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The bifurcations in a three-dimensional incompressible,
electrically conducting fluid with an external forcing of the
Roberts type have been studied numerically. The correspond-
ing flow can serve as a model for the convection in the outer
core of the Earth and is realized in an ongoing laboratory ex-
periment aimed at demonstrating a dynamo effect. The sym-
metry group of the problem has been determined and special
attention has been paid to symmetry breaking by the bifur-
cations. The nonmagnetic, steady Roberts flow loses stability
to a steady magnetic state, which in turn is subject to sec-
ondary bifurcations. The secondary solution branches have
been traced until they end up in chaotic states.
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I. INTRODUCTION

The generation and maintenance of magnetic fields by
the motion of electrically conducting fluids as, for exam-
ple, those in the fluid outer core of the Earth and in the
convection zone of the Sun is the subject of dynamo the-
ory. Realistic models, describing the dynamo processes,
are given in the form of a complex system of nonlinear
partial differential equations including the Navier-Stokes
equations (NSE), the induction equation, the heat equa-
tion, and the thermodynamic equation of state. Heating
causes fluid motions which in turn, notably in the pres-
ence of rotation, induce magnetic fields. An account of
the relevant equations is, e.g., found in Ref. [1].

Because of the complexity of realistic models and due
to restricted computer capacities, which allow only short
time simulations, the dynamo processes are not com-
pletely understood yet. Looking for tractable models, it
is generally accepted that the incompressible magnetohy-
drodynamic (MHD) equations, consisting of the incom-
pressible NSE and the induction equation, contain the
basic elements of a dynamo [2]. Furthermore, traditional
dynamo theory has been mainly kinematic, prescribing
the velocity field and solving the (then linear) induc-
tion equation for the magnetic field, with positive growth
rates indicating a dynamo effect. The ABC flow vspc
[3-5] and the Roberts flow vy [6] are intensively stud-
ied examples for dynamo-effective velocity fields. To take
into account the back reaction of the magnetic field on the
velocity field, the kinematic analysis has to be extended
to a study of the full nonlinear MHD equations. The
necessary energy input into the system may be modeled
by an external-forcing term in the NSE which just pro-
duces an appropriate velocity field, like v sgc or vg, as

a solution of the NSE. For small Reynolds numbers, i.e.,
if the forcing is weak, this velocity field with a vanishing
magnetic field is also the only stable (time-asymptotic)
solution of the full MHD equations with the introduced
external forcing. The dynamo problem can then be refor-
mulated as follows: Does there exist for higher Reynolds
numbers a phase transition to solutions with nondecay-
ing magnetic fields? For the case of the ABC forcing this
question could be answered affirmatively [7-10].

In this paper we address the dynamo problem for sit-
uations with a forcing of the Roberts type. The Roberts
flow has recently received renewed interest. On one hand
it resembles the roll solutions of thermal (or solutal) con-
vection. In the convective zones of rotating celestial bod-
ies, for instance, convection rolls parallel to the axis of
rotation tend to be formed [11]. On the other hand the
Roberts flow is approximately realized in an ongoing ex-
periment aimed at demonstrating the dynamo effect un-
der terrestrial conditions [12]. The experimental setup
has been motivated by the kinematic dynamo effective-
ness of the Roberts flow (and its supposed resemblance
to planetary convection). A conducting fluid (sodium)
is pumped through an array of straight parallel ducts
which are connected at their ends, where the flow out of
a duct reverses its direction before entering a neighboring
duct. The ducts contain internal guiding structures such
that the flow becomes helical. All guiding structures, in-
cluding the (thin) walls separating neighboring ducts, are
electrically conducting.

Kinematic studies related to this experiment are due
to Apel et al. [13] and Tilgner [14]. Apel et al. applied
mean-field dynamo theory [15], whose central mechanism
is the alpha effect, while Tilgner used direct numerical
simulation of the induction equation. In both studies
the prescribed flow was the Roberts flow and system pa-
rameters most suitable for dynamo excitation were deter-
mined. But due to the kinematic nature of the models
used the feedback of the magnetic field to the velocity
field remained an open problem. This gave us the mo-
tivation to study bifurcations of the MHD equations for
situation where an external forcing of the Roberts type
is applied.

The Roberts flow is given as a family of three-
dimensional velocity fields which are independent of one
of the spatial coordinates, namely,

vg = (¢gsinzcosy, —gcosxsiny, 2fsinzsiny), (1)
where g and f are real parameters. This flow is an exact

solution of the incompressible Euler equations. It is also
a solution of the incompressible NSE if the external force



field
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is applied, just compensating the viscous losses. Fur-
thermore, together with a vanishing magnetic field, the
Roberts flow yields a solution of the the full MHD
equations (Egs. (3-5 below), which is stable for small
Reynolds numbers.

In this paper we investigate numerically the bifurcation
scenario of the MHD equations with Roberts forcing, the
strength of the forcing or the Reynolds number being
our bifurcation parameter. We look for magnetic insta-
bilities, which indicate a dynamo effect, and characterize
the bifurcating solution branches.

Special attention is paid to symmetry-breaking effects.
The first, symmetry-breaking bifurcation is studied by
means of equivariant singularity theory [16]. The irre-
ducible representations of the equivariance group deter-
mine the possible symmetries of bifurcating solutions. So
the subsymmetry of a magnetic branch, bifurcating from
the Roberts flow, is both determined analytically and
confirmed numerically.

In Sec. I we introduce the governing equations, ex-
plain the numerical truncation used, and determine the
symmetry group of the equations. Then in Sec. III the bi-
furcation sequence obtained for increasing the Reynolds
number is presented. In Sec. IV we explore the spatial
structure of the magnetic field generated in the primary
bifurcation and study the symmetry of the total solu-
tion (consisting of magnetic and velocity fields). A brief
discussion is given in Sec. V.

II. BASIC EQUATIONS AND SYMMETRY

We start from the equations for an incompressible elec-
trically conducting fluid, the MHD equations,
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V-v=0, V-B=0, (5)
where v denotes the fluid velocity, B the magnetic in-
duction, and p the pressure. Eq. (3) is the NSE, with the
Lorentz force and the external force f on the right-hand
side, Eq. (4) the induction equation, and the first rela-
tion in Eq. (5) the incompressibility condition. We use
the MHD equations in a nondimensional form here; the
rescaling transformation may be found in Ref. [9]. P, is
the magnetic Prandtl number (P,, = v/n, where v is the
kinematic viscosity and 7 is the magnetic diffusivity).

Corresponding to the spatial periodicity of the Roberts
field given by Egs. (1) and (2), we apply periodic bound-
ary conditions to the MHD equations and consider their
solutions in a cube of side length 27. The magnetic
Prandtl number is fixed to a value of 1, P, = 1, and
the two parameters of the velocity field are set equal to
each other, f=g. Following previous studies of the ABC
forced MHD equations [7-10], the parameter f = g is
referred to as the Reynolds number R.

To give an impression of the Roberts flow, the only
time-asymptotic state for small R, projections of the ve-
locity vectors on the z-y plane are shown in Fig. 1 (left).
The velocity field splits up into separate cells where the
streamlines spiral up or down. It is a prevalent conjecture
that the presence of kinetic helicity, defined by

Hy,=v -V xuv, (6)

is favourable for a dynamo effect. In Fig. 1 (right) there-
fore also contour lines of the kinetic helicity are shown.
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FIG. 1. Projections of the velocity vectors of the Roberts
flow on the z-y plane (left) and contour lines of the kinetic
helicity in the z-y plane (right). The flow goes up in the lower
left and the upper right quadrant. Helicity is largest in the
rolls.

In general, an external forcing reduces the symmme-
try of the MHD equations. In our case of the Roberts
forcing we identify a symmetry group which is isomor-
phic to the group D4 x Z x S'. D, denotes the dihedral
group. It consists of all rotations and reflections of a
square in a plane that leave the square invariant. Zs is
the reflection group and corresponds to the translation
(z,y,2) = (x+ 7,y + 7, 2), that is, to the translation of
one roll to that one with the same direction of the fluid
motion. S!, finally, denotes the circle group correspond-
ing to the translation invariance of the Roberts pattern
along the z axis. Of course the primary solution, the
Roberts flow, shares these symmetries.

For the numerical calculations we have used Fourier de-
compositions of v, B, p, and f to approximate the MHD
equations by a high-dimensional system of ordinary dif-
ferential equations (ODEs), which then has been treated
by means of a pseudospectral method. The mean values
of v and B over the cube, which can be shown to be
time-independent, have been assumed to vanish. Time
integration was performed using an eigth-order Runge-



Kutta scheme with adaptive time-stepping and the pseu-
dospectral code was used with a spatial resolution of 163
collocation points, corresponding to a system of 49152
ODEs; by employing Eq. (5) this number of equations is
reduced by one third. The final system of ODEs has been
studied by means of simulations and bifurcation-analysis
techniques.

III. BIFURCATIONS AND ATTRACTORS

For small R the Roberts flow with a vanishing mag-
netic field is the only stable solution of the MHD equa-
tions. Tracing this solution branch to higher Reynolds

numbers we have calculated the eigenvalues of the Ja-
cobian to look for bifurcations. At R = 7.3 two real
eigenvalues, which belong to magnetic modes, become
equal to zero. This dynamo instability yields a symme-
try breaking pitchfork bifurcation generating new steady
states with a nonvanishing magnetic field. The original
symmetry is broken, namely, the solutions are no longer
S1 invariant; now both the magnetic field and the veloc-
ity field have got a dependence on the z coordinate. This
reduces the symmetry of the solutions to the subgroup
symmetry Dy X Zs. A more detailed discussion of this
symmetry breaking bifurcation by means of representa-
tion theory is given in Sec. IV. The generated magnetic
field acts on the fluid motion. But though now nearly all
Fourier modes of the velocity fields are excited, the origi-
nal modes of the Roberts flow still dominate the structure
of the velocity field.

Time averages of the magnetic energy versus the
Reynolds are shown in Fig. 2, where also the different
R=~7.3 is clearly seen. For increasing Reynolds numbers
the magnetic energy grows strongly along the stationary
magnetic branch, which ends up in a secondary bifurca-
tion at R~ 12.5 generating time periodic solutions. The
resulting structures of the velocity field are wavy rolls:
The fluid still moves in four seperate rolls, as depicted
in Fig. 1, but these are now weakly bended and oscillate
slightly.
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FIG. 2. Magnetic energy versus Reynolds number.

Steady-state (x), periodic (¢), torus (A), and chaotic solu-
tions (*) are marked. The inner small box shows the zoomed
region for R =14.4...15.0.

In Fig. 2 the sudden drop of the magnetic energy at
R =~ 14.65 leaps to the eyes. It is accompanied by a
transition from the periodic branch to quasiperiodic so-
lutions (torus branch). We resolved the transition region
with high accuracy, as can be seen in the zoomed part of
Fig. 2, but we could not clarify in detail the origin of the
torus branch. There are at least two possibilities: Both
branches are linked by a secondary Hopf bifurcation or
they are completely disconnected.

In order to understand the sudden drop of the magnetic
energy, we have also studied the dynamics in the purely
hydrodynamical case (with no magnetic field). In simula-
tions of the NSE we observed a drop of the kinetic energy.
Fig. 3 shows the kinetic energy for both the MHD and
the purely hydrodynamic situations. The solid line refers
to the MHD equations and the dotted line to the NSE.
Surprisingly, the sudden drop of the magnetic energy has
nearly no effect on the velocity field. Only a small hump
in the vicinity of the instability is visible. We even can-
not give a sound interpretation of this hump. It might be
an artifact of the averaging procedure used to calculate
the kinetic energy (namely, the new, second frequency of
the arising torus solution is extremely small). The ki-
netic energy in the purely hydrodynamic situation shows
nearly the same profile as does the magnetic energy in
the MHD case (Fig. 2), with the exception that the in-
stability point is shifted a bit towards smaller Reynolds
numbers (R~ 12). This shift can be explained by the
additional dissipation in the presence of a magnetic field
(so that the forcing must be stronger for the instability to
appear). Thus, we are led to conclude that the decrease
of the magnetic energy seen in Fig. 2 is primarily caused
by a purely hydrodynamic instability. Seemingly the in-
stability reduces the dynamo effectiveness of the velocity
field and the associated reduction of the energy transfer
from the velocity field to the magnetic field compensates
the kinetic-energy drop seen in the purely hydrodynamic



situation.
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FIG. 3. Kinetic energy versus Reynolds number. The solid
line refers to the MHD case and the dotted line to the purely
hydrodynamical case. Steady-state (x), periodic (o), torus
(A), and chaotic solutions (*) are marked.

The time evolution of a trajectory for R = 14.7, pro-
jected onto a plane in phase space, is drawn in Fig. 4.
As it can be seen from the zoomed part of Fig. 2, this
quasiperiodic branch is stable only within a small inter-
val of the Reynolds number and loses stability between
R=14.8 and R=15.0. For larger values of the Reynolds
number chaos is observed. In Fig. 5 we present an exam-
ple of a chaotic trajectory for R = 17.0.
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FIG. 4. Projection of the torus solution onto a plane
spanned by one of the velocity and one of the magnetic-field
Fourier components for R=14.7.
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FIG. 5. Projection of the chaotic solution onto a plane
spanned by one of the velocity and one of the magnetic-field
Fourier components for R=15.0.

To prove the chaoticity we have calculated Lyapunov
exponents, using an algorithm of Shimada and Na-
gashima [17]. To check the correctness of the algorithm,
we applied the program, firstly, to the secondary steady
state at R = 7.3. As expected, one Lyapunov expo-
nent was found to be equal to zero, corresponding to
the marginally stable direction which results from the
breaking of the S symmetry. This vanishing Lyapunov
exponent remains also present for the following branches.
Thus, the periodic and the torus solutions possess two or
three vanishing exponents, respectively. For the chaotic
solution at R = 15.0 we found at least two positive Lya-
punov exponents. Fig. 6, showing the cumulative value
of the five largest Lyapunov exponents as a function of
the integration time, demonstrates the good convergence
of the algorithm.
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FIG. 6. The five largest Lyapunov exponents versus inte-
gration time for R=17.



IV. STRUCTURE OF THE MAGNETIC FIELD

In this section we characterize the real-space structure
of the magnetic field on the stationary magnetic branch
and for the chaotic regime.

In the symmetry breaking bifurcation at R 7.3, which
produces the secondary steady state solution with a non-
vanishing magnetic field, two real eigenvalues of the Jaco-
bian matrix become equal to zero. This symmetry break-
ing bifurcation will be discussed in the frame of group
representation theory. We will not present a complete
proof but rather sketch only its idea.

Fourier space can be decomposed into isotypic compo-
nents which correspond to the irreducible representations
of the symmetry group. Since two real eigenvalues be-
come equal to zero, a two-dimensional irreducible repre-
sentation of the original symmetry group D4 x Z, x S! has
been studied. Considering the complex plane, the natural
action of Dy is generated by the rotation v = exp(i7/2)
and the reflection k in the real axis. Let the translation
75 act as the identity and s € S' as a multiplication with
exp(zs). This is also the irreducible representation which
we have found to be responsible for the two vanishing
eigenvalues.
........ t that tl" A3
subspace of Fourier space spanned by the Fourier modes
exp(thyx + 1kyy + 1k,2z) with k; = —1,1 and &k, + k,
even. It can be shown that this subspace decomposes
into finite-dimensional components which are invariant
with respect to the action of the symmetry group. This
results from the action of the symmetry group elements
on the k vectors of the Fourier modes, which conjugate
the elements of certain subsets of the k vectors. For
instance, the vectors (1,0, 0), (0, 1,0), (-1, 0,0), (0,—-1,0)
are mapped to each other by the action of the symme-
try elements in real space. These finite dimensional sub-
spaces are reducible and can be decomposed into their ir-
reducible components. It can be shown from the action of
the symmetries in Fourier space that the representation
described above occurs in the decomposition of each of
these subspaces, i.e., in each subspace there is at least one
two-dimensional subspace in which the symmetry group
acts as this representation.

Employing the equivariant branching theorem [16] it
can be proved that for this representation at least one
branch of solutions with a “twisted” symmetry group iso-
morphic to Dy X Zs bifurcates. This symmetry group ¥ is
generated by {(, —7), (k,id) € Dyx S} x Z;. The trans-
lational symmetry S* is broken. Due to the S' symmetry
for every s € S! there exists a solution with symmetry
group L° = sXs ! where ¥ is the described generated
symmetry. Thus, we obtain a family of solutions which
are translated in the z direction with isomorphic symme-
try groups.

In Fig. 7 we have plotted the absolute value of the
magnetic field in the cross sections z=7/2 and z=n for
R =28, i.e., for a solution on the secondary steady-state

branch. This solution is syAmmetric with respect to one
of the isomorphic groups X°. Since in Fig. 7 only the
contour lines of the magnetic field strength are drawn,
some symmetry properties of the three-dimensional vec-
tor field are not visible, but certain symmetry properties
are obvious; we only mention the translational symmetry
which corresponds to the Z; component of the original
group and the rotational symmetry around the y-axis.

FIG. 7. Contour lines of the absolute value of the magnetic
field in the planes z=7/2 (left) and z=m (right) for R=8.

Three-dimensional plots show that there are cylinders
of weak magnetic field in the interiors of the fluid rolls.
By comparison with Fig. 1 one can see that they coincide
with the regions of largest helicity. This phenomenon
seems to be a result of flux expulsion from centers of
helical motions (cf., e.g., Ref. [2]). “Lumps” of strong
magnetic field are situated between the weak-field regions
(see Fig. 7), the locations of the field maxima coinciding
approximately with the stagnation points (or lines, re-
spectively) of the original Roberts flow. The strong fields
here are probably due to the combined effects of flux ex-
pulsion from the rolls and field-line stretching near the
stagnation points.

The symmetry of the secondary steady state implies
that the modes with wavenumbers k = (k;,0,0) and k =
(0,ky,0), ks, ky € N, have to be equal to zero. After the
Hopf bifurcation (leading to the time-periodic state) all
these modes are excited. Those with k; =1 or k, =1, in
particular, represent large-scale shear components of the
flow and of the magnetic field.

For the chaotic regime all symmetries seem to be bro-
ken. To give an impression of the irregular structure of
the magnetic field in this regime, contour lines of the ab-
solute value of the magnetic field in two cross sections
through the cube, calculated for R = 17, are shown in
Fig. 8.



FIG. 8. Contour lines of the absolute value of the magnetic
field in the planes z=7/2 (left) and z == (right) for R=17.

To get a measure of the degree of spatial irregularity
in the chaotic state, also energy spectra have been caicu-
lated. Compared to the periodic state depicted in Fig. 7,
where only one mode with a nonvanishing k. is excited,
the k. spectra of the chaotic solutions extend to smaller
scales. Here the k. spectra are calculated by averaging
over all k, and k,. In the |k| spectrum, however, we
could not observe yet (for the Reynolds numbers con-
sidered) significant differences between the chaotic and
other time-dependent solution branches.

V. SUMMARY

We have studied the incompressible MHD equations
with a forcing of the Roberts type. For increasing the
Reynolds number from small values, the primary solu-
tion, the nonmagnetic Roberts flow, becomes unstable in
a pitchfork bifurcation yielding a new steady state with a
nonvanishing magnetic field, that is to say, a dynamo ef-
fect. In contrast to analogous investigations of the MHD
equations with ABC forcing, where the primary dynamo
bifurcation is of the Hopf type and all magnetic states are
time-dependent [7-9], it seems remarkable that a station-
ary dynamo has been found here.

We have traced the magnetic solution branch towards
higher Reynolds number and have found a transition to
chaotic solutions via a series of secondary bifurcations.

A notable detail in the bifurcation sequence is a sud-
den drop of the magnetic energy accompanying the tran-
sition from periodic to quasiperiodic motion. It is likely
to be caused by a primarily hydrodynamic instability.
While in the purely hydrodynamic case a kinetic-energy
drop is observed, there is a magnetic-energy drop (and
no kinetic-energy drop) in the MHD case.

Special attention has been paid to the analysis of the
first symmetry-breaking bifurcation and its influence on
the structure of the generated magnetic field. We have
determined the magnetic modes becoming unstable in
the primary pitchfork bifurcation and have classified the
resulting subgroup which determines the symmetry of the
new steady state with a nonvanishing magnetic field; it

turned out that the original translational symmetry is
broken in a nontrivial manner.
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