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Finalement, merci à ma femme Valérie. Sans tes questions et ton soutien,
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Abstract

We theoretically discuss the interaction of neutral particles (atoms, molecules)
with surfaces in the regime where it is mediated by the electromagnetic field.
A thorough characterization of the field at sub-wavelength distances is worked
out, including energy density spectra and coherence functions. The results are
applied to typical situations in integrated atom optics, where ultracold atoms
are coupled to a thermal surface, and to single molecule probes in near field
optics, where sub-wavelength resolution can be achieved.

Key words: coherence theory, quantum optics, quantum electrodynamics
(QED), atom optics, atom chip, spectroscopy, surface, near field optics, nano
optics

Die Arbeit untersucht theoretisch die Wechselwirkung neutraler Teilchen
(Atome, Moleküle) mit Oberflächen, soweit sie durch das elektromagnetische
Feld vermittelt wird. Spektrale Energiedichten und Kohärenzfunktionen wer-
den hergeleitet und liefern eine umfassende Charakterisierung des Felds auf
der sub-Wellenlängen-Skala. Die Ergebnisse finden auf zwei Teilgebieten An-
wendung: in der integrierten Atomoptik, wo ultrakalte Atome an thermische
Oberflächen koppeln, und in der Nahfeldoptik, wo eine Auflösung unterhalb
der Beugungsbegrenzung mit einzelnen Molekülen als Sonden und Detektoren
erzielt werden kann.

Schlüsselbegriffe: Kohärenztheorie, Quantenoptik, Quanten-Elektrodynamik
(QED), Atomoptik, Atomchip, Spektroskopie, Oberfläche, Nahfeldoptik,
Nano-Optik
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Thesen

1. Die Wechselwirkung von Licht mit Materie hat in der Geschichte der Physik
wiederholt das Feld geliefert, auf dem bedeutende Meilensteine gesetzt wur-
den. Dazu gehören die Entdeckung der Elektrodynamik und der Quantenthe-
orie.

2. Die Beschreibung eines Lichtfelds bei endlicher Temperatur erfordert Be-
griffe aus der Gleichgewichts-Thermodynamik. Charakteristische Größen
wie die spektrale Energiedichte werden aus Korrelationsfunktionen der elek-
trischen und magnetischen Felder im kanonischen Ensemble gewonnen.
Bei hohen Frequenzen (sichtbares Spektrum) oder verschwindender Tempe-
ratur können die Quanten-Fluktuationen der Felder durch die Korrelations-
funktionen der quantisierten Feldoperatoren charakterisiert werden. Das
Fluktuations-Dissipations-Theorem liefert in beiden Fällen eine Verknüpfung
zu den entsprechenden Green’schen Funktionen. Für bosonische Felder wie
das elektromagnetische Feld können diese aus den (klassischen) Feldgleichun-
gen berechnet werden.

3. Die Korrelationsfunktionen des elektromagnetischen Feldes bestim-
men dessen Kohärenzeigenschaften und damit seine ‘Interferenzfähigkeit’.
Der Kontrast eines Interferenzmusters etwa wird durch den Betrag einer
geeigneten Korrelationsfunktion gegeben. Sind zwei Punkte im Feld durch
einen Abstand größer als die Kohärenzlänge getrennt, kann die Strahlung, die
von ihnen ausgeht, keine signifikante Interferenz zeigen. Im freien Raum, nach
Filterung eines schmalbandigen Frequenzbereichs, ist die Kohärenzlänge von
der Größenordnung der Wellenlänge.

4. Materielle Objekte streuen, reflektieren oder beugen Licht und sind bei
endlicher Temperatur selbst Quellen von elektromagnetischer Strahlung. Die
Materie-Licht-Wechselwirkung kann auf geeigneten Längenskalen mit Hilfe
der makroskopischen Maxwell’schen Gleichungen beschrieben werden. Auf-
grund der Kleinheit der atomaren Dimensionen im Vergleich zu typischen
Wellenlängen erlauben es die makroskopischen Gleichungen, das Lichtfeld
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auf Skalen kleiner als die Wellenlänge zu charakterisieren, und dies bis hin-
auf in den sichtbaren Spektralbereich. Dass dies möglich ist, ist letztendlich
auf die Kleinheit der Feinstrukturkonstante zurückzuführen. Experimentell ist
dieses Regime seit den 1980er Jahren durch die optische Raster-Mikroskopie
zugänglich geworden.

5. Im ‘Nahfeld’ eines Objektes, bei Abständen kleiner als die Wellenlänge, zeigt
das Lichtfeld deutlich andere Eigenschaften als im freien Raum. Die spek-
trale Energiedichte hängt von den Eigenschaften der Materie (Brechungsin-
dex, Absorption) ab. Sie liegt bei endlicher Absorption um Größenordnungen
oberhalb der Planck’schen Strahlungsformel. Metallische Objekte zeigen ein
deutliches Ungleichgewicht zugunsten der magnetischen Energiedichte bei
Abständen um die elektromagnetische Eindringtiefe (skin depth).

6. Die Kohärenzeigenschaften der Emission eines thermischen Objekts vari-
ieren im Nahfeld mit dem Abstand von der Quelle. Im Grenzfall sehr
kleiner Abstände hängt die normierte räumliche Kohärenzfunktion allein
von der Geometrie von Quelle und Beobachtungspunkten ab: Abstand
des Beobachters und Kohärenzlänge sind gleich. Ist der Abstand ver-
gleichbar mit der Wellenlänge und das Objekt metallisch, sind elektromag-
netische Oberflächen-Resonanzen thermisch angeregt und führen zu einer
Kohärenzlänge jenseits der Vakuum-Wellenlänge. Diese Regimes können
durch einfache asymptotische Formeln quantitativ beschrieben werden [C.
Henkel, K. Joulain, R. Carminati und J.-J. Greffet, Opt. Commun. 186 (2000) 57].

7. Atome und Moleküle koppeln über ihre elektrischen und magnetischen
Dipolmomente an das elektromagnetische Feld. Die (thermischen oder quan-
tenmechanischen) Fluktuationen des Felds erfordern eine statistische Beschrei-
bung der entsprechenden Wechselwirkungen. Mastergleichungen bilden das
Werkzeug dazu, so lange die Felder in einem breiten Spektralbereich fluktu-
ieren.

8. Die Wechselwirkung von Atomen oder Molekülen mit einem Objekt wird
auf Abständen oberhalb der atomaren Skala durch das elektromagnetische
Feld vermittelt. Die Gegenwart des Objekts verschiebt die Energieniveaus der
Teilchen und erhöht typischerweise die spontane Zerfallsrate von angeregten
Zuständen. Die entsprechenden Zeit- und Frequenz-Skalen werden durch die
Korrelationsfunktionen der elektrischen und magnetischen Felder in der Nähe
des Objekts bestimmt.

9. Im Nahfeld einer dielektrischen Oberfläche, die auf der sub-
Wellenlängenskala strukturiert ist, ist die Linienbreite eines elektrischen
Dipolübergangs ebenfalls auf kleinen Skalen ortsabhängig. Dies kann dazu
benutzt werden, die Topographie und die lokale dielektrische Funktion der
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Oberfläche mit hoher Ortsauflösung zu vermessen. Die Auflösung ist nur
durch den mittleren Abstand des Atoms oder Moleküls von der Probe begrenzt
[C. Henkel und V. Sandoghdar, Opt. Commun. 158 (1998) 250].

10. Einzelne Moleküle, die in kleine, dielektrische Objekte von Nanome-
tergröße implantiert sind, haben eine längere radiative Lebensdauer, weil
Polarisationsladungen an der Oberfläche des Objekts das Dipolmoment des
Moleküls abschirmen. Die Form des Objekts und die Position des Moleküls
können die Lebensdauer stark beeinflussen [L. Rogobete, H. Schniepp, V. San-
doghdar und C. Henkel, Opt. Lett. 28 (2003) 1736].

11. Mikrostrukturierte Substrate sind ein wichtiges Element für die Real-
isierung von ‘Atom-Chips’, mit deren Hilfe atomoptische Elemente minia-
turisiert werden und möglicherweise ein skalierbarer Quantencomputer auf
der Basis neutraler Atome implementiert werden kann. Metallische Struk-
turen in Atom-Chips sind eine Quelle thermischer Magnetfelder, die den Spin
paramagnetischer Atome umklappen und zu Verlusten aus der Mikrofalle
führen [C. Henkel, S. Pötting und M. Wilkens, Appl. Phys. B 69 (1999) 379].
Die entsprechenden Verlustraten wurden von nicht weniger als vier experi-
mentellen Gruppen qualitativ beziehungsweise quantitativ nachgewiesen.

12. Thermische Magnetfelder und fluktuierende Ströme tragen in Atom-
Chips auch zur Erwärmung der gefangenen Atome auf einer Zeitskala von
Sekunden bei. In aktuellen Experimenten ist technisches Stromrauschen die
dominante Wärmequelle. Die Kopplung an das Magnetfeld wird für spin-
lose Atome irrelevant. Dann vermitteln Fluktuationen der van der Waals-
Wechselwirkung aufgrund der Phononen-Anregungen der Chip-Oberfläche
den Wärmeübertrag [C. Henkel und M. Wilkens, Europhys. Lett. 47 (1999) 414].

13. Atome in stark anisotropen Mikrofallen, die in der Nähe eines Substrates an
thermische elektromagnetische Felder koppeln, sind ein relativ gut charakteri-
siertes Modellsystem, um die Dekohärenz von Materiewellen nachzuweisen.
Die atomaren de Broglie-Wellen verlieren ihre räumliche Kohärenz auf einer
typischen Zeitskala von Sekunden. Die Dekohärenzrate steigt mit dem Ab-
stand zwischen zwei Punkten im Wellenfeld an, sättigt aber auf Distanzen
größer als der typische Abstand der Mikrofalle von der Substrat-Oberfläche
[C. Henkel, P. Krüger, R. Folman und J. Schmiedmayer, Appl. Phys. B 76
(2003) 173]. Dies kann etwa durch ein Atom-Interferometer nachgewiesen wer-
den, in dem ein kaltes Ensemble oder ein Bose-Einstein-Kondensat in einem
zeitabhängigen Potential aufgespalten und wieder vereinigt wird.

14. Zusammenfassend läßt sich sagen, dass die Kohärenz-Eigenschaften elek-
tromagnetischer Nahfelder durch die Geometrie und die dielektrischen Eigen-
schaften der benachbarten Materie charakterisiert sind. Die Felder verhalten
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sich quasi-statisch, Retardierung und Beugungsbegrenzung spielen eine un-
tergeordnete Rolle. Das Nahfeld fluktuiert aufgrund der thermischen Anre-
gungen der Materie. Nicht-propagierende (‘evaneszente’) Felder sind dom-
inant und führen zu einer überhöhten lokalen Zustands- und Energiedichte.
Im Nahfeld gefangene Atome und Moleküle sind eine empfindliche Sonde für
elektromagnetische Fluktuationen.



Part I

Introduction
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Chapter 1

Background

Free space is a highly symmetric medium for the propagation of light. This
symmetry is broken by material objects that interact with the light field. The
understanding of these interactions which often complicate the analysis, has
also led to many breakthroughs in modern physics. A brief historical review
may serve to illustrate this.

When James Clerk Maxwell (around 1860) adds the displacement current to
the Faraday law, it becomes clear that electromagnetic waves propagate even
through free space. The idea that empty space is not filled with any mate-
rial substance gets widely accepted only after the null result of the Michelson-
Morley experiment (1887) and its interpretation by Einstein (1905). That elec-
tromagnetic waves themselves do exist is demonstrated in 1888, when Hein-
rich Hertz uses objects like books and paraffine blocks as refractive elements.
Sub-wavelength holes in an opaque screen are put forward in a visionary pro-
posal by E. H. Synge (1928) as a detector of the near field close to a sample
whose resolution is not limited by diffraction.

Max Planck (1900) invokes thermal equilibrium between the walls of a cav-
ity and the field it contains to derive the spectral density of blackbody radia-
tion. The proof of the same law by Albert Einstein (1917) is based on a more
detailed picture of the interaction between light and matter. The concepts of
spontaneous and stimulated emission are combined with Boltzmann statistics
for an atom modelled by a two-level system, a model that becomes a ‘work-
ing horse’ for quantum optical processes. In the same paper, Einstein shows
that the quantized momentum exchanges between atoms and the light field
lead to Brownian motion in momentum space where the diffusion coefficient
is linked to a radiative friction force via a fluctuation-dissipation theorem (the
‘Einstein relation’). Eugene Wigner and Victor Weisskopf (1930) track sponta-
neous emission back to the dissipation an atom suffers when it is coupled to a
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8 CHAPTER 1. BACKGROUND

reservoir, viz. the quantized radiation field. At zero temperature, spontaneous
emission can be interpreted as being stimulated by the quantum fluctuations
of the field. The same fluctuations give rise to energy shifts the computation of
which becomes an art in quantum electrodynamics. One of the first examples is
the prediction of H. B. Casimir and D. Polder (1948) that close to a perfectly re-
flecting mirror, atomic ground states show a distance-dependent energy shift
featuring different power laws, depending on the distance compared to the
dominant transition wavelength.

This deliberately incomplete survey does not only illustrate the paradig-
matic role of matter-light interactions, but also highlights the major impact of
thermodynamical and statistical physics arguments. New developments con-
tinue to be reported and follow a similar route. A recent example from the
theoretical side is the formulation in the 1990s of a consistent quantum electro-
dynamics for the macroscopic Maxwell equations, i.e. for dispersive and ab-
sorbing media (Huttner & al., 1991; Gruner & Welsch, 1995; Tip, 1997; Stefano
& al., 1999). This theory draws on the ‘fluctuation electrodynamics’ developed
by S. M. Rytov (1953) and is consistent with the work of G. S. Agarwal (1975)
who characterized the quantized electromagnetic field near dielectric objects
using the fluctuation-dissipation theorem. On the experimental side, the fun-
damental concepts of spontaneous emission and photon recoil have turned
since the 1980s into operational tools that allow modern experimenters to reach
unprecedentedly low temperatures in atomic gases (Nobel prize 1997 awarded
to S. Chu, C. Cohen-Tannoudji, and W. D. Phillips). The interaction with light,
in particular from laser sources, has played a key role along the way of cool-
ing and controlling the motion of atoms and is still a tool of choice to perform
coherent quantum operations with trapped atoms.

The light-matter interaction is a generic example of system-reservoir dy-
namics, and non equilibrium processes are handled in a natural way in this
context. This can be illustrated with a simple situation taken right from the
pioneering works mentioned above, namely the evolution of a two-level atom
(the ‘system’) coupled to the quantized radiation field (the ‘reservoir’). An im-
portant piece of information about the system is given by the occupation prob-
abilities of two orthogonal states, |g〉 and |e〉, say. Typically these are eigen-
states of the isolated system Hamiltonian and become ‘dressed’ and renor-
malized in energy when coupled to the field. The modelling of the field as
a reservoir enforces a probabilistic description of the state occupations. The
concept of a statistical ensemble (for example, Boltzmann factors for the reser-
voir states) thus merges with quantum expectation values for system observ-
ables (the population inversion for example). The reservoir-induced dynamics
of the occupation probabilities is described in terms of rate equations, similar
to those used by Einstein (1917). Their key ingredient are transition rates be-
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tween the system states, that can be calculated using Wigner-Weisskopf theory
in terms of correlation functions of the reservoir observable the system couples
to. Let us convene that the usual weak-coupling, electric dipole, and rotating
wave approximations are made. Then, the rate of (spontaneous plus stimu-
lated) emission is given by the local spectral density of the electric field, i.e. the
temporal Fourier transform of the field correlation function 〈E(x, t)E(x, t′)〉,
with respect to t − t′, taken at the (renormalized) atomic transition frequency
and evaluated at the atomic position x. (E is the electric field projection along
the atomic electric dipole moment.) Second-order field correlations of this type
thus determine the time scale for reservoir-induced dynamical processes. Their
evaluation plays a crucial role in this thesis. While the results are well-known
in free space, they will also be required in the near field of macroscopic objects
where a strong position dependence occurs. In addition, we shall be interested
in situations where the field is not in thermal equilibrium, but generated by
objects held at nonzero temperature. Situations of this kind occur in different
sub-fields, but can be summarized in the generic setting of an atom located at
sub-wavelength distance from some macroscopic object. A brief introduction
is given in Chapter 2.

Rate equations and population dynamics do not exhaust the information
potentially available in a quantum system. Superposition states also exist and
evolve in time. A typical question that arises is: in the course of time, to what
extent does the contact with the reservoir preserve the ‘quantum’ character
of the superposition (the system being in one and another state1), and on what
timescale and in which basis is it replaced by ‘classical’ alternatives (the system
in one or another state2)? To decide this question operationally, interference
measurements have to be performed. The superposition state is still discern-
able as long as interference fringes can be seen — classical alternatives do not
interfere. A quantitative measure of the ‘quantum superposition’ character is
hence the fringe contrast. For the two-level-atom introduced above, the corre-
sponding key quantity is the magnitude of the average value ρeg(t) ≡ 〈|g〉〈e|〉
where |g〉 and |e〉 are the basis states of the superposition and the angular
brackets denote the average with respect to the system+reservoir ensemble.
This quantity (an off-diagonal element of the density matrix) is called a coher-
ence, and it is quite analoguous to the reservoir correlation functions mentioned
above. Indeed, if the system is described by probability amplitudes ψg, e(t) (see
footnote 1), the coherence can be written as ρge(t) = 〈ψ∗

g(t)ψe(t)〉. The average
here takes into account that the system+reservoir dynamics cannot reduce to
a pure Schrödinger evolution of the system wave function. For example, one
can formulate a stochastic dynamics where ‘quantum jumps’ interrrupt at ran-

1Mathematically, in terms of a state vector, |ψ(t)〉 = ψg(t)|g〉 + ψe(t)|e〉.
2In terms of a density operator, ρ(t) = pg(t)|g〉〈g| + pe(t)|e〉〈e|.
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dom times an otherwise continuous evolution. Averaging over a sample of
stochastic wave functions then reproduces (or ‘unravels’) the dynamics of the
system density matrix. We note that, again, one faces a second-order correla-
tion function: coherences are correlation functions of state amplitudes or field
operators.

To summarize, one is led to describe the dynamics of atoms or molecules
interacting with the quantized light field in terms of a coherence theory. De-
pending on the relevant degrees of freedom in the system, this theory gener-
ates different kinds of equations. In the example above, the non-equilibrium
dynamics of a few-level atom is typically described by a master equation for
the reduced density matrix, in the simplest case in Lindblad form and with
the Markov property. The characteristic scales in time and space for the mas-
ter equation are determined by the electromagnetic field correlation functions.
The radiation generated by some source is described by Maxwell equations
in macroscopic media, combined with a suitable source correlation function.
From this starting point, equations of motion for the field coherence functions
can be derived. If the medium properties are only partially known and require
statistical modelling, light scattering can be described with some approxima-
tions in terms of radiative transfer theory, and optical coherence functions can
be retrieved. Another example of such a statistical wave optics is provided by
ultracold atomic matter waves that interact with quantum or thermal electro-
magnetic field fluctuations. Their dynamics even gets nonlinear if the atoms
degenerate at low temperatures into a Bose-Einstein condensate.

The aim of this habilitation thesis is to put into use a coupled coherence
theory of atoms and light in order to formulate and answer basic questions
that originate in the rapidly evolving fields of integrated atom optics and sub-
wavelength optics. An introduction to these is given in Chapter 2. We rise
to the challenge of describing systems at finite temperature or partially out of
thermodynamic equilibrium, and focus on a typical setting where macroscopic,
solid materials, with dimensions of at least a few nanometers, interact with
the electromagnetic field by generating, scattering, or absorbing photons. The
research in this context may be loosely organized around two types of ques-
tions: (i) what is the relevance of electromagnetic perturbations generated by
a solid structure when an ultracold atomic sample is approached at nanome-
ter distances?, and (ii) what kind of information about a nanostructure can be
extracted via the electromagnetic field, possibly with high spatial resolution
using small quantum systems like atoms or molecules? The research projects
summarized in Chapter 3 illustrate that the coherence theory of the quantized
near field formulated here provides insight into both issues.



Chapter 2

Motivation

The physics of light-matter interactions is typically focussed on either matter
or light. If we consider for example a laser, the quantity of interest is the radia-
tion output. Even the simplest laser theory aims at predicting and optimizing
the laser emission. The laser medium is then often effectively eliminated and
reduced to a dielectric background, hopefully with gain. Its properties are of
interest in so far as they determine the radiation output: matter is instrumental
to harvest light. The reverse viewpoint is also possible: light is a tool to charac-
terize matter. In a laser, a significant amount of information about the relevant
medium properties can indeed be extracted from the emitted radiation.

The theoretical questions dealt with in this thesis share this double face.
They are rooted in two sub-fields that may be labelled by the focus they set on
either matter or light: (i) integrated atom optics, where matter wave trapping
and manipulation is the objective, for which the electromagnetic field provides
the basic tool; and (ii) sub-wavelength optics, where the focus is on matter
properties on short scales which become accessible when the electromagnetic
near field is probed with high spatial resolution. Both sub-fields merge for
some questions discussed here, as illustrated in Fig. 2.1:

atom

atom optics
integrated

field

optics

matterperturbation

probe

sub−wavelength

Figure 2.1: Typical setting considered in this thesis with two different points of view.
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12 CHAPTER 2. MOTIVATION

For integrated atom optics, microstructured material objects are instrumental
to create tightly confined electromagnetic trapping fields. But the same object
also perturbs the atoms via the near fields it generates. For sub-wavelength
optics, information about the near field above a microstructure can be probed
with high spatial resolution using the quasi point-like detector provided by a
single atom or molecule.

2.1 Integrated atom optics

The field of atom optics has emerged in the last two decades (Meystre, 2001).
It transposes basic concepts of light optics (beamsplitters, mirrors, diffraction
gratings, interferometers, lasers) to matter or de Broglie waves. A two-fold mo-
tivation continues to drive the rapid evolution of the field: the exploration of
fundamental wave mechanics and the demonstration of devices where atoms
turn out to perform superior to photons or other particles. Atom interferom-
eters, for example, are sensitive to rotations and give a phase shift of order
ΩA/(λv) (Bordé, 1989; Riehle & al., 1991; Gustavson & al., 1997; Lenef & al.,
1997) At a fixed enclosed area A, the matter wave is much more phase-shifted
because typically both wavelength λ and velocity v are small: relative to a light
interferometer operating at a wavelength λL, the shift is larger by the factor
mcλL/h ∼ 109m[amu]λL[µm]. The accuracy achieved in current experiments
suggests that tiny relativistic corrections (e.g., the Lense-Thirring effect1) or the
gravitational constant G can be measured in the near future (Kasevich & Chu,
1992; Bordé, 1997; Peters & al., 1999).

As in light optics, a major step towards practical applications is integration:
miniaturize the device and combine it with source and detection system in a
single, preferably solid setup. A natural solution, inspired by electromagnetic
optics, is to replace free space by a waveguide for the propagation of an atomic
beam. In matter wave optics, this corresponds to a confining potential and
can be implemented easily with electromagnetic fields. One example are opti-
cal fields provided by hollow fibres, hollow laser beams, or complex standing
wave patterns. The corresponding ‘atom fibres’ are expected to boost appli-
cations like lithography, i.e. the deposition of atoms on a substrate with high
resolution and high flux. Another atom guide is based on the magnetic field
minimum formed when the azimuthal field from a current filament is superim-
posed on a homogeneous ‘bias’ field (Fig. 2.2), as put forward by Frisch & Segré
(1933). A whole network of waveguides can be realized with static magnetic or
electric fields generated by nanostructures written onto a solid substrate (for a

1This effect, predicted by general relativity, is due to the ‘dragging’ of the space-time metric by a
rotating body.
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review, see Hinds & Hughes (1999); Reichel & al. (2001); Folman & al. (2002)).
This concept offers strong confinement, highly versatile structure design and
is potentially scalable when using nanofabrication technologies.

Wire current Iw
External ‘bias’ field Bb

Height z =
µ0Iw

2πBb

Field along wire BIP

Trapping frequency

Ω2 =
−µeff

m

B2
b

BIPz2

Figure 2.2: The magnetic ‘side guide’. The superposition of a homogeneous field
with the azimuthal field from a current filament forms a magnetic quadrupole field.
Atoms with an antiparallel magnetic moment µeff < 0 are trapped in the zero field
region at a height z above the current. If the homogeneous field has a component
along the current, the field has nonzero minimum magnitude and the trapping po-
tential is harmonic in the plane transverse to the guide axis (‘Ioffe-Pritchard trap’).

In addition to robust and compact interferometers, integrated atom op-
tics may provide the ‘hardware’ for a quantum computer based on neutral
atoms. Bits of quantum information can be encoded in atomic spin or hyperfine
states as well as in the vibrational levels of the trapping potential. Quantum
gates have been proposed based on collisions in state-dependent potentials or
switchable dipole-dipole interactions between atoms. Quantum information
can be exchanged by transporting the atoms through a network of waveguides,
or by using as a ‘data bus’ either the collective motion of an array of trapped
atoms or a light mode confined in an optical waveguide integrated into the
atom trap.

Fundamental physics will also be encountered on the way, for example
the alteration of atomic levels and transition rates in the near field of a solid
substrate, a special case of cavity quantum electrodynamics. One can real-
ize model systems to study ‘decoherence’, i.e., the loss of quantum coherence
due to the interaction with the microtrap environment, by controlling or en-
hancing electromagnetic field fluctuations in the trapping potential. The prop-
agation through a disordered waveguide is particularly interesting to study
with degenerate ensembles (e.g., Bose-Einstein condensates), as a controlled
model system for similar processes in mesoscopic electron transport. Many-
body physics like Josephson oscillations can also be investigated in great detail
with Bose-Einstein condensates, using multi-well potentials separated by tun-
nelling barriers.
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The issues that are addressed in this thesis focus on the interactions of
atoms with the solid substrate that are mediated at sub-wavelength distances
(i.e., in the ‘near field’) by the electromagnetic field. Regarding the atoms,
we shall adopt the usual dipole couplings, ignoring the chemical physics that
occurs on the scale of the Bohr radius aB when the electron clouds of atoms
and substrate overlap. The distance range aB . . . λL is non-empty even for the
shortest field wavelengths λL in question (the optical range), because one has
λL � aB ∼ αλL ≈ λL/137. The field, on the other hand, is strongly cou-
pled to the solid substrate and behaves very differently on the sub-wavelength
scale compared to free space. The electromagnetic energy density, for example,
increases orders of magnitude above the Planck law because of the contribu-
tion of non-radiative modes. We shall evaluate in detail near field correlation
functions and discuss their impact on atom dynamics in microtraps. This can
be done in a system+reservoir framework even if the field itself is not in ther-
mal equilibrium: at the very least, we can reasonably describe the macroscopic
solid and its thermal excitations in terms of a reservoir.

2.2 Sub-wavelength optics

A prominent trend throughout the history of optics is to improve the spatial
resolution of optical instruments. For a long time, resolution in the visible do-
main has been limited by diffraction. The adaptation of scanning probe tech-
niques to optical microscopy provided a breakthrough over two decades ago.
With sharp fibre tips and distance servo loops based on molecular forces, scan-
ning near field optical microscopes have pushed our ‘vision’ into the nanome-
ter range (see for example the special issue of J. Microscopy (2003)). Although
their spatial resolution is not as high as with conventional scanning probes
(electron tunnelling, atomic force), optical techniques have some advantages,
for example the access to local spectroscopic information (refractive index, ab-
sorption).

It has been anticipated since the field took off that spatial resolution can be
further enhanced by using single molecules as detectors or emitters (Dunn,
1999). Indeed, these are among the smallest implementations of point-like
dipoles that Nature provides. Experiments have started in the 1990s and first
used the fluorescence signal of single molecules deposited on a substrate to
map the field distribution around the illuminating tip (Betzig & Chichester,
1993; Michaelis & al., 1999). The key idea is that the fluorescent emission
is proportional, for low intensities, to the local electric field intensity at the
molecule’s absorption frequency. The spontaneous decay rate of the molecule,
a more intrinsic property which is independent of the illumination and detec-
tion modes, is also modified by the electromagnetic environment. It can be
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measured using the temporal decay of the fluorescence signal after pulsed ex-
citation, from the antibunching of the fluorescence intensity correlations, or in
some cases directly from the emitted power. The spontaneous decay rate is re-
lated to the local density of field modes (or local density of states, LDOS) at the
molecule position and at its emission frequency.

In the following, we list a few current trends in the field to which the present
thesis has made contributions. It is a priori not clear what kind of links exist be-
tween the surrounding nanostructures and the LDOS measured for example via
the molecular lifetime, but it is essential to know to what extent this link is lo-
cal when the molecule is to be used as a high-resolution imaging probe. Along
the same direction arises the question how the surrounding structure and its
local material parameters modulate the exchange of energy, heat, or momen-
tum with the molecule on short scales. If there is a significant impact, one can
anticipate to ‘taylor’ properties of the molecule by a suitable design of its en-
vironment. This idea has lent a large impact to the field of photonic band gap
materials or ‘photonic crystals’. In these artificial materials, structures with
feature sizes comparable to or smaller than the wavelength redistribute pro-
foundly the optical modes in frequency space. Accurate predictions for the
molecular emission in these structures require the characterization of the field
on the nanometer scale; this can be achieved by solving a scattering problem
in the framework of the macroscopic Maxwell equations. Finally, coming back
to the transfer of heat, the usual modelling of this process, using ‘radiative
transfer theory’, generally neglects interferences in the light field, assuming an
effectively zero coherence length. Thermal light in free space, in the far field
of any source, is indeed incoherent on scales exceeding the wavelength so that
radiative transfer is valid on larger scales, but it has to be replaced by a wave
theory on smaller scales. We show here that this limiting scale is no longer
given by the wavelength in the near field of a source and, more explicitly, that
the coherence length of thermal radiation shifts to smaller values at short dis-
tances.
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Chapter 3

Achievements

3.1 Summary

The achievements reported in the present thesis can be summarized as follows.

i. We analyze the non-equilibrium dynamics of microscopic particles
(atoms, ions) weakly coupled to a fluctuating environment with an em-
phasis on the coherence theory of atoms trapped in the near field of
nanostructures. The dominant processes and sources of fluctuations are
identified. Timescales for the loss of coherence are estimated in the con-
text of current experiments in integrated atom optics.

ii. A thorough characterization is obtained for the electromagnetic near field
at sub-wavelength distances to planar structures made from linear di-
electrics. To a large extent and with reasonable approximations, this is
possible analytically, but numerical tools for a full calculation are also
provided. We elaborate the consequences for sub-wavelength optical
coherence theory, for mechanical effects on nearby objects due to both
quantum and thermal field fluctuations, and for the radiation dynamics
of fluorescent molecules.

Both points are obviously linked; advances in the characterization of the field
have direct implications for the dynamics of atoms trapped in the near field.

3.2 Atom coherence

In the present section, we briefly introduce the projects focussing on atoms and
documented in the research papers listed in Appendix C. The idea behind the
ordering is roughly to go from the simple to the complicated.

17
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Trapped ions

Carsten Henkel and Martin Wilkens (1999), ‘Heating of trapped atoms near thermal surfaces,’
Europhysics Letters 47, 414.

Carsten Henkel, Sierk Pötting, and M. Wilkens (1999a), ‘Loss and heating of particles in small
and noisy traps,’ Applied Physics B 69, 379, selected paper of the DPG quantum optics meeting
in Heidelberg (1999).

Any charged particle can be trapped in the time-dependent electric field
configuration invented by Wolfgang Paul (Nobel prize 1989 shared with Nor-
man F. Ramsey and Hans G. Dehmelt). Ion traps are currently one of the most
rapidly advancing implementations of a quantum computer (Schmidt-Kaler
& al., 2003) because the ion centre of mass motion can be efficiently cooled
using laser light and used to exchange quantum information that is stably en-
coded in internal states.

In experiments performed by the group of David J. Wineland (JILA Boul-
der), the vibrational motion of the ion in its effective harmonic potential has
shown an unusually large heating rate when the trap dimensions are scaled
down to tens or hundreds of micrometers (Wineland & al., 1998; Turchette
& al., 2000). We have suggested that this may be due to the coupling to ther-
mal electric field fluctuations that ‘leak’ out of the room-temperature electrode.
We evaluated the spectral density of the electric near field and found a transi-
tion rate between the trap vibration levels in qualitative agreement with the
experimental data. In the master equation for the ion’s vibrational motion, the
same rate also governs the decoherence of superposition states between differ-
ent trap levels, a figure of large interest for quantum computing applications.

Further investigations of the Wineland group indicate a slightly differ-
ent exponent for the power law dependence of the heating rate on the ion–
electrode distance. The observed behaviour can be modelled in terms of field
fluctuations originating from patch charges on the electrode surfaces (Turchette
& al., 2000). For a detailed understanding, more involved surface physics will
be required. The issue is currently open and limits the smallness of ion traps.
Experimentally, excessive heating rates are simply reduced by coming back to
sufficiently large trap designs.

Free atoms in optical near fields

Carsten Henkel and Jean-Yves Courtois (1998), ‘Atomic recoil and momentum diffusion close
to a vacuum–dielectric interface,’ The European Physical Journal D 3, 129.

Neutral atoms interact strongly with the electromagnetic field via electric
dipole transitions in the optical frequency range. In this context, the field can
be assumed at zero temperature because thermal mode populations essentially
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vanish at the relevant transition frequencies. Only vacuum fluctuations then
remain and lead to the spontaneous decay of excited atomic states. The decay
rates (and accompanying level shifts) become position-dependent in the near
field of any scattering object.

We focus in this project on a model geometry that occurs in atom reflection
experiments: a planar interface between vacuum and a dielectric. Well-known
expressions for the spontaneous decay rates are recovered, and the theory is
elaborated to describe the radiative forces acting on an atom that is driven by
an inhogeneous light field (an evanescent wave) at sub-wavelength distance
from the dielectric surface. We introduce the spatial coherence function of the
atomic de Broglie wave and derive an approximate equation of motion for it (a
Fokker-Planck equation for the Wigner transform). Momentum diffusion coef-
ficients are computed and give access to the reduction of the spatial coherence
length: an increasingly broad momentum distribution (width ∆p) translates
into a loss of spatial coherence (coherence length ≈ h̄/∆p). In the near field
of the surface, coherence is more rapidly lost than in free space because of the
steep spatial gradients of both the driving field intensity and of the sponta-
neous decay rates. We also demonstrate a peculiar behaviour of the average
optical force (the radiation pressure): for a circularly polarized driving, its di-
rection is tilted and is no longer parallel to the field propagation direction, nor
to the Poynting vector. This can be attributed to the breaking of the usual sym-
metry of the dipole radiation pattern by the surface: unlike in free space, spon-
taneously emitted photons then lead to a net recoil momentum. The theory
is generalized to an atom with spin 1/2 in the ground state, and reveals spin-
dependent momentum exchanges associated to optical pumping processes. An
important theoretical tool for the project is the expansion of the vacuum field
correlation function in terms of irreducible tensor operators. Compared to free
space, this expansion contains only a few additional terms whose coefficients
transform as scalars under the reduced (cylindrical) symmetry group.

Free particles in thermal near fields

Carsten Henkel, Karl Joulain, Jean-Philippe Mulet, and Jean-Jacques Greffet (2002),
‘Radiation forces on small particles in thermal near fields,’ Journal of Optics A: Pure and Applied
Optics 4, S109.

Room temperature thermal radiation peaks in the infrared range, and cou-
ples strongly to materials like polar crystals because of the resonant absorption
by transverse optical phonon modes (‘phonon polaritons’, Ashcroft & Mermin,
1976). This is the background for a project on the radiation force in the near
field of a thermal source. We consider a sub-wavelength test particle and de-
scribe it as a point dipole with the well-known Clausius-Mossotti polarizabil-
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ity. The radiation force is given by (Gordon & Ashkin, 1980)

F(x) =
∑

i = x, y, z

〈di∇Ei(x)〉

where the average 〈· · ·〉 is taken over the (quantum and thermal) fluctuations
of both dipole and field. We develop a theory that recovers the standard van
der Waals–Casimir–Polder force at zero temperature (Casimir & Polder, 1948)
and yields an explicit correction due to finite temperature. It is possible to de-
scribe non-equilibrium states of the field by computing the radiation a ‘hot’
source emits into a ‘cold’ vacuum. The energy flowing out of the source leads
to a ‘radiation wind’ that repels the sub-wavelength particle, the thermal ana-
logue of the radiation pressure force. The thermal force also contains a second
contribution, analogous to the ‘dipole force’ of atom-light interactions (propor-
tional to intensity gradients). It depends indeed on the distance to the source
and involves the overlap between the source emission bands and the particle’s
refractive index (more precisely, the dispersive part of its polarizability). We in-
troduce a frequency spectrum of the radiation force where these contributions
show up as prominent peaks. They can be assigned to electromagnetic surface
resonances (‘surface phonon polaritons’) on both the source and the particle.1

A similar analysis can be carried out for the Casimir force between two non
perfect mirrors: see the project Henkel & al. (2004b) summarized on page 35.

Atom loss in magnetic microtraps

Carsten Henkel, Sierk Pötting, and Martin Wilkens (1999b), ‘Loss and heating of particles in
small and noisy traps,’ Applied Physics B 69, 379, selected paper of the DPG quantum optics
meeting in Heidelberg (1999).

This and the following projects focus on atoms confined in miniaturized
traps and exposed to thermal near fields. The situation is generic for micro-
traps in integrated atom optics (Hinds & Hughes, 1999; Reichel & al., 2001;
Folman & al., 2002). It is essential to include a finite temperature as much
lower transition frequencies become relevant.

To begin with, we consider magnetic traps and estimate the loss rate due
to thermal magnetic near fields. These traps are based on the linear Zeeman
effect. In the adiabatic approximation, the angle between the atomic magnetic
moment µ = µBgJ and the local magnetic field direction B̂(x) (i.e., the mag-
netic quantum number mJ = 〈B̂(x) · J〉) is conserved, and the Zeeman shift
reduces to the effective potential −µBgmJ |B(x)|. Magnetic field minima pro-
vide traps for atoms with an antiparallel magnetic moment (gmJ < 0); recall

1For a planar source and a spherical particle of the same material, these resonances have slightly
different frequency asymptotes determined by Re ε(ω) = −1, −2, respectively.
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that field maxima are forbidden by the Maxwell equation ∇ · B = 0. After a
transition that changes the sign of mJ , potential minima have turned into max-
ima and the atom is expelled from the trap. Even if another transition back to
the trapping potential happens sufficiently fast, the kinetic energy gain leads
to heating.

As is well known from magnetic resonance spectroscopy, transitions be-
tween magnetic sublevels (‘spin flips’) are induced by time-dependent, mag-
netic fields transverse to the trapping field. The spin flip rate is proportional
to the field’s spectral density at the Larmor frequency h̄ωL = µBg|B(x)| which
typically ranges in the 1–100 MHz domain. In the present project, we focus on
one source of field fluctuations and spin flip loss: thermally excited currents in
the microstructures surrounding the trap minimum (‘near field noise’). Fluc-
tuations of the electric currents that create the trapping fields (‘current noise’)
are considered in Henkel & al. (2003c). We mention already here that the con-
tribution of current noise is surprisingly large: taking a thin, straight wire and
current fluctuations at the shot noise level, the spin life time is of the order of a
few seconds for typical microtrap parameters.

Near field noise turns out to be a more significant source of spin flips.
Two methods have been developed to characterize it. In equilibrium, the
fluctuation–dissipation theorem yields the magnetic field’s spectral density
in terms of the magnetic field Green function (see Section 5.3.2 and Agarwal
(1975a)). This method has been used in the present project. Alternatively,
the radiation emitted by the ‘hot’ microstructures can be calculated directly
as done by Varpula & Poutanen (1984); Sidles & al. (2003) and in the previous
project (Henkel & al., 2002, see page 19). We have shown that when the field
propagation is described in the quasistatic limit, the scattering problem at the
interfaces can be avoided and one is led to a simple summation over the vol-
ume filled by conducting microstructures (Henkel & Pötting, 2001). For a thin
layer of thickness d, for example, the spin flip loss rate is of the order of

γ ∼ µ2
0kBTsσs

d

z(z + d)
∼ 100 s−1Ts[300 K]σs[σCu]

d

(z + d)z[µm]
(3.1)

where Ts, σs are temperature and conductivity of the layer.2 The simple sum-
mation method is a useful tool to predict the scaling with material parameters
and geometry for quite arbitrary microstructures. It shows that the loss rate de-
cays algebraically with distance z, and that the smaller the volume of the con-
ducting material, the faster the decay. Thermally induced spin flips can hence
be reduced along two avenues: employ the least possible amount of conduct-
ing material or reduce the product Tsσs. Alternatively, one can increase the

2Eq.(3.1) is not valid in the perfect conductor limit σs → ∞ because it assumes d, z � δ where
δ ∝ 1/

√
σ is the skin depth.
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distance to the microstructure or increase the skin depth δ = (2ε0c
2/σsωL)1/2,

applying larger magnetic fields. We have indeed found that the spin flip rate
decays faster with z, as one enters the regime z � δ.

In magnetic traps, spin flips also occur because an atom moving in the
trap experiences a time-dependent magnetic field. Taking into account correc-
tions to the adiabatic approximation, flip rates have been estimated by Suku-
mar & Brink (1997) in Oxford and by the group of H. Thomas (Basel) and
colleagues (Gov & al., 1998, 2000a,b). One gets an exponential suppression
∝ exp(−ωL/Ω) with the ratio between Larmor frequency and trap vibration
frequency Ω. Nonadiabatic flips are thus easily ruled out in experimentally
realized microtraps by increasing the trapping field.

The first measurements of microtrap loss rates performed in Claus Zim-
mermann’s group (Tübingen) gave a reduced lifetime at short distance and
have been interpreted as interactions with the surface (Fortágh & al., 2002).
Experimental difficulties, however, made a direct comparison to theory unsat-
isfactory, as Wolfgang Ketterle’s group (MIT) pointed out in a careful cross-
check experiment (Leanhardt & al., 2003). The loss rates observed recently in
the groups of Ed A. Hinds (Sussex/London), Eric A. Cornell (JILA Boulder),
and Vladan Vuletić (Stanford/Harvard) are on the contrary consistent with the
thermally induced flips introduced here (Jones & al., 2003; Harber & al., 2003;
Lin & al., 2004), see Figure 3.1. By varying the trap distance and the substrate
material, the scaling laws predicted in 1999 as well as the overall magnitude of
the loss rate could be confirmed in 2003.

Ultimate sources of trapped atom heating

Carsten Henkel and Martin Wilkens (1999), ‘Heating of trapped atoms near thermal surfaces,’
Europhysics Letters 47, 414.

Paramagnetic atoms experience a force in magnetic field gradients — this
is the basic principle of magnetic trapping. Now, if fluctuating fields that vary
in space are present, they act like a random force and heat the atomic motion.
The noise strength of this force is related to the heating rate (the kinetic energy
gained per unit time and per atom). The relevant quantity is the noise spectral
density at the vibration frequency if the atom is trapped in a harmonic well. In
integrated atom optics, trap miniaturization leads to steep potentials and large
vibration frequencies, with typical values approaching the MHz range.

We have estimated the spectrum of magnetic field gradients starting from
the field’s spatial correlation function (Henkel & Wilkens, 1999; Henkel & al.,
1999b). The corresponding heating rate has been compared to a random force
due to another source: thermal or technical current noise that shifts the loca-
tion of the trap minimum (Folman & al., 2002; Henkel & al., 2003c; Schroll & al.,
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Figure 3.1: Loss rate due to thermal magnetic noise vs. trap distance for differ-
ence surface materials. Symbols: experimental data for condensed (open) and non-
condensed (filled) gases. Lines: theoretical predictions (dotted: interpolation, solid:
numerically evaluated integral for magnetic noise spectrum). Communicated by D.
M. Harber (2003).

2003). It has been shown that for typical experiments in integrated atom op-
tics, this second source actually dominates. One reason is the large spring con-
stant in strongly confined traps that associates large forces with small trap dis-
placements. Another reason is that in this range of frequencies, technical noise
dominates the current noise, raising it well above the shot noise level. This is
consistent with experimental observations of Jakob Reichel’s and Theodor W.
Hänsch’s group in München (Hänsel & al., 2001).

Obviously, heating due to magnetic noise can be eliminated by working
with spinless atoms. These can be trapped, for example, in optical dipole traps
(Grimm & al., 2000). We have compared different couplings to the microtrap
environment that could still provide heating in that case. Thermal electric field
fluctuations and the corresponding time-dependent Stark shift turn out to be
subdominant compared to elastic excitations of the substrate surface (phonons)
that couple to the atom via the van der Waals-London-Casimir-Polder interac-
tion (Haroche, 1992). We have adopted a simple model for the corresponding
time-dependent corrections to the interaction with a planar surface (Hill & al.,
1982; Franchini & Bartolani, 1994) and derived the heating rate by describing
the surface fluctuations in terms of a thermal phonon reservoir. The result is
again a power law in the distance z, decreasing here like 1/z10. With typical
parameters, we predict that for spinless atoms, the ground state in a harmonic
trap is indeed stable with respect to heating on timescales exceeding minutes.
The group of Rudi Grimm (Innsbruck) where Cesium atoms are trapped in an
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evanescent wave above a glass substrate (Hammes & al., 2003) and cooled be-
low the Bose-Einstein condensation temperature (Rychtarik & al., 2004), may
soon achieve trapping times where van der Waals heating is observable.

We finally note that one gets the depletion rate of the trap ground state by
normalizing the heating rate to the vibrational energy quantum. This rate also
relates to the timescale over which a prepared quantum state persists resp. ‘de-
coheres’ in the microtrap environment (Henkel & al., 1999b). One can thus
identify practical limitations for the storage of quantum information in the
atomic centre of mass motion.

Decoherence of guided matter waves

Carsten Henkel and Sierk Pötting (2001), ‘Coherent transport of matter waves,’ Applied
Physics B 72, 73, selected paper of the DPG quantum optics meeting in Bonn (2000).

Carsten Henkel, Peter Krüger, Ron Folman, and Jörg Schmiedmayer (2003c), ‘Fundamental
limits for coherent manipulation on atom chips,’ Applied Physics B 76, 173, selected paper of
the DPG quantum optics meeting in Osnabrück (2002).

In atomic waveguides similar to the ‘side guide’ shown in Figure 2.2, the
confinement along the guide axis is much weaker than perpendicular to it, and
one can assume the motion in this direction to be ‘quasi free’. In the project pre-
sented here, we turn to the impact of time-dependent perturbations on matter
wave propagation in these low-dimensional geometries. The physics is very
similar to the decoherence model popularized by Woyciech H. Zurek (1991)
that was originally intended to explain the non-observation of spatial super-
position states for macroscopic objects.3 In atomic microtraps, a more detailed
characterization of decoherence is possible because the coupling to the envi-
ronment is microscopically known and determined by the magnetic noise cor-
relation functions obtained previously. One may thus consider cold trapped
atoms as a model system to investigate decoherence on a mesoscopic scale,
since the noise parameters can be varied experimentally to some extent.

We have derived a master equation for the density operator of quasi free
matter waves in the weak-coupling approximation (Henkel & Pötting, 2001).
The Markov approximation applies for magnetic near field noise because one
has a reservoir spectral density that is frequency-independent in the relevant
range. By taking into account the spatial correlation function of the noise field,
we are able to write the master equation in the form of a radiative transfer
equation (Chandrasekhar, 1960) where the interaction with the noise field is
described by a (differential) scattering cross section. Details of the derivation

3Zurek considers a ‘test particle’ whose position coordinate couples to a ‘quantum field’ that is
treated as a reservoir in thermal equilibrium, thus modelling the interaction with the environment.
The particle-field coupling is fixed in the high-temperature limit in terms of the macroscopically
observed damping rate.
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are given in the paper Henkel (2001) that is reproduced in Appendix B. In the
limit that the scattered momenta are small, a Fokker-Planck equation is found
and we recover the framework developed by Zurek (1991).

For atoms that are quasi free or subject to a linear potential, we solve the
radiative transfer equation analytically (Henkel & Pötting, 2001). The resulting
matter wave density operator is consistent with earlier results (Jayannavar &
Kumar, 1982) and shows exponential decoherence in position space. The off-
diagonal elements or coherences 〈x|ρ(t)|x + s〉 decay for s > 0 with a rate
γ(s) that increases with distance. Confirming results by Cheng & Raymer
(1999), the decoherence rate saturates if the ‘off-diagonality parameter’ s is
much larger than the noise correlation length.4

We have estimated the decoherence rate due to magnetic noise for typical
integrated atom traps and find that it is limited from above by approximately
the spin flip loss rate (Henkel, 2001; Folman & al., 2002; Henkel & al., 2003c).
Any strategy to reduce trap loss will hence avoid spatial decoherence as well.
It is shown as well that the correlation length of near field magnetic noise is
comparable to the trap height z. This is true both for noise induced by the ther-
mal surface (Henkel & al., 2000, summarized on page 29) and by fluctuations of
a wire current at the shot noise level (Henkel & al., 2003c). A similar result has
been obtained by Christoph Bruder’s group in Basel for thermal wire current
fluctuations (Schroll & al., 2003). In a miniaturized network of atom guides,
the small noise correlation length has the following consequences: on spatial
scales larger than the correlation length (∼ z), spatial decoherence is governed
by a single time constant, the saturated rate γ(s → ∞), comparable to the spin
flip rate. In addition, noise with short spatial correlations is ‘rough’: the mo-
mentum diffusion coefficient or, equivalently, the heating rate increases faster
with smaller trap height than the spin flip rate itself, by a factor 1/z2.

BEC decoherence

Carsten Henkel and Simon A. Gardiner (2004), ‘Decoherence of Bose-Einstein condensates in
microtraps,’ Physical Review A 69, 043602.

Carsten Henkel, Simon A. Gardiner, and Antonio Negretti (2004a), ‘(De)coherence physics
with condensates in microtraps,’ Laser Physics 14, 615–20, proceedings of the 12th
International Workshop on Laser Physics, Hamburg 2003.

In 2001, Bose-Einstein condensation has been achieved with miniaturized
surface traps in nearly simultaneous experiments performed by the groups of
Jakob Reichel in München (Hänsel & al., 2001) and of Claus Zimmermann in
Tübingen (Ott & al., 2001). Let us recall that below the condensation tempera-

4This feature is absent from Zurek’s model because it does not contain a cutoff at large momenta
for the quantum field that couples to the test particle.
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ture, a macroscopic number of atoms occupy a single quantum state of the trap-
ping potential and form the Bose-Einstein condensate (BEC). The interatomic
interactions in these dense samples lead to a spatial broadening of the ‘conden-
sate wave function’ with respect to single-particle quantum mechanics. The
simplest description of BEC dynamics is in terms of a nonlinear Schrödinger
equation where the interactions are taken into account by a density-dependent
potential; this is called the ‘mean field approximation’. More refined theories
include also condensate excitations and non-condensed atoms and model them
as a quantum fluid surrounding the BEC and interacting with it (Fetter, 1999;
Stoof, 1999). This approach is attributed to Lev Landau and called the ‘two-
fluid model’.

Using the mean field approximation, we have extended the decoherence
theory of the previous projects to a trapped BEC. This allows to explore the
impact of interactions and nonlinearity on the scenario of decohering mat-
ter waves. We have focussed on a pure condensate that is released into a
quasi one-dimensional waveguide and expands while interacting with a weak,
time-dependent potential. In a first step, we neglect interactions in the non-
condensed or ‘normal’ fluid. The corresponding (single particle) density op-
erator then satisfies the master equation of the previously presented project,
augmented by a source term coming from the condensate. Indeed, the scatter-
ing off the noise potential depletes the condensate and creates atoms in higher-
energy states. In this approximation, the BEC wave function itself evolves ac-
cording to a nonlinear Schrödinger equation with a corresponding loss term.

This simple theory can be solved analytically and qualitatively repro-
duces Monte Carlo simulations of the nonlinear Schrödinger equation with a
noise potential, provided the interatomic interactions are not too strong. The
agreement becomes quantitative if two key parameters for the noise potential
(strength and correlation length) are renormalized. This can be traced back to
the superfluidity of the condensate, more precisely, to the suppression of long-
wavelength excitations. This intuitive picture is confirmed by preliminary cal-
culations that describe the excitations in the local-density approximation and
assume a slowly-varying condensate profile, see Fig. 3.2.

In a regime of stronger interactions which would be typical for experiments
with Bose-Einstein condensates in microtraps, numerical simulations predict
that the condensate becomes unstable during the expansion. Fig. 3.3 shows
that the condensed fraction collapses on a time scale much shorter than ex-
pected from the noise strength. We suspect that this is due to the quite sensible
perturbation provided by a small normal fluid fraction. The subject is currently
under investigation.

Decoherence of condensates in microtraps has not been directly observed
as yet, to our knowledge. Indirect evidence is provided by the heating process
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Figure 3.2: Renormalization of decoherence in a Bose-Einstein condensate. We plot
the ratio between the ‘bare’ and the renormalized decoherence rate γ(s → ∞) for
different ratios between the noise correlation length `corr and the healing length ξ(0)
in the condensate centre. Large dots: numerical simulation. Small dots: renormal-
ized decoherence rate for condensate density profiles of Thomas-Fermi shape (lower
curve) and gaussian shape (upper curve). Solid line: interpolation formula. Dashed
lines: asymptotics for large and small healing lengths, corresponding to weak and
strong interactions, respectively.

attributed to technical noise in the München atom chip experiment (Hänsel
& al., 2001). A number of other microtraps suffer from a static, inhomogeneous
potential that leads to BEC fragmentation (Fortágh & al., 2002; Kraft & al., 2002;
Leanhardt & al., 2003; Jones & al., 2003). This makes the experiments differ
from our model because the free expansion in these traps is perturbed. In a
recent paper, the inhomogeneous potential is attributed to random lateral dis-
placements of the wire current (Wang & al., 2003), and investigations of the
corresponding disordered multi-condensate sample (a ‘Bose glass’) are sug-
gested.

Atom optical diffraction gratings

Carsten Henkel, Hartmut Wallis, Nathalie Westbrook, Chris I. Westbrook, Alain Aspect,
Klaus Sengstock, and Wolfgang Ertmer (1999b), ‘Theory of atomic diffraction from
evanescent waves,’ Applied Physics B 69, 277.

This review paper summarizes the results of my Ph.D. thesis5 on the diffrac-
tion of cold atoms from optical reflection gratings. The gratings under consid-
eration are made with partially standing evanescent waves. We identify the
relevant diffraction mechanisms and compare the theory to experimental re-
alizations achieved in the groups of W. Ertmer (Bonn/Hannover), V. Lorent
(Villetaneuse), and A. Aspect (Orsay).

5‘Réflexion et diffraction d’atomes lents par un miroir à onde évanescente,’ Université Paris-Sud,
France, 11 December 1996.
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Figure 3.3: Condensate density profiles upon release from a harmonic trap into a
noisy one-dimensional waveguide. Symbols: noise-averaged Gross-Pitaevskii field
for Ωt = 0, 0.3, . . . 1.5 where Ω is the initial trap frequency. Dashed lines: time-
dependent Thomas-Fermi profile (Castin & Dum, 1996). Solid line (inset): exponen-
tial decay e−γt . The parameters correspond to the microtrap experiment of the J.
Reichel group (Hänsel & al., 2001): distance 10 µm, noise strength γ = 0.0075 Ω,
correlation length `corr = 0.66 oscillator units, interaction strength gN ≈ 400 oscil-
lator units.

Mesoscopic atom optics with atom chips

Ron Folman, Peter Krüger, Jörg Schmiedmayer, Johannes H. Denschlag, and Carsten Henkel
(2002), ‘Microscopic atom optics: from wires to an atom chip,’ Advances in Atomic, Molecular,
and Optical Physics 48, 263, edited by B. Bederson (Academic Press, New York).

Recent developments and current perspectives of integrated atom optics
are discussed in this review article. A chapter on loss and decoherence in atom
chip traps summarizes the results obtained in several projects described here.
We sketch the vision of a scalable quantum computer implemented with neu-
tral atoms.

3.3 Optical coherence

The following projects focus on the electromagnetic field and its coherence in
the vicinity of a possibly nanostructured substrate. The presentation starts with
a the characterization of the spatial coherence length of thermal light and then
addresses questions of single-molecule fluorescence in a inhogeneous environ-
ment. The last topic touched upon is the Casimir force, the electromagnetically
induced attraction between macroscopic mirrors separated by a vacuum gap.
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Near field of a planar source

Carsten Henkel, Karl Joulain, Rémi Carminati, and Jean-Jacques Greffet (2000), ‘Spatial
coherence of thermal near fields,’ Optics Communications 186, 57.

What is the energy spectrum of a thermal radiation field and how coher-
ent is it? The Planck formula provides the answer in the far field, i.e., in a
spectral region where the wavelength λ is smaller than the distance z to any
scattering or radiating objects. In the near field, the answer is less universal
because one has to describe the material objects and the radiation source itself.
A natural framework is provided by ‘fluctuation electrodynamics’: the macro-
scopic Maxwell equations including polarization noise sources whose statistics
is given in terms of the source temperature. This theory is able to generalize
the Planck law down to the atomic scale. It has been developed in the 1950s
by the groups around S. M. Rytov and L. Landau (Rytov & al., 1989). In the
1990s, fluctuation electrodynamics was identified as a natural framework to
consistently quantize the electrodynamics of absorbing and dispersive media
(Huttner & al., 1991; Gruner & Welsch, 1995; Tip, 1997; Stefano & al., 1999).

The group of Jean-Jacques Greffet (Paris) applied the Rytov theory to char-
acterize the non-equilibrium field in the ‘cold’ vacuum above a ‘hot’ planar
source (a metal-filled half space) and obtained numerical results for its spatial
coherence and its energy spectrum (Carminati & Greffet, 1999; Shchegrov & al.,
2000). In particular, the coherence length `coh (measured in a plane parallel to
the source) depends on the distance of observation z, and there are regimes
where it becomes much smaller or larger than the wavelength. In the present
project, we have worked out analytical approximations that explicitly exhibit
the relevant physical processes that determine `coh. At short distance z � λ,
for example, the coherence length is fixed by the geometry and is of the order
of z; it is not limited from below by the skin depth of the source material, as
put forward by Carminati & Greffet (1999). Approaching the source, the near
field thus becomes spatially more and more incoherent; a limit is only reached
when the concept of a local dielectric susceptibility breaks down. This hap-
pens, depending on the material, on the atomic scale or somewhat above it
(Feibelman, 1982; Ford & Weber, 1984). If the source material supports elec-
tromagnetic surface resonances6, these dominate the electromagnetic energy
density in a distance range z ∼ λ. We show that the energy density then has
a nearly exponential variation because the surface resonance corresponds to
evanescent fields with a well-defined decay length perpendicular to the plane.
Parallel to the surface, the coherence length is equal to the extinction length

6In metals with a relative permittivity Re ε(ω) < −1, a collective surface charge oscillation couples
to the electromagnetic field to combine into a so-called ‘surface plasmon’ resonance (Raether, 1988).
‘Surface phonon polaritons’ correspond to an optical phonon coupled to the field; they occur in
many polar crystals.
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of the resonance which is made finite by material losses; it can exceed many
wavelengths.

Regarding the polarization properties of the thermal near field, the group
of Ari T. Friberg (Stockholm/Kista) has generalized the concept of a degree of
polarization. This is needed because there is no longer a preferred direction of
propagation with respect to which the field is transverse (Setälä & al., 2002a,b).
In the regime of distances where surface resonances dominate the field energy,
they lead to a net degree of polarization. But also in the very near field, z � λ,
the surface breaks spatial isotropy and the thermal radiation field is partially
polarized. On the experimental side, the group of J.-J. Greffet designed a ther-
mal source to emit narrow angular lobes of radiation by patterning its surface
with a grating optimized for the conversion of surface modes into propagating
modes. The high directivity of this source can be regarded as a proof of a spa-
tial coherence length larger than the wavelength (Gall & al., 1997; Greffet & al.,
2001).

The results of this project provide a complete, analytical characterization
of the thermal near field also at low frequencies. Magnetic field coherence
functions can be obtained in a similar way and are discussed in Section 5.2.
We use them extensively in this thesis to predict loss and decoherence rates for
atoms held in near field traps.

Single-molecule fluorescence above a nanostructured substrate

Carsten Henkel and Vahid Sandoghdar (1998), ‘Single-molecule spectroscopy near structured
dielectrics,’ Optics Communications 158, 250.

The spontaneous decay rate of an excited two-level system is proportional
to the electric field correlation spectrum evaluated at the system transition fre-
quency and its position in space (Agarwal, 1975c). In the present project, we
use this link to establish molecular fluorescence as a high-resolution probe for
the vacuum field fluctuations. The focus is on the scattering of the vacuum field
from a dielectric sample with sub-wavelength structures and on the question
to what extent the spontaneous decay rate allows to ‘image’ these structures.
In other words, what can the molecule tell about the nanostructured substrate
below, while there is just vacuum between both?

The spontaneous decay rate in the near field of objects with simple shapes
has been calculated since the 1970s (see, e.g., Chance & al. (1978)). More com-
plicated shapes require numerical methods that have become available with
improved computer power in the 1990s (Girard & al., 1995; Novotny, 1996).
In order to get insight into the resolution limit, we have developed an ana-
lytical treatment. The strength of the vacuum fluctuations is computed as a
function of the molecule position and the orientation of its transition dipole
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moment. The price to pay for the analytical approach is the requirement of an
essentially planar substrate, whose corrugation amplitude is small compared
to both the wavelength and the molecular distance. The field scattered from
the nanoscale corrugation is then calculated perturbatively to first order in the
corrugation, using the so-called Rayleigh expansion (Rayleigh, 1907). Simi-
lar approaches have been reported for scattering problems by Agarwal (1977);
Nieto-Vesperinas (1982); Greffet (1988); Labeke & Barchiesi (1993). One thus
gets a position-dependent correction to the decay rate whose Fourier transform
is proportional to the corrugation spectrum of the substrate. This answers the
question of resolution, since the wavenumber-dependent ratio between the de-
cay rate and the corrugation provides, in the language of optical imaging, the
‘transfer function’ of the device. Its knowledge allows to deconvolve the spa-
tial modulations of the fluorescence rate and to retrieve the surface profile.7

We have worked out simple asymptotic formulas for the limit of small-scale
corrugations that allow to show analytically that the resolution is only limited
by the molecule-substrate distance.

Nearly simultaneously although independently, the group of Daniel Van
Labeke in Besançon proposed a similar approach (Parent & al., 1999a,b) and
computed two-dimensional fluorescence images that demonstrate numerically
a sub-wavelength resolution. In Dijon, the group of Frédérique de Fornel has
developed numerical calculations including scattering to all orders to assess
the validity of fluorescence imaging (Rahmani & al., 1997, 2001). A similar
transfer function has been put forward by the Greffet group (Paris) for the
images obtained by a scanning near-field optical microscope (SNOM) (Gref-
fet & al., 1995; Carminati & Greffet, 1995b). The physics of both concepts is
very similar, the essential difference comes from the illuminating field used in
a SNOM. A direct comparison to experiments where the fluorescence lifetime
is measured as a function of molecule position, is not straightforward due to
the influence of the nearby probe tip (see Novotny (1996) and the review by
Dunn (1999)). Promising results with single molecules as point-like detectors
or sources have been achieved by the group of Vahid Sandoghdar in Zürich
(Michaelis & al., 1999, 2000).

Fluorescence dynamics inside nanoparticles

Lavinia Rogobete, Hannes Schniepp, Vahid Sandoghdar, and Carsten Henkel (2003b),
‘Spontaneous emission in nanoscopic dielectric particles,’ Optics Letters 28, 1736.

7More precisely, the signal depends on the deviation of the substrate permittivity from a flat refer-
ence geometry, integrated along a line perpendicular to the substrate (Carminati & Greffet, 1995a).
A spatially varying refractive index is thus indistinguishable, in this approach, from a corrugated
topography. Topographic information, however, is routinely accessible in scanning near field de-
vices from the feedback loop that monitors the probe-sample distance (Dunn, 1999).



32 CHAPTER 3. ACHIEVEMENTS

Lavinia Rogobete, Vahid Sandoghdar, and Carsten Henkel, ‘Modification of spontaneous
emission in nanoscopic environments,’ unpublished (2003a).

The previous project assumed the probe molecule to be held in vacuum,
while in many experiments it is embedded in a thin film or a sub-wavelength
size particle. The impact of the local environment on the fluorescent emission
is addressed here, taking as an example a small dielectric host surrounding the
molecule. The particle size is below the regime of Mie resonances that enhance
the emission (Chew, 1988): we are not dealing with a cavity but with a scatterer.

We model the host particle in terms of a spatially constant permittivity; this
allows to cover scales down to the mesosopic regime (smaller than the wave-
length but larger than the atomic scale). Given this restriction, it is clear that
one does not recover the molecule in vacuum by taking the limit of vanishing
particle size. The molecule is modelled as an electric point dipole and thus oc-
curs as a source term in the wave equations for the electromagnetic field. The
radiative decay rate is determined from the power emitted into the far field
provided the source dipole is identified with the matrix element of the molec-
ular dipole operator (see for example Haroche (1992) and Eq.(6.9)). To find the
emitted radiation, the wave equation is solved numerically, and we focus on
a simplified two-dimensional geometry for reasons of computer power. The
solution allows for any shape and size of the host particle; its surface enters
via the boundary conditions for the electric field vector. We take advantage of
this by reformulating the Helmholtz equation as a surface integral equation us-
ing Green’s theorem (Born & Wolf, 1959; Nieto-Vesperinas, 1991). The integral
equation is then solved with the method of moments: the kernel of this equa-
tion is regularized and the field approximated by piecewise constant functions
on discrete boundary elements as described in the textbooks by Bancroft (1996)
and Harrington (1993).

We find that the host particle reduces the molecular decay rate compared to
an unbounded dielectric environment (Rogobete & al., 2003b). This reduction
can be understood from electrostatic arguments: the molecular dipole is par-
tially ‘screened’ by the polarization charges it induces on the particle bound-
aries. At large distances, the multipole expansion of the field contains a dipole
component with a reduced amplitude — and it is this component that dom-
inates the emitted power for sub-wavelength hosts. An interesting result is
that the relevant parameters of the host particle are its overall area (in our two-
dimensional model) and its aspect ratio, but not its geometrical details. For
‘round’ hosts with a molecule at the center, different polygonal shapes lead
to the same decay rate. Sharp corners do matter, of course, if an off-centered
molecule approaches them: it then couples to stronger electric fields and we
retrieve an enhanced emission. Elongated shapes also give a different distri-
bution of polarization charges. We find nearly no reduction of decay for a
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molecular dipole parallel to the long axis of a rectangle because the continuity
of the tangential electric field makes the host surface nearly ‘transparent’. A
very good agreement is found with an analytical solution for elongated ellipti-
cal particles (Rogobete & al., 2003a).

Our findings give a complementary contribution to the ongoing debate on
local field corrections. These are usually defined for a dipole in an empty cav-
ity surrounded by an unbounded dielectric: on a larger scale, our model just
reverses optically thin and thick media. The empty-cavity model dates back
to the 19th century: Lorentz and Lorenz used it in their derivation of the con-
nection between the (macroscopic) permittivity and the (microscopic) polariz-
ability of the material constituents, the Clausius–Mossotti formula. A similar
model is required for quantum electrodynamics in dielectrics because one has
to connect the macroscopic field to the ‘local’ field at the molecule’s position.
Surprisingly, different models for the molecule’s surroundings8 lead to differ-
ent local fields. As a consequence, the dependence of the spontaneous emission
rate in a dielectric on the medium permittivity is as yet unsettled (Glauber &
Lewenstein, 1991; Lagendijk & al., 1997; Scheel & al., 1999; Dung & al., 2000;
Crenshaw & Bowden, 2000; Schuurmans & al., 2000; Rahmani, 2002). From
our results, one can conclude that the rather arbitrary choice between quasi-
spherical and elongated cavities leads to different local fields, suggesting that
the problem may be ill-posed.

On the experimental side, the group of Johan P. Woerdman (Leiden) has
measured local field effects in dense gases: atomic transition frequencies are
shifted at high density because the atoms get partially excited, leading to a
change in their polarizability (van Kampen & al., 1999). In Zürich, Schniepp
& Sandoghdar (2002) have performed an experiment similar to our model:
they measure the lifetime of Europium complexes that homogeneously fill sub-
wavelength spheres and find agreement with the local field correction for a
‘real cavity’, as discussed by Chew (1988). The Leiden and Zürich experi-
ments are limited, however, to rather small values of the relative permittiv-
ity between cavity and surrounding medium. The group of Philippe Grangier
(Orsay) studied individual color centers embedded in diamond nanocrystals
with ε ≈ 5. The radiative decay rates they measure are consistent with no
particle depolarization (or local field correction) at all (Beveratos & al., 2001).
A quantitative understanding of these results is a current challenge; it may be
that the gradual change of the refractive index at the surface of the nanocrys-
tals (surrounded by a polymer layer) plays a role. Otherwise, one may have
to invoke less well-characterized parameters of the emitters like their chemical
environment or non-radiative decay.

8Prominent models are known as ‘virtual cavity’ or ‘real cavity’, see Glauber & Lewenstein (1991)
and Schuurmans & al. (2000).
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Radiative relaxation in photonic crystals

Geesche Boedecker and Carsten Henkel (2003), ‘All-frequency effective medium theory for a
photonic crystal,’ Optics Express 11, 1590.

Geesche Boedecker, Carsten Henkel, Christian Hermann, and Ortwin Hess (2004),
‘Spontaneous emission in photonic structures: theory and simulation,’ chapter 2 of Photonic
crystals – advances in design, fabrication and characterization, edited by Kurt Busch, S. Lölkes, R.
Wehrspohn, and H. Föll (Wiley-VCH, Berlin, scheduled for 2004), invited book chapter.

Photonic crystals are a class of artificial materials that diffract electromag-
netic waves due to a periodic modulation of their refractive index. They have
been proposed by Eli Yablonovitch (1987) with the perspective of designing
the dispersion relation and mode density of light. The applications aimed at
involve the suppression of spontaneous emission when a ‘photonic band gap’
opens around the emitter’s transition frequency, the guiding of light along
chains of defect structures on a sub-wavelength scale, and highly dispersive
refraction (‘superprism’), see the textbooks by Joannopoulos & al. (1995) and
Sakoda (2001). Sajeev John (1987) in Toronto suggested that disordered pho-
tonic crystals provide a setting to observe the long-sought phenomenon of An-
derson localization of light (1958). The topic evolves rapidly as shown by a
number of recently published proceedings and special issues (Soukoulis, 2001;
Opt. Express, 2001; IEEE J. Quant. El., 2002; Opt. Quantum Electr., 2002; phys.
stat. sol. (a), 2003).

The field in a photonic crystal provides an example of a reservoir with a
strongly modulated spectral density and this leads to non Markovian dynam-
ics for spontaneous emission. In a series of papers, Maciej Lewenstein and the
S. John group showed that as a consequence, excited states decay in a non ex-
ponential, oscillatory way and can trap a fractional population even at long
times, see Lewenstein & al. (1988); John & Wang (1990); John & Quang (1994)
and the review by Woldeyohannes & John (2003). In recent times, these cal-
culations have been refined by taking into account dispersion relations taken
from more realistic band structure calculations (Zhu & al., 2000; Busch & al.,
2000). It has been found that non Markovian dynamics is quite sensitive to the
shape of the spectral mode density around the transition frequency, but it is
not clear whether it survives in real crystals. Finite samples or residual dis-
order smoothe out any singular features of the mode density, leading back to
exponential decay because the system gets effectively amenable to a Wigner-
Weisskopf approximation.

We have investigated a simple one-dimensional Kronig-Penney model for a
photonic crystal and derived an analytical formula for the spectral mode den-
sity (Boedecker & Henkel, 2003). It describes both finite and infinite systems
and also covers the case of a nonzero absorption where standard band struc-
ture calculations get into trouble because the mode frequencies or Bloch vectors
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become complex (Tip & al., 2000). The frequencies of modes localized at crys-
tal defects can also be calculated easily with our approach. These modes are
sharply peaked in space and frequency and can be used to concentrate the flu-
orescence of an emitter. The key idea of our theory is to replace the structured
crystal by a homogeneous ‘effective medium’ where the field propagation is
described in terms of Bloch waves. Finite samples are described by matching
Bloch waves to plane waves at the boundaries, and this leads to reflection and
transmission coefficients that can be compared to experimental data.

In our review chapter on spontaneous emission in photonic strctures
(Boedecker & al., 2004), an overview of the current theory is given and nu-
merical calculations of the spectral mode density are discussed. We elaborate
a classical model for the emission of a dipole coupled to a square-root singular
mode density that is generic for three-dimensional band edge, complementing
quantum calculations of a similar system by Woldeyohannes & John (2003).

Casimir force

Carsten Henkel, Karl Joulain, Jean-Philippe Mulet, and Jean-Jacques Greffet (2004b),
‘Coupled surface polaritons and the Casimir force,’ Physical Review A 69, 023808.

In the last project presented in this thesis, we calculate coherence functions
of the electromagnetic field between two mirrors made from real materials to
point out a particular aspect of their Casimir interaction. This force, predicted
in 1948, arises because material objects redistribute the field modes in space
and frequency and lead to an unbalanced radiation pressure. An alternative in-
terpretation involves the change in the field’s zero-point energy due to changes
in the mode frequencies or their spectral density. For two perfect mirrors, the
force (per unit area) is attractive and proportional to h̄c/z4 where z is the mir-
ror separation. Early calculations indicated that the Casimir energy of a spher-
ical, perfectly conducting cavity decreases with radius. This raised the hope
of constructing a ‘mechanical’ model for the electron where the Casimir en-
ergy balances the electrostatic self-repulsion (Mostepanenko & Trunov, 1997).
Intense investigations in the context of quantum field theory ensued, but the
model was eventually abandoned (Lambrecht, 2002).

Theoretical activity has recently shifted towards a better description of re-
alistic objects, since Lamoreaux (1997) and Mohideen & Roy (1998) improved
the experimental resolution to a few percent and evidence in micromechanical
systems has been found (Buks & Roukes, 2001; Chan & al., 2001). Our contri-
bution follows this line of thought: we focus on mirrors made from realistic
metals and derive a correction due to metallic absorption in the short-distance
regime (Henkel & al., 2004b). This is achieved by elaborating on early sugges-
tions by Kampen & al. (1968) and Gerlach (1971) that electromagnetic surface
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modes are responsible for the Casimir attraction. When the metallic mirrors
approach each other, these surface modes start to overlap and split into even
and odd superpositions with slightly different frequencies. We show that their
contributions to the Maxwell stress tensor are of opposite sign, and it is known
since the seminal work by Lifshitz (1956) that the Casimir force can be retrieved
from this tensor. It turns out that the Casimir effect can be attributed to the at-
tractive force exerted by the even superposition of surface modes, similar to
molecular binding in quantum mechanics.

For a quantitative estimate, we observe that at short distances9, the spec-
trum of the force indeed peaks at the frequencies of the coupled surface modes.
An asymptotic formula is found by expanding the spectrum around these
peaks. We recover an attractive force proportional to h̄Ω/z3 where Ω is the
single-mirror surface resonance frequency, and compute the first order correc-
tion with respect to the absorption rate of the material. This agrees with pre-
vious results obtained by Lambrecht & Reynaud (2000), when absorption is
neglected, and is very similar to the short-distance calculation performed by
the group of D.-G. Welsch in Jena (Raabe & al., 2003).

Our analysis suggests that it may be possible to tune the magnitude and
sign of the Casimir force with suitable thin coatings on the mirrors. If these
provide a phase shift at the frequency of the surface resonances, they may
modify the relative weights of even and odd modes. The possibility of a re-
pulsive Casimir force for magnetic materials (permeability µ 6= 1) has recently
been demonstrated by Kenneth & al. (2002). An alternative, as yet unexplored
road are materials with a negative index of refraction (permittivity and perme-
ability both negative). The electrodynamics in these materials has been stud-
ied in 1967 by Veselago who pointed out that they show an inverted radiation
pressure. Negative index materials are in the focus of a recent debate raised
by Pendry (2000) about the possibility of a ‘perfect lens’. For a review of the
theory, see Ziolkowski & Heyman (2001) and Haldane (2002). Experimental
details on metamaterials currently employed to realize a negative index in the
microwave range are given by Markoš & Soukoulis (2003).

9More precisely, z � λSP, where λSP is the wavelength of the electromagnetic surface mode.
Perfect mirrors correspond to the limit λSP → 0.



Chapter 4

Outlook

The advances in the understanding of electromagnetic near field coherence re-
ported here have identified the relevant processes and parameters and thus
point towards new avenues of research. Some ideas helped to shape the sci-
entific content of current projects funded by the Deutsche Forschungsgemein-
schaft1 and the European Union2, and results will be reported on a scale of one
to three years. Other ideas are still in an exploratory stage and are sketched in
the following. They may be loosely organized around three major goals:

— control and reduction of electromagnetic noise in atom chips

— improved understanding of coherence in trapped Bose-Einstein conden-
sates

— demonstration of quantum electrodynamic effects in realistic photonic
structures

4.1 Atom chips

Spin flip and heating rates due to thermal magnetic fields are small, but they
significantly bar the route towards large scale, sub-µm integrated atom optics.
We now know that the choice of the substrate material for atom chips is one
critical issue. Low noise alternatives to conventional metals are provided by
permanently magnetized thin films and superconductors. Magnetic noise con-
trol thus becomes an issue of material science. The key specifications are set by

1Project ‘Photonic Crystal Quantum Optics’ funded 2001–04 in the Schwerpunktprogramm 1113 ‘Pho-
tonic Crystals’.

2Network ‘Field Atom Surface Interactions Training Network’, coordinated by J. Weiner (Toulouse),
funded 2002–05 by the TMR programme. Network ‘Atom Chip Quantum Processor’, coordinated
by J. Schmiedmayer (Heidelberg), funded 2003–05 by the IST programme.
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the results reported here: the electromagnetic response of the materials must
show weak dissipation in the kHz–GHz frequency range.

Another issue to be explored is the ‘robustness’ of the adiabatic approxi-
mation in magnetic traps with weak perturbations. Many calculations use the
adiabatic potential and separate time scales between the Larmor precession,
trap motion, and noise-induced transitions. If magnetic noise couples, for ex-
ample, Zeeman states, one can imagine that the large Zeeman energy becomes
available for the conversion into kinetic energy. Heating or a significant renor-
malization of the trap potential would be the consequences. Insight into this
problem can be provided from quadrupole models studied by Hinds & Eber-
lein (2000) and Gov & al. (2000b). A simple estimate shows that the adiabatic-
ity in these traps scales with the same parameter as the anharmonicity of the
adiabatic potential. In practice, nonadiabatic corrections thus cannot be sepa-
rated from nonlinear aspects of the atomic motion. A beautiful experimental
demonstration of corrections to the adiabatic approximation has been achieved
by the group of Ennio Arimondo (Pisa): they have shown that a condensate is
subject to a ‘geometric’ force that arises when the atom spin tries to follow a
time-dependent magnetic field (Aharonov & Stern, 1992; Müller & al., 2000).

4.2 Coherent condensate dynamics

Numerical simulations of expanding condensates that we have performed in-
dicate an instability in the presence of noise, already at a very weak level. To
understand this phenomenon, an analysis in terms of collective and quasipar-
ticle excitations would be helpful. An interesting aspect of the problem is that
the expansion velocity in the laboratory frame can exceed the local sound ve-
locity in the condensate wings. This implies that the centre and the wings of
the condensate cannot exchange signals using sound waves — an intriguing
situation that resembles the cosmological period of inflation in the early stages
of the Universe.

If a condensate is held for long times in a microtrap or split and recom-
bined, one can also expect that quantum corrections beyond the mean field
approximation become relevant (see for example Menotti & al. (2001)). Their
impact on integrated condensate interferometers would be worth examining
with realistic trapping potentials, including weak noise fields. The role of fluc-
tuations in the condensate phase for physics beyond the mean field remains
to be explored, for example in the context of the Josephson effect (the atom
current across a tunnelling barrier, driven by the quantized phase difference of
the matter wave field). Experimental efforts are already underway, and unex-
pected observations will surely open new challenges.
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4.3 Quantum electrodynamics

We have pointed out several consequences of modified vacuum fluctuations
for atoms that move in the near field of a solid surface: for example enhanced,
position-dependent spontaneous emission rates and peculiar radiation forces
(see page 18). A direct experimental verification is missing so far, however,
because these effects are delicate. We expect that there is an impact on the
stationary state of atoms trapped in evanescent fields where distances of the
order of a micron become feasible (Dowling & Gea-Banacloche, 1997; Grimm
& al., 2000; Hammes & al., 2003). In particular, by exploiting different polar-
ization states of the evanescent light, it should be possible to demonstrate that
spontaneous emission rates in the near field depend on the dipole orientation.
Measurements of this effect have mostly been performed with randomly ori-
ented samples, see Chance & al. (1978); Snoeks & al. (1995); Worthing & al.
(1999), and the review by Barnes (1998). Near field experiments with single
molecule resolution have shown a strong polarization dependence, but typi-
cally the molecular dipole is fixed and steep gradients occur in the illuminating
field. Cold, trapped atoms may offer here an improved control because their
dipole moment is linked to the polarization of the trapping light. For long trap-
ping times, one may finally ask whether temperature-dependent fluctuations
of the van der Waals force may become relevant for heating or decoherence.
This has so far been estimated for the Casimir force between macroscopic ob-
jects (Barton, 1991; Eberlein, 1992).3

Realistic photonic structures where light propagation is more profoundly
modified are alternative candidates to demonstrate quantum effects beyond
the standard approximations. Whether the structural quality of current finite-
size samples is sufficient to reach a non Markovian regime of spontaneous
decay, remains to be seen, and the answer will require nontrivial numerical
calculations of the field. Disordered photonic crystals are interesting in their
own right, however. For example, what is the impact of ‘hopping transport’
between defect sites on the fluorescence light emitted in the bandgap of the
ordered structure? If light propagation slows down and travel times acquire
a significant statistical spread, what happens to the ‘anti-bunching’ dip seen
in the photon correlation signal of single-molecule fluorescence? Finally, can
solid-state emitters that are easily implanted in photonic structures, reach the
level of coherence required for QED physics? The combination of semiconduc-
tor physics with electrodynamics in complex structures will provide the clues.
The demonstration of single-photon emitting devices based on nanocrystals

3Note added in proof (07 June 2004). Wu, Kuo, and Ford, “Fluctuations of the retarded van der
Waals force” [Phys. Rev. A 65 (2002) 062102] discuss the case of an atom in front of a perfectly
conducting surface, in the long-distance regime.
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by the group of Y. Yamamoto (Stanford) already opens promising perspectives
(Santori & al., 2002).

In the coming years, we can surely expect that light and matter in interac-
tion will continue to change the way we look at the world around us and to
advance the technology we shape this world with.
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Chapter 5

Fields

The electromagnetic field is the basic vehicle that mediates interactions in
quantum optics. Neutral atoms, e.g., couple to it via their electric and magnetic
dipole moments, while direct, ‘chemical’ interactions with surrounding mate-
rial can be suppressed by keeping the relevant distances above the atomic scale.
It is therefore natural to start with a discussion of the coherence properties of
the field. In free space, the relevant questions and answers are well-known:
in the absence of sources and at thermodynamic equilibrium, the Planck for-
mula gives the frequency spectrum of the energy density. The propagation of
a partially coherent field through vacuum is described by partial differential
equations for the coherence function that have been written down by E. Wolf
(Mandel & Wolf, 1995). We focus in this thesis on the near field and its coher-
ence. First of all, the very concept of ‘near’ fields requires a reference object to
measure distance. This material object may generate the field and its bound-
aries will scatter it. A convenient framework that covers both possibilities are
the macroscopic Maxwell equations. We quote them here in the form relevant
for our purposes and explain how neutral atoms provide a source for the field.
The techniques to characterize electromagnetic coherence are reviewed, and
methods to compute magnetic field correlations are outlined.
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5.1 Macroscopic Maxwell theory

Field equations

The equations for the electromagnetic field in a linear and local medium read
in frequency space1 (Jackson, 1975)

∇ ·B = 0

ε0∇ · εE = ρ

∇ ×E− iωB = 0

∇ × B

µ
+

iω

c2
εE = µ0j

(5.1)

The dielectric and magnetic response of the medium is described by the relative
permittivity ε and permeability µ. The macroscopic charge and current densi-
ties are ρ and j. In this thesis, we focus on nonmagnetic media and set µ = 1.
We also suppose that the system is globally neutral and express the sources of
the field in terms of an (‘external’) polarization density: ρ = −∇ ·P, j = −iωP.
Sometimes, we also need a magnetization current j = ∇ × M where M is
the external magnetization field. For our purposes, the macroscopic Maxwell
equations thus take the form

∇ ·B = 0

ε0∇ · εE = −∇ · P
∇ ×E− iωB = 0

∇ ×B +
iω

c2
εE = − iω

ε0c2
P + µ0∇ ×M.

(5.2)

Two aspects of these equations are worth recalling.

(i) The medium response that is encoded in the dielectric function ε = ε(x;ω)

typically results from a statistical description of a large number of microscopic
particles, it is an average quantity. In a liquid formed by permanent electric
dipoles, for example, it depends on the local temperature (orientation polar-
ization).

(ii) The macroscopic theory is only valid on a mesoscopic or ‘coarse’ length
scale, typically one order of magnitude above the atomic scale at least. Only
on these scales is the material response determined by a sufficiently large num-
ber of particles so that in the statistical description of ε(x;ω), fluctuations can

1The convention used here for the Fourier transform is

f(t) =

∫

dω

2π
e−iωtf(ω).
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be neglected.2 We note that the restriction to mesoscopic scales is consistent
with our assumption that atoms are held at mesoscopic distances at least; be-
ing far away on the atomic scale, they do not resolve the atomic structure of
the material objects.

Dipole sources

A generic example for a globally neutral charge distribution is a point-like
Hertzian dipole with dipole moment d at the position x0. Its polarization field
is given by (in the time domain)

P(x, t) = d(t)δ(x − x0). (5.3)

On the mesoscopic scale we will work on, this is a good approximation for
an atom. The atomic electric dipole moment is given by an operator whose
nonzero matrix elements connect the energy level pairs that form electric-
dipole (or ‘E1’) transitions. In the simplest case, we just retain two levels, the
ground state |g〉 and the excited state |e〉, and expand the dipole operator (in
the Heisenberg picture) as

d(t) = d
{

σ+(t) + σ−(t)
}

, (5.4)

where d is the (possibly complex) reduced dipole matrix element whose di-
rection is fixed by the magnetic quantum numbers of the ground and excited
states. In the Schrödinger picture, the fermionic ladder operators can be writ-
ten σ+ = |g〉〈e| and σ− = σ†

+ = |e〉〈g|. The subscript denotes the positive
resp. negative frequency with which these operators evolve in the Heisenberg
picture.

The magnetization due to the magnetic moment of an atom can be ex-
pressed in terms of the total spin operator3 J (we choose it dimensionless)

M(x, t) = µJ(t)δ(x − x0), (5.5)

where the effective magnetic moment µ = h̄µBgF can be expressed in terms
of a Landé factor gJ . The Schrödinger operator J has the standard angular
momentum representation on the magnetic sublevels manifold of an atom.

2For some materials like metals or semiconductors, while a macroscopic framework is applicable,
one has to use a nonlocal dielectric response. This is because the electrons accelerated by an ex-
ternal electric field start to move quasi-ballistically. They reach a diffusive regime on a length
scale given by the electron mean free path (Ashcroft & Mermin, 1976). Beyond this scale, a local
description is justified again.

3In atomic physics, this is sometimes written F, including both electronic and nuclear spin contri-
butions.
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Green function

The electric field radiated by a monochromatic point dipole provides the Green
function or tensor of the Maxwell equations. It encodes the essential knowl-
edge about electromagnetic scattering and radiation problems for a given
medium geometry. If we write the dipole as d(t) = d e−iωt with a complex
amplitude d, the electric field satisfies the wave equation

−∇× ∇ ×E(x;ω) +
ω2

c2
ε(x;ω)E(x;ω) = −ω

2 d

ε0c2
δ(x − x′), (5.6)

where x′ is the dipole position and ε(x;ω) the medium permittivity. Since the
field depends linearly on the dipole source, we can define the Green tensor via
the relation4 (Einstein’s summation convention is applied)

Ei(x;ω) = Gij(x,x
′;ω)dj . (5.7)

An explicit solution can be given in a homogeneous dielectric. The tensor
only depends on r = x − x′ in this case; introducing the unit vector r̂ and
the medium wave number k =

√

ω2ε(ω)/c2, we have

G
(hom)
ij (r;ω) =

δij
3ε0ε(ω)

δ(r)

+
k2 eikr

4πε0ε(ω)

[

δij − r̂ir̂j
r

+ (δij − 3r̂ir̂j)

(

i

kr2
− 1

k2r3

)]

. (5.8)

The first line proportional to the δ function ensures the ‘sum rule’ that the
volume-averaged field is proportional to the dipole moment. The second line
dominates in the far field, it is transverse with respect of the observation di-
rection r̂. The third line has zero angular average and dominates in the near
field. Note that the 1/r3 contribution survives in the static limit ω → 0; it then
reduces to the Coulomb field generated by the dipole and screened by the di-
electric medium.

Causality requires that the medium wave number k in Eq.(5.8) is taken as
the square root with a positive imaginary part. In free space or an absorption-
less dielectric where ε > 0, this can be ensured by giving the frequency ω an
infinitesimally positive imaginary part, k =

√
ε(ω + i0)/c. This prescription

suffices to obtain the causal (retarded) Green function when the wave equa-
tion (5.6) is solved by a spatial Fourier transformation. It will be understood in

4Many other conventions exist for the prefactor of Eq.(5.7) in the literature. They originate in differ-
ent factors in front of the δ function source in Eq.(5.6).
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what follows that ε is complex with a positive imaginary part (passive, absorb-
ing medium).

Under quite general assumptions, the Green tensor is symmetric and obeys
reciprocity. By symmetry, we mean the following relation between negative and
positive (real) frequencies

Gij(x,x
′;−ω) = G∗

ij(x,x
′;ω) (5.9)

This relation holds because in the time domain, Gij(t) is a real response func-
tion connecting the real quantities electric field and (classical) dipole moment.
Reciprocity is tantamount to the exchange of source and detector and holds as
long as the dielectric tensor is symmetric (Jackson, 1975). It thus trivially holds
for the scalar permittivity we use here and reads

Gji(x
′,x;ω) = Gij(x,x

′;ω). (5.10)

An exception is provided by Faraday-active media in a static magnetic field,
for example.

An alternative expression for the Green tensor, the Weyl expansion, is use-
ful in the near field. Let us assume that the dielectric medium breaks the sym-
metry in such a way that the xy-plane plays a distinguished role. This is the
case close to a planar interface, for example. Introducing two-dimensional in-
plane vectors, we shall use the notation r = R + nz where n is the unit nor-
mal. Here and in the following, we assume z 6= 0 so that the contact contribu-
tion to the Green tensor (5.8) can be safely ignored. One then has the follow-
ing Fourier expansion, also known as the ‘angular spectrum representation’
(Nieto-Vesperinas, 1991),

G
(hom)
ij (R, z;ω) = (5.11)

i

2ε0ε(ω)

∫

d2Q

(2π)2
exp i(Q · R + qz|z|)

qz

[

k2δij − qi(z)qj(z)
]

.

This is an expansion in plane waves with wave vectors q(z) = Q+nqz sgn z that
propagate away from the reference plane z = 0. The normal wave vector com-
ponent is either real or imaginary, corresponding to propagating or evanescent
waves:5

qz =
√

k2 −Q2, Im qz ≥ 0, Re qz ≥ 0. (5.12)

In addition, each plane wave satisfies the dispersion relation q2(z) = k2. The
bracketed tensor in Eq.(5.11) is hence transverse with respect to q(z) and can

5This distinction applies, strictly speaking, to a nonabsorbing medium like vacuum with real and
positive ε(ω). If absorption is present, qz is always complex, and the borderline between propa-
gating and evanescent waves is less sharply defined.
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be expanded in a basis of transverse polarization vectors

k2δij − qi(z)qj(z) = k2
∑

µ =s, p

eµi(z)eµj(z), eµ(z) · q(z) = 0. (5.13)

We normalize these vectors to e2
µ(z) = 1; note that no complex conjugation is

involved, although the vectors are complex in general. The conventional labels
s and p correspond to vectors perpendicular to and in the plane of incidence
spanned by Q and ez.

5.2 Near fields

In this section, we consider the electromagnetic field close to a planar substrate
and work out the corresponding Green functions. When the theory is quan-
tized, the Green functions will provide the essential information about the near
field correlation spectra.

Surface Green function

The Weyl expansion (5.11) is taylormade for scattering problems involving
quasiplanar interfaces between media. We quote here for further reference the
Green tensor in the vacuum above a dielectric that fills the ‘lower’ half space
z < 0. If a dipole source is located at z′ > 0 in the upper half space, the reflec-
tion from the dielectric leads to an additional field whose Green tensor can be
written in close analogy to its homogeneous case counterpart (5.11)

z, z′ > 0: G
(refl)
ij (x,x′;ω) = (5.14)

iω2

2ε0c2

∫

d2Q

(2π)2
eiq(+)·x−iq(−)·x′

qz

∑

µ =s, p

rµeµi(+)eµj(−),

where rµ are the Fresnel reflection coefficients and where the argument ± dis-
tinguishes upward from downward propagating (or decaying) waves. The
permittivity of the lower medium only enters via the Fresnel coefficients; as
long as the planar symmetry is not broken, Eq.(5.14) can also be used above
a multilayer medium. Note that sign conventions differ for the Fresnel coeffi-
cients; only the product of rµ and the polarization vectors appearing under the
sum in has an unambiguous meaning.

The magnetic Green tensor is defined by analogy to Eq.(5.7) as the magnetic
field radiated by a point magnetic moment

Bi(x;ω) = Hij(x,x
′;ω)mj , (5.15)
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where the magnetization density is M(x) = m δ(x − x′). From the Maxwell
equations (5.2), we find that in terms of its electric counterpart, the magnetic
Green tensor is given by a double curl

Hij(x,x
′;ω) =

1

ω2
εiklεjmn

∂

∂xk

∂

∂x′m
Gln(x,x′;ω). (5.16)

In a homogeneous dielectric, this leads to an expression similar to (5.8).
In the near field, the relevant physics is encoded in the reflected field, as

given by the Green tensor (5.14). Performing the double rotation, we observe
that the polarization vectors are exchanged according to

q × es =
ω

c
ep, q × ep = −ω

c
es (5.17)

because q, es, and ep form an orthogonal Dreibein. Hence, up to a factor 1/c2,
we obtain the reflected magnetic Green tensor by exchanging the reflection
coefficients rs ↔ rp in Eq.(5.14).

5.2.1 Short distance expansion

To illustrate the behaviour of the field at short distances, we review here
asymptotic expansions for the electric and magnetic Green tensors. Our pre-
sentation collects results scattered in Henkel & Courtois (1998); Henkel & al.
(1999b, 2000).

Electric field

As a first step, we show that at short distances, the reflected part (5.14) of the
electric Green tensor takes a simple, electrostatic form. ‘Short distance’ means
the limit z, z′ � λ. The integral over the wave vector Q involves the factor
eiqz(z+z′) which provides a cutoff for |qz | ≥ 1/(z + z′) � k0 ≡ ω/c. Analyzing
the integrand, we notice that it peaks around the cutoff value. We thus get
the leading order asymptotics by using the expansion in the limit Q, |qz| � k0

under the integral. Assuming the more stringent condition Q � k ≡ √
εω/c

where ε is the lower medium permittivity, we obtain

rp epi(+)epj(−) ≈ ε− 1

ε+ 1

(Qn− iQ)i(Qn + iQ)j

k2
0

(5.18)

rs esi(+)esj(−) ≈ k2
0(ε− 1)

4Q2

(n×Q)i(n ×Q)j

Q2
, (5.19)

where n is the surface normal. The polarizations behave very differently, the p-
polarized part dominating for large Q by a factor (Q/k0)

4. The corresponding
reflection coefficient rp tends towards the electrostatic value rstat = (ε−1)/(ε+
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1) and becomes independent of Q. This means that the reflection from the
surface is nondispersive, and we can use image theory to evaluate the reflected
dipole field, i.e., Eq.(5.14). It corresponds to the well-known field of an image
dipole d̃ = (−dx,−dy, dz)rstat located at the position X′−z′n below the surface.6

The short-distance behaviour of the free space Green function (5.8) thus yields
the tensor

G
(refl)
ij (X, z,X′, z′;ω) ≈ −ε− 1

ε+ 1

1

4πε0

δik r̃
2 − 3r̃ir̃k
r̃3

(−δkj + 2nknj) , (5.20)

=
ε− 1

ε+ 1

1

4πε0 r̃5





r̃2 − 3(X −X ′)2 0 3(X −X ′)(z + z′)

0 r̃2 0

−3(X −X ′)(z + z′) 0 3(z + z′)2 − r̃2





ij

where r̃ = X − X′ + (z + z′)n is the distance between the observation point
and the image dipole. For the matrix representation, we have chosen the x-axis
along X −X′.

It may be surprising that a Green tensor constructed with ‘transverse’ po-
larization vectors (eµ ·q = 0) assumes at short distances the ‘longitudinal’ form
of an electrostatic field (the 1/r3 dipole field). This is due to the behaviour of
the p-polarization vector at large wave vectors:

Q� k0 : ep ≈ Qn− iQ

k0
=

q

ik0
(5.21)

which is both ‘longitudinal’ and ‘transverse’ because to this order q2 = 0. Note
also that the Green tensor (5.20) is reciprocal (5.10): exchanging X and X′ flips
the sign of the off-diagonal arguments, and this is undone by the matrix trans-
pose.

In Henkel & al. (2000), it is shown that the thermal emission from a planar
body has a cross correlation tensor (defined in Eq.(5.41) below) proportional
to (5.20), including the nonzero off-diagonal elements. An expansion where
the condition Q � √

εk is relaxed is presented in Henkel & al. (1999b). This is
relevant above metallic surfaces at low frequencies where |ε| is very large. A
careful analysis shows that the results presented here hold in a distance range
z, z′ � δ(ω) where δ(ω) is the skin depth in the metal.7 In the opposite regime
z, z′ � δ(ω), the reflection coefficient rstat is close to unity and one gets a dif-
ferent power law in r̃ compared to Eq.(5.20). More details are given on page 59
where the cross correlation spectra for electric and magnetic fields are com-
pared.

6This prescription is consistent with the comparison to the Weyl expansion (5.11) of the free space
Green tensor. Both Eq.(5.11) and Eq.(5.14) describe the same field if the image dipole satisfies
ep(+) · d̃ = rstat ep(−) · d. The vectors ep(±) have x, y-components with different signs, and we
get the rules for the image dipole.

7One has δ(ω) =
√

2ε0c2/(σω) in terms of the conductivity σ.
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Magnetic field

To get the magnetic Green tensor, we cannot simply take the double curl
of (5.20), using the relation (5.16), because the electric field is purely longi-
tudinal to the order we have taken. The magnetic field is determined by the
next order corrections. We cannot use image theory for these because they in-
volve dispersive (Q-dependent) reflection coefficients. An explicit integration
is nevertheless possible and has been used in Henkel & al. (1999b).

We recall that the Weyl expansion of the magnetic Green tensor can be
found simply by exchanging the s- and p-labels for the reflection coefficients,
according to (5.17). The short-distance expansion goes through as before and
leads to the large Q limit of the reflection coefficients

rpesi(+)esj(−) ≈ ε− 1

ε+ 1

(n ×Q)i(n ×Q)j

Q2
(5.22)

rsepi(+)epj(−) ≈ k2
0(ε− 1)

4Q2

(Qn− iQ)i(Qn + iQ)j

k2
0

. (5.23)

In this case, both polarizations scale with Q in the same way and have to be
kept. If however we focus on a metallic surface with a large permittivity, then
the second line dominates.

The integral over the wave vector Q is performed in cylindrical coordinates,
with the azimuthal angle ϕ measured with respect to the direction of R ≡
X − X′. An analogous procedure has been followed in Henkel & Courtois
(1998); Henkel & al. (2000). The azimuthal integration yields Bessel functions

∫

dϕ

2π
eiQR cos ϕes(+) ⊗ es(−) =

1

2





J0 + J2 0 0

0 J0 − J2 0

0 0 0



 , (5.24)

∫

dϕ

2π
eiQR cos ϕep(+) ⊗ ep(−) =

Q2

2k2





J0 − J2 0 2J1

0 J0 + J2 0

−2J1 0 2J0



 ,(5.25)

where the argument QR of J0,1,2 has been suppressed everywhere for brevity.
The radial integrals overQ can also be done analytically, starting from the iden-
tity

∫ ∞

0

dQ e−Qz̄J0(QR) =
1√

z̄2 +R2
(5.26)

and its derivatives with respect to R and z̄ ≡ z + z′. The full magnetic Green
tensor, which has not been discussed in Henkel & al. (1999b), is thus given by

H
(refl)
ij (X, z,X′, z′;ω) ≈ (5.27)
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ω2µ0

4πc2











ε− 1

4(X −X ′)2r̃





z̄(r̃ − z̄) 0 (X −X ′)(r̃ − z̄)

0 r̃(r̃ − z̄) 0

−(X −X ′)(r̃ − z̄) 0 (X −X ′)2





ij

+
ε− 1

ε+ 1

1

(X −X ′)2r̃





r̃(r̃ − z̄) 0 0

0 z̄(r̃ − z̄) 0

0 0 0





ij











where again r̃ = X − X′ + z̄n and the x-axis is chosen along X − X′. Note
the limits r̃ → z̄ and z̄(r̃ − z̄) → (X − X′)2/2 for X − X′ → 0. The tensor is
invariant under transposition combined with the exchange X ↔ X′, ensuring
reciprocity.

The magnetic Green function (5.27) shows a different dependence on fre-
quency and on the geometry, compared to the electric image dipole (5.20). The
diagonal elements, for example, decay as ω2/z. This leads to a pronounced
asymmetry between electric and magnetic noise spectra, as we discuss on
page 59 below. Before, we outline a scheme that permits to calculate electric
and magnetic fields in arbitrary geometries (Section 5.2.2) and introduce the
quantization procedure for the macroscopic Maxwell equations (Section 5.3).

5.2.2 Arbitrary geometries

Electric dipole radiation

The Maxwell equations (5.1) can be formulated in integral form as well. This
is convenient for some numerical solution schemes. We review here a formu-
lation in terms of boundary or surface integrals that we have used in field sim-
ulations. The presentation is adapted from Boedecker & al. (2004).

We focus in the wave equation (5.6) on a geometry with dielectric nano-
objects whose permittivity ε > 1 is locally homogeneous and isotropic. Inside
and outside the objects, the problem is reduced to propagation in a homoge-
neous medium, and scattering occurs due to the matching of the fields at the
object boundaries. This permits a reformulation in terms of a boundary in-
tegral equation (the result is called the ‘extinction theorem’, see Born & Wolf
(1959); Nieto-Vesperinas (1991) for details).

Let us focus on the Green function outside a single nano-object and adopt
for illustration purposes a two-dimensional model. The object thus corre-
sponds to a cylinder, and the point source to a chain of dipoles. The polar-
ization dependence separates into two cases, and the physically interesting
one for near field investigations is a dipole polarized in the xy-plane, say (‘p-
polarization’). In that case, the problem is conveniently formulated in terms of
the magnetic field H(x) = ezH(x, y) that contains a single nonzero component.
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Its wave equation reads

∇

(

1

ε(x)
· ∇H

)

+ k2
0H =

iω

ε(x′)
d · (ez × ∇)δ(x − x′) (5.28)

where we switched to x = (x, y), x′ is the source position and again k0 = ω/c.
In an infinite homogeneous dielectric, this equation can be solved in terms of a
third kind Bessel function H(1)

0 (z). This solution provides us with a particular
solution to the wave equation outside the nano-object, the ‘dipole field’

Hdip(x) = iω d · (ez × ∇)G0(x − x′) (5.29)

G0(x − x′) =
i

4
H

(1)
0 (k0|x − x′|). (5.30)

A similar equation with k ≡ √
εω/c gives the dipole field Gε(x− x′) inside the

object.
On the boundary B of the nano-object, the field H(x) and the normal

derivative F (x) ≡ (1/ε)∂H/∂n (the tangential electric field) are continuous.
The wave equation is then equivalent to the following pair of integral equa-
tions, where r ∈ B is on the object boundary (Nieto-Vesperinas, 1991)

H(r) = 2P
∮

B

da(x)

[

Gε(x − r)εF (x) −H(x)
∂Gε

∂n
(x − r)

]

, (5.31)

H(r) = 2Hdip(r) − 2P
∮

B

da(x)

[

G0(x − r)F (x) −H(x)
∂G0

∂n
(x − r)

]

,

where da(x) is the boundary element at the point x, ∂/∂n is the derivative
along the outward normal, and P denotes the principle value. A similar equa-
tion (but with all prefactors 2 replaced by unity) gives the field outside the
object in terms of its values on the boundary. The far field is computed by ex-
panding the Green function and becomes similar to a spatial Fourier transform
of the boundary field.

For numerical calculations, the object boundary is discretized into sur-
face elements ∆a and the integrals replaced by Riemann sums. More refined
schemes exist, for example expansions in piecewise linear functions, and are
known as ‘moment methods’ (Bancroft, 1996; Harrington, 1993). The singu-
larity of the derivative ∂G/∂n has already been accounted for in (5.31) and
explains the factor 2 in front of the integrals. When the singularity of the Green
function itself is extracted to lowest order in ∆a, one gets for the integral over
the boundary element containing r:

∫

B(r)

da(x)Gε(x − r)εF (x) ≈ −∆a εF (r) [2 log(k∆a/4) − 2 + 2γ − iπ] , (5.32)

where γ ≈ 0.577 is the Euler constant. A similar equation holds for G0. Once
this term is taken care of, the other boundary elements can be treated as in a
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Riemann sum, leading to a linear system for the boundary field and its normal
derivative.

Numerical results using this scheme have been reported in Rogobete & al.
(2003b) and summarized on page 31. For a dipole embedded in an object, the
overall effect is a reduction of the total emission, with a significant dependence
on the dipole position and orientation for non-circular objects.

Magnetic fields

Numerical calculations for magnetic fields are relevant for the context of atom
chips. The radiation of a magnetic dipole (the Green tensor) gives access to
the cross correlation spectrum of the field, and this quantity determines the
time scales characteristic for spin flip and heating processes in magnetic surface
traps. Numerical calculations are required for not too simple trap geometries.
We outline here a scheme that is able to handle a two-dimensional model.

We assume a trap environment whose dielectric function is invariant along
one direction, the z-axis, say. This applies to a long wire on a planar substrate,
for example. We focus on fields that are constant along the z-axis as well. The
corresponding Green function thus describes the field radiated by a chain of
magnetic point dipoles. It is most easily described in terms of the vector poten-
tial. If the dipoles are polarized in the xy-plane, the vector potential contains a
single nonzero component A(x) = ezA(x, y). Its wave equation is very similar
to (5.28)

∇2A+ k2
0ε(x)A = µ0m · (ez × ∇)δ(x − x′) (5.33)

where m is the magnetic dipole and x′ its (two-dimensional) position.
This problem can be solved with the same methods as before. For the field

on the object boundary, we get a pair of integral equations where the unknowns
are the vector potential and its normal derivative Bt ≡ ∂A/∂n (the tangential
magnetic field) that are both continuous across the boundary. These equations
differ only slightly from (5.31)

A(r) = 2P
∮

B

da(x)

[

Gε(x − r)Bt(x) −A(x)
∂Gε

∂n
(x − r)

]

(5.34)

A(r) = 2Adip(r) − 2P
∮

B

da(x)

[

G0(x − r)Bt(x) −A(x)
∂G0

∂n
(x − r)

]

where the same Green functions G0, Gε as in Eq.(5.30) appear. They determine
the dipole field Adip similar to (5.29).

The field outside is given by an equation similar to the second line of (5.34)
(replace both factors 2 by unity). The first term gives the field radiated in free
space, so that the interesting part, the scattering from the object, is encoded in
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the second term. For typical surface traps, we can safely make the approxima-
tion that the vacuum wavelength is larger than any other characteristic scale.
This is justified by the frequency range of magnetic field fluctuations relevant
for typical atom traps (kHz–100 MHz). The vacuum Green function can then
be replaced by its static limit

G0(r) ≈ − 1

2π

(

log
k0|r|

2
+ γ − iπ

2

)

, (5.35)

where the additive constants are kept for consistency with Gε.

If the object permittivity is also of order unity, we can make the approxima-
tion (5.35) for the inside field. As a consequence of the continuity conditions,
the object boundaries do not modify the vector potential in this case: the mag-
netic dipole radiates as in free space. Hence, the magnetic near field is only
scattered by materials with a large permittivity, such that the medium wave-
length 1/k ∝ λvac/

√
ε is comparable to other geometric length scales (object

size, dipole distance). Details of the consequences for atom chip noise spectra
and numerical results using this scheme have to be worked out and will be
reported elsewhere.

5.3 Quantization

Field quantization canonically proceeds by promoting c-number valued fields
to non-commuting operators. The difficulty is to ensure the consistency of the
field equations for operators. In the case of the macroscopic Maxwell equa-
tions, a problem arises for a complex medium permittivity which is the generic
case for a causal medium (satisfying the Kramers-Kronig relations). The decay
of the fields (both in time and space) due to dissipation is incompatible with
the fixed value of the field commutator in the quantized theory. The solution to
this problem proceeds along a well-known line of thought in statistical physics
and quantum optics: while dissipation dumps energy and information into a
reservoir, the reservoir couples back to the field via fluctuations. The reser-
voir does not appear explicitly when the field equations are averaged over the
reservoir fluctuations, saving the Maxwell equations. But fluctuations do af-
fect field commutators and correlations and maintain in this way the nonzero
commutator in the quantized theory.
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5.3.1 Noise operators

The prescription to quantize the macroscopic Maxwell equations (5.2) can thus
be summarized by the replacement table

E(x) 7→ Ê(x)

B(x) 7→ B̂(x)

P(x) 7→ P̂n(x) + P(x)

(5.36)

where the carets denote operators and will be dropped in the following. The
‘noise polarization’ field Pn(x) is a bosonic operator with commutator8

[

Pni(x;ω), P †
nj(x

′;ω′)
]

= 4πh̄ δ(ω − ω′)δijδ(x − x′) Im[ε0ε(x;ω)]. (5.37)

The noise polarization vanishes in regions where Im ε(x;ω) = 0, it is thus
confined within the dielectric medium. The noise strength is proportional to
the medium absorption in order to compensate for the temporal decay of the
solutions to the homogeneous Maxwell equations. This relation essentially
amounts to the fluctuation disspation theorem for the polarization noise and
implies the corresponding theorem for the fields, as discussed below.

The Kronecker δij and the spatial delta function in (5.37) follow from the
assumption of a local and isotropic permittivity. The generalization to the
more general case of nonlocal media is apparent and has been discussed by
the group of Salvatore Savasta in Messina (Stefano & al., 1999, 2000). The pre-
scriptions (5.36,5.37) apply to the case of a nonmagnetic medium. If µ 6= 1,
one has to include a noise magnetization as well, see Knöll & al. (2001) and
Dung & al. (2003). Finally, for amplifying media (Im ε < 0), consistency re-
quires the exchange of P and P† in (5.37). (Details can be found in Knöll & al.
(2001).) Savasta & al. (2002) analyze the example of a point scatterer formed by
an inverted two-level atom.

We recall that the usual mode expansion of the electric field operator does
not hold in an absorbing medium. It is replaced by the expression

E(x;ω) = Esc(x;ω) + En(x;ω) (5.38)

Eni(x;ω) =

∫

dV (x′)Gij(x,x
′;ω)Pnj(x

′;ω), (5.39)

where the mode functions occurring in the first term Esc(x) solve the homoge-
neous version of the wave equation (5.6). They describe the scattering of the
vacuum field by the dielectric medium. For bounded objects, these modes may
be labelled by incident plane waves and are normalized as these (Stefano & al.,
1999). The second term in Eq.(5.38) is the radiation due to the noise polariza-
tion that can be found from the Green tensor Gij(x,x

′;ω).

8The prefactor 4π is related to our convention for the Fourier transformation, see the footnote on
page 44.
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5.3.2 Crossed field correlations

The quantities of interest in the quantized theory are the correlation functions
of the electromagnetic field, but in the presence of the dielectric medium. We
define the electric field cross correlation tensor by

Eij(x,x
′;ω) =

∫

dτ e−iωτ 〈Ei(x, t+ τ)Ej(x
′, t)〉 (5.40)

where the average is taken with respect to the ensemble for the combined sys-
tem ‘field and noise polarization’. We assume statistical stationarity9 so that
Eq.(5.40) does not depend on t. In frequency space, the correlation spectrum is
given by

〈E†
i (x;ω)Ej (x′;ω′)〉 = 2πδ(ω − ω′) Eij(x,x

′;ω), (5.41)

where we have used that the fields are hermitean. The fields are delta-
correlated in frequency space because they are statistically stationary. In terms
of the usual operator ordering conventions, our definition corresponds, for
positive frequencies, to ‘normal’ order: E(ω) then contains the positive fre-
quency components and the corresponding annihilation operators appear to
the right of the creation operators in E†(ω). At negative frequencies, Eij(ω)

corresponds to an ‘anti-normally’ ordered average, since hermiticity implies
the symmetry relation E(−ω) = E†(ω).

Fluctuation dissipation theorem

If field and medium are in thermal equilibrium, any consistent quantization
scheme leads to the fluctuation dissipation theorem for the field

Eij(x,x
′;ω) =

2h̄ ImGij(x,x
′;ω)

eh̄ω/kBT − 1
. (5.42)

The strength of the field fluctuations is linked to the dissipative part of the
field’s response function (the Green tensor) and the temperature. With the
fluctuation dissipation theorem, we thus obtain the spatial and spectral depen-
dence of the field correlations by calculating the Green tensor for the dielectric
environment. Recalling the basic definition of the latter – the electric field ra-
diated by a monochromatic point dipole –, we note that the theorem reduces
quantum and thermal field fluctuations to a ‘classical’ electrodynamics quan-
tity.

In Appendix A, we quote elementary proofs of Eq.(5.42) for two comple-
mentary model situations: an absorptionless dielectric where standard mode
expansions can be used (Glauber & Lewenstein, 1991) and a medium with di-
electric function whose imaginary part is at least infinitesimally positive all

9This means that temporal correlation functions only depend on time differences.
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over space (Knöll & al., 2001). A proof for a bounded, absorbing dielectric can
be found in Stefano & al. (2000).

We note that formula (5.42) applies both to positive and negative frequen-
cies. At zero temperature, for example, the field noise spectrum only covers
negative frequencies because

lim
T→0

1

eh̄ω/kBT − 1
=

{

0, ω > kBT/h̄↘ 0,

−1, ω < −kBT/h̄↗ 0.
(5.43)

This is consistent with the fact that normally ordered field averages vanish
in the vacuum state, while anti-normally ordered averages do not.10 In the
literature, for example Rytov’s book (1989), symmetrized correlation spectra
are often used that are symmetric in frequency, as for classical random fields.
The fluctuation dissipation theorem for these reads

E(S)
ij (x,x′;ω) ≡ 1

2 {Eij(x,x
′;ω) + Eji(x

′,x;−ω)}
= h̄ coth(h̄ω/2kBT ) ImGij(x,x

′;ω), (5.44)

where we have used the symmetry and reciprocity of the Green tensor
(Eqs.(5.9, 5.10)). At high temperatures, h̄ coth(h̄ω/2kBT ) → 2kBT/ω, so that
Planck’s constant disappears and we recover the Einstein relation (a ‘classical’
fluctuation dissipation theorem).

Example: Planck formula

Planck’s formula for the spectral density of blackbody radiation can be found
from Eq.(5.42) using the free space Green function (5.8). One finds that the
electric and magnetic energy densities are equal:11

uE(ω) ≡ ε0
2

tr Eij(x,x;ω) =
h̄ω3/(2πc3)

eh̄ω/kBT − 1
= uB(ω). (5.45)

Non equilibrium radiation

At thermal equilibrium, one could ignore noise operators and use the field
characterization provided by the fluctuation dissipation theorem. The quan-
tization scheme really becomes operational in non equilibrium situations, for
example, when the dielectric medium has a locally varying temperature. We
can thus model the emission from a thermal source (Carminati & Greffet, 1999;
Henkel & al., 2000). Throughout this thesis, we assume that the medium is, at

10The spectrum of the energy density remains positive because the symmetry relation (5.9) implies
that ImGii(x,x;ω) < 0 for negative frequencies.

11The limit x → x
′ requires some care for the Green tensor (5.8), see de Vries & al. (1998). Fortunately,

its imaginary part does not present any singularities.
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least locally, in thermal equilibrium12 and use Bose-Einstein statistics to com-
pute the expectation value of the noise operators. In terms of a cross correlation
tensor Pij(x,x

′;ω) defined similar to (5.41), the polarization noise is character-
ized by the local spectrum

Pij(x,x
′;ω) = δijδ(x − x′)

2h̄ Im[ε0ε(x;ω)]

eh̄ω/kBT (x) − 1
, (5.46)

where T (x) is the local temperature. Let us assume that Esc, the field inci-
dent from infinity in (5.38), is at zero temperature.13 This leads to the emission
spectrum (at ω > 0):

Eij(x,x
′;ω) = 2h̄

∫

S

dV (x1)G
∗
ik(x,x1;ω)Gjk(x′,x1;ω)

Im[ε0ε(x1;ω)]

eh̄ω/kBT (x1) − 1
, (5.47)

where S is the volume occupied by the source. In the equilibrium case, an
electrodynamic identity allows to reduce this integral to the imaginary part of
the Green tensor (see Appendix A.2).

An alternative formulation of (5.47) has been given by Sidles & al. (2003)
who consider the radiation of a point source and its absorption in the mi-
crostructures. Due to the reciprocity of the Green tensor, this approach yields
equivalent results.

5.3.3 Near field correlation spectra

We review here the cross correlation spectra for electric and magnetic fields in
the near field of a planar substrate. Assuming the field in equilibrium with
the substrate, we shall use the fluctuation-dissipation theorem (5.42) and its
magnetic equivalent

Bij(x,x
′;ω) =

2h̄ ImHij(x,x
′;ω)

eh̄ω/kBT − 1
. (5.48)

Energy densities

As a first example, let us compute the ratio between the electric and magnetic
spectral energy densities uE and uB in the near field. This is plotted in Fig-
ure 5.1, as calculated from the exact formulas in Henkel & al. (1999b). In the far

12The assumption of local equilibrium is reasonable on the mesoscopic length scale we work on,
since on this scale the object contains a macroscopic number of particles. Note that local equilib-
rium does not exclude that a field induces a medium polarization, as described by the dielectric
function. As pointed out by Callen & Welton (1951), the latter in general depends on the state of
the medium (its local temperature, for example). To quote an example, a partially excited two-level
medium shows a reduced absorption due to saturation.

13Formally, one can consider that the vacuum around the object is closed in the far field by a ‘cold
absorber’ held at zero temperature. This maintains the non-equilibrium situation, see Henry &
Kazarinov (1996).
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Figure 5.1: Ratio of magnetic to electric energy density vs. distance from a medium-
filled half-space, normalized to the wavelength λ. Left panel: metal with ε = 1 +

800 i (skin depth δ = 0.008 λ). Right panel: dielectric (ε = 2.3 + 0.1 i, δ > λ). The
dashed and dotted lines correspond to Eqs.(5.50, 5.51), as discussed in the text.

field, both are given by the Planck formula (5.45). At short distance from the
substrate, the reflected field encoded in the Green tensors (5.20) and (5.27) pro-
vides the near field correction. We find that these scale like 1/z3 and 1/(λ2z)

at short distances, respectively, and dominate both over the far field value
∝ 1/λ3 where λ ≡ c/ω. For the magnetic noise spectrum, this is consistent
with Varpula & Poutanen (1984); Sidles & al. (2003). We thus get a ratio

uB

uE
≈ z2

2λ2

Im ε+ 2 Im
ε− 1

ε+ 1

Im
ε− 1

ε+ 1

. (5.49)

This is plotted as dashed lines in Fig. 5.1. We observe that depending on the
substrate permittivity ε, the field energy is stored predominantly in the mag-
netic or in the electric field.

Of interest for integrated atom optics is the case of metallic substrates at
low frequencies where ε ≈ iσ/(ε0ω) is dominated by the DC conductivity σ.
We then have |ε| � 1, and to leading order, the ratio (5.49) becomes

uB

uE
≈ σ2z2

4ε20c
2
� 1. (5.50)

The characteristic length ε0c/σ has a value 10−10 m for typical metal conductiv-
ities so that the field energy becomes more and more ‘magnetic’ as one recedes
from the substrate. This trend continues up to the skin depth δ =

√

2ε0c2/(σω)

where the near field expansions used here do not hold any longer. Using the
results of Henkel & al. (1999b), we find in the regime δ � z � λ (the dotted
line in Fig.5.1)

uB

uE
≈ λ2

2z2
� 1. (5.51)
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At a distance z ∼ λ, the far field energy density takes over compared to the
near field correction, and we then recover uB ∼ uE . The spatial modulations
of uB and uE in this range have a period ≈ λ/2, they arise due to the reflection
from the substrate.

A more detailed discussion of the electric and magnetic energy densities,
including electromagnetic surface resonances, is given in a recent paper by
Joulain & al. (2003).

Correlation length

As a second example, we demonstrate that magnetic near field noise is spa-
tially ‘rough’ on a scale given by the observation distance. This result has been
mentioned without proof in Henkel & al. (2003c).

The quantity of interest is the spatial correlation function for a particular
component of the magnetic field. The context is that of a quasi one-dimensional
atom trap, a ‘side guide’ above a planar substrate (see Fig.2.2). At the guide
centre, the magnetic field is oriented along the guide axis due to a superim-
posed homogeneous field. Magnetic fluctuations along this axis dominate the
fluctuations of the adiabatic trapping potential (6.17) and lead to heating and
scattering of the trapped atoms. If we choose the x-axis along the guide, we
thus have to compute the correlation function Bxx(x, z, x′, z;ω) for two points
in the guide.

In the far field where Planck’s blackbody theory applies, the correlation
length is given by the wavelength, but we focus here on the limit where the
guide distance z is much smaller than the wavelength. As in the previous
example, we model the substrate by a metallic half-space14 , focus on distances
smaller than the skin depth and use the near field contribution (5.27) to the
magnetic Green tensor. The fluctuation dissipation theorem (5.48) then gives

Bxx(x, z, x′, z;ω) =
h̄ωµ2

0σ

4π(eh̄ω/kBT − 1)

z(r̃ − 2z)

r̃(x− x′)2
, (5.52)

where again r̃2 = (x − x′)2 + 4z2 is the distance to the image dipole. For low
frequencies (h̄ω � kBT ), we find a flat spectrum

Bxx(x, z, x, z;ω) =
σkBTµ

2
0

32π z
. (5.53)

Normalizing the correlation function (5.52) to this value, we get Eq.(33) of
Henkel & al. (2003c),

Cxx(x − x′; z) =
8z2

√

(x − x′)2 + 4z2(
√

(x− x′)2 + 4z2 + 2z)
. (5.54)

14Calculations of the magnetic Green function for a thin layer turn out to reproduce the correlation
length found here.
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Figure 5.2: Normalized correlation function (5.54) for thermal magnetic fields in the
short distance limit. The dashed curve corresponds to the Lorentzian C(x − x′) =

`2corr/[(x− x′)2 + `2corr] with `corr = 4z/
√

3. The lateral separation x− x′ is scaled
to the distance z.

This is plotted in Fig.5.2 and compared to a Lorentzian which shows a similar
asymptotics for short and large separations x − x′. Both expressions demon-
strate that the thermal magnetic near field along the linear guide is correlated
on a scale given by the distance to the substrate. The same result has been ob-
tained by Henkel & al. (2000) for the electric field. In that paper, it is also shown
that `corr scales proportional to z even at distances beyond the skin depth (in
the range δ < z � λ).

Magnetostatic approximation

Henkel & Pötting (2001) develop a simplified framework for magnetic noise
spectra that is able to handle arbitrary geometrical shapes. The starting point
is the formula (5.47) for the radiation emitted by a hot body. The key approxi-
mation is that the Green function for the magnetic field radiated by a pointlike
polarization current is replaced by its free space value,

Bi(x) =

∫

dV (x′)Kij(x − x′;ω)Pj(x
′), (5.55)

Kij(r;ω) ≈ − iµ0ω

4π
εijk r̂k

eik0r

r2
(1 − ik0r) , (5.56)

where in the near field, the magnetostatic limit k0r = r/λ → 0 can be taken.
In this approach, the magnetic field is propagated ignoring the impact of the
interface. Taking the low-frequency limit h̄ω � kBT , we get close to a metallic
object

Bij(x,x
′;ω) =

2σkBT

ω2

∫

S

dV (x1)K
∗
ik(x − x1;ω)Kjk(x′ − x1;ω) (5.57)



5.3. QUANTIZATION 63

=
σkBTµ

2
0

8π2

∫

S

dV (x1)
δij(x − x1) · (x′ − x1) − (x − x1)j(x

′ − x1)i

|x − x1|3|x′ − x1|3
,

where S is the object volume. We recover the frequency-independent spectrum
of Eq.(5.53), multiplied by a geometry-dependent integral. For simple object
shapes, the integration can again be performed analytically (see Table 5.3); it
can be done numerically in a straightforward way for a realistic experimental
geometry. Above a half space, we recover the power law ∝ 1/z derived with-
out any approximation in Eq.(5.53) in the regime z � δ. As shown in Table 5.3,
a faster decay occurs for a thin layer or a thin wire: we thus conclude that
magnetic noise is stronger the larger the amount of metallic material surrounding the
microtrap.

Object short distance medium distance large distance
z � a a � z � δ δ � z � λ

Half space (exact) 1/z 1/z δ3/z4

Half space (approx.) 1/z 1/z 1/z

Layer (approx.) 1/z a/z2 a/z2

Wire (approx.) 1/z a2/z3 a2/z3

Table 5.3: Distance dependence of magnetic near field noise. Exact results are based
on Eq.(5.27) and Eq.(22) of Henkel & al. (1999b); approximate results on Eq.(5.57).
The length a specifies the layer thickness resp. the wire radius; δ is the skin depth.

Although this approximation yields correct power laws and order of mag-
nitude estimates at short distances z � δ, it is not exact: the magnetic cross
correlation tensor above a half-space is not reproduced. We conclude this sec-
tion with an explanation of this failure.

One error has an obvious reason: the change in the power law with distance
around the skin depth δ can not be reproduced (see Table 5.3) because the sub-
strate permittivity is ignored in the Green function (5.56). If the skin depth is
taken into account for the propagation in the medium, we have checked that
one recovers, for a planar substrate, the crossover 1/z → 1/z4 in the distance
dependence.

The second error occurs at distances z � δ, where the approximation does
not describe correctly the relative magnitude of the noise tensor diagonal ele-
ments. ¿¿From Eqs.(5.27, 5.48), the exact short-distance asymptotics for a half-
space is

B
(exact)
ij (x, z, x, z;ω) =

σkBTµ
2
0

32π z
(δij + ninj) (5.58)

where n is the unit surface normal. In the approximate result found in Henkel
& Pötting (2001) using (5.57), the tensor δij + ninj is replaced by 3δij − ninj .
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The field components parallel to the surface are thus overestimated, leading to
a magnetic energy density which is too large by a factor two. This failure origi-
nates from the boundary conditions imposed by the surface that are ignored as
well when using the Green function (5.56). Note that for z � δ, the damping
of the field in the medium is negligible, and one may describe the fields quasi-
statically. However, the jump in the medium conductivity for a metallic object
leads to the following boundary condition15

∂B

∂n

∣

∣

∣

∣

out

− ∂B

∂n

∣

∣

∣

∣

in

= µ0σn ×E, (5.59)

where ∂/∂n is the derivative along the surface normal n and σ the object con-
ductivity. We have checked that with this boundary condition, a magnetostatic
calculation gives the correct noise tensor (5.58) for a planar substrate. A correc-
tion to the fields inside the medium in a similar situation has been discussed by
Sidles & al. (2003). The application of this refined theory to other geometries,
for example cylindrical wires, is in progress.

15We evaluate the Faraday-Lorentz law just above and below the surface, take parallel components
and use ∇ ·B = 0. A conductivity σ � ε0ω is assumed.



Chapter 6

Atoms

We have seen that the electromagnetic field shows intrinsic fluctuations that get
strongly modified and enhanced in the near field. The spontaneous decay of
atoms is hence accelerated and atomic energy levels are shifted. In the simplest
framework to describe the atom-field interaction, one focusses on the atomic
level populations and describes their dynamics in terms of rate equations. A
more complete picture is provided by master equations that also characterize
how atoms lose quantum-mechanical coherence (superposition states) due to
the coupling to the field. This framework is reviewed here, with an emphasis
on the connection between the field correlation functions and the typical time
scales for atomic dynamics.

6.1 Electric dipole coupling to optical fields

In this section, we introduce our notation for two-level atoms that interact
via an electric dipole transition with the electromagnetic field. The basic
atomic observables and the non-Hamiltonian evolution in a fluctuating field
are sketched.

6.1.1 Two-level atom

The Hamiltonian for a single atom driven by a near-resonant laser field can be
written as

HS = HA +HAL =
h̄ωA

2
σ3 − (σ+d + σ−d∗) · EL(r, t). (6.1)

Only two levels, |g〉 and |e〉, separated by the Bohr frequency ωA close to the
laser frequency have been retained; this is the resonance or two-level approx-
imation. The operator σ3 ≡ |e〉〈e| − |g〉〈g| is the atomic inversion, σ+ ≡ |g〉〈e|
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and σ− = σ†
+ = |e〉〈g| are the flip operators, and d is the electric dipole matrix

element. The laser field is described in terms of a classical field EL(r, t) to be
evaluated at the atomic position r.

In the rotating wave approximation, only slowly varying terms in an in-
teraction picture with respect to HA are retained in the coupling HAL. In this
picture, the flip operators evolve as σ± e∓iωAt (positive and negative frequency
parts). For a monochromatic laser field, EL(r, t) = EL(r) e−iωLt + C.C., with a
small detuning, |ωL −ωA| � ωA, the terms kept in the interaction Hamiltonian
are

HAL = −σ+d · E∗
L(r) e+iωLt − σ−d∗ ·EL(r) e−iωLt. (6.2)

The explicit time dependence can be removed with a unitary transformation
into a ‘rotating frame’ so that we finally get

HS = − h̄∆L

2
σ3 +

h̄Ω(r)

2
(σ+ + σ−) , (6.3)

where ∆L ≡ ωL −ωA is the laser detuning and the ‘Rabi frequency’ Ω ≡ −2d∗ ·
EL(r)/h̄ has been made real with a suitably chosen origin of time.

6.1.2 Master equations

Due to the statistical nature of the interaction with vacuum or thermal fields,
we cannot describe the atom in terms of a wave function (a two-component
spinor). Instead, a reduced density matrix ρ has to be used that takes into ac-
count the average with respect to the field fluctuations. All expectation values
of system operators O can then be computed according to 〈O〉 = Tr (Oρ).

For a two-level atom weakly coupled to a broad band fluctuating field, the
density matrix ρ evolves according to (in the Schrödinger picture)

dρ

dt
=

1

ih̄
[HS, ρ] +

1

2

∑

α =+,−

Γα

(

2σαρσ
†
α −

{

σ†
ασα, ρ

})

, (6.4)

{O, ρ} ≡ O ρ+ ρO. (6.5)

The Hamiltonian HS generates the non-dissipative evolution of the system.1

The rates Γ± describe transitions between the levels |e〉, |g〉. In our notation,
Γ+ corresponds to the process |e〉 → |g〉 (spontaneous and stimulated emission)
and Γ− to absorption.

The transition rates are given by correlation functions of the field the atom
couples to. For the case of an electric dipole transition considered here,

Γ− =
di d

∗
j

h̄2

∫

dτ e−iωAτ 〈Ei(r, t+ τ)Ej(r, t)〉R

1It includes renormalized transition frequencies where the renormalization (Lamb shift, van der
Waals shift) is due to the interaction with the field.
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=
di d

∗
j

h̄2 Eij(r, r;ωA) (absorption), (6.6)

Γ+ =
di d

∗
j

h̄2 Eij(r, r;−ωA) (emission), (6.7)

where 〈. . .〉R denotes the average with respect to the field’s density operator.
The latter does not involve the atom because we assume a weak atom-field
coupling. The same result can be obtained from Fermi’s Golden Rule (Wylie
& Sipe, 1984). As we discussed in Section 5.3.2, the field is not necessarily a
reservoir in equilibrium itself; in the near field of a ‘hot’ object, for example,
only the object, but not the field will be in an equilibrium state.

The cross correlation spectrum of the field, taken at the atomic transition
frequency, hence provides the time scale for field-induced transitions. We have
assumed a broad field spectrum whose value at the eigenfrequencies of the sys-
tem Hamiltonian does not differ significantly compared to the ‘bare’ transition
frequency ωA. This breaks down in a field with a strongly modulated spec-
trum like for a photonic band gap material (Mossberg & Lewenstein, 1993).
The master equation (6.4) must then be modified to take into account mem-
ory effects, typically by replacing it with an integro-differential equation. We
outline a more detailed theory in Section 6.1.3.

The master equation (6.4) reproduces the rate equations one would write
down given the transition rates Γ±. But it also gives the dynamics of off-
diagonal elements of the atomic density matrix. Recall that these ‘coherences’
are nonzero for superposition states made from |g〉 and |e〉. We get for example

dρeg

dt
=

1

ih̄
〈e| [HS, ρ] |g〉 −

Γ+ + Γ−

2
ρeg, (6.8)

so that the coupling to the field damps the off-diagonal matrix elements — this
is the hallmark of ‘decoherence’. The corresponding time scale is in the present
model determined by the transition rates for the populations. There are cases,
however, where decoherence happens faster: reservoir-induced fluctuations of
the atomic transition frequency, also called ‘dephasing’, are an example.

Classical calculation of spontaneous emission

Although spontaneous emission is a process triggered by quantum fluctua-
tions, its rate is closely connected to classical quantities. At zero temperature,
only spontaneous emission processes survive in (6.6, 6.7) because the corre-
lations Eij(. . . ;ωA), corresponding to normal order, vanish, while the anti-
normally ordered ones Eij(. . . ;−ωA) do not (see remarks after Eq.(5.41)). Using
the fluctuation-dissipation theorem (5.42) at zero temperature, Eq.(6.7) can be
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written

Γ+(T = 0) =
2di d

∗
j

h̄
ImGij(r, r;ωA) =

2 Re
[

iωAd · E∗
dip(r, r;ωA)

]

h̄ωA
. (6.9)

In the second step, we have expressed the Green tensor in terms of the electric
field of an oscillating point dipole with amplitude d and frequency ωA. In the
numerator of Eq.(6.9), we recognize the power radiated by the dipole and av-
eraged over an oscillation period, according to the Poynting theorem. If this
classical emission is normalized to the energy quantum h̄ωA, we get the spon-
taneous emission rate. We may thus regard this calculation as an application of
the correspondence principle. It may be one of the fastest ways to get the spon-
taneous emission rate in free space. The imaginary part of the Green tensor is,
using Eq.(5.8) and taking the limit x → x′ (see footnote 11 on page 58),

ImGij(x,x;ω) =
ω3

6ε0c3
δij . (6.10)

The well-known result Γ+(vac) = d2ω3
A/(3πε0h̄c

3) follows.
In the near field, the ‘reflected’ part of the Green tensor gives the modifi-

cation of the spontaneous emission rate. Close to a metallic surface, for exam-
ple, one gets an enhanced decay rate Γ+ ∝ 1/z3 using the expansion (5.20).
Note that the decay is in this limit dominated by ‘nonradiative’ processes: the
energy of the excited state is absorbed by the surface without emission of a
photon. The decay rate (6.9) does not separate these two channels. But the
radiative contribution can be found using again the correspondence principle:
computing the power emitted into the far field and normalizing to h̄ωA.

Energy level shifts

For completeness, we also write down the energy shift of the atomic levels due
to the coupling to the reservoir. To lowest order in the dipole moments, one
gets (Agarwal, 1975b; Wylie & Sipe, 1984)

α = e, g : δEα =
∑

β

dαβ
i dαβ∗

j P
∫

dω

2πh̄

Eij(r, r;ω)

ω − ωβα
(6.11)

=
∑

β

dαβ
i dαβ∗

j P
∫

dω

π

ImGij(r, r;ω)

(ω − ωβα)(eh̄ω/kBT − 1)

where P denotes the principal value and β is any level connected to |g〉 or |e〉
via an electric dipole transition (transition frequency ωβα = (Eβ − Eα)/h̄, ma-
trix element dαβ). At zero temperature, only negative frequencies contribute
to the integral (see Eq.(5.43)). For the ground state, all Bohr frequencies ωβα
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are positive so that the energy shift is negative, as is well known from pertur-
bation theory. For the excited state |e〉, the transition to the ground state |g〉
gives a resonant contribution. Using (at zero temperature) the Kramers-Kronig
relations, this can be written in terms of the real part ReGij(r, r;ωeg). A simi-
lar frequency shift is experienced by a classical dipole coupled to the field (see
Henkel & Sandoghdar (1998) for details).

6.1.3 Structured reservoirs and non Markovian dissipation

We relax in this Section the assumption that the field provides a broad-band
reservoir and sketch the corresponding master equation. For simplicity, the
weak coupling approximation is still made. We also assume that at some initial
time t = 0, system and reservoir are uncorrelated, ρ(0) = ρS(0) ⊗ ρR(0).

Starting from the Liouville-von Neumann equation in an interaction picture
with respect to the free evolution, we get a formal solution in terms of a time
integral and insert it into the equation of motion. This leads to the integro-
differential equation

∂

∂t
ρ =

1

ih̄
[Hint(t), ρ(0)] +

1

ih̄

t
∫

0

dτ [Hint(t), [Hint(t− τ), ρ(t − τ)]] . (6.12)

We get the master equation for the system density matrix by tracing out the
reservoir degrees of freedom. This makes the first term disappear (a nonzero
expectation value could be incorporated into the system Hamiltonian HS). The
second term, involving the integral, is already of second order in the interac-
tion. Given the assumption of weak coupling, we shall replace the density
matrix by ρ(t− τ) ≈ ρR(0) ⊗ ρS(t− τ), where a finite memory time is allowed
for by keeping the time argument t− τ in the system density matrix.

With the usual bilinear coupling Hint = −p · E(r) where p = σ+d + σ−d∗,
the master equation that follows can be written in the form (Agarwal, 1975c)

∂

∂t
ρS = − 1

2h̄2

t
∫

0

dτ
{

〈{Ei(r, t), Ej(r, t− τ)}〉R [pi(t), [pj(t− τ), ρS(t− τ)]]

+ 〈[Ei(r, t), Ej(r, t− τ)]〉R [pi(t), {pj(t− τ), ρS(t− τ)}]
}

. (6.13)

The time-dependence of the operators is that of the trivial free evolution. When
the fluctuation-dissipation theorem holds for the field, the ‘fluctuation kernels’
occurring in this integral can be expressed in terms of the Green tensor (see
also Eq.(5.44))

〈[Ei(r, t), Ej(r, t− τ)]〉R = −2h̄

∞
∫

−∞

dω

2π
eiωτ ImGij(r, r;ω), (6.14)
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〈{Ei(r, t), Ej(r, t− τ)}〉R = 2h̄

∞
∫

−∞

dω

2π
eiωτ coth(h̄ω/2kBT )ImGij(r, r;ω).

We recover the previous theory when the frequency range that effectively
contributes to these integrals is so broad that the corresponding reservoir cor-
relation time τR is smaller than all other time scales. Then the Markov approx-
imation can be made, replacing the fluctuation kernels by δ-functions in τ . In
this regime, it would be inconsistent to keep the time argument ρS(t − τ), as
pointed out by van Kampen (1992, ch. XVI.4). The opposite case is relevant for
fields whose correlation spectrum shows significant structure, leading to long
correlation or memory times. This occurs in high-finesse cavities (Lambropou-
los & al., 2000) and close to a photonic band edge in periodic nanostructured
dielectrics (John & Quang, 1994; Woldeyohannes & John, 2003). An example is
worked out in Boedecker & al. (2004) for a simplified band edge model: close
to the band edge, an excited dipole shows an essentially algebraic instead of
exponential decay. We currently investigate whether this can also occur in fi-
nite nanostructures where the singularities in the density of field modes are
smoothed.

6.2 Atomic spin coupling to magnetic fields

6.2.1 Magnetic moment

Atoms with a nonzero spin have a degenerate ground state whose magnetic
sublevels provide a representation of both the spin operator2 J and the mag-
netic dipole moment µ. The Hamiltonian for the coupling to a magnetic field
reads

HAM = −µ · B(r, t) = −h̄µJ · B(r, t), (6.15)

where µ = µBgJ is the magnetic moment (expressed in terms of the Bohr mag-
neton and the Landé factor). We normalize the spin to h̄ so that J becomes
dimensionless.

In a static magnetic field B0(r), the magnetic moment precesses at the Lar-
mor frequency ωL ≡ µ|B0(r)| around the field direction. The corresponding
eigenstates |mJ 〉 of the Hamiltonian are characterized by the magnetic quan-
tum number mJ and have energies h̄ωLmJ . They can be coupled by a time-
dependent field B⊥(r, t) orthogonal to B0(r), a resonance then occurs at the
Larmor frequency. In the rotating wave approximation, the off-resonant terms

2We use J instead of the more conventional F for the total spin (nuclear + orbital + electronic), to
avoid confusion with the force.
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are neglected,3 and assuming a monochromatic driving at ωB, one is led to a
Hamiltonian similar to Eq.(6.3):

HAM = h̄(ωB − ωL)J3 − µ|B⊥(r)| (J+ + J−) , (6.16)

where J3 is chosen along the direction of B0(r) and J± = J1 ± iJ2 are the usual
ladder operators, with J1 the component along B⊥(r).

6.2.2 Processes in broad band fields

A framework identical to the master equation (6.4) can be formulated for the
interaction with a broad band magnetic field (see Henkel & al. (1999b) for ex-
plicit formulas). The field induces processes like spin relaxation and decoher-
ence. The transitions induced between magnetic sublevels |mJ 〉 (defined with
respect to the static field B0(r)) are called ‘spin flips’. They play an impor-
tant role in the context of magnetic traps because typically only some of the
sublevels are trapped. Consider for simplicity a J = 1/2 spin. If the centre-
of-mass motion is ‘slow’ compared to the Larmor frequency, one can introduce
adiabatic potentials

VmJ
(x) = −h̄µmJ |B0(x)|. (6.17)

The Maxwell equations do not forbid a minimum of |B0(x)| so that sublevels
with µmJ < 0 are trapped around such a minimum (‘weak field seekers’).
After a spin flip, however, mJ has changed sign, the atom finds itself close
to a potential maximum and is expelled from the trap. This picture applies
when the spin flip rate is small compared to the characteristic frequencies in
the magnetic trap; this has to be checked after the calculation.

The trap loss rate due to spin flips, |mi〉 → |mf〉, corresponds to the rate Γ+

introduced in Eq.(6.7) (the weak field seeking state has a higher energy) and is
given by

Γflip = µ2
∑

k,l

〈mi|Jk|mf〉〈mf |Jl|mi〉Bkl(r, r;−ωL) (6.18)

where Bkl is the magnetic noise tensor and ωL the Larmor frequency at the trap
centre r. Regarding the field, this rate is averaged over its initial states (with the
corresponding ensemble weight) and summed over the final states, see Wylie &
Sipe (1984) and Henkel & al. (2003c). If the centre-of-mass motion is quantized
as well, one has to average the noise tensor over the position distribution of the
trap eigenstates and has to incorporate the trap eigenenergies in the transition
frequency. For spin flips induced by the non-adiabatic motion in the trapping

3For magnetic interactions, this approximation is usually less well justified because the transverse
field detuning may easily be comparable to the Larmor frequency. The analogous situation occurs
for electric dipole transitions only in very strong laser fields.
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potential, this has been studied by Bergeman & al. (1989); Sukumar & Brink
(1997); Gov & al. (2000b); Hinds & Eberlein (2000).

The information obtained for the magnetic noise spectrum in the near field
also characterizes the loss rate for trapped spins. For example, it is clear from
the matrix elements of the spin operators in Eq.(6.18) that only magnetic fields
polarized perpendicular to the static trapping field can drive spin flips. The
dependence on the trap geometry is discussed in detail in the papers Henkel
& Wilkens (1999); Henkel & al. (1999b); Henkel & Pötting (2001); Henkel & al.
(2003c); Schroll & al. (2003). The most important result is that at close distance
to a metal, magnetic noise has a strength orders of magnitude above the black
body level,

Bij(r, r;ω)

Bij (b.b.)(r, r;ω)
∼ λ3

δ2z
� 1 (6.19)

when both the skin depth δ and the trap distance z are much smaller than the
wavelength λ. Typical Larmor frequencies are in the 1–100 MHz range, corre-
sponding to wavelengths exceeding 1 m and skin depths of order 10–100µm.
Recently, the predictions of our theory could be confirmed quantitatively by
the groups of Eric A. Cornell (Harber & al., 2003), Ed A. Hinds (Jones & al.,
2003), and Vladan Vuletić (Lin & al., 2004), see page 20.

6.3 Centre of mass motion

We finally discuss the coupling of the atomic position to fluctuating electro-
magnetic fields. For simplicity, we focus on a single ‘internal’ state, for exam-
ple the single weak field seeker for a magnetically trapped J = 1/2 atom. The
centre-of-mass motion is then described by the Hamiltonian

HS =
p2

2m
+ V (x, t) (6.20)

where the potential V (x, t) contains both the static trapping potential and the
coupling to time-dependent fields. In a static magnetic field B0(x), including
to lowest order the contribution of magnetic field fluctuations B(x, t), we have

V (x, t) = µeff |B0(x)| + µeff

(

B(x, t) · B̂0(x)
)

(6.21)

where µeff = −h̄µmJ is the magnetic moment in the trapped state |mJ 〉 and
B̂0(x) is a unit vector. We have made the adiabatic approximation (Larmor
frequency much larger than the vibration frequency of the centre of mass). An-
other example is a static trap perturbed by a random force, for example an ion
trap subject to electric field noise. In that case,

V (x, t) = V0(x) − qx · E(r, t), (6.22)



6.3. CENTRE OF MASS MOTION 73

where x denotes the ion displacement with respect to the trap centre r.

6.3.1 Discrete spectrum

In terms of the eigenstates ϕn(x) of the trapping potential, we can expand the
density matrix for the centre-of-mass motion as

ρnn′(t) =

∫

d3xd3x′ ϕn(x)〈ψ∗(x, t)ψ(x′, t)〉ϕ∗
n′(x′) (6.23)

where the average is with respect to the fluctuations in the potential V (x, t). In
this basis, the structure of the master equation is similar to the previous cases:
transitions between the trap eigenstates happen with rates characterized by the
matrix elements of the fluctuating potential. In terms of the spatial correlation
spectrum, we have in a magnetic trap

Γn→n′ =
µ2

eff

h̄2

∑

kl

∫

d3xd3x′Mnn′(x)B̂0k(x)Bkl(x,x
′;−ωnn′)B̂0l(x

′)M∗
nn′(x′),

(6.24)
where the wave function overlap is denoted as

Mnn′(x) = ϕ∗
n(x)ϕn′ (x), (6.25)

and ωnn′ is the transition frequency. The scaling of these rates with the trap
geometry is discussed in detail in Folman & al. (2002); Henkel & al. (2003c).
In a harmonic trap subject to a random force, the transition rates get simpler
and one recovers the well-known selection rule n → n′ = n ± 1. Calculations
pertaining to ion traps can be found in Henkel & al. (1999b).

To summarize, field fluctuations heat the vibrational motion of trapped
atoms and damp coherences between different trap eigenstates, similar to
Eq.(6.8) for ‘optical’ coherences.

6.3.2 Decoherence of quasi-free motion

We finally address the impact of field fluctuations on the motion of a free par-
ticle. This situations occurs in very anisotropic traps where the confinement
along one or two directions is very weak. In the paper reproduced in Ap-
pendix B, we use the spirit of the master equation in the Markov approxima-
tion to derive a ‘transport equation’ that is valid on length scales larger than
the correlation length `corr of the fluctuating field. This equation is most easily
formulated in terms of the Wigner transform of the atomic coherence function,
i.e.,

W (x,p; t) =

∫

dds

(2πh̄)d
eip·s/h̄〈ψ∗(x + 1

2s, t)ψ(x − 1
2s, t)〉 (6.26)
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The atomic motion is described in d dimensions, d = 1, 2 being the most rel-
evant cases in anisotropic traps. The key idea of the transport equation is to
use the momentum variable p to capture the behaviour of the atomic coher-
ence function on short scales (small distance s between two points in the de
Broglie wave field). The Wigner function thus serves as a ‘local Fourier trans-
form’. ‘Short scales’ are comparable to the correlation length `corr and on this
scale, the ‘large scale’ variable x is supposed to vary slowly. This allows to
disentangle the scattering from the locally corrugated noise potential from the
otherwise ballistic motion of de Broglie wave packets.

In a broad-band field, one finds the following transport equation for the
Wigner function (similar results have been obtained by Jayannavar & Kumar
(1982); Kuklov & al. (2002))

(

∂t +
p

m
· ∇x + F0(x) · ∇p

)

W (x,p; t)

=

∫

ddp′ Γ(p − p′;x) [W (x,p′; t) −W (x,p; t)] (6.27)

where F0(x) is a static, slowly position-dependent force, due to a weak con-
finement for example. The ‘collision integral’ on the right hand side involves a
transition rate per momentum transfer

Γ(p;x) =
1

h̄2

∫

dds

(2πh̄)d
eip·s/h̄C(x + 1

2s,x− 1
2s) (6.28)

that may weakly depend on x. We assume a noise potential with zero correla-
tion time

〈V (x, t)V (x′, t′)〉 = C(x,x′) δ(t− t′). (6.29)

This theory applies if the noise field is essentially at infinite temperature. Oth-
erwise, a friction force would occur in Eq.(6.27) and establish thermal equilib-
rium against the scattering processes that broaden the momentum distribution
Haake & Reibold (1985); Zurek (1991).

In a constant force field, the transport equation (6.27) can be solved ana-
lytically (Jayannavar & Kumar, 1982; Zurek, 1991). If we spatially average the
resulting atomic coherence function, we get

ρ(s; t) ≡
∫

ddx〈ψ∗(x + 1
2s, t)ψ(x − 1

2s, t)〉

= ρ(s; 0) exp [−Γ(s)t− iF0 · st/h̄] (6.30)

where the ‘decoherence rate’ depends on the separation s between two points
of the atomic de Broglie wave:

Γ(s) =
C(x,x) − C(x + 1

2s,x − 1
2s)

h̄2 . (6.31)
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This rate does not actually depend on the position x in the trap for statisti-
cally homogeneous noise. Such a situation occurs, for example, in a quasi one-
dimensional atom guide parallel to a planar substrate. The decoherence rate
depends of course parametrically on the guide-substrate distance. Note the
saturation behaviour Γ(s) → Γ∞ = C(x,x)/h̄2 for points in the atom trap sep-
arated by a distance larger than the noise correlation length: the second term
in Eq.(6.31) then vanishes. In the limit Γ∞t � 1, the atomic wave function
therefore has lost coherence on scales exceeding `corr. This entails a broader
momentum distribution with width ∆p ∼ h̄/`corr: the random scattering from
the potential fluctuations has increased the kinetic temperature of the atom.
More details are summarized on page 24.
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Appendix A

Fluctuation dissipation
theorem in QED

In this Appendix, we quote two simplified proofs of the fluctuation dissipation
theorem (5.42) for quantized boson fields in macroscopic electrodynamics. The
original paper by Callen & Welton (1951) focusses on simpler systems, but also
contains the ‘fermionic’ generalization to two-level media. Stefano & al. (2000)
have published a proof valid under more general conditions.

A.1 Mode expansion

Let us first consider a dielectric with a real, positive and frequency-
independent permittivity. In this case, as shown for example by Carnaglia &
Mandel (1971) and Glauber & Lewenstein (1991), the standard canonical quan-
tization procedure can be carried over from the vacuum case. The wave equa-
tion (5.6) contains a differential operator which is self-adjoint with respect to
a scalar product with weight function ε(x). The corresponding orthonormal
eigenfunctions provide a complete set of modes Ekµ. The combined label kµ

generalizes the wave and polarization vectors of plane waves in free space.
Without loss of generality we assume real mode functions in the following.

The calculation closely parallels the one in free space, and we only quote
the main steps. We first secure the familiar mode expansion for the electric
field operator

E(x, t) = i

∫

dk
∑

µ

√

h̄ωkµ

2ε0
Ekµ(x) (akµ(t) − H.C.) . (A.1)

The expression under the square root is fixed by the requirement that the mode
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functions diagonalize the electromagnetic field energy and reduce it to a sum
of quantized harmonic oscillators. The mode functions are normalized with
respect to the scalar product

∫

d3x ε(x)Ekµ(x) · Ek′µ′(x) = δµµ′δ(k,k′) (A.2)

The annihilation operators akµ in Eq.(A.1) satisfy the standard commutation
relations.

In thermal equilibrium, the field density operator factorizes into modes and
correlations between orthogonal modes vanish. Normally ordered averages,
for example, are given by

〈

a†kµ(t)ak′µ′(t
′)
〉

= δµµ′δ(k,k′)
eiωkµ(t−t′)

eβωkµ − 1
, (A.3)

where β = h̄/kBT is the inverse temperature. Calculating the temporal field
correlation function and taking the Fourier transform, we get the spectrum

Eij(x,x
′;ω) =

2πh̄

ε0

ω

eβω − 1

∫

dk
∑

µ

ωkµEkµ,i(x)Ekµ,j(x
′)δ(ω2 − ω2

kµ) (A.4)

Note that the diagonal elements Eii(x,x;ω) ≥ 0 at both positive and negative
frequencies.

The Green tensor can also be expanded in modes. It solves the inhomoge-
neous wave equation (5.6)

(

δij∇
2 − ∂2

∂xi∂xj
+ δijε(x)

(ω + i0)2

c2

)

Gjk = − ω2

c2ε0
δikδ(x − x′) (A.5)

where the positive infinitesimal part of ω + i0 on the left hand side selects the
causal (retarded) solution. Expanding the delta function source term in modes
using the completeness relation, we get the coefficients of the mode expansion
of the Green tensor:

Gij(x,x
′;ω) =

ω2

ε0

∫

dk
∑

µ

Ekµ,i(x)Ekµ,j(x
′)

ω2
kµ − (ω + i0)2

. (A.6)

Taking into account the frequency sign, the imaginary part of this denominator
is

Im
1

ω2
kµ − (ω + i0)2

=
πωkµ

ω
δ(ω2 − ω2

kµ). (A.7)

Comparing Eqs.(A.4) and (A.6), we read off the fluctuation dissipation theorem

Eij(x,x
′;ω) =

2h̄

eβω − 1
ImGij(x,x

′;ω) (A.8)

which has been stated in Eq.(5.42).
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A.2 Noise source representation

The second proof we quote allows for a complex, frequency-dependent
medium permittivity where the wave operator is no longer self-adjoint. For
simplicity, we follow Knöll & al. (2001) and assume that Im ε > 0 in the entire
space. This damps any plane wave incident from infinity and suppresses the
scattering solutions to the homogeneous wave equation. The field is generated
by the noise polarization Pn only, and using the Green tensor we have

Ei(x;ω) =

∫

d3x′Gik(x,x′;ω)Pnk(x′;ω). (A.9)

The noise correlations given by Eq. (5.46) are δ-correlated in position with a
spectral density proportional to the medium absorption Im[ε0ε(x;ω)]. For a
homogeneous medium temperature, the field spectrum (5.47) thus becomes

Eij(x,x
′;ω) =

2h̄

eh̄ω/kBT − 1

∫

d3x1 Im[ε0ε(x1;ω)]G∗
ik(x,x1;ω)Gjk(x′,x1;ω)

(A.10)
Hence, the fluctuation dissipation theorem follows provided the following
identity holds (Henry & Kazarinov, 1996; Knöll & al., 2001)

∫

d3x1 Im[ε0ε(x1;ω)]G∗
ik(x,x1;ω)Gjk(x′,x1;ω) = ImGij(x,x

′;ω). (A.11)

Via this identity, the fluctuation dissipation theorem is already contained in
macroscopic electrodynamics. We note that Eq.(A.11) provides a nontrivial
connection between expressions quadratic and linear in the Green tensor. (An-
other connections of this kind are the optical theorem and the Ward identities.)

We make again use of the reciprocity of the Green tensor, for example,
Gjk(x′,x1;ω) = Gkj(x1,x

′;ω). Recall that reciprocity holds trivially for the
scalar permittivity we focus on here, even if it is complex. As a first step
in the proof of Theorem (A.11), we write down the wave equation (A.5) for
Gkj(x1,x

′;ω), multiply with the conjugate tensor G∗
ki(x1,x;ω) and integrate

over x1. With partial integration, the terms involving the differential operators
can be ‘symmetrized’. The surface integrals over the sphere at infinity do not
contribute because the Green tensor vanishes there.1 We thus get the interme-
diate result

−ω
2

c2
G∗

ij(x,x
′) =

∫

d3x1

[

−∇1G
∗
ki(x1,x) · ∇1Gkj(x1,x

′) (A.12)

+
∂

∂x1k
G∗

ki(x1,x)
∂

∂x1l
Glj(x1,x

′)

1This follows from the assumption that Im ε > 0 everywhere. Otherwise, additional terms appear
in the identity (A.11); they combine with the scattered field contribution to give the fluctuation
dissipation theorem, see Stefano & al. (2000).
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+G∗
ki(x1,x)ε0ε(x1)]

(ω + i0)2

c2
Gkj(x1,x

′)

]

,

where repeated indices are summed over and frequency arguments have been
suppressed.

In the second step of the proof, the complex conjugate of (A.5) is multiplied
by the Green tensor and integrated over x1. Then both results are subtracted.
On the left hand side of Eq.(A.12), the imaginary part of Gij(x,x

′) appears. On
the right hand side, only the term involving the complex permittivity survives
and gives Im [ε(x1)(ω + i0)2]. The limit of real ω does not pose problems, and
one arrives at (A.11).
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Derivation of the transport
equation

The paper that we reprint here has been published as

Carsten Henkel (2001), ‘Coherent transport’, Comptes Rendus de l’Académie des Sciences (Paris),
Série IV 2(4), 573–80, special issue with the proceedings of the Euroconference ‘Atom Optics
and Interferometry’ (Cargèse, France, 26–29 July 2000).

Abstract. We discuss the transport of matter waves in low-dimensional waveg-
uides. Due to scattering from uncontrollable noise fields, the spatial coherence
gets reduced and eventually lost. We develop a description of this decoher-
ence process in terms of transport equations for the atomic Wigner function.
We outline its derivation and discuss the special case of white noise where an
analytical solution can be found. c© 2001 Académie des sciences/Éditions sci-
entifiques et médicales Elsevier SAS

Résumé. Nous discutons ici du transport d’ondes de matière dans des guides de basse
dimensionnalité. En raison de la diffusion par des champs aléatoires incontrôlables,
la cohérence spatiale de l’onde décroı̂t, pour être finalement complètement perdue.
Nous développons une description de ce processus de décohérence en terme d’équations
de transport pour la fonction de Wigner atomique. Nous donnons le principe de la
dérivation de cette description et nous discutons le cas particulier du bruit blanc pour
lequel nous donnons une solution analytique. c© 2001 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

1. Introduction

We discuss in this contribution the transport of atomic matter waves in a low-
dimensional waveguide. Such structures may be created close to solid sub-

83
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strates using electro-magnetic fields: the magnetic field of a current-carrying
wire combined with a homogeneous bias field, e.g., gives rise to a linear waveg-
uide [1–3]. Planar waveguides may be constructed with repulsive magnetic
[4] or optical [5] fields that ‘coat’ the substrate surface. The atomic motion is
characterised by bound vibrations in the ‘transverse’ direction(s) and an essen-
tially free motion in the ‘longitudinal’ direction(s) along the waveguide axis
(plane), respectively. Although direct contact with the substrate is avoided by
the shielding potential, the atoms feel its presence through enhanced electro-
magnetic field fluctuations that ‘leak’ out of the thermal solid, typically held
at room temperature. We have shown elsewhere that these thermal near fields
are characterised by a fluctuation spectrum exceeding by orders of magnitude
the usual blackbody radiation [6–9]. The scattering of the atoms off the near
field fluctuations occurs at a rate that may be calculated using Fermi’s Golden
Rule. The consequences of multiple scattering is conveniently described by a
transport equation that combines in a self-consistent way both ballistic motion
and scattering.

The purpose of this contribution is to outline a derivation of this transport
equation. The status of this equation is similar to that of the quantum-optical
master equations allowing to describe the evolution of the reduced density
matrix of an atomic system, on a time scale large compared to the correlation
time of the reservoir the system is coupled to, typically the vacuum radiation
field. In the case of transport in waveguides, we face both temporal and spatial
dynamics and therefore restrict our attention to scales large compared to the
correlation time and length of a fluctuating noise potential. Our analysis uses
a multiple scale expansion adapted from [10]. Similar to the quantum-optical
case, we make an expansion in the perturbing potential to second order. In
the resulting transport equation, the noise is thus characterised by its second-
order correlation functions or, equivalently, its spectral density. In the case of
white noise, the transport equation can be explicitly solved. We have shown
elsewhere [8] that this approximation holds quite well for thermal near field
fluctuations. For technical noise, it also holds when the noise spectrum is flat
on a frequency scale roughly set by the ‘longitudinal’ temperature of the atoms
in the waveguide. The explicit solution yields an estimate for the spatial co-
herence of the guided matter waves as a function of time. The paper concludes
with some remarks on the limits of validity of the present transport theory. It
cannot describe, e.g., Anderson localisation in one dimension [11] because on
the coarser spatial scale of the transport equation, the scattering from the noise
field is assumed to take place locally; interferences between different scatter-
ing sequences are not taken into account. Decoherence in ‘curved’ or ‘split’
waveguides also needs a refined theory because of the cross-coupling between
the transverse and longitudinal degrees of freedom, the former being ‘frozen
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out’ in our framework.

2. Statistical matter wave optics

The simplest model for atom transport in a low-dimensional waveguide is
based on the Schrödinger equation

ih̄∂tψ(x, t) = − h̄2

2m
∇2ψ + V (x, t)ψ (B.1)

The coordinate x describes the motion in the free waveguide directions. The
transverse motion is ‘frozen out’ by assuming that the atom is cooled to the
transverse ground state. Atom-atom interactions are neglected, too. V (x, t) is
the noise potential: for a magnetic waveguide, e.g., it is given by

V (x, t) = 〈s|µ ·B(x, t)|s〉, (B.2)

where |s〉 is the trapped internal state of the atom (we neglect spin-changing
processes), and B(x, t) is the thermal magnetic field. The noise potential is a
statistical quantity with zero mean and second-order correlation function

CV (s, τ) = 〈V (x + s, t+ τ)V (x, t)〉, (B.3)

where the average is taken over the realisations of the noise potential. We as-
sume a statistically homogeneous noise, the correlation function being inde-
pendent of x and t. As a function of the separation s, thermal magnetic fields
are correlated on a length scale lc given approximately by the distance d be-
tween the waveguide axis and the solid substrate [8]. This estimate is valid
as long as the wavelength 2πc/ω corresponding to the noise frequency ω is
large compared to d: for micrometre-sized waveguide structures, this means
frequencies below the optical range. The relevant frequencies of the noise will
be identified below and turn out to be much smaller than this.

The coherence properties of the guided matter waves are characterised by
the noise-averaged coherence function (the time dependence is suppressed for
clarity)

ρ(x; s) = 〈ψ∗(x − 1
2s)ψ(x + 1

2s)〉. (B.4)

In complete analogy to quantum-optical master equations, this coherence func-
tion may be regarded as the reduced density matrix of the atomic ensemble,
when the degrees of freedom of the noise are traced over. The Wigner function
gives a convenient representation of the coherence function:

W (x,p) =

∫

dDs

(2πh̄)D
e−ip·s/h̄ρ(x; s), (B.5)
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where D is the waveguide dimension. This representation allows to make a
link to classical kinetic theory: W (x,p) may be viewed as a quasi-probability
in phase space. For example, the spatial density n(x) and the current density
j(x) of the atoms are given by

n(x) =

∫

dDpW (x,p) (B.6)

j(x) =

∫

dDp
p

m
W (x,p) (B.7)

We also obtain information about the spatial coherence: the spatially averaged
coherence function Γ(s, t), for example, is related to the Wigner function by

Γ(s, t) ≡
∫

dDx ρ(x; s, t) (B.8)

=

∫

dDx dDp eip·s/h̄W (x,p, t) (B.9)

In the next section, we outline a derivation of a closed equation for the Wigner
function in terms of the noise correlation function.

3. Transport equation

Details of the derivation of the transport equation may be found in the ap-
pendix.We quote here only the main assumptions underlying the theory.

(i) The noise potential is supposed to be weak so that a perturbative analysis
is possible. As in quantum-optical master equations, a closed equation is
found when the expansion is pushed to second order in the perturbation.

(ii) The scale lc over which the noise is spatially correlated is assumed to
be small compared to the characteristic scale of variation of the Wigner
function. This implies a separation of the dynamics on short and large
spatial scales, the dynamics on the large scale being ‘enslaved’ by certain
averages over the short scale. Similarly, we assume that the potential fluc-
tuates rapidly on the time scale for the evolution of the Wigner function.
These assumptions correspond to the Markov approximation of quan-
tum optics, where the master equation is valid on a coarse-grained time
scale.

The derivation of the master equation is based on a multiple scale expan-
sion. Functions f(x) of the spatial coordinate are thus written in the form

f(x) = f(X, ξ) (B.10)
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where X gives the ‘slow’ variation and the dimensionless variable ξ = x/lc
gives the ‘rapid’ variation on the scale of the noise correlation length lc. Spatial
gradients are thus expanded using

∇x = ∇X +
1

lc
∇ξ (B.11)

By construction, the first term is much smaller than the second one. Finally, the
Wigner function is expanded as

W (x,p, t) = W0(X,p, t) + η1/2W1(X, ξ,p, t) + O(η) (B.12)

where η � 1 is the ratio between the correlation length lc and a ‘macroscopic’
scale on which the coordinate X varies. The expansion allows to prove self-
consistently that the zeroth order approximation W0 does not depend on the
short scale ξ, and to fix the exponent 1/2 for the first order correction.

The resulting transport equation specifies the evolution of the Wigner func-
tion W0. Dropping the subscript 0, it reads

(

∂t +
p

m
· ∇x

)

W (x,p) = (B.13)
∫

dDp′ SV (p′ − p, Ep′ −Ep) [W (x,p′) −W (x,p)] ,

where SV , the spectral density of the noise, is essentially the spatial and time
Fourier transform of the noise correlation function

SV (q,∆E) =
1

h̄2

∫

dDs dτ

(2πh̄)D
CV (s, τ) e−i(q·s−∆Eτ)/h̄. (B.14)

The left hand side of the transport equation gives the free ballistic motion of the
atoms in the waveguide. If an external force were applied, an additional term
F · ∇p would appear. The right hand side describes the scattering from the
noise potential. Ep = p2/2m is the de Broglie dispersion relation for matter
waves. We observe that scattering processes p → p′ occur at a rate given
by the noise spectrum at the Bohr frequency (Ep − Ep′)/h̄. If the potential
noise is static (as would be the case for a ‘rough potential’), then its spectral
density is proportional to δ(∆E), and energy is conserved. If we are interested
in the scattering between guided momentum states, then the initial and final
energiesEp, Ep′ are typically of the order of the (longitudinal) temperature kT
of the ensemble. The relevant frequencies in the noise spectral density are thus
comparable to kT/h̄.
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4. Results

4.1. White noise

White noise is characterised by a constant spectral density, i.e., the noise spec-
trum SV (q,∆E) is independent of ∆E. Equivalently, the noise correlation is
δ-correlated in time:

CV (s, τ) = BV (s) δ(τ). (B.15)

The integration over the momentum p′ in (B.13) is now not restricted by en-
ergy conservation, and the right hand side of the transport equation becomes a
convolution. One therefore obtains a simple solution using Fourier transforms.
Denoting k (dimension: wavevector) and s (dim.: length) the Fourier variables
conjugate to x and p, we find the equation

(

∂t +
h̄k

m
· ∇s

)

W̃ (k, s) = −γ(s)W̃ (k, s). (B.16)

where we have introduced the rate

γ(s) =
1

h̄2 (BV (0) −BV (s)) . (B.17)

Eq.(B.16) is easily solved using the method of characteristics, using s − h̄kt/m

as a new variable. One finds

W̃ (k, s; t) = W̃i(k, s− h̄kt/m) ×

× exp

[

−
∫ t

0

dt′γ(s− h̄kt′/m)

]

, (B.18)

where W̃i(k, s) is the Wigner function at t = 0.
We observe in particular that the spatially averaged coherence func-

tion (B.8) shows an exponential decay as time increases:

Γ(s; t) = Γi(s) exp
[

−γ(s)t
]

. (B.19)

We can thus give a physical meaning to the quantity γ(s): it is the rate at which
two points in the matter wave field, that are separated by a distance s, lose their
mutual coherence. This rate saturates to γ = γ(∞) = BV (0)/h̄2 for distances
s � lc large compared to the correlation length of the noise field (the corre-
lation BV (s) then vanishes). This saturation has been discussed, e.g., in [12].
As shown in [9], the rate γ is equal to the total scattering rate from the noise
potential, as obtained from Fermi’s Golden Rule. For distances smaller than
lc, the decoherence rate γ(s) decreases since the two points of the matter wave
field ‘see’ essentially the same noise potential. The exact solution (B.19) thus
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implies that after a time of the order of the scattering time 1/γ, the spatial co-
herence of the atomic ensemble has been reduced to the correlation length lc.
The estimates given in [9] imply a time scale of the order of a fraction of a sec-
ond for waveguides at a micrometre distance from a (bulk) metallic substrate.
Significant improvements can be made using thin metallic layers or wires, non-
conducting materials or by mounting the waveguide at a larger distance from
the substrate [9].

At timescales longer than the scattering time 1/γ, the spatial coherence
length of the atoms decreases more slowly, approximately as lc/

√
γt [9]. This

is due to a diffusive increase of the width of the atomic momentum distribu-
tion, with a diffusion constant of the order of D = h̄2γ/l2c . This constant is in
agreement with a random walk in momentum space: for each scattering time
1/γ, the atoms absorb a momentum qc = h̄/lc from the noise potential. The
momentum step qc follows from the fact that the noise potential is smooth on
scales smaller than lc, its Fourier transform therefore contains momenta up to
h̄/lc.

4.2. Fokker-Planck equation

The momentum diffusion estimate given above can also be retrieved from the
transport equation, making an expansion of the Wigner distribution as a func-
tion of momentum. We assume that the typical momentum transfer qc ab-
sorbed from the noise is small compared to the scale of variation of the Wigner
distribution, and expand the latter to second order. This manipulation casts
the transport equation into a Fokker-Planck form

(

∂t +
p

m
· ∇x + Fdr(p) · ∇p

)

W (x,p) = (B.20)

∑

ij

Dij(p)
∂2

∂pi∂pj
W (x,p),

where the drift force and the diffusion coefficient are given by

Fdr(p) = −
∫

dDq qSV (q, Ep+q −Ep) (B.21)

Dij(p) =

∫

dDq qiqj SV (q, Ep+q −Ep). (B.22)

In the special case of white noise, the p-dependence of these quantities drops
out. Also the drift force is then zero because the noise correlation function is
real and the spectrum SV (q) even in q. Since qc gives the width of the spec-
trum, the diffusion coefficient turns out to be of order q2cγ, as estimated before.

Casting the transport equation into Fokker-Planck form, one can easily take
into account the scattering from the noise field in (classical) Monte Carlo sim-
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ulations of the atomic motion: one simply has to add a random force whose
correlation is given by the diffusion coefficient.

We note, however, that the Fokker-Planck equation cannot capture the ini-
tial stage of the decoherence process, starting from a wave field that is coherent
over distances larger than the correlation length lc. Indeed, it may be shown
(neglecting the p · ∇x term and the drift force, assuming an isotropic diffusion
tensor for simplicity) that (B.20) yields a spatially averaged coherence function

ΓFP (s, t) = Γi(s) exp
[

−Ds2t/h̄2
]

(B.23)

This result implies a decoherence rate proportional to s2 without saturation. It
is hence valid only at large times (compared to the scattering time 1/γ) where
the exponentials in both solutions (B.19, B.23) are essentially zero for s ≥ lc.

5. Concluding remarks

We have given an outline of a transport theory for dilute atomic gases trapped
in low-dimensional waveguides. This theory allows to follow the evolu-
tion of the atomic phase-space distribution (more precisely, the atomic, noise-
averaged Wigner function) when the atoms are subject to a noise potential with
fluctuations in space and time. The spatial coherence of the gas can be tracked
over temporal and spatial scales larger than the correlation scale of the noise,
in a manner similar to the master equations of quantum optics. We have given
explicit results in the case of white noise, highlighting spatial decoherence and
momentum diffusion.

The transport equation has to be taken with care for strong noise potentials
because its derivation is based on second-order perturbation theory. It is cer-
tainly not valid when the ‘mean free path’ ∼ v̄/γ (v̄ is a typical velocity of the
gas) is smaller than the noise correlation length lc because then the Wigner dis-
tribution changes significantly over a small spatial scale. (In technical terms,
the approximation of a local scattering kernel in (B.13) is no longer appropri-
ate.) Also, the theory cannot describe Anderson localisation in 1D waveguides
with static noise [11]. This can be seen by working out the scattering kernel
with SV (q,∆E) = SV (q) δ(∆E):

2m

∫

dp′ SV (p′ − p) δ(p′2 − p2) [W (x, p′) −W (x, p)]

=
mSV (2p)

p
[W (x,−p) −W (x, p)] . (B.24)

We find a divergence of the scattering rate at p → 0 since the spectrum SV (2p)

is finite in this limit. The one-dimensional, static case therefore merits further
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investigation. We also mention that is has been found recently that Anderson
localisation is destroyed when time-dependent fluctuations are superimposed
on the static disorder [13, 14]. In this context, transport (or master) equations
similar to our approach have been used.

Acknowledgements. We thank S. A. Gardiner, S. Pötting, M. Wilkens, and
P. Zoller for constructive discussions. Continuous support from M. Wilkens is
gratefully acknowledged.

Appendix
Multiple scale derivation of the transport equation

The Schrödinger equation (B.1) gives the following equation for the Wigner
function

(∂t + p · ∇x)W (x,p) = (B.25)

− i

h̄

∫

dDq

(2πh̄)D
Ṽ (q, t) eiq·x

[

W (x,p + 1
2q) −W (x,p − 1

2q)
]

where Ṽ (q, t) is the spatial Fourier transform of the noise potential. Since this
potential is assumed weak and varies on a scale given by the correlation length
lc, we introduce the following scaling

Ṽ (qcu, t) =

∫

dDx e−iqcu·x/h̄V (x, t) = lDc η
βV̂ (u, t) (B.26)

where qc ≡ h̄/lc is the typical momentum width of Ṽ (q, t) and u is a dimen-
sionless vector. The parameter η is given by the ratio between the small scale lc
and the ‘macroscopic’ scale of the position distribution, the (positive) exponent
β remains to be determined. We assume η � 1 and make the multiple scale
expansion (B.12) for the Wigner function. Using the expansion (B.11) for the
spatial gradient, we get

[

∂t +
p

m
·
(

∇X +
1

lc
∇ξ

)]

(W0 + ηαW1) = (B.27)

− iηβ

qlc

∫

dDu

(2π)D
V̂ (u, t) eiu·x/lc [W (x,p + qcu/2)−W (x,p − qcu/2)]

We now take the limit η → 0, lc → 0 at fixed qc. The most divergent term on
the left hand side is the one with (1/lc)∇ξW0. It could only be balanced with
a term on the right hand side involving W0, but due to the small factor ηβ ,
this term cannot have the same order of magnitude. We must therefore require
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that (1/lc)∇ξW0 vanishes individually: the zeroth order Wigner function is
independent of the short scale variable ξ.

The next terms on the left hand side contain (ηα/lc)∇ξW1 and ∇XW0, while
on the right hand side the leading order is (ηβ/lc)W0. We look for a connection
between W0 and W1, and therefore, the left hand W1 term must be more diver-
gent than the W0 term. This is the case if ηαO(1/lc) � O(1/X) ∼ ηO(1/lc). We
thus conclude that α < 1. Comparing powers of η on the left and right hand
side, we find α = β, since the vector u and the scaled distance ξ are of order
unity. Therefore we get the equation

(

lc∂t +
p

m
· ∇ξ

)

W1(X, ξ,p) = (B.28)

− i

qc

∫

dDu

(2π)D
V̂ (u, t) eiu·ξ [W0(X,p + qcu/2) −W0(X,p − qcu/2)]

In the exponential, only the short length scale ξ = x/lc occurs. We thus find
that the large scale variable X is a parameter in this equation, and get a solution
via Fourier transforms with respect to ξ and t. In the spirit of the Markov
approximation, we take the slowly varying W0 (as a function of time) out of
the time integral

∫ ∞

−∞

dt eiωtV̂ (u, t)W0(. . . , t) ≈W0(. . . , t)V̂ [u, ω] (B.29)

where V̂ [u, ω] denotes the double space and time Fourier transform of the po-
tential. We note κ, ω the conjugate variables for the spatial Fourier transform
and find the following solution for the first order Wigner function

W1(X, ξ,p) = − i

qc

∫

dω

2π

∫

dDκ

(2π)D

eiκ·ξ−iωtV̂ [κ, ω]

iκ · p/m− ilcω + 0
× (B.30)

(W0(X,p + qcκ/2) −W0(X,p − qcκ/2))

The +0 prescription in the denominator is related to causality: it ensures that
the poles in the complex ω-plane are moved into the lower half plane, avoiding
a blow-up of W1.

This result will be inserted into the next order equation that also links W0

to W1:
(

∂t +
p

m
· ∇X

)

W0 =

− iη2α

qclc

∫

dDu

(2π)D
V̂ (u, t) eiu·ξ [W1(X, ξ,p + qcu/2) −W1(X, ξ,u− qcu/2)]

Note that this equation is scaled consistently if O(1/X) ∼ η2αO(1/lc) =
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η2α−1O(1/X). This determines the exponent α = 1
2 . The result is an equa-

tion for W0 only. We take the statistical average and make the factorisation

〈V̂ (u, t) V̂ [κ, ω]W0(X,p)〉 = 〈V̂ (u, t) V̂ [κ, ω]〉W0(X,p). (B.31)

This may be justified heuristically as follows: it seems reasonable that the sta-
tistical average can also be performed via ‘spatial coarse graining’, i.e., taking
an average over the small-scale fluctuations of the medium. This is precisely
the picture behind transport theory: the individual scattering events are not
resolved but only the behaviour of the matter wave on larger scales. The low-
est order Wigner function W0 may be taken out of the coarse grain average
because it does not depend on the short scale ξ by construction.

Finally, we introduce the spectral density Ŝ(u, ω) of the (scaled) noise po-
tential

〈V̂ (u, t) V̂ [κ, ω]〉 = (2π)DŜ(u, ω) eiωt δ(u + κ) (B.32)

This allows to perform the integration over κ when (B.30) is inserted
into (B.31). The result still contains a frequency integral where denominators
of the following form appear

1

i(u/m) · (p + qcu/2) − ilcω + 0
=

−iqc
Ep+qcu −Ep − h̄ω − i0

(B.33)

A second term contains the sign-reversed energy difference. These denomina-
tors ensure that the kinetic energy change occurring in the scattering is com-
pensated by a ‘quantum’ h̄ω from the noise potential.

We write the denominators (B.33) as a δ-function plus a principal part. For
the classical noise potential considered here, the power spectrum Ŝ(u, ω) is
even in ω, so that the δ-functions combine and the principal parts drop out. We
finally get

(

∂t +
p

m
· ∇X

)

W0 = (B.34)

η

h̄2

∫

dDu

(2π)D
Ŝ(u,∆E/h̄) [W0(X,p + qcu) −W0(X,p)]

where ∆E = Ep+qcu − Ep. It is easily checked that this is the transport equa-
tion (B.13), taking into account the relation between the scaled and non-scaled
noise spectra

ηl3c
h̄2 ŜV (u,∆E/h̄) = SV (qcu,∆E) (B.35)

that follows from (B.14) and (B.26).
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