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Abstract

This paper deals with the Mie scattering kernels for multi-spectral data. The kernels
may be represented in form of power series. Furthermore, the singular-value spec-
trum and the degree of ill-posedness in dependence on the refractive index of the
particles are numerically approximated. A special hybrid regularization technique
allows us to determine via inversion the particle distributions of different types.
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1 Introduction

Aerosol particles affect life on earth in several ways. They play an important
role in the climate system; the effect of aerosol particles on the global climate
system is one of the major uncertainties of present climate predictions. They
have a major role in atmospheric chemistry and hence affect the concentrations
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of other potentially harmful budget, in particular in the UV-B part of the
spectrum. Moreover, one reason for the ozone depletion is the chlorine (Cl) in
CFCs in the stratosphere. On the other side, polar stratospheric clouds (PSCs)
a type of aerosol particles are believed to be active in precursor stages of ozone
depletion in the winter-cold stratosphere by catalyzing heterogeneous chemical
reactions on their surface and by redistributing HNO3 through sedimentation
[22] and [23]. Such particles can be produced by volcanic eruptions in the
stratosphere or by environmental pollution of the air above industrial areas.
At ground level, they can be harmful, even toxic, to man, animals, and plants.
Because of these adverse effects that aerosol particles can have on human life,
it is necessary to achieve an advanced understanding of the processes that
generate, redistribute, and remove aerosol particles in the atmosphere. The size
distribution of these cloud particles is an important parameter for quantifying
those mechanisms, because it relates the total surface to the total mass. This
distribution can be determined either by in-situ measurements with optical
particle counters or by remote sensing with lidar (light detection and ranging)
equipment [5], [6] and [20]. From the optical data of lidar measurements it
is necessary to derive the microphysical parameters of the particles, e.g. the
knowledge of the particle distribution is necessary to model processes involving
ozone chemistry [18]. The exact theory for scattering by a spherical particle
which radius is comparable to the emitted wavelength of the lidar set up is
solveable from Maxwell’s equations and Mie theory [19], [16] and [7]. Similar
considerations can be found in [2]. They deal with multi-angular properties by
using full angular range for the data and show that the kernel function may be
expanded in spherical harmonics. This treatment is applicable to laboratory-
based experiments where a sample or detector may be rotated through all
angles. We consider real-life-based remote sensing experiments by using multi-
spectral properties and deal with the Mie scattering kernel. In [4] they deal
with multi-spectral turbidity measurements but the work is limited to the
anomalous scattering approximation.

1.1  Mathematical model

The mathematical model of such a lidar measurement process consists of a
system of two Fredholm integral equations of the first kind for the backscatter
and extinction coefficients 84" and o4

r1

AN, 2) = /Kw(r,)\;m) n(r,z) dr = /7‘[‘ r? Q. (r, \;m) n(r,z) dr, (1)

0 0

r1

(N, 2) = /Kext(r,)\;m) n(r,z) dr = /7‘[‘ 2 Qert(r, \ym) n(r,z) dr, (2)
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where r is the particle radius, m the complex refractive index, ro and r;
represent suitable lower and upper limits of realistic radii, A is the wavelength,
Ao the smallest and A; the largest wavelength, 2 is the height, n the particle
size distribution, K, the backscatter and K.,; the extinction kernel. The kernel
function reflects shape, size, and material composition of the particles. The
following formulas hold for extinction and backscatter coefficients [7]

1 00 o0
Qr = 72,2 Z_:(Q” + 1)(=1)"(an = ba)[*, Qe =

+ 0,),(3)

where k is the wave number defined by k& = 27 /X and «a, and b, are the
coefficients which we get from the boundary conditions for the tangential
components of the waves. Now equations (1) and (2) are formulated into a
more specific and more solid form

FAST()‘VZ) = /I(;rj/ext(rv)‘;m) U(T,Z) dr = /437 Qf/el’t(rv)‘;m) U(T,Z) dT, (4)

where the v(r, z) term is the volume concentration distribution, finally, we are
looking for. I'4¢" stands for 34" and/or o, respectively, depending on the
measurement data. The determination of the particle volume distribution v
from a small number of backscatter and extinction measurements is a nonlinear
inverse ill-posed problem since the refractive index m in the kernels K
an unknown, too.

7 /ext is

1.2 Ill-posed problem and regularization

The equations (1), (2) and (4) are ill-posed on all three counts (existence,
uniqueness, and stability), where stability means a solution that changes only
slightly with a slight change in the problem [10]. We consider an operator of
the form Tx = y where T': Hy — H; is a compact, linear (but not necessarily
self-adjoint) operator from a Hilbert space H; into a Hilbert space Hj. For a
bounded linear operator T a solution x € H; of the equation T'x = y exists
if and only if y belongs to R(T), the range of T'. Since T is linear, R(T) is a
subspace of Hy, which in generally does not exhaust Hy. We may enlarge the
class of functions y for which a type of generalized solution exists to a dense
subspace of function in H,. This accomplished by introducing the idea of a
least squares solution. A function x € H, is called a least squares solution if

ITe — yll = inf{||Tu — yl| : we H}. (5)



The set of all least squares solutions is closed and convex. Therefore, there
is a unique least squares solution of smallest norm which we call generalized
solution. The mapping T'T that associates with a given y € D(TT) = R(T) +
R(T)* the unique least squares solution having smallest norm, Ty, is called
the Moore-Penrose generalized inverse of 7. In our scheme T is then the
mechanism which provides a unique solution for any y € D(T). In this sense,
T settles the issues of existence and uniqueness for generalized solutions. The
generalized Pseudoinverse operator 77 : D(TT) — H, is a closed densely
defined linear operator which is bounded if and only if R(T') is closed. Since
both lidar integral operators are compact, each of them can have closed range
if and only if R(T') is a finite dimensional subspace of Hz. This is not the case
just under the given lidar integral kernels. Therefore, R(T') is not closed so T'f
is unbounded, i.e. T is discontinuous. Very small changes in the right hand
side y(A) can be accounted for by large changes in the solution z(r). That the
instability is fundamental, and not just a consequence of some special form of
the kernels, follows from the Riemann-Lebesgue lemma.

If we wish to obtain a well-posed problem we need a so called regularization.
In general regularizations are families of operators

T, : Hy — H; with lin%Twy = Ty forall ye DT , (6)
y—

i.e. the convergence is pointwise on D(TT) [17]. The parameter v is the so-
called regularization parameter. In the case of noisy data y® with ||y —¢°|| < 6
we determine as solution

2 = T, o (7)

~

However, the total error consists of two parts , i.e. two summands,

¥ -z = Tw(ya -y + (I - TT)y . (8)

The first part is the data error and the second part the approximation error
or regularization error. In generally if ¥ — 0 the approximation error tends
to zero (with respect to the H;—norm) while the data error tends to infinity.
Therefore, the total error can never be zero and we are in a dilemma. We have
to look for an "optimal” regularization parameter v which minimizes the total
error.

The paper is organized as follows. In section 2 we prove some convergence
results and the representation in power series. In section 3 we determine
an approximation for the singular value expansion and for the degree of ill-
posedness. Finally, in section 4 we show by example some inversion results via
a specially developed hybrid regularization technique.



2 A representation of the lidar-operators kernels

In this section the lidar-operators kernels are represented in the form of power
series with respect to the product © = rv of the particle radius and wave
number, respectively; it may be useful by practical calculations. Apart from
anything else this representation points to the connection with the classical
moments problem.

We start with some notations. Put v = 27/X, v; = 2n/A_; (1 = 0,1), u =
m, Hy = Ly(ro,7m1), Hy = La(vo,11). Let us consider two families of integral
operators T*) : H; — Hj, and Te(;;) : Hy — Hy which kernels are

KW (r,v) =m0 3 (20 + 1)(=1)" (@, — ba)|
n=1

K& (r,v) = 200723 (2n + 1) Re(a, + b,) =2r0"2Re Y (2n + 1)(a, + b,),(9)

n=1 n=1

respectively. The restrictions on the real variables r, v and on a complex pa-
rameter ¢ may be written in the form

0<x<oo, u> ¢ M. (10)

where z := rv, ¢ > 0 is an arbitrary small fixed number and M, denotes the
domain {u : |“M;1| < 2 — ¢} on the complex plain. (For the lidar operators
problem the values of parameter y lie in fact strictly inside M.).

The functions a,, b, (n > 1) in (9) are expressed by Sommerfeld spherical

harmonics ¢ and ( (see (7.2.6; 44-46),[3]) as follows

o oo = L)L) = )0 )

" i (1204 () — Ca(@) ()

o bl (e) — (@) ()
b = nl5 ) = 2 () (@) — (@) i) (1)

where the denominators in (11) do not turn into zero in the definition domain
of the kernels.

Lemma 2.1. The functions a, and b, may be written as follows

(@) , u® 1 12)
Ap = = - - , Z )
( )—I—wg) uglb)—l—w?g)



ult) = (1 = 1)(n 4+ 1) Jng1/2(2) Jngrja(pe) — p2aJnyapa(€) Jngj2(pe)+
+M$Jn+1/2(x)Jn+3/2(Mx)v

o) = (4 = 1)+ DY¥op1 () msa/a(12) — 120 Yogpa() oy ol +
+uaYot1/2(2) Jntss2(p),

ngb) = /«LJn+1/2($)Jn+3/2(/~L$) - Jn+1/2(/~651?)Jn+3/2($)7

v = uYopp2(2) Jngssa(pe) = Juprye(pe)Yorsa(z), no> 1. (13)

Here J and Y denote the Bessel functions of the 1st and the 2nd kind, re-
spectively; v(¥), v®) and the denominators in (12) do not turn into zero in the
definition domain of the kernels. Put yo =1 =14 0-2 € M.. It should be
noted that in virtue of formula (7.11;35), [3], and by definition (13) we have

foreachn > 1 and z > 0

2
ul?) (@3 o) = ull (w5 o) = 0 30 (ws o) = = v(ai o) =

Theorem 2.2. Both of the series in (9) are uniformly (=absolutely) conver-
gent in every bounded subdomain of the definition domain (10).

Proof. Let the inequalities z < p < oo, || < M < oo be valued. For n > 1
one can write

| 425 |:jr“>| | %5 | 25|
|an| = u(a)n ] < i |bn| = u(b)n ) < u(b)n . (15)
E T E Ty TP T

For the sake, the awkwardness to avoid, put

Jny172(z) = Jnyar2(z) = ag;
n+1/2( 51?) 51, Jn+3/2(/~bl') = [a;
n+1/2(51?) Yn+3/2(=’1?) =72
T
so that by (12)
W (P=) ()i fr—peasfiturarfs _ oy | apAel
oA T (2=t Br—p2zr2Biturmife T 12 “A 1



Now we have

a1, b B2
|ﬁ| EY Ta HAlL, |%| EY M
R E-TRE AR il 152 -1 52 =11

(16)

For each half-integer Bessel function J,.41/2(2) the relations (3.62)-(3.67), [21],

imply the following two-side estimations

2/2 /1-|—1/2

2/2)54-1/2
‘F (k+3/2)

‘ X 01, < |Juy12(2 ‘ = ‘m

‘ X 027,1,

where £ are integer and Oy ,, O, , are two real sequences such that
1im|ﬁ|_>oo Ol,ﬁ =1-, 1im|ﬁ|_>oo 027,1 =1++.

Put Oy, = min[O(e1), O(B1), O(m)]; Oz = max[O(ey), O(B1), O(11)],
then

hrn|/1|—>oo (91,/1 = 1_7 11rn|/1|—>oo 627/1 = 1+7 (17)

and the following two-side estimation are obtained

oo | O1n < [ou| < [Fk7ar| - 2
oo | O1n < [oo < [Fk7ar |- Oz
% 01, < |B] < % - Og.n; (18)
Uity | O < oo < |SFEETy |- 02
% 01, < | < % O,
% cO1, < 2| < % - O .
Thus we have for the terms of (16)
22043 O az| < p2n+d O
) DTE  Oom = |7 | S @B @t DI Orn
2|g-||f03 : 8_;% < g_? < 2|g-||f03 : g_?f;
| 7 (19)
T 8;—:2 S %l S wr 8?25
R e A Bl




By virtue of (19) and (10) we have

© © —1)(n+1) © 2_1)(n+1

1—znﬁ1'@f"|A|>1 e oo | Ay | > 1 gy Qe (Ll 4
| |) =z ®2n|(u —1)(n+1)|_ z ‘®2n| |_ n+1 _92_,n|(2—1)|_
Mﬁl 2n4+1 Opp px 2n+1 Oy, ' ub T 204l @1, 7

.®2n| | >1— 2EL .%|(M2—1)|_ e G2, 2z O2n _ | _ ntl
2n—|—1 O1,n ' 1b 2n4+1  O1p 2n+1 ©O1, 243 O14 2n+1
O [u2—1] @2 ] (%)2
O1,n |12 (2n+1)(2n+3) O1n

Due to the the relations (17) one can choose N, ; so that

n ®2n| _1| _ . 1’2 ®2,n
it o el S (U24e/N)2 =) =1 -/% Grmiaa  (65)" <
) <€2/8 n>N€1

p? . (91 n
(2n+1)(2n+3) Oz p

This estimation and preceding inequality imply

L= 52y 22 |Al =1 — |2]|A] = || 2A] - 1] > 2/8 > 0. (20)

2n-|—1 @1777,

Now using (19) one can estimate |A| as follows

|A] < ‘w‘ _|_‘ <ot (d1) | e Oon o 0671(n+1) 4z Oun

—  |u?| z 2n4+3 O, — z 2n4+3 O

w1

where by reason of (10) the constant C.; = 2 — ¢ depends only on the fixed
e,p and M but does not depend on u € M., n and = > 0.
From (19) we have

1’2 @1771 6%7717

ol 141 < G

and by virtue of (17)

(2n +3)(n+1)

”
12

] 1< ce

where C, 5 > 2 and does not depend on z,n and .

Now we have

o =jel) 2l A +1 < O, 2t2fetl)

|A| < n+1 . ®2,n _I_ 1’2 . G)g,n
2n+l O, (2n+1)(2n+3) ©7F

uﬁl

2_ n
EAE |w+wl|_ n

2

Using this estimations we obtain from (16), (19), (20) and preceding inequal-
ities that for large n the following inequalities are true

|a1 -|Al+1 2203

X AT S Senrnp

ul®)
“n-| = 0. Now the series Y 02, (2n + 1)a, absolutely con-
(a)

verges since in view of (15) we have: |a,| < |“(£l—a)|(1 — |*%5]) while the series
Uy, Uy,

p2rtl
A e+ [(2n—1)1]2"

. 0573 (2n—l—3)(n-|—1) S CE

r2e2

Therefore lim,,_,o |*




2n+1 .
o] P
> e G 18 convergent.

Now we obtain from (19)

(07 ®2 n
lul - 2|2 < |6l 53 Ce s
On the other hand from (19) we have as well
g |12 |22 M2. 2
1] - wlla] < (2n—|—ul)(2n—|—3) @2 =< Ceg 2n—|—1)(§n—|—3)7

and the term in right hand side converges to zero so that from (16) and (19)

follows
ul?

p2"+3 ®2,n . Ca,7+1 05,8
NG
n

(@n+3)[2n+ D!~ ©1 M2)2 O3, < (2n+3)[(2n+1)1]
TN o2

=10

converges to zero as n — 0o. From the preceding estimation

. . . (b) (b)
and from the second of the inequalities (15) obtain |b,| < |%|(1 — |%|)

(b)
so we have ‘“(Lb)
Un

thus the series 302 (2n + 1)b, absolutely converges. A

Theorem 2.3. Both of the functions 1/2[&”6(52 and 1/2[&”7(r“) may be represented

in the form of power series with respect to z = rv namely 3222, ’y(ext)

G and

yis N . .
>0 ’y]( ):1;], respectively, where v’s are some real coefficients.

Proof. By Theorem 2.2 the Taylor expansions in powers of y — ug for both
of the functions in Theorem 2.3 converge uniformly in the domain (10). Our
goal is to prove that each of them has coefficients which are entire functions,
i.e. power series, with respect to . Note that if it is the case then both of the
sums on the right hand side of (9) may be obviously represented in the form
5% (520 15 07) (1 — o) and £2 (£:291727) (1 — po)’, respectively,
with some Complex ’y’s Then Re(}...) and |3 ...|> have to be represented

in the form }°72, ’y] Vi and 220 ’y]( ™) z?, respectively, with some real 7’s so
Theorem 2.3 follows.

For an arbitrary function h = h(z;u) we put A(-® = 0 for each k > 1;
h©® = h, hY) = b/ denotes the derivative of h with respect to p; h*¥) denotes
k-th derivative, k > 1. Fix a positive integer n. In what follows it will be clear
from the context, what is meant by wu(z;u) : wl®(z; ) or ul®(z; u), and the
same for v(z; p). Define the analytical functions g = g(:z;,/,c),f = f(z;p) and
the sequence of analytical functions Fy = Fi(z; 1),k > 1, as follows

f= ﬁ; Fy =g, Frp = Flg+1) —kd'Fi; k> 1,

hence by (14) g(x;uo) = Fi(z;po) = 0 for every & > 0. By induction the
following two formulas are valid for each k£ > 1

1e. f(k) = (gi')klﬂ‘-



k—1
2°. Fipa = Fr(g+1)+ E_l(—l)m(k—er1)m(9’)mFé_m(g+i)+(—1)kk!(9’)kF1,

where (k — m + 1),,, denotes Pochhammer symbol

(k—m+)p=Ck-m+1)(k—m+2)---(k—2)(k—1)k, m > 1.

Because Fi(x; o) = g(@; o) = 0 we have

Fiepa (23 10) = i (F(3 o) + S5 (= 1)™ (k= m+ )¢/ (23 110)) ™ F (25 10)).
Substituting in 1° obtain

FO (5 o) =
k=1 (21)
(=) (Pl o) + 5 (=)™ (k =+ D)9/ (3 10))™ B (3 1))

For an analytical function h the Taylor expansion at the point pg has the form

o %h(k)(x; o) (M — Mo)k so we have to show that f*)(z; uo), k > 1, are the
entire functions with respect to x. By induction one can easy derive that any
term of the recurrent sequence { F(x; 110) }52, is represented in the form of sum
of products (with some complex coefficients) of derivatives of various degrees
of the function g which are calculated at the point po. Thus (21) shows that
only entirety of the functions ¢ (z; uo),k > 1, is to be proved.

By the Leibniz formula k—th derivatives of the function g = * may be written
as follows

g™ = u(1/0)® + (lf) w'(1/v)E=Y 4 @ W(1/o)F=2 4o (1 )v).

Therefore it is sufficient to show that the functions u(¥) and (1/v)®*) are entire
for every k > 1. Here the properties (14) are very important. Using the relation

Yn—|—1/2 - (_1)n_1j—n—1/27

(see [3], (7.11;5)) one can rewrite (13) as follows

ul? (25 1) = (02 = 1) (n 4 D) Jngaja(@) Jugryo(pe) = pPaTnyasa(@) Jntj2(pa)+
2 nt1/2(2) Jntasa(pa),

o{(w; 1) = (=1)" 1 (42 = 1)(n + 1)Jonmra(@) Jngrjo(pz)+
120 o () Tsa () + pd oo (2) Jsapa(p))

10



7(16)(1'; M) = /«LJn+1/2($)Jn+3/2(/~L$) - Jn+1/2(/~6$)Jn+3/2(51?)7

o (w5 ) = (1) (e naj2(2) ngspa () + Jnir o () nspa() )

<

(22)

For the sake of convenience by next calculating we rename the factors not
containing p as following

(n+ D) Jngrya(z) = C1; wJngsp(e) = O wngrpa(z) = Cs.

so that

ul? (@ 1) = (1P =1)CrJppaja(p) = p* Codyr ja () +pCad g () = (Crpe® —
C1 = Cop®) g1 2(pz) + pCsdpyspa(pa).

Denoting €'y — Cy = (5 obtain

ul?(z; 1) = (Copt® — C1)ns1/2(px) + pCsdniza(pe).

Let us calculate the k—th derivative of the function u{®(z;u), k& > 1, at the
point po. By induction consequently obtain

(22 1) (110) = AL (O = o) apalp))* () +

+ Az (C1 = O)[Jngaja(pe)] D (u ) A - Cal g pa(n)]) P (1) +

+ AP Coldnpaga(uo)]FD (o) + AL Ca [ papa(p)) ™ (o),

where A; ) (j = 1,2,3,4,5) are some real coefficients. Replacing Cy, C3, Cs
one can it rewrite as

(ul (2,))® (o) = AP (0 + 1) T2 (2) [ o2 ()] 52 ()
—Agk)fl?t]nw/?(t’l?)[Jn+1/2(/~“1/')](k_2)(/~60)‘|‘
+ A (0 4+ 1) g2 (2) g 2 ()] 5= (110
—A(zk)wjnw/z( M ngry2(p)] 1 (o) —

D2 pap2(x 1)) B (o) + AP @ T (@) [Ty (p)) 7D (10)+
+ A 2T 017 p)]™ (ko)

(23)
() [Snt1/2(
(z)] n+3/2(

One can similarly obtain the following formulas

(03 1) 10) = (1) (B (1 4+ s (@) s )] () +
+BO 2 aa () g2 (1) 42 (p0)+

+ B (0 + 1)J_nm12(@) [ o)) F= (1) +
-|-B§k):z;J_n_3/2($)[Jn+1/2(/~0=’1?)] Y(po)+

+ BBz oa(2)[ T2 (1) P (o) + B wd 1) [Jngaya(ua)) =D (o) +
-|-B§k):z;J_n_1/2($)[ n+3/2(/~bl')] (MO))

11



(i (5 1)) (o) = ka2 () [Tugaga(p)] =1 (p0) +

(25)
Fn1/2(€) [ nyaya ()P (o) — Tngaja(@)[ g ya(pe)]® (po),
(025 1)) B (o) = (=1)"~" (kT n1/2() [ Tusaya(m12)] =D (ja0) + 26)

1 /2(@) [ Tngapa(p)) 9 (o) + J—n—3/2(l’)[Jn+1/2(/~6$)](k)(/~60)) :

Our next goal is to prove that the minimal power order of the variable z in
the terms of the power series for [J,41/2(uz)]® (o), k& > 1, n is integer, is
equal to n 4+ 1/2 therefore it do not depend on k.

Using the recurrence formula
JU(z) = 1/2 (Jroa(2) = Jrga(2))

(where 7,z are two arbitrary complex numbers, see [3], (7.2.8;57)) one can
obtain by induction the following one

(k) . :
(JT(Mx))M = (x/Z)k(JT_k(/,LJ}) — AIJT—(k—2)($) + [XZJT—(k—4)(M$) e
(=) Koy Jr g o2y () + (—1)’“J7+k(/,¢:1;)).
where K; are integers, j = 1,---,k — 1. It follows immediately from the stan-

dard representation of Bessel function in the form of power series (see e.g.[3],
(7.2.1;2) that for the case of half-integer 7 = n + 1/2 (n is integer) and for
i = po the term above which contains the minimal power of z is equal to
(x/2)%J, _i(z). Moreover this power may be calculated as following

(2/2)F Tpg12—p(2) = (z/2)F(z/2)" 127k m'r((;ﬂr;z(f/,ﬁ;rl) = (z/2)"1/2.
IS —1)™m(z/2)™
m=0 m!F((n—I—)l/Q(—k_gm_I_l) .

Therefore our assertion is true.

Returning to the (23)-(26) one can easy see that every summand of the right
hand side contains x with the minimal power 2n + 1, 0, 2n 4+ 2 and -1 respec-
tively. Therefore it is shown that (u{®(z;u))*) (o) and (ul®(2; 1)) *) (uo) are
entire with respect to « with minimal powers of & which are equal to 2n + 1
and 2n 4+ 2, respectively.

Now we are going to prove that (1/v{® (x;u))® (o) and (1/0® (25 1)) * (o)
are entire with respect to = as well, and calculate the minimal powers of x
among the terms of the corresponding sums.

As the reasons for (1/v{®(z;u))® (1) and for (1/v® (z;u)) (1) are the
same we use in (27) for both of the functions the notation (1/v(z;u))®. By
induction it is easy to show that the following general representation is true

= ZAiomik(v)(iz()ii))h'"(U(k))ik (27)
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where A’s denote some real coefficients while the integer exponents 7;’s satisfy
the conditions 0 < 29,121, ..., 1k; Zf:o 1, = k.

Note that the maximal power of v in the numerator of (27) is equal to k — 1.
On the other hand it was showed above that the minimal power of z in
(v® (z; 1)) *) (uo) is equal to -1 while by (20) v®)(x; o) = 2/mx. So the mini-
mal power of z in (1/v® (z; 1)) (1) is equal to 1. Analogously the minimal
power of 2 in (v (z; 1)) (uo) is equal to 0 while (v,)®(z; o) = 2/7. So the
minimal power of z in (1/v{*(z;1))* (o) is equal to 0.

Thus in the Leibniz formula the functions (¢(*)®* and (¢)(* are entire with
respect to  with minimal powers 2n+1 and 2n + 3 respectively. Now formulas
(12) and (21) show that the functions a{¥)(z; o) and b (x; 119) are represented

2n+1 and x2n—|—3

as power series with respect to z which begin with x
tively. Therefore in the series of formula (9) the minimal powers of & occur

provided n = 1, namely 3 and 6, respectively. A

respec-

3 Degree of ill-posedness

The operators T*T' : Hy — H; and T7T*: Hy; — Hj, see section 1.2, are
compact self-adjoint linear operators where T™ is the adjoint operator of T
The nonzero eigenvalues of T*T or of T'T™* (they have the same eigenvalues)
can be enumerated as Ay > Ay > ... . If we designate by vy,vs,... , an
associated sequence of orthonormal eigenfunctions of T*T', then {vy,vs,...} is

complete in the range R(T*T) = N(T)* (orthogonal compliment of the null
space of T'). Let p; = \/)\7] then Tv; = p;u; and T*u; = p;v;. Moreover,
TT*u; = p;Tv; = piu; = Aju; and it is easy to see that the orthonormal
eigenfunctions {u;} of TT* form a complete orthogonal set for R(TT*) =
N(T*)*. The system {v;,u;;u;} is called a singular system for 7" and the
numbers p; are called singular values of T'. Every square-integrable kernel of a
linear integral operator has a singular value expansion (SVE) which is a mean

convergent expansion of the form

K(r,\) = Z piwi(r)vi(X), r € I, = [ro,m1], A € In = [Xo, M1],  (28)
1=1

where {u;,v;} are the left and right singular functions of the kernel (see [11]).
The behaviour of the singular values and functions is strongly connected with
the properties of the kernel. Roughly speeking, the smoother the kernel the
faster the singular values p; decay to zero where smoothness is measured by
the number of continuous partial derivatives of the kernel, see [9] and [8]. It
holds under some assumptions p; = o(i_p_3/2), 1 — 00, where p — 1 is the
number of continuous partial derivatives with respect to the first variable.
This number p of the given lidar kernels, if one exists, is hardly to derive. We
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Fig. 1. Volume backscatter and extinction kernel function K;/emfor different refrac-
tive indices: first case without absorption, i.e. mqy = 1.5+ 0.0¢ (a) and (b); second
case with strong absorption, i.e. mg = 1.5+ 0.5¢ (c) and (d), see equation (4).

decide to deal with a numerical approximation. The smaller the p;, the more
oscillations in the singular functions u; and v;, see Fig. 3(a),(b).

The inversion of the Mie backscatter kernel is potentially interesting because
the kernel itself possesses a high degree of oscillation if the absorption is weak,
i.e. the imaginary part of the refractive index is small, see Fig. 1(a), which
suggest that the classic instability due to the smoothing out of fast oscillatory
components in the solution space may not occur. However, in practice the os-
cillation of the kernel is so fine that the particle distribution would need to be
computed on an extremly fine quadrature grid. This itself produces attendant
problems with noise in the data. On the other side if the absorption is strong,
i.e. the imaginary part of the refractive index is large, see Fig. 1(b), the kernel
is smooth. In contrast to the backscatter kernel the Mie extinction kernel is
very smooth in both absorption cases, see Fig. 1(c),(d).

The SVE is a powerful analysis tool, but unfortunately it is only known an-
alytically in a limited number of cases. Hence approximations to the SVE
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Fig. 2. An approximation to the singular values and to the degree of ill-posedness
of the volume backscatter lidar operator K? in dependence on the absorption (a)
without and (c) with strong absorption as well as of the volume extinction lidar
operator KY,, (b) and (d); with the refractive indices m; = 1.5+ 0.0¢ (a) and (b)
as well as mg = 1.5+ 0.5¢ (¢) and (d); the ¢(¢) are the condition numbers of the
resulting coefficient matrices, see equation (29), in dependence on the discretization
dimension n.

can always be computed numerically when (1) and (2) or (4), respectively,
are discretized by means of the Galerkin method followed by computation of
the singular value decomposition (SVD) of the such obtained matrix. Choose
orthonormal basis ¢y, ..., ¢, and t1,...,¢, in the spaces Ly([.) and Lz(1)),

respectively, and define a matrix A = (Clz’,j) as follows

Q5 = (@/)Z,Tqb]) i,jzl,...,n (29)

where (-,-) denotes the scalar product in the space Ls([)). Then the SVD of
A immediately gives approximations to the SVE of the kernel. Let A € R™"

15



be a square matrix. Then the SVD of A is a decomposition of the form

A=UDVT =3 wow, (30)

=1
where U = (uy,...,uy), V = (v1,...,0,) € R™ are matrices with orthonormal
columns and where the diagonal matrix D = diag(oy,...,0,) has nonnegativ

diagonal elements appearing in nonincreasing order such that oy > o9 > ... >
0, > 0. The numbers o; are the singular values of A while the vectors wu;
and v; are the left and right singular vectors of A, respectively. In connection
with discrete ill-posed problems, two characteristic feature of the SVD are
very often found. First, the singular values decay gradually to zero with no
particular gap in the spectra. An increase of the dimensions of A will increase
the number of small singular values, see Fig. 2, as in our lidar application.
Second, the left and right singular vectors tend to have more sign changes
in their elements as the index ¢ increases, i.e. o; decreases. Both features are
consequences of the fact that the SVD of A is closely related to the SVE of
the underlying kernel, see [11], [1] and [24].

The singular values p; of T' are then approximated by the algebraic singular
values o; of A. In detail, the n singular values O'Z(n) of A are approximations
to the n singular values of the kernel. Moreover, if we introduce the functions

ﬂ]()\) = Zj:u”;/)()\),j = 1, ceey 1, (31)

v,(r) = ivijqb(r),j =1,...,n, (32)

where u;; and v;; are the elements of U and V/, then these functions are ap-
proximations to n left and right singular functions of the kernel. We compute
the double integrals in (29) by Simpsons numerical quadratur scheme, so that
we can expect that the quadratur errors do not exceed the approximation
errors caused by the basis functions. Due to [12] and [13] the singular val-
Z(n) (where n is the number of basis functions) are increasingly better
approximations to the true singular values y;, in other words it holds

ues o

n

(s — o) < A2 (33)

=1

o <ol <0 < i — ol <VIITIE = || Al = Anyi = 1,m. (34)
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The true singular values y; of T are bounded by the computed singular values

O'Z(n) as follows: O'Z(n) <pi < ((Ul(n))2 + A2 1f A, — 0 for n — oo, then the
approximate singular values o, converge uniformly in n to the true singular
values p;, see Fig. 2(a)-(d).

Moreover, for the singular functions hold

2A,
max{|fu; — @ills, ||vi = Bills} < (———)"% (35)
M — 41

that means, the corresponding approximate singular functions converge in the
mean to the true singular functions, see Fig. 2(a),(b). Notice the square root
in (35) which means that the singular value estimates O'Z(n) are usually much
more accurate than the approximate singular functions. '
The intervalls I, and I, are each divided into n subintervalls {I()} and {[y)}
of the same lengths h, and h),, respectively, and the basis functions are then
given by

h;l/Z Tre [7(2) h_1/2 poA € [(2)7 1= 17 sy M
¢i(r) = () = ¢ 4 (36)

0 : else 0 : else

Let ro = 0.00lpgm, r;y = bum, Ag = 300nm and A; = 1100nm, which are
real-life domains in the lidar field, then the formulas give second-order ap-
proximations to the singular values u; see Fig. 2.

All singular values of A, which arise in such a discrete ill-posed problem

right singular backscatter volume function for i=1,5,10,15,20,25 right singular backscatter volume function for i=1,5,10,15,20,25

—ndnd 4 e

vy

(a) (b)

Fig. 3. A qualitative approximation to six right singular functions of the volume
backscatter lidar operator v; for ¢« = 1,5,10,15,20,25; (a) m; = 1.5+ 0.0¢ and
(b) mg = 1.5+ 0.57. We see that the higher the index, the more high-frequency
components are present in wv;.

from the sampling of a Fredholm integral equation of the first kind, decay on
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Fig. 4. The degree of ill-posedness of the volume lidar operators in dependence on
the real and imaginary part of the refractive index. We see on the one hand no
remarkable influence of the real part and on the other hand the important influence
of the imaginary part, i.e. the absorption influence.

the average to zero. There is no practical gap in the singular value spectrum,
typically, the singular values follow a harmonic progression o; ~ 1% or a ge-
ometric progression o; ~ e~ where « is a positive real constant. The decay
rate of the singular values u; is so fundamental for the behaviour of ill-posed
problems that it makes sense to use this decay rate to characterize the degree
of ill-posedness of the problem. Hofmann [14] and [15] gives the following def-
inition: if there exist a positive real number a such that the singular values
satisfy p; = O(i%), then « is called the degree of ill-posedness. The problem is
characterized as mildly or moderately ill-posed if a < 1 or a > 1, respectively.
On the other hand, if u; = O(e™"), i.e. the singular values decay very rapidly,
then the problem is termed severely ill-posed.

For our lidar operators (4) we determined the condition numbers and by a
numerical weighted nonlinear least squares method fit an approximation to
the degree of ill-posedness, see Fig. 2(a)-(d). In general, one observes that the
lidar operators are moderately ill-posed, since « is between 2.25 and 9.10. In
detail, one can see that the degree of the extinction operator is higher as the
degree of the backscatter one, see Fig. 2(a),(b) or Fig. 2(c),(d), respectively.
Moreover, if the absorption of the particles is strong then the degree grows
rapidly, see Fig. 2(c),(d). Realizing the logarithmic scale in Fig. 2(d) one can
see that the singualar values are almost located on a straight line. Therefore,
this extinction operator with strong absorption is nearly severely ill-posed.
As one expects the condition numbers grow with n and they show the same
behaviour as the degree. The matrices are always highly ill-conditioned, and
its numerical null space is spanned by vectors with many sign changes. Fig.
3(a),(b) shows qualitatively six approximations v;,¢ = 1,5, 10,15, 20, 25, of the
right singular functions and the typical behaviour that the higher the index
¢ the higher the spectral components in v;. Due to the higher degree of ill-
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posedness it seems that the behaviour of the oscillations is more unstructured
in the strong absorption case Fig. 3(b).

With respect to the evaluation of lidar measurements it is necessary to know,
how the degree of ill-posedness depends on the real and imaginary part of the
refractive index of the particles. This dependence is shown in Fig. 4(a),(b).
On the one hand there is no influence of the real part in the real-life domain
between 1.3 and 1.7, see Fig. 4(a). On the other hand the imaginary part in
the domain between 0 and 0.5 has a very important influence on the degree.
The degree grows rapidly between 0 and 0.25 which is a very realistic domain
in our atmosphere. The growth rate can be compared with a root function in
the underlying domain.

4 Conclusions

Based on this knowledge we had to develope a special hybrid regularization
technique in the sense of (6) and (8) which is described in detail in [6] and
[5]. We briefly give some numerical results here. Using for ; the delta distri-
bution the Galerkin method changes to a limit case the collocation method,
which does not need so much computer time as the first one. We deal with
B-spline functions for the ¢;, see equations (29) and (36). The dimension n
and the order of the B-spline functions are taken as regularization parame-
ters. The resulting linear equation systems from M backscatter 34" ()\;) and
N extinction a4 ()\;) measurements is solved by truncated singular value de-
composition. This hybrid regularization technique with three regularization
parameters works for different distributions with different modes, see Fig.
5(a),(b),(d). Moreover, this technique promisses good results with additional
unknown refractive index, see Fig. 5(c),(d).
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