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Abstract

The paper presents a method that determines, by standard numer-
ical means, the type of mutual relations of fold and flip bifurcations
(configured as a so-called communication area) of a map. Equation
systems are developed for the computation of points where a transition
between areas of different types occurs.

Furthermore, it is shown that saddle area<sspring area transitions
can exist which have not yet been considered in the literature. Ana-
lytical conditions of that transition are derived.

1 Introduction

The relations between fold and flip bifurcations of period-k cycles of a map

L1 :f(mty)‘) (1)

have been studied by Mira et al. in a series of papers (see [10], [11], [3],
[12], [13], [1], [2]). In Eq. (1) & denotes the n-dimensional state vector,
A is the p-dimensional parameter vector (p > 3), and f is as smooth as
needed (up to C*). Mira [10] introduced so-called communication areas in
the parameter plane. A communication area is a domain bordered by a
(more or less arbitrary) smooth curve such that exactly two curves of fold
bifurcations and two curves of flip bifurcations cross the area where all these
curves correspond to cycles of the same period k. Furthermore, it is assumed
that on one fold curve there is a cusp point and that all these bifurcation
curves belong, in the state-parameter space, to a connected set of cycles.
This means, that the communication area separates a specific bifurcation
scenario from the possibly much more complex global bifurcation structure.

Three types of communication areas have been considered in the papers
mentioned above: the saddle area (SAA), the spring area (SPA), and the
crossroad area (CRA). The different types of communication areas are distin-
guished by the position of the cusp point relatively to the other three curves.
Their schemes are shown in Fig. 1 (more impressive three-dimensional draw-
ings are presented in the papers mentioned). When a third parameter is
varied the type of the communication area can change without changing the
bifurcation structure on the area boundary: SPA<+CRA and SAA~CRA
transitions are known.



Figure 1: Scheme of the three communication areas: SAA (left), SPA (mid-
dle), CRA (right). Solid lines: fold bifurcations, dashed lines: flip bifurca-

tions.

It is possible or even necessary that also other bifurcation curves are
present in a communication area, e.g. often there exist flip bifurcation curves
of the 2k-periodic cycle. Such additional bifurcation curves do not play any
role in what follows, thus, we will neglect them. Furthermore, since all cycles
considered for a given communication area have the same period k, we will
always assume that f(x, \) is already the k-th iterate of the original map and,
for simplicity of the presentation, we will never mention the actual period.

Carcasses [1, 2] presented a method that allows to determine the type of
a communication area (in the 2-parameter plane) or to determine the point
of an area transition (in 3-parameter space). The method is based on the
so-called reduced multiplier o, the solution of on(1)+6(1) = 0 where n(u) and
O(p) are the even and odd parts, respectively, of the characteristic polynomial
x(u) of the Jacobian J of f(x) computed at the cycle . When applying this
method one has to solve nonlinear equation systems that contain equations of
determinants which, in turn, have at least one row depending on derivatives
of 7 and #. This means, the first derivative of the characteristic polynomial
is needed and, if Newton’s method is used, even the second derivative.

The computation of the characteristic polynomial and of its derivatives
is numerically difficult. The same has to be said about the solution of equa-
tion systems containing n-dimensional determinants. Thus, the general way
to tackle bifurcation problems numerically is the construction of nonlinear
equation systems which avoid determinants and the characteristic polyno-
mial. The main goal of this paper is to show how the type of a communica-
tion area can be determined as a by-product of the computation of a cusp
point by standard methods of the numerical bifurcation analysis.



Moreover, we show that there is a new type of area transitions, the
SAA+SPA transition. We present equation systems that determine those
situations in the state-parameter space as well as equation systems that de-
termine SAA<CRA transitions.

The paper is organized as follows. Section 2 gives a short review of
definitions and results about the communication areas as well as the about
numerical methods to compute a bifurcation point. After these preparations
the formulas are derived in Sec. 3 that allow the determination of the type of
a communication area and to compute area transitions, this is the main part
of the paper. The last two sections provide the comparison with Carcasses’
method (Sec. 4) and an example (Sec. 5), respectively.

2 Preliminaries

2.1 Transitions of communication areas

The SPA<+CRA transition occurs when the flip curve surrounding the cusp
and another flip curve (that separates the “spring” from the second fold
curve) have contact to each other such that the connection of the four
branches is reorganized and the way between the fold curves becomes free
(see Fig. 2). This type of area transition is not local to the cusp and cannot
be detected if the cusp is treated locally as we will do. A consequence is that
we will not be able to distinguish between SPA and CRA. Instead, we will
distinguish the type of a communication area by the alternative: SAA or not
SAA.

The SAA<+CRA transition is more complex from the geometrical point
of view. The projection onto the two-parameter plane shows the following
scenario. When a third parameter is varied the cusp point approaches the
second fold curve such that, in the moment of contact, the branches of the
cusp are tangent to that fold curve. After the contact, the cusp withdraws
from the fold curve. But now the branches have exchanged: one branch of
the cusp was, before the contact, a branch of the second fold curve and vice
versa (see Fig. 2). The SAA«<CRA transition is local to the cusp. Since
it involves two curves where the Jacobians J have the eigenvalue +1, this
eigenvalue is degenerate, i.e. a specific third derivative of f(ax, \) vanishes.
Flip curves and the eigenvalue —1 do not play any local role but they are



Figure 2: The area transitions: SPA<>CRA (top row), SAA<+CRA (middle
row), SAA+SPA (bottom row). Solid lines: fold bifurcations, dashed lines:
flip bifurcations, dots: the contact point of two curves.



important from the global point of view. In fact, the reorganization of the
fold branches causes that the positions of the flip curves relatively to the
cusp are changed.

The SAA«~+CRA and SPA«+»CRA transitions involve only one type of co-
dimension-2 bifurcations: the cusp. If also other co-dimension-2 bifurcations
are admissible then further types of area transitions can occur. In particular,
if a point of contact of a fold and a flip curve is taken into account then a
SAA+SPA transition occurs when the contact point moves towards and
eventually passes the cusp point (see Fig. 2). The SAA«+»SPA transition
is local to the cusp. Immediately after the transition the communication
area is a SPA, later it may become a CRA. On the defining fold and flip
curves the Jacobians J have the eigenvalues +1 or —1, respectively. This
means, that J has both eigenvalues at the contact point, we will call such
points £-bifurcations. In particular, the SAA<>SPA transition cannot occur
in one-dimensional maps.

2.2 Equation systems for bifurcation points

Many equation systems have been developed for the computation of bifurca-
tion points of different kind. We focus on equation systems of the following
form

flxg,\)—x=0
d1(x,\) =0

(2)
Gm(x,A) =0

The solution is a co-dimension-m bifurcation and m of the p parameters are
calculated (the others are held fixed). One or more of the functions ¢y, ...,
¢m are obtained as the last component of the solution of the nonsingular
linear equation systems

(D0 o

with ¢ € {1,...,m}. The r; and l; are fixed, appropriately chosen auxiliary
vectors and the matrices M; will be described later. Equation systems of



this kind have been introduced by Griewank & Reddien [6, 7] and Jepson
& Spence [9], an systematic approach to multiple eigenvalues gives Govaerts
[5].

It is easy to see that ¢; = 0 iff det M; = 0. In this case, u; is the (right)
eigenvector to the zero eigenvalue and the matrix of Eq. (3) is nonsingular
iff rank M; = n — 1 and ITu; # 0 as well as v!'r; # 0. Here, v; is the left
eigenvector to the zero eigenvalue, i.e. the first part of the solution of

(" &) (ngﬁ’” ’3):(0T 1) . (4)

At the bifurcation point, i.e. when rank M = n — 1, solving (3) can be
understood as the transformation of the dynamical system to the center
manifold: it is the numerical realization of the Lyapunov-Schmidt reduction.

For each eigenvalue specific for a bifurcation situation one has to provide
one matrix M; yielding a ¢; of Eq. (2). In our case, we have to set M; =
J — I for fold points and M; = J + I for flip points (I denotes the unity
matrix), both can occur simultaneously. But several of the functions ¢,
..., O, have to be constructed differently. We consider the situation of a
cusp point where a degeneracy of a fold occurs. To be specific, let m = 2
and let ¢; and ¢ describe the fold and the cusp conditions, respectively,
i.e. ¢ is given by Eq. (3) and ¢ will be described next. If the map is
restricted to the center manifold of a fold point then the second derivative
of the map vanishes. Since the reduction to the center manifold is given by

Zir1 = 2t + 21]1%“1 vf%Jul ulzf + -+, the cusp condition can be written as

by = —v] (g—im) u; =0. (5)

Equation (2) with m = 2 and these two functions is well posed iff the solution
is a non-degenerate cusp point.

Our method to determine the type of a communication area is based on
information that is gained by auxiliary calculations when computing a cusp
point along a curve of fold points: a specific third derivative of f(x, ) is
utilized. In the remainder of this section we will focus on that. Solving
Eq. (2) by Newton’s method (or a variant of it) needs the derivatives of the
functions ¢; with respect to @ (o may be any component of x or \). The



equation % =—A"! %A‘l for a nonsingular matrix A immediately yields
==V U, 6
O Yoo (6)

i.e. there is no need of solving further equation systems. Moreover, ¢, =
%ul, i.e. the value of the cusp condition is obtained as a by-product. The
derivative of ¢5 is given by

a6y TaJA<aJ >U1

da i Do 3—:13“1
0*J
— ’U{mulul (7)
+ 2’UlT <g—iu1> Ag—iul

(here, A is the inverse matrix of Eq. (3) where the last row and last column
have been deleted). This expression looks complicated but the effort to obtain
it is proportional to n and not to n?® function calls since only the derivative
of J in a definite direction is needed (a similar statement holds for all the
second derivatives of f occurring somewhere in the algorithm). The cusp is
non-degenerate iff

¢3 = %ul (8)

does not vanish, i.e. ¢3 = 0 is the condition for a degenerate cusp point and
can be included in Eq. (3) if such a is to be computed.

3 Determination of the Type of a Communi-
cation Area

3.1 The reduced multiplier

Let x(1) = Y iy an—ip’ be the characteristic polynomial of the Jacobian
matrix J computed at the cycle & and set x, = x(1), x_ = x(—1). Carcasses

[2] defines the reduced multiplier o as the solution of

on+0=20



where

1
5 +x-) ,neven
= gt Gy e = %(X+ X-)
s(X+ —x-) ,mnodd
1
= —X-) ,neven
9:a1+a3+'~: %(XJF X>
s(Xx+ +x-) ,nodd
i.e. o is the solution of
(04 Dx+ + (=1)"(e = 1)x- = 0. (9)
The equation has no unique solution iff y, = x_ = 0, in this case we let o

undefined. Otherwise, the equation has no solution if x;, + (—=1)"y_ =0, in
this case we set 0 = co. It is easy to see that the reduced multiplier assumes
the values +1 or —1iff y, = 0 or y_ = 0, i.e. iff the cycle belongs to a fold or
a flip curve, respectively. The only exceptions are the £-bifurcations, these
are the points where ¢ is undefined.

To avoid the inconvenient situation ¢ = oo we consider together with
o(x) the function ¢(x) = ﬁ Exactly one of the functions o or ¢ takes on
values in the interval (—1,1) for cycles different from fold or flip points. We
call o the even reduced multiplier and & the odd one, furthermore, we call a
cycle & such that the even or odd reduced multiplier is in the interval (—1,1)
an even or odd cycle, respectively.

By continuity of the functions ¢ and & the sets of even or odd cycles
are open. This means, that any domain (i.e. any open, connected subset) of
cycles not containing fold or flip points consists of even cycles only or of odd
cycles only (otherwise, the domain were not connected). Accordingly, we call
such a domain even or odd.

In the remainder of this section we will develop some analytic relations
of the reduced multipliers. First of all, we express o by the determinants

Here and in the following, we index the matrix entries, determinants, and
solutions of Eq. (3) not by “1” etc. (since their ordering is not important)
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but by “+” and “~” referring to the eigenvalue +1 or —1 to be computed.
This is the same time the index of y4 and the inverse of the sign of I in
Eq. (3). Cramer’s rule applied to Eq. (3) yields

X+ =det(J —TI) = Ay,

x— =det(J+1I)=¢_A_. (10)

Let x4 differentiably depend on a parameter «. Then a straight forward
computation shows that the derivative evaluated at a fold point F is simply

1 n+1 2A+ %

do
P = (=1 d_A_ OJa

e (11)

F

(recall 0 —1 =0 and ¢4 = 0). Moreover, in the case that also this derivative
vanishes (i.e. at a cusp point C) the second derivative is

— (_1)n+1 2A+ 82¢+
c Od_A_ Oa?

o0
da?

(12)

C

3.2 The concept

In the remainder of the paper we suppose the following regularity properties
(if not the contrary is stated explicitly): the type of the communication
area in question is uniquely defined, i.e. it is not the situation of an area
transition. In particular, J possesses at the cusp point C the eigenvalue +1,
no eigenvalue —1, and C is non-degenerate. The condition on the eigenvalues
implies x; = 0 and x_ # 0, i.e. both functions ¢ and ¢ are defined and
continuous in a neighborhood of C. Similarly, when considering points F on
the fold curve then they are to be neither cusp nor +-bifurcation points.
We will determine the type of a communication area by the sign of an
arithmetic expression. More precisely, the product of two values is evaluated
characterizing two specific domains of cycles which will be defined next.
The inner domain of a communication area is that sheet of the foliated set
of cycles that is bounded by both branches of the cusp and that contains the
acute angle of the cusp (see Fig. 3). A transient domain is a domain where
the (even or odd) reduced multiplier varies from —1 to +1, i.e. it is bordered
by both fold and flip curves (see Fig. 3). In particular, the transient domain
of a communication area is that containing the cusp point in its boundary.

10



Figure 3: Specific domains (darkly shaded areas): (a) the transient domain
between a fold and flip curve, (b) the inner domain of a cusp. Solid lines:
fold curves, dashed lines: flip curves, dash-dotted line: hidden part of a fold
curve.

This definition is correct since each communication area has exactly one such
domain. We define €;,ner = £1 and €rans = £1 with “+7 iff the corresponding
domain is even. With other words, the domain is even iff €0, = (—1)™ or
€qrans = (—1)™ for an even number m (this relation caused the terms “even”
and “odd” domains).

Let F be a fold point. Applying Eq. (11) to the tangent w, at F yields

do 2A, 09
oz, = YV AT Ba ™
B W 201 5 0Jd
= (-1) ¢7A7v+%fu+u+7€0

by the cusp condition Eq. (5) since F is not a cusp point. This means, that
on one side of the fold curve o takes on values < 1 and values > 1 on the
other side, i.e. the domain on one side is even and that on the other side
is odd. In particular, exactly one of the inner domain or its complement
contains in a neighborhood of C an even domain.

The essential observation is the following. The communication area is a
SAA iff its transient domain is a subset of the inner domain. Equivalently, it

11



is a SAA iff both the inner and the transient domains are at the same time
even or odd, i.e. iff €ner€irans = 1 (see Fig 3: in case of a SAA the domain
“between” the fold and the flip curves is part of the inner domain). Thus,
our goal is to determine €jper and €yans Near the cusp point.

3.3 The transient domain

Let I'; be a smooth curve crossing a transient domain, let its end points
at the fold and flip curves be F and P, respectively. We assume that the
curve is parameterized by « (increasing from F to P). Furthermore, we can
assume that I'y is tangent to the vector u, at F. Let ¢, = +1 if u, points
into that direction of I'y where P lies, otherwise, let ¢, = —1. The direction
of u, and, consequently, the value of ¢, depend on the choice of the auxiliary
vectors Ty and l,.. In the situation of Fig. 3 we have ¢, = 1.

If the cycle & is moved along I' from F in the direction of e, u,, i.e.
towards P, then the reduced multiplier ¢ decreases iff that transient domain
is even, i.e. iff €40 = 1. On the other hand, o decreases iff its first non-
vanishing derivative in the specified direction is negative. By Eq. (11),

. do
€trans — —S18N —— (eu'u,+)
s (13)
= (—1)"¢, - sign 28+ 09+ Uy
P_-A_ Oz |-

follows and this does not vanish by the cusp condition (5) since F is not a
cusp. Thus, the last expression really defines € ans.

Now, let F move along the fold curve, e.g. in the course of the path-
following in 2-parameter space. We will discuss how the factors of Eq. (13)
change. First of all, A, and A_ have fixed signs since they do not vanish by
construction. Next, the sign of ¢_ flips at a £-bifurcation, while the sign of
the derivative flips at a cusp point. Finally, ¢, flips at £-bifurcation points as
well as at cusps points since the direction of w, is not inverted by continuity
of the solutions of Eq. (3) while P is now on the other side of F (see Fig. 4:
left to the +-bifurcation we have ¢, = 1 but ¢, = —1 right to that point,
analogously in the case of a cusp point). This means, €,ans iS constant along
a fold curve and it is sufficient to evaluate it once when the path-following
starts.

12



Figure 4: Change of ¢,: (a) at a +-bifurcation, (b) at a cusp point, the
fold curves are traced from F; (e, = 1) to Fy (e, = —1). Solid lines: fold
curves, dashed lines: flip curves, dots: bifurcation points, darkly shaded
areas: transient domains.

3.4 The inner domain

Let I'; be a smooth curve in the 2-parameter space that belongs to a given
small neighborhood of C such that it joins both branches of the cusp, let its
parameterization be proportional to the arc length (see Fig. 5). To be more
specific, define I'y as the intersection of the inner domain with a plane that
is parallel to the tangent vector u, at C. At the two endpoints of I'y we have
o =1and ¢, = 0 but ¢ # 1 and ¢, # 0 at interior points of I'y. This
means, that o(«) and ¢ («) possess extrema between both endpoints. (If
there are multiple extrema of o or ¢ along I's then we consider the first from
one endpoint. Later we will see that there is only one extremum each). The
extrema are minima iff o(«) < 1 or ¢, () < 0. This means, that the signs of
g%‘; and B;f;r at the extreme points are inverse to the signs of o(a) — 1 and
¢ (), respectively. Now, let 'y tend to C such that it approaches smoothly
the tangent to the fold curve at C. Since this tangent is parallel to u,, the

. . . . ko *py
derivatives approximate, up to a scaling factor, m‘c and —_7

direction, respectively. We can assume that the parameterization of I'y has

in the w,

13



Figure 5: The curve I'y (dash-dotted line) crossing the inner domain of the
cusp point C. Solid line: fold curve.

been chosen such a way that the scaling factor is equal to one, i.e.

Foates Fatod &
9ok |, ~ aab|, (")
(o) (o)

ar |c T e

By Eq. (11) and the cusp condition Eq. (5), we obtain g—;|c uy = 0 in the
case k = 1. This means, that the type of the reduced multiplier is essentially
¢y
ox?

vanish for a non-degenerate cusp point. This also implies that ¢ and ¢,

determined by the sign of uyu,. Recall that this expression does not

really have only one extremum each since % # 0 and 8;fj # 0 for cycles
on I'y if this curve is close to the tangent vector w,. Thus, we obtain the
following equation:

0%o

L 9A, 8%
€inner — w UL = (—1)"+181gn S S

. ¢_A_ amQ . ULy . (14)
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3.5 The leading factor

In this section we will analyze the factor (f_AA*_ occurring in Egs. (13) and
(14) in more detail. Our goal is to express it by a formula that is independent
of the auxiliary vectors.

The derivative ngg does not depend on the auxiliary vectors . and 74,
thus, the right hand side of Eq. (12) does not either, i.e. the dependencies
on l; and r4 cancel. For theoretical considerations, therefore, we can choose
these vectors such that the expressions become as simple as possible. Let u
and v” be right and left zero eigenvectors of J — I satisfying v = v7u # 0.
(v'u # 0 holds iff +1 is a simple eigenvalue of J. This will, for simplicity,
be assumed.) In the following we set 7 = u, I = v. Then the solutions
the of Egs. (3) and (4) satisfy uy = %u and %'vi = v as can be checked
immediately.

Define A(3) = det (J;fI g) with f# 1 and |3 — 1| < 1. Let uy = 1, po,

., Mn be the eigenvalues of J. Then J — I is nonsingular and
A(B) = det(J — BI) (—v"(J — BI) 'u)

S | (R

=2 ﬁ
= [ [ — )
i=2
since (J—3I) 'u = ﬁu In the case of a one-dimensional map the product

(and the following ones) has to be set to unity. Left and right hand side of
the last equation depend continuously on (3, i.e. the limit  — 1 yields

Ay =—v H(Mz —1)=(-1)" H(l — i) -
i=2 i=2
On the other hand, Eq. (10) implies ¢_A_ = det(J + I) = 2], (1 + 1),
ie.
2A R
1) _
(D" A 7115 -

1=2

is, up to a factor ¢, or —1, the leading factor of the derivatives in Egs. (13) and
(14). The sign of the product does not depend on complex eigenvalues since

15



the multiplication of factors corresponding to conjugate complex eigenvalues
always yields a positive number. In the case of a real eigenvalue u;, };Z is
negative iff p; ¢ [—1, 1]. This implies

S0t () #HE s g e
G A (1) gny (15)

The last equation follows from the fact that one can include arbitrarily many
pairs of conjugate complex eigenvalues into the product.

Let €, correspond to the direction of uw. Together with Egs. (13) and (6)
we obtain

’ 0
€trans — €y * (_1>#{Z' Imil>1} sign vy - sign ﬁ
oz |,
1,00 (16)
= —¢, - (_1)#{2': mil>1} . gign = o7 U .
v o Oz |,
Analogously, Eq. (14) yields
. 82

€inner = —(—1)#{" [al>1} - signy &f; . uu (17)

where the derivative is given by Eq. (7). These expressions do not change if
the eigenvectors are rescaled by any factors. In particular, one can replace u,
v by the solutions w, and v, of Egs. (3) and (4), respectively, with arbitrary
auxiliary vectors.

3.6 Low dimensional maps

In the case of a one-dimensional map we can always set r, = [, = r_ =

I =1in Eq. (3) yielding A, =A_=—-1, u, =v, =1, ¢, = —pu; + 1,
¢ = —puy — 1, and 0 = —% = KL where p; is the single eigenvalue of J.

(The last equation caused the term “reduced” multiplier for o in the case of
higher dimensional maps.) The eigenvalue p; varies between a fold and a flip
curve from +1 to —1 and so does o, i.e. €ans = 1.

A similar situation holds for dissipative two-dimensional maps, i.e. maps

with the property |det J ()| = |u1p2] < 1. The denominator of o = fj::—l”ljz

16



does not vanish, thus the numerator changes its sign when a cycle is moved
from the fold curve to the flip curve implying €y, = 1. Moreover, |us| < 1
holds for fold points since p; = 1.

In both cases, Eq. (17) can be applied with #{i : |u;| > 1} = 0. In the

case n = 1, the derivative in Eq. (17) can be replaced by g%‘ > 0 since the
c

matrix A in Eq. (7) vanishes.

Proposition 3.1 In the case of a one-dimensional or a dissipative two-

dimensional map the communication area is a SAA iff €uner = 1. In the
93f

case of a one-dimensional map this is equivalent to W‘ > 0. while for
c
dissipative two-dimensional maps this is equivalent to v u - % uu > 0
c

where w and v’ are the right and left eigenvectors of J .

3.7 The algorithm

The type of a communication area is determined by multiplication of € ans
by €inner given by Eqs. (16) and (17). The factors cancel partially. More
precisely, signy = sign v{ u, changes on the path from F to C iff a second
eigenvalue passes +1 while (—1)#1#11l>1} changes iff a real eigenvalue passes
+1. This means, the factors (—1)#{##>1} . gion v cancel up to the factor
(—1)° where b is the number of +-bifurcations between F and C.

Proposition 3.2 Assume that F is a point, but neither a £-bifurcation nor
a cusp point, on the same fold curve as the cusp point C and that b =+-
bifurcation points are between both points. Then the communication area at

Cis a SAA iff

. 09 . 0%
. ‘ + ) +
(—1)” - €,(F) - sign s fu+ sign —— .

UL uy <0 (18)

The proposition suggests the following algorithm.

1. The usual way of the numerical bifurcation analysis consists of the
following steps:

(a) a first cycle @ is determined for fixed parameters

17



6.

(b) path-following of this cycle with respect to one variable parameter
and fold and flip points on the curve have to be detected and
computed

(c) the fold points of step 1b become the object of path-following
when two parameters are varied and, among others, cusp points
have to be detected and computed

If in step 1b a fold point F has been computed then %‘ is the
F

vector composed of expressions in Eq. (6) where « runs through the
components of x. It is a row of the Jacobian matrix needed in Newton’s

method for computing the fold point, and % u, is simply its scalar
F

product with u, .

The path is followed from F to the next flip point P. ¢, is the sign
of the scalar product of w, with the tangent vector to the curve at F

used in the path-following and multiplied by —1 if P lies before F on

the path. The value € ans = €y - 80%

u is assigned to the point F.
F

. If in step 1lc a cusp point C has been computed then e€jpner

09+

2
99+ wu,u, is obtained similarly to .

ox?

2o

502 | U+ equals the derivative of the function ¢, in the cusp condition
C
Eq. (5

))-

Counting the number of 4-bifurcations between F and C in step lc
gives b.

uy in step 2 (recall that
F

>

The left hand side of Eq. (18) is evaluated.

It should be emphasized that additionally to the usual method computing a
cusp point only a few scalar products of known vectors have to be calculated
and the +-bifurcations have to be counted. Steps 2, 3, 5, and 6 can be
discarded if the map satisfies the conditions of Proposition 3.1. Step 3 is a
bit unsafe: it can happen that no flip point can be found within an acceptable
path-length. But as is our experience, in most cases the flip point is very
close to F.
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3.8 Area transitions

When performing path-following of the cusp point by variation of a third
parameter, area transitions can occur. By Proposition 3.2, the area transition
is accompanied with the change of the sign of %m u, or of an odd change
of the number of +-bifurcations between F and C. Since F is a fixed cycle
that is not a +-bifurcation point the last situation can occur only if a =+-
bifurcation point passes C. With other words, an area transition takes place
if the cusp becomes degenerate or if one eigenvalue u; passes the value —1.
Comparing this observation with the considerations of Sec. 2.1, the following
is proved.

Proposition 3.3 A SAA< CRA transition occurs iff the cusp point becomes
degenerate while a SAA<+»SPA transition occurs iff a &=-bifurcation passes the
cusp point.

The equation system for the point in the state-parameter space where
an area transition occurs is simply the equation system for the cusp point
extended by one further equation that describes the additional condition:

flx, A, 0, 03) — 2 =0
by, A1, A2, A3) =0
(@, A1, A2, A3) =0
Ga(T, A1, A2, A3) =0

(19)

where ¢, is given by Eq. (3) with M, = J — I, ¢, is given by the cusp
condition (5), and the additional function ¢, is given by Eq. (8) in case of a
SAA+CRA transition, or by Eq. (3) with M, = J+1I in case of a SAA<>SPA
transition. The Jacobian of Eq. (19) evaluated at the solution point is not
singular iff the solution is a co-dimension-3 bifurcation, the generic situation.
In this case, this equation system can be solved by Newton’s method.

In 3-parameter space, there exists a curve of £-bifurcations points which
intersects the curve of cusp points at the point of the SAA<«>SPA transition.
This curve can be obtained by path-following since one point is known, the
point of the area transition, and the tangent (%.,%1,t,%3) of the curve at
this point can easily be computed as will be shown next. The matrix of the
linear equation system below is that used in Newton’s method to compute
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the point of the area transition and, therefore, it is nonsingular.

J-—1 2 of of

OAi Ohs  Ohs i, 0
o0, o0 o0 00t | 0
ox o oo O3 1 _ (20)
% 0 0¢c Ode t2 - 1
ox 8)\1 8)\2 8)\3
bby  bow 03, oo | \14, 0
oz 2281 02 OAs

Canceling the third equation results in the homogeneous equation system
for the tangent to be calculated (it includes the derivatives of the functions
defining the bifurcation with respect to all variables). Thus, the nonsingular
inhomogeneous equation system yields an unnormalized tangent. It should
be mentioned, that this procedure does not work in the case of a degenerate
cusp point since cancelation of the equation ¢. = 0 yields an equation system
that does not describe a bifurcation situation.

4 Comparison with Carcasses’ Method

4.1 Carcasses’ method

Before the comparison can be done, Carcasses’ method [2] is to be described
shortly. This method to solve the problems

(A) determination of the type of a communication area

(B) computation of the points in the state-parameter space where an area
transition occurs

is based on the solution of equation systems of the form

flxg,\)—x=0
P (x,A\) =0 (21)
1/12(33, )\) =0
with A = (A, A2) or A = (A, A2, A3) in problems (A) and (B), respectively.

The functions 1, o are determinants like

J -1 o
¢1 = det ( 937] 9z an ) (22)

8:1: na—xg —Uax,



where n and 6 are defined in Sec. 3.1. The solutions of Eq. (21) are called
parametric singularities, among them are the cusp points.

Problem (A) is solved as follows. Path-following of Eq. (21) is performed,
where one of the equations 1 o(2, A) = 0 is discarded, and points satisfying
the full equation system have to be detected and computed. If such a point
has been encountered then two specific expressions (called b; and by) and
o = —% have to be evaluated. These values determine the type of the
parametric singularity and, as a consequence, the type of the communication
area.

Problem (B) is solved by path-following of Eq. (21) with respect to a third
parameter. The points, where 0 = 41 or by = 0 holds, have to be detected
and calculated.

4.2 Numerical complexity

The numerical complexity of both methods is determined by the following
facts.

1. Since n and 0 depend on the first derivatives of f(x,\), the deter-
minants and eventually Eq. (21) depend on the second derivatives.
Furthermore, by is an expression composed of the derivatives of many
determinants of form (22), i.e. by depends on the third derivatives. By
contrast, in our method only the equation system for the cusp points
depend on the second (non-degenerate cusps) or third derivatives (de-
generate cusps). Of course, the use of Newton’s method causes in each
case that derivatives of one higher order are needed.

2. Computing determinants like (22) is equivalent to solving a linear equa-
tion system with the same matrix (provided that the matrix entries are
known). But the computation of the derivatives of the determinants
(22) (e.g. in Newton’s method or to calculate by) is much more complex
then evaluating Eqs. (6) or (7).

3. The determination of the coefficients of the characteristic polynomial
needs ~ n? operations, i.e. it is as complex as the solution of a linear
equation system with the same matrix. Calculating the derivatives
(recall that by depends on the second derivative of n and #) is then
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as complex as calculating the derivatives of the determinants. Our
method does not need the characteristic polynomial at all.

4. Information gained from the path-following of curves of the several bi-
furcations are not utilized in Carcasses’ method. As already mentioned,
our method strongly utilized such information.

4.3 Other differences

Another disadvantage of Carcasses’ method is that it implicitly assumes that
the reduced multiplier ¢ ranges from —1 to +1 between fold and flip curves.
If this assumption is not satisfied then similarly to our method specific signs
have to be inverted. But the assumption is never checked, this means that
possibly the type of a communication area will be determined incorrectly.
That this situation can really occur is shown in Sec. 5.3. The assumption
is satisfied for one-dimensional and dissipative two-dimensional maps (see
Sec. 3.5). This is the reason why the method worked correctly in the examples
studied in [1] and [13].

Since Carcasses’ method is based on the characteristic polynomial x(u)
(via the reduced multiplier o) it is applicable to finite-dimensional maps
only. Our method utilizes only such information that can be gained also in
the case of infinite-dimensional maps (defined, e.g., in a Banach space), i.e.
the method should be applicable to such maps. But this enforces that the
foundation of the method has to be revisited.

Nevertheless, Carcasses’ method has also advantages compared to our
method. The main advantage is that also SPA and CRA can be distin-
guished and that SPA<+CRA transitions can be determined. Furthermore,
the method can detect bifurcation situations which are beyond the scope of
communication areas in the sense of Sec. 1, e.g. whether a fold or flip curve
is closed. These capabilities are caused by the fact that the method works in
some sense globally. By contrast, our method works locally. A consequence
is that it is impossible to decide whether the cusp (when it has been found
and examined) belongs really to a communication area, i.e. whether the other
curves constituting the communication area do exist. On the other hand, this
means, that the change of the sign of Eq. (18) may signal also other global
changes in the bifurcation diagram.

22



no. | sign of (18) type x Y a c
1 + SPA | -1.675490 -0.427148 -1.812033 -0.413519
2 + SPA | -2.137116 -0.200239 1.761686 -0.348546
3 - SAA | -2.231921 -0.825089 1.864383 -1.945378
4 + SPA | -1.912922 -0.530341 -0.251560 0.773379
5 - SAA | -1.806427 -0.282897 -3.819128 -3.440879
6 + SPA | -2.286317  0.282957 1.811106 -3.730972
7 - SAA | -1.139927 0.550181 -2.342272  2.038960
8 + SPA | -0.707295 0.789517 -3.867172  0.596430

Table 1: The communication areas in the (a,c)-parameter space and the
coordinates of their cusp points.

5 Example

5.1 Communication areas

The new method is to be demonstrated by an example. We have considered
the same map as Carcasses [1]:

c+(l+a)z+ba?+at+y

flen = ( s ) (23)

with 27 = (x,y) and X = (a,b,c,d); cycles of period 3 have been stud-
ied. The parameters were set initially to (a,b,c,d) = (—1.0,—3.0,—0.2,0.4).
Starting the path-following in the a-parameter space at (x,y,a) =
(—1.763087, —0.624706, —1.0), 7 fold and 7 flip points have been found (fold
and flip points are grouped in pairs). Then path-following in the (a,c)-
parameter space has been performed starting at these bifurcation points.
The seven curve pairs join together to two pairs of curves: the curves of one
pair are closed and its fold curve contains two cusp points (no. 1 and 2), the
curves of the other pair are not closed and the fold curve contains six cusp
points (no. 3 through 8). The results are shown in Table 1 and Fig. 6, the
types of the communication areas have been determined by visual inspection
of the figure.
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Figure 6: Bifurcation diagrams in the (a, ¢)-parameter space: (a) synopsis of
fold curves, flip curves, and cusp points, (b)—(d) enlargements of (a) showing
two spring areas, (cusp 1 and cusp 4), as well as one saddle area, (cusp 7).
Solid lines: fold curves, dashed lines: flip curves, triangles: cusp points.
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no. | sign of (18) type | x Y a b c

3 - SAA | -1.571348 -0.440542 -0.015028 -1.172028 -0.730
3 + CRA | -1.566199 -0.411577 -0.010548 -1.122764 -0.715
3 + CRA | -1.589890 -0.411532 -0.032288 -1.213020 -0.700

Table 2: The communication areas in the (a,b)-parameter space on both
sides of the SAA++CRA transition.

5.2 Area transitions

The path-following of the cusp points in the (a, b, ¢)-parameter has shown
that the curve corresponding to cusp 3 contains a degenerate cusp point near
(z,y,a,b,c) = (—1.5605,—0.4159, —0.0074, —1.1102, —0.7154). On both
sides of this point and near it, at ¢ = —0.730, ¢ = —0.715, and ¢ = —0.700,
bifurcation diagrams in the (a, b)-parameter space have been computed. The
results are shown in Table 2 and Fig. 7. It can be seen that between
¢ = —0.730 and ¢ = —0.700 a SAA+>CRA transition occurs.

The determinant of the Jacobian of (23) is equal to —d indepen-
dently of (x,y), i.e. that of the 3-periodic cycles is equal to —d*. This
means, that path-following of a fold point or a cusp point (i.e. one eigen-
value is equal to one) by variation of d encounters at d = 1 a =+-
bifurcation. Thus, cusp 1 has been path-followed in the (a, ¢, d)-parameter
space. As expected, a £-bifurcation point has been found at (z,y,a,c,d) =
(—1.859032, —1.150808, —0.491048, 0.733427,1.000000). On both sides of
this point, at ¢ = 0.7 and ¢ = 0.8 bifurcation diagrams in the (a, d)-parameter
space have been computed. The results are shown in Fig. 8. It can be seen
that between ¢ = 0.7 and ¢ = 0.8 a SAA<SPA transition occurs. Moreover,
the fold curve crosses for ¢ = 0.8 the value d = 1 where +-bifurcations occur.

5.3 An odd transient domain

It remains to show that the value of €., is not trivial, i.e. that it can take
on the value —1. To this end we have extended the map (23):

c+(l+a)z+ba?+at+y
Flen) = i (21)
2z
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Figure 7: Three stages of the SAA«+CRA transition at cusp 3: (a) the
SAA at ¢ = —0.730, (b) near the transition at ¢ = —0.715, (c¢) the CRA at
¢ = —0.700. Solid lines: fold curves, dashed lines: flip curves, triangles: cusp
points.
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Figure 8: Two stages of the SAA«+>SPA transition at cusp 1: (a) the SAA
at ¢ = 0.7, (b) and (c) the SPA at ¢ = 0.8. Solid lines: fold curves, dashed
lines: flip curves, triangles: cusp points, squares +-bifurcation points.
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Figure 9: The graphs of o: (a) the original map Eq. (23), (b) the extended
map Eq. (24).

with 27 = (z,y, z). Since the additional variable z is completely decoupled
from the others and does not depend on parameters, the bifurcation structure
is essentially the same as for the original map (23). In particular, the same
communication areas occur at the same parameter values. One difference is
the stability of the cycles: all cycles are unstable because of the eigenvalue
3 = 2. Another difference is that us causes one additional factor —1 in
Eq. (16), i.e. now we have €yans = —1 and o passes through oo when a
transient domain is crossed along a curve I';.

The reduced multiplier o has been computed for both maps in the (a, ¢)-
parameter space along the line ¢ = 2.028 = const from the fold to the flip
curve near cusp 7 (this corresponds to a straight horizontal line in Fig. 6d).
The graphs of ¢ versus the variable x are shown in Fig. 9 (the curve can be
parameterized by x). As expected, o passes oo in case of the map (24).

5.4 Technical remarks

The computations have been performed by the program package CAN-
DYS/QA [4], but the program has been essentially improved since that time
[8]. The program computes the bifurcation points of all types mentioned in
this paper, with the exception of degenerate cusp points which can be de-
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tected only. The bifurcation points are computed by the equation systems
described in Sec. 2.2. At the computed bifurcation points short stubs of
all branching off curves are determined, thus, it is easy to start the path-
following anew.

Since our example map Eq. (23) is known to be dissipative, simply
Eq. (16) has been evaluated to determine the signs listed in Tables 1 and
2. The full procedure, i.e. including the determination of €;.ns, has not yet
been implemented in CANDYS/QA.

6 Conclusions

In this paper we have presented a new method to determine the type of a
communication area by numerical means. It reduces the numerical effort
to the calculation of a few scalar products when the communication area’s
cusp point has been computed by a standard algorithm. This method is
an alternative to that proposed by Carcasses [2]. The disadvantage of our
method is that spring areas and crossroad areas cannot be distinguished as
Carcasses’ method can. Closing this gap will be the topic of future work.

The method works essentially locally. A consequence is, that it is im-
possible to decide whether the cusp, when it has been found and examined,
belongs to a communication area, i.e. whether the other curves constituting
the communication area do exist.

The paper also shows that saddle area<+spring area transitions can exist
which have not yet been considered in the literature. These transitions are
accompanied with the passage of a =+-bifurcation through the communica-
tion area’s cusp point. As for the £-bifurcations, saddle area<»spring area
transitions can occur only if the map is sufficiently complex; they do not
occur in one-dimensional and dissipative two-dimensional maps. Finally, an-
alytical conditions for the occurrence of the area transitions considered here
have been offered.
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