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Three-dimensional bouyancy-driven convection in a hori-
zontal fluid layer with stress-free boundary conditions at top
and bottom and periodic boundary conditions in the horizon-

tal directions ic invecticated byv means of numerical simulation
tar airections is investigated 0y means ol numerica: simuiation

and bifurcation-analysis techniques. The aspect ratio is fixed
to a value of 2¢/2 and the Prandtl number to a value of 6.8.
Two-dimensional convection rolls are found to be stable up to
a Rayleigh number of 17950, where a Hopf bifurcation leads
to travelling waves. These are stable up to a Rayleigh num-
ber of 30000, where a secondary Hopf bifurcation generates
modulated traveling waves. We pay particular attention to
the symmetries of the solutions and symmetry breaking by
the bifurcations.

47.20.Ky, 47.20.Bp, 47.54.4+1

I. INTRODUCTION

Rayleigh-Bénard convection, that is, buoyancy-driven
convection in a fluid layer heated from below and cooled
from above, is one of the prime examples of bifurcat-
ing high-dimensional systems. It has long since been
a subject of intense theoretical and experimental study
[1-4]. Important applications are e.g. in meteorology,
geophysics and astrophysics.

From the theoretical side, several approaches have been
used to analyze and understand the dynamics of the
Rayleigh-Bénard system, in particular the formation of
the different stationary or time-dependent patterns ob-
served in experiments, as well as the steps in the evolu-
tion towards turbulence. On one hand there are calcula-
tions of equilibria and instabilities using perturbation-
theoretic methods [3,5-8]. Most current theoretical
knowledge on convective patterns seems to have been ob-
tained by this kind of analysis. More recently, also meth-
ods of bifurcation theory [9,10] are applied, by which one,
e.g., derives low-dimensional systems of amplitude equa-
tions describing the qualitative behavior of the system
close to a bifurcation point, thus allowing for the charac-
terization of the bifurcation. If symmetries are present,
as is the case for the Rayleigh-Bénard system, group-
theoretic methods are an important tool of the theoreti-
cal bifurcation analysis [11,12].

On the other hand, there are numerical simulations
in which the governing partial differential equations are
integrated forward in time, starting from selected or ran-
dom initial conditions [13,14]. To some extent the simu-
lations can allow also a bifurcation analysis, namely, to
get an overview of the possible time-asymptotic states

for given values of the system parameters. The bifur-
cation analysis is facilitated if additionally more specific
numerical methods are used, like eigenvalue calculations
at given equilibrium states (which are given only numer-
ically) and the direct tracing of solution branches.

In general, convection sets in in the form of stationary
patterns, notably two-dimensional straight rolls, which
for stronger buoyancy forces then lose their stability to
time-dependent convection. Small Prandtl numbers of
the fluid are favorable for an early transition to time de-
pendence. Different oscillatory instabilities of convection
rolls were studied by Busse [15], Clever and Busse [16,17],
and by Bolton et al. [18]. In Ref. [17] also the bifur-
cating new time-asymptotic, oscillatory state was calcu-
lated, namely, waves propagating along the roll axis.

In convection experiments various oscillations are ob-
served. Their character and, in particular, the kind of the
transition from stationary to nonstationary convection is
distinctly different for small and large aspect ratios L
(widths of the fluid layers in units of their depths); rele-
vant experiments are summarized, e.g., by Behringer [19]
and by Koschmieder [4]. For small aspect ratios (L less
than about 10) only a few sharp frequencies are present
at the onset of time dependence, while for large aspect
ratios a broadband spectrum appears and the transition
is more gradual. In numerical simulations addressing the
latter situation for a low Prandtl number fluid, Xi et al.
[20] recently found spatiotemporal chaos immediately af-
ter the onset of convection.

In this paper the small aspect ratio situation is consid-
ered. We use numerical methods to study, for an aspect
ratio of 2y/2 and a Prandtl number of 6.8 (correspond-
ing to water at room temperature), the first three bifur-
cations in three-dimensional Rayleigh-Bénard convection
with stress-free boundary conditions at top and bottom.
Particular attention is paid to symmetry and symmetry
breaking.

After introducing the governing equations in Sec. II,
we describe appearance and stability of two-dimensional
convection rolls in Sec. III, followed by a discussion of
their symmetries in Sec. IV. Then, in Sec. V, we study
bifurcations of the rolls to periodic and quasiperiodic os-
cillations. Sec. VI gives a discussion of the results.

II. EQUATIONS

We consider buoyancy-driven convection in a plane
fluid layer of thickness d heated from below. Using the



Oberbeck-Boussinesq approximation, the governing sys-
tem of partial differential equations reads as follows:
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Here v is the fluid velocity and p and 6 represent the
deviations of pressure and temperature from their values
in the pure conduction state. We use Cartesian coordi-
nates x, y and z with the z axis in the vertical direction
parallel to the gravitational force. e, is the unit vector
in the vertical direction. Equations (1)-(3) are given in
dimensionless form where the units of length and time
are d and k/d?, respectively, with k being the thermal
diffusivity. 6 is measured in units of the temperature dif-
ference T between lower and upper boundaries of the
fluid layer. There are two dimensionless parameters, the
Prandt]l number P and the Rayleigh number R, defined
by
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where v is the kinematic viscosity, a the volumetric ex-
pansion coefficient and g the gravitational acceleration.
The Rayleigh number R measures the strength of the
buoyancy forces.

We apply periodic boundary conditions with spatial
period L in the horizontal directions x and y. The
top and bottom planes are assumed to be impenetrable,
stress-free and isothermal:
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For these boundary conditions the following Fourier ex-
pansions are appropriate:
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The wavenumbers k = (k;, ky, k) are connected with the
integer modenumbers n = (ng,ny,n;) by
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k. =n.m, n.=0,1,2,3,.... (13)

With the abbreviations

=(v-V)v, ¢p=v- -Vl (14)

for the nonlinearities, which have Fourier expansions like
v and 6, we arrive at the analogues of Egs. (1)—(3) in
Fourier space:

0 =ik, 0, + ik, 0y + k.0, (15)
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v, = —ik,p — w, — Pk, (17)
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Due to the constraint (2) not all of these equations are
independent of each other. By taking the divergence of
Eq. (1) one eliminates the pressure p, namely,

p= l];wmﬂl]z Wy + l]ijw l]zgé. (20)
Equations (16) and (17) can now be written as
Vg = <l]i—§ - 1) W, + kkf — PK%0, (21)
+ikl’;fz (PRO-a.)
Uy = (i—%—1)wy+k;—ljy - Pk*%, (22)
+i kklj (PRO-1w.) .

We restrict ourselves to the case of a vanishing mean
horizontal flow, that is 9;(0,0,0) = ©,(0,0,0) = 0, since
any such flow can be removed by a Galilean transforma-
tion. This can be seen from the relations
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v - V/Ul, = axvr + ayvrvy + azvzvz ) (23)
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which show, together with Egs. (14), (16) and (17) and
the boundary conditions, that ¥(0,0,0) and ©,(0,0,0)
are time-independent.

III. TWO-DIMENSIONAL STABLE ROLLS

For the numerical calculations we used a pseudospec-
tral code [21,22] with 16 collocation points in each spa-
tial direction. Time integration was performed using an



eighth-order Runge-Kutta scheme with adaptive time-
stepping according to [23]. The steady-state solutions
were reached after 0.5...1 in our time units which corre-
sponds to one or two hours computation time on a DEC-
alpha machine with 150MHz. However, to get onto an
attractor for time-dependent states increases the compu-
tation time considerably.

In an infinitely extended fluid layer (with no lateral
boundaries), the critical value of R for the transition from
the trivial ground state v =6 =0 (the pure conduction
state) to convection can be calculated analytically and
gives R. = 657.5 independent of the Prandtl number of
the fluid [1,2,4,11]. The associated unstable modes are
nonoscillatory, with a vertical modenumber of n, =1 and
a horizontal wavelength of 2+/2 — chosen to be our as-
pect ratio L. Correspondingly we find the modes with
the lowest modenumbers, namely the modes (+1,0, 1),
to become unstable first.

The unstable perturbations do not yet determine
the bifurcating new time-asymptotic state. By apply-
ing group-theoretical methods, it has been shown that
steady-state bifurcations from the conductive state can
lead to convection in the form of two-dimensional rolls,
hexagons or regular triangles [11,24]. For our parameters
we find purely two-dimensional, straight, stationary con-
vection rolls, in accordance with what is ordinarily seen
in experiments in closed containers [4]. With the roll
axes in the y direction (an orientation in the z direction
is equally possible), there is then a number of symmetry
relations for the modes (4,0, k) (see Sec. IV). There is no
y dependence and no velocity component in the y direc-
tion. Velocity streamlines in the x-z plane are shown in
Fig. 1.

The two-dimensional stationary roll solution remains
stable up to a second critical Rayleigh number at R =
17950 =27.3 R.. At this point a Hopf bifurcation is ob-
served (cf. Sec. V).

Now according to analytical and numerical three-
dimensional stability studies, two-dimensional convection
rolls are subject to various kinds of instabilities, notably
the zig-zag, cross-roll, and skewed varicose instabilities,
as treated for stress-free boundaries in Refs. [7,8] (see also
the discussion in Ref. [3], though this primarily refers to
rigid boundaries). These instabilities do not seem to be
relevant for our special case, however. They are thought
to have the purpose to decrease or increase the wave-
length of the convection rolls. For P~ 7, they affect only
roll solutions with wavelengths larger than the critical
one (our L). As we have fixed our aspect ratio L to the
critical wavelength, it is then not surprising that we do
not see these instabilities. Furthermore, the instabilities
mentioned (the unstable perturbations) are mainly long-
wave (with wavelengths larger than L) and are thus not
admitted by our periodic boundary conditions. Differ-
ences may also arise from the fact that we do not allow
a continuum of wavelengths for the perturbations. So on
the side of the small wavelengths, the one closest to L
is L/2. This reflects the situation of bounded physical

systems.

IV. SYMMETRIES

At the onset of convection, when the bifurcation pa-
rameter R exceeds its critical value only slightly, the re-
sulting pattern is symmetric with respect to the following
discrete and continuous symmetries:

Sl : (m,y,z) = (—m,y,z)

(’Um,'Uy,'Uz,e) = (—vz,vy,vZ,G) (25)
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Here S; is a reflection in the y-z plane or the vertical
midplane separating rolls, S a reflection in the x-y plane
or the horizontal midplane, combined with a translation
of the pattern in the x direction by one roll or L/2, and
S3 a reflection in a plane cutting the rolls alongside. The
only continuous group operation, T'(a), is a translation
along the roll axis (the y direction) by a, a € [0, L], a € R.

There are also symmetries with respect to products of
the basic discrete group elements, namely to Sy = S1055,
55 = SQ 05’3 and 56 = Sl [¢] 53 with

L
S4: (m,y,z)H(—m—i—E,y,l—z)
(vg, vy, v5,0) = (—vg,0y, —v;, —0) (29)
L
‘5’5: (x7y72)'_)($+§7_y71_z)
(vg, vy, vz, 0) = (vg, —vy, —v;, —0) (30)
SG : (xaywz) = (—.TJ, _yvz)
(vg, vy, vz, 0) = (—vg, —vy, v, 0) (31)

as well as symmetries with respect to the products be-
tween the discrete elements and the continuous element
T(a).

The symmetry group G = {id, Si,...,S6, T}, which
consists of all these operations, is abelian. Each of the
discrete elements is inverse to itself.

The different symmetries have their specific conse-
quences for the Fourier coefficients of the velocity and



temperature fields. For example, symmetry to S; re-

quires
ﬁx(i7j7 k) = _’E:(:(_i jv k)
Oy (3,4, k) = 0y(—1, 4, k)
0. (i,5,k) = 0.(—1, 4, k)
0(i,j, k) = 0(—i, j, k), (32)

for a solution symmetric with respect to S, one has

¥y (3,4, k) = 0y (3,4, k) = 0,(3, 4, k) = 0(i, 5, k) = 0
i+kodd, (33)

while for symmetry to Sy the following relations hold:
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The translational symmetry of the system in the x direc-
tion leads to a continuum of coexisting solutions. Only
for one particular among them the symmetries S; and
Sy are correctly expressed by Eqs. (32) and (34); other-
wise still phase factors corresponding to x translations
appear.

The subgroup formed by the transformations Si, So,
Ss, and the identity is also found in studies of two-
dimensional convection [25,26]. It is isomorphic to the
dihedral group D, [11]. The formal structure of the total
group G is then Dy x O(2).

V. BIFURCATIONS TO PERIODIC AND
QUASIPERIODIC SOLUTIONS

The second bifurcation at R = 17950 = 27.3 R, is a
Hopf bifurcation in which two identical pairs of complex
conjugate eigenvalues pass the imaginary axis. It leads
to traveling waves propagating along the roll axis, i.e. in
the positive or negative y direction. The multiplicity of
the eigenvalues is obviously due to the O(2) symmetry
with respect to this direction. It is desribed e.g. in the
review by Crawford and Knobloch [12] that in nondegen-
erate Hopf bifurcations under O(2) symmetry standing
and traveling waves bifurcate simultaneously, that a sta-
ble new solution exists only if both bifurcate supercriti-
cally, and that at most one of them can be stable (which
one is selected is then determined by the parameters of
the problem). Traveling waves have been found for the
case of no-slip boundary conditions by Clever and Busse
[17].

At the bifurcation point the time period of the oscilla-
tions, determined from the imaginary part of the critical
eigenvalues, is 7 = 0.066 in our time units (the thermal
diffusion time). At R =20000 we measured 7 = 0.064.
The period of the modes (4,7, k) is 7/j if 7 # 0. The

modes (1,0, k) are still time-independent. There is now a
nonvanishing flow component, v,,, in the axial direction.
Snapshots of the velocity profiles at t=0, t=7/4, t=71/2
and t=237/4 are shown in Fig. 2.

The critical R for the Hopf bifurcation as well as the
time period of the oscillations may be compared with
Busse’s theory [15] for the instability of convection rolls
to perturbations in the form of traveling waves under
stress-free boundary conditions. According to the theory,
the critical R satisfies R/R.=0.31P2+1, which for our
parameters would give R/R.=15.3, i.e. a significantly
smaller Rayleigh number than we have found. This is
again explained by the suppression of long-wave pertur-
bations, which would become unstable earlier. For the
time period of the oscillations Busse gives [Eq. (5.35b)
in Ref. [3] 7=[2Rc/3(R—R.)b*]"/?, where b is the (ax-
ial) wavenumber of the waves. The dependence of 7 on
b contained in this formula admits a direct comparison
with the periods found in our numerical calculations. Ac-
cording to the formula, 7 =0.0717 at our Hopf bifurca-
tion point (with b=n/4/2), which is in good agreement
with the value of 0.066 from the purely numerical calcu-
lation. Also for Rayleigh numbers above the Hopf value,
the comparison of the time periods gives satisfactory re-
sults, but there it is no longer really appropriate as the
periods from the formula refer to unstable perturbation
to the stationary convection rolls and not to solutions on
the new branch, which will depart more and more from
the (unstable) roll branch.

The Hopf bifurcation breaks the O(2) symmetry in the
y direction. More precisely, the reflection symmetry to
S3 is broken — the application of S3 changes the direc-
tion of the wave propagation, while each periodic orbit
as a whole is still invariant with respect to translations
T, which merely produce a time shift. If we formally
characterize the y-t symmetry before the bifurcation by
0(2), x SO(2);, where SO(2); is the circular symmetry
with respect to time, the remaining symmetry after the
bifurcations is SO(2),—., with ¢ denoting the velocity of
the wave propagation.

An inspection of the Fourier coefficients shows that
also the symmetries S; and Sy are broken but that the
following still holds (after, if necessary, the solution is
appropriately shifted in the z direction):

O.(i,5,k) = 0 i+kodd
oy (i,5,k) = 0 i+ kodd
o.(i,5,k) = 0 i+kodd
0(i,j,k) = 0 i+kodd
Up (=i, 5, k) = (=1)"10,(i, 4, k)
by (—i,4,k) = (=10, (3,5, k)
0. (=i,5,k) = (=1)0.(3, 4, k)
0(i,j,k) = (=1)70(i, 5, k) (35)

These relations show that the symmetry Sy is retained
in its original form and that the solutions are sym-



metric with respect to Sy o T(L/2), i.e. a left-right re-
flection followed by an L/2 translation in the y direc-
tion. This implies that there is also a symmetry to
Sy0S810T(L/2) = S40T(L/2). The symmetry group G of
the stationary convection rolls may, differently from the
choice in Sec. IV, also be generated by the four transfor-
mations S 0T (L/2), Sa, S, and T'. Of the three discrete
symmetries here then just one, that one corresponding to
S3, is broken in the Hopf bifurcation. The remaining spa-
tial symmetry group (time shifts not taken into account)
is generated by Sy o T'(L/2) and S and consists of the
elements Sy o T(L/2), Sa, Sy 0 T(L/2), and the identity.
It is isomorphic to the dihedral group Ds.

On further increasing the Rayleigh number R, at R ~
30000 =45.6 R a third bifurcation is observed, which is
again a Hopf bifurcation. The appearance of a second ba-
sic frequency (see Fig. 3) leads to a torus solution in phase
space (depicted in Fig. 4). In physical space the solution
can be characterized as a modulated traveling wave. Also
the special modes (7,0, k) are now time-dependent, but
they are simply periodic, oscillating with just one fre-
quency, namely that of the modulation. There is now a
periodic motion of the rolls not only in the z direction
but also in the z direction.

For the motion being already quite complicated, the
number of modes (16 collocation points in each spatial
direction) is still sufficient. A closer look at modes, e.g.
(1,1,0), with increasing 4 reveals that their energy con-
tent decreases from (O(10?) in some suitable units for
the modes (0,1,0) to O(107°) for the modes (£5,1,0).
We also performed test runs with 32 collocation points
in each spatial direction, but since the results did not
change and no other modes were excited we found it not
worth increasing the CPU time by a factor of 8.

In numerical simulations for comparable parameters
(L=2v2, P=10), as well as stress-free boundary condi-
tions, Curry et al. [13] observed a transition from single-
frequency oscillations to a two-frequency quasiperiodic
state at about the same Rayleigh number as we do.

The torus bifurcation is connected with a further sym-
metry breaking. In such a case the new solution can be
symmetric to at most one of the three transformations
of the symmetry group of the periodic solution. Ac-
tually the symmetry to Sy o T'(L/2) survives while the
other two symmetries are broken. So the D, symmetry
of the periodic solution is broken to a Z, symmetry of
the quasiperiodic solution.

VI. DISCUSSION

We have studied Rayleigh-Bénard convection in a
plane fluid layer with stress-free boundary conditions,
using an aspect ratio L of 2v/2 and a Prandtl num-
ber P of 6.8. Two-dimensional convection rolls remain
then stable up to a second critical Rayleigh number
R=17950=27.3 R.. Instabilities like the zig-zag, cross-

roll, and skewed varicose instabilities seem to be prohib-
ited by the choice of the aspect ratio and the associated
suppression of long-wave instabilities.

The bifurcation at R = 17950 is a Hopf bifurcation
leading to traveling waves along the roll axis. The re-
sulting structures are wavy rolls, as calculated for the
case of no-slip boundary conditions and Prandtl num-
bers up to 0.71 by Clever and Busse [17]. The frequen-
cies we find agree very well with the theory of Busse [15],
who in turn found them in good agreement with experi-
ments, e.g. those of Krishnamurti [27] and others , with
large aspect ratio containers. Compared to Busse’s the-
ory, we observe the waves to occur at higher Rayleigh
numbers. This is again explained by the suppression of
long-wave perturbations. The agreement with the exper-
iments summarized in Ref. [27] is even improved by the
shift to higher Rayleigh numbers, which must of course
not be overestimated since, among other things, our as-
pect ratio is probably much too small to allow for a direct
comparison with these experiments, to which Busse’s the-
oretical approach appears to be better adapted. On the
other hand, Gollub and Benson [28] report an experiment
with L =3.5, P =35 and a transition from stationary to
simply-periodic convection at R = 27.2R., where R, is
the critical R for the onset of convection under no-slip
boundary conditions.

The Hopf bifurcation breaks the spatial Dy x O(2) sym-
metry of the stationary convection rolls down to a D-
symmetry. If symmetry with respect to time is included,
the total symmetry is broken from [Ds]; . x O(2), X
SO(2); to [Dalg,y,z X SO(2)y—ct.

At R ~30000=145.6 R, a secondary Hopf bifurcation
leads to a torus solution in phase space. The correspond-
ing pattern is a modulated traveling wave. In this bifur-
cation the spatial symmetry is broken from D> to Zs
(which is now also the total symmetry). The modulated
traveling waves are still symmetric with respect to left-
right reflections followed by L /2 translations in the (orig-
inally) axial direction.

The bifurcations to be expected for further increased
Rayleigh numbers, which presumably lead to chaotic
states, will be the subject of future studies.
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FIG. 1. Velocity streamlines at R = 12000 =18.25 R..
and z are measured in units of L and d, respectively.
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FIG. 2. Snapshots of the modulus of the velocity field
in the horizontal midplane at different times, calculated for
R = 20000 = 30.4 R.. Four neighboring periodic boxes are
shown, two in each horizontal direction. z and y are mea-
sured in units of L, 7 = 0.066 is the time period measured in
units of the thermal diffusion time.
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FIG. 3. Power spectrum of the temporal evolution of
Rov, (—1,1,1) at R = 32000 =48.7 R.. Frequencies are mea-
sured in units of the inverse thermal diffusion time x/d?. The
two basic frequencies are f1 =15 (traveling wave) and f»=3.5
(modulation). The strongest frequency in the spectrum is f1,

followed by f1— f.
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FIG. 4. Phase space trajectory projected onto the plane
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