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Zusammenfassung

Lipidmembranen sind die Grundbausteine der Zelloberfl¨ache. Die in der Membran vorliegende
Doppelschicht-Struktur entsteht durch Selbstaggregation der Lipidmolek¨ule in Wasser. Neben den
Lipiden enthält die Zellmembran eine Vielzahl weiterer Bestandteile, zu deren zahlreichen Aufgaben
der Ionentransport ebenso z¨ahlt wie die Schutzfunktion gegen mechanische und chemische Besch¨adi-
gungen der Zelle.

Während der Ionentransport durch Proteine in der Zellmembran geregelt wird, sorgt ein von der
Membran ausgehendes Netzwerk von Filamenten im Inneren der Zelle f¨ur zusätzliche Stabilität der
Lipidschicht. Außen ist die Zellmembran mit einer Vielzahl von Zuckermolek¨ulen bedeckt, die die
Schutzfunktion wahrnehmen.

Die Beeinflussung der Membran durch derartige ketten¨ahnliche Proteine soll im Rahmen dieser
Arbeit anhand eines vereinfachten biomimetischen Systems studiert werden. Letzteres dient als Mini-
malmodell für die Zellmembran, in welchem der Einfluß verankerter Polymere auf die Lipidmembran
untersucht wird.

Zu den grundlegenden Gr¨oßen, die durch verankerte Polymere beeinflusst werden, z¨ahlen die
Krümmung und Steifigkeit der Membran. Eine freie, nicht mit Polymeren bedeckte Membran hat eine
im Mittel verschwindende Kr¨ummung. Einseitig auf der Membran verankerte Polymere induzieren
eine Krümmung, die die Membran von den Polymeren weg biegt. Grund hierf¨ur ist der Druck, den
eine Polymerkette durch St¨oße mit der Membran auf diese aus¨ubt. Die Berechnung des Druckes,
der im Ankersegment stets ein Zug an der Membran ist, erlaubt es, explizit die Form der Mem-
bran unter dem Einfluss der Polymere zu bestimmen. In der N¨ahe des Ankers nimmt die Membran
Kegelgestalt an, w¨ahrend sie sich in großem Abstand einem Katenoid ann¨ahert, einer Minimalfl¨ache
mit verschwindender Kr¨ummung. Bei einer Bedeckung mit vielen Polymeren ergibt sich das Gesamt-
profil der Membran, ebenso wie ihre Kr¨ummung, als lineare Superposition der einzelnen Polymeref-
fekte. Mittels einer Monte Carlo-Simulation k¨onnen die perturbativ berechneten Resultate best¨atigt
werden.

Im Rahmen desselben Formalismus ist auch die Wechselwirkung der Polymere, die durch die
Membran induziert wird, zug¨anglich. Diese ist attraktiv, jedoch vernachl¨assigbar bei Ber¨ucksich-
tigung der sterischen Repulsion der Ketten verschiedener Polymere. Beides, sowohl die Wechsel-
wirkung zwischen Polymer und Membran, als auch die Wechselwirkung der Polymere untereinander,
haben Einfluss auf die Kr¨ummung der Membran und m¨ussen somit bei der Auswertung von Exper-
imenten herangezogen werden. Von Interesse sind ebenso Polymere, die an beiden Enden verankert
sind und Polymere, welche die Membran durchdringen. Letztere Situation ist biologisch motiviert im
Hinblick auf den Transport von DNA durch die Zellmembran.

In einem weiteren Teil der Arbeit geht es um den Einfluss eines Wechselwirkungspotentials zwis-
chen Polymer und Membran, das zu der bisher betrachteten entropischen Repulsion hinzutritt. Es
zeigt sich, dass ein attraktives Potential die urspr¨unglich induzierte Kr¨ummung verkleinert. Im Limes
starker Adsorption, in welchem das Polymer ganz auf der Membran lokalisiert ist, verschwindet der
Polymerdruck und die durch diesen induzierte Kr¨ummung der Membran. Monte Carlo-Simulationen
hierzu dienen dem Vergleich mit der theoretischen Vorhersage.

Im letzten Teil der Arbeit werden Polymerl¨osungen und deren Einfluss auf die Kr¨ummung der
Membran betrachtet. Im Grenzfall einer rein sterischen, repulsiven Wechselwirkung zwischen Poly-
meren und Membran biegt sich diese, im Gegensatz zur verankerten Situation, zur L¨osung hin. Bei
Hinzunahme von Adsorption biegt sich die Membran im Limes starker Attraktion der Polymere von



der Lösung weg.
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Chapter 1

Introduction

1.1 Biomembranes and biomimetic systems

Membranes which are decorated by polymers provide simple model systems of biological membranes
such as the plasma membrane of the cell. Its structure is displayed in figure 1.1. A detailed introduc-
tion into the biology of the cell membrane is given in [1, 2, 3, 4]. The main purpose of the cell
membrane is to separate and protect the inside, which contains the life carrying components, from the
outside, the environment of the cell. On the other hand the membrane has to garantee transport be-
tween inside and outside. Ion channels, composed of proteins, which are embedded in the membrane,
regulate transport of ions and small molecules between inner and outer part of the cell [2].

Other inclusions of the membrane have large tails, which extrude from the membrane both in
the inner and in the outer direction. The intracellular side is called the cytoskeleton, consisting of a
network of filaments which stabilizes the flexible membrane. The extracellular part consists of the
glycocalix and the extracellular matrix. The membrane on this side is decorated by glycolipids and
glycoproteins, which protect the cell against mechanical and chemical attack.

The backbone of the cell membrane is given by the lipid bilayer. Bilayers are one possible self-
assembled structure [5, 6, 7, 8, 9] formed by molecules, such as lipids, which have two parts, namely
a hydrophilic and a hydrophobic part. If those molecules are dissolved in water, they tend to form
aggregates in order to avoid contacts between the hydrophobic parts and the water in such a way that
the hydrophilic groups of the molecule are exposed to the water. In figure 1.2 we show a variety of
different aggregates such as a cylindrical micelle, a bilayer and a vesicle.

In order to understand certain aspects of the behavior of biological membranes we will in the
following study much simpler objects which we callbiomimetic membranes1. These are model
systems which allow to investigate the physical properties of biological membranes by focusing on
the basic and characteristic aspects. Polymer-decorated membranes serve as a biomimetic system for
the cell membrane. On the other hand the investigation of these supramolecular structures might lead
to new materials and biotechnical applications. Both experimental [11, 12, 13, 14] and theoretical
[15, 16] work has been done in this area of research.

We will now introduce the components of our model system, namely the lipid bilayer and the
anchored polymers.

1mimesis (gr.) imitation

1
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Figure 1.1: Schematic picture of the cell membrane: The membrane contains different types of pro-
teins. In addition, the inside and outside of the cell are decorated by filaments. The figure is taken
from [10].

1.2 Lipid bilayers

Chemically, the lipids are composed of a small hydrophilic head group and two large hydrophobic
hydrocarbon tails. At an oil-water interface, the lipids form a monolayer in which the tails are located
in the oil-phase and the head-group is inside the water-phase. In an aqueous environment, one possible
configuration is the bilayer. In the experimental situation, one finds in general closed bilayers called
vesicles. This is favorable since for a membrane of finite size the closed geometry is the easiest way
to avoid boundaries where the hydrophobic lipid tails at the edges of the membrane are exposed to
the surrounding water. Vesicles are important experimental objects, with which one can study the
properties of lipid membranes and the influence of attached polymers.

Vesicles are also important from the point of view of pharmacological applications [17, 18, 19].
Inside a vesicle it is possible to transport drugs in order to avoid direct injection. A prominent example
is insulin. The vesicles can penetrate the skin and inside the body release their cargo. Since the
immune system would recognize them as invadors, it is necessary to protect their surface by decoration
with specific polymers and consequently avoid the attack [20, 21, 22]. The polymers (glycolipids)
hinder proteins and antibodies to adsorb on the vesicles.

We will in the following focus on the physical properties of the membrane [24, 25, 16]. The
thickness of the bilayer is about4nm. The lateral size can extend up to the�m-range. It is therefore
justified to neglect the thickness and to model the membrane mesoscopically as a two-dimensional
surface. This is even more justified, since we are not interested in the molecular properties of the
membrane but in the shape profile and the curvature. However, in order to find out which quantities
are crucial to describe the membrane on the mesoscopic scale one has to return to the molecular level.

Above a certain temperature the membrane is in the fluid state in which the hydrophobic chains of
the lipid are disordered and the lipids can freely move inside their monolayer. There is little friction
between both monolayers. In the simplest model the lipids move independently in each layer.

In principle, the lipids can change from one monolayer to the other. However it turns out that
the time scale for these so-called flip-flops is large and in a range between minutes and days [26],
since the lipid has to cross the hydrophobic part of the bilayer with its hydrophilic head group. In the
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Figure 1.2: Different types of lipid aggregates: micelle, bilayer and vesicle (cut in a half sphere).
Thanks to [23].

following we will neglect the possibility of such flip-flops.
The membrane is energetically described by a local energy functional, which takes into account

the spatial position of the surface, the gradients and the curvature. This is, in fact, an expansion in
gradients which can be extended further. Nevertheless, it turns out that these three observables are
sufficient to describe the membrane energy.

As long as we consider the environment of the membrane as homogeneous and isotropic we
expect the membrane to be translationally invariant. Thus, the spatial position of the membrane does
not influence the energy which is attributed to the membrane and will not enter the Hamiltonian
explicitly.

Since in the fluid state the membrane lipids form a two-dimensional fluid, it is not possible to
change the area of the membrane. No work is done in increasing the area, which would correspond to
a surface tension. For fluid membranes, the crucial quantity which governs their physical properties
is the curvature. This is intuitive from a molecular point of view, since the long tails of the lipids
are squeezed if the membrane is curved. Due to the steric repulsion they tend to avoid curved con-
figurations of the surface. Furthermore, if the membrane is symmetric, i.e. if there is no difference
between the half space above and below it, and if the two monolayers have the same composition, the
curvature will enter the Hamiltonian in a quadratic term. The energy of the whole membrane will be
given by the integral of the curvature, where the integration extends over the membrane surface. Thus,
this term will be dimensionless. The prefactor, which relates the integrated curvature to the energy of
the membrane, is called the bending rigidity�, which has the dimension of an energy. The simplest
Hamiltonian to describe a symmetric membrane is therefore given by

Hme =

Z
dA 2� M2 (1.1)

whereM is the (mean) curvature and the factor two is of conventional reasons.
In general the curvature of a two-dimensional surface is defined via two principal curvature axes

and the two corresponding principal curvature radii denoted byR1 andR2, which mathematically are
given by the two eigenvalues of the curvature tensor [27]. There are two invariant measures of the
curvature [28] which describe the surface, namely the above mentioned mean curvature given by

M =
1

2

�
1

R1
+

1

R2

�
(1.2)
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and the Gaussian curvature

G =
1

R1

1

R2

(1.3)

which is related to the topology of the surface. In the case of an asymmetric membrane, i.e. a
membrane where both half-spaces, which are separated by the surface, are not identical, one could
think of a spontaneous induced curvature of the membrane. This curvature is called the spontaneous
curvature of the membrane, denoted byMsp. Including the spontaneous curvature leads us to a quite
complete description of the membrane energy. The corresponding Hamiltonian was suggested by
Helfrich [29] and is given by

Hme =

Z
dA 2� (M �Msp)

2 +

Z
dA �G G (1.4)

where�G is the Gaussian bending rigidity. Both� and�G can be measured experimentally. For
phospholipid membranes one finds� � 10 � 20kBT , which is high compared to the thermal energy
kBT . The Gaussian bending rigidity�G is difficult to measure since the second integral in eq. (1.4)
is a topological invariant, which is a consequence of the Gauß-Bonnet theorem [30]. The elastic
parameter�G measures the energy for the formation of handles.

The most important experimental objects with which one can study the curvature of lipid mem-
branes are vesicles in aqueous solution [31]. The physics of vesicles is governed by the fact that
their volume and area are constant. The volume is fixed, since once a vesicle has formed there is no
driving force for water to enter or to leave the vesicle. The area of the vesicles is constant, since the
concentration of lipid monomers in the water is very small and thus the interchange of lipids between
membrane and solution is negligible.

The shape of the vesicles is given by minimizing the energy in the spontaneous curvature model
for given values of volume, area and curvature [32].

The two remaining parameters in case of the spontaneous-curvature-model are the reduced vol-
ume and the reduced spontaneous curvature. Both quantities are dimensionless and normalized with
respect to the area of the vesicle in such a way, that one defines the radiusRA, which corresponds to
the unique sphere of surface areaA. Consequently the reduced volume is given by

v =
V

4�R3
A=3

(1.5)

and the reduced spontaneous curvature is given by

msp = RAMsp : (1.6)

One ends up with a phase diagram of different vesicle shapes [32, 33, 34] depending on both
parameters. We will later refer to these results in order to see whether or not the anchoring of polymers
has an observable influence on the shape of the decorated vesicles.

It turns out that the spontaneous curvature-model is not able to predict the richness of shapes which
one observes in experiments. The main reason for this deficit is due to neglect of the bilayer structure.
A vesicle with surface areaA has in fact an area2A of lipid surface. There might be an initial
difference between the areas of the outer and the inner monolayer�A0 which provides an additional
parameter for the vesicle shapes. The corresponding theory which includes the difference�A0 uses
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Figure 1.3: Ethylene and polyethylene.

the so called area-difference-model [35], in which the vesicle shape is obtained by minimization of
the Hamiltonian

HADE =

Z
dA 2� (M �Msp)

2 +
��

2

�

Al2me

(�A��A0)
2 (1.7)

with respect to the area-difference between the monolayers and the curvature for given volumeV ,
areaA, preferred area difference�A0 and preferred (spontaneous) curvatureMsp. lme denotes the
thickness of the bilayer, which is about4nm. The parameter�� is called the non-local bending rigidity,
since the area difference is related to the integrated (non-local) curvature of the membrane

�A = 2lme

Z
dAM : (1.8)

The parameters� and�� have similar values for phospholipid membranes. The minimization is in gen-
eral done numerically [36]. Finally, one obtains a corresponding phase diagram of the area-difference-
elasticity model [32].

The lipid bilayer which we discussed so far represents one component of our system. The other
important component is the polymer which will be attached to the membrane. In the following, we
will give a brief introduction to polymer physics.

1.3 Introductory remarks to polymers

Polymers consist of a large number of molecular units, monomers, which are covalently linked. In
general the backbone structure is provided by carbon atomsC� C. The simplest example of a poly-
mer is polyethylene, which is usually formed by polymerization of ethylene. The chemical structure
is shown in figure 1.3. The large variety of organic chemistry arises from the infinite possibilities to
link different types of monomers together. The chains which emerge from these polymerization pro-
cesses are not necessarily linear. Possible configurations are long chains with small side chains, star
polymers or cross-linked polymers, which form networks. Furthermore, one distinguishes polymers
which are basically neutral and polymers which carry charges, called polyelectrolytes.

One of the simplest theoretical models to describe polymer chains is the freely jointed chain
[37, 38, 39]. Each monomer is considered pointlike and linked by a straight bond of fixed lengthap,
the so-called Kuhn length. The bonds have total rotational freedom. The probability distribution of
one single bond is given by

p(rn � rn�1) =: p(Rn) =
�(jRnj � ap)

4�a2p
; (1.9)
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wherern is the spatial position of then-th monomer. An important quantity is the end-to-end vector of
the chain, measuring the relative spatial position of the first and the last bead of the polymer. It is clear
that the average end-to-end vector vanishes, since it points into all directions with equal probability.
The interesting measure is the average of the squared end-to-end vector as given by

hR2i = h(
X
n

Rn)
2i = Na

2
p : (1.10)

This leads to the end-to-end distance

Rp �
q
hR2i = ap

p
N ; (1.11)

which is a measure of the polymer size. This result is identical to the time-dependence of the average
displacement of a Brownian particle from the original starting point, ifN is identified with time. The
corresponding probability distribution for the distance of the Brownian particle is Gaussian. In fact,
if we choose the step size between neighboring beads larger than the Kuhn lengthap of the polymer,
the spatial positions of the beads are uncorrelated and thus fulfill the properties of a random walk.
Consequently one expects the probability distribution of the polymer end-to-end vector to become
Gaussian in the limit of smallap. Mathematically, the Gaussian distribution is reached in the limit of
smallap and largeN in such a way thatRp = ap

p
N is constant. This is the continuum limit for the

polymer chain. One ends up with the probability distribution

p(R) =

 
2�
R
2
p

3

!�3=2
exp

 
�3

2

R
2

R2
p

!
(1.12)

of the end-to-end vectorR. Because of the Gaussian character of the chain, the same distribution
function holds for each bond with average bond lengthap. This implies that the Gaussian chain is
self-similar on all length scales resulting in a fractal structure with the fractal dimensiond = 2. This
is due to the relation between the number of monomers and the mean displacementN � r

2. The
fractal dimensiond, which relates the mass of an object to its diameter is defined as the exponent in
the relationN � r

d and thus in case of the Gaussian chaind = 2 [39].
It is clear that the ideal polymer model can not predict the properties of real polymers in all details.

The model applies to a certain range ofR-values which are large compared to the Kuhn lengthap and
smaller or in a range ofRp. Below the lower limit, the polymer stiffness cannot be neglected anymore.
Above the upper limit, the finite bond lengths of real chains forbid configurations which are strongly
overstretched. In the Gaussian model itself there is no upper limit for the stretching of the polymer.

The Gaussian distribution function suggests a model of the polymer in which the pointlike beads
are linked by harmonic springs, known as the bead-spring-model. The (effective) energy of the chain
in discretized form is given by

E =
D

2

NX
n=1

(rn � rn�1)
2
; (1.13)

which in the continuum limit yields

E =
D

2

Z N

0
ds

�
dr(s)

ds

�2

; (1.14)
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wheres is the internal length of the polymer. The equilibrium of the chain is described by the distri-
bution function given by the Boltzmann factorexp(�E=kBT ). In order to recover the form according
to eq. (1.12) one identifies the spring constantD as

D =
3kBT

a2p

: (1.15)

The basic ingredient of the Gaussian chain is the free random walk of the polymer beads with respect
to the internal lengthN , corresponding to the number of beads. Thus, the chain can freely intersect
and different pointlike beads can occupy the same spatial positions. Because of this behavior one calls
the Gaussian model also the ideal chain model.

A more realistic model is provided by the self-avoiding walk where the polymer beads have a
certain volume, the so-called excluded volume, in which no other bead can enter. It is intuitively clear
that the overall size of the polymer will be enlarged due to this steric interaction. An estimate for
the size of the polymer which turns out to be very good in comparison to experiments and computer
simulations is given by the Flory radius

RF � N
3=5 (1.16)

where the exponent1=2 of the ideal chain is enlarged to3=5 for the excluded-volume chain [40, 41].
Whether the polymer can be considered as ideal or not mainly depends on the energies between

polymer and solvent. In a good solvent, the polymer likes to have solvent molecules in the neighbor-
hood of its beads and thus spreads out in order to increase the contact area with the solvent. This is
the case where excluded-volume effects are important. If the solvent is bad, the polymer monomers
prefer to shrink together in order to avoid contacts with the solvent. Then the van der Waals attraction
between the polymer beads is dominant and the polymer forms a globular configuration. In between,
where the excluded-volume interaction is balanced by the van der Waals attraction the polymer ca be
considered to be ideal. Since the energetic interactions are fixed by the polymer and the solvent, the
temperature governs the polymer behavior. The temperature at which the polymer is ideal is called
the �-temperature. Below, the size of the polymer is smaller and above this temperature it is larger
than the ideal chain.

In most cases the ideal chain serves as a starting point, from which excluded-volume-effects are
considered perturbatively.

We will now discuss the properties of polymers anchored on surfaces which are impenetrable for
the polymers. It is intuitively clear that the configuration of the polymer beads will be perturbed by
the wall and lead to an anisotropic polymer shape which differs from the spherical configuration of
the free chain.

1.4 Anchored polymer

Anchoring a polymer to a surface involves a loss of entropy of the chain. In fig. 1.4 we show an
experimental situation where DNA is linked to a phospholipid membrane via a big anchoring molecule
called streptavidin. In the idealized situation of a flat substrate, the polymer is confined to the half-
space and thus looses entropy since it can no longer explore the half-space on the other side of the
substrate[42]. In order to anchor the polymer on the surface it is thus necessary to compensate the
entropic effect by a chemically induced energy gain due to the anchoring. If this energy is smaller
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Figure 1.4: Schematic picture of an experimental situation: DNA anchored to a lipid bilayer. The an-
chor molecule is streptavidin, a protein, which enters the membrane with a small connected molecule.
The DNA is linked to the anchor using biotin. Thanks to [23].

than the entropy loss, the polymers will not stay at the surface. If the energy is large compared to the
entropy decrease, polymers will stay at the surface for a long time. For a large reservoir of polymers,
in principle, this anchoring will lead to very large coverage densities. However, for large densities
the steric interaction of the polymer chains provides an additional entropy decrease which balances
the anchoring energy and leads to an equilibrium coverage density of polymers on the surface. The
situation is similar if the polymers are anchored on the membrane. If the membrane is initially flat,
the anchoring energy in the phospholipid bilayer has to overcome the entropy decrease. Since the
membrane is a flexible object, the anchoring of the polymer leads to a change in the membrane shape
in such a way that the membrane bends away from the polymer. Consequently the polymer gains
configuration space. If one considers the curvature of the membrane to be small one can expand the
polymer’s entropy difference of the curved geometry and the flat situation in powers of the membrane
curvature up to second order, which leads to [43]

�Sp = b1RpM + b2(RpM)2 + b3R
2
pG : (1.17)

If one solves the problem for a polymer anchored on a flat surface, on a sphere and on a cylinder, one
ends up with the prefactors [44]

b1 =

r
�

6
; b2 = �

�
�

12
+

1

6

�
; b3 =

1

6
: (1.18)

Since the first coefficientb1 is positive the polymer gains entropy if the membrane bends away from
it. Calculation of the spontaneous curvature leads to

Msp � T
b1

4�Rp
� 0:18

T

�Rp
(1.19)

where the temperature is measured in energy units and the curvature is defined as positive if the
membrane bends away from the polymer.
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In addition, the anchoring of the polymer suppresses membrane fluctuations and leads to an en-
tropic contribution to the bending rigidity�. Thus one defines an effective bending rigidity�e� which
is larger than�. The Gaussian bending rigidity is decreases due to the anchored polymer and there-
fore the formation of holes and handles in the membrane surfaces becomes easier [44]. Similar results
have been obtained in [45] for the situation of so-called Siamese lipid-polymers, where two polymers
are connected via their anchor molecules, having chains which due to the presence of an artificial hard
wall between them do not penetrate each other.

1.5 Overview

Anchored polymers are considered in chapter 2 and 3 both in a perturbative approach and in a Monte
Carlo simulation. We consider the pressure of the polymers exerted on the membrane, as well as the
resulting shape profile and the curvature of the membrane.

Another aspect is presented in chapter 4 where the polymer interaction due to membrane curvature
is calculated. The results lead to predictions on experiments with polymer covered vesicles.

In chapters 5 and 6, we investigate different geometries such as polymers which are anchored with
both ends and polymers which translocate the membrane. External forces are considered, which in the
case of lateral forces acting on the membrane lead to surface tension, and in the case of perpendicular
forces acting on the polymer lead to changes in the polymer configuration and the membrane shape
profile.

In chapters 7 and 8, we include adsorption due to short range interaction between the membrane
surface and the polymer. First we investigate a pure contact potential, which only acts directly on the
membrane surface, and generalize the calculation to a square-well potential. The results are compared
with Monte Carlo simulations. Finally, we extend the work to free polymers in the solution above the
membrane. Here we consider the curvature for different sizes of the interaction potential and compare
with the results obtained in the case of anchored polymers.

In the last chapter we summarize the major results of the thesis and conclude with an outlook
considering future work.
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Chapter 2

Anchored Polymers: Perturbative
Approach

Membranes which are decorated by polymers on one side bend away from the polymers [43, 46].
The induced spontaneous curvature can be calculated by comparing the configuration of polymers on
curved surfaces with those on a flat substrate. The basic simplification in these calculations is due to
the replacement of the fluctuating membrane by fixed membrane shapes.

We will now change the starting point of the calculation. Both polymer and membrane fluctuations
are taken into account in the initial partition function of the compound system. In order to simplify
the situation we start with a single polymer which is attached to an infinitely extended membrane.

Further simplifications arise from the assumption of neglecting the membrane thicknesslme, i.e.
the membrane is a two-dimensional surface. In addition the anchor is a pointlike segment of the
polymer which enters the membrane in the anchor segment without any changes in the conformation
of the membrane surface. Furthermore the beads of the polymer are pointlike and the polymer can
freely intersect. Mathematically, the polymer is described by a Gaussian chain, in which the weight
of each bond is distributed Gaussian around an average bond length given by the Kuhn lengthap.

We do not take into account any interaction between polymer and membrane except the steric
repulsion of polymer and membrane surface: Polymer and membrane cannot penetrate each other.

Since we do not fix the geometries of the curved surface, our approach allows us to calculate
explicitly the membrane shape which arises from the interactions with the anchored polymer.

In the following section we will introduce the mathematical description of the compound poly-
mer/membrane system.

2.1 Parameterization of the system

2.1.1 Membrane

The membrane is regarded as a two-dimensional surface, which moves freely in the three-dimensional
space, i.e. we neglect any effects due to the thickness of the bilayer. In addition, we only take look at
equilibrium states, which implies, that we do not describe the membrane by the equations of motion
of its lipids in the bilayer.

A simple model for the membrane is given by the curvature Hamiltonian presented in the in-
troduction. In the following we will continue this description. First, we introduce our system of

11
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l(x )1

1x

Figure 2.1: Schematic picture of a membrane configuration, which is not represented by the membrane
Hamiltonian. The snapshot shows a cut in thex-plane along thex1-direction for fixedx2. Here,l is
not a unique function ofx1.

reference(x1; x2; z). Each membrane segment will be described by its heightl above the(x1; x2)-
plane. This so-called Monge parameterization implies that the topology of the membrane does not
change. Consequently, the integrated Gaussian curvature stays constant. Since each reference point
x1; x2 is attributed to one unique membrane heightl(x1; x2) we also neglect configurations, in which
the membrane forms overhangs as shown in the schematic figure 2.1. This is true as long as the lateral
sizeL of the membrane is small compared to the membrane persistence length [47]. IfL is increased
towards the latter length scale, the bending rigidity is reduced by the shape fluctuations, which be-
come larger [48, 49]. In case of most lipid bilayers, the bending rigidity typically is found in a range
of � � 10 � 20 kBT and the persistence length, which is� exp(4��=3kBT ) is large. This justifies
the above introduced parametrization.

The Hamiltonian, which describes the membrane, arises from a gradient expansion in the mem-
brane heightl. Since the free membrane is symmetric with respect to its upper and lower half space,
each term in this expansion is quadratic. We find

Hme =

Z
d2x

�
�

2

�
r2
l(x)

�2
+

�

2
(rl(x))2 + v2

2
l(x)2

�
(2.1)

with bending rigidity�, surface tension� and additional harmonic potentialv2 which confines the
membrane around the plane of reference. The potential takes into account the effect of neighboring
membranes or external potentials. In addition, it turns out to be useful to introducev2 in order to
avoid, if necessary, divergences in our calculations. The limit of vanishingv2 is obtained by adequate
subtraction of these divergences.

A lateral tension� introduces the additional crossover length scale�� = (�=�)1=2. The mem-
brane can be regarded as tensionless on length scalesx � �� . However, for fluid membranes the
surface tension� is a small quantity and hence�� very large. It is therefore reasonable to neglect the
surface tension� and only take into account the bending rigidity�.

The Hamiltonian which we use for the following calculation is consequently given by

Hme =

Z 1

�1
dx1

Z 1

�1
dx2

�
�

2

h
r2
l(x1; x2)

i2
+
v2

2
[l(x1; x2)]

2

�
: (2.2)
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x

x1

2

l(x  ,x  )1 2

s=N
z

s=0

Figure 2.2: Schematic picture for the system parameterization

2.1.2 Polymer

The polymer which is anchored on the membrane is Gaussian. The spatial positions of the polymer
beads are given byr = (r1(s); r2(s); r3(s)) wheres denotes the internal length of the polymer, start-
ing from the internal coordinate of the anchor beads = 0, and ending ats = N , which corresponds
to the position of the free polymer end. The simplest equivalent picture to describe the Gaussian
polymer is a chain composed of pointlike beads which are connected by harmonic springs. Due to the
equipartition theorem each spring constant is proportional to temperature. The mean distance of the
beads, i.e. the average length of a bond, is denoted by the Kuhn lengthap.

The corresponding Hamiltonian reads

Hp =
3T

2a2p

Z N

0
ds0

�
dr(s0)
ds0

�2

=
3T

2R2
p

Z 1

0
ds

�
dr(s)

ds

�2

: (2.3)

Here and in the following we measure the temperatureT in energy units. In case of an ideal chain,
the average end-to-end-distanceRp of the polymer, which serves as a measure for the polymer size, is
proportional to

p
N as expected for a random walk of a particle, whose time coordinate corresponds

to the internal lengthN :

Rp = ap

p
N : (2.4)

The Gaussian Hamiltonian describes an ideal chain. In the ideal chain model one neglects excluded
volume effects between the monomer beads. Thus, the bonds can intersect each other without steric
repulsion. This is only possible, if the solvent is close to the�-temperature, where the excluded
volume effect is balanced by the van der Waals attraction of the polymer beads [37]. The partition
function of a polymer starting at positionra and ending at positionre is given by

Zp =

Z 1

�1
Dfrg �[r(0) � ra]�[r(1) � re] exp

 
� 3

2R2
p

Z 1

0
ds [dr(s)=ds]2

!

=: Z(ra; rej1) (2.5)
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representing the statistical weight of all possible configurations with fixed end points. As shown in
Appendix A, partition functions of Gaussian type are solutions of a Schr¨odinger-type equation.Z is
a function of the starting point, the end point and the internal length of the polymer or the polymer
piece, respectively. The path integral which is introduced in the partition function is defined as the
continuous limit of the discretized integration

Y
i

Z 1

�1
dri !

Z 1

�1
Dfrg : (2.6)

It is a crucial property of the Gaussian weights, i.e. the solutions of the corresponding Schr¨odinger-
type equation, that they fulfill the equation

Z(ra; rej1) =

Z 1

�1
d3r Z(ra; rjs)Z(r; rej1� s) : (2.7)

2.1.3 Compound system

Since we already introduced both the Hamiltonian for a membrane and for a polymer, we now have
to write down the partition functions for each of them and the compound partition function. For
simplicity, the anchor of the polymer is put on the membrane at location(xa;1; xa;2) = 0.

The partition function of the membrane is given by

Zme =

Z
Dflg exp

�
� 1

T
Hmeflg

�
: (2.8)

The partition function of the polymer on top of the membrane is given by

Zpflg =

Z 1

�1
Dfrg

Z 1

l(r)
Dfr3g �[r(0)] �[r3(0)� l(0)] exp

 
� 3

2R2
p

Z 1

0
ds

�
d

ds
r(s)

�2!
:

(2.9)

In order to simplify the notation the lateral positions are denoted byr = (r1; r2). The �-functions
ensure that the polymer stays anchored on the membrane. The structure of 2.9 allows us to separate
the partition function into a lateral and a perpendicular partZpflg = Zk � Z?flg with

Zk =

Z 1

�1
Dfrg �[r(0)] exp

 
� 3

2R2
p

Z 1

0
ds

�
d

ds
r(s)

�2!
(2.10)

and

Z?flg =

Z 1

l(r)
Dfr3g �[r3(0)� l(0)] exp

 
� 3

2R2
p

Z 1

0
ds

�
d

ds
r3(s)

�2!
: (2.11)

The partition function of the compound system is given by

Zc =

Z
Dflg exp(�Hmeflg

T
)Zpflg : (2.12)

The problem, which is immediately striking, is due to the integration boundary in ther3-path-integration
of eq. (2.11) for the polymer bead position inz-direction. This restriction arises from the fact that
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the polymer bead can not penetrate the membrane, i.e. the membrane position beneath the bead at
(r1(s); r2(s)) indicates the lower integration boundary. It is clear that the corresponding Schr¨odinger
equation to this path integral problem can not be solved because of this complicated boundary condi-
tion. To reduce the problem we start to expand the polymer partition function in functional powers of
l. We will later show that this expansion only depends on gradients ofl such that it is not restricted to
small values ofl. However, it is assumed that the effect, which the polymer induces on the membrane,
is small in comparison to the average flat geometry of an unperturbed membrane.

2.2 Perturbative calculation

The task of the following calculation is to integrate out the polymer part in the compound partition
function (2.12). We start with a formal expansion of the partition functionZp given in eq. (2.9).
Expanding around the flat membrane configuration, we find

Zpflg
Zpf0g

= 1 +

Z 1

�1
d2x

1

Zpf0g
�Zpflg
�l(x)

�����
l=0

� l(x) + O(l2) : (2.13)

The functional expansion only acts onZ?flg. We will therefore and for reasons of notation in the
following restrict on the perpendicular part.

To start the expansion we first shift the integration in ther3-direction by substitutingr3(s) !
r3(s) + l(r(s)), which yields

Z?flg =

Z 1

0
Dfr3g �[r3(0)] exp

 
� 3

2R2
p

Z 1

0
ds
�
[ _r3(s)]

2 + 2 _r3(s) _l(s) + [_l(s)]2
�!

(2.14)

with _r = dr=ds and the short notationl(s) := l(r(s)).
The functional derivative�Z?flg=�l(x) can only be evaluated correctly, if one discretizes the

polymer partition function.

Z(D)
? flg =

Z 1

0
Dfr3g�[r3(0)] exp

 
� 3

2R2
p

X
i

�s

"�
r3(si +�s)� r3(si)

�s

�2

+

+2
r3(si +�s)� r3(si)

�s
� l(si +�s)� l(si)

�s
+

�
l(si +�s)� l(si)

�s

�2
#!

: (2.15)

The reason why only gradient terms inl appear is due to the identitydl=ds = dl=dr � dr=ds.
We now use the relation

�l(r(s))

�l(x)
=
�l(s)

�l(x)
= �[r(s)� x] (2.16)

in order to expand the perpendicular part

�Z(D)
? flg
�l(x)

�����
l=0

= � 3

R2
p

X
i

�s

Z 1

0
Dfr3g �[r3(0)]

r3(si +�s)� r3(si)

�s
�

� 1
�s

�
�[r(si +�s]� x)� �[r(si)� x]

�
exp

 
� 3

2R2
p

Z 1

0
ds [ _r3(s)]

2

!
: (2.17)
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So far we have calculated the functional derivative of the perpendicular part with respect tol. Since
we initially separated the polymer partition function into thel-independent lateral partZk and the
l-dependentZ? it is now easy to put both parts together in the derivative,

�Z(D)
p flg
�l(x)

�����
l=0

= Zk �
�Z

(D)
? flg
�l(x)

�����
l=0

: (2.18)

For convenience it is reasonable to put (2.18) and (2.17) together in the following way:

�Z(D)
p flg
�l(x)

�����
l=0

= � 3

R2
p

X
i

�s
�Zk
�s

� �Z?
�s

(2.19)

with

�Zk
�s

:=

Z 1

�1
Dfrg �[r(0)] 1

�s

�
�[r(si +�s)� x]� �[r(si)� x]

�
exp

 
� 3

2R2
p

Z 1

0
ds [ _r(s)]2

!

and

�Z?
�s

:=

Z 1

0
Dfr3g �[r3(0)]

r3(si +�s)� r3(si)

�s
exp

 
� 3

2R2
p

Z 1

0
ds [ _r3(s)]

2

!
: (2.20)

Before we perform the continuum limit with respect toswe will integrate out the spatial path integrals,
which are equivalent to the corresponding solution of the Schr¨odinger-type equation. Starting with
the lateral directions the first equation of eq. (2.20) leads to

Z 1

�1
Dfrg �[r(0)] �[r(s)� x] exp

 
� 3

2R2
p

Z 1

0
ds

�
dr(s)

ds

�2!
=

=

Z 1

�1
dxe Z(0; xjs) Z(x; xej1� s) : (2.21)

Because the path integrations in the two lateral directions extend from�1 to +1 theZ ’s are solu-
tions of the Schr¨odinger-type equation for the free polymer:

Z(xa; xejs) =
3

2�s

1

R2
p

exp

 
� 3

2s

(x1;e � x1;a)
2 + (x2;e � x2;a)

2

R2
p

!
: (2.22)

The integral over the end point of the polymer(x1;e;x2;e) can be evaluated and yields1 due to nor-
malization.

The remaining task is to calculate ther3-direction. In this direction the polymer is confined to the
half space above the surface. The solution of the corresponding Schr¨odinger-type equation is denoted
by the indexhs. The second equation of (2.20) yields

Z
Dfr3g �[r3(0)] r3(s) exp

 
� 3

2R2
p

Z 1

0
ds

�
dr3(s)

ds

�2!

=

Z 1

0
dze

Z 1

0
dz z Zhs(0; zjs) Zhs(z; zej1� s) : (2.23)
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Note that for reasons of convention we introduced different notations for the coordinates and the
fields in the corresponding direction in order to clearly separate both. The half space solution is
[50, 51, 52, 53]

Zhs(za; zejs) =

r
3

2�s

1

Rp

"
exp

 
� 3

2s

(ze � za)
2

R2
p

!
� exp

 
� 3

2s

(ze + za)
2

R2
p

!#
(2.24)

where the forbidden path, in which the starting point is on the other side of the surface, is subtracted.
Thus, the partition function takes into account the restriction of the configuration space. Mathemat-
ically, one can immediately conclude, that the partition functionZhs(0; zjs) of a polymer which is
anchored on the surface atz = 0 vanishes. However, we can easily avoid this problem by introducing
a cutoff lan which, due to normalization, cancels again if one expands for smalllan. We define

~Zhs(lan; zjs) :=
Zhs(lan; zjs)R1

0 dz Zhs(lan; zjs)
: (2.25)

In the limit of smalllan one obtains

~Zhs(0; zjs) =
3

s

1

Rp

 
z

Rp

!
exp

 
� 3

2s

z
2

R2
p

!
: (2.26)

Coming back to the initial expansion eq. (2.13) the normalization with respect to the half-space
partition functionZpf0g leads to the continuum limit

1

Zpf0g
�Zpflg
�l(x)

����
l=0

= � 3

R2
p

Z 1

0
ds

�
d

ds
hz(s)ihs

��
d

ds
Z(0; xjs)

�
� �

Z 1

0
ds P (s; x) :

(2.27)

for the prefactor of the linear term inl.
The functionP we defined above contains the polymer part, which is integrate out. The remaining

task is to calculate the derivatives of thez-expectation value and of the free polymer partition function
in the(x1; x2)-directions.

If one inserts eq. (2.27) back into the full expansion of eq. (2.13) one ends up with

Zpflg
Zpf0g

= 1 �
Z 1

0
ds

Z 1

�1
d2x P (s; x) l(x) = exp

�
�
Z 1

0
ds

Z 1

�1
d2x P (s; x) l(x)

�
(2.28)

to first order inl. The last step we wrote down above is correct in linear order of ourl-expansion.
The remaining term in the exponent of the partition function is nothing but an additional Hamilto-
nian which adds to the membrane Hamiltonian. If we furthermore defineP (x) =

R 1
0 ds P (s; x) this

function couples linearly to the membrane heightl(x). Since it contains the polymer part one con-
cludes thatP (x) is the pressure which the polymer exerts on the membrane [54]. The pressure will
be calculated explicitly in section 2.4.

2.3 Polymer shape

The expectation value of the polymer in thez-direction, which we have to calculate in eq. (2.27)
contains information on the shape structure of the polymer [51]. Let us start with the expectation
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Figure 2.3: The average z-position of the polymer beads plotted versus their corresponding x-position,
i.e. their radial distance from the anchor. Note that the polymer is anchored on a flat substrate.

value hz(s)ihs which as usual is defined by

hz(s)ihs =

R1
0 dze

R1
0 dz ~Zhs(0; zjs) z Zhs(z; zej1� s)R1

0 dze

R1
0 dz ~Zhs(0; zjs)Zhs(z; zej1� s)

(2.29)

= Rp

r
2

3�

 
arctan

 p
sp

1� s

!
+
q
s(1� s)

!
(2.30)

where Zhs and ~Zhs are the half-space partition functions of the polymer as given by eq. (2.24) and
eq. (2.26). The limiting positions for the first and the last monomer of the chain are hz(0)ihs = 0 and
hz(1)ihs =

p
�=6Rp, respectively.

Let us investigate the average polymer position in a more detailed way. A brief calculation shows
that the average squared distance in the lateral directions leads to

hx2i = hx21i+ hx22i =
2

3
sR

2
p : (2.31)

By inserting of eq. (2.31) into the average distance hz(s)ihs of eq. (2.29) we can express the average
z-position as a function of the average radial position

phx2i, which is displayed in figure 2.3. The
profile grows linearly for small distances from the anchor bead and reaches the maximal average
distance, which corresponds to the position of the last chain bead, with zero slope. Another interesting
quantity concerning the polymer configuration is the segment density. The segment density measures
the probability w(x1; x2; z) of one bead (we do not count which one of the beads) being located at a
certain spatial position (x1; x2; z). The probability distribution is given by

w(x1; x2; z) =
1

N
Z 1

0
ds

Z 1

0
dze Z(0; x1js)Z(0; x2js) ~Zhs(0; zjs)Zhs(z; zej1� s) :

(2.32)

The normalization constant N is calculated by evaluation of

N =

Z 1

0
ds

Z 1

�1
dx1

Z 1

�1
dx2

Z 1

0
dz

Z 1

0
dze Z(0; x1js)Z(0; x2js)�
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Figure 2.4: The polymer seg-
ment density: (a) Contour plot
in the (x1; z)-plane. Due to the
presence of the wall the polymer
is squeezed in the z-direction
and strongly deviates from
the spherical shape of the free
polymer. The shape profile
justifies the term mushroom to
characterize the polymer form.
(b)+(c) Surface plot in the
(x1; z)-plane from different
view angles. The profile in this
diagram resembles a shark fin.

� ~Zhs(0; zjs)Zhs(z; zej1� s) : (2.33)

This leads to

w(x1; x2; z) =
27

4�

1

R3
p

z

Rp

Z 1

0
ds

1

s2
exp

 
3

2s

x
2 + y

2

R2
p

!
exp

 
� 3

2s

z
2

R2
p

!
erf

 s
3

2(1 � s)

z

Rp

!
:

(2.34)

In figure 2.4 we display the segment density in the (x1; z)-plane, which corresponds to w(x1; x2 =

0; z). The segment density gives an estimate of the shape of the polymer anchored on a flat surface.
If one compares with the density profile obtained in case of a free polymer, which leads to a circle in
the (x1; z)-plane, one can easily see the deformation in the vicinity of the surface. It is important that
the segment density vanishes on the surface. The polymer is never located on the surface, which is a
known property of continous polymer models.



20 CHAPTER 2. ANCHORED POLYMERS: PERTURBATIVE APPROACH

0.2 0.4 0.6 0.8 1

-100

-75

-50

-25

25

50

75

100

x/R

R  P(x)

p

p
3

Figure 2.5: The total polymer pressure plotted versus the anchor distance. The pressure is positive for
all x=Rp > 0. It decays exponentially for large distances x=Rp and diverges for small x=Rp. The
pressure is negative infinity in the anchor point at x=Rp = 0.

2.4 Polymer pressure

We will now continue with the calculation of the local polymer pressure P (x) given by (2.27). The
derivative of hz(s)ihs is given by

d

ds
hz(s)ihs = Rp

r
2

3�

r
1� s

s
: (2.35)

The derivative of Z(0; xjs) with respect to s is

d

ds
Z(0; xjs) =

3

2�R2
p

 
3

2

x
2

R2
p

1

s3
� 1

s2

!
exp

 
� 3

2s

x
2

R2
p

!
: (2.36)

Inserting both derivatives into the expression for the polymer pressure eq. (2.27) leads to

P (x) =

Z 1

0
ds P (s; x) (2.37)

with
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: (2.38)

Note that the pressure is measured in units of T .
Since we have put the anchor point of the polymer into the origin of the (x1; x2)-plane, the pres-

sure is rotationally symmetric and depends only on the distance x = jxj to the anchor.
Let us now discuss the result which we obtained. First of all, we can analytically perform the

s-integral. However, it is important to note the divergence of the integral at x = 0.
The total pressure is

P (x) =

Z 1

0
ds P (s; x) =

(
1

2�x3

�
1 + 3 x2

R2
p

�
exp

�
�3

2
x2

R2
p

�
for x > 0

�1 for x = 0
: (2.39)
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Figure 2.6: The function P (s; x) plotted versus the anchor distance for different internal lengths s. It
is negative for small distances x=Rp from the anchor point and positive for large x=Rp. In this limit
P (s; x) is exponentially decreasing.

The plot in figure 2.5 shows according to the analytic formula that for x > 0 the pressure is positive,
indicating that the polymer pushes the membrane away from it. For large distances this pressure
decays exponentially (with a prefactor � 1=x). For small distances the pressure diverges, i.e. the
polymer pushes the membrane stronger and stronger. At the origin x = 0, the pressure is infinite,
but with opposite sign, i.e. in the anchor point the polymer pulls the membrane. Additionally, we
plot P (s; x) in figure 2.6, which is negative for small and positive for large distances from the anchor.
P (s; x) is a function which one could call an effective monomer pressure, namely the pressure which
is exerted by the monomer at internal position s. As one can see in the diagram, the monomer pulling
increases, if one goes to smaller internal length s. The smaller s the closer the monomer is neighbored
to the anchor bead. According to the intuitive picture, the main pressure contribution is due to the
polymer beads in the vicinity of the anchor bead.

However note, that P (s; x) is not a real pressure in the physical sense, since it does not correspond
to real forces on the membrane (therefore we call it effective). The only bead, with which the polymer
can exert a negative force (pulling the membrane), is the anchor segment at x = 0.

The behavior of the total pressure is in agreement with Newton’s third law. Each bead of the chain,
which exerts a force on the membrane due to collision, leads due to the connectivity of the chain to an
equally sized force of opposite direction on the membrane. The only bead which is connected to the
membrane is the anchor point. Since the area there, on which the force is acting, is zero, the pressure
is infinite.

We additionally have to check, if the integrated pressure is zero, since in total, the polymer can-
not exert a net-force on the membrane, which would lead to a center-of-mass motion of the whole
polymer-membrane system. In fact, a brief calculation shows that

Z 1

0
ds

Z
d2x P (s; x) = 0 : (2.40)

The vanishing of the integrated pressure is also a consequence of the fact, that in the expansion we
used here only gradients of l, namely @l=@x1 and @l=@x2 occur, which implies that the pressure term
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is invariant under the transformation l(x)! l(x) + �l of the shape profile.

2.5 Membrane shape profile

In this section we derive the shape profile. The corresponding calculation is divided into numerous
parts. First, we start with the general case of a membrane with bending rigidity �, confined in a
harmonic potential with corresponding parameter v2. The potential might arise from van der Waals
interaction of the membrane with a substrate or with neighboring membranes. As we already pointed
out, the potential will regularize our calculation, enforcing the membrane to be located on average
at zero height for large distances from the polymer anchoring point. In this first part we derive the
general solution for the shape profile.

In the following part we consider the limiting case of the free membrane. We first calculate a
general expression for the membrane curvature. Using the curvature we afterwards derive the free
shape profile.

2.5.1 Membrane in a confining potential

In order to perform the calculation we will formally rewrite the partition function of the compound
system. So far we have calculated the pressure. For the partition function of the polymer on the
membrane related to the flat substrate we found via eq. (2.13) that

Zpflg
Zpf0g

= 1 �
Z 1

0
ds

Z 1

�1
d2x P (s; x) l(x) + O(l2) : (2.41)

In linear order it is therefore correct to put the pressure term back into the exponential

Zpflg
Zpf0g

= exp

�
�
Z 1

0
ds

Z 1

�1
d2x P (s; x) l(x)

�
: (2.42)

Since we are dealing with Gaussian membranes it is possible to rewrite the Hamiltonian in terms of
the Gaussian bilinear kernel K�1 which we introduce here. One finds

Hme

T
=

1

2

Z
d2x0

�
�

T

�
r2
l

�2
+
v2

T
l
2

�
=

1

2

Z
d2x0

Z
d2x00 l(x0)K�1(x0 � x

00)l(x00) : (2.43)

Integrating by parts yields the form of the Gaussian bilinear kernel

K
�1 =

�

T
�(x0 � x

00)

"
d4

dx004
+
v2

�

#
: (2.44)

In order to calculate the average profile hl(x)i we introduce a generating field (x), which couples
linearly to the membrane height l(x) and leads to the partition function

Zfg =

Z
Dflg exp

�
�Hme

T

� "
Zpflg
Zpf0g

#
exp

�Z
d2x0 (x0)l(x0)

�

=

Z
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�
�1

2

Z
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Z
d2x00 l(x0)K�1(x0 � x

00)l(x00)

�
Z 1

0
ds

Z
d2x0 P (s; x0)l(x0) +

Z
d2x0 (x0)l(x0)

�
: (2.45)
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Figure 2.7: The profile of the membrane as obtained by the perturbative calculation for different
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4
=�.

The average shape profile is now given by

hl(x)i =
� lnZfg
�(x)

����
=0

: (2.46)

Using the properties of Gaussian integrals one finds

hl(x)i = �
Z 1

0
ds

Z
d2x0K(x� x

0)P (s; x0) : (2.47)

The equation can be solved by Fourier transformation which leads to

hl(x)i = �
Z

dx0
�Z

dq

(2�)2
~K(q) exp(�iq(x� x

0))
� (Z

dq0

(2�)2
~P (q0) exp(�iq0x0)

)

= �
Z

dq

(2�)2

Z
dq0 ~K(q) ~P (q0)�(q � q

0) exp(�iqx)

= �
Z

dq

(2�)2
~K(q) ~P (q) exp(�iqx) = �

Z 1

0

dq

2�
q ~K(q) ~P (q) J0(qx) ; (2.48)

where J0 is a Bessel function of integer order [55].
Consequently we have to calculate the Fourier transforms of the membrane propagator and the

polymer pressure. The Fourier transformed membrane propagator is given by

~K(q) =
T

�

�
q4 + v2=�

� : (2.49)

The Fourier transform of the pressure yields
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where I0 and I1 are Bessel functions of integer order [55].
The average membrane profile is now given by

hl(x)i =
RpT

4
p
6��

Z 1

0
dq

q
3

q4 + v2=�
exp

 
�R

2
p

12
q
2

! 
I0

 
R
2
p

12
q
2

!
+ I1

 
R
2
p

12
q
2

!!
J0(qx) :

(2.51)

If we consider non-vanishing v2 the final integration is performed numerically using Mathematica
[56]. The convergence behavior is studied in the subsequent section.

The resulting shape profile is displayed in figure 2.7. As we will show in the following the profile
is a cone in the vicinity of the anchor. In case of non-vanishing potential strength v2 the membrane
approaches a flat configuration far away from the anchor. The approach is given by exponentially
damped oscillations with a wavelength proportional to Rp, which depends on v2 and �.

2.5.2 Free membrane

An important case is the limit of vanishing harmonic potential, i.e. v2 = 0. As we already pointed
out, the integral of eq. (2.51) is divergent in this case. The physical origin of this divergence arises
from the translational invariance of the membrane in the z-direction, since it is not confined around
zero by the harmonic potential anymore.

To study the convergence behavior of the integral we have to concentrate on the asymptotic prop-
erties of the Bessel functions (see Appendix B).

The difference in the integration for non-vanishing and vanishing v2 arises from the behavior for
small q, i. e. at the lower bound of the integral.

For non-vanishing potential v2 we find that

hl(x)i � RpT

4
p
6��

Z "

0
dq q3 (2.52)

with small " > 0. The integral is finite for small q.
In case of vanishing v2 the limiting behavior is changed into

hl(x)i � RpT

4
p
6��

Z "

0
dq

1

q
; (2.53)

i.e. the integral is logarithmically divergent for small q. This infrared divergence corresponds to the
center-of-mass motion of the membrane due to free diffusion. The divergence can be subtracted by
the following integration:

hl(x)i � hl(0)i = RpT
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[J0(qx)� 1] ;

(2.54)
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which subtracts the position of the anchor segment. Now, this segment is located in the origin of our
system of reference.

For large q the asymptotic behavior in both cases is given by

hl(x)i =
RpT
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p
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�
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4

�
: (2.55)

It is easy to verify that this integral is finite. Thus, we have shown, that our Fourier transformed shape
profile is integrable.

Let us briefly derive an equivalent integral to eq. (2.55) using (2.50) and eq. (2.48). Both lead to
the expression

hl(x)i � hl(0)i = � 1
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where  is the Euler constant and � is an incomplete Gamma-function [57]. This formula is very
helpful since it allows us to calculate easily an equation for the membrane curvature. The curvature is
given by

M(x) = �1

2
r2
xhl(x)i = �1

2

1

x

@

@x

�
x
@

@x
hl(x)i

�
: (2.57)

Here we use the negative sign convention, which leads to a positive curvature if the membrane bends
away from the polymer and a negative curvature if the membrane bends towards it.

Applying the spatial derivatives to the shape profile of the free membrane one immediately finds
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: (2.58)

The profile of the curvature is displayed in the inset of figure 2.10.
The limiting behavior of the curvature attains for small distances x from the anchor point

M(x) � T

4��

1

x
(2.59)

and for large distances from the anchor

M(x) � T
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: (2.60)

We have shown, that the curvature for small distances is logarithmically divergent. However, this
divergence is cured, if we integrate over the plane of reference.

It is of general importance, that the curvature for large distances vanishes exponentially. There-
fore, if we study the situation of several anchored polymers on a membrane, we expect, that the total
curvature stays finite. In fact, it is easy to realize that the total curvature of Np polymers is just the
sum of all Np single curvature contributions. This is due to the linearity of our calculation.

In order to calculate the spontaneous curvature of the whole membrane induced by an anchored
polymer one has to integrate over the lateral plane. Using eq. (2.56) one ends up with a simple
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equation for the integrated curvature, which relates it to the average z-distance of the polymer end in
the half-space. One finds AM =

R
d2x M(x)

AM =
T

4�
hz(1)ihs : (2.61)

We introduced the lateral area A in order to garantee the correct units of the mean (spontaneous)
curvature M . It is not necessary for the integration to introduce this area, since the integral over
M(x) is finite. The mean curvature we obtained is the integrated curvature of the infinite membrane.

Since hz(1)ihs =
p
�=6Rp the integrated spontaneous curvature of the free membrane is given

by

AM =
T

4�

r
�

6
Rp : (2.62)

We can compare our results on the membrane curvature with results obtained for the spontaneous
curvature where one does not explicitly know the exact membrane shape, but compares the free ener-
gies of the polymer which is anchored on fixed geometries with the situation of the flat substrate. The
basic idea is to expand the entropy gain of the polymer and its free energy loss respectively for small
curvatures, assuming that the bending in the anchor point is smooth and sufficiently small.

For practical reasons it is sufficient to put the polymer on a cylinder and a sphere [46]. The
corresponding partition sum for these geometries is derived and expanded in powers of the curvature.

This approach is different from our perturbative approach, since it initially fixes the geometries of
the membrane. Therefore, it is not necessarily obvious from the beginning that both calculations end
up in the same result for the membrane curvature. However, we can insert the fixed geometries into
the original partition function (2.9). The integration boundary in the perpendicular direction leads to

lsp[r(s)] =

(
R

q
1� r2

R2 ; r � R

0 ; r > R
(2.63)

where r is the lateral distance from the origin. Shifting the origin of the system of reference by
r3(s) 7! r3(s) +R (see figure 2.8) and expanding for large radii R leads to

lsp[r(s)] = �r(s)
2

2R
(2.64)

Insertion into the integration boundary of (2.9) and expanding the integral yields the limiting partition
function

Zpflg
Zpf0g

= 1 +

r
�

6

Rp

R
+O

 
R
2
p

R2

!
: (2.65)

Since the curvature of the sphere is M = 1=R one finds

Zpflg
Zpf0g

= 1 +

r
�

6
RpM +O((RpM)2) : (2.66)

The same holds for the cylinder with curvature M = 1=2R. The free energy difference �Fp =



2.5. MEMBRANE SHAPE PROFILE 27

x

x

z

1

2

R

Figure 2.8: The system of reference used to derive l(x). The polymer bead (r1; r2; r3) which is
located outside the sphere, must fulfill the equation r12+r22+(R+r3)

2 � R
2. Solving the equation

in linear order in 1=R yields the equation (2.64).

�T ln(Zpflg=Zpf0g) is now given by

�Fp = �
r
�

6
TRpM +O((RpM)2) : (2.67)

Considering the curvature energy of the membrane

�Eme = 2�

Z
d2x M2 = 2�AM2 (2.68)

we add both contributions (neglecting the M2 term of the polymer free energy) to obtain the free
energy of the compound polymer/membrane system

�F(M) = �Fp(M) + �Eme(M) = �
r
�

6
TRpM + 2�AM2

: (2.69)

Minimizing the total free energy with respect to the curvature leads to

AM =
T

4�

r
�

6
Rp : (2.70)

If one compares this result for the integrated curvature AM with our result in equation (2.62) obtained
by the perturbative calculation, both are identical.

An expression for M can only be obtained if one inserts an effective area, in which the polymer
interacts with the membrane and induces a spontanous curvature. This area will be determined by the
polymer end-to-end distance: A = cAR

2
p, where cA is a parameter of order 1, see fig. 2.9.

However, it is not necessary to introduce this parameter in the perturbative approach, since the
latter calculation leads us to the exact x-dependent expression for the membrane curvature M(x) as
given by eq. (2.58).

This explicit expression allows us to derive a closed expression for the shape profile by integration.
Since our problem is circular symmetric the Laplace operator in polar coordinates is given by

� =
1

x

@

@x

�
x
@

@x

�
: (2.71)
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Figure 2.9: The form of the membrane, in a rough estimation, is influenced on an area determined by
the polymer end-to-end distance Rp.
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Note that l1(0) vanishes. Thus, the integration constant is zero.
The membrane shape profile is now obtained by

hl(x)i � hl(0)i =
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0
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which leads to [54] the final expression
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where 2F2 is a generalized hypergeometric function [57, 55]. The profile as given by (2.74) attains
the cone-like shape given by

hl(x)i � hl(0)i � �(T=2��)x (2.75)

for small x and the catenoid-like shape given by

hl(x)i � hl(0)i � �(T=�)(Rp=4
p
6�) ln(x=Rp) : (2.76)

for large x. The profile for v2 = 0 and intermediate x-values is displayed in figure 2.10. The analytical
formula for the shape profile proofs, that the polymer induces a sharp bend at the anchor. Far away
from the anchor point the profile approaches a minimal surface shape, i.e. a shape with vanishing
curvature as given by the catenoid.
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Figure 2.10: The profile of the membrane as obtained by the perturbative calculation for vanishing
potential parameter v2. In the inset the corresponding curvature is plotted as a function of x. On the
right side the shape profile is displayed in a surface plot.

The only length scale, which remained in our calculation, is the polymer end-to-end distance Rp.
Therefore, if we want to separate both regimes, it is legitimate to assume that the polymer influences
the membrane on an area corresponding to a distance of Rp. The approach towards the catenoid can
be considered as a long range correction of the perturbation around the anchor point.

Since the shape of the free membrane is logarithmically divergent for large distances, it is still an
interesting question, what happens if many polymers are anchored on the membrane. This situation
is much more important from the experimental point of view, since it is difficult to anchor only one
polymer on top of a large membrane.

2.5.3 Polymer covered membranes

So far, we considered the effect of a single polymer which is anchored on a membrane. From an
experimental point of view it is important to generalize this situation to one, where several polymers
are anchored on the membrane [58, 59], also on both sides. In the case of a large anchor-distance,
the situation is referred to as the mushroom regime. If one decreases the anchor distance of the
polymers, the mushrooms will start to intersect and perturb each other. This will lead to a laterally
squeezed mushroom shapes, because the steric hinderence will become stronger and the polymers
will avoid to intersect. This high coverage regime is called brush regime [60, 61, 62, 63]. Due to the
excluded volume interaction, the initial mushroom shape will be deformed into a strongly stretched
configuration.

What happens now, if several polymers are anchored on the membrane? Since our expansion we
did in the derivation of the shape and curvature profile is nothing but an expansion up to linear order
in l, the problem of Np anchored polymers can be reduced to the problem of a linear superposition of
the effect of Np single polymers 1.

Let us therefore consider a membrane of area A which is covered by Np anchored polymers in
the dilute regime. Up to first order in the surface height l, we may simply superimpose the separate

1A similar superposition of membrane deformations has been considered in the so-called hat model in [64, 65]
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Figure 2.11: The weights for a symmetric Fourier transform: The origin, which belongs to all four
quadrants, has weight 1=4, the border lines 1=2 and the bulk has weight 1.

shape deformations arising from these polymers. Thus, for the coverage �p = Np=A one obtains the
mean (spontaneous) curvature Msp =

p
�=6(T=4�)�pRp. Thus, the polymer induced spontaneous

curvature is proportional to the coverage density.

It is of special interest to study the situation of membranes which are covered by polymers in such
a way, that the anchors form a regular lattice in the plane of reference. This situation corresponds to a
polymer anchored on a membrane of lateral size L with periodic boundary conditions in both lateral
directions. Thus, the anchor distance of such a rectangular lattice is L.

The situation is easily calculated by changing the continuous Fourier transformation into a discrete
one. In one dimension the periodic Fourier transform is given by

hl(x)i =
a0

2
+

1X
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�
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�
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L
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�
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�
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L
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��
(2.77)

with the coefficients
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L
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We assume that the membrane extends from x 2 [�L=2; L=2]. Using the axial symmetry (which in
two dimensions corresponds to the spherical symmetry) l(x) = l(�x) the system reduces to

aq =
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0
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bq = 0 : (2.81)

Generalizing to two dimensions one finds
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Figure 2.12: The membrane shape using periodic boundary conditions. The lateral size of one ele-
mentary unit is 8Rp. The discrete Fourier transformation was done numerically with Mathematica
[56], taking into account the first 30 Fourier modes.The membrane is not confined by a potential.

+
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�
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q1x1

�
cos

�
2�

L
q2x2

�
: (2.82)

In order to find the Fourier coefficients we will start from eq. (2.47),

hl(x)i = �
Z 1

0
ds

Z
d2x0K(x� x

0)P (s; x0) : (2.83)

which is equal to

hl(x1; x2)i = �
�
4

L

�2X
q1

X
q2

~K(qx; qy) ~P (qx; qy) cos

�
2�

L
q1x1

�
cos

�
2�

L
q2x2

�
(2.84)

where we respect the above introduced weights inside the sum. The Fourier transformed (continuous)
membrane propagator is

~K�1(q1; q2) =
�

T

Z L=2

0
dx1

Z L=2

0
dx2 �(x1) �(x2)

�
�2
x0 +

v2

�

�
�

� cos

�
2�

L
q1(x1 � x

0
1)

�
cos

�
2�

L
q2(x2 � x

0
2)

�����
x0=0

(2.85)
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Figure 2.13: Membrane shape: (a) The shape of a freely diffusing membrane without confining po-
tential in a periodic potential. Compare with the shape in fig. 2.10, where the membrane boundaries
are free. (b) The difference between the membrane in periodic boundaries and the membrane in free
boundaries. The difference in the anchor region is not a boundary effect but due to the finite amount
of Fourier modes, namely 30 modes, which were taken into account in the discrete Fourier transfor-
mation performed with Mathematica [56].

which leads to

~K�1(q1; q2) =
�

T

"�
2�

L

�4

(q21 + q
2
2)

2 +
v2

�

#
: (2.86)

The Fourier transformed polymer pressure is more complicated and will be calculated numerically
[56].

~P (q1; q2) =

Z L=2

0
dx1

Z L=2

0
dx2 P (x1; x2) cos

�
2�

L
q1x1

�
cos

�
2�

L
q2x2

�
: (2.87)

Evaluating eq. (2.84) gives the membrane shape with a lattice of anchored polymers as displayed
in figure 2.12. In this figure we show a free membrane, i.e. a membrane which is not confined by a
harmonic potential. As we have already calculated, the membrane shape profile which arises from one
anchored polymer is a cone close to the anchor and a catenoid far away from it. The catenoid logarith-
mically diverges and is only possible as long as the lateral boundaries of the membrane are free. Here,
we consider the effect of periodic boundaries. In consequence of this, several polymers regularly cover
the membrane and lead to a non-diverging shape profile with clearly visible cone-regions. In figure
2.13 we show an elementary cell with one polymer. In addition we plot the difference between the
membrane inside this cell and the membrane with free boundary conditions. The difference increases
close to the boundaries. The difference of both profiles in the anchor region is not a boundary effect
but due to the finite number of Fourier modes which were taken into account in the calculation (since
the transform is done numerically we take into account 30 Fourier modes). The number of Fourier
modes correspond to the number of discretization points of the membrane in the lateral direction.
Consequently, one can use these results to compare later with the Monte Carlo simulation where one
uses periodic boundary conditions and where the membrane is discretized, see chapter 3 and figure
3.4 and for the adsorption-simulations in chapter 8. Therefore, we use the same parameters in the
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above calculation as in our Monte Carlo simulations, especially the lateral size of the elementary cell,
which is 8Rp.
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Chapter 3

Anchored Polymers: Monte Carlo
Simulation

In the previous chapters, we have introduced our system and a method to calculate analytically the
physically important quantities which characterize the membrane and the polymer. We have seen that
the expansion we made in our calculation is linear in the membrane profile l(x). In order to check, if
the expansion is in fact justified and gives correct results we confirm the analytical calculation by a
Monte Carlo simulation.

In order to give an overview we start with a description of the simulation algorithm.

3.1 Simulation method

The crucial point which we have to take into account is the discrete representations of membrane and
polymer, respectively. The continuous membrane Hamiltonian has been introduced in eq. (2.2). The
parametrization of the membrane as a surface with height l above the plane of reference x = (x1; x2)

implies that the membrane cannot undergo any changes in its topology. Thus, the Gaussian curvature
term stays constant and can be ignored in our energy expression. Furthermore, we neglect configura-
tions with overhangs as shown in fig. 2.1. The two-dimensional coordinate system x is represented
by a lattice x(i;j) with lattice constant am. The configuration of the membrane is determined by l(i;j)

indicating the membrane height at position x(i;j). The discretized Laplace operator is

r2
dl
(i;j) = l

(i+1;j) + l
(i�1;j) + l

(i;j+1) + l
(i;j�1) � 4l(i;j) : (3.1)

We use a single-site-move algorithm, in which we compare the energies of two configurations: f~lNg,
the new one, and the old one, flNg. Both configurations differ in the value of l at position (i; j). As
long as the energy difference is negative, i.e. the new configuration has lower energy than the new
one, the move is accepted. If the energy difference is positive, the probability of acceptance is given
by exp(��H=T ). This method is known as the Metropolis-algorithm. Via this accepting procedure,
we ensure thermodynamic equilibrium and in particular detailed balance.
We can now write down the energy difference of the elastic part of the membrane.

�Hme = Hel(f~lNg)�Hel(flNg) =

=
�

2

�
(r2

d
~l(i;j))2 + (r2

d
~l(i+1;j))2 + (r2

d
~l(i�1;j))2 + (r2

d
~l(i;j+1))2 + (r2

d
~l(i;j�1))2�
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Figure 3.1: The discretization of a 5 � 5-membrane in the x1; x2-plane. The anchor bead of the
polymer is located in the middle of the anchor segment. In addition we plotted the 12 next neighbors
which are taken into account in the energy difference.

�(r2
dl
(i;j))2 � (r2

dl
(i+1;j))2 � (r2

dl
(i�1;j))2 � (r2

dl
(i;j+1))2 � (r2
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(i;j�1))2

�
: (3.2)

Inserting the discretized Laplace operator leads to

�Hme = �

n�
~l(i;j) � l

(i;j)
��
l
(i+2;j) + l

(i�2;j) + l
(i;j+2) + l

(i;j�2)+

+2
h
l
(i+1;j+1) + l

(i�1;j+1) + l
(i+1;j�1) + l

(i�1;j�1)
i
�

�8
h
l
(i+1;j) + l

(i�1;j) + l
(i;j+1) + l

(i;j�1)
i
+ 10

h
~l(i;j) + l

(i;j)
i�o

: (3.3)

The energy difference takes into account twelve next neighbors. We use periodic boundary conditions.
The harmonic potential and tension terms can easily be included into the discretized Hamiltonian.

We choose the lateral size of the membrane lattice L = (8 + am)Rp, which ensures, that the
membrane is always much larger than the polymer end-to-end distance. This is important in order
to avoid disturbances due to the membrane boundaries. The membrane discretization varies from
am = Rp to am = 0:125Rp. The anchored polymer is treated as a chain of springs with N + 1 beads
and consequently N bonds. The zero bead stays on the membrane segment (i0; j0), which is referred
to as the anchor segment. Moving the membrane at this position enforces us to take into account the
position of the neighboring polymer bead. Note that the polymer beads are point-like as long as we
do not take into account excluded volume effects. Since our polymer is ideal it can freely intersect.

The internal polymer length s is discretized by �s = 1. To adjust the discretization of the polymer
to the lattice constant am of the membrane, one uses the Kuhn length ap. In general, ap is of the order
of the membrane discretization am. Thus, we vary ap in a range of ap = Rp to ap = 0:125Rp. If we
change the Kuhn length of the polymer we consequently have to change the number of beads N in
such a way that the end-to-end distance Rp = ap

p
N stays constant. For example, if we bisect ap we

end up with 4N polymer beads.
Changing the i-th bead inside the polymer from position r to position~r yields an energy change

�Hp =
3

2a2p

n
(ri+1 � ~ri)

2 + (~ri � ri�1)
2 � (ri+1 � ri)

2 � (ri � ri�1)
2
o
: (3.4)
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Figure 3.2: Snapshot of the polymer and membrane configuration, as obtained by the Monte Carlo
simulation after 107 Monte Carlo steps. The influence of the polymer is not visible in the snapshots
due to membrane roughness.

In figure 3.1 we have shown the discretization of a 5 � 5-membrane and the position of the polymer
anchor in the middle of the anchor segment. Each membrane segment can move continuously in the
z-direction. The important restriction for the move of the segment is the impenetrability of polymer
and membrane. Therefore, if there are polymer beads on top of the membrane segment, the segment
can only move in such a way that it stays below the lowest polymer bead above it. All beads are
moved according to the Hamiltonian 3.3 and the hard core repulsion on the surface. There is only
one exception, namely the membrane anchor segment, which has to take into account the neighboring
bead of the polymer chain. The same restriction of impenetrability holds, of course, for the move of
the polymer beads above the membrane. Each bead can move continuously in three dimensions.

After each membrane move, i.e. after having moved each lattice site once, we perform the polymer
move, in which we change each bead position once. Merging both, we have performed one Monte
Carlo step of our compound system. Most of the runs are extended over 107 Monte Carlo steps.

3.2 Theoretical background

In our analytic calculation, we introduced a harmonic potential which acts on the membrane and
confines it around z = 0. Using this trick one avoids the free diffusion of the membrane, which leads
to a divergence in the calculation. However, it is possible to subtract the divergent part in case of the
limit of vanishing potential. This subtraction is equivalent to a change in our coordinate system in such
a way that the anchor segment is put in the origin. The resulting shape profile is displayed in figure
2.10. The same properties hold for the simulation. We start to simulate the polymer-membrane system
by introducing a harmonic potential with potential parameter v2. This ensures that the membrane
approaches a flat profile for large distances of the anchor point. If the lateral size of the membrane,
which is equal to the polymer anchor distance, is sufficiently large compared to the polymer end-to-
end distance we expect to obtain a good agreement between the analytic prediction and the simulation,
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because the effect of the periodic boundary conditions is expected to be small. However, our analytic
calculation for a periodic system also allows us to compare both, including the periodic boundary
conditions.

In figure 3.2, we present a snapshot configuration of the membrane with anchored polymer after
107 Monte Carlo steps.

3.2.1 Gaussian membranes

In this section, we briefly investigate some basic properties of Gaussian membranes, which are not per-
turbed by an anchored polymer. The membrane is influenced by its bending rigidity and the strength
of the confining potential. The first quantity we are interested in is the correlation function

C(x) = hl(x)l(0)i : (3.5)

This definition makes use of the translational symmetry of the membrane. In order to derive the
formula we again introduce the generating field (x) in the membrane Hamiltonian, which leads to
the partition function

Zfg =

Z
Dflg exp

�
�1

2

Z
d2x0

Z
d2x00 l(x0)K�1(x0 � x

00)l(x00) +
Z

d2x0 (x0)l(x0)
�
:

(3.6)

The membrane bilinear kernel is defined as in eq. (2.44). Dividing the partition function by the
unperturbed membrane system

Z0 =

Z
Dflg exp

�
�1

2

Z
d2x0

Z
d2x00 l(x0)K�1(x0 � x

00)l(x00)
�

(3.7)

one ends up with

Zfg
Z0

= exp

�
1

2

Z
d2x0

Z
dx00 (x0)K(x0 � x

00)(x00)
�
: (3.8)

The correlation function is now given by

C(x) =
�
2 ln(Zfg=Z0)

�(x)�(0)
(3.9)

which leads to the simple identity

C(x) = K(x) =

Z
d2q

(2�)2
~K(q) exp(iqx) = �

T�
2
jj

4��
kei(

p
2x=�jj) : (3.10)

In the final step we made use of the isotropy of the system which allows us to shift into polar coor-
dinates. In addition, we introduced the parallel (because it refers to the lateral direction) correlation
length �jj given by

�jj = (4�=v2)
1=4

: (3.11)
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Figure 3.3: The roughness of the membrane after 107 MC-steps. For large distances from the anchor
point the roughness approaches the analytical value for the unperturbed case. In the vicinity of the
anchor, where the polymer suppresses fluctuations, the roughness decreases.

kei is the Thomson function. If one inserts the asymptotic behavior of this function, see appendix B,
one obtains

C(x) � T

�

�
5=2

jj

4

qp
2�x

exp

 
� x

�jj

!
sin

 
x

�jj
+
�

8

!
: (3.12)

One sees immediately that our definition of the correlation length is justified, since it determines the
exponential decay of the correlation function for large distances. The correlation function, which
determines the roughness of the membrane, i.e. the average squared size of the fluctuations, is given
by

�
2
? = C(0) = hl2i = T

�

�
2
jj
16
: (3.13)

Both quantities are important for our simulation.
The parallel correlation length determines the choices of reasonable values for both the membrane

discretization am and the lateral membrane size L. Both values should be chosen such that

am � �jj � L (3.14)

in order to ensure that boundary effects are sufficiently small and to ensure that the discretization is
fine enough to resolve all physically important length-scales. From another point of view, relation
(3.14) helps us to determine a reasonable ratio between the bending rigidity � and the strength of the
harmonic potential v2. In most simulations we take a ratio of v2R4

p=� = 2, which corresponds to a
value of the parallel correlation length �jj = 1:1892Rp. This is always in between our membrane dis-
cretization and the lateral size of the membrane. The perpendicular correlation length, the roughness
of the membrane, measures the fluctuation size and contains important information of the polymer
effect on the membrane. We expect the polymer to suppress membrane fluctuations in the vicinity of
the anchor point, since the membrane is restricted in its movements by the presence of the polymer
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Figure 3.4: a) Membrane profile averaged over 107 MC-steps with bending rigidity �=T = 1 and
harmonic potential parameter v2Rp

4
=T = 2. The membrane contains 65 � 65 = 4225 lattice sites,

the polymer has 65 beads. (b) Perturbative calculation of the shape using periodic boundary conditions
and 32 Fourier modes; same parameters as in (a).

beads. As we have seen in eq. (3.13) the roughness is related to the bending rigidity. If in our sim-
ulation we measure the change of the roughness we can thus define an effective rigidity �e� , which
takes into account the effect due to the polymer. If the fluctuations are smaller, the effective bending
rigidity will be higher as in case of the unperturbed membrane.

An analytic estimation for the change of the bending rigidity [46] gives

�e� = �+
1 + �=2

12
T ' �+ 0:21T : (3.15)

If we assume reasonable experimental values for the bending rigidity of 10 � 20T we conclude that
the effect is in the percent regime.

In figure 3.3 the roughness of the simulated membrane is plotted along the lateral directions. The
limiting value for large distances from the polymer anchor is close to the theoretical prediction for
the unperturbed Gaussian membrane, namely

q
hl2i=R2

p � 0:30. In the vicinity of the anchor bead,
the roughness decreases due to the polymer, which suppresses the fluctuations of the membrane.
The comparison with the theoretical result of eq. (3.15) leads to the qualitatively correct result, i.e.
the bending rigidity is effectively increased in the anchoring region. However, it is not possible to
compare both results quantitatively, since in contrary to the result of (3.15) in the simulation and in
the membrane Hamiltonian the polymer leads to an x-dependent contribution ��(x) which adds to the
bending rigidity �. This yields a complicated coupling between the total bending rigidity � + ��(x)

and the membrane height l(x).

3.3 Comparison with the perturbative calculation

In the snapshot configuration shown in figure 3.2 the membrane appears crumpled as one expects for
a curvature governed fluctuating membrane. Due to the fluctuations the polymer effect is not visible.

Only if one displays the averaged profile of the membrane, see fig. 3.4, one can clearly see the
induced bending due to the anchored polymer. 107 Monte Carlo steps are taken into account in the
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Figure 3.5: Membrane profile: Comparison of analytical calculation (solid line) and Monte Carlo data
for different polymer and membrane discretizations ap=Rp and am=Rp, respectively, and �=T = 1,
v2Rp

4
=T = 2. The shape profiles are averaged over 107 MC-steps.

averaging. The lattice constant in the (x1; x2)-plane is am = 0:125Rp, which is equal to the used
polymer discretization ap. In consequence, the membrane contains 65 � 65 = 4225 segments and
the polymer contains 65 beads. This is our largest simulated system. As one can see in the shape
profile the membrane is still not equilibrated. But we can clearly identify the polymer effect on the
averaged shape, namely the cone in the vicinity of the anchor point. As one expects, the membrane
becomes flat for larger distances from the anchor point. Note that the scale of the axes is different for
the plane of reference and for the height in the z-direction. Therefore the effect on the membrane is
exaggerated. Additionally we in fig. 3.4 plot the analytically calculated shape profile for the same
parameter values as used in the simulation. Apart from the small deviation in the cone region the
agreement is good. Note that the fluctuations in the simulated membrane are still visible since it is not
completely equilibrated.

In order to investigate the comparison quantitatively we show in fig. 3.5 both the analytic predic-
tion and the simulation data for different discretizations of polymer and membrane. In the displayed
simulation data am and ap are always equal. By simultaneously decreasing both lengths scales we
approach the continuous limit.

One can clearly see the improvement when the discretization is made finer. However there is still
a difference between both curves in the vicinity of the anchor such that the tip of the profile in the
simulation is slightly beneath the analytical shape.

As one can see in the discrete Fourier transformation this difference arises from the finite number
of Fourier modes which is related to the number of discretization points, which is clearly visible in
figure 2.13, where the difference in the anchor region of plot (b) is due to the finite amount of Fourier
modes, which corresponds to the amount of discretization points of the membrane.

The fluctuations which are included in the simulation up to a length scale of the membrane dis-
cretization am have an additional influence on the membrane shape, which might lead to differences
in the continuum limit, compared to the analytic prediction obtained by the perturbative approach.

In fig. 3.6 we present the polymer segment density, which we already calculated analytically
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Figure 3.6: Segment density of the polymer on top of the membrane cut in the x1 direction. The den-
sity is obtained by counting the probability of polymer beads to be localized at position (x1=Rp; z=Rp)

in the cut-plane. The parameters have the same values as in fig. 3.4.

in eq. (2.34) for the half-space situation. Now, we in addition see the effect due to the bending
of the membrane, which increases the spatial freedom of the polymer in the vicinity of the anchor
point compared to the flat geometry. This leads to a higher segment density of the polymer close to
the anchor. If one compares with the analytic results for the half-space polymer anchored on a flat
substrate, see fig. 2.4, one can clearly see the difference.



Chapter 4

Polymer Interaction and Experiments

In the previous chapters, we integrated over the polymer degrees of freedom in order to focus on
the membrane degrees of freedom, which implied to integrate out the polymer degrees of freedom.
We started the investigation by studying a single polymer on an idealized infinite membrane. Later
we generalized the calculation to the case of several polymers anchored to the membrane. Since we
perform a gradient expansion up to linear order the latter situation follows from the initial one by
linear superposition of single polymer effects. We will now focus on the polymers and study the
membrane induced interaction energy due to membrane curvature. This problem is related to the
interaction between inclusions in fluctuating membranes. There is an extensive literature studying the
effect of fluctuations and curvature of the membrane on inclusions, such as rods [66, 67], which are
attracted due to the membrane. Other authors study the influence of inclusions on the thickness of the
membrane [68] and self-assembly of inclusions [69]. Additionally, the presence of inclusions leads to
changes in the local stiffness of the membrane and might induce a spontaneous curvature [70, 71, 72].

4.1 Interaction energy of anchored polymers

Polymers are regarded as a special type of three-dimensional inclusion [73]. We start by anchoring
Np polymers on top of the membrane, each of them located at the spatial position xi. The partition
function of the polymers is given by

Zpflg = exp

2
4� NpX

i=1

Z
d2xP (x� xi) l(x)

3
5 ; (4.1)

Insertion into the partition function of the compound system yields

Z =

Z
Dflg exp

0
@�1

2

Z
d2x

Z
d2x0 l(x)K�1(x� x

0)l(x0)�
NpX
i=1

Z
d2x P (x� xi) l(x)

1
A :

(4.2)

The Gaussian integral leads to

Z = exp

0
@1

2

NpX
i=1

NpX
j=1

Z
d2x

Z
d2x0 P (x� xi)K(x� x

0)P (x0 � xj)

1
A�
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Figure 4.1: The pairwise polymer interaction energy due to membrane curvature for different values
of the harmonic potential parameter v2 which confines the membrane. For vanishing v2 the membrane
is free. The membrane induced polymer interaction is always attractive in this limit.

�
Z
Dflg exp

�
�1

2

Z
d2x

Z
d2x0 l(x)K�1(x� x

0) l(x0)
�
: (4.3)

The free energy difference to the unperturbed membrane system with partition function Z0 is given
by �F = �T ln(Z=Z0) which gives

�F = �T
2

X
i

X
j

Z
d2x

Z
d2x0 P (x� xi)K(x� x

0)P (x0 � xj)

=
Np

2
Fself +

X
i>j

F(xi � xj) : (4.4)

The free energy is the sum of the self energy of each polymer and the pairwise interaction energy. In
the following the pairwise interaction F(x1�x2) will be calculated. For simplicity we set x1 to zero
and denote x2 by xD.

F(xD) = �T
Z

d2x

Z
d2x0 P (x)K(x � x

0)P (x0 � xD)

= �T
Z

d2x

Z
d2x0

Z
d2q

(2�)2

Z
d2q0

(2�)2

Z
d2q00

(2�)2
~g(q) ~P (q0) ~K(q00) �

� exp(�i(q+ q
00)x) exp(�i(q0 � q

00)x0) exp(iq0xD) (4.5)

which leads to

F(xD) = �T
Z 1

0

dq

2�
q ~K(q)[ ~P (q)]2J0(qxD) : (4.6)
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Figure 4.2: Schematic picture of polymers, which are anchored on top of the vesicle: For an estimate
of the interaction energy between the polymers, we consider them as spheres of radius Rp, which
repel each other.

Inserting the pressure and the membrane propagator finally yields the interaction energy

F(xD) = �R
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p
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(4.7)
between two polymers at separation xD. In Fig. 4.1 the interaction energy is shown for different
values of v2Rp

4
=�. For small distances, it is always attractive. As long as v2 does not vanish, one

also finds regions with repulsive interaction due to damped oscillations in F . For vanishing v2, the
interaction energy is monotonic and attractive for all values of xD. The interaction vanishes for stiff
membranes because of F(xD)=T � T=�, as we expect for this fluctuation induced phenomenon.
However, the attractive tail in F(xD) occurs for distances of the order of Rp and smaller, where
the polymers intersect. Therefore, if we include excluded volume effects between the polymers, the
attraction interaction will be strongly suppressed.

4.2 Experimental investigations

In order to compare our previous results on the spontaneous curvature of membranes with experiments
we will now focus on vesicles with attached polymers, see figure 4.2, since it is possible to deduce
changes in the spontaneous curvature of vesicles by examining their shape transformations. We will
consider three contributions to the spontaneous curvature of vesicles. The first contribution is given
by the interaction between the polymer and the membrane due to the pressure which the polymer
exerts on it. We already calculated the spontaneous curvature M(pm)

sp =
p
�=6(T=4�)�pRp from this

mushroom/membrane interactions. The contribution is linear in the coverage density �p. A second
contribution, which is also linear in �p, arises from the size and geometry of the anchor molecules
inserted into the membrane. If there is no exchange of molecules between both monolayers (flip-flops)
a simple geometric argument leads to M(an)

sp = �pAan=2lme, where Aan is the lateral anchor area
(� 0:7nm2) and lme is the thickness of the bilayer (� 4nm).

The last contribution arises from the interaction between the anchored polymers due to their steric
repulsion. This contribution becomes important, if the mushrooms start to squeeze each other because
of excluded volume effects. Even if we consider polymers at the �-point there is excluded volume in-
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teraction because of three-point-interactions between different chains. In a low density approximation
the repulsive polymer/polymer interaction is characterized by the second virial coefficient b2, which
in this case is given by b2 = 4�Rp

2. The free energy contains the repulsive interaction as well as the
translational entropy of the Np polymers, which leads to

F = Np ln�p +
b2

2
Np� : (4.8)

The translation of the polymer spheres is described by their center of mass movement. Since the
spheres are located on the vesicle surface, the center of mass moves on a sphere of radius R+Rp and
the densitity is

� =
Np

4�(R +Rp)2
=

Np

4�R2| {z }
=�p

�
1 +

Rp

R

��2
: (4.9)

Expanding for large curvature radius R (for small curvatures M = 1=R respectively) one finds the
free energy per vesicle surface, including the curvature energy per area

F
4�R2

= 2�M2 + �p ln�p � b2�
2
pRpM +

b2

2
�2
p : (4.10)

Minimizing the compound free energy leads to the spontaneous curvature

M
(pp)
sp =

T

4�
b2�p

2
Rp ; (4.11)

which is induced by the polymer/polymer interaction. This contribution is quadratic in the coverage
density �p.

Equating the spontaneous curvature contributions from polymer/membrane and polymer/poly-
mer interactions gives an estimated crossover coverage ��p ' 1=4

p
6�Rp

2, which is proportional

to but smaller than the overlap concentration �
(ov)
p = 1=�R2

p. In this way, one can identify two
different mushroom regimes 1 and 2. Regime 1 with �p < ��p is dominated by the entropically
induced polymer/membrane interaction. Regime 2 with �p > ��p is governed by the polymer/polymer
interaction arising from the excluded volume.

For a typical polymer end-to-end distance Rp = 10�2�m and a giant vesicle radius Rve = 10�m,
a coverage density �p of about ten percent of the overlap coverage and a bending rigidity of �=T =

10 all three contributions discussed above are of comparable size. We find M(pm)
sp � 0:06�m�1,

M
(an)
sp � 0:03�m�1 and M (pp)

sp � 0:03�m�1. For the total reduced curvature (M
(pm)
sp +M

(an)
sp +

M
(pp)
sp )Rve, which determines the equilibrium shape of the vesicle, we find a value of about 1:2, which

according to the spontaneous curvature model (and the area-difference-elasticity model) presented in
the introduction [35] leads to a measurable change in the shape of vesicles.

An experimental result is shown in figure 4.3. Initially, the vesicle is a so called stomatocyte.
There is no polymer solution outside the vesicle. In picture (b) polymers with a chemical anchor
segment are added to the outside. The curvature of the vesicle is decreased, which can be deduced
from the shape transformation. A possible explanation are the polymers which are not yet anchored
to the vesicle. As long as they are in solution, the depletion effect is dominant and leads to a decrease
of the membrane curvature, see chapter 9.
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Figure 4.3: Shape change of a vesicle induced by adding polymers which anchor into the membrane:
The spontaneous curvature is first decreased (a to b) and than increased. a) vesicle without polymer
solution. b) After adding the polymers. c) 4 min. after (b). d) 6 min. after (b). e) 10 min. after (b).
The bar denotes 5 �m. Taken from [74]

In the subsequent pictures, the curvature is increased which is in accord with the theoretical pre-
diction for the effect of anchored polymers. In the last picture one ends up with a starfish-like vesicle
[74].

Another system, which allows to study the effect of polymers on membranes is given by mi-
croemulsions in a ternary system of water, oil and surfactant [14]. If one adds block copolymers
to the microemulsion, which are part of the monolayer and have loose ends which extend from the
membrane to one subspace (for example the oil-phase in case of a hydrophobic tail), the one-phase
microemulsion is rapidly growing. This effect is possibly explained by the interaction between the
tails and the membrane, which lead to an increase in the spontaneous curvature and an increase of the
membrane rigidity.
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Chapter 5

Different Anchoring Geometries

In this short chapter, we will generalize the method introduced in the previous chapters to polymers,
which are anchored with both of their ends and to polymers which translocate the membrane. In the
first case we consider freely diffusing ends and anchors with fixed distances. The latter situation is
motivated by the biological process of DNA translocation through the cell membrane.

5.1 Polymer anchored with both ends

An interesting generalization of the previous calculations, in which the polymer has been anchored
to the membrane with one of its ends, is the case where both ends of the polymer are attached to the
membrane. There are two situations, namely fixed and freely diffusing ends, which we are going to
study. In the latter case the distance of the two ends is variable. It is easy to show that a polymer with
free ends does not induce any spontaneous curvature on the membrane [75, 76]. We fix the first end
of the polymer in the origin of our system of reference at x1 = x2 = 0. The last monomer will be
located at xe = (xd; 0). Without loss of generality we put the second anchor on the x1-axis. Thus, xd
is the lateral distance of the anchor points.

If one calculates the polymer pressure integrating over the last monomer one finds

1

Zpf0g
�Zp

�l(x)

����
l=0

= � 3

R2
p

Z 1

�1
d2x0

Z 1

�1
d2xd

d

ds
hz(s)ihs

d

ds
(Z(x0;xjs) Z(x;xdj1� s))

= � 3

R2
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d
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�
1
�
= 0 (5.1)

with the partition functions in the lateral directions
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and in the perpendicular direction

~Zhs(0; zjs) =
3

sR2
p

z exp

 
� 3

2s

z
2

R2
p

!
;
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Figure 5.1: The membrane shape profile for a polymer which is anchored on the membrane with both
ends for different anchor distances xd. Additionally, the membrane is confined in a harmonic potential
of strength v2R4

p=�. The profile is displayed in the anchor plane. In between the anchors, the polymer
acts as a spring which pulls the membrane upwards.

~Zhs(z; 0j1 � s) =
3

(1� s)R2
p

z exp

 
� 3

2(1� s)

z
2

R2
p

!
: (5.3)

The result shows, that for small anchor distances the polymer effectively acts as if it was anchored
by one end and bends the membrane away from it. For large anchor distances the polymer acts as
a spring which pulls the membrane up. In average, both effects cancel, when integrating over both
anchors. The pressure vanishes and the resulting shape profile of the membrane is flat. In the following
calculation the anchors will be fixed. The calculation is more complicated, since we break the radial
symmetry.
We start again with (5.1). Calculation of the derivative of the average path in z-direction yields

d

ds
hz(s)ihs =

r
2

3�

1� 2sp
s(1� s)

Rp : (5.4)

In order to simplify the calculation it is necessary to restrict the investigation to the profile along the
x-axis. Using the same methods as in the previous chapters the membrane profile, which depends on
the anchor distance xd yields

hl(x)ixd =
Rp

2
p
6�3=2

T
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Z 1
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ds
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It is easy to proof that the profile is symmetric with respect to xd=2.
There are two limiting cases, namely for small and for large anchor distances. In case of vanishing

anchor distance xd = 0 one ends up with a ring polymer which is anchored on the membrane. The
resulting shape profile is given by

hl(x)i0 =
Rp

4
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In this limit the dependence on x is the same as in case of the single anchored polymer. Consequently
the resulting profile is qualitatively identical to this case, which is also clear from an intuitive point of
view, since the ring corresponds to a polymer anchored with one end and smaller amount of monomers
due to the closed configuration.

However, if one increases the anchor distance the profile along the x-axis is changed. In between
the anchors the membrane is always bend upwards. Far away from the two anchors the membrane
profile decreases via damped oscillations, as in case of the single anchored polymer and the ring
polymer, respectively. The profiles for different xd are shown in Figure 5.1. The integrations are done
numerically [56].
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5.2 Polymer passing through a membrane

Figure 5.2: Polymer which
is transported through the
membrane.
The pictures are taken from a
Monte Carlo simulation and
show subsequent steps of the
translocation process.

The perturbative calculation allows us to generalize the
previous calculations of polymers anchored on one side
to the situation of polymers which are anchored on both
sides of the membrane. The induced curvature is given
by the sum of all single polymer contributions. Espe-
cially there is no net effect on the membrane curvature if
there is an equal number of polymers anchored on both
sides.

An important biological system where the method
can be applied is provided by the translocation of DNA
through the cell membrane. Recently models have been
studied in which the DNA passes through a pore in the
membrane [77, 78]. The pore represents an entropic bar-
rier, which the polymer has to pass. Once a pore has
formed there is a certain probability that one end of the
polymer/DNA enters. The simplest driving force which
now pulls the polymer into the cell would be a concentra-
tion gradient between DNA outside and inside the cell.
Another possible mechanism is due to diffusion of the
polymer through the pore. Those parts which are already
inside the cell are decorated by larger molecules such that
it is not possible for the chain to step back to the outside
and the diffusion becomes directed. Another mechanism
might be a molecular motor inside the membrane which
threads the polymer through it.

It is still not clear, if the DNA is translocated linearly
through a small pore. An alternative process would be
a packing of the DNA such that the molecule can en-
ter the cell as a compact object. One can estimate the
passage time for this process theoretically [79, 80]. The
translocation time � for large polymers is found to scale
as � � N

2 if there is no concentration gradient. The
translocation time scales linear with N if there is a small
concentration gradient on both sides of the impenetrable
wall. This is in agreement with experimental results [81]
in which single-stranded RNA and DNA molecules pass
through a 2.6-nm diameter ion channel in a lipid bilayer
membrane.

In the following we are not going to study the dynam-
ics of such a process, but the single steps of the translo-
cation. In each equilibrated step the polymer influences
the membrane shape and curvature and due to its pres-
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Figure 5.3: The shape profile for a polymer which threads through the membrane. Initially, all
monomers are on top of the membrane, corresponding to N+=N = 1. If half of the polymer is
on top and half below the membrane, the average profile is flat. Of course, the diagram is continued
by mirroring the profiles if more monomers are below the membrane, corresponding to N+=N < 0:5.

ence suppresses membrane fluctuations in the vicinity of the pore. This might lead to additional effect
which influence the translocation dynamics.

If the total number of monomers of the polymer is N we start with a configuration where all the
monomers are on one membrane side. The intermediate steps are given by configurations where N+
monomers are above and N� monomers are below the membrane, such that N++N� = N . The con-
figuration can be decomposed in two polymers anchored on top and below, respectively. The position
of the anchor is identical. As a simple consequence, if half of the polymer passed the membrane, the
membrane profile is flat, since the effects of both polymers cancel identically. The end configuration,
where the DNA passed through, induces, of course, a shape profile of opposite sign.

The free membrane profiles for different values of N+=N are shown in figure 5.3.
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Chapter 6

External Force Fields

In this chapter, we will investigate the behavior of the polymer/membrane system influenced by ex-
ternal forces. There are two cases which we are going to study.

In the first section we include a membrane surface tension � , which might arise from lateral
forces applied to the membrane, as depicted in figure 6.1. Without such forces the surface tension of
lipid bilayers is negligible in comparison to the bending rigidity.

The second section deals with perpendicular forces applied locally both to the membrane and to
the polymer. One can explicitly calculate the membrane shape which arises from a force applied in
one point. Furthermore, we study forces which act on the end bead of the anchored polymer.

6.1 Membranes under surface tension

F-F

Figure 6.1: Schematic picture of the a membrane under the influence of lateral forces, which leads to
a surface tension �.

It is relatively simple to include surface tension in the theory. The only part which is changed is, of
course, the membrane kernel as given by eq. (2.44) which we immediately write down in Fourier
space

~K(q) =
T

�q4 +�q2 + v2
: (6.1)

In the following investigations the confining potential can be neglected, thus v2 = 0.
The membrane shape profile is again given by eq. (2.48) with the Fourier transformed pressure as

derived in eq. (2.50). The kernel ~K(q) = T=(�q4 + �q2) includes the surface tension. The shape
changes for increasing � compared to the surface free membrane are shown in fig. 6.2. In the limit
of small anchoring distance the shape always approaches a cone, whereas far away from the anchor
point the profile is exponentially damped for non-vanishing values of � and thus becomes flat for large
distances of x. Contrary to the case of a confining membrane potential, which previously regularized
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Figure 6.2: The membrane profile for non-vanishing bending rigidity � and different values of the
surface tension �. There is no confining potential acting on the membrane.

the shape and lead to an exponentially damped oscillation, is case of surface tension the damping is
monotonous.

For � = 0 the asymptotic profile is a catenoid, as already calculated in chapter 2.

6.2 Locally applied forces

In this section we will consider the situation of a force acting on the polymer/membrane system.
There are various situations, one can think of. For example we can apply a force which pinches the
membrane in one point. In a first step we will calculate the membrane shape, which arises from such
a single point perturbation on the membrane. In the following step we consider the additional effect
of the anchored polymer.

If the force acts on the anchor point of the polymer the situation is rather easy, since both, the
force effect and the polymer effect on the membrane add up in a linear superposition. The resulting
shape profile is a linear superposition of the force induced membrane shape and the shape related to
polymer pressure which we calculated in the previous chapter.

This changes if we consider forces which act on any other bead of the polymer than the anchor
bead. In this case, due to the presence of the force, the whole configuration of the polymer will be
changed and consequently the pressure of the polymer differs from the situation of the unperturbed
system.

From the experimental point of view the latter situation is of special interest. One could anchor
a latex sphere to the free end of the chain and move the latex sphere by optical tweezers. Using
this method it is easy to apply a force in the perpendicular direction to the membrane surface. The
resulting shape profile and membrane curvature as well as the distribution of the polymer segments
can be measured.
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Figure 6.3: Schematic picture: (a) Force, which acts directly on the membrane. (b) Force acting on
the free end of the anchored polymer. The displayed figures correspond to a snapshot configuration.
Experimentally, the force can be induced by optical tweezers.

6.2.1 Membrane

A force F which is applied to the membrane in the positive z-direction represents a pull on the
membrane and leads to the x-dependent pressure term

P (x) = �F
T
�(x) (6.2)

where F > 0. The Fourier transform is given by ~P (q) = �F=T . Inserting into the expression for the
shape profile one finds

hl(x)i =
F

T

Z 1

0

dq

2�
q ~K(q)J0(qx) : (6.3)

Since we apply a constant outer force on the membrane it is necessary to confine the membrane by a
harmonic potential or to fix the membrane at a boundary in order to ensure a counteracting force. If
we introduce the potential parameter v2 in order to locate the membrane around 0 we find the shape
profile

hl(x)i =
1

4�

F

�
�
2
jj kei

 p
2x

�jj

!
(6.4)

with the Thomson function kei. In this formula we use the parallel correlation length of the membrane
�jj = (4�=v2)

1=4, see eq. (3.11) in chapter 3. For large arguments the limiting behavior of kei is
given by an exponentially damped oscillation, see appendix B. The wavelength of the oscillations is
determined by �jj, which is the only remaining length scale in this problem. For small distances from
the origin the profile attains a paraboloid-like shape. The profile, which interpolates between both
regions is displayed in figure 6.4.
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Figure 6.4: Shape profile of a membrane with force acting in the origin.

6.2.2 Polymer end point

In the following we consider the geometry of a force pulling at the free end of the polymer. If the
force pulls in the positive z-direction the discretized Hamiltonian for F > 0 is

H =
3T

2R2
p

NX
i=1

�s

�
zi � zi�1

�s

�2

� FzN : (6.5)

We can rewrite this Hamiltonian

H =
3T

2R2
p

NX
i=1

(
�s

�
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�s

�2

� F (zi � zi�1)

)
(6.6)

which shows that the force applied to the end point distributes uniformly to each bond, i.e. the same
force acts on each single monomer of the chain. Thus we can immediately write down the partition
function for the polymer starting at z0 and ending at z and take into account the half space solution
which we need in the z-direction. We end up with
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(6.7)

Due to the Gaussian weights, the configuration of the polymer in the x1- and in the x2-direction is not
affected by a force in the z-direction.

Analogous to the previous investigations we can now calculate the membrane shape. In order to
control the calculation it is necessary to expand for small forces F , since several integrations are not
solvable analytically. We end up with a linear correction term in F which adds to the unperturbed
profile, i.e. the profile without acting force. The total shape is the sum of the unperturbed shape and
the force induced perturbation, i.e. hl(x)i = hl(x)i0+ hl(x)iF . For small distances x from the anchor



6.2. LOCALLY APPLIED FORCES 59

0 1 2 3 4
x/Rp

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

κ<l>F/FRp
2

v2Rp

4
/κ = 10

v2Rp

4
/κ = 1

v2Rp

4
/κ = 0.1

Figure 6.5: Correction term to the shape profile for various values of the confining membrane poten-
tial. The profile is obtained numerically [82, 56].

one finds the following limiting behavior of the profile correction:
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where  denotes the Euler constant and c0 is a constant which depends on the potential parameter v2.
c0 is the height of the profile correction in the anchor point. As one would expect, the correction is
large in the anchor point and decreases by damped oscillations for large distances.

The limit of high forces is trivial, since it corresponds to the situation of a force pulling directly at
the anchor segment of the membrane. Because the polymer is totally stretched in the direction of the
force the polymer pressure does not have any effect in this limit. Thus, we obtain the same profile as
in the case we previously studied in section 6.2.1.
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Chapter 7

Adsorbed Polymers: Contact Potential

In this chapter, we focus on the adsorption behavior of polymers, which are attached to the membrane
by one end. In addition to the situation of a purely repulsive hard core interaction between the mem-
brane and the polymer segments, we will now take into account short-ranged attractive interactions
between membrane and polymer [83, 84, 85]. The origin of these short-ranged interactions might for
example be a screened electrostatic interaction between membrane and polymer.

In general, the adsorption problem is treated for polymers in solutions [86], which are influenced
by an attractive or repulsive surface [83]. There is a controversial discussion about the adsorption
behavior on curved surfaces [87, 88] and consequently on the induced spontaneous curvature of fluc-
tuating surfaces, which are influenced by the solution. We will investigate the latter problem in chapter
9.

For simplicity, we will restrict ourselves, as we did in the previous calculations, to �-solvents,
where the excluded volume contribution of the polymer segments is balanced by their van der Waals
interaction. This justifies to consider our polymer as an ideal chain with Gaussian weights.

In the following, we will come back to the formalism which we introduced in the previous chap-
ter to derive shape profiles, spontaneous curvature and related quantities of the compound polymer-
membrane system. We will generalize these calculations taking into account the attractive interaction
potential, which allows us to study the desorption/adsorption behavior of the polymer on the fluctuat-
ing membrane, as we change the strength of the potential.

7.1 Interaction potential

It is shown in Appendix A that the path integral, which one can write down for the ideal chain par-
tition function Z(r0; rjs) of a polymer which starts at the spatial position r0 and ends at r with
internal length s 2 [0; 1] corresponding to the number of monomers in the chain, is the solution of the
Schrödinger-type equation "

@

@s
� R

2
p

6
�r +

V (r)

T

#
Z(r0; rjs) = 0 ; (7.1)

with V (r) = Nv(r) and v(r) denoting the potential per bond. The corresponding initial condition for
the partition function is given by

Z(r0; rjs � 0) = �(r0 � r) : (7.2)
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In the calculations we did so far, the only interaction between polymer and membrane was given
by their impenetrability. The corresponding boundary condition for the polymer on the membrane
surface, namely

Z(r0; rjs) = 0 for all r on the membrane. (7.3)

transfers into the potential

V (r) =

(
1 for all r on and below the membrane,
0 for all other r.

(7.4)

It is not possible to solve the Schrödinger-type equation with such an r-dependent potential given by
the fluctuating membrane.

The major simplification of our calculation in the previous chapters is due to the expansion in the
membrane height l(x), with which we could map the problem of anchoring on the membrane to the
related situation of a polymer anchored on a flat surface, i.e. a polymer in the half space.

In the following we will take into account an additional short-range interaction given by

V (r) =

8><
>:
1 for all r on and below the membrane,
VI(r) for all r with distance above the membrane surface smaller than zV ,
0 for all other r.

(7.5)

Since the potential is short-ranged the polymer bonds only interact with those membrane segments
which are closest to them.

It is not clear from the beginning, that the included potential is also transferred into a potential
which only acts in the z-direction perpendicular to the surface. In order to proof this, we briefly have
a closer look at the original calculation.

7.1.1 Spatial dependence of interaction potential

The important quantity is the polymer partition function, see eq. (2.5) where we now include the
potential V :

Zpflg =

Z 0
Dfrg �[r(0)] �[r3(0)� l(0)] exp
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0
ds

�
dr(s)
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�
Z 1
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V (r(s))

T

!

(7.6)

where the prime at the path integral indicates, that the polymer beads in the z-direction are restricted
by the membrane. The potential is determined by the distance rD of the bead to the membrane surface
obtained from the straight line which goes through the bead position and intersects the membrane
surface perpendicularly. Therefore, we determine the tangential plane in this intersection point to
calculate the distance of the polymer bead to this plane, see fig. 7.1. All points of the membrane
surface are described by the position vector

l =

0
B@ x1

x2

l(x1; x2)

1
CA : (7.7)
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Figure 7.1: Schematic picture: The polymer bead is located at position (r1; r2; r3) above the mem-
brane surface, which is parameterized by l(x1; x2).

The normal vector of the surface is given by

n =

�
@l

@x1
� @l

@x2

�.���� @l
@x1

� @l

@x2

���� = 1

N

0
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1
CA (7.8)

with normalization

N =

s
1 +
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@x2

�2

: (7.9)

Assuming, that all gradients of l(x1; x2) are small, which is true for our ansatz, we can in first order
approximation describe the surface as a plane, containing the point (r1; r2; l(r1; r2)), which is the
surface point below the polymer bead. Then the Hesse form of the surface is given by
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The distance of the polymer bead at position (r1; r2; r3) is found by inserting the position vector into
the Hesse form, i.e.

rD =
1
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Expanding in powers of l(x1; x2) we conclude that

rD = [r3 � l(r1; r2)]
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Since our perturbative calculation is performed to linear order, it turns out, that it is consistent to
neglect the second order corrections of the distance. In consequence, the polymer partition function
is given by

Zpflg =

Z 0
Dfrg �[r1(0)] �[r2(0)] �[r3(0)� l(0)]

exp

 
� 3

2R2
p

Z 1

0
ds [dr(s)=ds]2 �

Z 1

0
ds

V [r3(s)� l(r1(s); r2(s))]
T

!
: (7.13)

The substitution r3 ! r3 + l(r1; r2) leads to the analogue calculation, which we have performed in
chapter 2, see eq. (2.14). The expansion in small deviations of l with respect to the flat geometry leads
to an effective system, where the polymer is anchored on a flat surface. The monomer potential V , as
shown in the above calculation, only depends on the z-direction.

We will therefore, in the following, investigate the adsorption properties of a polymer anchored on
the flat substrate. In case of the Gaussian chain one can separate the three spatial coordinates in order
to end up with a free polymer in the lateral directions and a half-space polymer in the z-direction,
which is influenced by a z-dependent and (x1; x2)-independent potential.

7.2 Solution of the Schr̈odinger-type equation

Starting from (7.1) we will in the following measure the potential in units of T and solve the z-
dependent Schrödinger-type equation

"
@s �

R
2
p

6
@z

2 + V (z)

#
Z(z0; zjs) = 0 ; s > 0 (7.14)

for the general potential

V (z) =

8><
>:
1 for z � 0 on the membrane,
VI(z) for 0 < z � zV ,
= 0 for all z > zV .

(7.15)

with zV denoting the range of attraction. For the moment it is not necessary to specify the form of
the potential in the region 0 < z � zV . The diffusion equation is solved by the method of Laplace
transforms [89]. The calculation follows [83]. Using

G(z0; zjt) =
Z 1

0
ds exp(�st)Z(z0; zjs) (7.16)

one finds the ordinary differential equation for the propagator G(z0; zjt)"
�R

2
p

6
@
2
z + t+ V (z)

#
G(z0; zjt) = �(z0 � z) : (7.17)

This expression is only valid for t > 0. Thus, the sign convention we used here is for negative
energies. In case of a square well potential with depth w e.g. the situation above could describe a
polymer with energy t < w leading to solutions with eigenfunctions sin and cos inside the range of
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Figure 7.2: Extrapolation length: for desorption lex is positive (left) and for adsorption lex is negative
(right).

attraction of the potential, and a damped exponential solution outside the attraction range. Eq. (7.17)
is solved by the following ansatz [90]

G(z0; zjt) =  0(z0; t)  1(z; t) (7.18)

where the  -parts obey the boundary conditions

 0(0; t) = 0 and lim
z!1 1(z; t) = 0 : (7.19)

Additionally we have to assume z0 � z. Otherwise one has to interchange  0 and  1.
The solution outside the potential range zV , where V (z) = 0 is thus given by

G(z0; zjt) = A1
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) +A2 exp(�
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#
exp(�
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6
p
t
z

Rp
) : (7.20)

The remaining constant A1 is obtained by taking into account the Delta-function on the right site of
eq. (7.17). This condition is equivalent to solving the equation

 1(z)@z 0(z)�  0(z)@z 1(z) =
6

Rp
2
: (7.21)

which yields A1 =
p
6=2

p
tRp.

A2 is fixed by the continuity and differentiability of G inside and outside the potential range at
zV , which we will investigate now.

Since so far we did not specify the potential for z � zV we consequently do not know the in-
ner solution. Nevertheless we can define the logarithmic derivative at zV , which corresponds to the
boundary condition for both the unknown solution inside the potential range and for the outer solu-
tion. The logarithmic derivative in the limit of vanishing potential range zV ! 0 defines a length
scale which fully characterizes the potential. This length scale is the so called extrapolation length
given by

@zG(z; zejt)
G(z; zejt)

����
z=zV

=
@zZ(z; zejs)
Z(z; zejs)

����
z=zV

=
1

lex
: (7.22)
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In the following we call 1=lex the inverse extrapolation length, which defined the distance from the
adsorption/desorption transition, see below. This transition is a real phase transition only in the limit
of infinitely long chains, i.e. for 1=lex < 0 the polymer is adsorbed and for 1=lex > 0 the polymer is
desorbed [91]. In case of finite chains adsorption is only possible if there is a reservoir given by the
bulk concentration of polymers. Of course, the extrapolation length is a function of the potential V ,
which, depending on the special form of V , can be complicated. For a square well potential it is easy
to realize that lex is a function of the depth w of the potential and the range zV . We will later calculate
the exact expression. In this chapter we will emphasize the situation of vanishing range zV . In this
limit, lex and 1=lex, respectively, contain all the information on the potential.

In terms of 1=lex one can identify the following limiting cases

� total desorption for 1=lex !1 (lex & 0),

� adsorption/desorption transition at 1=lex = 0 (lex !1),

� total adsorption for 1=lex ! �1 (lex % 0).

We write down the general solution of a polymer in a half space under the influence of a potential,
which we do not specify in detail. The only assumptions on the potential are: V (z) ! 1 for z = 0,
and V (z) = 0 for z > zV . In addition, we demand the potential to scale in such a way that in the limit
zV ! 0 the inverse extrapolation length, which governs the adsorption/desorption behavior, stays
constant.

The Greens function in the limit zV ! 0 (more accurate zV
p
t! 0) is

G(z0; zjt) =
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#
: (7.23)

The inverse Laplace transformation

Z(z0; zjs) =
1

2�i

Z
I
dt G(z0; zjt) exp(st) (7.24)

finally leads to the lex-dependent polymer partition function [51, 50]
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The details of the inverse Laplace transformation and the choice of the integration path are described
in the appendix C.

Having the partition function of a polymer in a half-space for all strengths of the adsorption poten-
tial one can give a more vivid description of the extrapolation length lex. For a free polymer confined
by a flat wall the integrated partition function

Z(z) =

Z 1

0
dz0 Z(z0; zj1) (7.26)

is proportional to the probability of finding the end of the polymer at position z. The corresponding
profile is plotted in figure 7.2 in the desorption regime (left), where the probability decreases due
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Figure 7.3: The integrated curvature plotted versus the inverse extrapolation length Rp=lex as obtained
by the perturbative approach. The dashed line denotes the limiting curvature for strong desorption.

to depletion in the vicinity of the wall, and in the adsorption regime (right), where the probability
increases close to the wall. Far from the wall Z(z) always attains 1 corresponding to the bulk value.
Due to the definition as given in eq. (7.22) lex is the length on the z-axis given by linear extrapolation
of Z(z) at z = 0, i.e. on the wall. As a consequence the extrapolation length is infinite at the
adsorption/desorption transition where Z(z) = 1 for all values of z.

7.3 Membrane curvature induced by adsorbed polymers

So far we have considered the polymer and the solution of the Schrödinger-type equation in the half-
space. We now come back to the compound polymer/membrane system. As we have already seen
in eq. (7.13) the adsorption problem is described by the same partition function as used in chapter
2 with an additional interaction potential acting in the perpendicular direction. Consequently, the
perturbative approach which we introduced in section 2.2 also holds in the adsorption regime. Since
we can describe the polymer by the partition function (7.25) for all values of lex, it is possible to
calculate the membrane curvature and shape by generalizing the previous investigations to the lex-
dependent case.

The most important formula which we use in the following sections is eq. (2.61), which relates the
integrated curvature of the membrane to the mean distance of the polymer end from a flat substrate:

AM =
T

4�
hz(1)ihs : (7.27)

This relation implies, that the membrane curvature does not change its sign for any value of the inverse
extrapolation length, because of hz(1)ihs � 0. The remaining task is to determine hz(1)ihs with the
given lex-dependent partition functions of the polymer. One finds [92]

AM =
T

4�
lex
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6lex)

� 1

!
(7.28)



68 CHAPTER 7. ADSORBED POLYMERS: CONTACT POTENTIAL

which recovers the limits of total depletion and adsorption. The profile of the integrated curvature as
a function of the inverse extrapolation length is plotted in fig. 7.3. In the region of total adsorption
the integrated spontaneous curvature of the membrane vanishes, since the expectation value of the
z-position of the polymer end point is zero. In consequence, the polymer is located on the membrane
and cannot exert any non-vanishing pressure on the membrane. The resulting averaged shape is flat
like in the unperturbed case without polymer. Note that this result only holds for a vanishing range of
attraction zV of the interaction potential between polymer and membrane.

It is important to point out, that the calculation we performed uses the partition function of a
polymer anchored on a flat surface in order to calculate the spontaneous curvature and the shape
profile of the membrane. In this case it is clear that the extrapolation length initially does not depend
on the curvature.

This situation changes if one starts with the partition function of a polymer anchored on a curved
surface, where it is not clear anymore whether or not the extrapolation length stays curvature indepen-
dent [93]. This question is of particular interest in case of potentials, which do not explicitly depend
on the curvature.

As can be shown for a square well potential of range zV and depth w on a sphere the inverse
extrapolation length yields for small zV and close to the adsorption transition [87]

1
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� �
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which corresponds to an extrapolation length
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Therefore the extrapolation length is curvature dependent. This is especially important, since the
square well potential used here does not explicitly depend on the curvature.

If one considers anchored polymers on a sphere, one compares the free energy difference of the
polymer on the curved surface to the flat situation and expands in powers of the curvature M = 1=R

of the spherical substrate. One finds

�Fpo=T = � ln(Z=Zhs) = 
�(
1p
6lex

Rp)RpM +O((RpM)2) (7.31)

with the scaling function 
� [44] given by
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exp(y2)erfc(y)

#
: (7.32)

The parameter � is defined as � = 1� l1=l0 with lex = l0(1 + l1M), see eq. (7.29). One has � = 1

in the case of the curvature independent extrapolation length and � = 0 if the extrapolation length has
the form given by the square well potential. The resulting integrated spontaneous curvature is given
by

AM = � T

4�
R
2
p
�(Rp=

p
6lex) : (7.33)
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Figure 7.4: The integrated curvature plotted versus the inverse extrapolation length Rp=lex obtained
by a curvature expansion with curvature independent extrapolation length.

For � = 0, this result is identical with eq. (7.28). In case of the curvature independent extrapolation
length we find, that the curvature of the membrane changes sign at Rp=lex = 0, i.e. at the adsorption-
desorption transition and reaches the asymptotic limit of total depletion (large positive Rp=lex). In
case of the strong adsorption limit, the curvature does not vanish, but diverges, as shown in fig. 7.4
. Although in our previous calculation we did not take into account any curvature dependency of
the extrapolation length, since we expanded around the flat geometry, we ended up with a result
corresponding to a curvature dependent extrapolation length. This might proof, that in the limit of
vanishing potential range zV the extrapolation length attains the universal curvature dependency of
the square well potential. We will later extend our calculation to the case of non-vanishing potential
range zV and study the effects on the curvature behavior.

So far we considered the total (spontaneous) curvature of the membrane influenced by the adsorp-
tion behavior of the polymer. We will now have a closer look at both the configuration of the polymer
and the membrane close to the adsorption/desorption transition and in the strong adsorption case. The
restriction to the limiting cases is necessary since it is not possible to calculate analytically the av-
erage bead distance of the polymer in the z-direction, namely hz(s)ihs as a function of the inverse
extrapolation length Rp=lex for all values of Rp=lex. For large positive Rp=lex, we recover the limit
of total desorption as can easily be verified.

7.3.1 Adsorption/desorption transition

In the region where Rp=lex ' 0 the polymer changes from the desorbed to the adsorbed state. The
corresponding partition function is given by a series expansion for small Rp=lex
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We can now calculate the average distance from the surface which leads to
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Using the average lateral distance
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the relation between lateral and perpendicular distance atRp=lex = 0 is linear at the adsorption/desorption
transition:

hz(s)ihs =
1

�

q
hx2i : (7.37)

The pressure at Rp=lex = 0 is consequently given by
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The form of the pressure is similar to the depletion case. It is positive for all distances larger than 0

and diverges for small x. In x = 0 the sign is opposite, which corresponds to the pulling in the anchor
point.

Using this pressure we finally obtain numerically the corresponding shape profile as depicted in
figure 7.5. In addition, we plotted the corrections inRp=lex in the vicinity of the adsorption/desorption
transition. The analytic expression for the shape profile at Rp=lex = 0 is given by
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where  is the Euler constant and E(1; z) is the elliptic integral of the second kind [55]. The asymp-
totic limits are given by the cone for small x, as in the case of the totally desorbed polymer

hl(x)i � hl(0)i � � 1

4�

T

�
x (7.40)

and by the catenoid for large distances from the anchor point
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The integrated curvature yields
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Figure 7.5: The membrane shape profile for the adsorption/desorption transition around Rp=lex = 0.
In addition, we plot the profile in the strong desorption limit.

which we expanded to linear order in the inverse extrapolation lengthRp=lex. At the adsorption/desorption
transition the membrane shape is similar to the situation of total depletion. The only difference is due
to the magnitude of the sharp bend at the anchor, which is smaller at Rp=lex = 0.

The integrated curvature is by factor of 2=� smaller than in the desorption case which indicates
that the effect on the membrane exerted by the polymer is decreased if adsorption is included.

7.3.2 Total adsorption

Denoting Rp=lex = �Rp=jlexj one finds the expression for the limiting solution
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The limit of total adsorption leads to a subtle behavior of all related quantities except for the integrated
curvature as we will show in the following.

The expectation value hz(s)ihs attains the limiting behavior

hz(s)ihs �

8><
>:

0 s = 0

jlexj=2 0 < s < 1

jlexj s = 1

: (7.44)

It is not possible to obtain a more controlled expansion for largeRp=jlexj. The mathematical reason for
this is the combination of Rp=jlexjs and Rp=jlexj(1�s) in Z(z0; zjs) and Z(z; zej1�s) respectively.
The limit for large 1=jlexj is always in conflict with the limit of small s and the limit s � 1. Thus,
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from the beginning we have to split off the cases s = 0 and s = 1 in order to perform the calculations
separately.

Investigating eq. (7.44) we immediately see that the dominating length scale for strong adsorption
is, as expected, the extrapolation length lex. The polymer is located in a distance from the adsorbing
surface between 0, the z-position of the anchor point fixed on the surface, and jlexj, the distance of
the polymer end bead. For all other beads of the polymer, the average distance from the surface is half
the extrapolation length. In the limit of total adsorption Rp=jlexj ! 1 the polymer is located on the
surface. However, the mathematical discontinuity for s = 0 and s = 1 stays valid and contributes to
the polymer pressure. In fact, the only contribution to the pressure arises form the anchor point and
the end point, since for all other beads dhz(s)ihs=ds is zero and in consequence the corresponding
pressure vanishes. Using

d

ds
hz(s)ihs =

jlexj
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h
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leads for Rp=jlexj ! 1 to the pressure
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The x-dependent part is nothing but the monomer pressure P (s = 1; x) of the last polymer bead.
Finally one obtains the membrane shape profile
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The limiting behavior is given by logarithmic divergences for small and for large distances from the
anchor point, respectively. The catenoidal shape close to the anchor point is a new feature which
did not occur for the shape profiles in the other limits. It arises from the form of the pressure which
exhibits a divergence for x = 0 which is not balanced by a divergence of opposite sign for small
x > 0.

However it is important to realize that the membrane shape profile for all 0 < x < 1 scales
with jlexj and therefore vanishes in the limit of total adsorption. From a physical point of view it is
clear that the depicted mathematical subtlety is not relevant, since we do not have infinitely extended
membranes on the one hand, and we do not have membranes which are continuous on all length scales.
On the scales of the lipids the membrane can not be described by the curvature Hamiltonian anymore.
Thus, in the limit of small x the divergence in the anchor point, which becomes discontinuous in the
limit of large 1=jlexj, will never occur. Especially, in all discretized systems with finite membrane
size, as given by a Monte Carlo simulation with periodic boundary conditions, the limiting membrane
shape for total adsorption is hl(x)i � hl(0)i = 0. The integrated (spontaneous) curvature behaves
nicer. Mathematically, it is given by eq. (7.27) and thus only depends on the average z-position of the
end point. Inserting leads to

AM � T

4�
jlexj (7.48)

which attains 0 for large 1=jlexj. This is well-defined, since in the problematic regions for small and
for large x the membrane shape attains a catenoid and consequently a minimal surface with vanishing
curvature contribution. Everywhere else, the membrane is flat and does not contribute to the curvature
either.
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Figure 7.6: The integrated (spontaneous) membrane curvature as a function of the anchor distance
z0 for different values of the inverse extrapolation length Rp=lex. The curvature changes sign at
z0 = �lex in the adsorption regime.

7.4 Polymers with non-vanishing anchor distance

In the previous section we studied geometries, in which the polymer was anchored directly on the
membrane surface. From a physical point of view it is also interesting to study situations where the
polymer is anchored in a distance z0 from the surface. This is relevant because the anchor segment
which is used to insert the polymer in the bilayer has non-vanishing size and normally extrudes from
the membrane, see figure 1.4. Since the anchor is chemically different from the rest of the polymer it
is justified to start the polymer chain in the anchor distance z0. The membrane spontaneous curvature
is now given by the modified relation

AM =
T

4�
(hz(1)ihs � z0) (7.49)

where hz(1)ihs also depends parametrically on z0. Using the partition function (7.25) for the averag-
ing one finds

AM z0 =
T

4�
(z0 + lex)

2
64 1

erf
�q

3
2
z0
Rp

�
+ exp

�
Rp

6lex
(
Rp

lex
+ 6 z0

Rp
)
�
erfc

�
Rp=lex+3z0=Rpp

6

� � 1

3
75 :

(7.50)

The spontaneous curvature as a function of the anchor distance z0 is shown in figure 7.6 for different
values of Rp=lex. The important result is the change in the sign of the curvature if z0 is increased.
For large z0 the curvature approaches zero, since the polymer is not able to influence the membrane
anymore. It is easy to show that the curvature sign changes at z0 = �lex. Thus, we only obtain a
negative curvature where the membrane bends towards the polymer, if we are in the adsorption region
with Rp=lex < 0. For Rp=lex � 0 the curvature stays positive for all values of z0. In figure 7.6
the limiting plot for Rp=lex = 0 is given by the solid curve. For strong adsorption the curvature
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becomes strongly negative for non-vanishing values of z0. Note, that this does not correspond to a
physically realistic limit, since the polymer configuration in this limit has an anchor bond of length z0
and is therefore strongly over-stretched. The Gaussian model allows these configurations, but physical
polymers always have restricted bond lengths.

Let us apply the result to vesicles covered with Np polymers. The situation is analogue to section
4.2. We consider polymers anchored on the membrane in the adsorption regime. If the polymer is
anchored in a distance jlexj + lan with lan > 0 and both jlexj and lan are small compared to Rp we
have guaranteed that the induced curvature is negative. We find for the adsorption-induced curvature
the expression

M
(ad)
sp = � T

4�
lanB�p (7.51)

where �p is the polymer coverage-density andB denotes the absolute value of the square bracket in eq.
(7.50). Furthermore we find a curvature contribution due to the repulsive polymer/polymer-interaction
which is calculated as in eq. (4.11) and which yields

M
(pp)
sp =

T

4�
b2(Rp + jlexj+ lan)�

2
p (7.52)

where b2 is the second virial coefficient. Since the latter contribution leads to the opposite curvature
compared to M(ad)

sp the membrane curvature changes its sign as a function of the coverage density.
The density, at which the sign changes, is given by

��p =
B

b2

lan

Rp + jlexj+ lan
: (7.53)

For smaller densities the curvature is negative and thus the membrane bends toward the anchored
polymers whereas for higher coverage densities the membrane bends away from the polymers. Con-
sequently the coverage density provides a curvature switch.



Chapter 8

Adsorbed Polymers: Square Well
Potential

The contact potential, which we discussed in the previous chapter, is an idealized situation. In this
chapter, we will extend the previous calculation to a non-vanishing range of attraction zV of the
interaction potential between polymer beads and the membrane. In this case, it is necessary to solve
the Schrödinger-type equation inside and outside the potential range. The investigation for finite
potential range zV is necessary in order to compare our results for the Monte Carlo simulation with
the theoretical prediction, since we expect deviations from the results for vanishing zV in the case of
our discretized system in the simulation.

8.1 General solution

We start writing down the Schrödinger-type equation as done in the previous chapter, where we al-
ready separate the perpendicular direction:

"
@s �

R
2
p

6
�z + V (z)

#
Z(z0; zjs) = 0 (8.1)

with s denoting the internal length which ranges from 0 to 1. The potential is already rescaled
with temperature. The equation is solved by Laplace transformation which yields the stationary
Schrödinger-type equation

"
t� R

2
p

6
@
2
z � w�(zV � z)

#
G(z0; zjt) = �(z0 � z) : (8.2)

Here we already inserted the square well potential of depth w and range zV .

In our ansatz for solving the equation, we will split the solutions into the three parts denoted in
fig. 8.1, namely region I, where the polymer starts and ends in the potential well, region II, where the
polymer starts in the well and ends outside the potential range, and region III, where the polymer’s
start and end point are outside the potential range. We write down the general ansatz:

75
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Figure 8.1: Schematic picture of the three regions of solutions for the Schrödinger-type equation.
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(8.3)

where q is the wavenumber inside the well, i.e. q =
p
w � t, and k =

p
t is the wavenumber

outside the well. Each of these solutions is the product of two parts, one of which, namely  0, solves
the boundary condition for z ! 0, and  1 solves the boundary condition for z ! 1. So far, we
have five unknown prefactors which have to be determined by boundary conditions at the matching
point of both solutions zV . A1 and C1 are calculated using the fact, that the solutions I and III must
correctly reproduce the �-function for z0 and z and therefore have to obey the condition (7.21) for the
two limiting parts of the solution. One finds

A1 =

p
6

Rp

1p
w � t

; C1 =

p
6

Rp

1

2
p
t
: (8.4)

In addition, the continuity and differentiability conditions for GI and GII at z = zV with respect to
the end point of the polymer and for GII and GIII at z = zV with respect to the starting point of the
polymer yield

A2 =
q � k cot(

p
6q zV

Rp
)

k + q cot(
p
6q zV

Rp

)
;

B =

p
6

Rp

exp(
p
6k zV

Rp
)

q
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 p
6q
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!
+A2 sin

 p
6q
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Rp

!!
; (8.5)

and

C2 = exp

 
2
p
6k
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!
1� q=k cot(

p
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p
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) + q cos(
p
6q zVRp

)
: (8.6)
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Figure 8.2: The inverse extrapolation length Rp=lex (a) plotted against the depth of the potential w
at fixed value of the potential range zV = 0:1Rp, in the inset: zoom close to the origin. (b) Rp=lex
plotted against the potential range zV for fixed depth w = 10.

It is easy to verify that both expressions for B are identical. Consequently, we do not obtain any
further conditions for q and k, i.e. no condition for t.

However, note, that there is a scattering edge for t which separates a continuous spectrum from
a discrete one obtained by a finite sum over the eigenstates. The condition for the discrete spectrum
arises from GII . Since the eigenfunction inside the potential well is sin(

p
6qz=Rp) and the eigen-

function outside exp(�
p
6kz=Rp) equating of the function and its derivative at z = zV yields the

transcendental equation

k = �q cot
 p

6q
zV

Rp

!
: (8.7)

The value of the inverse extrapolation length is given by the logarithmic derivative of the solution
inside the potential well evaluated at the first bound state which occurs, namely

1

lex
=

p
6q1

Rp
cot

 p
6q1

zV

Rp

!
: (8.8)

At the adsorption/desorption transition and in the desorption range, in which there are no bound
states, the definition is extended to q1 =

p
w. In figure 8.2 we plot the inverse extrapolation length

as a function of the potential depth w for fixed potential range zV (left) and for fixed w as a function
of zV (right). In the limit of large negative w, i.e. for repulsion out of the inner part, the inverse
extrapolation length Rp=lex diverges to positive infinity, corresponding to the limit of total desorption.
The adsorption/desorption transition takes place at the first zero of the cot-function occuring at w1 =
�
2
R
2
p=24z

2
V . The Rp=lex-values in the adsorption range are obtained by solving the transcendental

condition for q1 numerically.
The bound states become dominant in the limit of total adsorption for large negative Rp=lex. In

this limit it is justified to neglect the continuum solution.
Due to the transcendental condition for the bound states, it is not possible to calculate the solution

in an analytically closed way. To take into account several bound states, the sum has to be evaluated
numerically. However, for an infinitely long chain (which of course is not the case in our system) one
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can neglect all but the lowest energy level E1. In this so-called ground state-approximation one can
analytically treat the problem. In the limit of small potential ranges zV � Rp we will use the ground
state-approximation in order to calculate the membrane curvature.

Our calculation is again split into three parts: We start with the strong desorption regime, which
is reached for general values of the potential depth w in the limit of small zV =Rp, and for large
repelling potential inside the well for arbitrary zV =Rp. In a next step we consider the behavior at the
adsorption/desorption transition and finally the limit of total adsorption. In the desorption case as well
as at the adsorption/desorption transition we use the continuous solutions, whereas we use the discrete
spectrum in case of total adsorption.

8.2 Limit of total desorption

As one can easily verify via eq. (8.8) the limit of total desorption for large positive Rp=lex can be
obtained by two possible ways:

At any value of w kept constant the inverse extrapolation length 1=lex � 1=zV for small zV and
thus approaches the desorption case of large positiveRp=lex. If one inserts the expansions for small zV
into the solutions GI and GII of the Schrödinger-type equation the expectation value hz(1)ihs for the
polymer end point, with which one calculates the spontaneous curvature induced on the membrane, is
given by

hz(1)ihs = lim
z0!0

R zV
0 dz zZI(z0; zjs = 1) +

R1
zV

dz zZII(z0; zjs = 1)R zV
0 dz ZI(z0; zjs = 1) +

R1
zV

dz ZII(z0; zjs = 1)
: (8.9)

It is advantageous to calculate numerator and denominator separately, using the propagators GI and
GII , expand both in powers of zV and afterwards perform the inverse Laplace transform. This leads
to the controlled expansion

hz(1)ihs =

r
�

6
Rp + 2zV

z
2
V

R2
p

jwj+O(z4V ) (8.10)

which via eq. (2.61) yields the spontaneous curvature

AM =
T

4�
hz(1)ihs =
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4
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�
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�

6
Rp +
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2

T

�
zV
z
2
V

R2
p

jwj : (8.11)

As we have expected in the limit of vanishing zV we recover the result for total desorption, i.e. the
result where only the steric repulsion of polymer beads and the membrane surface are taken into
account. This holds irrespective of the strength w of the initial square well potential. If we now
increase the range zV without changing w we also increase the mean z-distance of the last bead,
which immediately leads to an increase in the induced spontaneous curvature.

There is another possibility of reaching 1=lex ! 1, namely for fixed zV and w ! �1. In
consequence, the polymer beads are repelled from the potential well (which is a step now). Inside
the potential range the solution GI vanishes for w ! �1, i.e. there is no polymer bead inside the
well except the anchor bead on the surface. The remaining contribution is due to GII . Inserting
q =

p
w � t = i

pjwj+ t leads to the average z-distance of the polymer end point

hz(1)ihs =

 r
�

6
� 1p

6jwj

!
Rp + zV (8.12)
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and to the spontaneous curvature

AM =
1

4

T

�

 r
�

6
� 1p

6jwj

!
Rp +

1

4

T

�
zV : (8.13)

First, we note that, as we expect, in the limit of vanishing zV and large jwj, we recover the result for
total desorption.

The second feature which is important to point out is, that eq. (8.13) does not contain any ex-
pansions for small zV but only for large jwj. Eq. (8.13) is exact for all values of zV in the limit
jwj ! 1. For larger zV this implies that the Gaussian polymer which is fixed by the anchor bead on
the membrane surface, is strongly over-stretched in the first bond between the anchor and the follow-
ing bead. This leads to the intuitive picture in which the end point of the polymer is shifted by the
value of zV in the z-direction. However, for large zV this result is not physical anymore, since it plays
with an artifact of the Gaussian model. The spring between anchor and next bead can be extended
to infinity, which is not true for real polymers. The Gaussian model breaks down in this limit and is
consequently not applicable anymore. For small zV however we expect the predictions of eq. (8.13)
to be correct. We will use the relation in order to compare our Monte Carlo data in the region of large
positive Rp=lex and fixed zV = 0:1Rp.

8.3 Behavior at the adsorption/desorption transition

Here we focus on the adsorption/desorption transition at 1=lex = 0. The adsorption/desorption transi-
tion, where the first bound state (with energy t = 0) occurs, is given by the first zero of the righthand-
side of eq. (8.8). The solution is

p
6w

zV

Rp
=
�

2
: (8.14)

The advantage of this restriction to 1=lex = 0 is due to the fact, that it is possible to vary zV without
changing the value of 1=lex.

Inserting (8.14) into q yields
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�2

24
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p

z2V

� t =
�

2
p
6

Rp

zV
�
p
6

�
t
zV

Rp
+O(z3V ) : (8.15)

In order to calculate the effect on the curvature we again need hz(1)ihs, i.e. the expectation value
for the z-position of the polymer end point. Here, we have to use the different solutions inside and
outside zV . Since the polymer is anchored at z0 = 0 the solution for zV < z0 < z (region III) plays
no role anymore. Inserting the solutions and expanding in zV leads to

hz(1)ihs =

r
2

3�
Rp +

(� + 4)(� � 2)

2�2
zV +O(z2V ) : (8.16)

As we expect, the first term of the expansion reproduces the result for vanishing zV at 1=lex = 0.
Consequently, the membrane curvature

AM =
T

4�

 r
2

3�
Rp +

(� + 4)(� � 2)

2�2
zV

!
(8.17)
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is increased further, if one increases zV .
There is another limiting case which is of interest to study, namely the limiting behavior of the

curvature and membrane shape profile for large zV . It is clear by intuition that in this case we have to
obtain the limit of total desorption again, since the polymer is not affected by a potential gradient, i.e.
by a force, anymore.

The only Greens function which survives the limiting process (if we neglect the asymptotic cor-
rections in zV ) is GI . In fact, the insertion of the limiting q = i

p
t leads to the half space propagator

and, in consequence, to the same spontaneous curvature as for total desorption.

8.4 Limit of total adsorption

The limit of total adsorption with large negative Rp=lex is not characterized by the continuum but by
the bound states. If the potential has Nb bound states the solution of the stationary Schrödinger-type
equation is given by

G(z0 ! 0; zjt) =

NbX
n=1

1

t+En

�
~G
(n)
I �(zV � z) + ~G

(n)
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�
(8.18)

with the modified Greens functions ~G
(n)
I , ~G

(n)
II given by
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(8.20)

in which the divergences at kn = �qn cot(
p
6qnzV =Rp) are split off. Since the polymer is anchored

on the membrane, the solution ~GIII does not occur.
The inverse Laplace transformation yields

Z(z0; zjs � 1) =

NbX
n=1

exp(�En)
�
~G
(n)
I �(zV � z) + ~G

(n)
II �(z � zV )

�
: (8.21)

En is the energy level of state n, which is, of course, negative and given by En = �tn = �(w� q2n).
The expectation value of the polymer end-point which leads to the integrated membrane curvature

is given by

hz(1)ihs = lim
z0!0

PNb
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�R zV

0 dz z ~G
(n)
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� :

(8.22)

For small potential range zV one can calculate the strong adsorption limit analytically. If we approxi-
mate the polymer as an infinitely long chain, which is justified for zV � Rp it is correct to apply the
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ground state-approximation, i.e. it is justified to take into account only the lowest bound state with
energy E1. One finds

hz(1)ihs = lim
z0!0

R zV
0 dz z ~G
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: (8.23)

For large negative Rp=lex the transcendental condition (8.7) yields q1 = �Rp=
p
6zV . The limiting

ground state (gs) solutions are
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where we introduced the factor D = limq!q1 csc(
p
6qzV =Rp) which diverges in the limiting process.

Inserting and performing the integration finally yields for total adsorption the important results

hz(1)ihs =
zV

2
and AM =

1

8

T

�
zV : (8.26)

Note that these results are correct also from an intuitive point of view. The limit of strong adsorption
in a square well potential of range zV in the z-direction is equivalent to the situation of confining a
polymer between two parallel plates in a distance zV . We expect the average position in the z-direction
to be zV =2.

However, if zV is increased we have to take into account higher energy levels, at least the ground
state and the neighboring level. The reason for this is the assumption of the infinite polymer length
in ground state approximation. Irrespective of the size of zV the expectation value always stays at
hz(1)ihs = zV =2. An additional length scale which includes the finite end-to-end distance Rp does
not occur. Only if we take into account the second energy level, the additional length scale occurs
and respects the finite Rp. This always leads to a lowering of hz(1)ihs as we expect. In particular, for
large zV we expect that the bound state contribution leads to an expectation value hz(1)ihs which is
identical with the result for total desorption and thus governed only by Rp and not by zV anymore.
We will proof this in the following section.

8.4.1 Bound states for large potential rangezV

As we have already seen bound states are given by the condition qn = n�Rp=
p
6zV with integer n.

The solution which remains in the limit of large zV is GI . Inserting qn one ends up with
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�
: (8.27)

The prefactor C cancels when calculating averages.
The energies in eq. (8.22) are given by

En = �(w � q
2
n) : (8.28)

Dividing numerator and denominator of eq. (8.22) by exp(�E1) yields the numerator
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I : (8.29)
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Figure 8.3: Adsorption behavior in the limit of total adsorption for zV =Rp � 1 (left) and for
zV =Rp � 1 (right). The polymer on in the small slot is strongly deformed, whereas the polymer
in the large slot is unperturbed.

The denominator follows in analogy. The energy difference is

E1 �En = �(n2 � 1)
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The solutions of the integrations areZ zV

0
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which lead to the average distance

hz(1)ihs = �
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n=1(�1)n exp(�n2x)P1
n=1 exp(�n2x)�
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It is possible to evaluate the sums analytically,

S1 :=
1X
n=1

(�1)n exp(�n2x) = 1

2

�
#4(0j exp(�x))� 1

�
and (8.33)

S2 :=
1X
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exp(�n2x) = 1

2

�
#3(0j exp(�x))� 1

�
; (8.34)

where # are Elliptic theta functions. The limit of large potential ranges zV is equivalent to the limit of
small x, see the definition above. For small x one obtains the asymptotics

S1 � �0:5 and S2 � 0:886
1p
x
: (8.35)

The prefactors are evaluated numerically [56].
Inserting into eq. (8.32) finally yields

hz(1)ihs � 0:7238 Rp �
r
�

6
Rp: (8.36)

The result recovers the limit of total desorption. This is expected, since the polymer is not affected
by the potential gradient anymore, if the potential step located at zV is at a much larger distance from
the surface than the polymer beads. In consequence, we obtain the same polymer and membrane
configuration as in the case of no adsorbing potential, see figure 8.3 .
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Figure 8.4: The integrated curvature plotted versus the inverse extrapolation length Rp=lex as obtained
by the small gradient expansion for a contact potential and by Monte Carlo simulations. The dashed
lines in the limits of strong desorption and adsorption and the cross at the adsorption/desorption tran-
sition are the corrections for the square well of range zV = 0:1Rp, which is the potential used in
the simulation. The Monte Carlo data is obtained for �=T = 1. The membrane discretization is
am=Rp = 0:5 and the polymer discretization ap=Rp = 0:0625.

8.5 Comparison with Monte Carlo simulations

We will now compare the analytic results with Monte Carlo-simulations. As in chapter 3 both mem-
brane and polymer are discretized. The membrane can move continuously in the perpendicular direc-
tion above a two dimensional lattice with lattice parameter am.

The anchored polymer is described by the bead-spring model, in which the neighboring pointlike
beads are coupled by harmonic springs. This model corresponds to an ideal chain. The Kuhn length
ap provides the average bond length. One Monte Carlo step of the compound system corresponds to
a single move of each membrane segment and each polymer bead.

We use periodic boundary conditions in the lateral directions. The lateral membrane size is chosen
about eight times larger than the polymer end-to-end distance Rp, which corresponds to the dilute
coverage (mushroom) regime, i.e. the polymers do not penetrate each other.

The square well potential, which acts on each bond is included by measuring the distance in z-
direction of a polymer bead, which represents a bond, and the membrane segment which is located
beneath the bead. In order to avoid large discretization effects it is necessary to choose the discretiza-
tion of the polymer, i.e. the bond length, smaller than the potential range zV . The interesting quantity
which we are going to measure is the induced spontaneous curvature of the membrane. It is not possi-
ble to integrate the membrane curvature of all membrane segments, since due to the periodic boundary
condition this integral will vanish. Therefore we choose an area of integration corresponding to a cir-
cle of radius Rp, which is basically the area in which the polymer interacts with the membrane. The
area takes into account the 13 inner segments in the vicinity of the anchor. Results vary slightly if
one increases the integration area, but do not change the diagram qualitatively. The major contribu-
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tion to the curvature arises from the cone-like bend in the anchor segment. It is therefore justified to
choose the area small in order to avoid boundary effects. The integrated curvature as a function of the
inverse extrapolation length is shown in figure 8.4. The solid curve displays the analytic solution for
the curvature in case of a contact potential. Since in the simulation we do not use a contact potential
but a square well of range zV = 0:1Rp the results of the contact potential will be shifted according
to our analytic calculations. The shifts are displayed in the diagram for the limiting cases of strong
adsorption and desorption, respectively and for the adsorption/desorption transition.

For strong adsorption the curvature does not vanish, since the polymer moves in a volume of height
zV above the membrane. Thus, it still exerts a pressure, leading to a small but positive membrane
curvature, analytically given by zV T=8� in the limit 1=lex ! �1. For the values of zV = 0:1Rp this
leads to a shift of A�M = 0:0125RpT=�, which we denoted by the dashed line in the left part of the
diagram. At the adsorption/desorption transition we have calculated the shift to higher curvatures if
zV > 0, which is given by A�M � 0:04RpT=�, denoted by the cross in the diagram at Rp=lex = 0.
For strong desorption the shift is given by A�M = 0:025RpT=� and denoted by the dashed line on
the right side of the diagram.

There is a general trend that the simulation data is below the analytic predictions. In addition to
the already mentioned effect due to the choice of the integration area there are two important reasons
for the difference:

(i) Discretization effects: Since both, the membrane and the polymer are discretized, one expects
differences to the analytic predictions. The Kuhn length of the polymer is always chosen smaller than
the range of the potential zV = 0:1Rp. We choose a Kuhn length ap = 0:0625Rp , corresponding
to 257 beads. We did not increase the system size further due to restriction of calculation time.
However, if the Kuhn length of the polymer is chosen larger than the range of the potential, one
expects systematic errors, since the potential in the simulation does not act on the bonds but on the
polymer beads. Consequently each bead represents one polymer bond. The error is small, if ap is
reduced to lengths which are small compared to zV . The membrane discretization is determined by
the lattice parameter am = 0:5Rp, corresponding to 289 membrane segments. If one compares results
obtained with am = Rp with the finer discretization the effect on the integrated curvature is small.
Nevertheless, the discretization of the membrane leads to an increase of the curvature (a trend in the
correct direction) as one would expect from our results in the total desorption MC simulation. The
slope of the cone increases for better discretizations.

(ii) Boundary effects: Since we use periodic boundary conditions the membrane shape profile
differs from the free boundary case, which we use in the analytic calculation. This is especially
important, since we did not confine the membrane by a harmonic potential, which leads to a finite
parallel correlation length. If the parallel correlation length is small compared to the lateral membrane
size one expects boundary effects to be small. In case of vanishing confining potential the membrane
is a critical object with diverging parallel correlation length and thus always influenced by the system
boundaries.

In fig. 8.5 we plot the membrane shape profile for different values of Rp=lex as obtained by
the MC simulation. Additionally we insert the analytic prediction for strong desorption and for the
adsorption/desorption transition in case of free membrane boundaries (thick solid curves) and in case
of periodic boundaries with a finite amount of Fourier modes (thick dashed lines). At the periodic
boundaries the thick dashed profiles become flat, as expected. The slope difference in the anchor
point is due to the finite amount of Fourier modes which were taken into account. Apart from the
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Figure 8.5: Membrane shape profile obtained by MC simulations, using the same parameters as in
figure 8.4: For (i) Rp=lex = 100 (triangle down) to compare with the analytic curve for a membrane
with free boundaries in the desorption limit (lower thick solid curve) and to compare with the analytic
desorption limit for a membrane with periodic boundary conditions (lower thick dashed curve). In the
latter case we performed a numerical discrete Fourier transform [56] taking into account 30 Fourier
modes. (ii) Rp=lex = 25 (triangle left). (iii) Rp=lex = 0 (triangle up). To compare with the cor-
responding analytical solution for the membrane with free boundaries (upper thick solid curve) and
the analytic profile in periodic boundaries (upper thick dashed curve). (iv) Rp=lex = �6:8 (triangle
right). (v) Rp=lex = �17:8 (diamond). (vi) Rp=lex = �41:6 (square). (vii) Rp=lex = �100 (circle).

above mentioned discretization and boundary effects the agreement between analytic calculation and
simulation is good.

There is another interesting quantity in our simulation, namely the average squared distance of
the first polymer bead, which is anchored on the membrane, and the last bead in the perpendicular
direction. It is intuitively clear that this quantity decreases for increasing adsorption, since the poly-
mer is located close to the surface in the strong adsorption limit. In fig. 8.6 we plot the square-root
of the average squared end-to-end distance in the z-direction. We compare this quantity with the
theoretical prediction for the related half-space distance hz(1)ihs. of a polymer anchored to a flat sur-
face. However note, that both quantities are mathematically different and refer to different geometries
(fluctuating versus flat surface). If we compare with the theoretical prediction for the contact potential
and the corrections due to the square well, the agreement is surprisingly good, especially with respect
to the square well shift. This confirms the postulated relation (2.61) of our perturbative calculation
between the integrated membrane curvature and the average distance of the polymer-end to the flat
surface, if one generalizes the latter observable to the situation of a fluctuating boundary as given by
the membrane in the simulation.
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Figure 8.6: The polymer end-to-end distance in the z-direction as obtained by the MC-simulation
plotted against the inverse extrapolations length. We compare this quantity with the related theoretical
half-space values hz(1)ihs for the contact potential (solid) and the square well (dashed corrections).



Chapter 9

Membranes Exposed to Polymer
Solutions

In the remainder of this thesis we detach the polymers from the membrane and focus on free polymers
in solution. This is a completely different physical situation, since the bending properties of the
membrane are now determined by the depletion zone in the vicinity of the surface, whereas in case
of the anchored polymer the behavior is governed by the individual pressure distribution induced by
each polymer. In terms of entropy, the bending in case of the polymer solution is determined by their
translational and configurational entropy, whereas the bending due to anchoring is determined only
by configurational entropy.

There are contradictory results concerning the spontaneous curvature of fluctuating surfaces in-
fluenced by the polymers. In a paper of Podgornik the spontaneous curvature is predicted to bend
the membrane towards the polymer-rich phase in case of adsorption and to bend away for desorption
[88, 94], whereas calculations done by Eisenriegler et al. show the opposite behavior [83] and point
out mistakes due to the integration boundaries of the polymers in a half-space in [88]. Furthermore,
the density profile of the polymers near a spherical particle is studied [95]. In a mean-field approach
of Clement and Joanny [96] the spontaneous curvature is determined by the excluded-volume term of
the polymer solution, which in second order approximation vanishes for ideal polymers. Recently, the
vesicular budding induced by polymers was studied. It is predicted that polymers adsorbed on vesi-
cles initiate budding of the vesicle and thus increase the curvature of the membrane [97]. Furthermore
the effect on the membrane rigidity is studied, where some authors predict stiffening due to adsorbed
polymers [98, 99], other authors calculate a decrease in the membrane rigidity [100, 101, 102].

As in the previous chapters we discuss the interaction of polymers with the membrane both, en-
tropically and energetically. The polymers do not penetrate the membrane, but can interact with it
via a short-range potential. The polymers itself are considered in the �-regime, where the individual
excluded volume interaction along the chain is neglected. In addition we neglect the pairwise inter-
action of different polymers, which arise from three-point interactions described by the third virial
coefficient.

In figure 7.2 we have already shown the concentration profile of polymers in solution close to
a wall, depending on the strength of the interaction between wall and polymers. In case of a pure
steric repulsion, i.e. in the desorption regime, where there is no additional energetic interaction,
the polymers are repelled from the surface in such a way, that the segment density in the vicinity
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of the surface decreases to zero. In the other limit of strong adsorption the polymers want to be
close to the surface. Consequently, the segment density in the vicinity of the wall increases and
diverges for infinite potential strength. The adsorption and the desorption regime are separated by
the transition line, where the entropic and the energetic effect cancel such that the concentration
profile is constant. i.e. the bulk value of the concentration is maintained at the surface. The control
parameter which describes the adsorption behavior is the inverse extrapolation length 1=lex. At the
adsorption/desorption transition the inverse extrapolation length vanishes.

Since the polymer solution will lead to a homogeneous bending on the membrane, we will in the
following calculate the membrane curvature in a small curvature expansion, starting from the initial
partition function of the polymers on a curved geometry.

In order to introduce the formalism we will first investigate the simpler system of colloidal par-
ticles which interact with a large sphere, but do not interact among themselves. In the limit of pure
entropy the partition function of each particle is given by the volume which is accessible, i.e. the vol-
ume of the system subtracted by the volume of the depletion zone in the vicinity of a boundary. For a
large sphere of radius R surrounded by small colloidal particles of radius Rc this depletion volume is
easily calculated,

Vdepl =
4

3
�(R+Rc)

3 � 4

3
�R

3 = A
 
Rc +

R
2
c

R
+

1

3

R
3
c

R2

!
(9.1)

where A is the lateral area. The first term in the brackets represents the depletion volume of the half-
space, whereas the second term contains the correction due to bending. If the sphere bends away from
the particles, the depletion volume is increased. Thus, compared to the flat geometry it is favorable
for the particles to have a sphere which bends towards them.

In the following we will generalize this argument to the case of polymers, which are in solution
under the presence of a curved boundary. The polymers do not interact among each other, but interact
with the wall. Consequently the partition function of the particles separate, according to ZNp

=

[Z1]
Np=Np!, where Z1 is the single polymer partition function.
The correct calculation is done in the grand canonical ensemble, since the number of particles in

the bulk solution should in average stay constant for all strengths of the adsorbing potential. This can
only be regulated by a chemical potential. The grand canonical partition function reads

Zg =
X
Np

exp(�Np=T ) [Z1]
Np

1

Np!
= exp(�Z1) ; (9.2)

where we introduced the fugacity � = exp(�=T ). The average number of polymers is given by

hNpi = �
@ lnZg

@�
= �Z1 : (9.3)

We identify the average number of polymers with the bulk value Nb and conclude that the fugacity is
given by

� =
Nb

Z1
: (9.4)

Thus, if we calculate the free energy of Nb polymers in solution we write down the canonical free
energy which is derived from the grand canonical potential  by the Legendre transformation FNb

=
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R

Figure 9.1: Sphere of radius R in a polymer solution: The system of reference is put in the origin of
the sphere, which divides the solution into two half-spaces.

 + �Nb and find

FNb
= �T�Z1 + TNb ln�

= �T (Nb �Nb lnNb +Nb lnZ1) : (9.5)

The remaining task is to calculate the single polymer partition function Z1.
In fig. 9.1 we display a large sphere of radius R located in a polymer solution. Using this situation

we will introduce our system of reference in which we describe the polymer solution above a curved
surface in the limit of large curvature radii R. The surface lsp of the large sphere leads us to the
corresponding integration boundaries in the partition function. Shifting the system of reference into
the origin of the sphere leads to

lsp(r) =

(
R

q
1� r2

R2 ; r � R

0 ; r > R
(9.6)

where r is the lateral distance from the origin. The volume of the solution outside the sphere is thus
given by

V =

Z 1

�1
d2r

"Z �lsp(r)

�1
dr3 +

Z 1

lsp(r)
dr3

#
: (9.7)

Expanding lsp for large R the integration boundary attains lsp(r) = R� r
2
=2R +O(R�3).

Due to the symmetry with respect to the two half-spaces above and below the sphere both integrals
in the sum of (9.7) are identical. In order to calculate the half-space solution above the curved surface
we are going to omit the integral of the lower half-space. This leads to a missing factor 2 if one
compares the results we will obtain with results for the large sphere in the entire solution, see reference
32 in [87].

Shifting the origin of our system of reference in the r3 direction to r3 7! r3 + R leads us to the
partition function of a single polymer bounded by a curved surface of large curvature radius R and
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influenced by a contact potential V which is measured in units of T and characterized by the inverse
extrapolation length:

Z1 =

Z 1
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where we introduced " = 1=R. The expansion of the integral for small " yields
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The first term of the expansion is the half-space solution
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where Z(x0; xj1) is the lateral polymer partition function in the free space as given by eq. (2.22) and
Zhs(z0; zej1) is the half-space partition function as given by eq. (2.24).

Using the expression in the brackets one can define an effective radius Rc and thus treat the poly-
mer as a colloidal sphere of this radius [87], similar to the situation, in which nanoparticles interact
with membranes [103]. In the limit of total desorption this radius is given by Rc =

p
2=3�Rp. Ad-

sorption leads to a decrease of this radius until it vanishes at the adsorption/desorption transition. Due
to this analogy one expects that the curvature contribution to the depletion volume, which is propor-
tional to the size of the small particles, vanishes at the adsorption/desorption transition Rp=lex = 0. In
the adsorption regime Rp=lex < 0 the analogy to the particle radius breaks down, since the effective
radius becomes negative. However, the hard sphere-model does not take into account the configu-
rational entropy of the polymers which allows the polymer to deform in the vicinity of the curved
surface. Another important argument refers to the extrapolation length lex. As we already pointed out
the extrapolation length depends on the curvature. If one neglects the curvature dependence of lex the
next term in the curvature expansion (9.10) Z(1)1 is given by
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where we used the Leibniz formula to differentiate the integral in eq. (9.8) [55].
Analogous to the half-space part Z1f0g we split off the volume term of the polymer configuration

in the z-direction, which, after integration of the lateral part in eq. (9.11), leads to the curvature
correction
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The first term in the bracket is the change in volume for the polymer due to the bending of the mem-
brane. The second term gives the depletion volume above the curved surface.

Since the half-space partition functions Zhs of the polymer in the perpendicular direction explic-
itly depend on the extrapolation length lex there occurs an additional term if one takes into account the
curvature dependence of lex. In case of a square well potential (and the contact potential we consider
arises from the square well in the limit of vanishing range zV ) this curvature dependence is given by
lex(") = lex(1 + lex"). Therefore the inverse extrapolation length reads 1=lex(") = 1=lex � " and the
second term in the curvature contribution is

Z(1;lex)
1 = A

Z 1

0
dz0

Z 1

0
dze

�
d

d"
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�����
"=0

: (9.13)

In this equation the volume term is directly subtracted, since it does not depend on " and cancels in
the differentiation. Thus, one immediately finds
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Merging all contributions one obtains the complete single polymer partition function up to linear order
in the curvatures
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In the limit of total desorption Rp=lex !1 the contribution Z(1;lex)
1 vanishes and the single polymer

partition function of one polymer on a curved surface is given by
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which is identical to the result in [87].
If we now calculate the corresponding membrane curvature the physically important contribution

of the polymer solution arises from the change in the depletion volume V(1)depl due to bending. Denoting

V0 = Vbulk � V(0)
depl eq. (9.15) leads to

Z1

V0
= 1�

V(1)
depl

V0
� 1�

V(1)
depl

Vhs
+O(R�2) ; (9.17)

where we used the smallness of the half-space depletion volume V(0)depl compared to the half-space
volume Vhs.

Using eq. (9.5) the free energy difference of the curved geometry compared to the half-space
leads to �FNb

= TNbV(1)
depl=Vhs and to the free energy per area of the compound polymer/membrane

system

F
A = 2�M2 +

�FNb

A : (9.18)
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Figure 9.2: Polymer solution: The integrated membrane curvature versus the inverse extrapolation
length for curvature independent lex (dashed), and for the correct curvature dependence of lex (solid).

Minimization with respect to the curvature M and insertion of the depletion volume Vdepl as given by
eq. (9.15) finally leads to the curvature

M = � T

4�
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depl +�
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2
p ; (9.19)

where �b = Nb=Vhs is the bulk concentration of polymers in the half-space.
In fig. 9.2 we plot both the membrane curvature for curvature independent extrapolation length,

which corresponds to the neglect of �(1;lex)
depl and for curvature dependent extrapolation length. In both

cases the limit of total desorption is identical. The membrane bends towards the polymer solution.
The curvature in this limit is

Mdes = � 1

24

T

�
�bR

2
p : (9.20)

As one concludes the polymer solution behaves opposite to the case of anchored polymers, where
the membrane bends away from the polymers in the desorption limit. The physical reason is that
the anchor situation is governed by the change in polymer configurational entropy due to bending,
whereas the solution is additionally governed by the difference in the translational entropy of each
polymer due to the bending. If the membrane bends towards the solution the volume of the depletion
zone is decreased.

In the limit of strong adsorption the membrane bends away from the polymer solution in order
to increase the adsorption volume above the membrane surface. This bending, in principle, does not
saturate and therefore diverges.

The basic difference between the two cases of curvature dependent and independent lex occurs in
the vicinity of the adsorption/desorption transition. In the curvature independent case, the membrane
bending changes its sign at the adsorption/desorption transition. However, in the curvature dependent
case the sign of the membrane curvature changes already at a value of the inverse extrapolation length,
which is larger than zero, Rp=lex � 1:27.



Chapter 10

Conclusions and Outlook

Membranes, which are decorated by polymers, are perturbed by the presence of the chains. Both
anchored [43, 46] and non-anchored [87] polymers influence the shape, curvature and rigidity of the
membrane. In chapters 2 to 8, we study the influence of anchored polymers on the shape and curvature
of the membrane.

The initial partition function of the compound system contains the fluctuating membrane surface
and the fluctuating polymer. In the perturbative calculation presented in chapter 2, the partition func-
tion is expanded in powers of deviations of the local membrane height from the flat reference state.
Since the polymer partition function solves the corresponding Schrödinger-type equation, the degrees
of freedom of the polymer can be integrated out.

In the resulting partition function the polymer part leads to a location-dependent pressure of the
polymer. The polymer pushes the membrane away from it, but pulls at the membrane in the anchor
point. For large distances from the anchor the pressure vanishes exponentially, whereas close to the
anchor it diverges. Since there are no external forces applied on the compound system the polymer
can not provoke a center-of-mass motion, and the integrated pressure vanishes.

The pressure allows us to calculate the explicit shape of the membrane under the influence of the
polymer. Far away from the anchor, the membrane is not affected by the polymer and approaches
a profile of vanishing curvature. Since the polymer interacts with the membrane on a range given
by its end-to-end distance, the membrane is strongly perturbed in the vicinity of the anchor point.
The resulting shape is a cone and consequently leads to a sharp bend with diverging curvature in
the anchor point. However, the integrated (spontaneous) curvature of the membrane is finite. The
shape for large distances is a catenoid, which does not contribute to the integral anymore [54]. The
integrated curvature of the membrane is directly proportional to the average perpendicular distance of
the polymer-end-point in the half-space.

In order to check whether the perturbative approach is justified, we perform extensive Monte Carlo
simulations which are compared with the analytic predictions in chapter 3, especially the membrane
shape profile. In order to avoid the influence due to the periodic boundary conditions, the lateral size
of the membrane is chosen large compared to the polymer end-to-end distance. Furthermore, the
membrane is confined by a harmonic potential. The simulation results depend on both the polymer
and the membrane discretization. The continuum limit is approached for finer discretizations.

Since our perturbative approach extends to linear order, the effect of several anchored poly-
mers is given by superposition of the single polymer effects. Therefore, the curvature due to poly-
mer/membrane interaction is proportional to the surface coverage density of polymers. In chapter
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4, we also consider the effect of polymer/polymer interactions. The membrane-induced pairwise
interaction between polymers is attractive. However, the attraction takes place in a range where poly-
mers intersect. Therefore, steric repulsion of the polymers is dominant and the attraction can be
neglected [54]. The repulsive polymer/polymer interaction leads to a curvature contribution which
is quadratic in the coverage density. The predictions on the membrane curvature are compared with
experiments, in which vesicles are covered by anchored polymers [74]. For small coverage densities,
one expects a regime dominated by the polymer/membrane interaction, whereas for larger densities
the polymer/polymer interaction becomes dominant.

The above method is generalized to polymers, which are anchored with both ends, and to polymers
which translocate the membrane. In the first situation, the polymer acts effectively as a single anchored
polymer, if the anchors are close together. For large distances, the polymer acts as a spring, pulling
the membrane upwards. A polymer with freely diffusing anchors does not induce curvature on the
membrane.

The translocation of a polymer is interesting from a biological point of view since it deals with
the problem of DNA passing through the cell membrane. We consider the effect on the shape during
the translocation, given by superposition of oppositely anchored polymers of different length. Conse-
quently, if half of the polymer has passed the membrane, the average profile is flat.

Application of lateral forces on the membrane leads to an additional tension contribution in the
membrane Hamiltonian. The tension term changes the behavior of the membrane from the limiting
case of the catenoid for large anchor distances to the case of an exponentially decaying, finally flat
profile. Perpendicular forces which are applied to the polymer end point, lead to a change in the
polymer configuration and to corrections of the membrane profile.

The adsorption of anchored polymers due to short-range interactions is studied in chapters 7 and
8. First, a pure contact potential is considered. The adsorption leads to a decrease in the entropically
induced initial membrane curvature. The integrated curvature as a function of the inverse extrapolation
length is monotonic and vanishes in the limit of strong adsorption, where the average membrane shape
is flat. The polymer which is located directly on the membrane surface can not exert any pressure in
this limit. Only in the case of non-vanishing anchor distances, the polymer induces a membrane
bending towards it in the limit of strong adsorption. The result shows that it is necessary to take into
account the curvature dependence of the extrapolation length. Furthermore, a square-well potential is
considered, which leads to corrections to the contact potential. In general, the finite potential range
increases the membrane curvature, especially for strong adsorption, where the polymer can still move
in the well above the membrane surface. In the limit of large potential ranges, one always recovers
the limit of total desorption, since the polymer of finite size is not affected by the potential gradient
anymore. The results are in good agreement with corresponding Monte Carlo simulations [92].

In the final chapter 9 we consider free polymers in solution above the membrane. The curvature of
the membrane is now governed by both the translational and configurational entropy of the polymers
and not, as in the anchored case, only by the configurational entropy compared to the flat geometry.
In case of desorbed polymers in solution, the membrane curves towards the polymers [87], since the
depletion volume, in which the polymers cannot enter, is decreased. In the limit of strong adsorption,
the membrane bends away from the polymers in order to increase the volume in which the polymers
can adsorb on the surface.

Future work will consider more realistic potentials, especially the effect of long-range interaction,
in which the interaction energy is integrated over the whole membrane surface. In addition, the effect
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of excluded volume in the polymer can be considered perturbatively, which might lead to an increase
of the induced membrane curvature, since the polymer size is increased and the integrated curvature
is proportional to the end-to-end distance of the polymer. It is furthermore of major importance to
compare the theoretical predictions with experiments, in which polymers are anchored to vesicles.
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Appendix A

Schrödinger-type Equation

Here, we derive the Schrödinger-type equation for the polymer chain, which actually corresponds to a
diffusion problem, starting from the polymer Hamiltonian with an external potential V acting on each
monomer. For simplicity, but sufficient for our needs, we restrict the derivation to the z-direction. The
Hamiltonian reads

H =

Z 1

0
ds T

"
3

2R2
p

�
dz

ds

�2

+
V (z)

T

#
: (A.1)

The internal length of the polymer corresponds to the time in this diffusion process. We now discretize
the Hamiltonian and end up with

Hd =
X
i

�s T

"
3

2R2
p

�
z(si)� z(si+1)

�s

�2

+
V (z(si+1))

T

#
(A.2)

which we can rewrite into

Hd = T

X
i

�s H(z(si); z(si+1)) : (A.3)

The probability of the segment (i + 1) being located at position z given the condition that segment i
is located at position z0 is now

Z(zjsi+1) =

Z
dz0

p
3p

2Rp

exp
���sH(z0; z)

� Z(z0jsi)
= exp

�
��sV (z)

T

�Z
dz0

p
3p

2Rp

exp

 
� 3

2R2
p�s

(z0 � z)2
!
Z(z0jsi) : (A.4)

The exponential in this integral is called transfer matrix. Expanding Z(z0jsi) around z yields

Z(z0jsi) = exp

�
(z0 � z)

@

@z

�
Z(zjsi) : (A.5)

Substituting �z = (z0 � z) we find

Z(zjsi+1) = exp

�
��sV (z)

T

�Z
d�z

p
3p

2Rp

exp

 
� 3

2�s

�z2

R2
p

+ �z
@

@z

!
Z(zjsi) : (A.6)
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If one solves the integral one ends up with

Z(zjsi+1) = exp

�
��sV (z)

T

� �
��s

2

�1=2

exp

 
�s

R
2
p

6

@
2

@z2

!
Z(zjsi) : (A.7)

The next step is to expand the exponentials in powers of �s up to first order. We neglect the term
(��s=2)1=2 which leads to a shift in the origin and scale of the free energy and does not change the
final result. The expansion yields

Z(zjsi+1) =

 
1��s

V (z)

T
+�s

R
2
p

6

@
2

@z2

!
Z(zjsi) : (A.8)

In the limit of �s! 0 we find the Schrödinger-type equation

@Z(zjs)
@s

= �Ĥ
T
Z(zjs) (A.9)

with the Hamilton operator

Ĥ = V (z)� T
R
2
p

6

@
2

@z2
: (A.10)



Appendix B

Limiting Behavior of Bessel Functions

In this chapter, we summarize the behavior of some Bessel functions and Bessel related functions
which we use in the main part[55, 57, 104].

For small arguments, the series expansions of the Bessel function of the first kind J�(z) and the
modified Bessel function I�(z) are given by

J�(z) =

�
z

2

�2 1X
k=0

(�z2=4)k
k! �(� + k + 1)

and

I�(z) =

�
z

2

�2 1X
k=0

(z2=4)k

k! �(� + k + 1)
: (B.1)

In particular one has

J0(z) = 1� 1

4
z
2 +O(z4) ;

I0(z) = 1 +
1

4
z
2 +O(z4) and

I1(z) =
z

2
+

1

16
z
3 +O(z5) : (B.2)

The asymptotic expansions for large arguments yield

J�(z) �
r

2

�z

�
cos(z � 1

2
�� � 1

4
�)

�
(B.3)

and

I�(z) � exp(z)p
2�z

 
1� 4�2 � 1

8z
+O(z�2)

!
: (B.4)

The Thomson functions ker and kei are related to the modified Bessel function K0 via

ker(z) + ikei(z) = K0(z
p
i) : (B.5)

For small arguments the series expansion of kei leads to

kei(z) =
z
2

4

�
1�  + ln

�
2

z

��
+ O(z4) (B.6)
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where  is Euler’s constant.
The asymptotics of kei for large argument are given by

kei(z) �
r
�

2z
exp

�
� zp

2

�
sin

�
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2
� �

8

�
: (B.7)



Appendix C

Inverse Laplace Transformation

The inverse Laplace transform is given by the complex integral

Z(z0; zjs) =
1

2�i

Z �+i1

��i1
dt exp(st)G(z0; zjt) : (C.1)

Note that it is important to introduce a positive � in order to ensure that the initial Laplace transfor-
mation, defined in 7.16, is a convergent integration. In fact, one obtains the final result in the limit
� & 0.

The method, which we use for the solutions of the adsorption in a contact potential and in the
square well potential, is easily demonstrated for the Greens function of the polymer in free space, as
given by G(z0; zjt) =

p
6=2

p
tRp � exp(�

p
6t(z� z0)=Rp). The corresponding partition function is

Z(z0; zjs) = lim
T!1

1

2�i

Z +iT

�iT
dt exp(st)

p
6

2
p
tRp

exp
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p
6
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: (C.2)

Substituting t0 =
p
t leads to

ZT (z0; zjs) =
1

2�i

Z T (1+i)

T (1�i)
dt0 exp(st02)

p
6

Rp
exp

 
�t0(z � z0)

p
6

Rp

!
(C.3)

where we used the correct definition of the square root in the complex plane. The resulting shift in the
integration path is depicted in figure C.1. Substitution of � = it

0 and neglecting the imaginary shift in
the exponent (Goursats lemma [105]) yields

ZT (z0; zjs) =
1
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exp

 
� 3
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2
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Using the relations

(1� i)

Z 1

0
dx exp(�ix2) =

r
�

2
(C.5)

we in the limit T !1 end up with

Z(z0; zjs) =

r
3
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1
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exp

 
� 3
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2

R2
p
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Im[t]

Re[t]

Im[t]

Re[t]

Figure C.1: The shift of the integration path in the complex plane as used in the inverse Laplace
transformation.

In the same formalism it is easy to show that the inverse Laplace transform of Ghs(z0; zjt) =p
6=Rp

p
t � sin(

p
6t z0=Rp) sin(

p
6t z=Rp) leads to the half-space partition function

Zhs(z0; zjs) =
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3
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1
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Appendix D

List of important symbols

am membrane discretization
ap Kuhn length
A area
Aan area per anchor molecule
AM integrated membrane curvature
b2 second virial coefficient
C correlation function
En discrete energy levels
F external force
F free energy
G(z0; zjt) polymer Greens function with energy �t
G Gaussian curvature
(x) generating field
�b bulk concentration of polymers
�p polymer coverage density on the membrane
Hme membrane Hamiltonian
Hp polymer Hamiltonian
k wavenumber of the Greens function outside the potential range
K membrane kernel
� bending rigidity
�G Gaussian bending rigidity
l membrane height
L lateral membrane size
lex extrapolation length
lme membrane thickness
� fugacity
M mean curvature
� chemical potential
N monomer number of the polymer
Np number of polymers
P polymer pressure
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q wavenumber of the Greens function inside the potential range
r(s) spacial position of monomer s
R curvature radius
Rp polymer end-to-end distance
Rve vesicle radius
s internal (contour) length of the polymer
Sp entropy of the polymer
� membrane surface tension
t negative energy �E (notational convenience)
T absolute temperature (generally in energy units)
v2 harmonic potential parameter
V interaction potential between polymer and membrane
V volume
w depth of the square well potential
w(x; z) polymer segment density
x lateral directions x1, x2
�k parallel membrane correlation length
�? perpendicular membrane correlation length (roughness)
z perpendicular direction
zV range of the square well potential
Zp polymer partition function
Z free polymer partition function
Zhs half-space polymer partition function
Zk polymer partition function in the lateral directions
Z? polymer partition function in the perpendicular direction
Zme membrane partition function
Zg grand canonical partition function
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