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ABSTRACT

The ill-posed problem of aerosol distribution determination from a small number of backscatter and extinction lidar
measurements was solved successfully via a hybrid method by a variable dimension of projection with B-Splines.
Numerical simulation results with noisy data at different measurement situations show that it is possible to derive a
reconstruction of the aerosol distribution only with 4 measurements.
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1. INTRODUCTION

Aerosol particle properties, which are needed to describe the influence of particles on the Earth’s radiation budget, on
clouds and precipitation, or their role in chemical processes of the troposphere and stratosphere, may be derived from
measuring a certain variety of aerosol scattering properties. This can include extinction or scattering information at
multiple wavelengths, scattering information at multiple angles, or multiple-scattering information. Here we discuss
the inversion of particle properties from lidar measurements of backscattering and extinction at multiple wavelengths.
At the Institute for Tropospheric Research Leipzig (IfT) a multiwavelength lidar has been developed which is capable
of measuring the particle backscatter coefficient at six wavelengths and the particle extinction coefficient at two
wavelengths. With these eight optical data or less up to four data the inversion is performed. The inversion requires
the solution of a Fredholm integral equation system of the first kind which is an ill-posed problem.

At the Institute of Mathematics a hybrid method of variable projection for such an ill-posed inversion has been
developed. After describing the mathematical model in Section 2, the mathematical background of the inversion is
discussed in Section 3 followed by the theory of projection method as regularization tool in Section 4. In Section
5 we proposed our developed hybrid regularization method. Moreover, in Section 6 on the one hand side we show
inversion results for simulated data to find a suitable B-Spline basis and on the other hand side we study a couple of
real measurement situations with simulated and noisy data. An outlook of the influence of the unknown refractive
index is given in Section 7.

2. MATHEMATICAL MODEL

The mathematical model for a LIDAR measurement consists of two linear Fredholm integral equations of the first
kind for the backscatter and extinction coefficients §4¢" and a4e”

ﬁAer(/\, z) = /Tmar kr(r,A\;m) n(r,z) dr = /Tmaz 7 r? Qr(r,A\;m) n(r, z) dr, (1)

min min

(N, 2) = / kegt(r, \;m) n(r, z) dr

min

/ " 7wl Qext(r, A;m) n(r,z) dr | (2)

min

where 7 is the particle radius, m the refractive index, r,in and 7,4 are represent suitable lower and upper bounds of
realistic radii, A is the wavelength, z the height, n the aerosol size distribution we are looking for, £, the backscatter
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and k.,¢ the extinction kernel. The backscatter coefficients are determined from backscattered signals and the extinc-
tion coefficients are determined from Raman signals, see Ansmann, Wandinger, Riebesell, Weitkamp, Michaelis.! The
kernel function reflects shape, size and material composition of particles. We assume Mie-particles. The following
formulas hold for extinction and backscatter efficiencies, see Bohren and Huffman,?

& . 2
Q= k2r2|;<2n+1><—1> (a0 =), Qewr = W;<2n+1>f%e<an+bn>, (3)

where k is the wave number defined by k& = 27/X and a,, and b,, are the coefficients which we get from the boundary
conditions for the tangential components of the waves. The determination of the aerosol size distribution function
n(r) from a small number of backscatter and extinction measurements is an inverse ill-posed problem. Such problems
may be interpreted as finding the cause of a given effect. Inverse problems of determination of system parameters
from input-output measurements are often ill-posed in the sense that distinct causes can account for the same effect
and small changes in a perceived effect can correspond to very large changes in a given cause.

3. MATHEMATICAL THEORETICAL BACKROUND
3.1. Compact Operators

We consider an equation of the form Kz = y where K : H; — Hj is a compact, linear (but not necessarily
self-adjoint) operator from a Hilbert space H; into a Hilbert space Hy. Firstly, we introduce some notations and
definitions for linear operators in Hilbert spaces and refer to Groetsch.® A linear operator K : H; — H, is called
compact if K(B) is compact for each (norm) bounded subset B of H;. The general theory of compact operators
evolved from the theory of integral operators of the form

y(N) = / T kO 2(r) dr (4)

min

Indeed, if k(-, ) is square integrable over [Amin, Amaz] X [Pmin, "'mas), then it is a well known classical result that
K is a compact operator from L?[rmin, Pmas] int0 L2[Amin, Amaz]. In addition, if k(-,-) is continuous then K is a
compact operator from C[rmin, Pmaz] into C[Amin, Amaz] and from L2[Fmin, Pmaz] into L2[Amin, Amaz] , Tespectively.
A compact operator is continuous; in fact compact operators in Hilbert spaces may be characterized as linear operators
which map weakly convergent sequences into strongly convergent sequences and hence compact operators are called
completely continuous. It follows that a compact operator on a Hilbert space H is also compact on any Hilbert space
which is continuously imbedded in H. In particular, the integral operator generated by a square integrable kernel is
also compact when considered as an operator on the Sobolev spaces H7.

The operators K*K : Hy — H; and KK* : H; — Hj are compact self-adjoint linear operators where K*
is the adjoint operator of K. The nonzero eigenvalues of K*K or of K K*, they have the same eigenvalues, can be
enumerated as A; > Ay > ... . If we designate by vy, v, ... , an associated sequence of orthonormal eigenvectors
of K*K, then {vy,vs,...} is complete in the range R(K*K) = N(K)* (orthogonal compliment of the null space of
K). Let p; = \/E then Kv; = pju; and K*u; = pjv;. Moreover, KK*u; = pu; Kv; = u?uj = Aju; and it is not
hard to see that the orthonormal eigenvectors {u;} of K K* form a complete orthogonal set for R(K K*) = N(K*)*.
The system {v;, u;; p;} is called a singular system for K and the numbers y; are called singular values of K. The
next result is known as Picard’s theorem on the existence of solutions of first kind equations. Let K : H; — Hs
be a compact linear operator with singular system {v;, u;; #;}. In order that the equation K& = y has a solution, it
1s necessary and sufficient that

y € R(K) = N(K*)* and Y A7'(y,u)* < oo.

j=1

The first condition may be viewed as an abstract smoothness or regularity condition in the sense that y inherits
some of the smoothness (with respect to the first variable) of the kernel. Picard’s theorem reinterprets this regularity
by requiring that the components |(y, u;)| decay quickly relative to the growth of the singular values (recall that



/\j_1 — oo for nondegenerate kernels). Any « € H; has a representation « = Pz + Z;ozl < x,v; > v; where P is
the orthogonal projector of H; onto N(K) and hence

Kz = Zuj <zup > uy (5)
j=1

is the so called singular value decomposition of K. Any function of the form

r= Z L R v; + ¢ where ¢ € N(K) is a solution. (6)
— Hi
j=1

3.2. Ill-posed Problems

A Fredholm integral equation of the first kind is the most familiar and common example not only for a compact
operator but also for a linear inverse ill-posed problem. Such equations are ill-posed on all three counts (existence,
uniqueness and stability), where stability means a solution that changes only slightly with a slight change in the
problem. We point out that instability is a hallmark of such equations. Very small changes in the right hand side
y(A) can be accounted for by large changes in the solution z(r). That the instability is fundamental, and not just
a consequence of some special form of the kernels, follows from the Riemann-Lebesgue lemma. This means we have
to look for a suitable regularization method. For a bounded linear operator K a solution only exists if and only if
y € R(K). Since K is linear, R(K) is a subspace of Ha, however, it generally does not exhaust Hs. We may enlarge
the class of functions y for which a type of generalized solution exists to a dense subspace of function in Hy. This
accomplished by introducing the idea of a least squares solution. A function z € H; is called a least squares solution
if

Ko — yll = inf{l|Ku — yl| - ueH}. (7)

This is equivalent to saying that Py € R(K), where P is the orthogonal projector of Hs onto R(K), the closure of
the range of K. Now, Py € R(K) if and only if

y=Py + (I-P)y € R(K)+R(K)* . (8)

Therefore, a least squares solution exists if and only if y lies in the dense subspace R(K) + R(K)L of Hy. Now we
have guaranteed the existence of a generalised solution for all ¥ in a dense subspace of Hy. In taking up the issue
of uniqueness, we note that (8) is equivalent to the condition Kz —y € R(K)t = N(K*), that is, K*Kz = K*y.
Now we see that there is a unique least squares solution if and only if {0} = N(K*K) = N(K), and that the set of
all least squares solutions is closed and convex. Therefore, there is a unique least squares solution of smallest norm
which we call generalized solution. The mapping KT that associates with a given y € D(K') = R(K) + R(K)*
the generalized solution K1y is called the Moore-Penrose generalized inverse of K. In our scheme KT is then the
mechanism which provides a unique solution for any y € D(KT). In this sense, KT settles the issues of existence and
uniqueness for generalized solutions. In addition, we can give a convenient representation for KT of compact linear
operators K in terms of the singular system {v;,u;;p;}. Indeed, if y € D(KT), then y = y1 + ya, 11 € R(K) and
Y2 € R(K)%. Since u; € R(K), we then have < y,u; >=< y1,u; > for all j and hence the vector

(o] (o]
<y, u; > <y, u; >
z= ) Sy = ) ey (9)

i=1 Hi i=1 i

exists by Picard’s criterion and satisfies Kz = y; and € N(K)L1. Thus z is a least squares solution lying in N(K)*,
that is,
< yuy >

[(Ty = Z ’71{7 . (10)
j=1 ﬂ]
This representation of KTy shows very clearly that K is unbounded if R(K) is infinite dimensional. Indeed, a
perturbation in y of the form éu,, gives a new right hand side of the form y° = y + du,, satisfying ||y — ¥°|| = 4.
Yet the generalized solution satisfy

]
||Kty — KW = o — o0 as n — 0o . (11)

n



The big issue remains. Namely, in order for Kz = y tobe well-posed it is necessary that KT be continuous.

3.3. Regularization

The generalized Pseudoinverse operator KT : D(K') —  Hj is a closed densely defined linear operator which is
bounded if and only if R(K) is closed. But our operator K see equation (1) and (2), a Fredholm integral equation
system of the first kind, is compact, then R(K) is closed if and only if it is finite dimensional. But equations with
square integrable kernels generate operators on L? which are compact and for not degenerated kernels R(K) is infinite
dimensional. That means R(K) is open and so KT is unbounded, i.e. K1 is discontinuous. The problem is ill-posed.
If we wish to obtain a well-posed problem we need a so called regularization. In general regularizations are families
of operators

Ky, : Hy — Hy with Wli_r}rloKvy = Kty forall ye D(KT) , (12)

i.e. the convergence is pointwise on D(KT), see Louis? . The parameter 7 is the so called regularization parameter.
In the case of noisy data y° with ||y — ¥°|| < § we determine as solution

= Ky . (13)
However, the total error consists of two parts
2 — e = K, -y + (K — Ky . (14)

The first part we call the data error and the second part the approximation error or regularization error. If v — 0
the approximation error tends to zero while the data error tends to infinity. Therefore, the total error can never be
zero and we are in a dilemma. We have to look for an ”optimal” regularization parameter ¥ which minimizes the
total error.

4. PROJECTION METHODS AS REGULARIZATION

Our aim is now to approximate K'y. We know that, ignoring the trivial case in which the kernel k(-,-) is
degenerated, the generalized solution KTy depends discontinuously on y, but we would like our approximation to
depend continuously on y. There are a lot of regularization methods, we refer to Engl/Hanke/Neubauer.> The
most popular and well-known is Tikhonov regularization. There are other examples like truncated singular value
decomposition, see Louis,* iterative methods (e.g. linear Landweber iteration, see Hanke® or nonlinear conjugate
gradient iteration, see Hanke” and Brakhage®), mollifier methods, see Louis/Maaf® and Bockmann/Biele/Neuber,!°
or maximum entropy methods, see Amato/Hughes.!* But if one would like to solve a real practical problem the
results of regularization from infinite dimensional spaces are unsuitable. Hence we need a discretization, see Engl.!?
We begin by considering two natural finite rank approximations to KT. On the one hand side it is possible to combine
any regularization method with a projection method. On the other hand side we observe that pure projection into
finite dimensional spaces act as regularization. Let Xy C Xa C ... C H; be finite dimensional subspaces of H; with
Uf2,Xn = Hy, ie. dense in Hy, and K, := K|x, is the restriction of K to a subspace X, of H;. A natural way
to generate a finite dimensional approximation is to find the minimal norm least squares solution of the equation
Knz = y. As an approximation of KTy one could use the unique least squares solution, i.e. K]y or K} 9 respectively,
where ||y—y’|| < & represents the noise level of the data. The approximative solution ,, € X,, minimizes ||Kz — 3°||
over X,,. Since X, is finite dimensional, R(K,) is closed, i.e. K[ is continuous. The approximate problem is well-
posed. We note the fact that in general K1y does not converge for all y € D(KT), see Seidman.'® Only with
additional assumptions, we refer to Groetsch,'* one can obtain convergence.

4.1. Convergence Assumptions

We need the uniform boundedness of the operators {R,,} defined by R, := K]Q,K where @, is the orthogonal
projector of Hs onto K(X,). Note that

R: = KlQ.K,K!Q.K = K!Q.Q.Q.K = R, (15)



hence R, is a (generally nonorthogonal) projection operator.
LEMMA 41. It holds Kjy — Ky ifn — oo for each y € D(K') if and only if {||Rn||} is bounded.
Proof. We prove only one direction. Note that

Kly=KlQny=K!Q,Qy=K,Q.KK'y=R,Ky (16)

where @ is the orthogonal projector of Hs onto R(K). Suppose that {||R,||} is bounded and let z, € X, be the
best approximation to KTy in X,,. Since N(K,) = {0}, we have

Rnzn = Kl QuKz, = K} Knzp = 2, (17)
and by (15)
KTy — KMyl < |IKYy — zall + |l2n — KTyl|
= ||Razn + RaK'y|| + 120 — K'y|
< (IRall + Dllzn — KTyl

tends to zero asn — oo. O

Supposed that {v;, u;; u;} is a singular system for K and that X, := span{vi,...,v,}. Then we observe

1
Kly = Z_. <y up > v, (18)
j=1 i

i.e. Kly is the truncated singular value decomposition and

n
R,z = K] Zuj <x,vj > uj
j=1

n
D i <w,v > Kl
j=1

n
E < Z,v5; > vj
j=1

Therefore R, is the orthogonal projector of H; onto X, and hence ||R,|| = 1. In this case convergence occurs and

1
Kly = Y —<yu>v=Ky . (19)
j=1 ﬂ]

In addition, another more fortunately idea consists of a finite dimensional approximation over the range of K.
Let {t1,t2,...} C R(K) linear independent and the linear closure dense in R(K). We use as n-th approximation
of K1y, y € D(KT'), the solution z, of the following problem: < Kz, t; >=<yt; > j=1,.,n 2 € X, =
lin{K*t, ..., K*t,}. The unique solution z, can be determined as z,, = Z?ﬂ a; K*t; where aq, ..., a, are unknown
and we have to solve the linear equation system

n n
<y t;> = Zai<m(*ti,tj> = Zai<K*ti,K*tj > j=1.,n". (20)
i=1 i=1

It holds that z, converge to KTy for n — oo, see Engl.'? In the case of noisy data we obtain

On

||xn—xi||§ with ||yi_Pny|| <4y (21)

n
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Figure 1. Reconstructions of the first example with 5+2 exact data, i.e. without 1064 nm, via different B-splines

k=5, n=12 (a), k=6, n=19 (b), k=8, n=22 (c),k=9, n=26 (d).

On
N

and p,, is the smallest eigenvalue of the coefficient matrix of the system (20). Moreover, if §, — 0 and
with n — oo then holds

— 0

lim |2 — KTy|| = 0 . (22)
n — o0

In this case the value p, acts as regularization parameter. The dimension n is allowed to grow only slowly on
dependence of d,, that (22) holds. Since in general lim, _, o pn = 0 this is a restriction. Furthermore, according to
the stability wishes of the data one has to choose the {t¢,} in that way that p, is as large as possible. If K is compact
as in our case with singular values {u,, } it holds always with orthonormal {¢,,} p, < p2. Besides, ift,, are the singular
vectors then p, = pZ. The resulting method is again the truncated singular value decomposition which is in this sense
”optimal” among the considered projection methods. Therefore, pure discretization turns out to be a regularization
method. In addition, another possibility consists of a combination of a infinite dimensional regularization method,
e.g. Tikhonov regularization or truncated singular value decomposition with projection. We call such a combination
a hybrid method. In discretizing an ill-posed integral equation of the first kind an ill-conditioned linear equation
system is produced. Generally, the finner the discretization, the closer the algebraic problem approximates the
ill-posed continuous problem and hence the more ill-conditioned the algebraic problem becomes. In those hybrid
methods the regularizing discretization and the additional regularization work hand-in-hand to produce an ”optimal”
linear equation system which coefficient matrix reflects the original ill-posed problem quite enough but is not high
ill-conditioned.
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Figure 2. B-spline basis of dimension 9 and order 4 on a non-equidistant grid (a) and the reconstruction of the
second example with 6+2 exact data (b).

5. HYBRID METHOD WITH VARIABLE PROJECTION

In this paper we propose a hybrid method, a combination of a variable projection method with truncated singular
value decomposition. To turn into a finite dimensional problem we might simply try to solve the problem over a
finite dimensional subspace of H;. For example, if X,, is an n-dimensional subspace of H; spanned by the linearly

independent vectors {w, ..., w,} then the vector z¢ -, minimizes ||Kz — y’|| over X,, with a truncation level 5. The
solution x? n,~ Can be represent as z8 ~ Z;zl d;w; where the unknown coefficients d;, 1 = 1, .., n, are the generalized

solution of the linear equation system

Z /W (r A\ wi(r)dr di = y(;), j=1,., N+ M, (23)

min

which may be underdeterminate or overdeterminate, respectively. The points A;, j =1,.., N + M, are the so called
collocation points, in general the measurement points. We solve (23) with truncated singular value decomposition
with level v. We might call this type of discretization of a ”finite element” discretization because the computed
numbers d; are coefficients of certain basis function {w;} which often will be taken as basic spline functions on some

grid.

5.1. B-Spline Basis

Let A = {rg,...,7i+1} a grid of { 4+ 2 different nodes 7y = 70 < 71 < ... < Pi31 = Pmaz- A spline of degree k — 1
(order k) is a function s € C*~2[rmin, Pmaz] which in every interval [r;, 7;41], (i =0, ..,1), consists of a polynom s;
with degree < k—1. The spline space of degree k —1 we denote by Si . We recognize that obviously the dimension
18

dim Sga = k+1 =n (24)

and that one common basis 1s
B :={1,r, .. 1 (r— rl)’j__l, ey (r— rl)’fl__l} , (25)

see Deuflhard/Hohmann.'® There are some disadvantages of that basis. First, the support of e.g. r* is the complete
IR, i.e. the support is not a local one. Second, if e.g. two nodes r; and r;;1 are very closely packed then (r — r;)*~!
and (r — 7;41)¥~1 are "nearly” linear dependent. Therefore, the analysis of the splines

(r— m (26)

i
M
||M~



is an ill-conditioned problem with respect to noises of the coefficients ¢;. A more advantageous basis we get with the

recursion (X[T,,r,+1] denotes the characteristic function)

1 réeln, me]

Nil(r) = X[T,,T,_H](r) = { 0 otherwise ’ (27)

r — 7 Ti+k — T
Nip(r) = —————— Ny p1(r) + —F—— Nip1poa(r) 28
()= T Nipa(r) + e N (r) (28)

where 7 < ... < 7, are the extended nodes and N;(r) are the B-splines of order &, k =1,..,nand i =1,...,n— k.
Now the support Ny, C [7, ..., Ti+1] is a local one, N;i(r) > 0 for all » € IR, N;;(r) is a piecewise polynom of degree
< k — 1 with respect to the interval [rj,7;41] and the N, 7 = 1,...,n are local linear independent. Moreover,
B = {Nik, ..., N} is now a well-conditioned basis of Sk a, see Fig. 2 (a). It holds 1 = Y " | Ny (r) for all
7 € [Pmin, P'mac)], 1.6. the B-splines represent a positive decomposition of the unit. Each spline s € Si a is a unique
convex combination of the so called de Boor-points d; of s with s = 2?21 d; N;r. Now our regularized solution has

the description
n=k+I

2y, (r) = Z di Nig(r) (29)

and we have three regularization parameters k&, n and v. We establish the parameter ~, the truncation level only to
be a fixed value of machine rounding. We direct our attention to the regularization parameters k and n in the next
section.

6. APPLICATION OF VARIABLE PROJECTION METHOD

Equation (1) and (2) are formulated into a more specific form

y(A;) = /Tmaz A;U(r, A;m) u(r) dr (30)

min

with ( )
S0 . . K2(r,Ajsm) 0 A €AT
K (7“, /\]a m) T { KV (7“, /\]’ m) . A] c /\ext ’

exrt

(31)

where y();) are the optical data, whether it is backscatter 8 or extinction o depending on A; with
A™ = {355,400, 532,710,800,1064[nm]}, i.e. N = 6 and A*** = {387,607[nm]}, i.e. M = 2. The v(r) term is the
volume concentration distribution and

[(;/em(r, A m) = 437 Qﬂ/ext(ra A; m) ) (32)

we refer to the equations (1), (2) and (3). The distribution v(r) is approximated by a convex combination of B-splines

of order k, see equation (29)
n=k+I

u(r) = Z di Nig(r). (33)

Now we have two variable regularization parameters the order & and the number n of B-spline functions Nz, ¢ =
1,...,n. However, there already algorithms exist with fixed number and fixed order, e.g. with order 1 (polynoms of
degree 0) see Heintzenberg et al?® and von Hoyningen-Huene/Wendisch?! or with order 2 (polynoms of degree 1)
see Qing et al'® or Miiller et al.!® From a mathematical point of view it is more meaningful to use them variably
as regularization parameters to obtain a well-conditioned (discrete) linear equation system, see (23). We call our
algorithm a variable projection method.



0.06 T T T T T T

005 input .
............ reconstruction

o
o
>

r T
input
............ reconstruction

0.05 -

£ 3

2 004t . o004t .
s 2

g 0.03 . g 0.03 .
E 0.02} . § 0.02} .
@ 0.01 . @ 0.01 .
© T

¢E> 0.00 1 g 0.00 1
=] =]

S -0.01 L L L L L L S-0.01 L L L L L L

> 0.0 0.2 0.4 0.6 0.8 1.0 > 0.0 0.2 0.4 0.6 0.8 1.0

i radius r um
(a) radius r (pm) (b)

~ 0.06 — . ; ; ; : — . . ; ; ; :

£ 0.05 input ] £ 0.061 S input
e L [\ e reconstruction “E 0.05f . T reconstruction,
=. 3 |

= 0.04} . S

= = 0.04 - 1
> L i >

g 0.03 S 003f 1
5 o0.02} . g

_-3 _S 0.02 - .
F 001+ 1 @ 001} 1
T T

g 0.00 : g 0.00 | 4
=] =]

S -0.01 L L L L L L S -0.01 L L L L L L

> 0.0 0.2 0.4 0.6 0.8 1.0 > 0.0 0.2 0.4 0.6 0.8 1.0

radius r (um radius r (um)
(c) wm ()

Figure 3. Results of the volume distribution for exact data with 642 (a) and with 542 (c) wavelengths, i.e. without
710 nm, and for noisy data (15 %) with 8 (b) and with 7 (d) wavelengths.

6.1. Numerical Results With Different B-splines

Logarithmic-normal distributions are used to describe the particle size distribution spectrum

_ 11 2( Tmea
n(r) = " Vor ne exp(—0.5 In”( iy )) - (34)

The particle parameters of the first (second) example are rpeq = 0.1(0.3)pm and o = 1.6(1.6). Moreover, for the
inversion we use the refractive index m = 1.5 4 0.0017(1.475 + 0.005¢) and the lower and upper integration limits
Pmin = 0.001(0.001)pum and rpee = 1.0(1.59)um. The hybrid method of variable projection presents excellent results
for the first example at 7 wavelengths, see Fig. 1, and for the second example at 8 wavelengths, see Fig. 2 (b). In
the exact data case the inversion results are very excellent since the reconstructed distribution (dotted line) is more
or less equal to the input distribution (solid line), see Fig. 1. Moreover, one can see that the inversion problem is not
very sensible by variation of the order & if one use orders &k in the range between 5 to 9 and dimensions n between

12 and 26, see Fig. 1 (a)-(d).

6.2. Experimental Setup

The lidar setup of the IfT consists of two Nd:YAG and two dye lasers emit pulses simultaneously at 355, 400, 532,
710, 800, and 1064 nm. The beams containing the six wavelengths are unified on a common optical axis and tenfold
expanded. A flat scanning mirror permits one to align the lidar beam to arbitrary zenith angles. The elastically
backscattered signals at the six wavelengths — at 532nm with polarization discrimination — and the Raman signals



of nitrogen at 387 and 607nm and of water vapor at 660nm are measured. Profiles of the particle backscatter
coeflicients at the six emitted wavelengths, the particle extinction coefficient at 355 and 532 nm, the depolarization
ratio at 532nm, as well the as water-vapor mixing ratio are derived from the detected signals.

6.3. Numerical Results of Measurement Situations

For four different measurement situations we have made simulated inversions. The reconstruction results of the
inversion from synthetic optical data were compared with the input distribution. The first measurement situation
at 642 wavelengths (backscatter and extinction, respectively) is shown in Fig. 3 (a) for exact data and (b) for 15%
Gaussian noise. The second situation at 5+2 wavelengths, without 710 nm, is shown in Fig. 3 (c) for exact data
and (d) for 15% Gaussian noise. In the third situation we use only the measurements of the backscatter lidar at
6 wavelengths. The simulations with exact data (a) and for 10% Gaussian noise (b) are placed in Fig. 4. In the
fourth situation we only take 341 simulated data at A™ = {355,532,1064[nm]}, i.e. N = 3 and A*** = {532[nm]},
ie. M =1, see Fig. 4 (c) and (d). We observed that for exact data B-splines of order 5 (polynoms of degree 4) and
n = 19 or n = 12 of B-splines (the dimension of the finite dimension reconstruction space) work very well in both
of the first cases or in both of the last cases, respectively. This is plausible from a mathematical point of view since
in both of the last cases we have not so much informations. Since a distribution function has to be zero at points r
smaller then r,,;, and at points greater then r,,q, we propose to set dy = 0 and d,, = 0. If we test with noisy data,
e.g. 15% Gaussian noise Fig. 3 (b), (d) or 10% Gaussian noise Fig. 4 (b), (d) we observed that the finite dimension
has to be smaller again as in the exact cases, see Groetsch,® because the first part of equation (14) becomes greater if
n increased. B-splines of order 4 (polynoms of degree 3) and of the dimension n = 11 show suitable reconstructions
(dotted line). Fig. 3 (b), (d) shows that this reconstruction method provides excellent results up to 15% Gaussian
noise in the first two measurement situations and up to 10% Gaussian noise in the last two situations, see Fig. 4
(b), (d). Besides, we used a non-equidistant grid. The left-hand roots of the Tschebyscheff polynoms were taken as
nodes of the necessary grids, see Fig. 2 (a).

7. OUTLOOK

The refractive index of the particles is an unknown one in real measurement situations with a lidar setup only. We
present some results in Fig. 5 which show that the inversion is not unique with respect to the refractive index. We
reconstruct functions which have only positive values for all incorrect indices (couples of the black diagonal range
in Fig. 5 (a) and (c)). One can not decide without additional information which function is the correct volume
distribution.

Although there are some problems if the refractive index is unknown, the algorithm, however, shows that it is
possible to provide excellent results for only 4 measurements up to 10%, noise, see Fig. 2 (d). For the unknown
refractive index case we will install a nonlinear optimization method to reduce the black range. This improvement
will be done next time.
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