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Abstract

The determination of the atmospheric aerosol size distribution is an inverse ill-
posed problem. The shape and the material composition of the air-carried particles
are two substantial model parameters. Present evaluation algorithms only used an
approximation with spherical homogeneous particles. In this paper we propose a
new numerically efficient recursive algorithm for inhomogeneous multilayered coated
and absorbing particles. Numerical results of real existing particles show that the
influence of the two parameters on the model is very important and therefore cannot
be ignored.
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1 Introduction

Warnings of climate change caused by ozone reduction in the atmosphere
have us worried since some years. One reason for ozone destruction is chlo-
rine Cl which comes with CFC in the stratosphere. Moreover, atmospheric
aerosol plays an important role for climate and for atmospheric chemistry
since chemical reactions take place on the surface of the particles in this part
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of the atmosphere and accelerate the activities of chlorine. Furthermore, the
presence of black carbon, the main absorbing component of anthropogenic
aerosol, may reduce the cooling effect of aerosol, thus leading to an increase
in the greenhouse warming. Such particles come e.g. with volcanic eruptions
in the stratosphere or with air pollution of the environment over industrial ar-
eas. Hence the knowledge of the aerosol size distribution is necessary to model
processes of the ozone chemistry, see e.g. McCormick and Thomason [11].
Since some years multiwavelength lidar measurements can be used to deter-
mine the size distributions of tropospheric and stratospheric aerosol. Lidar
stands for Light detection and ranging. Multiwavelength lidar sounding can
give detailed information about spectra of the optical characteristics of the
atmospheric aerosol and its microstructural parameters.

The mathematical model of such a lidar measurement process consists of one
nonlinear and two linear integral equations. These are the lidar equation

P\ 2) = C’()\,z)Pe()\)ﬂ()\,z)éegvp{—Q/a()\,z')dz'} : (1)

where A is the wavelenght, z the distance from the lidar, C' is the system
constant, P, the intensity of the emitted signal, P the intensity of the de-
tected signal, § is the backscatter coefficient, o the extinction coefficient, and
the Fredholm integral equations of first kind for backscatter and extinction
coefficient 34¢" and a?¢"

Th Th

B0 2) = [PEo(r Amn(r,2) dr = [ 7°Qu(r Xmn(r ) dr, (2)
Th Th

(N, 2) = /T2Kext(r,)\;m)n(r, z) dr = /WTQQeH(T,)\;m)n(r, z) dr,(3)

where r is the particle radius, m the particle complex refractive index, n the
aerosol size distribution we are looking for, (), the backscatter and ()., the
extinction efficiency factors. We have g = 84" 4+ 3R% and o = o + ofw,
where the superscripts Aer and Ray represent the values for aerosol and air
molecules, respectively. The values %% and of*® can be evaluated with the
air density profile predetermined from either meteorological measurements or
other models.

The problem of determining the aerosol size distribution function n(r, z), by
multispectral lidar measurements, belongs to the class of inverse ill-posed prob-
lems. Given the aerosol backscatter and extinction coefficients at only a few
lidar wavelengths it was shown in Miiller, Ansmann, Wandinger, Althausen
[13] by using an inversion method via regularization with projection and in



Bockmann, Biele, Neuber [2] by using an inversion technique with a molli-
fier function as regularization parameter, that it is possible, to determine the
aerosol size distribution. The last method is able to separate the ill-posedness
of the problem from the measurement errors. But all of these inversion al-
gorithms approximate the aerosol consisting of spherical and homogeneous
particles, i.e. they used the so called Mie-theorie. In this paper we deal with
spherical inhomogeneous multilayered and absorbing particles. Therefore, we
have to consider the kernel functions K, and K., of the integral equations (2)
and (3). The kernel functions reflect shape and material composition of the
particles. For absorbing particles the refractive index is complex. The magni-
tude of the imaginary part of m reflects the degree of absorption. We model
the inhomogeneities of a real existing aerosol considering core and cover of a
spherical particle and different layers between both. The necessity of an in-
homogeneous model was shown in Stadmpfli et al [17] since in most cases the
aerosol is not a homogeneous one.

The extension of the theory to multilayer sphere is first discussed by Kerker
[10] and is straightforward. In the last few years were developed some other
possibilities by using different recursive methods for special cases see e.g. John-
son [9] and Wu and Wang [18]. The straightforward method of Kerker [10]
rapidly becomes impractical as s, the number of layers, becomes large be-
cause of computer memory requirements to store the matrix. Moreover, the
time required to solve the 2s-dimensional linear system with standard pro-
cedures is approximately proportional to s® and can become excessive. The
matrix is a sparse one with a special band structure. Therefore by using stan-
dard methods numerical inaccuracies appear because of round-off errors.In
this paper we propose an efficient algorithm to determine the backscatter and
extinction efficiency factors @, and Q.. for spherical inhomogeneous mul-
tilayered and absorbing particles. First we will give a short overview of the
theoretical background. Second we will develop a new recursion formula for
an effective determining of the backscatter and extinction efficiency factors.
The implementation with complex refractive indices in the resulting algorithm
is new. We will show some numerical results of real existing particles in the
atmosphere comparing the non-absorbing and the absorbing model and the
homogeneous and inhomogeneous model, respectively.

2 Determination of the efficiency factors

First we want to provide the most important theoretical results of the scatter-
ing process of an electromagnetic wave on a sphere. These results are detailed
derived in Bohren and Huffman [5] and Kerker [10]. We start with the as-
sumption that the incident wave (E;, H;) is time harmonic. That means



E = Egexp (ikx — iwt) and H = Hgexp (tkx — iwt).

Each wave, the incident wave, the scattered wave (E,, Hy), and the wave
inside the sphere (Ei, Hy) (respectively the s waves (Ey;, Hy;),j =1,...,sif
the sphere has s layers) has to satisfy the Maxwell equations. This leads in
our case to the conditions

vH=0, yxE=wuH, wvE=0, v xH=—iweE,

where p is the permeability, e the permittivity, w = (27)/(A) and A the wave-
lenght. With less effort we obtain the vector wave equations AE + k*’E = 0
and AH + k*H = 0 with k? = w?spu. Applying the continuity condition of
the tangential electromagnetic field component at the scatterers surface re-
sults in the boundary conditions (at the surfaces between neighbouring layers,
respectively)

(Bi(r) + Ey(r) = Ei(r)) xr=0
(Hl(r) +H,(r) — Hl(r)) xr=0, for r=R,

where R is the sphere radius (the radius of the particular layer, respectively).
We make an assumption to the fundamental solutions of the vector wave
equation. Let 1 be an arbitrary scalar function and r the radius vector. We
construct two vector functions the so called vector spherical harmonics

M

M = x (r¢)) and N:v; .
Both have the property of beeing divergence-free. The curl of N is proportional
to M and conversely. If M satisfies the vector wave equation so does IN.

Because of

AM + E*M = v x [r(Ay + k)],

M satisfies the vector wave equation if and only if ¢ satisfies the scalar wave
equation. Therefore we only have to solve the scalar wave equation which we
write in spherical coordinates adapted to our problem

19, ,00 1 9 o 1 8%

-7 2 sin9 Yy - T ¥
r2 or (r or + r? sin19819<sm )+ 2 sin? 9 0?2

2,0
5 + k2 = 0.

The fundamental solutions of this equation were found with the separation
assumption that ¢(r, 9, ) = R(r)0(9)®(¢) and are well known.

U1mn = cos(mp) P (cos W) Zy(kr),  omn = sin(mp) P (cos ) Z, (kr),



where m is a positive integer, P/" is the Legendre function of degree m and
order n and Z,, is one of the Ricatti-Bessel functions

Un(2) = 24n(2), Xn(2) = 2yn(2), Gu(2) = ¥(2) + x(2)i, (4)

with the spherical Bessel functions j,, and y,,. Now we can determine Mi,,,,,, Moy, Nimn
and Noy,,,. Writing the electromagnetic wave as series in M and N we get for
the known incident wave

i n+1
E,=FE " Moy, — iNi1n),
0712::1 (n+1)( 21 11n)

Z e —
w ’ n=1 n(n + 1)

The inside wave and the scattering wave we are looking for can be written as

2n+1
1= OZ n(n—i—l)(c 21 ? 11 )
" 2n +1 .
H = ——E() Z ) d Mlln + chN21n)7

and

2n+1
E,=E —bn Moy, + ianNi1p),
ozl n+1) 21n + 10, N11,)

2n+1
:—E " 2Mi1, + 00, Naiy).
onz: n—l—l)a 11n 10 21n)

Following formulas hold for extinction, scatter and backscatter efficiency fac-
tors, see Bohren and Huffman [5],

o0

2
Qe:ct kQ B Z(Qn + 1)R6(an + bn)7

n=1

2
Qsca = W Z(QTL + 1)(|an|2 + |bn|2)7
Qr= k2y 2|22n+1 ( bn)|2

with £ = 27 /). Hence we are interested in the scattering coefficients a,, and
b,. Substituting the founded waves in the boundary conditions we obtain in
general a linear equation system in a,, and ¢,, and another one in d,, and b,, and



we solve both, first one for a,, second one for b,.Firstly, for a homogeneous
sphere holds

myn (mion )y, (r) — Pn(an) i, (mion)

T mn (maen ) Chan) — Galon) i (myan)
bo— P (micn ), (an) — mathn (o), (myoy)
" P (myon) ¢ (on) — miGa(on) v (myay)

Secondly, for a multilayered sphere the number of boundary conditions and
hence the number of equations raises in accordance. For a s-layered sphere we
get two systems of dimension 2s, one for a, and one for b,, of the following
structure

A (x17x2>"'7x28—17an)T = (07"')0777Z)7,1(al)7¢n(al))T

where A has the structure

Pl (miai) Pl (maay) Xh (maat) 0 0 e 0

min(miar) mathp(maar) maxn(maar) 0 0 0

0 Pl (maas)  xh(meaz) YL (msaz) XL (msa2) oo 0

0 mathn (Mmaas) maxn(maas) mahn(maaz) maxn(M3a) «.oovvviiiiiiiiiiiiian 0

0 0 0 P, (m3as) XL (Maas) oo 0
........................................................ 0 0 YL(miag)  xh(mpey) ¢ (eq)
........................................................ 0 0 mythn (myag) myxn(miag) Cnloy)

a1 ai2 a1z 0 O e e 0
a1 a22 a3 0 O e e 0

0 a32 a33 a34 127223 Z 0

0 a4z a43 aGa4 Q4B et e 0

0 0 O asg QBB e ee et e e 0
..................................................................................... )
................ A25—5 25—5 (25—5 2s—4 A25—5 25—3 0 0 0
................ A25—4 25—5 G25—4 25—4 A25—4 25—3 0 0 0
---------------- 0 a25—-3 25—4 G25—-3 25—3 A25—3 25—2 A25—-3 25—1 0
---------------- 0 G25—2 25—4 A25—2 25—3 (25—2 25—2 G25—2 2s—1 0
................ 0 0 0 a2s—1 2s—2 A25—1 2s—1 A2s—1 2s
................ 0 0 0 ags 25—2 a2s 2s—1 a2s 2s

The coefficients of the matrix are Bessel functions, see (4), with the refractive
indices m;, the radii r; and the size parameters «; = kr;(i = 1, ..., ). For more
details see Kerker [10]. Solving such a system for a,, or b,, respectively, we can




adapt well-known numerical procedures to the special matrix form. In this way
we can reduce the requirement of time e.g. by using special implizit Givens
rotations proportional to 38s multiplications and 6 square root operations and
by using a special Gauss algorithm proportional to 8s multiplications.

3 Development of an efficient recursive algorithm

The band structure of the matrix A also suggests to try an expansion of the
determinant to solve the problem. We will show that in this way by finding
a recursion formula the time requirement can be reduced proportional to 4s
multiplications.

Proposition 1 Let A, be a matriz of dimension 2s of the structure (5). The
determinant |As| of As can be determine by

A25—1 25—1 A25—1 2s A25—1 25—2 A25—1 25
|As| = T25—2 + Yos—2 )
25 25—1 A2s 25 (25 25s—2 A2 2s
where Ty = ay1,y1 = —as ,
T; = Ti—1Qj; + Y10 i1 .
for i odd, (6)

Vi = Ti—1(—ait1 i) + Yi1(—Qig1 i-1)

and

Ti= = L1104 +  Yi1Gi-1 .
for i even, (7)

Vi = Ti—1(—a; it1) + Yi1(—ai—1 i+1)
i=2,...,25—2. (8)

Proof: We proof the proposition by induction and start with s = 3. First we
expand |As| with respect to the first column

a2 a2 0 0 O a2 az3 0 0 O
a32 a33 az4 azs 0O az2 az3 az4 azs O
|As| = a11 | as2 @43 as4 ass 0 | — @21 | a4z a3 aaq ass O
0 0 as4 as5 ase 0 0 as4 ass ase
0 0 aes4 aes ase 0 0 aes ass ase



We now expand both determinants with respect to the first row. We get four
new determinants where particular two are identical. Summarizing the coeffi-

cients we get

|
a33 az4 azs 0 a32 az4 a3zs 0O
a43 @44 a45 O a42 a44 a45 0
|Az] = (a11a22 — a21a12) + (a11(—a23) + az1a13)
0 as4 as5 ase as4 ass 056
0 aes4 aes ase 0 aes4 aes aes

We repeat these two steps summerizing in each step the corresponding coeffi-

. . as5 As6
cients and obtain |A3| = u4

Qg5 (66

+UQ

G54 Q56 .
, with

Qg4 Q66

Uy = 11022033044 — (21012033044 — 11023032044 + A21013032044
—0110922043034 + Q21012043034 + Q11023042034 — Q21013042034

Ug = —A11022033045 + 021012033045 + Q11023032045 — (21013032045
+a11022043035 — Q21012043035 — (11023042035 + A21013042035.

It is easy to verify that using the recursion formula for s = 3 we have z, = w4
and y4 = uo. Now we assume the formula holds for s. We will show the
correctness for s + 1 where we have to consider the matrix

|
As—1 | 0 0 0 0
| 253 25—1 0 0 0
|As+1| e A25—2 25—1 0 0 0
0 a2s—125—2 A25—1 25—1 G25—1 25 A2s—1 2s5+1 0
0 a2s 25—2  QA2s 2s—1  G2s 2s  G2s 2s+1 0
0 0 0 2541 25 A2s+41 2541 A2s5+1 25+2
0 0 0 2542 25 02542 2541 A25+2 2542

We expand |A,, 1| with respect to the last column

|
Ag_1 | 0 0 0
| 025—3 25—1 0 0
[Asy1] = a2s42 2542 |  _ _ _ _ _ G26—2 281 0 0
0 A25—1 25—2 A25—1 25—1 A2s—1 25 A25—1 2s+1
0 a2s 25—2 025 2s—1 425 25 025 2s+1
0 0 0 2541 2s G2s4+1 2541



As—1 | 0 0 0
| a25—3 25—1 0 0
—Q2s+1 2542

0252 25—1 0 0

0 A25—1 25—2 A25—1 25—1 A2s—1 25 A25—1 2s+1
0 a2 25—2
0 0 0

a2s 2s5—1 a2s 2s a2s 2541

2542 25 A254+2 2541

Now we expand both new determinants with respect to the last row. We get

As_1 | 0 0 As_1 | 0 0

a2s— _ 0 a25— _ 0
| 25—3 2s—1 + o | 25—3 251

|As+1| =cC1

a2s—2 25—1

0

a25—2 2s5—1

0

0 A25—1 25—2 A25—1 25s—1 A2s5—1 2s5+1

0 a2s 2s—2

a2s 2s—1

a2s 2s+1

0  a2s—12s—2 @25—1 25—1 A2s5—1 2s

0 a2s 2s—2 25 25—1  Q2s 2s

where ¢; = ags42 2s+2(—a25+1 2s)+a25+1 2542 U2s42 25 ANd C2 = 2442 2542 U2541 2541
U511 2512 G2s12 2541 We write for the first determinant |Al|, for the second
|A2|. Tt is easy to see that we can write ¢; and ¢y as determinants, too.

A25+1 25 A254+1 2542 2541 2s+1 Q2541 2542

L a
| A |+
A25492 254+1 A2542 2542

[Asa] = - | ALl

(2542 25 A25+2 2542

Al and A? are matrices of dimension 2s. Thus we can use the induction as-
sumption and get

1 251 25—1 (2s—1 2s+1 251 25—2 (2s—1 2s+1
|As| — T95—2 Y25—2
Q2s 25—1 Q2s 25—2

25 25+1 25 25+1

and

A25—1 25—1 A25—1 25 A25—1 25—2 A25—1 25

IAEI = T25-2 Y2s—2

(25 2s—1 Q25 25 (25 2s—2 Q25 25

We determine the determinants for Al and get |Al| = o o a9 1 251 G5 2511~

Tos—2 U251 2541 A2s 25—1 T Y25—2 A25—1 25—2 (25 2541 — Y25—2 A25—1 254+1 — (25 25—2-
Let 4 = 2s — 1 this fits the recursion formula for odd numbers and we have

|Ai| = (T25—2 G251 25—1 + Y2s—2 G251 25—2) Qs 2541



—(372572 Qs 25—1 T Y2s—2 A2 2572) A25—1 25+1
= X251 G2s 25+1 T Y2s—1 A25—1 25+1
= —Yas-

In the same way we get |A%| = z,,. Hence we get

2541 25+1 A25+1 2542 (2541 25 A2s5+1 25+2
|As+1| = Tas Yas

A2542 2541 A25+42 2542 (2542 25 A254+2 2542

This is the proposition for Ay, .

4 Numerical results
4.1 Comparison between homogeneous and inhomogeneous model

Unlike tropospheric aerosols one can divide stratospheric aerosols in three
main classes. Firstly, backgroundaerosols are aerosols in the tropopause up
to ten kilometers height which even exist a long time after volcanic erup-
tions. They consist of diluted sulfuric acid and probably arise by oxidation of
sulphurous gases. Secondly, volcanic aerosols are distributed over the global
stratosphere after strong, intensive volcanic eruptions. They consist of sulfuric
acid droplets. The presence of such aerosols in the stratosphere exponential
decreases with time constants of one year. Thirdly, Polar Stratospheric Clouds
(PSC) are a pol region phenomenon. They originate by freezing of water and
a mixture of water and nitrid acid. PSC are important for the heterogenic
reactions mentioned in the introduction. Besides this rough classification es-
pecially PSC have to devide into subclasses. Waterice always appears with
strong depolarisation and is described by PSC type II. The arctic is domi-
nated by PSC type I, a mixture of nitrid acid and other trace gases, because
the stratospheric freezing temperature is seldom reached. Here we have both,
depolarised (type Ia) and non-depolarised PSC (type Ib). Their origin and
composition are in discussion and should be derived from existing lidar datas.
The homogeneous model consist of a homogeneous mixture of the two differ-
ent components. An average index of refraction for the mixed components is
then obtained from the well-known Lorentz-Lorenz formula

Momiz = (\/m% Vi + m3 V3)/ (Vi + V3) where Vi and V5 are the volumes of the
two shells. On the other side the inhomogeneous model consists of a core and
a cover of different refractive indices m; and my. Now we follow the suggestion
of [17] to model PSC II and assume a nitrit acid trihydrate (NAT) core with
a refractive index of 1.5 and a radius of 1um and a core of waterice with re-
fractive index 1.31 and variable radius from 1pm to 6um, which corresponds
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to the growth of these particles. The wavelength is 0.9um. Comparing the
homogeneous and the inhomogeneous model we get the same results as [17].
For PSC II the behavior of the kernel functions for the inhomogeneous model
is different from this for the homogeneous model, see figure 1 and 2. More
precisely, for the extinction kernel, see figure 1 (left) and 2 (left), a shift and a
frequency sweep between both curves lead to a nearly opposite behavior of the
two models. Maxima are reached for the first model where minima occur for
the second model. The amplitudes differ sometimes by a factor of 2 and more.
Differences between both models become drastic in the backscatter kernel, see
figure 1 (right) and 2 (right) and reach sometimes a factor of 30. The rather
unstructured behavior of the backscatter kernel with radius between 1pum to
2.5um is quite unusual compared to typical sharp Mie-backscatter resonances.
It is caused by interference.

K_ext for homogeneous model K_Pi for homogeneous model
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Fig. 1. Homogeneous non-absorbing model.
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Fig. 2. Inhomogeneous non-absorbing model.

4.2 Eramination of absorbing shell particles

Baumgardner et al [1] developed an instrument for airborne in situ measure-
ments of aerosol size and refractive index m. This measure of m can used to

11



deduce the composition of the particles with some a priori knowledge, e.g. in
the stratosphere where the sulfuric acid is thought to be the primary aerosol
part. They also have shown the presence of non-spherical or absorbing parti-
cles. Moreover, the refractive index depends on the wavelength A and on the
relative humidity. The lower m values represent lower H,S04 mixing ratios
associated with larger water vapor. Average stratospheric refractive indices
are between 1.34 to 1.46 and the imaginary part is 0.05¢, whereas Rosen et
al [14] measured an average between 1.33 to 1.59 but for the imaginary part
only 0.006:. However, particles with even small soot inclusions can be highly
absorbing, see Chylek et al [6], such that an assumed imaginary part of 0.05
is not necessarily extreme. Because anthropogenic sulfate and black carbon
emissions have common sources, anthropogenic aerosol contains a mixture of
both, see Schult et al [16]. They measured an average for sulfate between 1.30
to 1.46 and for the imaginary part between 107! to 10~%. Moreover, for black
carbon they observed between 1.75 to 2.21 and between 0.43: to 0.72:. Finally,
we found by Yoon and Won [19] a real part about 1.5 and an imaginary part
between 0.0169: to 0.114.
Firstly, if we assume weak pollutions of the core (m; = 1.5+ 0.017) we hardly
have differences for both extinction and backscatter kernel. If we add weak
pollutions in the cover (my = 1.31 4 0.01¢) the backscatter kernel visible de-
creases, see figure 2 (right) and 3 (right). More precisely, the amplitudes of
the backscatter kernels with radius between 1um to 2um differ by a factor
of 2 and between 2um to 3um by about a factor of 3. Furthermore, between
3pum to 6um the behavior of the backscatter kernels is extremely different.
Small soot inclusions in the core can be highly absorbing. We take m; =

K_ext for inhomogeneous absorbing model K_Pi for inhomogeneous absorbing model
T T T

|
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Fig. 3. Weak absorbing core and cover.

1.5 4+ 0.057, see figure 2, 3 and 4. Whereas in all 3 above mentioned cases the
sensitiveness of the extinction kernel is very small, the sensitiveness of the
backscatter kernel is important. It seems that an absorbing cover has a larger
influence on the backscatter kernel.

Secondly, we can assume particles in the troposphere over industrial areas
as highly absorbing. Therefore we suggest a strong absorbing core and weak
absorbing cover. For a wavelenght of A = 0.532um we choose m; = 1.7+ 0.17

12



K_ext for inhomogeneous absorbing model K_Pi for inhomogeneous absorbing model
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Fig. 4. Strong absorbing core, non-absorbing cover.

and my = 1.4+0.5%10724. The core radius is 0.5um and the cover radius varies
between 1pm to 10um, see figure 5 (left). If the cover has nearly no absorption
(water cover with my = 1.33+0.5%107%) we get the figure 5 (right). Whereas
the extinction kernel is only weak shifted the backscatter kernel behavior is
extremely different i.e. incomparable since the particles have different absorb-
ing covers.

There is the suggestion to reverse the ratio, too, and assume weak absorbing

K_ext and K_Pi for inhomogeneous model (strong absorbing core, weak absorbing cover) K_ext and K_Pi for inhomogeneous model (strong absorbing core, water cover)
20

_ext'
0 TRLPi e 18
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Fig. 5. Strong absorbing core and weak absorbing cover.

core and strong absorbing cover. The numerical results of this case are shown
in figure 6. Here we take m; = 1.7+ 1% 1072 and my = 1.4+ 0.1i. However, if
we have a strong absorbing cover then both kernels have extremely different
properties.

4.8 A model for inhomogeneous aerosol

In the last section we model the inhomogeneity considering core and cover of
a spherical particle. Without an interface between them the refractive index
inside the particle drops abruptly. Such a step in the refractive index, however,
cannot reproduce an actual particle satisfactorily. In order to estimate the ef-
fect of a continuous gradient in the refractive index, we used different layers
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K_ext for inhomogeneous model (weak absorbing core, strong absorbing cover) K_Pi for inhomogeneous model (weak absorbing core, strong absorbing cover)
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Fig. 6. Weak absorbing core and strong absorbing cover.

between core and cover, the so called interface, see figure 7 (left). This inter-
face between core and cover, where the refractive indices decrease or increase
in equidistant steps, approximates a linear gradient. We used three different
interface regions with 2, 4 and 6 equidistant layers of variable width W where
the refractive indices decrease or increase in 3, 5, or 7 equidistant steps. In

K_ext/K_back

10.5

"2_Intetfaces” \——
'2_Intetfaces" |——

IR 4
\“412‘:»‘ . "4_lntetfaces” -

Haces” |-

core with my

9.5

cover with ms y

8.5

& -
1.5

: 7
interface 0 005 o0 05 02 025 03 035 04 045 05
W

Fig. 7. Shell particle with 4 interface layers (left) and K., (lower three lines) and
K (upper three lines) for different interfaces and variable width W of interfaces
(right).

order to test the importance of the gradient shape, induced during the growth
process of the particles, we considered an interface region of variable width
W, where the refractive index decreases. Figure 7 shows the result for PSC II
particle with a radius of 1.5um. The interface region between pure NAT and
pure water is centered at 1 um. The width of this interface is continuously
varied from 0 pum to 0.5 um. We examinate three different interface regions
with different numbers of layers. We observe no significant differences for a
width between 0 and 0.2 pm, which shows that the shape of the gradient and
the number of layers are not critical. Differences become important above 0.3
um. There is also an influence of the layer number. But it seems to be a quite
good approximation with an interface of 6 layers.
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5 Concluding remarks

Firstly, the scattering properties of natural inhomogeneous and only weak
absorbing particles can be significantly different from those of homogeneous
mixed or assumed non-absorbing equivalent spheres, thus suggesting that Mie
theory may not be suitable for interpreting measurements particularly for an-
thropogenic tropospheric particles. Homogeneous-inhomogeneous, absorbing-
nonabsorbing or both, respectively, differences in the extinction kernel and
especially in the backscatter kernel of the first kind Fredholm integral equa-
tions of the lidar-operator (2) and (3) are very large and should be explicitly
taken into account in inverting lidar measurements of tropospheric aerosols.
Secondly, Mishchenko et al [12] observed the same effect when they exami-
nated the shape of the particles. Dustlike tropospheric aerosol is not a spheri-
cal one. They determined the extinction and backscatter efficiency factors for
a shape mixture of polydisperse, randomly oriented spheroids (prolates and
oblates) using the so called T-matrix approach and compared the scattering
and absorption properties of such non-spherical particles with projected-area-
equivalent spheres. The computations clearly demonstrate that the extinction-
to-backscatter ratio is highly sensitive not only to particle size and refractive
index, but also to the particle shape. Rother [15] proposed a new numerically
stable algorithm the so called discretized Mie-formalism for scattering on
axisymmetric particles. The results fit very well with those obtained with the
T-matrix approach.

The inevitable consequence of this high sensitivity is that Mie theory is inappli-
cable for inverting lidar measurements for non-spherical and inhomogeneous,
absorbing particles. A modification and sensitivity study of the Mollifier in-
version algorithm to solve the inverse ill-posed problem, see Bockmann et al
[2], will be performed next using T-matrix approach, discrete Mie algorithm
and Mie algorithm for projected-area-equivalent spheres.
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