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Abstract. The nonlinear interaction of waves excited by the modified two-stream instability
(Farley-Buneman instability) is considered. It is found that, during the linear stage of wave
growth, the enhanced pressure of the high-frequency part of the waves locally generates a
ponderomotive force. This force acts on the plasma particles and redistributes them. Thus
an additional electrostatic polarization field occurs, which influences the low-frequency part
of the waves. Then, the low-frequency waves also cause a redistribution of the high-frequency
waves. In the paper, a self-consistent system of equations is obtained, which describes the non-
linear interaction of the waves. It is shown that the considered mechanism of wave interaction
causes a nonlinear stabilization of the high-frequency waves’ growth and a formation of local
density structures of the charged particles. The density modifications of the charged particles
during the non-linear stage of wave growth and the possible interval of aspect angles of the
high-frequency waves are estimated.

1. Introduction

Recent high-resolution VHF radar and satellite measurements showed that in the auroral
plasma a great variety of moving small-scale plasma structures occurs. The auroral radio
scatter experiments EISCAT and STARE reveal that in the E-region of the auroral iono-
sphere rather intensive electrostatic structures form, which are connected with an essential
modification of the density distribution of the charged background particles. According to a
widespread point of view, these plasma structures can be a consequence of the excitation of
the modified two-stream or Farley-Buneman (FB) plasma turbulence (Fejer and Kelley 1980,
Schlegel 1983, Pfaff et al. 1984, Haldoupis and Schlegel 1990, Schlegel et al. 1990, Schlegel
and Thiemann 1994, Sahr and Fejer 1996).

And indeed, the linear theory of the FB instability effectively explains many of the
observed characteristics of the behaviour of radar echoes, e.g. the conditions necessary for
the onset of these waves, the phase velocity of the waves, and their dominant wavelengths.
Besides a lot of features of auroral backscattering data can be explained by the nonlinear
theory of the FB instability (Volosevich et al. 1982, Sudan 1983, Hamza and St. Maurice
1993). But many problems remained unclear, in particular, the generation of the high-
frequency small-scale (16 cm) irregularities, or how to explain the existence of auroral echoes
with large aspect angles of 5o, that means with angles of 5o between the propagation direction
and the plane perpendicular to the magnetic field. It is unclear why the waves propagate
perpendicular to the electron drift velocity.

Within the classical linear theory, the following dispersion equation of the FB-waves in
the auroral E-region is found (Volosevich et al. 1982, Dimant and Sudan 1995)
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where ψ = νeνi/ω
2
c is the altitude factor, ω2

c = ωceωci, η = αηv
2
ti/νi is the ion dynamical

viscosity, αη is a dimensionless constant depending on the type of collisions in the plasma. k‖
and k⊥ are the components of the wave vector �k parallel and perpendicular to the magnetic
field, vti = (γiTi/mi)1/2, Ti represents the ion temperature, νe and νi are the collision fre-
quencies of the electrons and ions with the neutrals, ωce and ωci designate the corresponding
gyrofrequencies, and �Voe and �Voi represent the electron and ion drift velocities which are
determined by the mean electrostatic field �Eo. The equation (1) is valid for plasma regions
with magnetized electrons νe � ωce and nonmagnetized ions νi � ωci, where the conditions
ω < νi, ω < νe are satisfied, and the aspect angle is small, k2

‖/k
2
⊥ � ν2

e/ω
2
ce ≈ 10−5 for

νe ≈ 3 · 104 s−1, ωce ≈ 6 · 106 s−1.

¿From the linear theory, one can conclude that the condition for the frequency of the
FB waves ω < νi is not satisfied if the irregularities have scales L < 2πVoe/νi (At altitudes
of h ≈ 100 km, at which νi ≈ 2 · 103 and Voe ≈ 6 · 102 ms−1, it follows L < 2 m). Besides,
in the upper E-region also plasma conditions with ω>∼νe are possible. In the works (Lee and
Kennel 1971, Schlegel 1994), it was found that the linearly growing wave mode excited by
electron-neutral collisions, has a frequency ω < ωc.

Further, considering the action of neutral winds in the E-region, it was shown that the
dispersion equation has three solutions (Meister 1995, Liperovsky et al. 1996). Two wave
modes are damped, and the third mode with frequencies, being about one order smaller than
the frequencies of the damped waves, is linearly unstable. The unstable mode has wavelengths
k of about 1/m <∼k<∼70/m, and the maximum growth rates amounting to about 400 Hz occur
at k ≈ 27/m< 1/rD ≈ 100/m (rD is the Debye radius). The phase velocity at maximum
wave growth was found to be about 500 m−1. The unstable growing wave mode was excited if
both electron-neutral collisions and an electron drift exist. In sporadic E-regions, the electron
drift Voe may be generated by neutral winds.

When kinetic effects are taken into account, such as Landau damping at the ions, the
interval of possible values of the wave number k is limited. Within the frame of magneto-
hydrodynamics, Landau damping at the ions is equivalent to the consideration of dynamical
viscosity in the dispersion equation of the waves (Gershman et al. 1984, Volosevich and
Galperin 1997). Within the kinetic description (Volosevich 1978) follows, that the FB insta-
bility can be excited if the conditions ω > νi and ω<∼νe are satisfied. In the case ω > νe,
instead of FB modes, lower hybrid waves with ω ≈ ωc may occur.

The investigation of the nonlinear interaction of FB waves showed, that within a three-
dimensional model and taking into account dispersive effects, the decay conditions �k = �k1+�k2

and ω = ω1 + ω2 are satisfied (Volosevich 1982). Then, for instance for large aspect angles
k2
‖/k

2
⊥ > ν2

e/ω
2
ce or |cos ϕ|<∼π/2 (ϕ is the angle between the electron drift velocity and the

wave propagation), it follows that a wave decay from the region of linear wave generation
into the region of linear wave damping is possible. The frequency of the waves occurring as a
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result of the nonlinear interaction may be essentially smaller than the frequency of the linear
waves.

Thus one may draw the following conclusions:
1) The FB instability can be excited in a wide frequency interval. The low frequency branch

of the instability satisfies Eq. (1), but the high-frequency branch of the instability is not
described by Eqs. (1).

2) Under real ionospheric conditions, for instance in the E-region auroral ionosphere, si-
multaneously with the low-frequency FB waves also high-frequency waves with ω<∼ωc
may exist. Although their nature is different, these waves are similar to the electrostatic
lower hybrid waves having a dispersion relation (see e.g. (Musher and Sturman 1975),
(Shapiro et al. 1993))

ω ≈ ωLH

(
1 +

k2R2

2
+

mi

2me

k2
‖
k2

)
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3Ti
miω

2
LH

+
2Te
meω2

ce

ω2
pe

(ω2
pe + ω2

ce)
, (2)

where ω2
LH = ω2

pi/(1 + ω2
pe/ω

2
ce), and, for dense plasma with ω2

pe � ω2
ce and R2 ≈

(3Ti + 2Te)/(miω
2
c ), ωLH ≈ ωc. ωpe and ωpi are the plasma frequencies of the electrons

and ions, respectively. Like the FB waves, the electrostatic lower hybrid waves also
satisfy the condition k⊥ � k‖. For example, for FB waves with λ = 16 cm, k ≈ 40 m−1

and Vo = 600 ms−1, one has ω ≈ 2.4 · 104 ≈ ωc.
3) Linearly generated high-frequency FB waves may nonlinearly interact with low-frequency

FB waves which are also excited during the linear stage of wave generation.

2. Derivation of the wave equations

2.1. Equations for high-frequency waves

In this work the nonlinear interaction of high-frequency (HF) waves and low-frequency (LF)
waves is considered. The frequencies of the HF waves satisfy the conditions ω > νi and
ω<∼ωc, and the LF waves possess frequencies which are much lower than the frequencies of
the HF waves. The nature of the interaction consists in the fact that sufficiently intensive
high-frequency waves cause wave pressure and redistribute the density of the LF variations.

The kinetic description of the nonlinear interaction is rather difficult. Thus here magne-
tohydrodynamics is used to study the physical mechanism of the wave interaction.

The evolution of nonlinear FB waves may be described by a system of quasi-hydro-
dynamic equations of motion of the charged particles, together with the continuity equation
and the Poisson equation for the electric field. It is supposed that the electrons are magnetized
νe � ωce while the ions are unmagnetized, νi > ωci.

d�ve
dt

= −e
�E

me
− ωce[�ve, �ez] − νe�ve − v2

te∇ lnne, (3)

d�vi
dt

=
e �E

mi
− νi�vi − v2

ti∇ lnni + ηiΔ�vi, (4)
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∂nα
∂t

+ ∇(nα�vα) = 0, (5)

∇ �E =
e

εo
(ni − ne), (6)

where the used designations are standard, ωce = |e|Bo/me, �Bo = Bo�ez , v2
tα = kBTα/mα. Tα,

mα, nα, vα, να are the temperature, mass, density, velocity and collision frequency of the
particles of sort α, α = e - electron, α = i - ion. The electric field of a high-frequency wave
is supposed to have the following form

�̃E = �E(�r, t)e−iωot + c.c.

Here the fast time dependence is separated by the factor e−iωot, and the slow time dependence
is included in the complex amplitude �E(�r, t). Then, from Eqs. (3, 4), one obtains

�ve⊥ =
iωe
Bωce

�E⊥ +
1
B

[ �E,�ez] + i
ωe
ω2
ce

v2
te∇⊥Ne − v2

te

ω2
ce

[∇Ne, �ez] − 1
Bωce

∂ �E⊥
∂t

, (7)

�ve‖ =
e �E‖
iωeme

+ v2
te

∇Ne
iωe

, (8)

�vi =
ie �E

miωi
− i

v2
te∇Ni
ωo

− ηi
e

miω2
i

Δ �E +
e

miω2
i

∂ �E

∂t
. (9)

where ωe = ωo + iνe, ωi = ωo + iνi, Nα = (nα − no)/no
¿From Eq. (3), one finds the following equation for the high-frequency density perturba-

tions

Ni =
1
iωo

∂Ni
∂t

+
e

imiωoω
2
i

∂∇ �E

∂t
+

e

miωiωo
∇ �E − v2

ti

ωoωi
ΔNi − ηi

e

imiωoω
2
i

Δ∇⊥ �E, (10)

Ne =
1
iωo

∂Ne
∂t

− 1
iBωoωe

∂∇ �E⊥
∂t

+
�vo∇Ne
iωo

+
eωe

ωomeω2
ce

Δ⊥ �E − e

meωoωe
∇‖ �E‖ (11)

+
ωev

2
te

ωoω2
ce

Δ⊥Ne − v2
te

ωoωe
Δ‖Ne +

1
iωoB

[∇Ns, �E] · �ez .

Here

Δ⊥ =
∂2

∂x2
+

∂2

∂y2
, Δ‖ =

∂2

∂z2
, ∇⊥ =

∂

∂x
�ex +

∂

∂y
�ey .

Ni, Ne, �E designate complex amplitudes. In the Eqs. (10, 11) the main nonlinear contribu-
tions caused by the density disturbances because of low-frequency waves Ns is considered.

4



Besides the constant electron drift velocity �vo caused by the constant mean electric field is
taken into account. The last term in Eq. (11) describes a vector nonlinearity which occurs
because of the electron drift motion. Only in the case of two-dimensional perturbations, this
term is a non-vanishing one. In a one-dimensional model it vanishes.

Further, it will be taken into account that during the generation of high-frequency waves
with ω > νi and ω < ωc a local disturbance of the quasi-neutrality condition of the plasma
is possible. The investigation of the high-frequency part of the FB waves showed, that their
wave frequencies and the growth rates depend on the density of the charged particles of the
background plasma. This means, that the high-frequency waves have a dispersion which
occurs because of the disturbance of the quasi-neutrality of the plasma.

For convenience, the Eqs. (10, 11) can be transformed into the relations

Ni =
1
iωo

∂Ni
∂t

+ ai∇ �E + biΔNi + η̃iΔ∇⊥ �E +
ci
iωo

∂

∂t
∇ �E, (12)

Ne =
1
iωo

∂Ne
∂t

+ ae⊥∇⊥ �E + be⊥ΔNe + �σ∇Ne + ae‖∇ �E‖ (13)

+
ce
iωo

∂

∂t
∇⊥E + be‖Δ‖Ne +

1
iωoB

[∇Ns, �E] · �ez ,

where

ai =
e

miωoωi
, bi = − v2

ti

ωiωo
, η̃i =

iηie

miωoω2
i

, (14)

ae⊥ =
eωe

meωoω2
ce

, be⊥ =
ωev

2
te

ωoω2
ce

, ae‖ = − e

meωoωe
, be‖ = − v2

te

ωoωe
,

�σ =
�vo
iωo

, ci =
e

miω2
i

, ce =
e

miω2
c

.

Subtracting Eq. (13) from Eq. (12), and using the Poisson equation (6), one gets

− ic

ωo

∂

∂t
∇⊥ �E + (a⊥ − λ)∇⊥ �E + be⊥ΔNe + (biλ+ η̃i)Δ∇⊥ �E − �σ∇Ne (15)

−ae‖∇‖ �E‖ − be‖Δ‖Ne +
1

iωoB
[∇Ns, �E] · �ez = 0,

where c = ci − ce + λ, a⊥ = ai − ae⊥, b⊥ = bi − be⊥, and λ = e/(miω
2
oi).

The relation between the electrostatic field and the fluctuations of the electron den-
sity can be found from Eqs. (12, 13). In linear approximation, neglecting small dispersive
contributions and assuming k2

‖/k
2
⊥ � 1, one has

bNe = (β + λbe)∇ �E − λbibeΔ∇⊥ �E + biai(�σ∇)∇ �E. (16)
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Further, using Eq. (16), Eq. (15) can be transformed into

− ic̃

ωo

∂

∂t
∇⊥ �E + ã∇⊥ �E + b̃Δ∇⊥ �E − σ̃∇⊥ �E + β‖∇‖ �E‖ =

ωo
iωci

[∇Ns, �E] · �ez , (17)

ã =
a⊥ − λ

α
, σ̃ =

ai − λ

α
, c̃ = ω2

o

(
1
ω2
i

+
1
ω2
oi

+
1
ω2
c

)
, ω2

oi =
e2no
εomi

,

β = aibe − aebi, αβ‖ = ai − ae‖, αb̃ = η̃i + (bi + be)λ+ β − σ̃2, α =
e

miω2
o

. (17a)

The frequency ωo will be determined by the condition

ã∇⊥E − (�σ∇)∇ �E = 0 (18)

which corresponds to the dispersion equation. Substituting the expressions Eq. (14) for the
coefficients into Eq. (18), follows

ω2
oi

ω2
o

(
ω

ωi
− ωeωo

ω2
c

− kvo
ωi

)
−
(

1 +
kvo
ωo

)
= 0. (19)

Then, for the low-frequency waves follows

ωo − kvo
ωi

=
ωeωo
ω2
c

.

And in the case Re (ωiωe) = ω2
o − νeνi ≈ −νeνi, the usually considered dispersion relation of

the FB waves will be found,

ωo =
kvo

1 + ψ
, ψ =

νeνi
ω2
c

, γL =
ω2
oνe
ω2
c

. (20)

γL is the linear growth rate of the waves. In the case of high frequencies, in which the
dispersive contributions have to be taken into account, the dispersion relation can be found
from Eq. (19) (ωo > νi, ωi ≈ ωo)

ω2
c

ω2
o

−
(

1 +
ω2
c

ω2
oi

)
− kvo

ωo

(
ω2
c

ω2
o

+
ω2
c

ω2
oi

)
= 0. (21)

Omitting the second contribution in Eq. (21), for instance for kvo ≈ 0, from Eq. (21) follows

ω2
o = ω2

c

(
1 +

ω2
c

ω2
oi

)−1

= ω2
oi

(
1 +

ω2
oi

ω2
c

)−1

, (22)

thus ωo equals the usual lower-hybrid frequency ωLH which depends on the background
density no. In the more general case with vo �= 0 and ω<∼νe, the dispersion relation ωo ≈
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ωc + Δ = ωc(1−�k�vo/ωc)<∼ωc is obtained. The high-frequency FB instability was numerically
investigated in [Lee et al. 1971, Schlegel 1983, Volosevich 1978). This oscillation branch
corresponds to frequencies ω < ωoi, ωc > ω > νi, and it is excited by collisions of the
electrons with the neutral particles. The collisions of the ions with the neutrals cause a wave
damping.

Equation (17) describes the evolution of high-frequency FB waves under arbitrary plasma
conditions. Taking Eq. (18) into account, Eq. (17) may be presented in the form

− ic̃

ωo

∂

∂t
∇⊥ �E + b̃Δ∇⊥ �E + β‖∇‖ �E‖ =

ωo
iωci

[∇Ns, �E] · �ez . (23)

Equation (23) describes the evolution of high-frequency waves in collisional and collisionless
plasmas. In the case ωo = ωLH the equation corresponds to the well-known relation for the
lower-hybrid instability. As Eq. (23) was derived within the frame of magnetohydrodynamics,
for frequencies ω>∼νi kinetic effects have to be added. As an analogon of a kinetic effect, here
the ion viscosity is introduced guaranteeing collisional dispersion. The second term on the
left side of Eq. (23) takes dispersive effects into account. These effects may be caused by
viscosity (coefficient ηi, with different sign in dependence on the proposed model), or by
the finite values of the Debye radius rD = vte/ωpe in the case of strongly magnetized plasma
ω2
c � ω2

oi, and of the electron Larmor radius rce = vte/ωce in a dense plasmas with ωpe � ωce.
The third contribution on the left side of Eq. (23) is caused by the motion of the charged

particles along the magnetic field lines. Here it should be mentioned, that taking into account
the relation k2

‖/k
2
⊥ � 1, in this work electromagnetic effects were not considered. But, if the

condition k2
‖/k

2
⊥
>∼ν2

e/ω
2
ce is satisfied, then the waves propagate under a small angle with

respect to a plane which is normal to the magnetic field. This small angle plays an important
role in the nonlinear dynamics of the waves, as the region of small angles corresponds to an
effective energy absorption during the nonlinear wave interaction. During the nonlinear wave
interaction, the angle ψ = arctg k2

‖/k
2
⊥ ≈ 0 formed during the stage of linear wave growth

changes to finite ψ-values. It should be mentioned, that in the case of lower hybrid waves
with ω ≈ ωLH and β‖ = mi/me, and in the case of FB waves under the condition ω < νe,
β‖ ≈ ω2

ce/ν
2
e , the value of the angle may change by even one order.

¿From the definition of the parameter b̃, which contains dispersive contributions, it can
be seen that the dispersion caused by the collisional viscosity may increase or compensate
the dispersion caused by the disturbance of the quasi-neutrality.

2.2. Equations for low-frequency waves

Further, the evolution of the low-frequency oscillations of the quasi-neutral plasma will be
considered, in which HF waves are excited and act on the charged particles by the pressure
force and the ponderomotive force (PMF, Miller force).

The system of magnetohydrodynamic equations Eq. (1-4) will be studied assuming that
the frequency of the disturbances is small. Under such conditions, the collisions play an
essential role in the dynamics of the charged particles. It is assumed that the electrons are
magnetized, νe � ωce, and the ions are non-magnetized, νi > ωci. Further it is suggested
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that in a certain local region of the plasma, a HF distribution of the electromagnetic field
exists, and its mean action will be taken into account by the ponderomotive force �Fα =
mα〈(�vα∇)�v∗α〉. Neglecting in Eqs. (4, 5) the ion viscosity for the LF waves and omitting all
nonlinear terms, one gets the relations

∂�vi
∂t

= −∇eΦs
mi

+ v2
ti∇ lnNi − νi�vi −

�Fi
mi

, (24)

∂Ni
∂t

+ ∇�vi = 0, Ni =
ni
no
. (25)

Combining Eqs. (24, 25) and excluding �vi, an equation for the ion density is obtained

∂2Ni
∂t2

−∇eΦs
mi

− v2
ti∇ lnNi + νi

∂Ni
∂t

− ∇ �Fi
mi

= 0. (26)

In Eq. (26), all nonlinear terms are neglected, and only actions on the particles by the
ponderomotive force are taken into account.

Considering the action of the PMF on the electrons analogously, and determining the
velocity components of the electrons using the equation of motion in drift approximation, one
gets

�ve⊥ = − 1
B

[∇⊥Φs, �ez]+
νe

Bωce
∇⊥Φs− v2

te

ωce
[∇Ne, �ez]− νev

2
te

ω2
ce

∇⊥Ne+
1

meωce
[ �F ,�ez]− νe

meω2
ce

�Fe⊥,

(27)

�ve‖ =
e

meνe
∇‖Φs − v2

te

νe
∇‖Ne −

�Fe‖
meνe

. (28)

Here, �Fe = me〈(�v∇)�v∗〉 is the mean force acting on the electrons. Further, substituting
Eqs. (27, 28) into the equation of motion, the following equation for the electron density is
obtained

∂Ne
∂t

+ �voe∇Ne +
νe
Bωce

Δ⊥Φs − νev
2
te

ω2
ce

Δ⊥Ne +
e

meνe
Δ‖Φs − v2

te

νe
Δ‖Ne (29)

− νe
meω2

ce

∇⊥ �Fe⊥ +
1

meωce
[∇⊥, �Fe] · �ez − 1

meνe
∇‖ �Fe‖ = 0.

Using the relations for the electron and ion velocities under the action of the HF field
(given by Eqs. (7-9)), the ponderomotive force on the electrons and ions can be found,

�Fi =
mi

2B2

(
ωci
ωo

)2

∇|E2|. (30)

Introducing the electron mobilities
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μ⊥ =
1
B
, μe =

iωe
Bωce

, μ‖ =
iωce
Bωe

,

it follows

F ex =
me

2

(
μ2
⊥
∂f

∂y
+
μ⊥μ‖

2
∂

∂y
|∂ϕ
∂z

|2
)

+ c.c., (31)

F ey =
me

2

(
−μ2

⊥
∂f

∂x
− μ⊥μ‖

2
∂

∂x
|∂ϕ
∂z

|2
)

+ c.c.,

F ez =
me

2

(
μ⊥μ‖

∂f

∂z
−
μ2
‖
2
∂

∂z
|∂ϕ
∂z

|2
)

+ c.c.,

where ϕ is the HF potential, and fe = [∇ϕ∗,∇ϕ] · �ez is defined by the vector nonlinearity,
that means by the Poisson brackets

fe =
∂ϕ∗

∂x

∂ϕ

∂y
− ∂ϕ∗

∂y

∂ϕ

∂x
.

Assuming that the HF potential is given by

ϕ(�r, t) = A(�r, t) · eiψ(�r,t),

where A and ϕ are the amplitude and the phase, then

fe = i[∇ψ,∇A2],

and the sign of the PMF is determined by the phase shift of two components of the HF field
−∂ϕ/∂x = Ex, −∂ϕ/∂y = Ey. It can be easily shown that ∇⊥ �Fe = 0 and [∇⊥, �Fe] = 0, if
for the HF field no influence of collisions is taken into account. Separating the real part of
�Fe, and estimating it contributions, Eq. (29) may be transformed into

∂Ne
∂t

+ �voe∇Ne +
νe
Bωce

Δ⊥Φs − νev
2
te

ω2
ce

Δ⊥Ne +
e

meνe
Δ‖
(
Φs − Te lnNe − f̃e

)
= 0, (30)

�Fe‖ = me
ωce
ωoB2

∇‖fe = ∇‖f̃e.

Thus, the Eqs. (23, 26, 30) form a closed system of equations for the determination of the
parameters Ni, Ne and Φs. Using the quasi-neutrality condition Ne = Ni, from Eqs. (26,
30) a relation between N = Ne = Ni and Φs can be found. Neglecting all nonlinear effects
besides the PMF, it follows
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vd∇N + e
1 + ψ

miνi
Δ⊥Φs +

v2
ti

νi
(1 − ψτ)Δ⊥ lnN (31)

+
1

meνe
Δ‖ (eΦs(1 + ψ1) − Ti(τ − ψ1) lnN − fe(1 +R1fi)) = 0,

�vd = �voe−�voi, ψ = νiνe/ω
2
c , ψ1 = meνe/(miνi), τ = Te/Ti. The formula Eq. (31) determines

the character of the disturbances in the plasma and the dynamics of the process, the character
of the density structure of the charged particles and the electrostatic potential. Equation (31)
is equivalent to the equation

div�j⊥ = −∇‖j‖, (32)

and it determines the dynamics of the particle motion in a three-dimensional model. It is
very difficult to find a general solution of Eq. (32). In the case vd �= 0, and if the field-aligned
motion is not essential because of the condition k2

‖/k
2
⊥ � ν2

e/ω
2
ce, then Δ‖ � Δ⊥ and the

first three terms in Eq. (31) give the main contributions. Under such conditions, the potential
may be approximately found

eΔ⊥Φs = − miνi
1 + ψ

vd∇N − Ti(1 − ψτ)Δ⊥ lnN. (33)

This is the main condition of the linear theory of FB waves. Under this condition, the linear
dispersion equation Eq. (1) is satisfied. The additional contributions connected with the
action of Δ‖ are of the order of k2

‖/k
2
⊥.

But, in the contrary case, if one suggests that the field-aligned motion of the particles
determines the physical process, Eq. (31) may be solved in general. Suggesting approximately
that the potential Φs determines the polarization electric field which is directed along the
magnetic field lines because of the particle motion along �Bo, one obtains

Δ‖ (eΦs(1 + ψ1) − Ti(τ − ψ1) lnNe − fe) = 0

as ψ1fi � 1, and one has approximately

eΦs = Te lnNe + f̃e. (34)

The relation Eq. (34) corresponds to the Boltzmann distribution of the electrostatic
potential at f̃e = 0. Further, substituting Eq. (34) into the equation for the electron and ion
motion, follows

∂Ne
∂t

+ �vo∇Ne +
νe

miω2
o

Δ⊥f̃e = 0, (35)

∂2Ni
∂t2

− Te
mi

Δ lnNe − Ti
mi

Δ lnNi + νi
∂Ni
∂t

− Δf̃e
mi

= 0. (36)
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If the quasi-neutrality condition N = Ne = Ni is satisfied, instead of Eqs. (35, 36), one can
write only one equation

∂2N

∂t2
− c2sΔ lnN − νi�vo∇⊥N − (1 + ψ)

Δf̃e
mi

= 0. (37)

In the case that the waves propagate perpendicular to the drift velocity outside the cone of
linear wave excitation, the third term in Eq. (37) is small, and a final relation

∂2N

∂t2
− c2sΔ lnN = (1 + ψ)

Δf̃e
mi

(38)

is obtained. The equations (15) and (38) form a self-consistent system of equations for low-
frequency density waves and high-frequency FB waves.

In the quasi-stationary state with ∂/∂t= −v∂/∂z follows

N ≈ 1
(M2 − 1)

f̃e
mic2s

(1 + ψ), (39)

with M = v/cs, v being the velocity of the moving density structure, f̃e is given by Eq. (27),
and

N ≈ 1
M2 − 1

√
me

mi

f̃e
B2c2s

. (40)

Substituting Eq. (40) into Eq. (23), one finally obtains

−i c̃
ωo

∂

∂t
∇⊥ �E + b̃Δ∇⊥ �E + β‖∇‖ �E‖ = −iS[∇f̂e, �E] · �ez, (41)

S =
ωo
ωci

√
me

mi

1
M2 − 1

, f̂e =
f̃e
B2c2s

=
f̃e
E2
o

,

where S represents the coefficient of nonlinear wave interaction of FB waves.

3. Discussion

In the paper, the nonlinear interaction between the high-frequency and low-frequency parts
of waves, excited by the modified two-stream instability during the linear stage of wave
excitation, is considered.

The derived system of equations (17) and (37) allows the investigation of the nonlinear
interaction of waves satisfying the decay conditions. The relations are a generalization of
former equations obtained by Musher and Sturman (1975) for the case of the collisional
plasma.
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It is shown that in the two limiting cases of the collisionless plasma (ω > νe) and the
plasma with intensive collisions (ω < νe, νi), the relations decribe the evolution of lower-
hybrid and Farley-Buneman waves, respectively. In the intermediate region with frequencies
νi < ω < νe, a special high-frequency branch of Farley-Buneman waves exist.

As follows from Eq. (23), the dispersion of the high-frequency Farley-Buneman modes
depends on the viscosity caused by the ion collisions (coefficient η̃i), on the Debye wavelength
(bi + be)λ/α (via the small contribution proportional to b̃), and on the electron Larmor
radius (via the small contribution proportional to the coefficient β). Besides the dispersion
is influenced by the value of the electron drift velocity �vo. It should be mentioned, that in a
collisional plasma the coefficients determining the nonlinear interaction have complex values,
that means, the wave interactions cause both, a nonlinear frequency shift and a modification
of the linear wave growth rate. For instance, in the case that the dispersive and collisional
contributions compensate, a stationary regime may occur.

Further it should be underlined, that the disturbances of the background plasma de-
scribed by Eq. (40) may compensate the damping of the waves because of the wave propaga-
tion non-perpendicular to the magnetic induction �Bo. Under such conditions, the interval of
possible aspect angles can be essentially widened. Thus, e.g. from Eq. (41) follows

k2
‖
k2
⊥

≈ νe
ωce

√
me

mi

|∇Φ|2
E2
o |M − 1| ,

and, taking into account the presented additional small contributions for the ionospheric
plasma with νe/ωce ≈ 1.2 · 10−2

√
me/mi ≈ 5 · 10−3, M ≈ 0.8, one finds k2

‖/k
2
⊥ ≈ 3 ·

10−3|∇Φ|2/E2
o . In the case that locally |∇Φ|2/E2

o ≈ 10, one has |k‖/k⊥| ≈ 0.17. Thus it can
be seen, that the aspect angle (that means k2

‖/k
2
⊥) depends on the mass ratio of the electrons

to the ions, on the relation between the frequency ωo and the collision frequency, and on the
structure of the electrostatic potential. That means, the aspect angle is determined by the
value and the form of the gradient ∇Φ. Locally, the value of |∇Φ|2/E2

o may be very large in
the auroral ionosphere, and correspondingly, one may observe by radio scatter experiments
waves propagating under very high aspect angles.
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