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Abstract. In Single Photon Emission Computed Tomography (SPECT)
one is interested in reconstructing the activity distribution f of some
radiopharmaceutical. The data gathered suffer from attenuation due to the
tissue density p. Each imaged slice incorporates noisy sample values of the
nonlinear attenuated Radon transform

A(f,p)(w,s) = /_00 f(swt + tw) exp(— /foo plswt + 7w) dr)dt . (1)

Traditional theory for SPECT reconstruction treats p as a known pa-
rameter. In practical applications, however, p is not known, but either
crudely estimated, determined in costly additional measurements or plainly
neglected. We demonstrate that an approximation of both f and p from
SPECT data alone is feasible, leading to quantitatively more accurate SPECT
images. The result is based on nonlinear Tikhonov regularization techniques
for parameter estimation problems in differential equations combined with
Gauss-Newton-CG minimization.
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1. Introduction

Some of the most challenging problems at the crossroads of mathematics,
engineering and medicine arise from the development of tomographic methods for
medical diagnosis, especially those involving nonlinear models with very noisy data.
A prominent example is the use of single photon emission computed tomography
(SPECT) to examine massive body parts in nuclear medical diagnosis. When
SPECT is used to visualize the metabolism of a bodily organ, a disease can often
be diagnosed much earlier than is possible with conventional tomographic devices
(e.g. CT, Ultrasound) that detect anatomical changes only.

SPECT (similar to PET, positron emission tomography) functions by
reconstructing the activity distribution of a «-radiopharmaceutical. Unfortunately,
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Figure 1. Scaning geometry (a) and clinical sinogram (b)

~v-photons are absorbed and scattered in dense media. This absorption may cause
strong artifacts in the reconstruction algorithms which are currently used and it
is therefore desirable to find a clinically usable method for attenuation correction
in SPECT imaging, preferably one using no additional measurements besides the
standard emission data (cf. Figure 1(b)).

A mathematical model of the imaging process in SPECT is the attenuated
Radon transform (ATRT). For SPECT scans the count rates of the scintillation
cameras in a certain energy range are approximately given by line integrals over the
activity f and the attenuation p in the cross-section under consideration.

Along the line £ in direction of the unit vector w = (cos(y),sin(p)) € St at
distance s € [—p, o] to the origin (see Figure 1(a)) the count rate is approximately
proportional to A(f, u)(w, s) as given by Equation (1). Mainly due to scatter effects,
integration over cones rather than lines, movement of the radiopharmaca during
the measurements and especially the stochastic nature of the radioactive decay the
measured data (called sinograms after cross-section wise rearrangement, as in Figure

1(b))
Yo (wi, s1) = y° (W, 1) := A(f, 1) (W, 51) (2)

are rather noisy sample values of the ATRT (cf. Figure 1). More precise models are
known, but may not be treated numerically with current computers (cf. [Dic97]).
The ATRT is also a mathematical model for a number of other inverse problems. It
plays a prominent role, for example, in the analysis of plasma physics experiments,
optics of semi-transparent media, non-destructive testing (e.g. for the inspection of
containers full of nuclear waste), and astronomical measurements.

In SPECT the task is to find quantitatively accurate estimates for the density
distribution f of the radiopharmaceutical. Obviously knowledge is required of the
attenuation map p. However, u is ignored in the clinical standard backprojection
reconstruction algorithms. This leads to pronounced ghosts in the reconstructions,
especially when used in thoracic or abdominal diagnosis. More sophisticated
algorithms try to estimate p from additional transmission measurements, possibly
leading to increased measurement times, more expensive equipment, higher data
noise and radiation doses.

F. Natterer showed in [Nat83, Nat93] that at least some information on the
attenuation g may be recovered from sampled SPECT data alone. Recently
several authors investigated the problem of identifying u from the ATRT data alone
[CGLT79, Bro95, NWCG95, You95, KMJ196]. To our knowledge all these attempts
have had but limited success.

This paper investigates a Tikhonov-IntraSPECT ansatz, i.e. whether a good
approximation of both the activity and attenuation maps f and p can be obtained
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using only the SPECT data and a nonlinear version of the Tikhonov regularization
method developed based on the work of H. Engl et al on parameter identification
in partial differential equations.

In the second section we summarize some general results on nonlinear Tikhonov
regularization. Section 3 will introduce a factorization of the ATRT and some
mapping properties of the constituting operators. Based on this factorization our
main theoretical results are given in Section 4. The following section gives a brief
introduction and some results on a numerical method to minimize the Tikhonov
functional efficiently. The remaining Section 6 is an appendix that contains proofs
of some more technical results used in Section 3.

2. Nonlinear Tikhonov regularization

Our research is based on the famous main theorem of Engl, Kunisch and Neubauer
in [EKN89]. Let us fix some notation. We consider a continuous, nonlinear operator
A:D(A) C X — Y between Banach spaces X,Y. The aim is to find an estimate
for a signal 2 which is mapped by A to perfect data y = ¢°

Alz) =y (3)
given some approximate data y° with
ly’ —ylly <6 . (4)

In the SPECT problem we have to deal with 2 components of x = (f, ).
An element zf € D(A) satisfying

A" —ylly = min [[A(z) - yll, = dist(R(4),y) and
z€D(A)

o~z = min {lle =zl | 1A@) - yll, = dist(R(4),9))

is called x,-minimum-norm-least-square-solution, if furthermore A(z!) = y then 2t
is a x.-minimum-norm-solution. The basic idea is to investigate whether an
(approximate) minimizer of the Tikhonov functional

2
T(z) = || A(x) = y°ll, +alle -z}

is a good estimate for the solution of the inverse problem ((3),(4)). In the Tikhonov
functional x, is called a start value (or initial guess) and a > 0 the regularization
parameter. Let 7 > 0. By 297 we denote an element of D(A) satisfying

TP < inf T(z)+n.
(x”)—ze%(m (z) +n

In [EKN89] conditions were established under which nonlinear Tikhonov

regularization, i.e. approximating the solution zf by such 2%7, is order-optimal.

a

We summarize and slightly generalize them in the following definition and theorem.

Definition: 2.1 The nonlinear inverse problem ((3),(4)) of approximating the
preimage next to x, € X of (the perfect data) y under the operator A satisfies
condition T1-T7 (condition T for short) if:

T1 A:D(A) C X = Y has a convex domain D(A) in a Hilbert space X.

T2 Y is a Banach space.

T3 A z,-minimum norm solution z with A(z!) = y exists.

T4 The operator is Fréchet differentiable in some neighborhood B,(zf), p > 0.
T5 The Fréchet derivative A’ is Lipschitz continuous at 2t (with constant L)

|A"(z) — A (z) < L||z — 21|, for all z € B,(z") .

HL(X,Y)
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T6 The operator A is weakly sequentially closed, i.e. if z, =~z € X
and A(z,) =y €Y then x € D(A) with A(z) =y.

T7 The solution z! fulfills a first order source condition with respect to the initial
guess T, i.e. there exists w € Y/ with

et — 2, = A'(@")*w e R(A' (2")*) and Ljjw| < 1.
Here A'(z')* denotes the Banach space dual of A’(z!) defined by
(Yl A @N)x )y oy = (A @)Y 2)y oy -
O

Theorem: 2.2 Let the nonlinear ill-posed problem ((8),(4)) of approximating the
preimage x¥ next to x. € X of y € Y under the operator A : D(A) C X — Y
given y° satisfy condition T. Further, let (y°)s be a sequence of improved data
with ||y° —y|| < 0 and data error bound § \, 0. If a regularization parameter
a ~ & and a tolerable minimization error n = O(6%) are chosen and if p >
2|zt — x*||+%+\/g (= 2|zt — z.]|[+O(V3) ) in T4, T5, then for some Ce, C, < o0
the order optimal error estimate

a2 — ¥l x < CeVo
holds and the residual fulfills
A3 = ylly < Cié

Proof: For Y a Hilbert space the theorem was first proved in [EKN89,
thm. 2.4]. A version for n = 0 can also be found in [EHN96, thm. 10.4]. A proof
dealing also with higher order source conditions is given in [EHN96, thm. 10.7].
To include the case where Y is a Banach space (a minor generalization) for first
order source condition one simply has to replace the adjoint of the derivative in the
topology generated by the scalar-product in a Hilbert space Y, by the dual of A’(z1)
with respect to the duality of (¢|¢), . and use the latter instead of the scalar-
product (¢]|¢)y in the proof of [EKNS89, thm. 2.4]. The Hilbert space structure in
X is crucial to the known proofs, since they all depend on a polarization identity
in X. If 5 > 0 is used, the weak closedness condition (T6) may be dropped, it only
ensures existence of a minimizer of T'.

A close examination of the proof gives the condition on p, which is only required
to be sufficiently large in the original work. It further follows, that the minimal

constant C, in the error estimate is obtained for n = 0 and a = ”‘57” and given by
Cr=2 % . For this a the constant C} = 3 is obtained. ]

Remark: 2.3 In applications Y will most likely be a Hilbert space, where the norm
has a simple Fréchet derivative. Minimizing T for Y say an L' function space,
for which condition T4, T5 may be more easily satisfied (cf. Theorem 4.10), is
more demanding, because e.g. ||o||, is not Fréchet differentiable. It is possible, but
somewhat technical, to proof weaker results similar to the above in case A’ is merely
Holder continuous. The interested reader is referred to [Dic97].

Engl et al also discuss other nonlinear regularization techniques in their
monograph [EHN96, chp.10]. Most of these methods require additional conditions
that strongly restrict the nonlinearity of A. Since these restrictions could not be
established for various modifications of the attenuated Radon transform (cf. [Dic97,
Sec. 4.3]), we rely on the basic Tikhonov technique. o

Using Taylor-expansion of the operator A it is possible to demonstrate, that
the nonlinear Tikhonov-functional T'(x) is strongly convex in the vicinity of an
approximate minimizer. This ensures convergence of most standard minimization
routines applied to T once they are sufficiently close to the solution.
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Theorem: 2.4 Let A be a Fréchet differentiable operator between Hilbert spaces
XY with Lipschitz continuous derivative, Lipschitz constant L and convex domain
D(A) . Further, let zy satisfy A(zo) ~ y° with ||A(zo) — y°|| < C8. Then if C < 5%
there exists a ball B,(x0), p = p(a,d) > 0 over which the Tikhonov functional
T = T(o;, x4,9°) is strongly conve.

The somewhat technical proof of this theorem can be found in [Dic97] and will
be given in a forthcoming paper on the details of our numerical method.

Corollary: 2.5 Let A be as in the previous theorem, then the minimizer x of the
Tikhonov functional T(o;a, x4, y°) with perturbed data is locally unique, provided
a> L||A(z%) — y°||y holds.

3. Decomposition of a modified ATRT-operator

It is easy to proof differentiability of the ATRT operator A considered as a map
A L®(Q) x L®(Q) = L>®(S' x [—0, 0])

for Q the disk {z € R?|||z||, < o}. By the Sobolev lemma H?®(Q) — €/(Q) is
a continuous embedding Vs > j + dim(Q)/2, (in particular Vf € H*(Q), s > 1:
[1£]l.. < Cs.c0llfll,se)- Together with the inclusion L>(Q) < L*(2) one may deduce
Fréchet differentiability of arbitrary order of A as a map

A:HE(Q) x HE(Q) — L*(S' x [0, 0])

for s > 1. This allows the application of the previous theorem, but only under
the assumptions that the parameter functions f,u are in Hg (). Further, in
order to satisfy the source condition & — x, = (f — fu,pt — jtx) € R(A'(z1)*),
the solution f (resp. u) has to be in f. + 7HZ(Q) (resp. p« + wHZ(Q)), with the
orthogonal projection 7 : HZ(Q) — HA(Q) as a calculation of A’(z')* with respect
to the H} x H},L? topology will show. These conditions are unrealistic in clinical
applications.

The natural assumptions on the regularity of the functions f,u in the
application would be to assume that the functions are positive and continuous
but with possible jumps on the boundary of some smooth sets (e.g. representing
the boundary of an organ). In mathematical terms the desired domain could be
modeled by f,p€ Hi ,(Q), s <35 (cf. [Nat86, p92ff]). We therefore set forth to
establish the existence of a Lipschitz continuous derivative of A over a larger space,

namely to a product space of Sobolev spaces of fractional order smaller than %

3.1. Operators related to the ATRT

We proceed by studying a decomposition of the ATRT into simpler operators and
their mapping properties. Let for this section f,u denote functions in C.(R?) and
g,h € C.(S! x R?) (i.e. continuous functions with compact support). The following
operators are then well defined.

3.1.1. Attenuated Radon transform We define the ATRT operator A : C.(R?) x
C.(R?) — €(S' x R') and a generalized version A : C.(S! x R?) x C,(R?) —
C(S! x R!) that takes angle dependent functions as first argument. It will turn out,
that A is related to the derivative of A.

A(f, 1) (w, s) := /Rf(st‘ + tw) exp(— /too p(swt + Tw) dr) dt

Alg, 1) (w, s) := /Rg(w, swh + tw) exp(— /too p(swh +Tw)dr)dt . (5)
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3.1.2. Radon transform The Radon hyper-plane integral transform in 2 dimensions
R:C.(R?) — C(S!xR!) agrees with the X-ray line integral transform up to a change
of variables. As for the ATRT a generalized variant R : C.(S! x R?) — C(S! x R")
taking angle dependent argument functions is introduced.

Rf(w,s) = /R%f(swl—i—tw)dt

Ry(w,s) := /g(w,st‘ + tw) dt .
R

3.1.3. Fan-beam transform The analysis of the fan-beam transform
[ee]
Du(w, ) := / wx + Tw) dr
0

D : C.(R?) — @(S! x R?) is important for a thorough understanding of the ATRT.

In medical applications the functions f,u have their support in the disk
Q := B,(0) = {z € R?|||z]|, < o} for some radius o ~ 15 — 20cm. We observe
that if p has its support in the disk Q then for z ¢ Q either Du(w, z) = Du(w, z.,)
for a suitable z,, € 9Q or Du(w, z) = 0. Hence, it suffices to consider Dy as function
over the compact set S! x Q.

Also when considering the fan-beam transform as part of the ATRT we notice
that for f with compact support in Q we only need to know Du(w, z) for |z| < p.
If 1 too has its support in that disk then for x € Q

20
Dp(w,z) = / w(x + tw) dt = / X[0,2¢] () pu( + tw) dt
0 R

Therefore we define for ¢ € (0, co] operators

Do) i= [ XoagOnla + to)dt
R

Later it will be demonstrated, that unlike D the operators D, are bounded between
some LP or Sobolev spaces over R?2. Let p be a function with support in the disk
Q) = B,(0). Then D,u has its support in S x 3€. For simplicity we may write D
for either D or D, or their restriction to S* x Q.

3.1.4. Exponential Operator The unbounded growth of the exponential operator
E:C(S' x R%) — C(S* x R?)

E(g)(w, ) := exp (—g(w, )
for functions with negative peaks causes obstacles in the analysis.

Physically admissible arguments to E in a decomposition of the ATRT do not
have such peaks. Therefore, we introduce operators Ey : €(S* x R?) — €(S! x R?)

Es(9)(w,z) := ¢ (—g(w,x)) (6)
for some ¢ € C*(R,Ry) that satisfies ¢|r, = exp(—o) and has |¢|,|¢'| and |¢"|
bounded. It will be shown that (unlike E itself) E, is Fréchet differentiable if
considered between suitable function spaces. Under certain conditions on ¢ and the
spaces involved Fréchet derivatives of E, of arbitrary order may exist.

3.1.5. Multiplication Operator Formally we introduce the bilinear multiplication
M :C(S' x R?) x C(S! x R?) — C(S! x R?) as

M(g,h)(w,z) = g(w,x) - h(w,z) .
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3.1.6. Inclusion The symbol i is used to denote any kind of continuous embedding
operator in case it becomes necessary to name it explicitly. For example we use
ig1: C(R?) — C(S* x R?) and i, : H® — L?,if s > 0

is1(f)(w,z) == f(2)

is(f) =f.

Here H® denotes a Sobolev space of fractional order.

Lemma: 3.1 With the above defined operators we have the factorization
A(f, ) = ROMG(), BE(Dp)))
A(g, p) = R(M(g, E(Dp)))

of the nonlinear ATRT operator. The nonlinear ingredients are the bilinear Operator
M and the composition operator E.

The introduction of ¢ = ig1 o i; and M may seem needless, however, a simple
inclusion operator may have a nontrivial adjoint and helpful compactness properties.
Considering M as a bilinear operator helps to clarify the differentiability properties
of A and the structure of the dual of A'.

For f,p with support in the disk Q@ = B, the fan-beam operator D may
be replaced by D,. Similar to D, we define R,, R, for the (generalized) Radon
transformation with integration restricted to the interval [—g, ¢] in place of R. With
the restricted operators we define the restricted ATRT

Ag(f, 1) = Ry(M(i(f), Ey(Dyp))
Ap(9, 1) = Ro(M(g, Es(Dyp))) -
The following proposition is then obvious

Proposition: 3.2 For continuous functions f, u with support in the disk of radius
o and >0

The restricted operators R, RQ, Dy, Ey, Ay, AQ and the operators M and i : C(Q}) —
C(S* x Q) are continuous with respect to the supremum norm. The operators
therefore have a continuous extension to the L spaces over the domain of their
arguments (R?, resp. S' x R?2, S' x R).

We note that the unrestricted R,D etc. are discontinuous and FE is not
equicontinuous in L™ topology.

3.1.7. Some notation We introduce the nonlinear operator

F(p) = Ao(f, 1)

for some fixed function f € L*°(Q). The problem of reconstructing p given f
is described by F' if the supports of f and g lie in Q@ = B, and g > 0. These
assumptions will always be made in the sequel. If not stated otherwise, we restrict
our attention to functions with support in the compact disk Q resp. S' x €. Under
that assumption we may later drop the subscript p.

For any operator F' whose range consists of functions on (subsets of) S! x R
or S x R? we define the directional restrictions by

Fu(f)(s) = F(f)(w,s) .

3.1.8. Eztension to larger domains In order to use Hilbert space theory we have
to extend the operators to a Hilbert space setting in a way that the composition 4,
becomes Fréchet differentiable. There are some obstacles to overcome, for e.g. the
multiplication has no continuous extension to L? and the nonlinear composition
operator E (resp. Ey) is not always differentiable.
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3.2. On mapping properties of certain operators

3.2.1. Continuous inclusions The inclusion i : LP(Q)) — LP(X x Q) defined by
if(o,w) = f(w) is continuous if and only if ¥ has finite measure, e.g. for all compact
¥ (e.g. SY). We cite (e.g. from [Tri78]) the well known theorems on continuous
embeddings of Sobolev spaces.

Theorem: 3.3 H*({) over an open relatively compact domain Q0 of dimension n

is continuously embedded in LI(Q2) whenever = > % — %, 5> 0. In case 7 is larger

than % — % this embedding is compact. Further the embedding i : H*(Q) — H* ()
is compact for any s > s'. For the limit case ¢ = 00 a s > T is necessary for a
continuous embedding (which then is also compact).

3.2.2. Multiplication Operator With respect to the maximum norm M is a bilinear
continuous operator of norm 1. By the Sobolev lemma M may be extended
over a relative compact open subset 8 C R? to a bilinear continuous operator
M : H5(Q) x H*(Q) — L*(Q), Vs > 1 . The operator M further extends to
M:XQ)xY(Q) — Z(Q), M(z,y)(w) = z(w) - y(w) whenever a continuous
multiplication in function spaces (X X Y, Z) over a common domain € is defined.
By the generalized Holder inequality (19) M is continuous with norm 1 e.g. for
M : LP x LY — L" provided ; = § + §. This together with the Sobolev

embedding into L? proves that M : H*(Q) x H'(Q) — L? is continuous whenever

s+t > d’%(ﬂ) = 1 (with exception of the case s = 1, = 0 and vice versa). Since

continuous bilinear operators are always Fréchet differentiable, so is M.

3.2.3.  Radon transform Due to the well known projection slice theorem
(cf. [Nat86]) for the Radon transform R it may be extended as an operator on
all tempered distributions f € 8'(f2) whose Fourier transform is representable by
a function. That includes all distributions with compact support f € &'. The
question remains whether the continuation is continuous.

For a g € L°°(S! x Q) we see L™ continuity of R and R from

I1Rgll... < diam(®2) - llgll.. = 2ellgll... - (7)
For 1/p+1/q = 1; p € [1,00) and g(w,z) with support in S! x Q we have the
following estimates

|Rg(w, s)| = | g(w, swh + tw) dt|

|t| <~/ 0% —s2

<@V - | 917 (@, 5w + tw) d) /7
|t| <~/ 0% —s2
This leads to

o - dS o
Ry, o < 2ot [ 917 (w0, st + 1) i ds .
/Q (1 - (5)2)[)/211 —o J|t|< /o2 —52

Integrating this estimate over S' proves the following proposition.

Proposition: 3.4 For the Radon transformations the inequalities

[1Rugll, <lIRg(w, o) as < (20)'77||g(w,9)ll, (8a)
T1—(s/)2)(P=1)72
IRgll, <IIRgll < (2m)'P(20)" /7|Igll, (8b)

IRAN, <IRF doo ds < (2m) /P (20) 7|1, (8¢)

T(1—(s/e)2)P=1)/2

IR fll, < 1R fII s < (20)' V71, (84)

T(1—(s/0)2)(P=D/2
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hold for functions f,g over 0 resp. S' x Q. This shows together with (7) that
the operators have continuous extensions R € L(LP(Q),LP(S' x [—o,0])),R. €
L(LP(Q), I([=0, 0])) and R € L(LY(S' x ©), I7(S" x [0, 0])) for all p € [1, o0].
We note that R, does not belong to L(LP(S* x Q), LP([—p, 0])) for p < 0.

3.2.4. Fan-beam transform Over the compact set @ C RZ? the operator D is
continuous with respect to the L topology

ID(wl, < diam(€) [|ull., = 2elpll.. -
As for R we estimate Dyu(w,z) = D,p(w, ) for p € LP(Q),z = sw + tw € Q

20
|Dp(w, swt + tw)| = | / p(swt + tw + Tw) dr|
0

20
< @01 P (st o+ b ) dr)
0

with & + 7 = 1. Integrating over z yields

20
/ |Dop(w, z)|P dw dx < (2@)”/‘1/ / |u|P(z — Tw) dx dT
30 0o Jsa
< 20) P9 ully -

This results yields via restriction to ) and integrating over S' the next proposition.
Proposition: 3.5 The fan-beam transforms D and D, satisfy for u € LP(§)
Dol o < 2e|lull,
1Dull, 0 < 202m)" 7|l -
Therefore, D and D, have for all p € [1,00] continuous extensions to
L(LP (), LP(S* x Q)) resp. L(LP(Q), LP(Q)).

This result is, however, still too weak to proof the main theorem under realistic
assumptions. A stronger result is the following.

Theorem: 3.6 The fan beam transform extends to a compact operator D €
L(Hg(Q), LP(S' x Q)) if
0 p<3

5> 5.(p) == 1‘% p € [3,6] 9)
1—m pE [6,00] .

For s = s.(p), p & {6,00} the extension remains continuous but is not necessarily
compact. In particular the smoothing property D, € L(L*(Q), L?(Q)) is established.

For the proof of this theorem we use two Sobolev estimates on D, and and
interpolation result which we present before the proof. The somewhat technical
proofs of these results are given in the appendix.

The Fourier transform of a function over R™ is defined as

T, £(0) = F(Q) = (2m) / e f(z) i |

n

Consider the L!-function 6, := X[0,20] With Fourier transform

i 20 g 1 (sin(QQf) _,25in2(gf)>
0, = 27re Qsmc(gf)—m ¢ i ¢ .
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A simple calculation employing the translation Ty, = p(o — y) yields

FQ(DQM(C‘)?O))(C) - % R2xR

1 .
3 [ et ati0)

V276,(~w - Q)fu(C) -

()T o) (@) de dt

Thus the formula

T (Dypa(0,9))(€) = VR, (~C - w)it(C) = (

holds, which yields the Fourier representation

Dy, =20F50 M(e % “sinc(of - w),o) 0 T . (10)
This representation of D, , allows to prove smoothing properties of D restricted
to Q. § From Equation (10) it is apparent that the directionally restricted
fan beam transform D, . is a bounded operator of norm less than 20 between

Sobolev spaces of the same order D,, : H§(Q) — H§(3Q). We would like
to show that D, has a smoothing property analog to the Radon transform ,

ie. Dyt HF () — Hg‘+1/2(3ﬂ) should be bounded (cf. [Nat86]). Unfortunately,
this is not the case. However, if we integrate over w € S' a similar result holds.

sin(20¢ - w) N iQSiHQ(QC - w)

e — )mo

Proposition: 3.7 The operators D, are smoothing of order 1/2 between Sobolev
spaces over 0 and St x 3Q, i.e.

D, : HE(Q) — HOT2(S x 3Q)
is bounded. Where HC™/?(S! x 3Q) is the subspace of L2(S x 3Q) with norm
1 oo 2= M@ ool -
For all e > 0 the operators D, are not bounded from H§(Q) into HS(39) but
D,op € H3+1/2(3Q) for almost all w. We have further
D, : HF () = H*(S' x 3Q) ,
were the Banach space HY(S' x 3Q) is a subspace of H*(S' x 3Q) equipped with

the norm

[ fllgce == sup [[f(w, o)l e (30 -

weSt
The following interpolation estimate is the second major ingredient to the proof
of Theorem 3.6.

Proposition: 3.8 Let X,Y be some domains, 0 < pg,p1,p2 < 00; Po,p1 < p2 and
f a function on X XY for which we have the estimates

If (@ 9)lly,, <C1 VaeX

and
HILf (@, o)y oy l1x py < Co

§ With the help of the Fourier transform of distributions one may calculate
iy
Fo(Dplw, 0))(nw + éw) = (wd(n) + oA + gw)

for the original fan-beam transformation Du(w,o)(= Doop(w,©)) considered as a function over
all of R2. This is the distributional limit for ¢ — oo of the formula for D,. Consequently,
whenever [ u(z)dz = 2m(0) # 0 the function Dy does not lie in a classical function space whose
Fourier transform would be a function-space as well. This motivates using the restricted fan-beam
operator D, instead of D. A simple restriction like xo - D would have a more complex Fourier
representation.
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Then f € LP(X xY) for p=p1 +po — 2L = py — (m—_poém_—pl) and the estimate

P2 p

1y < CP/P - 77007

holds. In particular we obtain the estimate
111, < max([[IIf (2, o)y, 1 oor 1@ 0)lyp M1y ) -

Proof: (of Theorem 3.6) If y has its support in €2, then Dy clearly has its
support in S x 3Q. It was demonstrated in Proposition 3.7 via Fourier techniques
that D, has smoothing properties, i.e. D, € L(H§(Q), Hi™/*(S* x 3Q)). Further,
we showed that the directional restriction D, , has a continuous extension to
D, € L(H*(Q), H5(39)) . This implies, that D, has a continuous extension

D, € L(H*(),H5(S" x 3Q))
with JE(ST x 3Q) C H§(S' x 3Q) normed by ||gllsc.(s1x3q) defined above.
Thus, D, maps continuously into the intersection space S := H§(S! x 3Q)) N
1/2 .
H§+ / (S' x 3Q) with norm ||g[|¢ = max(”g”g{s(sl x3Q)7 ||g||Hs+1/2(51 xaﬂ))- By the
Sobolev embedding theorems H (3€) is continuously embedded in L?(3Q)) whenever
m < %— % (ie. p < lsz for 0 < s < 1). Since further the restriction
roo LP(3Q) — LP(Q) has norm 1, some multiple of [|g[[3c:(g1430) dominates
the norm [ {|g(w, o)l 1e1 (o) Il and a multiple of ||g||f.+1/2(g1x30) dominates

L= (S1)

Hlg(w, )| pp2 () “L2(sl) if s > max(1 — 1;—1, 5= 1%2), p; # 0o. With Proposition 3.8

on interpolation over product spaces we find

1902051y < 1 o1 1L g 11910 )

if p=p1 +p2— B2 ie.

24 2 -2 = 3 se0,))

1—s 1—s

p < 24 {2 = =2 s€e(3,1)
24+ 00 =00 s>1

(For p = 6, s > 1/2 and for p = oo, s > 1 are required). If s satisfies (9)
choose € > 0 such that s — ¢ also satisfies (9). Then D may be decomposed as
D = Doiys gs—e where igs ya-- : H® < H®7° is a compact embedding of Sobolev
spaces. Since compactness is inherited by compositions, D is compact. |

3.2.5. Exponential Operator Over a bounded domain the exponential operator E
maps L — LP only for r = 0o or when redefined for functions with negative peaks.
For the redefined operator we have E4 : L™(Q2) — LP(Q2), V 1 < p,r < oo whenever
the domain ) has finite measure. In the appendix continuity and differentiability
properties of composition operators are studied. It follows from Proposition 6.4 that
Es : L™(2) — LP(Q) (defined by (6)) is m times Fréchet differentiable if r/p > m
or r = p = oo. Differentiability results are summarized in the next proposition.

Proposition: 3.9 Let E be the extension of the exponential g — exp(—g) to L*° ()
Then the operator E is Fréchet differentiable at g € L°° with derivative

0E4(g)v = 0E(g)v = —E(g) -v = M(-E(g),v) (11)
An analog result holds for the redefined exponential composition with ¢ (cf. (6))
Es : L™(Q) — LP(Q) over Q with finite volume. Let v > p, r,p € [1,00] or
r=p=o0. Forg,v e L" g >0 the operator Eg = ¢o is Fréchet differentiable at
g with derivative given by (11).
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Higher derivatives ezxist of any order for E and Ey on L™ and of all orders
m < % for Ey : L™ — LP provided ¢|r_ is sufficiently regular, e.g. has all derivatives
up to order m + 2 bounded. They are given at g (with g > 0 for Ey) by

0" Es(9)(V1,...,Vm) =0"E(g)(v1,...,vm) = (—1)"E(g) H Vi . (12)

Ifm+e<?, c€ (0,1] and the regularity assumption (26) on '™ holds, e.g. if

¢ € CmtLl c Cm+2 then the mt" derivative E;m) of E4 : L™ — LP is Holder
continuous of order €. In particular for E(lzﬁ to be L-continuous r > 2p is required.

Proof: First we consider the case for £ and g,v € L*. In the Banach algebra L

B(g+v) - B(g) = B@)(E() 1) = B(g) 3 =2
S
converges. A simple estimate using ||7||_ = ||1/||f)o proves for ||v||, <1

IE(g +v) = E(9) = (=E(@)") | < IE()]]. (e = 2IIVII%,

This estimate yields the theorem for m = 1 and L*°. Similarly
IE(g+v)[[vi—E@][[v- (- V]:[Vl .. = 0(vII2,) H”VzH

holds, which proves the result for higher derlvatlves over L. For the operators E
the above prove does not work since (LP,-), p € [1,00) is not a Banach algebra. The
proof of differentiability of E4 is somewhat technical, and given after Proposition
6.4 in the appendix. It shows that E4 : L"(2) — LP(2) is Fréchet differentiable
when () is finite and r > p and ¢ satisfies the regularity assumptions of that
proposition. This is the case if m + 1 derivatives of ¢ are bounded over R and
#™*1 is Lipschitz continuous. The derivatives of the composition operator ¢o are
given by (v1,...,0m) +— ¢(™ - - ][, vi- At a non-negative function g the derivatives
are therefore also given by (12). An application of Proposition 6.2 to ¢("™ which has
a bounded derivative by our assumption, yields the Holder or Lipschitz continuity
of the highest derivative. |

3.2.6. Attenuated Radon transform Clearly for f € LP(Q), f > O,u > 0 and
p measurable p € [1,00] the estimate [[A(f,u)|[, < [[Rf||, holds. For arbitrary
f € LP(Q) using a simple variation of the proof demonstrating the continuity of
R or R shows that ||A(f,p)]l, < (20)'"'/?||f||, . Accordingly, the ATRT may
be extended to arbitrary measurable p > 0 and f € LY(R%). This includes
the case f in LP(Q2) for Q = B,(0), p € [1,00]. For the redefined exponential
operator Ey, we have the estimate ||[Ey(9)||,, < [|4llo, € [1,00). Thus, for the
redefined A = A, = R(M(i, E4 o D,) we infer from (8b) by a similar proof for
(f,n) € LP(Q) x L°(R?) C L'(R?) x L°(R?) (L°: all measurable functions) the
estimate

1A Wl < 20)' " Pldll - 11, - (13)

Hence the ATRT may be extended to L (R?) x L°(R?) and is for fixed p a continuous
linear operator in L(LP(Q), LP(S! x [—p,0])) (for p = 1 even Q = R? (p = o0)
is permissible). It is, however, not obvious that A is continuous and Fréchet
differentiable with respect to g on this large domain. Actually higher regularity of
(f, 1) is required in the following section to prove differentiability of A as nonlinear
operator of two argument functions.
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Hy () x Hy(9) - L'(II)
A |
DeX
KeX L™ (%) Rel
E diff., nonlin.
Y Y M bilin., contin.
LY(S) x LP(%) - L)

Figure 2. Structure of the ATRT operator

4. Tikhonov-IntraSPECT

4.1. The ATRT in Hilbert space

We aim to apply the regularization theory of [EKN89] to the attenuated Radon
transformation A or a redefined version thereof under realistic conditions. To
approach this aim we start with two abstract theorems that yields part of the
condition T in Definition 2.1 for any operator of a similar structure as the ATRT
defined over suitable spaces. In the next theorem we consider a map A that, like
the ATRT, has the structure shown in Figure 4.1.

Theorem: 4.1 Let Q, X, 11 be some domains, and Hy(Q), Hy(Q2) be Hilbert spaces
continuously embedded by iy resp. iy into L?(Q). Consider an operator A mapping
X := H1(Q) x Hy(Q) into Y := LY(II) for t € [1,00]. Let K : H1(Q) — LI()
and D : H2(Q) — L"(X) be compact linear operators, E : L"(X) — LP(X) an n-
times Fréchet differentiable operator M : L1(X) x LP(X) — L*(X) a continuous,
bilinear operator and R : L*(X) — LY(I) be a continuous linear operator. Assume
A admits the decomposition A == Ro M o (K,Eo D) : X — Yt with A(f,pn) =
R(M(K f,E(Du))). Then A is n-times Fréchet differentiable, compact and weakly
sequentially closed.

Proof: Differentiability follows from the chain rule which is valid for Fréchet
derivatives. We may decompose A = ® o T with the compact linear operator
T := (K,D) : X - Z := L%X) x LP(X) and the continuous, nonlinear map
® = RoMo (Id,E) : Z — Y*!. Therefore, A is compact. In order to prove
weakly sequentially closedness consider a sequence z, — z and y, = A(z,) = .
Since D(A) = X is weakly closed we have x € D(A). Assume y # A(z). Since
T is compact and any weakly convergent sequence is bounded by the theorem of
Banach-Steinhaus, there exists a subsequence x|, such that z/, = Tz!, — 2 converges
in the norm of Z. Assume z # Tz then there exists u € Z' with (z — Tz |u) # 0
but

(z—Tz|u) =lim(Tz), —Tz|u) =lim(T(z), —z)|u) =lm(z, —z|T*u)=0.
We see thus z = T'z. By continuity of ® y, = ®(z],) = ®(z) = &(Tz) = A(z) in
the norm of Y. Thus, y,, converges weakly to both y and A(z), which by uniqueness
of weak limits are therefore equal. |

Theorem: 4.2 In the situation of the previous theorem the first Fréchet derivative
of A at x = (f,u) € X is given by

A'(f, p)(h,v) = A(h, ) + R(M (K f, E'(Dp) Dv)) .
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The second derivative if existent is given by
A"(f, ) (h,v)* = R(M(2Kh, E'(Dp)Dv)) + R(M (K f, E"(Dp)(Dv)?)) .
If the first Fréchet derivative of E is Hélder continuous of order ¢ € (0,1], then A’

is locally Holder continuous of order . The result on the derivative still holds if
K, D are merely continuous.

Proof: Noting that M is Fréchet differentiable with derivative M'(f, g)(hi, h2) =
M(f,ho) + M(hy,g) the derivatives may be calculated by the chain rule. We find
for the first Fréchet derivative

A'(f,n)(h,v) = Ro M'(Kf,E o D))o (K,E'(Du) o D)(h,v)
=Ro (M(Kh,E(Du)) + M(K f, E'(Du)Dv))
= A(h,pu) + R(IM(K f,E'(Dp)Dv)) .
The second derivative if existent is calculated from
A" (f, 1) ((ha, 1), (he, o)) = A' (b1, 1) (0, v2)
+ (R(M(K f, E'(Dp)Dw1)))' (ha, va)
= R(M(Khy, E'(Dpx) D))
+ R(M(Khs, E'(Dp) D))
+ R(M(Kf,E"(Dp)(Dvi, Dvy))) .

Higher derivatives may be calculated by induction.
Holder continuity: Let Hg: denote the Holder constant of E'. Then

|E(z +u) — E(z)|| = ||/0 E'(z + tu)u dt|
< IIuII/O 1B (@)l + |E' (z + tu) — E'(z)]| dt

1
< ull(|E' ()| + Hp |Jul / I di)

1+
< E (@)|l[lull + Hellull™ .
Now consider

A" (f + g, +n) = A'(f, W)l

< ”(hsu)lﬂ_l{ A" (f + g, +n)(h,v) = A'(f, pp+n)(h,v)]|

+ [1A(f w4 ) (h,v) = A'(f, ) (R, )| }

- { |R(M(Kg,(E'(Dp+ Dn))Dv)|

+ IR(M(Kh, E(Dp+ Dn) — E(Dp)))||
+ [[R(M(Kf, (E"(D(n+ n) — E'(Dp))Dv))|| }

<[ Ml W {IKIgIHIE (D + Do) | DI Il

+ IEHIRIUNE (D + He (ID[HnIDID]Hin
+ KA HE (IDIHID DI}
< IR o MIIKIDN C(IE (Dl + He (I1DIHinID)gll
+ (IE(DwIl + He (DI D)l + L 1Hz (IDIHInl)®)
= [[Ro MK [ID]]
< (ILE"(DIlgll + Il + Algll + lnll + 1LADHe (D] Inl)7) -

A

It follows that
A" (f+g,n4+n) = A(f,wll < CUm) - Olg w7, g, =0
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for some C(f, u) < co. Namely for [|(g,7)]| < p < 1 and the continuous function
C(f,p,p) = IR o M||||K||||D]| max(2p'~*[| E" (DI, (I £l + 20) Hp || DII")

the estimate

NA'(f + g, 4n) = A'(f,wll < CUf, 0 (g, mII

holds. Therefore, A’ is locally Holder continuous. Note that Hg may be replaced
by the Holder constant of E' over the ball B, p(Dp), i.e. E' need only be locally
Holder continuous.

|

Definition: 4.3 We define over Q = B,(0) C R? the Hilbert space

XU XPE(Q) = H (0, di) x Hy? (G d)
for some continuous weight functions 0 < ¢ < (x(z) < C < oco. The norm on X *1:52
is given by

. 2 2

IO e = G (Td = D)2 |2 + [1Go(Td = A)*/?p| o -
Further, we define the Banach spaces

Y= LY(S" x [~o,0])
for all ¢ € [1, 00]. 0
We note that Y2 is a Hilbert space. As set X122 agrees with Hg' () x Hg*(Q) =
X75%2(Q) without weights. If ¢; # 1 the norm on X2 is, however, different from
the norm of X7/** but equivalent to that norm.

Example: 4.4 In the situation of Theorems 4.1 and 4.2 let M be the multiplication
operation and E a composition operator ¢o (cf. Section 6.4) for some suitable
differentiable function ¢ satisfying the hypotheses of Proposition 6.4 for Fréchet
differentiability of order n. Let further Hy(Q)) be the weighted Sobolev space
H*(Q, ¢ dz) for some weight functions (, that are bounded above and below
0 <c<G(r) <C < o0)and s > 0. Then Hp(R) is continuously embedded
in L?(Q). Assume that further operators D, K, R are given such that D, E, K, M, R
satisfy the conditions of Theorem /.1 when the composition operator A as in the
theorem maps X*%2 to Y over some suitable domain II. Then we have

A(f, 1) =R(Kf-¢(Dp))
A'(f,p)(h,v) = R(EKh-$(Dp)+ Kf-¢'(Dp)- Dv))
A"(f,m)(h,v)* = RQ2Kh-¢'(Dp) - Dv + K f - ¢"(Dp) - (Dv)?)) .

Theorem: 4.5 The original ATRT operator A has a locally Lipschitz continuous
first derivative and is weakly sequentially closed, when considered over X152, g1 >
min(0,1 — %), so > 1 mapping into Y'. The redefined operator A, (with E4 and
D,) has this properties over the larger space X°1*2 if ||

4s- 7 2
Sl-i-2 ——;, 816[0,1), 826[0,

. (14)

The ATRT operator A, itself is Hélder continuous of order ¢ € (0,1], if only
s1 € 10,1),s9 € [0, l) satisfy
2e > 1 2 2
it gzt o
If strict inequality holds for some ¢ > 0 and s; > 0 than A, is also compact and
weakly sequentially closed.

|| If s2 € [4,1) the condition becomes

A(sy — 1) 2 1
>1-2, 51 €[0,1), 52 € (=,1).
125, 21T p €D (5]

S1
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Proof: We are in the situation of the previous example with the generalized Radon
transform R in the role of R and ¥ = S x Q, II = S' x [—0,0]. The operator D is
the restricted fan beam transform D, and K := i := ig10d,, , : H*1(2) = L"(X) is a
compact inclusion. We note that H* () is isomorph to H* (2, { dx) the respective
norms are equivalent but not equal for 0 < ¢ < ( < C < oo and ¢ Z 1. The function
¢ is either exp(—o) (for the case of the original ATRT) or the ¢ associated with Eg
with ¢|p, = exp(—o) (in the A, case).

For convenience we summarize some results of the previous section in a table
HH©) 5 L(E) g2 5%, s e[0.1)
D: H*2(Q) — L"(Y) I/r> 52, s €(0,3)

1/r> 4282 55 € (1/2,1)

~.

4—2s57
E,: L"(X)— LP(X) n-times F-db, if »/p > n,
E: L®()— LU(Y) q € [1,00), 00-F-db
M: LUS) x () = LYE) 1/t>1/p+1/q
R: LY%) — LiII) t€[1,00]

The operators ¢, D are compact if the respective s is larger than required for
continuity. If s; > 1resp. so > 1than i resp. D map into L*. The highest derivative
of order m, < r/p of E4 is Holder continuous of order € = r/p —m, € (0,1]. For E
to be differentiable r = 0o, i.e. s5 > 1 is required.

In the case of the original ATRT A we choose p,r = oo, ¢ = t, with
H* (9, Gudz) < LY(Q) if s; > min(0,1— 2). Further, we note that H*2(Q, (xdz) —
L>() for s > 1. In the case of the redefined ATRT A, we use r :=
resp. r = 41:2;22 (if s2 € [0,1/2) resp. s2 € (1/2,1)), q :=
1/p:=1/q—1/t.

The condition in Proposition 6.4 for a ¢ Holder continuous nt” derivative of
E; requires r/p > n + ¢ which is satisfied for ¢,n = 1 if (14) holds, because e.g. for
sy €[0,1/2) and e, := © = 1352(1351 — 1) the condition &, > 2 is equivalent to
(14). In order to proof Holder continuity of order ¢ of A itself e, > ¢ is sufficient,
which is equivalent to the respective condition in the theorem. The proof of local
Holder continuity of A and A™ provided Fy resp. Eén) is Holder continuous is
analog to the one for A’ in Theorem 4.2. Concerning A it is somewhat simpler, for
A™M) it becomes rather technical. We omit the calculations involved. |

A note-worthy special case of the above is the following theorem. It states
that the redefined ATRT satisfies conditions required by Tikhonov-regularization
Theorem 2.2 under more realistic assumptions on the function spaces.

1—s2

s1 € [0,1) and

2
1751 ?

Theorem: 4.6 The redefined ATRT operator A, mapping the Hilbert space
Xsvs2 = {5 (Q) x H3'(Q) into the Hilbert space Y2 = L?(S' x [—o, 0]) is Hélder
continuous for all s; > 0,89 > 0. It is compact and weakly sequentially closed
for all sy > 0,50 > 0. If 3min(1,s1) + min(%,s5) > 1 the existence of a locally
Lipschitz continuous first derivative at every (f,p) can be guaranteed (e.g. forq
Sy = 1/2, S1 > 2/3)

For the original ATRT A these properties only hold under the more restrictive
conditions s1 > 0 and sy > 1 (which are in applications unrealistic for ).

Proposition: 4.7 The Fréchet derivatives at (f,u) € X592, 1y > 0 of the original
and the redefined ATRT A, A, are given if they exist by

O"A(f, 1) (1) . (hyvn) = (“0)"A(][ D - £ =D I Dwe-hyom) -
k=1 j=1 k=1,k#j

Therein A is the generalized ATRT of (5). The analog formula holds for the
derivatives of A.

9 A value s; = 2/3 may not be sufficient, because s2 = 1/2 is a critical value for sz .
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In particular:
A'(fw)(h,v) = A(h—Dv- f,p)
A"(f,m)(h,v)* = A(=2Dv - h+ (Dv)* - f, j1)
A" (f, ) (h,v)* = A((Dv)* - h = (Dv)® - f,p) -
The derivatives exist for all orders n for A, A, : X*% — Yt € [1,00], s1 >
min(0,1 — %), s > 1 and for the redefined ATRT A, : X952 — Y for order

n < u:= (l_l+31)133 . if 51 € [0,1) and sy € [0,3). For sy € (3,1) the
4252

factor =~ has to be replaced by 5 The highest derivative of order n. = [u]
(resp. n* =u-—1,4i ueN) of the ATRT is locally Holder continuous of order
E=U— Ny.

Proof: With the operators from Theorem 4.5 and Example 4.4 we calculate

A'(f,m)(hv) = 153((/1 — f - (Dv))exp(—=Dp)) = A(h - fDv,p)
A"(f,w)(h,v)* = R((f - (Dv)* = 2h - (Dv)) exp(=Dp)) = A(f(Dv)* - 2hDv, p)

The conditions on the s; follow as in Theorem 4.5. The results for higher derivatives
are proved by a standard inductive argument. |

We now proceed to our main technical lemma. It will allow to improve the
result of Theorem 4.6.

Lemma: 4.8 The Fréchet derivative of the redefined ATRT between X552 — Y
for s1 €[0,1),s2 € [0,3),t € [1,00] ewists at f,p with f € L*, s € [%,oo] if
2 1 1

The derivative is Hélder continuous of order € € (0,1] at f,p with f € L*, s >
2 .

—— >t if

1—s1

—~
—_
ot

~~

5—2sy 2 3 1 1
> 2 and s> 1 (o= 16
1= poand e 21-7m G- 0) (16)
Proof: Let p,p’ be defined viall—): %—% >Oandﬁ = %—1_% > 0. If

s2 2 1+ 3 —3 and sy >1— 2 then A'(f,u) € L(X**2,Y") for f € L*(Q2). Using
||R||L(L1’Li) = Cf 4 < 0 this is proved by the following estimates

1A' (F, 1) ()|, = R (16! (D) + FDYODI 5100
< Cé,t,t||h¢/(Dﬂ) + fDV¢(D,U)“t,Sl X
< Cry il (Dp) + fDvd(Dp)ll; 1

< Cra il 1Pl + 1Dl 111DV
81 > 1 1
H 2 -2 0t
1
s v2s o
H 373
With A¢(a,b) := ¢(a + b) — ¢(a) we estimate further that
&= [[A(f + h,p+v) = A(f, ) = A'(F, ) (hy V)|l s51 ¢ 0,0)
< Cryllf(A¢(Dp, Av) — ¢'(Dp)Dv) + hAG(Dp, Dv)||; g1
< CIfI1A¢(Dp, Dv) = ¢ (Dp) D, + ||All o1 |AG(Dpr, Dv)],) -
The composition ¢o : L™ — LP is differentiable if » > p by Proposition 6.4, with
an remainder estimate (cf. (31)) of order ¢ = min(2,r/p). Since Dv € L" f01,r
L=l 5, €00,3) we find £ = ——(3—1)> 1 (by (15)). Further, ¢o : L™ — L?

r 1—s9

7], < Cisp,tllhl

||DV||p < CDsap

1
|| =
p

Hs1
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is Holder continuous of order &’ = min(1, %) (cf. (27)) with - = 1_382 (1-352) > 0.

It follows that there exists some Ry, Hy < oo such that for small ||v]| ;..
& < C (If11,R6(Cp,sa,rllv] i Ho(CD s

= O(||(h, v) |2y

Because e, = min(e,1 +¢') = min(2, (Z2-(3 — ), 1+ (3 - 52) > 1if
the assumptions (15) are satisfied, we find that A is Fréchet differentiable in the
(X*v52 Y?) topology at f € L°.

In order to demonstrate Holder continuity of A'(x) at x = (f, ) with f € L*

we need to consider

A=A+ gt n)w) = A ()i

|R((f + 9)Dve'(Dp + Dv) + h:(Dp + Dv) — fDv¢/ (Dp) — h(Dp)) |,
Ch.1.INAG(Dp, D) + Dv(gd' (D + Dv) + fAY (Dp, Dv))|l, 5140

Let p', p" be defined by i =1_ 155 and # =1_1_ 12 (bhy (15)). We have

p',p" >t by our assumptions for Holder continuity and may estimate
& < Cl|hll ey (1A(Dp, Dl + Cllgll e, 191l oo

+ ClAI I oo [|1AS (D, D] -

The estimate for the term containing g holds because % > 18y 1‘% is equivalent

to the first of the assumptions (16) for Holder continuity. The maps ¢o, ¢'o : L™ —
LP are Holder continuous of order ¢ if r > ep. Now since ||Dn|],, < Cp ss,rl|nl fres
for % > 1*% we obtain under assumptions (16) on sy, s2, s,

me2)” 10

||

)"

IN

91|

—sq

& < C(Hollhll s [Ill5re2 + 16" o111 oz N9l o + Hollw [l oz £ 1Ll 7ro2)
with &’ = min(1,r/p') and €” = min(1,r/p"), where
3 1 1- 3 1 1

S (G- ad o= (- ) -1

p' 1—s5t 2 p' 1—s0,"t s
This demonstrates & = ||, v|| x o, (1+ | £1l,)O(lg, nll %) for 1(g,m) | or,e0 —
0, ie. local Hélder continuity of the derivative of order e, = min(e’,e") =
min(1, 2 (31 ++—3) 7255 (1 — 1) —1). Now it follows from the first inequality in
(16) that -—— _sz (7 + 1 — %) > 1. The second part of (16) yields the desired estimate.
|

Let us consider two special cases of the previous lemma.

Example: 4.9 For the redefined ATRT A, mapping X**2 into the Hilbert space
Y2 = L?(S! x [—0,0]) the Fréchet derivative ezists everywhere if 351 + so > 1,
(e.g. s1,82 > % or s = %, So > % or So = %, s > %) Further, it exists
at all elements with bounded f € L°° already for any s; > 0, sy > 0. If
%sl + so > 1 the derivative is Hdélder continuous at such elements of order
¢ = min(1, ﬁ -1)> % Lipschitz continuity is reached for so > i.

In addition the redefined ATRT is everywhere Fréchet differentiable as operator
A L2(Q) x L*(Q) = LY(S* x [—o0,0]) if t < &. Fort € [1,8) the derivative is
Lipschitz continuous at all elements with f € L® (e.g. bounded f).

Proof: For the specialization to ¢t = 2 we note that every f € H®' isin L?, s = ﬁ

Inserting this in (15) yields the condition 2 551 + s2 > 1. The case for f € L™ is
obvious. Condition (15) is satisfied for s; = s; = 0 for any t € [1,8). For such t
(16) holds with e, = min(1,e(s)), &(s) = 3(+ — 1) — 1) 332 je at felL®
the derivative is Lipschitz. For ¢ = 1 one obtains ¢, = 1 already for f € L3.
We may finally conclude that the derivative of A, : L*(Q) x L?() — LY(X)
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for t < g is Holder continuous of order ¢ = 2 — % > 0 at least at any element
(f, 1) € L*(Q) x L*(92). n

Summarizing the last results, we may now state the main theoretical result.
We define in view of Lemma 4.8 the following domain of functions

Dy, 5o p.0 7= {(f; 1) € X2 fl|, < C} . (17)

Theorem: 4.10 The redefined ATRT satisfies conditions T1-T6 of Definition 2.1
required for optimal order Tikhonov reqularization by Theorem 2.2 when considered
as operator on D(A) := Dy, s,p.csup HJH(Q) x HS?(Q) mapping into Y =
LSt x [~o,0]) if

3
t

S 5—2sy 2 3.1 1

- 3 t - 2t p

In particular for the case with the Hilbert space Y2, bounded activity f (p = 00,C <
00) the conditions sy € [1,%) and s1 > 2(1 — s3) (e.g. (s1,82) = (3,3), (£,2)
or (%,%)) are sufficient for the existence of a Lipschitz continuous derivative
at all (f,u) € D(A). If s € [0,1/4) the conditions are nearly met with A’
being only e-Holder continuous of order e over the domain Dz(y_,,) , o0 c with

e=3/(2—2s2) —1>1/2 at least.

S1

Proof: The results were already proved in Theorem 4.5 and Lemma, 4.8. |
We note again that for the original definition of the ATRT A : L? x H® —
Y2, s> 1is the setting required to prove differentiability.

Corollary: 4.11 The operator F : H® := H*(Q,(dx) — Y! = L*(S' x[—p,0]), 0 <
¢ < ((z) < C < oo defined by F(p) = Ay(f, 1) for some f € L*(Q), that governs
the problem of approzimating u given an activity estimate f and SPECT data y°, is
Fréchet differentiable in the H® — Lt topology when s > 0. For s > 0 the operator
s also compact and weakly-sequentially closed. The derivative is given at p > 0 by

F'(p)v(w,s) = — R(fDv-e” ")

0
= —/ v(swh+ tw)D(fe Por)(—w, sw + tw) dt .
-0
It is Hélder continuous at least of order € = min(1,3/(2 —2s) — 1) > 1/2. Lipschitz
continuity of F' can be guaranteed over H'/*. If higher derivatives exist they are
given by

O"F (v = 0" Ag(f,1)(0,v) = (=1)" A, (f(Dv)", 1) -
For s > 1 derivatives of any order exist. This remains true over H®, s > 1 when

we replace A, by the original ATRT A defined with the proper exponential function
instead of the substitute ¢.

Proof: We may proof this reusing the proof of Lemma 4.8 with h,g = 0.
The conditions on s; may be dropped. The derivative of FF = A o (f,o) is
F'(uw)yv = A'(f, 1)(0,v). From this the remaining results follow easily with Theorem
4.5. Only the alternative representation of the partial derivative of 4, : X°*2 -V
with respect to p needs to be proved We show that for sufficiently regular v and f
and g > 0 it may be rewritten as

8HA(f7 :u)’/(wa 8) = _Rw(V : wa(fE(Duuu'))(s) .
We have with £(t) = sw* + tw
—0u A )v(w,5) = — AU, ) (0,0)(w,5) = —A(0 — f - D, )

/ fol(t) / 8,(7 — t)v 0 £(7) drE(Dp(w, £(1))) dt
R R
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= / vol(r) / Oo(1 —t)f o L(t)E(Dp(w, £(t))) dt dr
R R
0

=/ vol(r) jfoé(t)E(D,u(w,E(t)))dth

= Ru(v-D_o(fE(Dup))(s) -

5. Numerical results

The Tikhonov functional minimization has been implemented in form of an adapted
Gauss-Newton minimization procedure.

The standard Gauss-Newton method starts from the observation that for
linear least-square problems a number of efficient algorithms are known to find
a minimizer. The operator A in the Tikhonov functional is replaced by its first
order Taylor series

A(z) ~ A(z®) + A’ (2%)(z — 2¥)
and the resulting quadratic form is minimized
Tow. () ~ TH(2) = | A(") + A" (") (@ — ) = Iy + alle — 2%
With the vanishing gradient condition
VT#(z) = 2[A" (") (A(z*) + A’ (z*)(z — 2*) — )+ a(z — 2,)] =0
one obtains the update formula
=gk — (AN (@R A (2P) + - )T (A (M) (AY) — y0) + alah - 3)) .
This may be rewritten with the gradient
g" = VI*(a*) = 2[4'(2")"(A(*) —y°) + a(a" —2.)]
as the linear system
Q d" = —g*, Q" =VTF =2A'(") A ") +a-T1).
for the optimal Gauss-Newton update d* = z¥+! — 2 with a symmetric positive
definite operator Q*. The method equals Newton’s method for VI = 0 with A"
ignored.

In our implementation the linear problems are solved iteratively by a conjugate
gradient type method, that independently searches for updates Af and Ap.

Activity f Attenuation pu Sinogram A(f, u)+ noise

Figure 3. Phantom data

In Figure 3 a phantom data study of a myocard diagnosis is shown. We use an
activity f constant in the whole body except the heart muscle where it accumulates.
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Figure 4. Simultaneous activity and attenuation reconstruction

The nonuniform attenuation map p is reduced to the heavily attenuating backbone
(0.28¢cm 1), muscle tissue (0.16¢m~!) and the hardly attenuating lungs (0.04cm™1).

For this setting SPECT data where simulated through calculating A(f, 1) and
adding 20% multiplicative uniform random noise.

Figure 4 shows the first iterates for f,u of the reconstruction obtained with
our algorithm. T

Details of the implementation may be found in [Dic97, Chp. 5] and will be
published together with more numerical results in a forthcoming paper.

6. Appendix
The appendix collects some technical proofs.

6.1. Smoothing properties of the restricted fan-beam transform

Proof:(of Proposition 3.7) Using polar-coordinates r¢ and the parameterization
w = (cos p, sin ) and further fi(r,9) := j(r cosd, r sin) we get from equation (10)

2 2
1D = 1D, otz ey d
H S«l

at+1/2(s1xp2)

- %||(1+7“2)a/2+1/4?217u(w7<>)||§dw
S‘l
. 27 oo 2T . . . .
= 492/ / /(1+r2)°‘+1/2|ﬂ|2(r,ﬂ)sincz(grcos(ﬂ—cp))dﬁrdrdcp
o Jo Jo

oo p2m 27
= 492/ / (1 + 7)o t2 3|2 (r, 19)/ sinc? (or cos(¥—)) dp dV rdr .
o Jo 0

We consider (using vy =rcosp and 0 < e <r)
2 2
/ sinc? (1 cos(¥ — ) dp = / sinc? (1 cos(y)) dy
0 0
w/2 )
(by symmetry) = 4/ sinc?(r cos(p)) dp =
0
T dry € " sinc?(y) dy
4 [t —a o+ [EEED
; s e

+ The electronically published version contains some video clips illustrating the progress of the

iteration, see http://rubens.math.uni-potsdam.de/ volker/diss/SPECT.htm .(To be changed if
paper is accepted)
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<4 / by / )
= o /rZ—2 e 212 — 2
Ve

r2g '
(cf. e.g. [BS84, p.44n0164p.45n0169] for the integrals). With arcsin(z) < Ta and
choosing € = 1 when pr > 1 and using sinc < 1 elsewhere, we arrive at

€
= 4arcsin— + 4
r

2 -1 1
e 3 (2w + 4)(or) if or >1
/0 sinc”(or cos(¥ — @) dp < { I if or <1
2 2
and thus for | Dgull* = 1Dl

. 1 . 1/0 27 ) )
1Dl < 8my /14 —292/ / (L4 r*)*|@|*(r,9)) ddr dr
atl/2 0 0 0
1 e’} 21 . )
+ (87r+16)1/1+—29/ / (14| (r,9) dd r dr
14 1/0J0

2
<0l

For the second half of the theorem we use Fubinis theorem. It proves that
since the double integral with measures dw and (1 + |¢|?)*t1/2d( of the positive
function (D, (u(w,())? exists, the integral with (1 + |¢|?)*+1/2 d( exists for almost
all w € S'. Accordingly, D, ,pu lies in H*+'/2 for almost all w. In order to
demonstrate unboundedness we consider the image of a characteristic function of a
square under D, .. Let w.lo.g. o0 > V2 and 0 = 5X[—1,1)2- It is well known that
o€ H3(Q)\ HY/*(Q) for all s < 1, and 6 = sinc ® sinc.

We calculate for D, o with w = (cos ¢, sin ¢)

[e%s} 21
= 492/ / (14 73| |*(r,9)sinc? (or cos(9 — @) ddr dr .
o Jo
The critical cases are ¢ = 0,7/2,7,3/4w. For them we find* e.g. for ¢ =0
3 2 . 2 . 2
L B e Y = et
0 me /2 0 N

9 o w/2 ) d
> 4(—)2/ p2atl / sinc?(y/r2 — 72)sinc2(gy)—72 dr
™ /2 0 Vr?

9 20 0o B w/20 ) ~
>4_2_2/ 2a+13/ 2 1—(5)2)d~d
AP [ [T e 1=

0 ) w/20 ) ~
> C’//2 rz(a_l/z)_l/o sin?(ry /1 — (;)2)d7dr.

Since the last integral diverges for all @ > 1/2 we see that D,o((1,0),¢) is no
smoother than ¢ in terms of Sobolev regularity. If ¢ # 0,7 /2,7, 3/4r it is possible
to show that ||D, ,0||,. is finite for all @ < 1 but without upper bound when ¢
approaches the critical values. Because these estimates are rather technical and
give no deeper insight we omit them. |

2
”Dw,QU“

Ho(R2)

6.2. LP-spaces and estimates

In the following section let p be a positive measure on a domain 2. We denote as
usual by L' := L'(Q, du) the set of all equivalence classes of measurable functions

f with
/Qlfldu =:/|f| = [Ifll < oo

* . . 2 _ . sin(ry/1—(v/7)?)
With sinp > 2, ¢ € [0,7/2] and v = r cos(¥), sincy/r2 — 2 > —N—T——
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Further, we denote by L? := LP(), du),0 < p < oo the set of all equivalence classes
of measurable functions with

171, = IAPIR < oo
and by L™ := L>®°(Q, du) the set of functions with

Ifll = inf{ sup |f(@)]; N C 9, p(N) =0} < oo
wEQ\N

The space LP is a Banach space only for p € [1,00], because the Minkowsky
inequality [|f +gl[, < [[fll, + [lgll, holds only for p > 1. We note the simple
rule

121, = 11£15, ¥ 2y s >0, (18)

which will be used later. For any positive measure g we have the well known
estimate

[ fodul 1Sy < Wl ol ¥ 1/p+1/a=1.
An application of this to (|f]-|g])",r > 0 gives the generalized version
gl < AL gll, Vp.g,r >0, 1/p+1/g=1/r. (19)

For a bounded measure u, e.g. Lebesgue-measure on a bounded domain, we have
vol(Q) :=||1]|, < co and get
[1£1l, < vol(@)"VP||f||, Yp>7. (20)

Thus, LP C L" is a continuous embedding V p > r with norm vol(Q)'/"=1/? for
finite measure pu. Another useful estimate is derived form the Holder estimate (19).

Lemma: 6.1 Let f,g € L"(u), » > 0, A € [0,1] for a positive measure p and
f,9 > 0 p-almost everywhere. Then

_ A .Y

12 g M, < A - gl ™™ (21)
Proof: The estimate obviously holds for A = 0,1 and for A € (0,1) we have the
estimate

_ - A 1-X
12 g 2 < UL allg Moy = DA - llgll,™

|

We get further for any positive measure p and f € LP N L, r > p > 0 using

(@/llzllo0)" < (&/ll2]l )"

1A < WA < Ufllposee VP <7 (22)

with |[of| ppre = max(||o|| ,[lo||l.). Thus, the embedding LP N L> C L" is
continuous V p < r.

6.3. An interpolation result

Proof:(of Proposition 3.8) From (19) and with (18) the following estimates are
derived for A € (0,1); ¢ >pand f >0

11y, = [HIf (@ o)llyplly

<Ay, I 1/l

1/q 1-))-2 o
= 11/, o)y - IF N (@, 0)]17 Ix,

1/q 1—A) 22 Ty
<P VAL - MY @ o)l N

_ Ap/po [P0/ P (1-X)
= HIf @, oy 3"y, - ||||f(af,<>)||y,<1,k)%llx’oo
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For p > p, and p < p> we choose A = po/p < 1 and ¢ = p2/\ = pp2/po > p2 > p.
Thus, we arrive with the given choice of p in the theorem at

A (1=X)
[P S HCD N e [ F{C v ey
_ A (1=X)
= 115 Ol 5, 115 @ Olly, oo 1
1— 1—
= 11F @, )y 1527 - 1S (a0l I 277 < OO P G777,

6.4. Some remarks on composition operators

In this section we study continuity and differentiability properties of composition
operators

(¢o) : f€L"() = dpofeLP() (23)
and further
(po-): fEL ()= (tr o f-t) € L(LI),LP(Q)) (24)

for some suitable ¢ : R — Ror ¢: C — C.
The results easily extend to higher derivatives of (¢o) where we have to study
multi-linear maps of the form

(po-IT) : f € L™(Q) = ((tr, .., tm) ¢of~H t;) € L™(LT x... LI LP(Q)) .(25)

j=1

Proposition: 6.2 Let ¢ : R — R (resp. ¢ : C — C) satisfy the growth condition
lp(t)| < C(1+|t))%, YVt € R (resp. C) and a uniform Holder estimate:

B [hlE(1+ |¢e| + RS~ Vi,heR (resp. C) if s > ¢
¢t + 1) = ¢(t)] < C{ IBJE (1 + |h])*= Vi heR (resp. C) if s <c

for some e € (0,1],s > 0. Let u be Lebesgue measure on a finite domain Q0 (or some
other suitable finite measure that admits all the estimates below, e.g. a weighted
Lebesgue measure du = ((w) dw with [1dp < c0).
L Ifs <r/p, r,p € [1,00) and &, := min(e,r/p) > 0, then the operator given by
(23) is a (for s < & uniformly) Hélder continuous operator ¢o : L™ (u) — LP(u) of
order €,. For (¢o) the following estimate holds for all f,h € L"
SR @RI +RIGIART s>e

o7+ - sl < cf Il 6 ik 25 e
ILIf0<s<r(l/p—1/q), 1 <p,r < oo, p<q< oo and e, := min(e,r(1/p —
1/q)) > 0, then the operator ¢o- given by (24) is a uniformly H-continuous operator
¢o-: L™ — L(LY9,LP) of order €,. The estimate (27) holds with ||¢(f + h) — &(f)
replaced by |||p(f + h) - _d)(f)'”L(Lq,Lp)y for all f,h € L".

The results in I, II also hold for r = co,p € [1,00] and any s, with e, =€ (if
1/p > 1/q) in II). In case p = r(= q) = oo the measure p need not be finite. The
result for the cases with r = oo also hold if ¢ merely satisfies |p(t + h) — ¢(t)| <
Clh|=e P+t when (27) is replaced by ||o(f + h) — d(f)||, < C||R||7eIIFIRDT

Proof:
Part I: The case with r = p = oo follows immediately from the Holder estimate

lo(f +h) = d(fllc < sup [o(t+ V) — ()]

[t1< Il oo
[91< 1Pl oo

< C{ IRIECL+ N+ RID* =2 s > e
= L PIP @+ lAl)e s<e.

(26)

Il

Il
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The cases r = oo, p € [1,00) follow from r = p = co and the continuity of the
embedding L> C LP for finite . The proof for r = oo is still valid (with the
exponential estimate instead of (27)), if ¢ only satisfies the exponential estimate .

Now let r,p € [l,00) and f,h € L"(u). Without loss of generality let
h > 0. Due to the growth condition for |h| — oo there exists C; < oo such
that [¢(f)(W)| < Ci(1 + |f(@)[/7). Thus, l¢(H)ll, < Ca(lI1ll, + [IF@)]"77Il,) =
C2 (1], + ||f||:/p) < oo for some Cy < oo by Minkowsky’s inequality. Hence,
o(f) € LP(p).

Let us define A := {w;|h(w)| > 1} the set of large values of h and the
characteristic function y = ya. We further note the simple estimate

n (N a® i >0,2>0
(Zaj)zé{ nQra) 420>
1

7|| .
ajz Vij,a; >20,z<0.

With this it follows from (26) that there exists C' < oo with

A" (L +[2°7°)  [A[ <1,
|h|* |h| <1,
|h|* |h| =1,
A+ [pl[E Rl 21, s

l¢(t +h) = ¢(t)] < C'

» » »
IVINIA IV
m omom M

for any h € R (resp. C). This yields

L=20R%l, + [IxPell, + IF7=hel, s> €
+h) — < Cl{ ”( P o? p
llop(f +h) —o(Hl, < 1L = )8, + ke, s<e
We get with (20) and (22)
r/p
LBl =111 = allE < 4 1E=2x)Al; Vr<ep
la—oml, = la-onp, < { JEME s

With the simple estimate ||xh*?||; < ||xh"||; V r > sp we obtain
Ih?ll, = B IR < (AT = [xhll’™ < Al
Further, we find from (21) and (18) for s > ¢

s—e ¢

17 he N, < W= RE I, < A1, FlIRlS, < (vol(@)M/ P17y || £I17=5 IRl -
Therefore, we see

h“min(s,r/p) . ||h|| <1. s<e¢
||¢(f + h) - ¢(f)|| S Cl{ || :nin e,r s—¢ € 7 o - (28)

’ B NI R, <1 s > e
Further, from (22) with r > ps
X211, = lIxhll5, < vol(@)*P=*/"|[xhll; < vol(2)*/7=*/||l|; .
Using [|(1 — x)h7[[, < I]I;* < oo we arrive at
IRl slhll, > 1, s <e
o(f+h)—o(f SC’{ A _ Tz N . 29

10740 = 00 S CUE el S > 1, > < (@9)
Putting the estimates (28) and (29) together yields the Holder estimate (27) of
order €, = min(e,r/p) which implies (for s < & uniform) Hélder continuity of

the composition operator between L" and LP whenever r/p > s. Any bounded
uniformly Holder continuous function ¢ satisfies the condition (26) with s = 0.

Part IT: Because of the growth condition we find |¢(f)(w)| < C+|f(w)|®. Using
the Minkowsky inequality and the embedding L” < L if 1 < p' <r /s we see that
for such p' the estimate ||¢(f)|l,, < C"([[1[l, +1l|F(@)*[l,) < C"([1[l, +C"lI £/
holds. Let 1/p'+1/g <1/pand ¢t € L?. Since then ¢(f)t € L?(u) the operator ¢o -
maps into L(L4, LP) whenever s < r(1/p — 1/q), p,q,r € [1,00],q > p.
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We estimate for t € LY, h € L"

lo(f +h) -t —o(f) - tll, < [I6(f +h) = S(Hl, - [Ill,

with 1/p’ = 1/p — 1/q. Now we observe that p' satisfies the conditions of part I.
Thus, we may estimate

16074 1) =600 ugzosny < s IS +0) ¢ = 6(7) -1
<lle(f +h) = ()l
and therefore the estimate (27) holds for ||¢(f + ) - =¢(f) |l (re,10)- [ |

Example: 6.3 We want to give a counterexample to show that even wvery well
behaved functions need r/p > € over a bounded domain in order to be Holder
continuwous of order €, if € is the maximal H-continuity order of ¢. The map

¢ : R > R, ¢@1) = V|t - eIt s obviously uniformly H-continuous of order
at most 1/2. Take the zero-sequence h, = e, - xn, with e, € 1 and x, a
characteristic function of a set with volume 1/n. Then ||hy||, = e,n™/" and

lg 0 hall,, ~ ean~ VP So, near any function z vanishing on the supports of the
h, we get

g0 (2 +hn) — o (), ~vean P = el/PHL2| |, |[7/7

if we choose r/p = < 1/2 and e, > emin > 0 we get [|[¢po (2 + hy) — po (2)]], >

r/p+1/2
Cmin
go.
Proposition: 6.4 Let ¢ : R = R (resp. ¢ : C — C ) be differentiable and satisfy
the growth condition |¢'(t)] < C(1 + [t])*~1 (resp. o' Ol rr(coy < CA+ [ths—t )
and for some € € (1,2] and s > 0 a remainder estimate:

|(t + 1) — ¢(t) — ¢' (1)l

<C [hle(1+ |t] + |h))5¢ Vi, h € R(resp. C) if s > ¢
- |P[*(1 + [A])*~* Vit,heR(resp. C) ifs<e.

||halls.. This shows that r/p is the best possible order of H-continuity for

(30)

Let u be a finite measure (as in Proposition 6.2). The operators ¢o, ¢ o - and
¢ o Il : L"(u) — LP(u) given by (28), (24) and (25) are then everywhere
Fréchet differentiable, provided 1/r < 1/p — Z;’;l 1/g;j orr = p = ¢ = ©
and s < r/p— > r/q; =: € and &' > 1 (with the convention ) 41/q; := 0
in the case of ¢o). For ¢ o [[™ to be Fréchet differentiable the conditions are
1/r<1/p— Z;nzl 1/g; and s <r/p—1—> r/q; and the derivative at f is given
by h— ((t1,..-tm) = &' (f)-h-T1t;).
With €. := min(e,e’) we have the estimate

(@0 -I™)(f +h) = (¢ o TI™)(f) = (¢' o TI™)(f) - hllp(par x.. pam x 7,10
AL (L4 IB]L) == + ([RILIAN s >e
. C{ BRI (1 + [|A]],)*—= s<e. (31)

In particular we have (¢o) = (¢'o-) if r > p and (¢o-)' = (¢'o-II?) if 1/r < 1/p—1/q.
If the higher derivatives of the function ¢ satisfy (30) with ¢\9) in place of ¢ and
s;j in place of s for all j < m, then (¢o) is m times Fréchet differentiable provided
that s; < r/p—1—j and r > mp. The condition r > mp is in general necessary
for (¢o) : L™ — LP to be m times Fréchet differentiable if ¢ is not a polynomial.

Proof: The growth condition ensures that ¢(¢) < C'(1 + |t|)® by the mean-value
theorem. Thus, for f € L" we find ¢(f) € L* provided s < r/u and further
d(flel ifs<r/u+l.
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Let t; € L%,5 = 1,...,m and t = [[t;. Than t € L%, 1/q = > 1/q;
with [[¢]|, < TIl#ll,,- Thus, we get as in the proof of Proposition 6.2 (with

1/p :=1/p—1/q=1/p— Y 1/q;)

& = [l(0 T™)(F+h) — (0 T () = (¢ 0 T™) () - Kll yponx .o 1r)
< sup 67 +0)- Tt = @) It = @) TTteHl,
< Il;£g1||(¢0)(f+h) = ($0)(f) -t = (@) () -t Al o
< p 1@o)(f4+1) = ($0)(F) = (') (F) - hll o gl
< (o) (F+4) = 69)(F) = (@) Al -

Now (¢ o -II') would be Fréchet differentiable if & = ||A|, - o(||R]|,), [|R]], — O.
Since we assumed 1/r < 1/p — > 1/q; we can conclude via arguments similar to
(28) and (29) that led from (26) to (27) that (31) follows from (30) and hence
(&) = O(||R|>7) = ||All, - o(J|A]],), ||kl — 0. This proves the main statement.

When we take m = 0 and take the empty product equal to 1 we get the result
(¢o)' = (¢' o) if r > p.

Applying the first part to (¢o)' = (¢' o -) with (¢’ o -)(f) € L*(L", LP) yields
(¢'0-) = (¢"o-I1%) provided 1/r < 1/p—1/rie.r > 2pand s; < r/p—2. The result
for (¢0)(™ follows by induction. The condition on r becomes 1/r < 1/p—(m—1)/r
i.e 7 > mp. That this is in general necessary for ¢o : L™ — LP to be m times Fréchet
differentiable follows from Example 6.5. |

Example: 6.5 We give a counterexample in order to demonstrate, that in general
r > mp is necessary for ¢o to be m times Fréchet differentiable in the L™(Q2) —
LP(Q) topology. Let ¢ be a smooth function with all derivatives bounded and
¢ (0) = ¢ > 0, e.g d(t) = ™2t Now consider a zero sequence hy = € Xn
with characteristic functions x, of set of volume ||xu|l, = 1/n and 0 < e, < 1.
Then ||hnl|, = enn™'/" and for the zero function z we have

) (2 + b)) (W) - (he)™ (W) — ™ (2) (W) - (hn)™ (W) — ¢ D (2) (W) - (hn)™ (W)
_ 1 1 vm—1 4 (m+2) . w)- m—+2 w
_ 7<m—1>!/0“ ™S (2 4 thy) (W) ()™ (w)

~ cpemt?

Xn(W)

for some ¢, # 0. If the m + 1 derivative of ¢o exists it must be given by
(o)™ 2 (ty, sty h) = TV (2) - ([17 t;) - h. Therewith we estimate

1™ 0-I™) (2 + h) = (6™ o TI™) (2) = (§" M 0-I1™) (2) - Al (e 1, 1)
> [[(¢!™o-I1™) (2 + i) (hi) ™= (9o TI"™) (2) (h) ™= (¢ Vo TI™) (2) ()™ - hil,

. Tl
+2
||Cm621 Xn”P — m—+2,—1/p+m/r
TRally e T
nliy

if r =mp and ey, > epmin > 0 is not a zero sequence we find
(@™ o T™) (2 + k) = (™) o TI™) (2) = (™1 0 TI™)(2) - | gy 1)
> ememis # o(|[hall,) -
This proves that r > mp is a necessary requirement for (¢o) : L™ — LP to be m
times Fréchet differentiable.
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Example: 6.6 Let ¢ € CTTLLH(R,R) i.e. there is a C < oo such that for all
VYn <m+1, t,h € R we have ¢ (t)| < C and |V (t + h) — TV (1) < C|hl,
then ¢o : L™ — LP is Fréchet differentiable up to order m, = min(m,max;(j <
r/p)), and ($o)(™+) is Lipschitz continuous with Lipschitz constant less then C if
T/p — My Z 1.

Proof: First we note that [¢(™) ()] < C(1+t))°,n =0,...,m+1, i.e. ¢ satisfies the
growth conditions for m times differentiability for any combination of r,p € [1, o0].
By the mean value theorem we see that

|00 (¢ + h) = ¢ () — ¢V ()

< { | [y (60D (¢ +9h) — gD ()R Y| < Clh|?

= LM+ )+ (¢ ()] + [T ()R] < C(2+ |h])
thus the condition (30) is satisfied for all s > 1 with £ = 2. ]
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