R3. Its dual tensor is denoted as g, so

that one has
g" gux = 04, (A.6)

where 5f\‘ is the Kronecker delta. The metric provides a natural isomorphism between the
tangent space and the cotangent space. Together with its inverse, it can be used to raise and
lower Greek indices in tensor quantities.

The determinant of the first fundamental form is given by

1
g = detg = ieuue)\wg,u)\guwa (A7)

where e is the two-dimensional antisymmetric Levi-Civita symbol

e = SUGY — SV, e = €. (A.8)

'Repeated Greek superscript-subscript indices imply summation following the Einstein summation conven-
tion.
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We also need the antisymmetric tensor density «,,. Its covariant expression is defined by

Ypr =10 (e,u X el/) = \/geuua (AQ)

and its contravariant counterpart by v#* = g*¢"“~,,. The mixed quantity 75 = g" vy, acts
on vectors of the tangent plane by rotating them by 7/2.

The metric tensor is an important geometric quantity which, as the name indicates, allows
to measure distances along the surface. The area of a local differential element of the surface
is given by

dA = \/gdetde?, (A.10)

an expression which will be repeatedly used in surface integrals.

The metric induces a unique (symmetric and torsion free) affine connection, the so-called
Levi-Civita connection. The connection coefficients are the Christoffel symbols which are
derived from the metric by

1
F/);V = §g>\w (al/gwu + augwu - awg,uzx) (A.ll)

with '), =T,.

Up to now, the coordinate basis {e,} = {9,} has been used as a basis for the tangent
space 1},S. Sometimes it is favourable to work in a non-coordinate, orthonormal basis with
orthonormal basis vectors {e,} (a = 1,2) for the tangent space 7,,S ?. Orthonormality implies
that e, - e, = d45. Such a basis is achieved by introducing a zweibein e}, compatible with the

metric g,

guvehey = bap eZeZé“b =g (A.12)

The zweibein e} provides the transition from the coordinate basis {e,} of TS to an orthonor-
mal basis {eq} of T),S

e, =elle,. (A.13)

A connection formulated with respect to the orthonormal basis {e,} is commonly called
spin connection. The covariant derivative of a vector u = u“e, along the direction e, reads

Dyu® = 0,u® + ubwl‘fﬂ ) (A.14)

where wl‘)‘u denotes the coefficients of the spin connection. Metric-compatibility requires w,‘}u =
—wfm, in two dimension this simplifies to wgu = eqAyu. The parallel-transport of a vector
should not depend on the choice of the basis of the tangent space, i.e. whether a coordinate
basis {e,} or a non-coordinate basis {e,} is used. From this requirement, relations between
the (affine) connection coefficients and the spin connection coefficients can be derived [140].

2Hereafter, in order to distinguish between these two different basis, we use Greek indices for the coordinate
basis and letters of the Latin alphabet when we work in a non-coordinate basis.
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A.1.3 Second fundamental form

While the first fundamental form is concerned with intrinsic geometric properties of the
surface, the second fundamental form provides information on extrinsic geometric properties,
i.e. the embedding of the surface. The second fundamental form or extrinsic curvature tensor
hyw is a symmetric second-rank tensor and measures the local deviation of the surface from
its tangent plane. It is defined via

0.0, X =T, ex+ hyn. (A.15)

From the extrinsic curvature tensor one can extract two scalar invariants, the scalar mean
curvature H and the Gaussian curvature K:

1 1 1
H = §TT (g"hyy) = 59“"%# = 5(01 + C3) (A.16)
K = det(g"hyy) = Cy Ch. (A.17)

The eigenvalues of g h,», C1 and Cs, are called principal curvatures. The sign of the mean
curvature H depends on the choice of an orientation n on the surface. The Gaussian curvature
does not have a sign ambiguity. The Gaussian curvature is positive for convex or concave
regions of the surface and negative for saddle like regions.

The first and second fundamental form of a surface are not independent of each other. In
order to describe a surface they have to satisfy certain integrability equations which are called
Gauss-Mainardi-Codazzi equations [140].

Here, the first and second fundamental forms have been formulated with tensor notation.
They can be cast in the compact notion of differential forms, see [189] for applications to
membranes and vesicles.

Intrinsic curvature and torsion

The Gaussian curvature, though here it is defined with the help of the extrinsic curvature
tensor, is an intrinsic property of the surface, i.e. it depends only on the first fundamental
form (Gauss’ theorema egregium ). This is quite remarkable.

The observation that it is possible to study intrinsic curvature properties of a manifold
itself and not only the curvature of a submanifold’s embedding can be generalised to higher
dimensional manifolds and leads to Riemannian geometry. Riemannian manifolds are defined
as manifolds equipped with a metric and a connection that is compatible with the metric.

There are two important intrinsic quantities that characterise Riemannian manifolds: the
curvature tensor Ri‘,W and the torsion tensor T,i‘y. The curvature tensor Ri‘,W is defined via
the noncommutativity of the covariant derivative along two coordinate lines, in components

(DD, — D,D,)v"i = R}, v* . (A.18)

g

Geometrically, the Riemannian curvature measures the change of a vector when parallel-
transported along an infinitesimal closed loop on the manifold. The group that is generated
by parallel-transport of vectors along arbitrary closed loops is called holonomy group. For
surfaces, the Gaussian curvature K determines all components of Ri}lw. One arrives at the
simple relation

R = gwﬂy’\”*yWK. (A.19)

Nz

3Latin: excellent theorem
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The coefficients of the torsion tensor are defined as the anti-symmetric parts of the con-
nection coefficients
A ,\ >\
T, =T, -1, (A.20)
Geometrically, the main feature of a connection with non-vanishing torsion is that two in-
finitesimal vectors fail to close when transported parallel along each other.

An important second order differential operator on manifolds is given by the Laplace oper-
ator. Although the general definition is conceptually independent of a connection, for surfaces
or general Riemannian manifolds it is natural to define the Laplace-Beltrami operator as the
trace of the covariant derivative

A=V?=g¢"V,V,=¢"D,D,=D"D,. (A.21)

The Laplacian of a scalar function ¢(£”) simplifies to

Ap = ch (f Wagv) . (A.22)

We now turn from local properties of a surface to global properties. There is a remarkable
relation between local and global quantities, as evidenced by the theorem of Gauss-Bonnet.

A.1.4 The theorem of Gauss-Bonnet

Topological methods allow to investigate manifolds according to their global properties. For
surfaces in general a complete topological classification has been achieved. In the following we
restrict to compact, orientable, connected surfaces, i.e. closed surfaces (without boundary) and
open surfaces (with boundaries). These surfaces are uniquely classified (up to homeomorphism)
by the genus g and the number of boundary components b of the surface. The genus of a surface
(number of ’'holes’) is defined as the maximum number of nonintersecting, distinct closed curves
that can be drawn on the surface without separating it. For closed surfaces, the topologically
different surfaces are given by the g-fold tori, which are obtained from the sphere by attaching
g handles. From these tori, open surfaces are obtained by creating the corresponding number
of boundaries b.

An important topological invariant is given by the Euler-Poincaré characteristic xguer- It
is defined as the alternating sum of the n*® Betti number b,, (b,, is the rank of the n*® homology
group). For orientable surfaces, the Euler-Poincaré characteristic can be computed according
to

XEuler = 2— 29 —b. (A23)

On a surface discretised with triangles one finds alternatively
XEuler = Ny — Ne + Ny, (A.24)

where N, is the number of vertices, N, the number of edges and Ny the number of triangles.
The Euler-Poincaré characteristic xguer does not depend on the specific discretisation of the
surface.
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With the previous notions we can formulate the theorem of Gauss-Bonnet. This theorem
states that the integral over the Gaussian curvature is a topological invariant. For a closed
surface S, it reads

/ dAK = 27rXEu1er- (A25>
S

For an open surface with b closed boundary curves, it has to be corrected by boundary contri-
butions

b
/ dAK = 2mXguer — Y 7§ codl; (A.26)

where dl; denotes the line integral along the boundary line 9.5; and ¢, is the geodesic curvature
of the boundary line. The geodesic curvature ¢, is a measure for the curvature of a line in a
metric space. Let R(I) = R(¢!(1), £%(1)) parametrise a curve on a surface via the arc length [
(with |dR/dl| = 1). The curvature of this line can be split into an orthogonal and a tangential
part to the surface

d’R dR
chnn—l—cg <n><dl> , (A.27)
where ¢, is the normal curvature of the line. Thus, ¢4 is given by
dR\ d’R

The geodesic curvature is a measure for the intrinsic curvature of a line on a surface and does
not depend on how the surface is embedded in space. It quantifies the deviation of the curve
from following the geodesic line, which is the natural generalisation of the ’straight’ line in a
curved manifold. Obviously, for the geodesic line the geodesic curvature vanishes everywhere.

The Gauss-Bonnet theorem is the simplest example of an index theorem. Index theorems
connect certain local, differential properties of a manifold to global properties of the manifold.
To be more precise, they link the analytical index of certain differential operators (which is
closely related to the dimension of the space of solutions of the differential operator on a
manifold) to a topological index of the manifold [190].

A.2 Discretisation of surfaces

In order to perform numerical calculations or simulations the smooth surface has to be
discretised, for example by triangulation, in which the surface is approximated by triangular
mesh cells. The smooth surface is recovered in the continuum limit of infinitesimally small
triangles. Mathematically, a triangulation 7y, is defined as a two-dimensional set of simplices
(a simplical complex) consisting of Ny triangles (2-simplices), N, edges (1-simplices) and N,
vertices (0-simplices). The simplices are combined such that the intersection of any two sim-
plices is either empty or a shared simplex of lower dimensionality. The numbers Nf, N, and
N, fulfil xguer = Ny — Ne + Ny, where xguer is the Euler-Poincaré characteristic. In the
following individual triangles are denoted with f;, edges with e;, and vertices with v;.

Once the surface has been triangulated, the differential geometric quantities like mean or
Gaussian curvature have to be extended onto the discretised surface. This task turns out to
be difficult. An obvious requirement which a suitable generalisation has to meet is that, as
the triangulation is refined, the discretised version approaches continuously the corresponding
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quantities of the smooth surface. Unfortunately, for an arbitrary triangulation a practicable
definition which assigns a discretised differential geometric quantity to a vertices and converges
locally does not exist in general. What can be found instead are quantities which convergence in
the sense of (integral) measures [191]. These are given by the (d+ 1) Minkowski functionals (in
d dimensions). Minkowski functionals are integral geometric measures (quermass measures),
which are constructed to be motion-invariant, continuous and additive. In three dimensions,
these functionals correspond to the (local) integrated volume, the integrated area, integrated
mean curvature and integrated Gaussian curvature. Because of the continuity of these integral
measures, the values calculated on a polyeder converge for a sequence of refined triangulations
to the correct values of the smooth surface.

The area of the total surface or parts of it is given by the sum of the areas of the individual

triangles
/ dA=)"A;, (A.29)
fi

where A; is the area of triangle f;.
The volume enclosed by the triangles f; can be calculated by

/dV => Vi, (A.30)
fi

where .

denotes the volume of a pyramid defined by its base triangle f; and its top vertex which lies
in the coordinate origin (n; is the normal vector of the triangle f; and X; the position vector
to one of the vertices of the triangle).

The (local) integral over the mean curvature is obtained by the sum over edges e;

/ dAH =Y % L (A.32)

where I; is the length of the edge e; and is ¢; the tilting angle between the neighbouring
triangles f; and f; adjacent to e;, cos ¢; = n; - ny.
The integral over the Gaussian curvature is computed as a sum over vertices v;

/dAK_Z QW—Z% , (A.33)
j

Vg i
where a; is the angle of the triangle f; incident to the vertex v;. (2m —3_; a;); measures the
deficit angle of vertex v; to 2.

In 1957 Hadwiger showed that the Minkowski functionals are the only scalar functionals
which are motion-invariant, continuous and additive [192]. This implies that for other integrals
like [dAH 2 or [ dAK 2 an appropriate discrete version does not exist on a polytope. Hence
we will have to resort to some approximations.

In our simulations we apply for the integral over the squared mean curvature the approx-
imation proposed in [105]. It is based on the square of the local average of the discretised
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integrated mean curvature around a vertex. In this way, certain shortcomings are avoided
which are encountered in other discretisation approaches, see [104] for a detailed discussion.
Following Eq. (A.32), we can calculate the averaged integrated mean curvature around the
vertex v;
- 1 1
(HAD)i = 5 > Sl | (A.34)
ej i
where the sum extends over all edges e; which share the vertex v;. The factor % arises because
only half of the contribution of an edge should be assigned to a single vertex. The area
associated to a vertex v;, when shared equally between the vertices, is given by

- 1
Ai=(> 54 (A.35)
fj i

where A; is the area of the adjacent triangle f;. The discretised Helfrich Hamiltonian can be
expressed as .
1 2 o (H Ai)i
: / dA2H)? ~ 2 Z v (A.36)
For the Gaussian curvature, the situation is slightly different because it is an intrinsic
geometric quantity. Nevertheless, appropriate measures for the discretised Gaussian curvature
that converge pointwise around a vertex can only be found for very special triangulations, for
example for regular meshes with valency six [193]). In general, a measure for the Gaussian
curvature associated with a vertex v; can be inferred from the angular defect of v; [194]. The
angle deficit has to be multiplied by a factor with dimension [length] ~2. The natural quantity
to divide the angular defect with is the area of the incident triangles, thus

K; ~ (W) . (A.37)

It has to be noticed, however, that this formula is justified only for triangulations which
are based on geodesic triangles of the surface [106]. Therefore, this formula is of little help
from a practical point of view as the knowledge of the geodesics is required. For arbitrary
triangulations, it is advantageous to correct the angle deficit with the so-called module of the
mesh. As a local estimate for the Gaussian curvature we use [106]

Kw:( P ) , (A.38)

T4, — Ly, cotg(a,)2

where l_J is the length of the triangle f; edge opposed to the angle o;. From this result
expressions for the integrated square of the Gaussian curvature can be derived.
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B.1 On the integral measure for fluid membranes

Thermal equilibrium properties of fluid membranes are encoded in the partition function,
Eq. (2.3),

2(1) = [ DX (@)} e PO, (B.1)

It is written as a functional integral which extends over all possible, physically different em-
beddings of the membrane. When evaluating this functional integral, one has to be careful
because of the reparametrisation symmetry of the integrand. The Hamiltonian Hgyuiq(X(£)) is
invariant under changes of the coordinate system parametrising the surface, £* — §'“(§ 1¢2).
This reparametrisation symmetry reflects the fluidity of the membrane.

Apparently, when calculating the partition function, B.1, the result must not depend on
the chosen parametrisation. The measure D{X(§)} has to guarantee that each physical con-
figuration is counted only once and redundant (unphysical) degrees of freedom arising from
the ambiguity in the parametrisation are eliminated. Infinitesimal reparametrisations are gen-
erated by the vector fields €%(£), €% — £'@ = €9 4 €%(¢), which act on X (€) as

9 X(€). (B.2)

X(€) = Xel€) = X(6) + ¢(6) 5

Since X(§) and X (&) describe the same membrane conformation, they should only give a
single contribution to the functional integral. One way to overcome this problem is to extend
the integral in Eq. (2.3) with an integral over the metric tensor g, (§), which is treated as an
independent field !

Z(T) = / DX (£)} e Maua(X(E)/T _

= / D{X(E)}D{g(€)} 8 (0, X(€) - 0, X () — gy (€)) e Mmmia X Q0 (O)/T (1 3)

The d-functional relates the embedding functions with the fluctuating metric, and guarantees
that this is an identity transformation. The two redundant degrees of freedom in the parametri-
sation can be removed by fixing two local degrees of freedom of the metric. A convenient choice
of gauge is given by the conformal metric

glu/(f) = p(&§)6uw - (B.4)

I This has been proposed originally by Polyakov in a different context [195].
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That means that one finds local coordinates in which the metric is a spatially dependent
conformal factor times the trivial metric. Conformal gauge is the two dimensional analogue of
arc-length parametrisation of a curve in space and contains one (physical) degree of freedom
p(&) over which remains to be integrated. Thus, one ends up with

Z(T) = /D{X(ﬁ)}D{p(ﬁ)H(@uX(&)-GVX(E) = p(&)dyy) ¢ T OXEOLEOVT - (B.5)

The §-functional leads to important measure corrections, so-called Faddeev-Popov terms [96].

Eq. (B.5), which is mostly a reformulation of Eq. (2.3), achieves the non trivial task of
taking the underlying symmetries into account in a rigorous manner. In this form, it can be
evaluated in a perturbative manner via the renormalisation procedure [96, 195].
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C.1 On the elastic energy for hexatic membranes

Hexatic membranes are membranes with short translational and QLR orientational order.
Orientational order means that there exists a preferred direction within the tangent plane at
each point X (&) on the membrane. It can be expressed by the local bond order parameter

m(§) = cosO(&)e; + sinO(&)ex = m*(§)e, (C.1)

where {e,} (a = 1,2) forms an orthonormal basis of the tangent plane. Hexatic order implies
that ©(£) has six-fold symmetry, i.e. rotations of m(§) by 2p7/6 (p is an integer) lead to
physically equivalent states.

The free energy of hexatic membranes Hyey consists of a Helfrich-type bending energy and
in-plane elastic energies Hyex, elast

Hoex (X(€)) = [ @6V (5 @H = C0)* 4 KGK) + Hen s (X(O) . (C2)

The lowest non-trivial contribution to the in-plane elastic energy for orientational order can
be written as [196]

1
Hhex, elast — zkA/d2§\/§DMmaD#ma . (03)

The coupling constant or hexatic stiffness k4 measures the strength of the coupling between the
orientations of neighbouring bonds. In C.3, D,u* = J,u® —i—ubwgu is the covariant derivative of
the vector u = u%e,, wgu denotes the coefficients of the spin connection. The spin connection
can be expressed as wgl , = €ap A, with the antisymmetric Levi-Civita symbol €4, and the "vector
potential” A,. A, measures the frustration of the angular order parameter when it is parallel
transported along an infinitesimal closed path on a curved surface '. The source field (curl) of

'In general, the parallel transport of a vector between two points on a curved surface depends on the chosen
path. This implies that the bond angle at an arbitrary point on a curved surface has no path-independent
meaning and thus is ambiguous. This is the case for the standard choice of connection (Levi-Civita connection),
where the bond angle at some point reached by two distinct paths from a reference point depends on the intrinsic
curvature (Gaussian curvature) enclosed by the paths. The problems of a path dependent order parameter can
be circumvented by introducing a different connection which is tuned curvature free so that parallel transport
of a vector is path independent, as desired. This is achieved by the connection wy,, which involves a new degree
of freedom, a geometric quantity called torsion. The curvature of the connection with torsion has the physical
meaning as being proportional to the density of disclinations. In the presence of a high density of disclinations,
when the hexatic melts into a fluid, the parallel transported bond angle becomes ambiguous, which is equivalent
to saying that order in the bond angles does not exist in an isotropic fluid phase [197].
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A, is given by the Gaussian curvature K (§)
YD,A, = K(§) (C.4)

with v = €/, /g. A possible solution for Eq. (C.4) is
A =Dy [ EEVRETE K E). (€5)

Here, I'(¢,€') = 1/A is the Green’s function for the Laplacian A, i.e. AL(E, ') = 1/\/g6(§=¢").
To proceed, it is instructive to rewrite the elastic energy Eq. (C.3) in terms of the angle
variable O(¢)

1
Hhex,elast = ikA / d2§\/§gﬂy(alt(9 - AH)(aVe - AV) . (06>
The free energy is invariant under local transformations O(§) — ©(&) + €(§)

Aa(§) — Aa(§) + 9ace(§), (C.7)

which corresponds to a local rotation of the reference frame {e,}.

To provide a more intuitive picture of this energy, we divide the field © into a regular
part ©™8 and a singular part ©%"8. The regular part ©'8 fulfils D,0,0™¢ = D, 0,0, The
singular part ©%"¢ is related to the disclination density s(§) = 1/,/g>; si6(£ — &) (s; denotes
the charge of disclination i) by

4 D,0,0% = (). (©8)
Thus, one has
aﬂ@sing _ g/\V,YVMDA/d2§/\/@f(£7€’)5(5/) , (Cg)

where T'(¢, ¢') is the same Green’s function as above. By this, one finally can express Eq. (C.6)
as

Hhes, et = yha [ P65 [ BEVIEKE) = sOFEENKE) =€) (C10)

Eq. (C.10) describes the in-plane stretching energy of a hexatic membrane, taking into account
possible disclinations. A few things should be pointed out. First, the relevant quantity is
not the disclination density or the Gaussian curvature separately, but the difference between
them 2. The disclination density can be screened by the development of Gaussian curvature
(and vice versa). The in-plane elastic energy of hexatic membranes is smaller than the energy
for crystalline membranes, Eq. (2.25). This is due to the presence of free dislocations in the
hexatic. These act to reduce the strain caused by a non-isometric membrane deformation.

Geometric methods are an elegant and quite common approach in the modern description of topological
defects [197, 198]. The proper geometric framework to describe a medium with a continuous distribution of
dislocations and disclinations is provided by manifolds with non-vanishing intrinsic curvature and torsion (see
appendix A.1). It is natural to assign torsion to a system with a high density of dislocations, such as in the
hexatic, since torsion measures the nonclosure of the parallel transport of a vector. In an analogous manner,
the density of free disclinations acts as a source for intrinsic curvature.

2The in-plane elastic energy in Eq. (2.25) is formulated for a crystalline membrane with a flat ground state
without disclinations. In principle, for the general case of an arbitrary groundstate with disclinations, one would
also have as the relevant quantity the difference between the Gaussian curvature and the disclination density.
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D.1 Monte Carlo simulations

This section provides a brief introduction to computer simulations based on Monte Carlo
methods. The reader is referred to the textbooks [199, 200] for a more detailed analysis on
Monte Carlo techniques and computer simulations in general.

D.1.1 Basic principles

Monte Carlo methods have become an indispensable numerical tool for studying problems
in statistical mechanics. As their name indicates (Monte Carlo is a reference to the casino in
Monaco), these methods are stochastic techniques, meaning they are based on the repetitive
use of random numbers to investigate problems. Historically, the first large scale Monte Carlo
work carried out dates back to the middle of the 20** century. Stanislav Ulam, John von
Neumann and Enrico Fermi were the first who proposed and applied the Monte Carlo method
as a numerical technique. The earliest published work on Monte Carlo is probably the paper
by Metropolis and Ulam from 1949 [201].

Monte Carlo methods are especially useful for the numerical evaluation of high-dimensional
integrals. Such integrals inevitably occur in the statistical treatment of systems with many
degrees of freedom. A typical task in equilibrium statistical mechanics is to compute thermal
averages of macroscopic observables of the system. The expectation value of an observable
A(z) is given by the integral over the (high-dimensional) phase space,

(A(z)) = / do A(2)peq () (D.1)

where x stands for the degrees of freedom x = (z!,22,23,...,2"). The probability density

Peq(x) describes the probability with which the configuration « occurs in thermal equilibrium.
For the canonical ensemble, peq(z) is given by the normalised Boltzmann factor

1 —H(x
Peq(z) = Z¢ H(@)/T (D.2)

Its normalisation constant is the canonical partition function Z

zZ = / d e~ H@/T | (D.3)
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Conventional methods of numerical integration operate by taking a number of evenly spaced
samples x; from the integration interval, estimating the integral by the sum

(A@)) =) A(xi)peq (i) - (D.4)

The number of computations required for these integration methods increases exponentially
with the dimension of the integral. Hence, they become impracticable for higher-dimensional
integrals. A solution is provided by Monte Carlo methods. There, instead of summing over
a regular array of sampling points, one averages over a random sample of points. In the
simplest variant these are distributed uniformly over the integration interval. This is called
simple sampling. The statistical error is independent of the dimensionality of the integral, its
accuracy increases with the square root of the sample size. Since the convergence towards the
true value may be rather slow, simple sampling is not a real improvement. This is the case for
sharply peaked integrals as they occur in statistical mechanics. The efficiency of the sampling
routine can however be significantly enhanced if one does not sample configurations with a
constant probability, but chooses preferentially those regions of phase space which contribute
most to the integral. This is the basic principle lying behind importance sampling techniques.
Apparently, the averages estimated by employing importance sampling are statistically much
more reliable than those calculated by simple sampling.

Importance sampling

At first sight, determining a proper probability distribution that is similar to the integrand,
seems to be just as difficult as solving the integrand itself. Nevertheless, there are powerful
algorithms available that generate sampling states according to the desired distribution. These
are based on stochastic processes which have the desired distribution function as their unique
stationary distribution. In practice, the most frequently used are Markov processes. A Markov
process is a stochastic process which generates a sequence of microstates. The transition
probability from a present state x to the state 2’ depends only on the state x and z’ and not
on any other other state the chain has passed through before getting to x. The probability of
the system going from microstate x to 2’ is denoted with p(z,z’). We assume that p(z,2’) is
time-independent and preserves the normalisation of the probability distribution peq(z), i.e.
p(z,2’) fulfils [da’ p(xz,2’) = 1. We further require that p(x,z’) is irreducible or ergodic,
meaning that it must be possible for the system, starting from any state, to reach any other
state of its configuration in a finite time.

We discuss the conditions under which the probability distribution undergoing a Markov
process converges towards a desired distribution peq(z). Let p{)(x) indicate the probability
density that the system is in the state x at time ¢t. After one time step along the Markov chain,
the probability p**1)(z’) of being in state 2’ at time (¢ 4 1) is given by

P = [ dopea o). (D.5)

The equilibrium distribution peq(z) is reached when

Peq(z') = /d:r p(x, 2 )peq(z) - (D.6)
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An important property of a Markov chain is that, as long as the transition matrix is ergodic,
the sampled distribution converges for any choice of initial state towards peq(x) in the long
time limit. Eq. (D.6) can be reformulated by noting that at the kinetic equilibrium the system
transition rates into and out of any state x must be equal. This can be expressed as

/da:’p(x, 2 )peq(z) = /dx’p(w’, T)Peq (') - (D.7)
In practice one usually imposes a stronger condition

,0(33‘, x,)peq($) = p(xlv 'T)peq(x,) . (D'S)

This is the condition of detailed balance and is a sufficient, though not necessary condition for
a stationary distribution peq(x).

For obvious reason, Monte Carlo estimates are always associated with some statistical
error. First, before taking the average over samples one has to assure that the Markov process
has reached equilibrium. One has to take into account in the error analysis that the data
generated via a Markov process are correlated. The usual square root N —1/2 hehaviour of the
variance for sample size N obtained by employing the central limit theorem does not hold. It
has to be corrected by the the correlation time it takes that a microstate becomes uncorrelated
to its initial state, see [202].

Metropolis algorithm

There is some freedom in choosing the transition probabilities p(x, z"). Here we will present
the procedure proposed by Metropolis et al. [203], which in the literature is commonly referred
to as the 'Metropolis algorithm’. Notwithstanding its age, it is still the basis of most Monte
Carlo work done in statistical physics. The Metropolis algorithm allows to calculate expec-
tation values of observables in the canonical ensemble. To proceed, we split the transition
probability p(z,z') into two parts, p(z,2') = g(z,2") pacc(x,2’): a selection probability
g(x,2’) and an acceptance probability pacc(x,x’). The selection probability g(x, 2’) defines the
conditional probability that a new ’trial’ state x’ is proposed given that the current state is
x. The acceptance probability pacc(x, ') gives the conditional probability that the proposed
move is accepted. In the Metropolis algorithm the acceptance probability is chosen as the

g(z,2')

~(B@")~B@))/T D
P x’,x)e ]. (D.9)

Pace (T, 2") = min[1,

It is easy to see that p(z,2’) satisfies detailed balance. In practice, g(x, ') is often chosen to
be symmetric in z and 2’, s0 pacc(z, 2') reduces to

Pace(, 2') = min[1, e~ (EE)=E@)/T] (D.10)
A single move in a Metropolis Monte Carlo trajectory is obtained by the following steps

(i) Starting from the initial state x of the system, a new trial state x’ is chosen according
to the selection probability g(z,z’) and the energy difference AFE(z,z') = E(z') — E(x)
computed.
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(i) If AE(x,2") <0 the new state 2’ is accepted.

If AE(z,2’) > 0 a random number pya,q is drawn, which is uniformly distributed in
the interval [0,1). The new state 2’ is accepted if the random number is smaller than
Prand < e AE@IN/T otherwise rejected.

The trajectory generated with this algorithm samples configurations according to the Boltz-
mann distribution. An important aspect for the implementation of a Metropolis algorithm is
the choice of the selection rules g(z,z’). This has to be adapted to the individual problem in
order to obtain an efficient sampling of the relevant microstates in phase space.

Pseudo-random numbers

Monte Carlo simulations require a huge amount of random numbers. The statistical relia-
bility of the estimates depends on the quality of the random numbers used. The randomness
(or complexity) of a sequence of numbers is well defined and can be quantified to a certain
extent within the framework of algorithmic information theory [204]. However, formally it is
impossible to proof that a given specific sequence of numbers is indeed random. This is due
to an incompleteness theorem [204]. A list of numbers can be considered random, if (and only
if) it is generated by a physical process such as radioactive decay which, according to present
day theories, is believed to involve some intrinsic randomness. In Monte Carlo simulations
one usually employs random numbers obtained by a software generator. These are pseudo
random numbers, which are generated by a deterministic algorithm and thus are predictable
and reproducible. One has to guarantee that they approximate ’true’ random numbers in
some sense, that they are not biased, appear uncorrelated, and are distributed uniformly in
the range zero to one.
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List of symbols

vesicle area

area of triangle f;

area associated to vertex v;
membrane area of phase (7)
asphericity

reduced spontaneous curvature
spontaneous curvature

spontaneous curvature of phase (7)
Euler-Poincaré characteristic

area fraction of phase (7)

area fraction of domains in phase ()
shape anisotropy

Laplace operator

difference of Gaussian bending rigidities
edge j

energy

ratio of bending rigidities

triangle j

free energy

free energy as a function of the order parameter a
selection probability

metric tensor

reference metric tensor

Foppl-von Karman number
out-of-plane deformation

mean curvature
Area-difference-elasticity energy
Canham-Helfrich energy

energy of the crystalline membrane
energy of the fluid membrane

Lame coefficients

Boltzmann constant

Young’s modulus

Gaussian curvature
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K bending rigidity
x(®) bending rigidity of phase (7)
KG Gaussian bending rigidity
/@(GZ) Gaussian bending rigidity of phase ()
lo maximum tether length
l; length of edge e;
A reduced line tension
A@B) line tension
i eigenvalues of Q
A average eigenvalue of Q
m reduced integrated mean curvature
mo reference reduced integrated mean curvature
M integrated mean curvature
n normal to the membrane surface
N, number of vertices
D pressure difference between inside and outside of the vesicle
p(z) probability density
Da probability density as a function of the order parameter a
Pacc (T, x') | acceptance probability
Q shape tensor
Q traceless shape tensor
Ry vesicle radius
plx, ) transition probability
S charge of disclination
o membrane tension
o membrane tension in phase ()
T temperature
To room temperature
TN, triangulation of membrane surface with N, vertices
u(é) displacement vector field
Ug () phonon displacement
Uy strain tensor
v reduced volume
V; vertex 1
|4 vesicle volume
Xk coordinates of vertex k
X(€) membrane coordinates
X centre of mass coordinates
13 membrane parametrisation
&p persistence length
&r translational correlation length
¢ roughness exponent
Z partition function
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