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Abstract 

Different habitat models were created for the White Stork (Ciconia ciconia) in the region of 

the former German province of East Prussia (equals app. the current Russian oblast 

Kaliningrad and the Polish voivodship Warmia-Masuria). Different historical data sets 

describing the occurrence of the White Stork in the 1930s, as well as selected variables for the 

description of landscape and habitat, were employed. The processing and modeling of the 

applied data sets was done with a geographical information system (ArcGIS) and a statistical 

modeling approach that comes from the disciplines of machine-learning and data mining 

(TreeNet by Salford Systems Ltd.). 

Applying historical habitat descriptors, as well as data on the occurrence of the White Stork, 

models on two different scales were created: (i) a point scale model applying a raster with a 

cell size of 1 km2 and (ii) an administrative district scale model based on the organization of 

the former province of East Prussia. 

The evaluation of the created models show that the occurrence of White Stork nesting 

grounds in the former East Prussia for most parts is defined by the variables ‘forest’, 

‘settlement area’, ‘pasture land’ and ‘proximity to coastline’. From this set of variables it can 

be assumed that a good food supply and nesting opportunities are provided to the White Stork 

in pasture and meadows as well as in the proximity to human settlements. These could be 

seen as crucial factors for the choice of nesting White Stork in East Prussia. Dense forest 

areas appear to be unsuited as nesting grounds of White Storks. The high influence of the 

variable ‘coastline’ is most likely explained by the specific landscape composition of East 

Prussia parallel to the coastline and is to be seen as a proximal factor for explaining the 

distribution of breeding White Storks. 

In a second step, predictions for the period of 1981 to 1993 could be made applying both 

scales of the models created in this study. In doing so, a decline of potential nesting habitat 

was predicted on the point scale. In contrast, the predicted White Stork occurrence increases 

when applying the model of the administrative district scale. The difference between both 

predictions is to be seen in the application of different scales (density versus suitability as 

breeding ground) and partly dissimilar explanatory variables. More studies are needed to 

investigate this phenomenon. 
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The model predictions for the period 1981 to 1993 could be compared to the available 

inventories of that period. It shows that the figures predicted here were higher than the figures 

established by the census. This means that the models created here show rather a capacity of 

the habitat (potential niche). Other factors affecting the population size e.g. breeding success 

or mortality have to be investigated further. 

A feasible approach on how to generate possible habitat models was shown employing the 

methods presented here and applying historical data as well as assessing the effects of 

changes in land use on the White Stork. The models present the first of their kind, and could 

be improved by means of further data regarding the structure of the habitat and more exact 

spatially explicit information on the location of the nesting sites of the White Stork. In a 

further step, a habitat model of the present times should be created. This would allow for a 

more precise comparison regarding the findings from the changes of land use and relevant 

conditions of the environment on the White Stork in the region of former East Prussia, e.g. in 

the light of coming landscape changes brought by the European Union (EU). 

 

Zusammenfassung 

In dieser Arbeit wurden verschiedene GIS-basierte Habitatmodelle für den Weißstorch 

(Ciconia ciconia) im Gebiet der ehemaligen deutschen Provinz Ostpreußen (ca. Gebiet der 

russischen Exklave Kaliningrad und der polnischen Woiwodschaft Ermland-Masuren) erstellt. 

Zur Charakterisierung der Beziehung zwischen dem Weißstorch und der Beschaffenheit 

seiner Umwelt wurden verschiedene historische Datensätze über den Bestand des 

Weißstorches in den 1930er Jahren sowie ausgewählte Variablen zur Habitat-Beschreibung 

genutzt. Die Aufbereitung und Modellierung der verwendeten Datensätze erfolgte mit Hilfe 

eines geographischen Informationssystems (ArcGIS) und einer statistisch-mathematischen 

Methode aus den Bereichen „Machine Learning“ und „Data-Mining“ (TreeNet, Salford 

Systems Ltd.). 

Unter Verwendung der historischen Habitat-Parameter sowie der Daten zum Vorkommen des 

Weißstorches wurden quantitative Modelle auf zwei Maßstabs-Ebenen erstellt: (i) auf 

Punktskala unter Verwendung eines Rasters mit einer Zellgröße von 1 km und (ii) auf 

Verwaltungs-Kreisebene basierend auf der Gliederung der Provinz Ostpreußen in ihre 

Landkreise.  
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Die Auswertung der erstellten Modelle zeigt, dass das Vorkommen von Storchennestern im 

ehemaligen Ostpreußen, unter Berücksichtigung der hier verwendeten Variablen, maßgeblich 

durch die Variablen ‚forest’, ‚settlement area’, ‚pasture land’ und ‚coastline’ bestimmt wird. 

Folglich lässt sich davon ausgehen, dass eine gute Nahrungsverfügbarkeit, wie der 

Weißstorch sie auf Wiesen und Weiden findet, sowie die Nähe zu menschlichen Siedlungen 

ausschlaggebend für die Nistplatzwahl des Weißstorches in Ostpreußen sind. Geschlossene 

Waldgebiete zeigen sich in den Modellen als Standorte für Horste des Weißstorches 

ungeeignet. Der starke Einfluss der Variable ‚coastline’ lässt sich höchstwahrscheinlich durch 

die starke naturräumliche Gliederung Ostpreußens parallel zur Küstenlinie erklären. 

In einem zweiten Schritt konnte unter Verwendung der in dieser Arbeit erstellten Modelle auf 

beiden Skalen Vorhersagen für den Zeitraum 1981-1993 getroffen werden. Dabei wurde auf 

dem Punktmaßstab eine Abnahme an potentiellem Bruthabitat vorhergesagt. Im Gegensatz 

dazu steigt die vorhergesagte Weißstorchdichte unter Verwendung des Modells auf 

Verwaltungs-Kreisebene. Der Unterschied zwischen beiden Vorhersagen beruht vermutlich 

auf der Verwendung unterschiedlicher Skalen und von zum Teil voneinander verschiedenen 

erklärenden Variablen. Weiterführende Untersuchungen sind notwendig, um diesen 

Sachverhalt zu klären.  

Des Weiteren konnten die Modellvorhersagen für den Zeitraum 1981-1993 mit den 

vorliegenden Bestandserfassungen aus dieser Zeit deskriptiv verglichen werden. Es zeigt sich 

hierbei, dass die hier vorhergesagten Bestandszahlen höher sind als die in den Zählungen 

ermittelten. Die hier erstellten Modelle beschreiben somit vielmehr die Kapazität des 

Habitats. Andere Faktoren, die die Größe der Weißstorch-Population bestimmen, wie z.B. 

Bruterfolg oder Mortalität sollten in zukünftige Untersuchungen mit einbezogen werden. 

Es wurde ein möglicher Ansatz aufgezeigt, wie man mit den hier vorgestellten Methoden und 

unter Verwendung historischer Daten wertvolle Habitatmodelle erstellen sowie die 

Auswirkung von Landnutzungsänderungen auf den Weißstorch beurteilen kann. Die hier 

erstellten Modelle sind als erste Grundlage zu sehen und lassen sich mit Hilfe weitere Daten 

hinsichtlich Habitatstruktur und mit exakteren räumlich expliziten Angaben zu Neststandorten 

des Weißstorches weiter verfeinern. In einem weiteren Schritt sollte außerdem ein 

Habitatmodell für die heutige Zeit erstellt werden. Dadurch wäre ein besserer Vergleich 

möglich hinsichtlich erdenklicher Auswirkungen von Änderungen der Landnutzung und 

relevanten Umweltbedingungen auf den Weißstorch im Gebiet des ehemaligen Ostpreußens 

sowie in seinem gesamten Verbreitungsgebiet. 
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1 Introduction 

1.1 Objectives 

White Storks that nest in the former East Prussia are part of the Masurian-Baltic core 

population. This region shows a very high density in nesting (more than 10 nesting pairs per 

km2 in the overall region and even 30 nesting pairs per 100 km2 in the Polish section, 

Schimkat 2006). This finding contrasts the situation of the White Stork in large areas of 

Western Europe where the number of successfully nesting White Storks has been severely 

diminished due to human interference into nature by irrigation, monocultures and intensive 

agriculture (e.g. Dallinga & Schoenmakers 1987, Johst 2001). Thus, the question arises which 

environmental factors and conditions in East Prussia (in the past and in the present) have 

made this region such a successful nesting ground for the White Stork? And are there 

differences within the region or when exploring different scales? 

Man has long shown a keen interest in the White Stork (Blotzheim 1987, Creutz 1988). From 

early on, the annual arrival times in the nesting grounds or the number of nests were recorded. 

The first large-scale inventory in parts of Poland was exercised as early as 1876 (Profus 

2005). In the region of former East Prussia a first inventory was done in 1905 (Braun 1908, 

Schüz 1933). A first international census of the White Stork population of many European 

countries took place in 1934 and was repeated almost continuously at decadal intervals. Thus, 

comprehensive data material on the development of White Stork populations is available 

which has been extended by a variety of surveys, e.g. on the ecology of food supply (e.g. 

Böhning-Gaese 1992, Bairlein & Henneberg 2000) or on the migration behavior of the White 

Stork (e.g. van den Bossche et al. 2002, Berthold et al. 2004, Chernetsov et al. 2004). 

An increasing digital availability of data sets (see Hüttmann 2005) on the biotic and abiotic 

characters of the landscapes, and in connection with GIS and statistical methods provide a 

significant modeling opportunity of demands species claim of their environment. Only in the 

last few years powerful methods in statistics were developed which show promising results in 

their applications, especially in regards to species-habitat-relationships (Elith et al. 2006). 

These methods originate, in part, from the disciplines of machine-learning and data mining 

and can even cope with faulty and opportunistic data. That makes them important tools in the 

interpretation of historic data, for which the method of assuring the data details often can no 



1Introduction 

 2

longer to be completely reconstructed. That is why faults, and a valid inference from such 

data, are so difficult to assess (Engler et al. 2004, Elith et al. 2006). 

In this study, for the first time, a habitat model for the White Stork was created using GIS and 

advanced modeling techniques. Furthermore, the changes in land use and its effects on the 

White Stork in the former province of East Prussia were to be investigated. So, the following 

goals were defined: 

 Creation of habitat models applying different historical opportunistic data sets 

 Investigation of two different scales (point scale as well as administrative district 

scale) 

 Evaluation of the performance of the applied historic data sets for the ecological 

modeling 

 Inferring important factors on the habitat of the White Stork 

 Predicting the distribution of the White Stork for the period 1981 to 1993 based on the 

models created 

 Comparison of the historic models applying the population estimates and the results of 

available population inventories 

Especially in regards to the eastern expansion of the European Union and the admission of the 

currently Polish part of East Prussia into the European Union these issues gain crucial 

importance for the protection and conservation of the White Stork populations in Eastern 

Europe. So it is that Schulz (1999) understands the introduction of modern agricultural 

methods and the accompanying negative ecological by-products as a threat to the White Stork 

(see also Tryjanowski et al. 2006). If the repercussions are to be recognized and possibly 

countervailed, it requires a comprehensive investigation and understanding of the quantitative 

relationship between the White Stork and the habitat. 
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1.2 The region of the former East Prussia 

1.2.1 Location of the study area 

The region of the former Prussian province of East Prussia is situated between the 53rd and 

the 56th northern latitude, and the 18th and 23rd eastern longitude. In the north it borders on 

the Baltic Sea and the River Neman (‘Memel’), in the West on the Rivers Nogat and Vistula 

(‘Weichsel’) and in the East on Lithuania. In the South, the former province stretched to the 

southern tip of the Masurian Lakes Platteau (‘Masurische Seenplatte’). From 1922 to 1939 

East Prussia covered an area of 36,992 km2 having approx. 2.5 million inhabitants in the year 

1939 (Barran 1988). The capital of the province was Königsberg. 

 

1.2.2 Brief geographical classification of the natural landscape 

The landscape of East Prussia was mainly formed by the inland ice masses of the glacial age. 

The Baltic coast in the north of East Prussia is shaped by the Vistula Lagoon (‘Frisches Haff’) 

and the Courland Lagoon (‘Kurisches Haff’) with their off-shore spits, covered with dunes as 

well as the steep coast of the Sambian Peninsula (up to 61m high) positioned between both 

lagoons. Adjacent, an undulating stretch of land can be found, dispersed by isolated moraine 

mounds. Further south and almost parallel with the Baltic coastline is the Baltic land ridge 

with the Masurian Lakes Plateau. On average, it has an altitude of 100 to 150 m above sea 

level. Individual hill ranges such as the ‘Seesker Berge’ south of Goldap or the ‘Kernsdorfer 

Höhen’ near Osterode exceed 300 m above sea level. The highest elevation is the actual 

‘Kernsdorfer Höhe’ (313 m above sea level). South of the ridge extensive sandy areas stretch 

out, e.g. ‘Johannisburger Heide’. Fertile low lands characterize the country side along the 

underflows of the three main rivers Nogat, Pregel and Neman. 

The climate in East Prussia is continental, having cold winters and dry hot summers. Only on 

the coast a narrow stretch with oceanic influence can be found. This is reflected in its slightly 

higher annual precipitation and milder temperatures. The average annual temperature reads 

5.9 °C in Treuburg, located at the Masurian Lake Plateau in the southeast of East Prussia, and 

7.2 °C in Königsberg located near the coast (Rohde 1957). According to Barran (1988), the 

average annual precipitation is 500 to 608 mm. On average, the period of vegetation lasts for 

220 days per year (Schumacher 1977). 
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The former province of East Prussia is positioned in the vegetation zone of the green 

deciduous and mixed (deciduous and coniferous) forests. In 1939, there were approx. 700,000 

hectares of forest, more than 540,000 of it was coniferous (Barran 1988). Large forest areas 

were found on the heights of the land ridge in the southern part of the province. Predominant 

types of tree species were the Pine tree (Pinus) and the Spruce (Picea). In the northern part of 

the country, especially in Sambia (‘Samland’) and along the Courland Lagoon, large forests 

could be found in which the Alder (Alnus) dominated in marshy areas (Rohde 1957). 

In the south of the former province of East Prussia soils are found with a high sand content 

(Schüz 1933); they are occasionally used for some root crops or forestry. Best suited for 

agriculture and meadows are the soils which are located in the central and in the north of East 

Prussia (Rohde 1957). 

 

1.2.3 Administration of the region and its changes 

In the course of its eventful history, East Prussia experienced several major changes in its 

administrative boundaries and its nationality, among others, due to wars. A short overview of 

the region’s history high-lights the difficulties encountered in the definition of the region to be 

investigated, and in the acquisition of consistent and sound statistical data on the White Stork 

population. 

In the years 1920 to 1939 the province of East Prussia consisted of the four administrative 

districts Königsberg, Gumbinnen, Allenstein and West Prussia (Figure 1.1). East Prussia 

belonged to the German Reich but as a consequence of World War I it was isolated from it by 

the ‘Polish Corridor’ since 1919. After the Second World War, East Prussia was divided into 

a Russian and a Polish sector. The border ran through the former counties of Heiligenbeil, 

Preußisch Ehlau, Bartenstein, Gerdauen, Darkehmen and Goldap. The Polish part makes up 

about 2/3 of the original extent of land area and was awarded to the newly founded 

voivodships Gdansk (Danzig), Olsztyn (Allenstein) and Suwalki. After the administrative 

reform of 1975 the Polish East Prussia was divided into the new voivodships Elblag, Olsztyn, 

Ciechanów and Suwalki. Since the repeated reform of the regions, fixed for the 1st January 

1999, the area of the former province East Prussia encompasses nearly the entire voivodship 

Warmia-Masuria with its capital Olsztyn. The northern part of the former province of East 

Prussia today forms the Russian oblast Kaliningrad with its capital Kaliningrad. After the 

disintegration of the Soviet Union this oblast is now a Russian exclave and a free trade zone. 
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On the 1st of May 2004 Poland joined the European Union and now adheres to the land 

management of the EU and agricultural policies. 

 

Figure 1.1:  East Prussia and its administrative districts as in 1937, the thick line shows 

the division into a Russian part (north) and a Polish part (south) after 

World War II (http://www.mpichard.ca/ostpreussen.htm, downloaded 

March 2007) 

 

1.2.4 Land use and population in the former East Prussia 

With the development of the kingdom of Prussia under the reign of Emperor Frederick I at the 

beginning of the 18th century, East Prussia experienced a cultural and economic boost. Many 

colonists of German origin and immigrants from Polish and Lithuanian regions as well as 

religiously motivated refugees from other parts of Europe settled in this region earlier 

deserted by the plague and warfare, new settlements were founded and compulsory education 

was introduced (Schumacher 1977). The main sources of income and business were in 

agriculture and forestry sectors. 

The East Prussian agriculture was generally organized in large manorial farms. According to 

the statistical year book for the German Reich from 1928 (Hertz-Eichenrode 1969) over 70 % 



1Introduction 

 6

of the farms managed more than 20 hectares of ground, large manors with more than 100 

hectares owned 39.2 % of the farmland of East Prussia. The average farm in the German 

Reich had about half that size with 20.2%. Cattle farming became another important source of 

income, since it was widely independent of unexpected climatic impairment which 

traditionally led to a collapse in the crop yield. Thus, more and more cropland was used for 

the growing of forage plants and as meadows and pastures. Industry concentrated mostly on 

the processing of agricultural produce, and was only more widely developed in the larger 

cities of Königsberg, Elbing, Tilsit and Allenstein. Also, the level of urbanization was very 

low. In 1925, 61% of the population (of East Prussia) lived in communities with less than 

2,000 inhabitants compared to 36% in the whole German Reich (Hertz-Eichenrode 1969). 

Even with the beginning of industrialization little changed due to the lack of natural resources 

(coal deposits) and the dominance of the agricultural structure. In the year 1933 still more 

than half the population was occupied in agriculture. In addition to this came the geographical 

separation of the region from the German Reich after the First World War in 1919, which 

weakened the competitiveness of the already frail economy through additional costs for 

transport (Hertz-Eichenrode 1969). For several years after the First World War the crop was 

lower than in 1914. Agriculture was not further intensified. Fertilization was only rarely 

applied. In many places the contingent of pastures rose in comparison to the crop land, since 

the cultivation of grain was too risky due to the poor sales potential. In 1936, 47.2 % of the 

total area of East Prussia was used as crop land, 20 % as pastures and 19.3 % as forest acreage 

(Statistisches Handbuch für die Provinz Ostpreußen 1938). So overall, East Prussia remained 

rurally structured with less intensified agriculture than in the western parts of the German 

Reich. Highly structured ecosystems which sustained a high abundance of species were 

conserved (Peterson et al. 1999). After the Second World War East Prussia was divided into a 

Russian and a Polish part (Figure 1.1) and the original population was nearly completely 

driven out. 

Since then, the Russian part has been named Kaliningrad region. It was nearly completely 

resettled by people from other Soviet republics. The number of settlements decreased by more 

than half from 2,500 settlements and approx. 1,000 individual farms in the year 1898 to 1,126 

settlements in the year 1989 (Grishanov 1989/90). Most likely that means that the villages 

were abandoned, but the overall footprint remained in the landscape. Agriculture was led into 

the system of collective farming (kolkhoz and sovkhoz) and managed according to the 

Russian requirements of the command economy, whereby the integration into the supplies of 

the whole of the USSR was of prime importance and no consideration was given to regional 
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demands or special features. From the 1980s onwards, the economy stagnated and attempts to 

revive it were in vain. With the comedown of the communism and consequential political 

change in 1989/90 the oblast of Kaliningrad became a Russian exclave. On the base of 

privatization and structural development the transformation to a free market economy took 

place (Galcov 1999).  

The human population of the Polish part was also nearly completely exchanged after the 

Second World War. However, no agricultural reform was undertaken as the case in the Soviet 

Occupied Territory. The manorial farms were socialized, but the old land marks remained in 

the landscape. After the decline of socialism in Poland in 1990, however, the governmental 

financial support was completely stopped so that many of these farms faced ruin. Formerly 

farmed fields were abandoned or altered to pasture, as (Tryjanowski et al. 2005) reported for 

the Podhale region in Southern Poland for instance.  

 

1.3 The White Stork (Ciconia ciconia) 

1.3.1 Distribution and habitat of the White Stork 

The breeding ground for the European subspecies of the White Stork Ciconia ciconia ciconia 

stretches from western North Africa across Europe right up to Western Asia. The limit of its 

expansion stretches from Denmark (up to 1938 also southern Sweden; now a region 

abandoned by White Storks) across the southern coast of the Baltic Sea up to the Finnish 

Gulf, then south to the Crimea along the Black Sea to Greece, Turkey, Iran and the Iraq. In 

the west the White Stork breeds on the Iberian Peninsula and in the North African countries of 

Morocco, Algeria, and in Tunisia south of the Sahara (Blotzheim 1987, Frenz 1995). 

Originally, this species occurred almost in the entire region described above, but middle 

Europe between France and West Germany is now only scarcely populated by breeding White 

Storks (Figure 1.2). Reasons for such declines are discussed e.g. in Creutz (1988). 

A subspecies of the White Stork, the Asian White Stork Ciconia ciconia asiatica, finds its 

habitat in Central Asia between Lake Aral and the Province of Sinkiang in Western China 

(Frenz 1995). 
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Figure 1.2: Distribution of the White Stork in its breeding ground  

(http://www.nabu.de/m05/m05_03/01450.html, downloaded July 2006) 

In order to forage, the White Stork prefers open habitat with low-growing vegetation and 

sufficient food supply as to be found e.g. in plain tracts or irrigated terrain. Presently, it makes 

use of cultivated land such as short-tufted pastures and extensively exploited or fallow fields 

in its search for food (Blotzheim 1987). Due to its demands on the habitat it occurs mainly in 

the low lands. However, Creutz (1988) points out a number of breeding occurrences in higher 

altitudes. Especially in the Near East the White Stork has been traced at an altitude of 2,500 

meters. The author comes to the conclusion that the influence of abundance in food is more 

important than that of the climate. 

The White Stork mainly feeds on small mammals such as mice and moles, frogs, reptiles, 

insects, earthworms and fish. It also preys on carrion (Blotzheim 1987). 

In areas densely populated by the White Stork, it often breeds in concentrations resembling 

colonies. Profus (2005) mentioned an accumulation of 47 pairs of breeding White Storks at 

the village of Lwowiec in Southern Poland in the year 2004. The nests were originally built 

on rocks or large solitary trees with strong branches, as it can still be seen in many places in 

North Africa and Southern Europe. However as a bird typically settling in cultivated areas 

these days, it usually places its nests, which are often used for several decades, on high-rising 

buildings, moreover on power pylons and other kinds of poles (Schulz 1993). Often, the 

White Stork is offered artificial nesting bases on buildings and on trees to serve as a 

substructure for its nest. 
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1.3.2 Population assessments in East Prussia for nesting White Storks 

The first organized count of the White Stork breeding population in East Prussia took place as 

early as 1905. It was done by the fauna section of the physical-economical society 

(faunistische Sektion der physikalisch-ökonomischen Gesellschaft). It showed 13,565 nests 

occupied in the province of East Prussia in the historic borders of 1905 (Braun 1908). Another 

count was exercised in the year 1912, however, unfortunately no results were published due to 

the start of the First World War two years later (Schüz 1933). Another official assessment was 

carried out in 1931 by the local police force at the order of the Governor Supreme of the 

Province of East Prussia. In the year 1934 a first international inventory was exercised under 

the auspices of the ICBP (International Council for Bird Protection) enabling an overview of 

the population of the White Stork in large areas of Europe. In its entire breeding grounds 

approx. 46, 000 pairs were counted, 16,600 (=36%) of which in East Prussia alone (see Schüz 

1936). In the county of Insterburg the population was surveyed by Hornberger in 1931, and 

then annually from 1933 to 1942 (Hornberger 1943). Profus (2005) later estimated approx. 

8,700 breeding pairs for the Polish region in the year1934; however these numbers were not 

presented spatially explicit, e.g. with a map. In the 1950s and 1960s the White Stork 

population apparently declined severely, but revived again by about 1970. Counts repeated 

within the international White Stork census in the Polish region of former East Prussia took 

place in 1974 and 1984, and showed approx. 7,600 pairs and 7000 pairs counted. For the 

present Polish voivodship of Warmia-Masuria, which more or less comprise the Polish part of 

East Prussia, 8,200 to 8,600 pairs of White Stork were counted in a further international 

census in the years 1994/95 (Profus 2005). For the northern part of former East Prussia, 

today’s Russian exclave of Kaliningrad, 8,000 pairs of White Stork were additionally 

assumed for 1934 (Hinkelmann 1995). Population assessments in the years 1974/75 showed a 

significant decline down to 855 to 1116 breeding pairs and 1255 breeding pairs in the years 

1985 to 1989 (Grishanov 1989/90). 

Due to repeated alterations in the administrative boundaries exact comparisons are 

impossible, however, unless nest densities are provided. 
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1.4 Habitat models 

Habitat models help to characterize the relation of a species to its environment; they describe 

the ecological niche in quantified terms (Guisan & Zimmermann 2000). They can be 

expressed as spatially explicit static models which describe the condition in a limited area at a 

specific point in time (e.g. Manly et al. 2002, Schröder & Reineking 2004). The predictive 

modeling of species distribution is a common technique, applied in the disciplines of ecology, 

biogeography, evolution, conservation biology and climate change research for instance 

(Guisan & Thuiller 2005). 

With regard to the statistic modeling of the distribution of animal species the term Resource 

Selection Functions (RSF) is frequently used. The concept of a RSF is defined as any 

mathematical function that is proportional to the probability of use of an available resource or 

area by an organism (Austin 2002, Manly et al. 2002). However, there is a larger overlap of 

this concept with species distribution models developed by plant ecologists (Guisan & 

Zimmermann 2000, Boyce et al. 2002). 

For developing habitat models, presence/absence data is mostly applied as response variables. 

However, presence-only data (or rather presence/available data) as well as density or relative 

abundance can be modeled, too. As an output one receives maps of a relative index of 

occurrence, which depict the statistical probability of appearance or rather the incidence, i.e. 

the appearance or non-appearance, of the species in delimited homogenous research units 

(Schröder & Reineking 2004). 

The number of habitat predictors to be consulted in the description of species-habitat relations 

can be very large and dependent on the species to be modeled. To describe a habitat, 

topographic (elevation, slope, aspect), climatic (precipitation, temperature), biotic (vegetation, 

predation, competition), anthropogenic factors (population density, land use, fragmentation), 

the structure of the landscape, etc. can be used. In advance, and based on theoretical and 

biological considerations, one must decide on these features, which is also influenced by the 

research design, availability, and sometimes even the convenience in the investigation of the 

data. Such decisions should be made in accordance to the hypothesis tested and the 

appropriate research design (Burnham & Anderson 1998, Manly et al. 2002). Depending on 

the position of the habitat factors in the chain of causation that would link them to the species 

under investigation, Austin (2002) distinguishes between proximal (close causal correlation) 

and distal (minor causal correlation) factors. Furthermore, the same author distinguishes 
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resource (nutrients, water, light consumed by the organism), direct (environmental parameters 

with physiological relevance like temperature, pH) and indirect factors (variables without 

direct physiological relevance like slope, aspect, elevation). Indirect variables are often more 

readily measured and can replace combinations of resources and direct variables (Guisan & 

Zimmermann 2000). Since they often describe the existing patterns well, they are frequently 

used in modeling. Their disadvantage is that they describe well the relations between species 

and environment within the region for which the model was developed, in other regions, 

however, the indirect variables may contain different combinations of resource and direct 

gradients (Guisan & Zimmermann 2000). Models based on proximal resource and direct 

gradients are assumed to be among the most robust and widely applicable (Franklin 1995, 

Austin 2002). 

One assumption in statistical habitat modeling is that the species to be modeled is in (pseudo-) 

equilibrium with the environment or rather that any change shows slow progress in 

comparison to the life span of the organism (Guisan & Zimmermann 2000, Austin 2002, 

Manly et al. 2002). Invasive species are an example for species which are usually not in 

equilibrium with their newly inhabited area, but are still in their dispersal stage (Guisan & 

Thuiller 2005). Since habitat models are estimated on the basis of distribution survey data of 

the species in a certain area, as a rule, they can describe merely a realized niche of that species 

in the specific area, i.e. biotic interactions and competitive exclusion are implicitly 

incorporated in the models (Guisan & Zimmermann 2000). Underlying processes e.g. 

competition, migration, predation and even succession for the most part can usually not be 

quantified, although they sometimes penetrate the model as predictors (see Austin 2002 for 

examples). This makes the transferability (generalizability) of models to other regions with 

possibly different biotic interactions for the species more difficult. Austin (2002) however 

also points out that parts of the distribution area of a species can also be sink-areas (source-

sink model see Pulliam 1988), in which the species does not experience optimal habitat 

qualities and the population can only be sustained by immigration from source areas. In this 

case, the model would describe a mixture of realized niche and sink areas. Guisan & Thuiller 

(2005) point out that for the modeling of the distribution of plants it is not sufficient to exploit 

mere presence/absence data but in fact observations of the species as presence locations are 

necessary in which the species reproduces and so depicts the habitat as suitable for the 

preservation of the species. 
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“Nature is too complex and heterogeneous to be predicted accurately in every aspect of time 

and space from a single, although complex, model” (Guisan & Zimmermann 2000). Models 

for the description of species–habitat relations merely offer assumptions on the causal 

backgrounds to be verified by experimental research (Schröder 2000). Manly et al. (2002) 

points out that RSFs are correlational. They require detailed experiments to obtain the 

mechanistic link. 

The model building process is usually divided into five steps by (Guisan & Zimmermann 

2000): conceptual model formulation, statistical model formulation, model calibration, model 

prediction and model evaluation. Furthermore, an overview is given showing the multitude of 

statistical methods which could be exploited in the modeling (see also Segurado & Araujo 

2004, Schröder & Reineking 2004, Elith et al. 2006). The mathematical algorithm applied to 

fit a RSF in this thesis is to be found in the region of data mining, and will be explained more 

closely in the following chapter. Here model evaluation is to be dealt with more explicitly, 

since it is an important factor which is often neglected (Fielding & Bell 1997). 

 

Figure 1.3: Successive steps of the model building process (published in Guisan & 

Zimmermann 2000) 

The evaluation of a model offers an objective assessment of the prediction accuracy as well as 

a test of the area of validity, i.e. to what degree models can be applied to other areas and other 

periods of time. Beside the assessment of the adaptation of the model to the training data, the 

most important quality of the evaluation according to Boyce et al. (2002) is how accurately 

the model predicts the incidence of organisms. The determination of the accuracy of 



1Introduction 

 13

predictions is directly connected to the error rate (Guisan & Zimmermann 2000), calculated 

by the comparison of the predicted values with the observed values of a test data set. In a 

presence/absence model two different errors can occur (Fielding and Bell 1997): (i) prediction 

of an occurrence with observed non-occurrence (false positive (FP) or Type I error) and (ii) 

prediction of a non-occurrence with observed occurrence (false negative (FN) or Type II 

error). The causes might be limitations imposed by the classification algorithm, the data 

gathering process (algorithmic errors), the actual biological data processing, or the lack of 

specifying all of the ecologically-relevant processes (biotic errors) (Fielding & Bell 1997). 

Robust measures for the evaluation of a model apply an independent data set (Fielding & Bell 

1997, Pearce & Ferrier 2000), gathered at a different time or in a different area. If only one 

data set is available for the development and testing of the model, it is usually partitioned into 

a training (also learning) and a testing (also validation) data set. Especially with small data 

sets a partitioning usually does not make sense, so that bootstrap or resampling methods as 

well as cross-validation get applied instead. Fielding & Bell (1997) as well as Guisan & 

Zimmermann (2000) give further a review of data partitioning methods. However, only with 

an independent data set can the scope of the model for other regions and periods of time truly 

be assessed. The evaluation of the model with the same data set than the one used for the 

development of the model depicts merely the discriminatory power of the model as it 

concerns occurrence and non-occurrence in the limited area (Guisan & Zimmermann 2000). 

For the assessment of the performance of a presence-absence model a confusion matrix, 

widely used in Remote Sensing, is frequently calculated that cross-tabulates the observed and 

predicted presence/absence patterns (Fielding & Bell 1997, Pearce & Ferrier 2000). If the 

model offers an occurrence probability as its output, this must be transformed again into 

presence and absence data applying a threshold value. Taken from the confusion matrix 

different measures can be calculated (explained, as well as their limitations discussed, in 

Fielding & Bell 1997). Measures taken from there and applied in the paper at hand are the 

correct classification rate (share of correctly classified cases in total), sensitivity (share of 

actual occurrence, correctly classified) and specificity (share of actual non-occurrence 

correctly classified). They were selected since they are often employed and so can provide a 

basis for a (limited) comparison of different models. A threshold-independent unbiased 

discrimination index can be derived from the definition of the Receiver Operating 

Characteristic (ROC)-Curve (Pearce & Ferrier 2000). For the generation of the curve, the 

sensitivity for every possible threshold is marked on the y-axis against the reading ‘1-

specificity’ on the x-axis. The area under the curve (AUC) serves as the metric of the 

performance of the model. Readings between 0.5 (prediction of a constant probability) and 
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1.0 (perfect distinction between occurrence and non-occurrence) can be achieved. Although 

one should be careful in the interpretation of thresholds in biological applications, Hosmer & 

Lemeshow (2000) specify the following values for assessing the classification quality of the 

AUC readings: 

0,7 ≤ AUC ≤ 0,8 = acceptable 

0,8 ≤ AUC ≤ 0,9 = excellent 

0,9 ≤ AUC = outstanding. 

However, if only presence-only data is available for the evaluation of a model, none of the 

methods applied by default for the estimation of the quality of the model can be utilized 

(Guisan et al. 2006a). Boyce et al. (2002) suggests applying a Spearman-Rank Correlation 

with the area adjusted frequency of the testing data set. But this approach does not offer a 

chance to compare the performance of different models, and merely shows how well model 

predictions are related to the probability of occurrence (Pearce & Boyce 2006). 

An evaluation method worthwhile to consider is the one carried out in Engler et al. (2004), 

which is the calculation of the minimal predicted area (MPA). In this method, the predicted 

value above which 90 % of the occurrences were observed is used as a classification threshold 

to transform the predicted values for the whole habitat suitability map into presence and 

absence. The minimal predicted area equals the area of all cells containing the value 1 

(presence locations). The MPA can be used for a comparison among different models. A 

model predicting a relatively small potential area of occurrence while still containing a 

maximum number of observed species presence locations is considered a good model (Engler 

et al. 2004). 

 

1.4.1 TreeNet algorithm 

For the predictive modeling a machine learning algorithm called TreeNet was used, the 

software is offered by Salford Systems Ltd. (http://www.salford-systems.com). TreeNet is a 

tree-based computational method within the realms of data mining, and presents one among 

the many modeling algorithms in the statistical modeling toolbox (see Elith et al. 2006 for 

overview). TreeNet reaches among the most powerful algorithms known to date, and it is well 

known and described in the machine-learning and statistical model community (Hastie et al. 

2003). One of its strength is that it is non-parametric and that it can be used for regression as 
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well as classification problems, with continuous and/or categorical predictors. Correlated 

variables do not present a problem for algorithms like TreeNet neither. The underlying 

mechanism used for building the model is called stochastic gradient boosting which was 

developed and is described by Friedman (1999). The behavior of these algorithms is well 

known, adding confidence to these methods. They prove very powerful and are likely playing 

a major role in future modeling applications worldwide (Elith et al. 2006, Hubley et al. in 

press). 

A model constructed with TreeNet can consist of a large number (up to several thousand) of 

trees. The approximation to any function can be written as 

F(X) = F0 + β1T1(X) + β2T2(X) + … + βMTM(X)  

where each Ti is a small tree (for more detail see Salford Systems Ltd. 2003). The 

approximation is built up stagewise and every single tree is constructed on the residuals of the 

previous tree. The individual trees of a model have the same fixed size (predetermined by the 

user). It depends on the individual dataset and its characteristics which amount of nodes 

performs best. Sizes usually used by TreeNet experts range from 2 to 12 nodes (Salford 

Systems Ltd. 2003). Models constructed with only 2-node trees, referred to as ‘stumps’, 

involve only one variable per tree and thus do not detect interactions between predictors 

(Hastie et al. 2003). However, they can be rather useful for finding generalizations in data. 

Several mechanisms can help to prevent the learning algorithm to ‘overfit’ the model to the 

data which might in many cases not improve the predictive validity of the model, but 

deteriorate the generality by fitting less relevant esoteric aspects of the training data. This is 

achieved in the following way: First the dataset is divided into training and testing subsets. 

The model constructed only on the training data is applied to the test data. At the point where 

the error rate of the test data (percentage of incorrectly classified observations) re-increases 

the model process stops. Furthermore, never all the training data is used at any given time. A 

sub-sample fraction of the training dataset is randomly drawn for every single tree (but other 

options to sub-sample a training set from the overall data set exist in TreeNet as well). 

Likewise, usually a tiny learning rate is used (referred to as shrinkage in Friedman 1999, 

Hastie et al. 2003). This means that the model prediction changes by very small amounts in 

each training cycle.  

TreeNet is often referred to as a ‘black-box’, and therefore it was widely rejected by biologist. 

However, there are several advantages of TreeNet compared with other techniques that are 
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often used for building habitat models such as Generalized Linear Models (GLM) or 

Discriminant Function Analysis (DFA): (i) It automatically selects the important predictor 

variables thus no prior variable selection or data reduction is required, (ii) the results are 

invariant with regards to modifications of the data such as transformation or rescaling, (iii) the 

approach handles missing values automatically and in the best possible way, and (iv) it is 

immune to outliers in predictors or the target variable, i.e. if samples are coded incorrectly 

and the model prediction starts to diverge substantially from observed data, that data will not 

be used in further updates, and (v) it can be learned and applied very quickly by users. 

TreeNet constructs models convenient and without time-consuming pre-processing of the 

data. Furthermore, it is remarkably resistant to overfitting. Hastie et al. (2003) calls the 

approach of multiple additive regression trees, which TreeNet is based on, an effective off-

the-shelf procedure for data mining. Further, and because TreeNet can be used in a huge 

variety of applications beyond data mining, modeling and multiple regressions Salford 

Systems Ltd. refers to TreeNet as “the closest tool we have ever encountered to a fully 

automated statistician” (Salford Systems Ltd. 2003). 

Because of the complexity of the models and the potential non-linear relationship between 

predictors and response a shortcoming of machine learning algorithms is usually the lack of 

interpretability. But TreeNet provides a visualization of the influence of every single predictor 

with so-called partial dependence plots. Partial dependence functions represent the effect of a 

predictor after accounting for the effects of the other variables on the outcome (Hastie et al. 

2003). TreeNet assists with 2D and 3D plots showing the effect of one single predictor and a 

pair of predictors respectively on the predicted response. In a resource modeling context, 

these plots might be described as Habitat ore Food Use functions, or when done with the 

appropriate research design taking resource availability into account, Resource Selection 

Function (RSF, Manly et al. 2002). Together with its speed and convenient data handling, this 

makes TreeNet an ideal tool for data exploration and for following up analysis in more detail. 

Despite all these advantages, it is surprising to see that in the general wildlife and ecology 

literature no examples applying TreeNet to develop habitat models can be found up to now 

(but see Gräber 2006, Hubley et al. in press). Therefore, this thesis shows new methods and 

approaches for the scientific investigation of traditional problems. 
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2 Material and Methods 

2.1 Habitat model at the point scale 

2.1.1 Environmental data at the point scale 

For the historical model, the characterization of the landscape structure was done using 

historical topographical maps that had a scale of 1:100,000. In order to describe the habitat in 

the years 1981-1992 the freely available Baltic Sea GIS online data was used (see section 

2.1.1.2). Furthermore, a digital elevation model (DEM) derived from the GLOBE data set (see 

section 2.1.1.4) and a digital coastline data set extracted from the freely available online 

World Vector Shoreline data set (WVS, see section 2.1.1.3) was used in addition to the 

historical data set, as well as for the prediction made for the period 1981-1992. 

 

2.1.1.1 Historical topographic maps (‘Großblätter’) for East Prussia 

The historical topographic maps for East Prussia, so-called ‘Großblätter’, were issued by the 

former Reichsamt für Landesaufnahme (Office of the Reich for Land Surveying) which was 

located in Berlin. Today they can be obtained as reprints from the ‘Bundesamt für 

Kartographie und Geodäsie’ (Federal Office for Cartography and Geodesy). For the range of 

this survey 15 of these maps were used: Nos. 4, 5, 6, 14, 15, 16a, 16b, 27, 28, 29, 30a, 30b, 

43, 44, and 45. However, map No. 42 of the south-west of East Prussia was unfortunately not 

available so that the districts of Rosenberg and Marienwerder had to be excluded from the 

investigation. The maps originated for the main part from the year 1939 (except Nos. 6 and 27 

from 1941 and No. 43 from 1942). Also, they showed the division of the province of East 

Prussia in its districts as per 31st December 1937.  

 

2.1.1.1.1 Digitizing and georeferencing of the topographic maps 

The available maps were manually scanned as TIF files. In order to be able to open them in 

ArcMap they were converted to IMAGE files using ArcCatalog. For all GIS analysis ArcGIS 

9.1 was applied. The georeferencing was done with the Georeferencing-Tool in ArcMap. For 

that task the marked longitudes and latitudes were used from the ‘Großblätter’. For every map 

the four corner points were chosen as the control points with known locations. Since the 

coordinates on the maps were originally provided in a degree, minute and second format, they 
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were first converted into decimal degrees. The maximum total RMS (Root Mean Square) 

error reads 0.00303 m on the maps Nos. 5 and 14. The remaining maps showed a lower RMS 

error and thus a higher accuracy at the georeferencing.  

 

2.1.1.1.2 Digitizing Habitat Features 

The boundaries of the individual districts, as marked on the maps, were digitized. To achieve 

this task, a polygon shapefile was created using ArcCatalog in ArcGIS and named 

‘administrative districts’. Every district was digitized as a polygon in ArcMap. The 

boundaries of the municipalities Elbing-Stadt, Insterburg-Stadt or Tilsit-Stadt were not clearly 

defined so that these three municipalities were combined with their distinctive rural districts 

and named in the subsequent steps Elbing, Insterburg or Tilsit-Ragnit, respectively. 

In order to characterize the landscape structure of the survey area, the information on land use 

contained in the maps also had to be digitized. Since the maps were very detailed and a 

complete manual digitization would have been very labor intense and outside the scope of this 

project, only the land use classes relevant for White Storks (forest, lake, watercourse and 

settlement area) were selected to be used in this study. Land use classes like wetland, 

pasture/meadow or cropland, which are potentially important for the distribution of the White 

Stork as well, could not be digitized, since they were not clearly defined and distinguishable. 

For every land use class a new shapefile was opened in ArcCatalog according to the shape of 

the object to be found: a polygon shapefile for the classes forest and lake, a polyline shapefile 

for watercourse and a point shapefile for settlement area. In ArcMap the individual objects of 

the respective land use classes were digitized with the help of the Editor feature. For the 

layers ‘forest’ and ‘lake’ all forests and lakes marked on the maps showing an expanse of 

more than one kilometer in any direction (equivalent to one cm on the map) were digitized as 

individual objects. It was assumed that smaller objects have no relevant influence on the 

selection of breeding sites for the White Stork because foraging trips can reach a radius up to 

5 km from the nest (Johst et al. 2001).  

Any watercourse represented on the maps by a double line was digitized as a single line 

object. So all watercourses represented by a single line are not further considered in this 

study. This was done because the latter ones could not be distinguished without error from 

other objects like streets due to the black-and-white design of the maps. In several cases one 

watercourse feeds into another or rivers flow into lakes. When digitizing manually, inevitably 
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some gaps remain between these lines or lines cross. To obtain a complete network of 

watercourses the lines were interrupted just before the next line and then lead on to the 

adjacent line using the Extend-Tool of the Editor feature. 

In order to digitize the settlements according to their size the settlements were divided into six 

different categories. Due to the fact that some ‘Großblätter’ were partly copies of other maps 

the font sizes representing the names and the population size of the settlements were not 

identical throughout all the maps. However, the different size categories are well discernable 

within every single map. Unfortunately, no information could be obtained defining the exact 

population size of the settlements for the different size categories. The localities were each 

marked by a center point and then classified according to the individual size category. In 

some cases, localities consisted of two or more separate clusters of buildings. Where it 

seemed inappropriate to position the point in the centre of the settlement, since at the average 

location there were no buildings, each cluster of settlement was marked by a point and 

classified in the next lower size category. This was the case with some settlements of the size 

categories 4 and 5.  

To minimize edge and fringe effects in the forthcoming modeling component, all objects that 

fitted one of the four land use classes were digitized up to about four kilometers beyond the 

boundaries of the survey area. 

Finally, all layers were converted into Universal Transverse Mercator (UTM) Projection Zone 

34 with the datum World Geodetic System 84 (WGS84). This projection was chosen because 

the underlying coordinate unit is in ‘meter’ and therefore makes it easier to model and 

interpret calculated distances. It was used for all other layers and data sets described in the 

following sections as well. 

 

2.1.1.2 Baltic Sea GIS data from the period of 1981-1992 

For the description of the habitat the Baltic Sea GIS data were used. It is available on the 

internet under http://www.grida.no/baltic/index.htm as an ArcView dataset. The dataset land 

cover was used, offering a division of the study area into six land use classes: forest, open 

land, open water, urban land, glacier and unknown land. It was available as a raster dataset 

with a grid cell size of 1 km * 1 km in the projection Lambert Azimuthal Equal Area. The 

primary data acquisition period spanned from 1981 to 1992. 



2 Material and Methods 

 20

2.1.1.3 Digital data for the coastline of the study area 

For the coastline layer, the part relevant for the study could be extracted from the global data 

set of the World Vector Shoreline (WVS), 1990. Although this coastline is mapped at a higher 

resolution, such data are not available digitally, yet. This data set is made available free of 

charge online at the U.S. National Geographic Data Center (NGDC) website 

http://rimmer.ngdc.noaa.gov/coast/. The coastline was extracted for the study area 57° 

northern latitude, 15° eastern longitude (upper left corner) and 53° northern latitude, 23° 

eastern longitude (bottom right corner). The data set was downloaded as an ASCII flat file in 

the format Arc/Info Ungenerate and could be converted into a shapefile applying the script 

gen2shap1.ave obtained from the website above in ArcView 3.0. 

Despite the temporal difference of about fifty years when compared to the year 1939, that 

coastline was chosen because it represents the best available data for this study as it can be 

assumed that any changes which may have occurred will have taken place on a scale which 

will have no influence on White Storks and the creation of the model. 

 

2.1.1.4 Digital Elevation Model (DEM) 

The DEM for the study area was taken from the data set of 1999 provided by the Global Land 

One-Kilometre Base Elevation (GLOBE), downloadable from the internet free of charge 

under www.ngdc.noaa.gov/mgg/topo/globe.html. The DEM was available as a raster dataset 

in geographic projection (latitude/longitude) with a horizontal grid spacing of 30 arc seconds. 

This meant that the size of a grid cell at the equator corresponded to less than 1 km * 1 km 

and continually declined towards the poles. At 50° northern latitude the extend of a grid cell 

represented 598 m (from east to west) * 927 m (from north to south) (see 

http://www.ngdc.noaa.gov/mgg/topo/report/s6/s6A.html). The elevation reading was given in 

meters. The DEM was extracted for the region 56° northern latitude, 18° eastern longitude 

(upper left corner) and 52° northern latitude, 24° eastern longitude (bottom right corner). 

The difference of time between the year of the construction of the model (1939) and the 

production of the DEM amounts to a differential period of 60 years. However, it is assumed 

that the actual contour lines for the model construction remained constant and that the DEM 

can simply be applied without relevant biases for the historical setting. Major altitudinal 

changes for the study area and relevant for the White Storks are not known to the author. 
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2.1.1.5 Preparation of environmental data for modeling in TreeNet 

2.1.1.5.1 Data derived from the historical topographic maps and coastline layer 

For the complete study area, a raster with a cell size of 100 m * 100 m was created for each of 

the layers forest, lake, watercourse and coastline using the Distance-Tools ‘Straight Line’ of 

the Spatial Analyst in ArcMap. Each raster cell contained a value which showed in meters the 

distance to the next object of the layer or rather to the coastline. For the layer settlement area a 

classification according to different size categories was taken. This was done because it was 

assumed that localities of different size will have a varying impact on the distribution of 

White Stork nesting sites. According to the size categories different distance raster were 

created: ‘size range 1 to 3’, ‘size range 1 to 4’, ‘size range 1 to 5’ and ‘size range 1 to 6’. For 

each of the created distance raster the value of the individual cells indicated the proximity to 

the next settlement of one of the included size categories. So it was possible to test which pool 

of size ranges showed the greatest effect on the distribution of breeding White Stork. 

Further, several density raster with a cell size of 100 m * 100 m were generated for the layer 

‘settlement area’ using the Density-Tool ‘Kernel’ of the Spatial Analyst with a radius setting 

of 5,000 m. Combined, and according to different size categories the following rasters were 

generated: ‘size range 1 to 4’, ‘size range 1 to 5’ and ‘size range 1 to 6’. Each raster cell 

contained a value indicating how close the settlements were located to one another. 

 

2.1.1.5.2 Baltic Sea GIS data from the period of 1981-1992 

A raster representing a cell size of 1000 m * 1000 m for the land cover classes ‘open water’ 

and ‘forest’ of the grid land cover and derived from the Baltic Sea GIS each were created. For 

the land cover class ‘urban land’ from the same data set a point shapefile was created 

containing a point in the center of every group of adjacent raster cells belonging to this class. 

With the distance tool ‘Straight Line’ of the Spatial Analyst a raster for each of the three land 

use classes mentioned above and with a cell size of 100 m * 100 m depicting the distance to 

the next object of each individual class was created. 
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In Table 2.1 the used environmental variables for the model at point scale are shown.  

Table 2.1: Environmental variables for the modeling at the point scale 

Environmental variable Unit Cell size of 

Raster 

Derivation Origin of the 

data set 

Distance to forest Polygon shapefile 

‘forest’ 

Distance to lake Polygon shapefile 

‘lake’ 

Distance to watercourse 

 

 

Meter 

Polyline shapefile 

‘watercourse’ 

Distance to settlement 

area, different size ranges  

Density of settlement 

area, different size ranges  

 

No 

unit 

 

 

 

 

100m * 100m 

Point shapefile 

‘settlement area’ 

 

 

Historical 

topographic 

maps, scale 1: 

100,000 (edited 

mostly in 1939) 

 

Elevation 30 arc 

seconds 

DEM GLOBE dataset 

(1999) 

Distance to coastline 

 

Meter 

100m * 100m Polyline shapefile 

‘coastline’ 

WVS data set 

(1990) 

Table 2.2 gives an overview of the environmental variables used to make a prediction for the 

period of 1981-1992. 

Table 2.2: Environmental variables used for the prediction for the period of 1981-1992 

Environmental variable Unit Cell size of 

Raster 

Derivation Origin of the 

data set 

Distance to forest 

Distance to lake 

Distance to settlement 

area 

 

100m * 100m 

Land Cover Grid 

with a cell size of 

1 km 

Baltic Sea GIS 

(Acquisition 

period 1981-

1992) 

Elevation 30 arc 

seconds 

DEM GLOBE dataset 

(1999) 

Distance to coastline 

 

 

 

Meter

100m * 100m Polyline shapefile 

‘coastline’ 

WVS data set 

(1990) 
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2.1.2 White Stork data at the point scale 

Two sets of Stork data were available for the development of a distribution model using the 

historical environmental data at point scale. 

 

2.1.2.1 Data set 1: Banding locations according to the White Stork banding data set 

hosted and maintained by the German ornithological station ‘Vogelwarte 

Radolfzell’ 

From the beginning of the 19th century up to the Second World War a great number of White 

Storks in East Prussia were ‘ringed’/banded by members of the ornithological station 

‘Vogelwarte Rossitten’. When the ornithological station ‘Vogelwarte Rossitten’ gave up its 

work at the Courland Lagoon after the Second World War, the banding lists and a great 

number of documents on findings were basically lost. From former publications and notes 

these got partly reconstructed and, in the context of a diploma thesis (Sproll 2000), listed in 

the database of the presently responsible ornithological station ‘Vogelwarte Radolfzell’. The 

relevant records for the area of survey were kindly made available as an Excel table by the 

‘Vogelwarte Radolfzell’ provided by W. Fiedler. It contained the coordinates of the banding 

locations in geographic projection (latitude/longitude) as well as the year of the banding event 

amongst others. The entries used in this study show an accuracy of +/- 1 spatial minute 

(corresponds to approx. 1.2 km from east to west and 1.8 km from north to south). White 

Storks are usually banded as juveniles in their nest so that for the study at hand it can be 

assumed that there were nest sites close to the banding locations (Hornberger 1943, Sproll 

2000). Since regular banding took place for many years and several juveniles were marked, 

many nest sites were repeatedly listed. However, in this study a nest site was used only once, 

and as a single record, in order to have unique locations preventing an over-presentation of 

individual nest sites in this study. In this process the entry was chosen that was closest to the 

year 1939, since the topographical maps exploited for the characterization of land use by the 

majority originated from that year. Thus, all the data exploited in the survey stem from the 

period 1908 to 1944. 

For use in ArcGIS a shapefile was derived from the Excel table which contained the 

individual banding locations as points. In the whole area of survey there were 418 nest sites at 

which White Storks were banded; the survey effort is unequally and opportunistically 

distributed in the study area and not traceable anymore (Figure 2.1). 
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Figure 2.1: Study area showing district boundaries (‘Landkreise’) and banding 

locations from the banding data base of the German ornithological station 

‘Vogelwarte Radolfzell’ 

More than ¼ of the nest sites (148 of 418) were situated in the district of Insterburg. The 

reason for this unbalanced effort may be that in the years 1931 to 1942 (and possibly beyond 

that) intensive banding of White Storks was exercised by F. Hornberger in the district of 

Insterburg (Hornberger 1943). Thus, the possibility to track a White Stork banded in 

Insterburg and to list it in the database was somewhat more likely than to track a White Stork 

from any other district. In general, it can be said that the database does not reflect 

representatively the spatial distribution of nest sites of White Storks in East Prussia, but 

instead represents opportunistic banding activity, which is usually closely related to where 

people and roads are located (commonly referred to as access bias). Consequently, White 

Storks from regions were tracked more often in which banding was more extensively 

practiced.  

When using all 418 presence points to build a model, the variable ‘distance to coastline’ 

emerged to be the only important predictor variable for the distribution of nest sites of White 

Storks. So in order to prevent an overestimation of habitat features of the district of Insterburg 

due to human activities, 19 points were chosen at random from the district of Insterburg. This 
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number represented the maximum number of points where banding was exercised in one of 

the other districts (Königsberg-Land).  

 

2.1.2.1.1 Preparation of Data set 1 for TreeNet 

Data set 1 contained 289 presence points. In ArcMap, a new shapefile with 578 points  

(= double the number than presence points) was created using the tool ‘Generate Random 

Points’ with the extension ‘Hawth’s Tools’ (Beyer 2004, available at 

http://www.spatialecology.com/htools). The points were distributed at random over the entire 

study area. These points did not represent a real absence; however, instead they represent 

pseudo-absences and are the points of the habitat available to nesting White Storks. Using 

pseudo-absences is a common method applied in such studies (see e.g. Manly et al. 2002, 

Engler et al. 2004). 

One column each was added to the attribute table of both point shapefiles (absence and 

presence points) for the different environmental variables. The distance rasters described in 

section 2.1.1.5.1 as environmental variables was chosen for the layers ‘forest’, ‘lake’, 

‘watercourse’, ‘settlement area’ and ‘coastline’. For the environmental variable ‘elevation’ the 

elevation-reading of the DEM raster was used. With the tool ‘Intersect Point-Layer’ of the 

extension ‘Hawth’s Tools’ for every point the value of the appropriate raster cell, in which the 

point was to be found, could be transferred to the attribute table. Both attribute tables were 

merged into one file in Excel, which was then exported as a TXT file. In order to distinguish 

between presence and absence points a column was added showing the label ‘1’ for every 

presence point and the label ‘0’ for all available points (for illustration see Table 2.3). 

Table 2.3: Example of an Excel table containing the variable to be modeled 

(Pres_Avail) and different predictor variables 

Pres_Avail Distance to 

watercourse 

Distance to 

lake 

Distance to 

forest 

… Distance to 

coastline 

Elevation 

1 9848858032 2012461182 3622154053  8818645313 142 

1 2236067963 1315294678 2662705322  8956003906 157 

…    …   

0 1192057031 5315072754 500  1336450488 43 

0 886397168 1976689063 6708203735  4576210156 33 

…    …   
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2.1.2.2 Data set 2: Map showing the breeding population of White Storks in former 

East Prussia in the 1931 

In 1931 a comprehensive inventory of the White Stork breeding population was compiled by 

the local police force at the order of the Governor Supreme of the Province of East Prussia. 

The survey sheets received were evaluated by the ornithological station ‘Vogelwarte 

Rossitten’ and the results duly published (Schüz 1933). According to Gaupp (1936) the 

inventory of 1931 was somewhat faulty, since a large number of breeding sites were 

apparently overlooked. More exact inventory data was available from the count of 1934. 

Unfortunately, during the Second World War parts of the records of the ornithological station 

‘Vogelwarte Rossitten’ were lost so that the survey at hand can only revert to the map of the 

inventory of 1931, published in Schüz (1933, Figure 2.2). The number of White Stork 

breeding sites, summarized by community, was shown in the community center. So the map 

does not show the exact location of the individual White Stork breeding ground, meaning no 

real presence/absence reading, but merely an outline on the level of communities (Schüz 

1933). This presents currently the best available map for this subject. 

 

Figure 2.2: Map of White Stork breeding grounds in East Prussia 1931, filled circles: 

nests occupied, empty circles: nests unoccupied 

For its use in ArcMap the map was scanned as a TIF file, converted to an IMAGE file in 

ArcCatalog and finally georeferenced. The georeferencing was obtained using the layer 

‘administrative districts’ containing the boundaries of each administrative district. This data 
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set was generated by digitalization from the historical maps as described in section 2.1.1.1.2. 

In the following seven control points along the border of the province of East Prussia were 

chosen which could be clearly identified in the map by Schüz (1933) as well as in the layer 

‘administrative districts’. The total RMS error was 0.02454. 

 

2.1.2.2.1 Preparation of Data set 2 for TreeNet 

Since the map was available only as a hardcopy in restricted quality the georeferenced scan 

showed some ‘noise’ in the form of small black pixels scattered throughout the entire map. 

Therefore a filter had to be used for the correction, if to be used as a raster. Using the tool 

‘Majority Filter’ from Spatial Analyst in ArcMap every cell was allotted a new value of ‘0’ or 

‘1’ according to the value reading of the four cells directly adjacent. Next, the raster was 

overlaid with a point shapefile in which points were regularly arranged at a distance of 500 m 

for the entire study area. All points on a raster cell valued ‘1’ were coded as presence points 

(value ‘1’), all other points as absence points (value ‘0’). Since the representation of the White 

Stork count does not correspond with the exact and actual locations of the nests, but rather 

places them in the centers of the communities, only points at a distance of 2 km from the next 

presence point were used as absence points in the modeling. A selection of 5,000 locations 

from all the presence as well as absence points (a total of 10,000) was randomized and saved 

in two distinct data sets. As described in section 2.1.2.1.1, a column was added to the attribute 

tables of both data sets with the respective values applying the tool ‘Intersect Point-Layer’ for 

every environmental variable. Using Excel, a TXT file was created showing both attribute 

tables listed, as well as a column stating whether the reading showed a presence (= 1) or an 

absence (= 0) point. 

 

2.1.3 Modeling in TreeNet (point scale) 

Since the variable to be modeled was binomial (value ‘1’ for nest locations and value ‘0’ for 

available and absence points respectively), the algorithm for 'Binary Logistic Models’ was 

selected in TreeNet. The output shows an index of relative importance between 0 and 1 as 

response. The settings shown in Table 2.4 were fixed for the modeling process in TreeNet. 
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Table 2.4: Fixed settings in TreeNet for the models at the point scale 

Setting Reading 

Number of trees to use 10,000 

Maximum number of trees 10,000 

Minimum number of training observations 

in terminal nodes 

 

10 

Sub-sample fraction 0.5 

Influence trimming factor 0.1 

M-regression breakdown parameter 0.9 

Regression loss criterion M-Huber loss 

Optimal logistic selection criterion Cross Entropy (Likelihood) 

For the different models only the parameters learn rate, maximum number of nodes per tree 

and the testing mode to validate the model during the modeling process of TreeNet were 

changed in order to optimize the result. 

 

2.1.3.1 Model 1: Using presence/pseudo-absence data set derived from the Banding 

Database of the Ornithological Station Radolfzell, Germany (Data set 1) 

For each model the variables ‘distance to forest’, ‘distance to lakes’, ‘distance to 

watercourse’, ‘distance to coastline’ and ‘elevation’ were used as predictor variables. 

Additionally, one of the variables derived from the layer ‘settlement area’ was used. These 

were ‘distance to village, size range 1 to 3’, ‘distance to village, size range 1 to 4’, ‘distance 

to village, size range 1 to 5’, ‘distance to village, size range 1 to 6’, ‘density of villages, size 

range 1 to 4’, ‘density of villages, size range 1 to 5’ and ‘density of villages, size range 1 to 

6’. In order to find out which of the variables derived from the layer ‘settlement area’ showed 

the highest predictability for the distribution of White Stork breeding grounds, a model was 

created first of all using one of the different variables of the layer ‘settlement area’ (together 

with all other variables). For that the following settings in TreeNet were employed:  

Learn rate:    0.001 

Maximum nodes per tree:  6 

Testing:    20 % of the cases are selected at random for testing. 
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Because of the unbalanced design of the two target classes (289 presence and 578 available 

locations) in TreeNet the class weights were set to ‘balanced’ for all models build in this step. 

Thus small classes were upweighted to the equal size of the largest target class by adjusting 

weights (Salford Systems Ltd. 2003). 

After selecting a variable for the layer ‘settlement area’ to be used for the modeling individual 

settings in TreeNet were altered: The learn rate was set at 0.01 or 0.001. Maximum nodes per 

tree read at 2 (unable to detect interactions between predictor variables – ‘main effects 

additive models’) or 6 (well able to detect interactions). As a testing data set 20 % or 40 % of 

the data set were applied. The best model was established by the evaluation of an independent 

data set (see following section). 

 

2.1.3.1.1 Evaluation of Model 1 

For the evaluation the data set of the White Stork count from 1931 was employed, as 

mentioned in section 2.1.2.2. Using the tool ‘Random Selection’ of the extension ‘Hawth’s 

Tools’ 1,000 presence and absence points each were randomized. On the base of these 2,000 

points, a prediction was made using the program TreeNet. For every single model sensitivity, 

specificity and the area under the ROC-Curve (Area under the curve - AUC) were 

conveniently calculated for the test data set. For that a Delphi program written by B. Schröder 

was used (version January 2004), downloadable from the internet for free under 

http://brandenburg.geoecology.uni-potsdam.de/users/schroeder/download.html. With that 

program it was also possible to calculate bootstrapped confidence intervals for the AUC 

values with the percentile method referring to Buckland et al. (1997). The AUC values served 

for selecting the best model. 

 

2.1.3.2 Model 2: Using a presence/absence data set derived from the White Stork count 

of 1931 (Data set 2) 

As predictor variables ‘distance to forest’, ‘distance to lakes’, ‘distance to watercourse’, 

‘distance to coastline’ and ‘elevation’ as well as one of the variables derived from the layer 

‘settlement area’ ‘distance to village, size range 1 to 3’, ‘distance to village, size range 1 to 4’, 

‘distance to village, size range 1 to 5’, ‘distance to village, size range 1 to 6’, ‘density of 

villages, size range 1 to 4’, ‘density of villages, size range 1 to 5’ or ‘density of villages, size 

range 1 to 6’ were used. 
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In order to select the variable derived from the layer ‘settlement area’, which showed the 

maximum predictability, a model was created using one of the these variables as well as the 

variables derived from the other layers. Therefore, in TreeNet a learning rate of 0.1, 

maximum 6 nodes per tree and 20 % of the data set applied for testing were used. 

In order to optimize the model, the learn rate was changed from 0.1 and 0.05. Furthermore 

tests were run using maximum 2 or 6 nodes per tree. As a testing sub-sample 20 % or rather 

40 % of the data set were used. The best model was established by the evaluation of an 

independent data set (see following section). 

 

2.1.3.2.1 Evaluation of Model 2 

Spearman-Rank Correlation 

In order to evaluate the models created using TreeNet all 418 nest locations from the data set 

of ‘Vogelwarte Radolfzell’ (Data set 1) were used. Since this data set only dealt with presence 

points, no values for AUC, sensitivity or specificity, could be established as for the evaluation 

with presence-absence data. That is why a Spearman-rank Correlation was used as described 

in Boyce et al. (2002). As shown in section 2.1.4 a prediction was created on a regular point 

grid which covered the complete study area. The predicted values were allotted to ten bins of 

identical size as described in Boyce et al. (2002). In ArcMap the value of the original values 

of every point was converted to the number of the appropriate bins (1 to 10). Then, the area 

could be calculated that the individual bins covered (number of points per bin = area in square 

kilometer per bin). In the following step the number of the 418 nest locations per bin was 

calculated and the area-adjusted frequency established (number of points of the testing data 

sets per bin divided by the area of the respective bin). A Spearman-rank Correlation was 

calculated with the bin number as the categorical variable and the area-adjusted frequency as 

the continuous variable. The calculation was carried out with the program R (version 2.3.1) 

freely available in the Internet at http://cran.r-project.org/. To establish the deviation within 

the model the data set was divided randomly into five even-sized subsets for which the area-

adjusted frequency each was calculated (Boyce et al. 2002). 
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Minimal predicted area (MPA) 

Another measure to evaluate the performance of a model when only opportunistic data 

(presence-only) is available is the calculation of the minimal predicted area (MPA). The value 

above which 90 % of the locations of the test data set were observed is used as a threshold to 

transform the predicted values for the whole study area into occurrence and non-occurrence 

(as in Engler et al. 2004). The MPA is the area obtained by considering all raster cells of the 

study area showing an occurrence. Based on the rule of parsimony the smaller the minimal 

predicted area the better is the performance of the model (see also Guisan et al. 2006b). 

 

2.1.4 Index of relative importance for the entire study area 

To make predictions for the complete study area for both points in time, a point shapefile was 

established in ArcMap using the tool ‘Generate Regular Points’ of the extension ‘Hawth’s 

Tools’ in which points were regularly placed throughout the study area at a distance of 1 km. 

Applying the tool ‘Intersect Point Layer’ of the extension ‘Hawth’s Tools’ the value of the 

appropriate set of variables was allotted to each of these points. Applying a previously 

established model in TreeNet a prediction of an index of relative importance could be made 

stating whether a stork breeding ground could be found at that location. As output, TreeNet 

provided a TXT file in which a value between 0 and 1 was listed for every point. From this 

file a shapefile was generated for further use in ArcMap. 

 

2.2 Habitat model at the administrative district scale (polygon) 

2.2.1 Environmental data at the administrative district scale 

2.2.1.1 Historical data and their preparation in ArcMap 

Information on the character of the habitat was taken from the ‘Statistical Handbook for the 

Province of East Prussia 1938’ (‘Statistisches Handbuch für die Provinz Ostpreußen 1938’). 

Table 69 contained the ‘main types of land use according to the administrative districts of 

1936’. From this table the columns ‘arable land’, ‘pasture land’ and ‘forest’ were taken 

showing in hectares the respective type of land use for the individual administrative districts. 

An additional column showed the total area in hectares for every administrative unit. It then 

was employed for the calculation of the area of the three land use classes (given in percent).  
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The digitized layers ‘settlement area’ and ‘lake’ as well as the information on the coastline 

and the DEM (see section 2.1.1) were also used. The lake layer was converted to a raster 

covering the whole study area with a cell size of 100 m * 100 m using the tool ‘Convert 

Feature to Raster’ of the Spatial Analyst in ArcMap. Subsequently, the percentage of area 

which was lake (‘water’) could be calculated for every administrative district applying the 

tool ‘Zonal Statistics’ of the Spatial Analyst. For the layer ‘settlement area’, the number of 

settlements in the districts were counted using the tool ‘Count Points in Polygon’ of the 

extension ‘Hawth’s Tools’. Here, a sub-division was taken, creating three different variables: 

‘number of settlement areas, size range 1 to 4’, ‘number of settlement areas, size range 1 to 5’, 

and ‘number of settlement areas, size range 1 to 6’ (compare section 2.1.1.5.1). The average 

reading of all the raster cells of the DEM in the administrative district was calculated as the 

variable ‘elevation’ using the tool ‘Zonal Statistics’ of the Spatial Analyst. For defining the 

variable ‘distance to coastline’ the average of all raster cells in the created raster showing the 

distance to coastline (see section 2.1.1.5.1) was calculated. 

 

2.2.1.2 Data for the period of 1981-1993 and their preparation in ArcMap 

From the Baltic Sea GIS the Land Cover Data set was applied. For the generated raster data 

sets for the land use classes ‘open water’ and ‘forest’ (see section 2.1.1.5.2) the number of 

points per district were determined using the tool ‘Zonal Statistics’ of the Spatial Analyst. The 

percentage of the total area the land use classes had in the appropriate districts could be taken 

from these readings.  

The Baltic Sea GIS furthermore contained a data set about the arable land and the pasture land 

(acquisition period 1987 to 1993). It had a grid spacing of 10 km * 10 km. Every raster cell 

contained a value about the percentage of arable land and pasture/meadow respectively. Using 

the above-mentioned tool ‘Zonal Statistics’ for every administrative district the mean 

percentage of the two variables could be determined. In the same way a mean value for the 

variables ‘elevation’ and ‘distance to coastline’ was calculated. 

Table 2.5 and Table 2.6 give an overview of the environmental variables used to create  

Model 3 and to estimate the densities of breeding White Storks for the period of 1981-1993. 
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Table 2.5: Environmental variables for the modeling at the administrative district scale 

Environmental 

variable 

Units per 
district 

Derivation Origin of the data set 

Pasture 

Arable land 

Forest 

 

Table 69 

‚Statistisches Handbuch für 

die Provinz Ostpreußen 

1938’, acquired in 1936 

Lake 

Percentage

Polygon shapefile 

‘lake’ 

Number of 

settlement areas, 

different size ranges 

No unit 
Point shapefile 

‘settlement area’ 

Historical topographic 

maps, Scale 1: 100,000, 

edited mostly in 1939 

Elevation DEM (cell size of 30 

arc seconds) 

GLOBE dataset (1999) 

Distance to coastline 

Meter 

Polyline shapefile 

‘coastline’ 

WVS data set (1990) 

Table 2.6: Environmental variables used for the prediction for the period of 1981-1993 

Environmental 

variable 

Units per 
district 

Derivation Origin of the data set 

Pasture Pasture Lands Grid 

(cell size of 10 km) 

Arable land Arable Lands Grid 

(cell size of 10 km) 

Baltic Sea GIS (Acquisition 

period 1981-1992) 

Forest 

Lake 

Percentage

Number of 

Settlement areas per 

km2, size range 1 to 4 

No unit 

 

Land Cover Grid (cell 

size of 1 km) 

Baltic Sea GIS (Acquisition 

period 1987-1993) 

Elevation DEM (cell size of 30 

arc seconds) 

GLOBE dataset (1999) 

Distance to coastline 

Meter 

Polyline shapefile 

‘coastline’ 

WVS data set (1990) 
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2.2.2 White Stork data at the administrative district scale 

In the year 1934 an international population assessment was carried out. Figures of the census 

for the individual administrative districts of the province of East Prussia were published in 

Tischler (1941). The counted number of White Stork breeding pairs per 100 km2 was quoted 

for every administrative district. 

 

2.2.3 Modeling in TreeNet (Model 3) 

The variable ‘number of storks per km2’ served as target variable. Since it concerns a 

continuous variable, in TreeNet the algorithm for Logistic Regression Models was chosen. 

The variables ‘arable land’, ‘pasture land’, ‘forest’, ‘water’, ‘distance to coastline’ and 

‘elevation’ served as predictor variables as well as one of the three variables ‘number of 

settlement area, size range 1 to 4’, ‘number of settlement area, size range 1 to 5’ and ‘number 

of settlement area, size range 1 to 6’. 

For Model 3, the following settings were chosen in TreeNet: The number of terminal nodes 

was set at 1 due to the small number of samples (37). The maximum number of nodes per tree 

read 2 or 6, the learn rate 0.01 or 0.005. Because no independent data set was available for 

evaluating the models, the testing was done using a 10-fold cross-validation. This is 

recommended for small data sets when one cannot afford to reserve some data for testing 

(Fielding & Bell 1997). The data set is partitioned into 10 bins. Then a model is calculated for 

nine bins while the 10th bin serves as test data set. This is repeated 10 times until every bin 

was once used as test data. After all 10 folds are completed, the results from each fold are 

averaged to get a fair test estimate of the all-data model performance (Salford Systems Ltd. 

2003). 

 

2.2.3.1 Evaluation of Model 3 

For every model the mean absolute error (MAE) between observed and predicted values was 

calculated. The MAE is often used as a similar measure than to determine the goodness-of-fit 

of models (Legates & McCabe 1999, Hall 2001): 

||
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The model with the lowest MAE was selected as best model. In addition the Coefficient of 

Efficiency (E) was calculated for better interpreting the results: 
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1     (Equation 2.2) 

The Coefficient of Efficiency can have values between minus infinite and 1 (perfect model). 

 

2.2.4 Estimation of White Stork densities for the period of 1981-1993 

In order to make a prediction for the period 1981-1993 the best created model using the 

variables ‘arable land’, ‘pasture land’, ‘forest’, ‘water’, ‘distance to coastline’, ‘elevation’ and 

‘number of settlement area, size range 1 to 4’ was selected. Based on this model and the 

environmental variables for the period 1981-1993 as described in section 2.2.1.2, a predicted 

response value for every administrative district was computed. 
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3 Results 

3.1 Model 1: Presence-available model based on banding locations (point 
scale) 

Model 1 was generated applying banding locations taken from the Banding Database of the 

Ornithological Station Radolfzell (Data set 1) as the target variable to be modeled. As 

predictor variables it contained ‘distance to lake’, ’distance to forest’, ‘distance to 

watercourse’, ‘distance to coastline’, ‘elevation’ and ‘density of settlement areas, size range 1 

to 5’. It was achieved using the following settings in TreeNet: 

learning rate:      0.01 

maximum nodes per tree:    3 

percentage of the dataset applied for testing:  40 %. 

For each predictor variable TreeNet offers a relative importance score (Table 3.1). „The 

relative importance score provides a relative measure of each variable’s contribution to the 

model’s predictive power. The raw importance scores are rescaled so that the most important 

variable always gets a score of 100. The raw variable importance score is computed as the 

cumulative sum of improvements of all splits associated with the given variable across all 

trees up to a specific model size.” (Salford Systems Ltd. 2003). So TreeNet allows a ranking 

of the used predictor variables according to their importance in the model. However, one 

should keep in mind that such a ranking is different from using p-values or AICs, because it is 

derived from a different method than log-likelihood. 

Table 3.1: Importance of the predictor variables of Model 1 

Predictor variable Relative Importance Score 

Distance to coastline 100.00 

Density of villages, size range 1 to 5 92.26 

Distance to forest 76.82 

Elevation  57.65 

Distance to lake 47.64 

Distance to watercourse 44.48 
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One option for the interpretation of the model is offered by the partial dependence plots, 

provided by TreeNet (Figure 3.1 a-f). They show the effect of the respective predictor on the 

response including the interdependency with the other predictors applied.  

The partial dependence plot for the most important predictor ‘distance to coastline’ (Figure 

3.1 a), shows a positive influence of the predictor on the occurrence of nest locations up to a 

distance of about 40 km from the coastline with a reading of 0.16. With increasing distance to 

the coastline the graph drops continually and the partial dependence reads negative at a 

distance of about 60 km from the coastline. From about 80 km the reading remains negative at 

a constant value of about -0.16. 

Regarding the influence of the predictor ’density of settlement areas, size range 1 to 5’ on the 

response (Figure 3.1 b) it can be established that with a low density of settlement (up to 0.1) a 

negative partial dependence of -0.17 is on hand. Up to a density of 0.25 the partial 

dependence increases up to a reading of about 0.15. A further increase of density, however, 

does not increase the positive result any further. 

The correlation of the predictor ‘distance to forest’ and the predicted response (Figure 3.1 c) 

result in marginally negative readings of -0.1 at a short distance of about 2 km. The highest 

readings for the partial dependence of about 0.07 appear at a distance of approx. 4 km from 

the nest locations to forest. Thereafter, the partial dependence shows a slight decline but 

remains somewhat positive. 

The partial dependence plots of the following last three predictors which had lower relative 

importance scores (between 44.5 and 57.7) generally show a very slight influence on the 

variable. The predictor ’elevation’ (Figure 3.1 d) shows positive values around 0.05 for the 

region of 50 to 100 m above mean sea level. There is a sharp decline in the partial dependence 

between 100 and 120 m above mean sea level. In the following it remains constant at a low 

negative reading of about -0.04. 

The partial dependence plot for the predictor ‘distance to lake’ (Figure 3.1 e) has a maximum 

reading of 0.04 at a distance of 5 km to the nearest lake. If the distance is shorter the influence 

becomes negative (-0.03 to -0.04). At a distance of more than 5 km to the nearest lake the 

partial dependence declines and from a distance of 15 km on remains stable at a reading of 

about 0.01. 
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Regarding the distance of locations to the nearest watercourse (Figure 3.1 f), the influence on 

shorter distances with a reading of 0.05 is slightly positive, declines constantly, however, up 

to a negative reading of -0.05 for the partial dependence. 

 

Figure 3.1: Partial dependence plots for predictor variables employed in Model 1; a) 

‘distance to coastline’, b) ‘density of settlement areas, size range 1 to 5’, c) 

‘distance to forest’, d) ‘elevation’, e) ‘distance to lake’ and f) ‘distance to 

watercourse’ 

 

3.1.1 Evaluation of Model 1 

The calculated AUC value for the test data set (per 1,000 randomly chosen presence and 

absence locations of data set 2) represent 0.790 with a confidence interval of 0.771 - 0.809. 
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An AUC of 0.790 means that when arbitrarily selecting a breeding pair from a presence and 

an absence location the predicted reading for the presence location is higher than the predicted 

value for the absence location by 79%. According to Hosmer & Lemeshow (2000) a model 

with an AUC of between 0.7 and 0.8 is to be considered as ‘acceptable’. 

In Figure 3.2 the Receiver Operating Characteristic (ROC) – Curve for Model 1 is shown.  
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Figure 3.2: Receiver Operating Characteristic (ROC) – Curve for Model 1 

In Table 3.2 correct classification rate (CCR), sensitivity and specificity are calculated for 

Model 1 with a threshold of p= 0.5 as well as with the optimal threshold (p_opt = 0.36). P_opt 

maximised the correct classification rate as described in Zweig & Campell (1993). 

Table 3.2: Confusion Matrix for a threshold of a) p= 0.5 and b) p_opt = 0.36, calculated 

applying Schröder’s program for ROC_AUC (version 2004) 

P = 0.5 Prediction P_opt = 0.36 Prediction

Observed data 0 1 

b)

Observed data 0 1 

0 870 130  0 592 408 

1 518 482 1 153 847 

CCR 0.676 

 

CCR 0.720 

Sensitivity 0.482  Sensitivity 0.847 

a) 

Specificity 0.870  Specificity 0.592 
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The predicted values of the test data set were divided into classes with an interval of 0.05 

separated into presence and absence locations. The two histograms in Figure 3.3 clarify the 

distinction between the predicted readings of the absence and presence locations. For more 

than half of the absence locations a value of less than 0.4 was predicted. In the categories with 

readings of more than 0.4 the number of absence locations shows a continued decline.  

The maximum of the predicted values for the presence locations read at 0.4 and 0.45 for about 

180 of 1000 locations (=18 %). With probabilities between 9 % and 14 % of presence 

locations, readings up to the category of 0.7 to 0.75 in the higher ranking bins were predicted.  

However, there is an overlap of the predicted values for presence and absence locations 

between the readings 0.35 and 0.45. In this region there are about 300 presence and 520 

absence locations. 
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Figure 3.3: Histogram for predicted values of the test data set divided by absence 

(above) and presence locations (below) 
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3.1.2 Index of relative importance for the year 1939 applying Model 1 

Applying the regular point grid generated in section 2.1.4 (distance between points = 1,000 

m) a map showing an index of relative importance for the complete range of the survey was 

created, based on Model 1 (Figure 3.4). Because the environmental data used to characterize 

the locations originated mainly from the year 1939 (see Table 2.1) the prediction is related to 

this year. The predicted relative occurrences are located between 0.29 and 0.74. 

Figure 3.4 explains once again the evidence of the partial dependence plots and the relative 

importance score of the predictor variables: the variable ‘distance to coastline’ is the most 

important predictor and is most influential in the distribution of nest locations. Thus, in a strip 

of about 60 km along the coastline high occurrence indices of nest locations of the White 

Stork are predicted. In contrast for the southern section of the survey area, situated at a greater 

distance from the coastline, low occurrence indices were predicted. Throughout the complete 

area that received surveys locations on lakes and in forests or rather in their close proximity, 

showed as being virtually unsuitable for breeding. In these regions the concentration of the 

settlement area is minimal, too. The environmental variable ‘elevation’ also shows a 

differentiated gradient in the survey area from north to south since the height above mean sea 

level along the coastline (in the north) offers lower readings, increases, however, towards the 

heartland (towards the south east). Higher occurrence indices were predicted for the lower 

lying areas of the north.  
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In order to relate the predicted relative occurrences to one of the two classes absence or 

presence, a convenient threshold must be selected. Using the program ROC_AUC the 

threshold could be established with which the correct classification rate was maximized; it has 

a value of 0.36. In Figure 3.5 the prediction for the complete survey area is depicted applying 

this threshold. According to this scheme, potentially in the north of East Prussia, the White 

Stork appears all over the country, apart from woodland areas. In the south, rich in lakes and 

forests, there is a larger area in which an absence of breeding sites of the White Stork was 

predicted. 

 

Figure 3.5: Classification of the predicted values for the year 1939 for occurrence and 

non-occurrence applying a threshold of 0.36 
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3.2 Model 2: Presence-absence model based on a White Stork count 
(point scale) 

For the construction of the model the data set derived from the map for the White Stork 

census of 1931 (Data set 2) was chosen as the target variable. Model 2 contained the predictor 

variables ’distance to forest’, ’distance to settlement area, size range 1 to 5’, ‘distance to 

coastline’, ‘distance to lake’, ‘distance to watercourse’ and ‘elevation’ and was constructed in 

TreeNet with the following settings:  

learning rate:      0.1 

maximum nodes per tree:    2 

percentage of the dataset applied for testing:  40 %. 

Table 3.3 first shows the variable importance of the applied predictors, calculated by TreeNet 

The predictor variables ‘distance to forest’ and ‘distance to settlement areas, size range 1 to5’ 

show the greatest influence on the predicted response. 

Table 3.3: Importance of the predictor variables of the Model 2 

Predictor variable Relative Importance Score 

Distance to forest  100.00 

Distance to settlement area, size range 1 to 5 97.44 

Distance to coastline 78.69 

Distance to lake 58.25 

Distance to watercourse 56.65 

Elevation 50.19 

For an easier interpretation of the model a partial dependence plot was created for each 

predictor variable in TreeNet (Figure 3.6 a-f). 

The predictor ’distance to forest’ is the most important one (Figure 3.6 a). Locations in close 

proximity to or rather in woodland are considered somewhat unsuitable as breeding sites. 

They show a partial dependence with readings of less than -0.5. As from a distance of about 1 

km to the nearest forest the partial dependence shows positive readings of more than 0.3. 

However, up to10 km it shows a slow decline and reaches nearly 0. High positive values of 

0.6 are reached once again at a distance of 13 km from the next forest. 



3 Results 

 45

For the predictor ’distance to settlement area, size range 1 to 5’ (Figure 3.6 b) a positive effect 

can be seen for locations at a distance of up to about 1.5 km from the next settlement of the 

size range 1 to 5. There is a maximum for the reading of 0.5 at a distance of 1 km to the 

nearest settlement area. If the distance increases, the partial dependence becomes negative and 

reaches a high negative effect with a partial dependence of -1 at distances of more than 3 km 

to the nearest settlement.  

The predictor ‘distance to coastline’ (Figure 3.6 c) shows a high negative effect with readings 

under -0.7 in close proximity to the coast, it then rises considerably, however, and becomes 

positive. At a distance of about 2 km from the coast the partial dependence reaches a high 

positive reading of about 0.6. Up to a distance of about 20 km to the coastline the partial 

dependence is positive, however, it then shows a steady decline. With growing distance to the 

coastline the influence of the predictor is almost 0 to slightly negative. Only as from a 

distance of about 150 km does the partial dependence reach positive readings again with a 

second maximum of about 0.6. 

The predictor ‘distance to lake’ (Figure 3.6 d) with readings of up to 0.4 has a negative effect 

on the predicted response of locations in close proximity of lakes. As from a distance of about 

7.5 km to the next lake the partial dependence becomes slightly positive with readings 

between 0.1 and 0.2. It drops towards zero at a distance of 30 km, but then shows high 

positive readings of more than 0.4 at a distance of more than 35 km to the nearest lake.  

The graph of partial dependence for the predictor ‘distance to watercourse’ (Figure 3.6 e) 

shows slightly positive readings around 0.1 for distances of up to 3 km to the next 

watercourse. At a distance of 3 km to 20 km the readings vary around the zero point. At 

distances over 20 km the partial dependence achieves high negative values of -0.6, dropping 

to -0.7 across a distance of 30 km. 

The partial dependence of the predictor ‘elevation’ (Figure 3.6 f) with a reading of -0.2 is 

negative at first. At altitudes of 10m and 80m above mean sea level the readings vary between 

0.03 and 0.12. Between 80m and 120m the partial dependence then shows slightly negative 

readings of up to -0.05 rising again up to nearly zero. As from a height of about 170 m the 

partial dependence shows a sharp decline and achieves a negative minimum with a reading of 

about -0.3.  
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Figure 3.6:  Partial dependence plots for predictor variables employed in Model 2; a) 

‘distance to forest’, b) ‘distance to settlement area, size range 1 to 5’, c) 

‘distance to coastline’, d) ‘distance to lake’, e) ‘distance to watercourse’ and 

f) ‘elevation’ 
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3.2.1 Evaluation of Model 2 

Spearmans-Rank Correlation 

After the classification of the predicted values of the breeding occurrence in 10 equal-interval 

bins the number of points of the test data set per bin (418 points from data set 1) were 

established and these adjusted to the area of the total survey covered by this bin (area adjusted 

frequency, as in Boyce et al. 2002). For Model 2 a value of 0.976 was calculated for the 

Spearman-Rank Correlation. For the determination of the variance within the test data set it 

was divided into 5 subsets and the medium area adjusted frequency as well as the standard 

deviation were calculated (Figure 3.7). As the high reading for the correlation states, the area 

adjusted frequency increases with the number of bins. 71% of the locations are to be found in 

bins 6 to 10. Most of the presence locations per area fell in bins 8 to 10. 
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Figure 3.7:  Average area adjusted frequency with standard deviation per bin for the 

predicted values of the test data set (418 presence locations in an area of 

35,628 km2, divided into five sub-samples) 

Minimal predicted area (MPA) 

Another measure to evaluate the performance of a model constructed with a presence-only 

data set is the calculation of the MPA (see section 2.1.3.2.1). For this one the reading of the 

appropriate grid cell of the relative occurrence index was established for the 418 nest 

locations of the test data set. 90 % of the nest locations showed readings larger than 0.34. If 

this reading is applied as the threshold for the transformation of the predicted values of the 
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map generated applying Model 2 in presence/absence (as in Engler et al. 2004) 75 % of the 

total survey area lay within the occurrence area (minimal predicted area). This shows that the 

White Stork is predicted to be a widespread species within the study area (Figure 3.8). 

In Table 3.4 the three models with the highest MPA are specified for comparison. They all 

contain the same predictor variables as Model 2 and only differ in their settings used for 

creating the model in TreeNet. The MPA of Model 2 was 2.6 % higher than the lowest 

obtained MPA. 

Table 3.4: MPA and Spearman Rank Correlation for the three models with the highest 

MPA and for Model 2. The description of the models comprises the settings 

applied in TreeNet (lr-learning rate, nd – number of maximum nodes per 

tree, ts – percentage of data set applied for testing) 

Description of the model Threshold MPA [km2] MPA [%] Spearman-Rank 

Correlation 

Lr005_nd6_ts40 0.29 25,676 72.1 0.903 

Lr01_nd6_ts20 0.23 26,089 73.2 0.939 

Lr01_nd2_ts20 0.35 26,288 73.8 0.903 

Lr01_nd2_ts40 (Model 2) 0.34 26,602 74.7 0.976 

 

Figure 3.8: MPA for Model 2 applying a classification threshold of 0.34 
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The difference between the MPA for the created models was considered to be relatively small. 

Therefore and because the Spearman-Rank Correlation is an often used measure in the 

literature for evaluating presence-only models (Boyce et al. 2002), the model with the highest 

correlation value was selected as the best model (which was Model 2) although it did not 

show the lowest MPA. 

 

3.2.2 Index of relative importance for the year 1939 applying Model 2 

Applying the regular point grid (see section 2.1.4) and the subsequent conversion into a raster 

data set, a map showing an index of relative importance was generated for the complete study 

area for Model 2 (Figure 3.9). The predicted values are between 0.001 and 0.972. High values 

were predicted in a strip of about 20 km along the coastline as well as at a distance of about 

150 km from the coastline at the southern edge of the study area. A further region with high 

indices of relative importance is found in the northwest of the survey area. However, it can be 

established that closed forests and lakes are classified as unsuitable breeding habitats since 

very low indices were predicted for these areas. Extensive forests and water bodies are 

situated especially in the south of the study area and correspond with the areas of a low 

predicted index of the presence of nest sites of White Storks. Locations in extensive regions 

of forest and water bodies as a rule also show a large distance to the nearest settlement, which 

also leads to a low predicted occurrence of breeding sites. 
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3.2.3 Index of relative importance for the period 1981-1992 applying Model 2_mod 

Model 2, which is based on the results of the White Stork count from 1931 (Data set 2), was 

employed as the basis for a prediction of the occurrence of the White Stork for the period 

1981-1992. This model was selected because unlike Model 1 (presence-available model) it is 

based on a presence-absence data set. Presence-absence models show a higher performance to 

distinguish between presence and absence of organisms (Boyce et al. 2002). 

For the modified Model 2 (Model 2_mod in the following) the variable ‘distance to settlement 

area, size range 1 to 4’ was employed as the predictor variable instead of the variable 

‘distance to settlement area, size range 1 to 5’. Furthermore the predictor variable ‘distance to 

watercourse’ could not be used because unfortunately there was no digital data available 

about the course of the rivers in the years 1981-1992 at the required scale. All other predictor 

variables and the settings in TreeNet were applied as in Model 2. 

Using Model 2_mod a map showing an index of relative importance was created for the year 

1939 as well as for the period 1981-1992. The mean difference of the predicted values of the 

individual locations between both maps reads at -0.059. This means that on average 

marginally lower readings were predicted for the period 1981-1992. In Figure 3.10 the 

frequency distribution of the calculated difference between the predicted values for each 

location within the study area for the period 1981-1992 and the year 1939 is depicted.  
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Figure 3.10: Difference between the predicted values for the period 1981-1992 and for 

the year 1939 

In Figure 3.11 maps showing an index of relative importance for the year 1939 and the period 

1981-1992 are shown. For the year 1939 the values between 0.002 and 0.994 were predicted. 

For the period 1981-92 these values are between 0.001 and 0.992.  
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For a better comparison of the predictions for the year 1939 and the period of 1981-1992 a 

classification of the predicted values in each case with a threshold of 0.5 was carried out. 

According to Liu et al. (2005) this threshold was chosen because the data set showed a 

balanced sampling design consisting of 5,000 absence and 5,000 presence locations 

(prevalence = 0.5). Thus, all predicted values over 0.5 correspond with an occurrence, 

readings less or equal to 0.5 mean a non-occurrence. Subsequently, for every grid cell of the 

study area the difference between the values predicted for the period of 1981-1992 and for the 

year 1939 was calculated (Figure 3.12). 

Grid cells with a value -1 corresponded to areas for which an occurrence of nest sites was 

predicted in 1939, for the period of 1981-1992, however, a non-occurrence. Grid boxes with a 

value of 1 correspond to the opposite. The grid boxes with the value 0 account for no change 

as to the prediction of occurrence and absence (non-occurrence) of breeding sites. In total 

there are 5601 grid boxes with the value -1 (= 5601 km2) and 2771 with the value 1 (= 2771 

km2). Thus, in comparison of both outputs, a reduction of predicted potential breeding sites 

can be noticed for the period 1981-1992 compared with the year 1939 (15.7 % of the area of 

East Prussia). In 76.6 % of the area of East Prussia the suitability as breeding ground for the 

White Stork remained unchanged. 

Comparing the underlying environmental variables for the year 1939 and the period of 1981-

1992, a marked difference for these years can only be found in the variables ’forest’ and 

’settlement area’: The forest area increased from 4890 km2 in 1939 to 6383 km2 in the period 

1981-1992. The number of settlements dropped by about a third from 788 settlements (size 

categories 1 to 4) in 1939 to 243 settlements in the period 1981-1992. The surface area of the 

lakes with 1049 km2 in 1939 and 1016 km2 in the period 1981-1992 remained almost the 

same. For the coastline and the DEM the same data sets for both years were applied. 

As seen in Figure 3.12 the changes in the predicted values are area-wide and spatially rather 

limited. In addition, the layer ‘forest’ for the two different points in time, which was the base 

of the most important predictor ‘distance to forest’ in Model 2_mod, is shown in detail in the 

same figure for the districts of Labiau und Insterburg and parts of the related districts. It is 

remarkable that in most of the cases where forest extended from 1939 to the years 1981-1992 

the prediction for the relevant grid cells changed from occurrence to non-occurrence and vice 

versa. 
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3.3 Model 3: Based on observed White Stork densities (administrative 
district scale) 

Model 3 contained the predictor variables ‘percentage of pasture’, ‘percentage of forest’, 

‘percentage of water’, ‘percentage of arable land’, ‘elevation’, ‘distance to coastline’ and 

‘number of settlement areas per km2, size range 1 to 5’ and was generated in TreeNet using 

the following settings: 

learning rate:     0.05 

number of maximum nodes per tree:  6 

testing:      10-fold cross-validation. 

Table 3.5 shows the variable importance of the applied predictor variables calculated by 

TreeNet. Both predictor variables ‘number of settlement areas per km2, size range 1 to 5’ and 

‘percentage of pasture’ had considerable bearing on the modeling. Notably less important 

were the two variables ‘percentage of arable land’ and ‘distance to coastline’. 

Table 3.5: Importance of the predictor variables of Model 3 

Predictor variable Relative Importance Score 

Number of settlement areas per km2, size range 1 to 5 100.00 

Percentage of pasture 90.67 

Percentage of forest 54.40 

Percentage of water bodies 53.97 

Elevation 40.16 

Percentage of arable land 27.29 

Distance to Coastline 23.77 

For the graphic visualization of the effect which the individual predictor has on the predicted 

response the partial dependence plots are shown in Figure 4.2.1 e-g. 

The largest influence on the predicted response was contributed by the predictor ‘number of 

settlement areas per km2, size range 1 to 5’ (Figure 3.13 a). Up to a number of 0.11 

settlements per square km a negative partial dependence of -4 was existent. With a growing 

number of settlements the partial dependence increased continuously reaching zero point at 

about 0.13 settlements per square kilometer and had a high positive reading of 9 from about 

0.19 on.  
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The predictor ’percentage of pasture’ (Figure 3.13 b) afforded a high negative partial 

dependence of -0.8 for districts that showed a reading lower than 15 %. From there the partial 

dependence rose considerably, reaching zero point at about 17 % and showing a positive 

partial dependence of 3 as from a percentage of 22 % pasture in the district. 

The predictor variable ’percentage of forest’ (Figure 3.13 c) showed a high partial dependence 

for districts with a percentage of up to 15 % forest. The partial dependence declined with 

increasing percentage, reaching zero point in districts with roughly 17 % forest and showed a 

negative reading of nearly -3 as from 25 % forest in the district. 

For the predictor ’percentage of water bodies’ (Figure 3.13 d) first a positive partial 

dependence of up to 1.5 for districts with a percentage of less than 0.8 % was apparent. 

Between 0.8 and 2 % it presented values at -0.7. In districts with a larger proportion of water 

bodies the partial dependence declined to values of around -1.5. 

For the predictor ’elevation’ (Figure 3.13 e) there was a positive partial dependence of 

approx. 0.6 for districts with a medial altitude of up to 90 m. With increasing altitude the 

partial dependence dropped considerably and scored nearly zero at an average altitude of 

about 145 m. For districts with an altitude of more than 145 m the predictor showed a 

negative influence with a partial dependence of -1.3. 

The predictor ’percentage of arable land’ (Figure 3.13 f) showed a positive partial dependence 

with a maximum value of 0.7 for districts with a percentage of between 42 % and 50 %. For 

districts with a minor or major percentage of arable land the predictor showed a lesser 

negative effect with a value of less than -0.15. 

The predictor ’distance to coastline’ (Figure 3.13 g) showed the least influence on the model. 

For distances of less than 63 km to the coastline a negative partial dependence of maximally -

0.45 exists. At greater distances the partial dependence becomes positive and achieves a 

reading of 0.35 at a distance of 80 km onwards from the coastline. 
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Figure 3.13: Partial dependence plots for the predictor variables employed in Model 3; 

a) ‘number of settlement areas, size range 1 to 5’, b) ‘percentage of pasture 

land’, c) ‘percentage of forest’, d) ‘percentage of water’, e) ‘elevation’, f) 

‘percentage of arable land’, and g) ‘distance to coastline’ 
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3.3.1 Evaluation of Model 3 

Since no independent test data set for the evaluation of the model was available the model 

could only be evaluated internally. To achieve this, a 10-fold cross-validation procedure was 

chosen as the test mode in TreeNet. Following, a prediction for the complete data set (n=37) 

was generated and various readings calculated for the definition of the goodness-of-fit of the 

model. Model 3 had a mean absolute error (MAE) of 5.22. The Coefficient of Efficiency had 

a value of 0.80. The MAE in per cent of the predicted value from the observed value amounts 

to 15.5 %. 

 

3.3.2 Predicted White Stork densities for the year 1939 

For a graphical display of the model a prediction was made for every administrative district 

for the year 1939 applying Model 3 and compared to the results of the White Stork census of 

1934. This is shown in Figure 3.14 (for exact numbers see Appendix 8.5). 

For the southern part of the survey area a low number of breeding pairs was predicted for the 

year 1939. High predicted densities of breeding pairs are to be found in the north west of the 

survey area. This tendency corresponds with the results of the count of 1934. In the 

comparison of the count with the values predicted in the model, however, it becomes obvious 

that the range of the values of the count is higher than the values of the model. The readings 

from observation are between 15.4 and 75.9 pairs per district, whereas the predicted values 

only range between 29.2 and 63.2 pairs per district. 
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3.3.3 Predicted White Stork densities for the period 1981-1993 

Due to the scale of the Baltic Sea GIS data Model 3 had to be modified for the estimation of 

White Stork densities for the period 1981-1993 with regard to the size categories of the 

settlement area applied. Instead of the variable ‘settlement areas per km2, size range 1 to 5’ in 

Model 3, the variable ‘settlement areas per km2, size range 1 to 4’ in Model 3_mod (MAE = 

5.72) was applied. All other settings of both models correspond. 

In Figure 3.15 the estimated densities of White Stork breeding pairs for the period 1981-1993 

as well as the difference to the prediction for the year 1939 are shown. Especially in the 

central and southern section of the study area higher readings per district were predicted for 

the period 1981-1993. A reduction in the number of breeding pairs is predicted for the north 

and south as also the districts in the west of the survey area except for the district Stuhm. 

If the total number of breeding pairs in the study area is calculated, the result is 16,395 in the 

year 1939 and 17,346 in the period of 1981-1993 applying Model 3_mod. The number 

determined in the count of breeding pairs in 1934 resulted in 16,092 (as in Tischler 1941). So, 

for the year 1939 already 303 breeding pairs more were predicted than actually counted in 

1934. For the period 1981-1993 an increase in the number of breeding pairs in the total area 

of survey by 1255 is predicted in comparison to the count in the year 1934 and 951 breeding 

pairs in comparison to the year 1939. 
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Figure 3.15: Estimated number of White Stork breeding pairs per 100 km2 for the 

period of 1981-1993 applying Model 3_mod; labeled figures: Difference 

between estimated densities for 1939 and for the years 1981-1993 

In Table 3.6 the environmental variables applied for both points in time are shown except the 

data set for the course of the coastline and the DEM, which were assumed to be unchanged. 

Table 3.6: Mean ratio of the area of forest, water, pasture land and arable land as well 

as the mean number of settlements per area of administrative district for 

1939 and for the period of 1981-1993 

Area in %  

Variable Forest  Water Pasture land Arable land 

Mean number 

of Villages, size 

range 1 to 4 

1939 18.3 2.7 21.6 47.1 0.024 

1981-1993 15.9 2.5 21.3 35.7 0.008 

The largest change in surface area can be seen in the variable 'arable land’. Thus, the area of 

arable land has increased on average 11 % per district. Furthermore the number of settlements 

has decreased by nearly 1/3 to 243. The share of forest area has decreased by 2.4 % per 

district, whilst the area of lake land and pasture land has remained nearly unchanged.  
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4 Discussion 

4.1 The White Storks’ choice of nesting sites in former East Prussia 

In Model 1 and Model 2 the three environmental variables ‘forest’, ‘coastline’ and ‘settlement 

area’ are most influential in the White Stork’s choice of nesting place in East Prussia (Table 

3.1 and Table 3.3). 

In Model 3, which models the density of White Stork breeding pairs in the different 

administrative districts, the variables ‘settlement area’ and ‘forest’ also show a great effect on 

the modeling with a relative importance score of 100.00 or rather 54.40 (Table 3.5). The 

variable ’coastline’ plays only a subordinate role. The variable ’pasture’, which depicts how 

much area per administrative district is exploited agriculturally as pasture or meadow, is the 

second most important predictor in Model 3 having a relative importance score of 90.67. For 

the Model 1 and Model 2 no data on agricultural usage was available and so this aspect has to 

go unconsidered for now. 

Surveys on the feeding ecology of the White Stork in agriculturally effected areas have shown 

that to a great extent the White Stork chooses pasture and meadow with a low height of 

vegetation for foraging (Struwe & Thomsen 1991, Böhning-Gaese 1992, Johst et al. 2001). 

Agricultural crop land plays an inferior role and shows only a greater availability of food 

supply at the time of working the land and after the harvest, i.e. at the end of the nestling 

phase (Bairlein & Henneberg 2000, Bäßler et al. 2000).  

The ‘forest’ predictor is also of major importance in the modeling. Thus, the vicinity to 

forests has a negative effect on the probability of the White Stork occurrence. According to 

the created models dense woodland must be regarded as an inadequate habitat for the White 

Stork, since the optically orientated stalking predator has apparently difficulties in finding 

food supply there (Schüz 1933, Latus et al. 2000).  

Beside the availability of food supply the choice of nesting ground is also determined by the 

vicinity to human settlements, since nests are often built on emerging buildings (Schulz 

1993). Thus, in the year 1934 in former East Prussia (except for the districts of Rosenberg and 

Marienwerder) 92 % of the storks nested on roof tops (Tischler 1941). This explains the great 

influence the variable ‘settlement area’ has in the three models presented here. 
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The influence of the distance to coastline in the White Stork’s choice of nesting ground (in 

Model 1 and Model 2) has not been examined yet. In particular in Model 1 this variable 

influences the distribution of the White Stork considerably and leads to the prediction of a 

high occurrence near the coastline. A reason for that could be the increasing continentality 

with growing distance to the coastline. According to Schüz (1933) this influences the point on 

time for arrival, breeding, and departure, but not the actual distribution of the White Stork 

population. However, considering the result of Model 2, there is a ‘band of high abundances’ 

with a high predicted occurrence ‘probability’ for a distance of 160 km from the coastline. 

This somewhat contradicts the influence of continentality on the distribution of the White 

Stork; perhaps this is caused by the spatial arrangement of the wetlands in the study area 

rather than continentality as such. Wet marshland, which can often be found near the coast, is 

a habitat preferred by the White Stork. Unfortunately the exact spatial arrangement of 

wetlands could not be considered in this study. This topic deserves still more research. 

Moreover, the great influence of the coastline could be based on a combination of several 

factors. For instance, in East Prussia a specific landscape composition parallel to the coastline 

can be found. The height above sea level increases with a growing distance to the coastline. 

About 150 km from the coastline, the Baltic land ridge with an elevation of maximum 313 m 

above sea level parallels the coast. South of the Baltic land ridge extensive sandy territory 

expands, whereas in the north of East Prussia loamy soils can be found (Schüz 1933). This 

also influences the availability of food supply for the White Stork, since there is more 

agriculture on the sandy soil of the south, whereas in the loamy north there are more pastures 

and meadows for cattle breeding (Profus 1989 cited in Hinkelmann 1995). Furthermore, there 

are extended regions of lake-land and forest in the south of East Prussia and so at a greater 

distance to the coastline which makes them probably unsuitable as nesting grounds for the 

White Stork. Therefore, the distance to the coastline could be exploited as a proximal factor 

for the interaction of the different variables that influence the White Stork’s choice of nesting 

ground. However, this may only be applicable to East Prussia with its characteristic landscape 

described here and should not simply be applied to other regions without checking the 

importance of this variable. 

The specific structure of the data is possibly a further reason for the extremely high influence 

of the ’coastline’ predictor on the occurrence of the White Stork in Model 1. Half of all the 

items of Data set 1 are within a distance of 41.5 km to the coast (the maximum distance to the 

coast is 164 km, Figure 2.1). This could be due to a more intensive banding activity in 
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northern East Prussia and might lead to an over-estimation of the quality of the nesting 

grounds near the coast. However, the modeling approach chosen in this study should consider 

the Ecological Niche and help to overcome such problems of survey effort in space (see 

Kadmon et al. 2004). 

 

4.2 Population Estimates 

4.2.1 For the period of 1981-1992 at point scale 

The predicted decrease in the occurrence of the White Stork for the period 1981-1992 results 

from the increased forest area and the reduced number of settlements in comparison to those 

of 1939 (section 3.2.3). Over time, it appears, that both variables have changed to the 

disadvantage of the White Stork (see partial dependence plots in Figure 8.7). This also 

corresponds with the information in the respective literature: the White Stork does not occur 

in dense forest areas and also it looks for the vicinity of human settlement areas for breeding 

grounds (Schüz 1933, Creutz 1988). White Storks appear to follow rural human settlements, 

and prefer the open habitats by which they are mostly surrounded. 

However, it must be pointed out that both layers ‘settlement area’ from the year 1939 and the 

period 1981-1992, the best available layer and information at hand, can only be compared 

with care. The settlement areas for the year 1939 were digitized manually from topographical 

maps. The appropriate layer refers to settlements which exceed a certain number of 

inhabitants (’settlement area, size range 1 to 4’, compare section 2.1.1.1.2) disregarding the 

size of expansion. In contrast, the variable ‘settlement area’ for the period 1981-1992 was 

derived from a raster grid with a cell size of 1 km. The settlement areas in this layer therefore 

must have shown a certain expanse. Most likely, this must be seen as the main reason for the 

lesser number of settlements in the period of 1981-1992 (243 in comparison to 788 

settlements in the year 1939). 

 

4.2.2 For the period of 1981-1993 at administrative district scale 

Applying Model 3_mod an increase in the number of breeding pairs of about 5% was 

estimated for the period of 1981-1993. Comparing the applied environmental variables only 

the variables ‘settlement area’ and ‘arable land’ have changed considerably. The number of 
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settlements (see above) and also the area of arable land have decreased. Considering the 

partial dependence plots for Model 3 _mod (see Figure 8.8) both findings have a positive 

effect on the occurrence of White Storks in the individual administrative districts. 

The actual effect of the variable ’settlement area’ on the occurrence of White Storks in Model 

3_mod is the opposite of its effect in Model 3 (and also Model 1 and Model 2), since in the 

latter a decrease in the number of settlement areas per administrative district shows a negative 

effect on the occurrence of White Storks. Despite it only shows a relative importance score of 

43.3 % in Model 3_mod in comparison with 100 % in Model 3. This could indicate an 

unstable model. However, it is most likely attributed to the fact that due to the reasons stated 

in section 3.3.3 only the variable ’settlement area, size ranges 1 to 4’ was adopted as an 

explanatory variable into Model 3_mod. Smaller settlements and villages of the size range 5 

and 6, in the vicinity of which the White Stork prefers to breed, were excluded. That is why 

this variable only plays a minor role in Model 3_mod in contrast to Model 3. 

 

4.2.3 Comparison between point scale and administrative district scale 

Both models predict a different development of the population of the White Stork: according 

to Model 2_mod the area of the predicted occurrences decreases, whilst Model 3_mod 

predicts an increase in the densities of White Storks in the administrative districts.  

Both models, however, are only comparable in a limited way, since, for one, they were 

developed using different scales. Model 2_mod is based on the exact location of the breeding 

ground (point scale). So the close proximity of the breeding ground can be described exactly, 

applying the available environmental variables. In Model 3_mod the density of the White 

Stork per administrative district was modeled. The environmental variables could only be 

applied as average readings for the different districts. Thus Model 3_mod gives a real 

population estimate (as density) while Model 2_mod shows the suitability of different 

locations for the White Stork as breeding ground. The differing development of the predicted 

White Stork population can be caused by a specific spatial arrangement of the described 

habitat features which will not be detected when modeling at administrative district scale. 

Therefore the aim of such models as presented here should be to work at the smallest possible 

resolution.  
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Furthermore for the creation of Model 2_mod on the point scale the variable ’pasture’ was 

unavailable since the location of pasture land could not be clearly defined on the used 

topographical maps (see section 2.1.1.1.2). Grassland, however, is the most important feeding 

habitat of the White Stork (Johst et al. 2001, Latus & Kujawa 2005). Beside the settlements 

this variable subsequently proved to be the most important predictor for the model on the 

district level (Model 3). 

Another limitation in the comparison of both models is brought by the application of variables 

which were surveyed differently and taken from different years (see section 2.1.1 and section 

2.2.1) to build the ‘historic’ models. 

 

4.2.4 Comparison with inventories done in the 1980s and 1990s 

A review of the prediction of Model 2_mod was not possible since there were no inventories 

available for the 1980s or 1990s from which the exact location of the stork breeding ground 

could be taken. 

A direct possibility for a comparison of a prediction with an actually assessed inventory of 

White Storks is only possible for Model 3_mod, which predicted the densities of White Stork 

breeding pairs per administrative district. Thus, from the results of the international census of 

White Storks Profus (2005) estimated an inventory of about 7,000 breeding pairs for the year 

1984 and between 8,200 and 8,600 breeding pairs for the years 1994/95 for the part which 

today is the Polish part of East Prussia (more or less the equivalent of today’s Polish province 

(voivodship) of Warmia-Masuria. In an inventory of the years 1991/92 Grishanov (cited in 

Hinkelmann 1995) determined 1,270 breeding pairs for the Russian section of the former 

province of East Prussia (the current Kaliningrad region). Due to repeated alterations of the 

boundaries in the region and the exclusion of the districts Rosenberg and Marienwerder from 

the study area no exact inventory figures can be established. It can be seen, however, that the 

total inventory in the 1990s with a maximum total of 9,870 (= 8,600 + 1,270) breeding pairs 

in the study area is distinctly lower than in the year 1934 with its 16,092 nesting pairs. This is 

mainly due to the fact that the determined inventory in the Russian exclave was very low. For 

the year 1934 Profus (cited in Hinkelmann 1995) estimated approximately 8,000 breeding 

pairs for Kaliningrad. As reasons for the decline Hinkelmann (1995) mentions the dwindling 

numbers of farms and the mechanization of agriculture in combination with the use of 

chemicals like pesticides and fertilizer after World War II in the Kaliningrad region. However 
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since the breakdown of the Soviet Union the population of the White Stork is increasing again 

due to the abandonment of the intensive agriculture (Hinkelmann 1995). It can be assumed 

that for this reason better food conditions are available for the White Storks. 

The prediction made for the period 1981-1993 applying Model 3_mod totaled 17,346 White 

Stork breeding pairs for the former province of East Prussia, excluding the districts of 

Rosenberg and Marienwerder. This surpasses by far the maximum inventory count for this 

region by the factor ‘1.8’.  

It is believed that the models created here are more likely to describe the capacity of the 

habitat taking the applied environmental variables into consideration. According to this logic, 

large surfaces of the former East Prussia are a potential habitat for the White Stork. Merely in 

the southern part there are larger areas with extensive forests and lake area, which are 

unsuited for the White Stork (details above). The reason for the high number of White Storks 

even in today’s inventory, especially in the Polish section (accounting for 30 breeding pairs 

per 100 km2 in the years 1994/95, according to Schimkat (2006)) is to be seen in the extensive 

agriculture with an open landscape and the highly structured habitat allowing for an 

abundance of species, which offers the White Stork enough food supply (Peterson et al. 

1999).  

The population of the White Stork varies considerably with an annual fluctuation, which 

cannot solely be assigned to the character of the habitat. And so Peterson et al. (1999) show 

that the comparison of only two successive inventories can be misleading and only the 

observation of the development of the population within a larger period of time allows for 

more exact conclusions. 

Successful breeding as well as the development of the population is influenced by the specific 

character of the habitat in the breeding area. This also includes the predominant climatic 

situations in the breeding area which are not explicitly included in the models presented here. 

However, climatic factors such as temperature and precipitation are significantly influenced 

by continentality or rather marine characteristics and are indirectly considered in the models 

by the predictor variable ’distance to coastline’. 

Unfavorable weather conditions such as periods of rain or drought as well as fluctuations in 

the population of prey still remain unconsidered in the models. They show their influence in 

the successful breeding mainly by the commencement of breeding, the mortality of nestlings 
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as well as the infestation by parasites (Schüz 1933, Creutz 1988) and can thereby lead to a 

limited number of breeding pairs in the following years (so called ‘interruption years’).  

Beside the conditions in the breeding area the population is also influenced by the conditions 

in the wintering areas and during migration. However the wintering area of the White Storks 

migrating east (White Storks from East Prussian) stretches over several climate zones from 

Uganda to South Africa so that they might always find suitable conditions somewhere in their 

wintering area (Schulz 1999, Tryjanowksi 2006). Dangers during migration are manifold and 

can originate from anthropogenic causes (e.g. shooting, electrocution), bad thermic 

conditions, thunderstorms and lack of food supply (Sproll 2000). More studies on these 

effects are needed. Here the first baseline information for such investigations was provided 

focusing on the conditions at the breeding ground alone. 

 

4.3 Restrictions and constraints of the models 

4.3.1 Presence/Pseudo-Absence approach 

Both data sets applied for the modeling on a point scale (Data set 1 and 2) contained no real 

absence locations to show at which locations the White Stork is actually not nesting 

(=confirmed absences). Data set 1 only showed presence locations which registered as 

retraced locations by banded White Storks and expanded into the banding data set of the 

ornithological station ‘Vogelwarte Radolfzell’. For the modeling 578 locations were 

randomly scattered over the study area (pseudo-absence locations). The pseudo-absence 

locations may also arbitrarily contain locations suited as breeding sites for the White Stork 

(Boyce 2006). 

Although data set 2 is based on a nearly complete mapping of all the White Stork breeding 

grounds in East Prussia in 1931 (section 2.1.2.2) a representation was chosen, however, in 

which the number of nesting grounds were both combined and presented in one community 

centre (Figure 2.2). This is why the exact locations (in coordinates) can only be deduced with 

some deviation. Locations were chosen at random that were at a distance of at least 2 km from 

the registered nesting site. For reasons just mentioned, confirmed absence locations may be at 

sites where a pair of White Storks has been breeding. This can lead to a decrease in the 

performance of the model, if absence locations turn out in fact to be suitable nesting grounds 

(Fielding & Bell 1997, Pearce & Boyce 2006). 



4 Discussion 

 69

4.3.2 Selected variables 

It must be assumed that not all biologically relevant variables are included in the modeling 

(e.g. see Gottschalk 2002). This may happen because important variables are not recognized 

as such or also because they cannot be surveyed (complexity, time and effort). This is a 

common feature in current GIS models (e.g. see Guisan and Zimmermann 2000) but supposed 

to improve further. Here, modeling methods were started and a culture within the White Stork 

community emphasizing the importance of such available GIS data was set up. Especially in 

historic modeling only a limited choice of variables is commonly possible to apply, since only 

data can be used that is already available. A survey of data which have proven to be relevant 

for the species to be modeled is not always possible with hindsight. Instead, historical data 

sets originate from museums or archives (see Graham et al. 2004 for overview and 

applications). Often, it is not known who did the surveys and how the data was surveyed 

(Engler et al. 2004, Elith et al. 2006). This includes a multitude of sources of error concerning 

the quality of data applied (Elith et al. 2006, Hüttmann in press), and therefore limits a direct 

inference. The predictors are thus primarily showing correlations (Manly et al. 2002), and 

more hypothesis and on the ground work is required to assess their validity further.  

 

4.4 Perspective for conservation and further research 

Since the beginning of population assessments at the end of the nineteenth century a high 

number of nesting White Storks has been documented for the region of former East Prussia. 

In comparison, the occurrence of the White Stork in large parts of Central Europe has steadily 

declined. According to surveys on the population dynamics of east migrating White Storks by 

Schimkat (2006) the East German populations depend on the immigration of individuals by 

dismigration from South East and Eastern Europe to conserve their population. Thus, clear 

sources and sink populations can be delineated. It is the sources that keep the overall 

population alive. The protection of the Eastern European populations of White Storks 

therefore would have a positive effect on the development of the entire populations in Central 

Europe.  

Currently, in the course of the expansion of the European Union to the east, the Polish White 

Stork population is also threatened by the intensification of agriculture and the application of 

increased amounts of pesticides and fertilizers (Schulz 1999, Tryjanowski et. al 2006). 

Fragmentation, e.g. caused by extensive road networks, is another habitat feature to consider. 
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The consequences of anthropogenic influences on the behavior of White Storks can already be 

seen in the choice of nesting ground. Thus, the White Stork is now building its nest between 

electric poles rather than on the roofs of houses as it still did some decades ago (e.g. Daniluk 

et al. 2006, Rubacha & Jerzak 2006). Effects of the electrification and further urbanization of 

the landscapes need to be taken very seriously. Effects such as global change, pollution, 

toxicology, hunting and the entire flyway and wintering ground effects are not addressed in 

this model, yet, but should contribute further to a cumulative impact assessment of White 

Storks for this important population.  

Data are a key for modeling and for an informed decision-making (Hüttmann 2005). Any 

data, e.g. surveys, habitats, population status and health, and literature, relating to the 

management of White Storks need to be freely available online. Centralized databases are to 

be developed that handle this component efficiently and which do not constrain any progress. 

The construction of a further model offers itself as the continuation of the study presented 

here. In such a model data on the current occurrence of the White Stork should be linked to 

the presently predominant environmental parameters. Relevant explanatory GIS layers, which 

should additionally be included in this model, are e.g. power supply networks, use of 

pesticides and pollution, the structure of roofs on houses, nitrogen input as well as the 

fragmentation of the landscape. A comparison of ‘historic’, ‘current’, and ‘future’ habitat 

models may help to realize differences in behavior and assess them in a pro-active fashion 

before they occur (see Onyeahialam et al. 2005, Hüttmann et al. 2005). This knowledge may 

be used to define adequate strategies for the preservation of nature in order to preserve the 

occurrence of White Storks. Considering the environmental situation, such efforts are crucial 

to pursue if the White Storks should be safeguarded in the future. 

To carry out a spatially explicit model of the relation between the nesting ground and the state 

of the environment it is of great importance that the locations of White Stork nesting grounds 

are represented as accurately as possible (as geographical coordinates) and come from a 

controlled research design. In the future it must be avoided that the results of surveys for 

larger areas (e.g. municipalities, counties etc) are pooled and merged, especially since such 

administrative units can change in the course of history and thus impede a correct evaluation. 

Also, a documentation of nesting grounds which show an absence of the White Stork or an 

abandonment of nesting grounds is important for a significant presence- absence modeling to 

be used for a sustainable future, including viable White Stork populations. 
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5 Conclusion 

This study shows that opportunistic, historical data sets can be used successfully with GIS and 

with a robust machine-learning model method (TreeNet) to derive robust species habitat 

relation models and new biological knowledge. 

Using the example of the White Stork a model for the region of former East Prussia was 

created across political borders, cultures and management regimes. 

The models generated here demonstrate that the vicinity of human settlements as well as the 

availability of sufficient feeding habitats (grass land with low vegetation, no close forest 

regions) have a strong influence on the distribution of the White Stork in this region. 

Without further testing, the models generated are only valid for the region of former East 

Prussia so far. However, in order to transfer the relations found here between the distribution 

of the White Stork and the state of the habitat to other regions as well the models would need 

to be checked using data sets surveyed in other regions. Model assessments are crucial. Only 

then can a statement on the general validity of the model be made. The applicability and value 

of this approach would be rather large because a global and quantitative White Stork nesting 

model could be achieved, which would likely improve much of its sustainable management. 

The models can be improved using additional variables. Thus, the quality of the habitat can be 

more closely described from the perspective of the White Stork with data on prey availability, 

the level of precipitation in June (when the young White Storks are especially susceptible to 

wet conditions) or the temperature for example. 

According to this aim, modeling should be carried out on different scales, since important 

influencing factors might be ignored or rather the influence of factors can vary with the scale 

(Gottschalk 2002, Hüttmann & Diamond 2006). 

To create species distribution models with the highest possible accuracy it is important that all 

relevant stakeholders (e.g. public authorities, archives, nature conservation agencies, NGOs 

and scientists) co-operate and mutually exchange data: only then can it be achieved that 

already existing data is exploited more effectively than currently done. The ideal state would 

be a freely accessible online data bank in which relevant data could be queried in digital form. 

This would further contribute to an improved and sustainable management of White Storks, 

their habitats world-wide and natural resources as a whole. 



6 Acknowledgment 

 72

6 Acknowledgement 

Here I would like to thank everyone who has offered professional and personal support in 

making this survey a success. 

First and foremost my gratitude is extended to Prof. Dieter Wallschläger (University of 

Potsdam, Germany), who initiated this study and offered me kind support. 

A great thank you to Falk Hüttmann, who made a work place available to me at the EWHALE 

lab of the University of Alaska and with his knowledge and his ideas greatly contributed to 

the outcome of the survey. My thanks also goes out to all the people at the EWHALE lab who 

accepted me so willingly into their team. 

In the months of toilsome data retrieval the uncomplicated assistance of two people in 

particular restored my courage and enforced me to continue my way. For that I thank 

Wolfgang Fiedler, managing director of Vogelwarte Radolfzell, who quickly and non-

selfishly made the data from the banding data bank available to me. Furthermore I thank Kai-

Michael Thomsen of the Michael-Otto-Institut at NABU - Naturschutzzentrum Bergenhusen, 

(Germany) for the supply of literature and his endeavours to make the results of an inventory 

in the East Prussian administrative district of Gerdauen available to me. In addition Christoph 

Hinkelmann, managing director of the Ostpreußisches Landesmuseum (East Prussian County 

Museum) in Lüneburg (Germany), as well as Gerd Dahms provided literature and information 

on East Prussia and on the White Stork. 

I thank the team of Salford Systems Ltd. for the provision of the software TreeNet and their 

flexible support.  

Also my thanks go out to Dr. Boris Schröder (University of Potsdam, Germany) for the 

gratuitous provision of his personally created program ROC_AUC. 

A great helper in writing this diploma thesis in English was Michael Schmitz. Also I am very 

grateful to Fabian Schmitz and my family for their caring support. 

 



7 References 

 73

7 References 

Austin, M. P. (2002): Spatial prediction of species distribution: an interface between 

ecological theory and statistical modelling. – Ecological Modelling, 157:101-118. 

Bairlein, F. & Henneberg, H. R. (2000): Der Weißstorch (Ciconia ciconia) im Oldenburger 

Land. – Isensee, Oldenburg. 

Barran, F. R. (1988): Städte-Atlas Ostpreußen. – Rautenberg-Verlag, Leer. 

Bäßler, R., Schimkat, J. & Ulbricht, J. (2000): Artenschutzprogramm Weißstorch in Sachsen. 

– Sächsisches Landesamt für Umwelt und Geologie, Dresden. 

Berthold, P., Kaatz, M. & Querner, U. (2004): Long-term satellite tracking of white stork 

(Ciconia ciconia) migration: constancy versus variability. – Journal of Ornithology, 

145:356-359. 

Beyer, H. L. (2004): Hawth's Analysis Tools for ArcGIS. – Available at 

http://www.spatialecology.com/htools 

Blotzheim, G. v. (1987): Handbuch der Vögel Mitteleuropas. – Aula-Verlag, Wiesbaden. 

Böhning-Gaese, K. (1992): Zur Nahrungsökologie des Weißstorches (Ciconia ciconia) in 

Oberschwaben: Beobachtungen an zwei Paaren. – Journal of Ornithology, 133:61-71. 

Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. A. (2002): Evaluating 

resource selection functions. – Ecological Modelling, 157:281-300. 

Braun, M. (1908): Die Nistweise des Storches. – Schriften Physikalisch-Ökonomische 

Gesellschaft Königsberg, 49:280-290. 

Buckland, S. T., Burnham, K. P. & Augustin, N. H. (1997): Model Selection: An Integral Part 

of Inference. – Biometrics, 53:603-618. 

Burnham, K. P. & Anderson, D. R. (1998): Model selection and inference: a practical 

information-theoretic approach. – Springer, New York. 



7 References 

 74

Chernetsov, N., Berthold, P. & Querner, U. (2004): Migratory orientation of first-year White 

Storks (Ciconia ciconia): inherited information and social interaction – Journal of 

Experimental Biology, 207:937-943. 

Creutz, G. (1988): Der Weißstorch. – Westarp Wissenschaften, Ziemsen. 

Dallinga, J. H. & Schoenmakers, S. (1987): Regional decrease in the number of White Storks 

(Ciconia ciconia) in relation to food resources. – Colonial Waterbirds, 10:167-177. 

Daniluk, J., Korbal-Daniluk, A. & Mitrus, C. (2006): Changes in population size, breeding 

success and nest location of local White Stork Ciconia ciconia population in Eastern 

Poland. – In: Tryjanowski P., Sparks T. H. & Jerzak L. (eds). The White Stork in 

Poland: studies in biology, ecology and conservation. Bogucki Wydawnictwo 

Naukowe, Poznan 2006. 

Elith, J., Ferrier, S., Hüttmann, F. & Leathwick, J. (2005): The evaluation strip: A new and 

robust method for plotting predicted responses from species distribution models. – 

Ecological Modelling, 186:280-289. 

Elith, J., Graham, H., Anderson, P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, J., Hüttmann, 

F., Leathwick, R., Lehmann, A., Li, J., Lohmann, G., Loiselle, A., Manion, G., Moritz, 

C., Nakamura, M., Nakazawa, Y., Overton, C. M., Townsend Peterson, A., Phillips, J., 

Richardson, K., Scachetti-Pereira, R., Schapire, E., Soberon, J., Williams, S., Wisz, S. 

& Zimmermann, E. (2006): Novel methods improve prediction of species' 

distributions from occurrence data. – Ecography, 29:129-151. 

Engler, R., Guisan, A. & Rechsteiner, L. (2004): An improved approach for predicting the 

distribution of rare and endangered species from occurrence and pseudo-absence data. 

– Journal of Applied Ecology, 41:263-274. 

Fielding, A. H. & Bell, J. F. (1997): A review of methods for the assessment of prediction 

errors in conservation presence/absence models. – Environmental Conservation, 24: 

38-49. 

 



7 References 

 75

Franklin, J. (1995): Predictive vegetation mapping: Geographic modelling of biospatial 

patterns in relation to environmental gradients. – Progress in Physical Geography, 

19:474-499. 

Frenz, L. (1995): Störche in Deutschland. – Scheibel, Berlin. 

Friedman, J. H. (1999): Stochastic Gradient Boosting. – In: Technical Discussion of TreeNet. 

http://www.salford-systems.com/treenet.html 

Galcov, V. (1999): Besonderheiten des Kaliningrader/Königsberger Gebiets. – In: 

Annaberger Annalen Nr.7, Hermann, A. und Lepa, A. im Auftrag des Baltischen 

Christlichen Studentenbundes, Bonn. 

Gaupp, W. (1936): Der Bestand des Weißen Storches in Ostpreußen 1934. – Beiträge zur 

Fortpflanzungsbiologie der Vögel mit Berücksichtigung der Oologie 12:41-43. 

GLOBE Task Team and others (Hastings, David A., Paula K. Dunbar, Gerald M. 

Elphingstone, Mark Bootz, Hiroshi Murakami, Hiroshi Maruyama, Hiroshi Masaharu, 

Peter Holland, John Payne, Nevin A. Bryant, Thomas L. Logan, J.-P. Muller, Gunter 

Schreier, and John S. MacDonald), eds. 1999. The Global Land One-kilometer Base 

Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and 

Atmospheric Administration, National Geophysical Data Center, 325 Broadway, 

Boulder, Colorado 80303, U.S.A. Digital data base on the World Wide Web (URL: 

http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs. 

Gottschalk, T. K. (2002): A remote sensing and GIS-based model of avian species habitat and 

its potential as a part of an environmental monitoring programme. – Materialien 

Umweltwissenschaften Vechta 14, Vechta. 

Gräber, R. (2006): Towards a Biodiversity Assessment of the Pacific Rim: Large-scale GIS-

Modeling of Brown Bear Distribution (Canada, Alaska, Russian Far East and Japan) 

in Estuaries using compiled Coastal Data. – Diploma Thesis, University of Hannover, 

Germany. 

Graham, C. H., Ferrier, S., Hüttmann, F. Moritz, C. & Peterson, A. T. (2004): New 

developments in museum-based informatics and applications in biodiversity analysis. 

– Trends in Ecology and Evolution 19: 497-503. 



7 References 

 76

Grishanov, G. B. (1989/90): Verbreitung und Bestandsentwicklung des Weißstorches in der 

Kaliningrad-Region. – In: Störche – Vorkommen, Ökologie, Schutz – Referate der I. 

(Tallin, 1989) und II. (Minsk, 1990) Unions-Konferenz der Storchenarbeitsgruppe der 

Ornithologischen Gesellschaft der Sowjetunion. Deutsche Übersetzung im Auftrag des 

NABU Institut für Wiesen und Feuchtgebiete – Naturschutzzentrum Bergenhusen. 

Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J. M. C., Aspinall, R., & Hastie, T. 

(2006a): Making better biogeographical predictions of species' distributions. – Journal 

of Applied Ecology, 43:386-392. 

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N. G., Lehmann, A. & 

Zimmermann, N. E. (2006b): Using Niche-Based Models to Improve the Sampling of 

Rare Species. – Conservation Biology, 20:501-511. 

Guisan, A. & Thuiller, W. (2005): Predicting species distribution: offering more than simple 

habitat models. – Ecology Letters, 8:993-1009. 

Guisan, A. & Zimmermann, N. E. (2000): Predictive habitat distribution models in ecology. – 

Ecological Modelling, 135:147-186. 

Hall, M. J. (2001):  How well does your model fit the data? – Journal of Hydroinformatics, 

3:49-55. 

Hastie, T., Tibshirani, R., & Friedman, J. (2003): The elements of statistical learning: data 

mining, inference, and prediction. – Springer, New York. 

Hertz-Eichenrode, D. (1969): Politik und Landwirtschaft in Ostpreußen 1919-1930. – 

Westdeutscher Verlag, Köln und Opladen. 

Hinkelmann, C. (1995): Der Weißstorch (Ciconia ciconia) im ehemaligen Ostpreußen. – 

Blätter Naumann-Museum, 15:24-52. 

Hornberger, F. (1943): Einige Ergebnisse zehnjähriger Planarbeit im „Storchforschungskreis 

Insterburg" der Vogelwarte Rossitten. – Journal of Ornithology, 91:341-355. 

Hosmer, D. W. & Lemeshow, S. (2000): Applied logistic regression. – John Wiley & Sons, 

New York. 



7 References 

 77

Hubley, J., Neubauer, D., Paciulli, L. & Hüttmann, F. (in press): Using TreeNet for 

identifying management thresholds of Mantled Howling Monkeys' habitat preferences 

on Ometepe Island, Nicaragua, on a tree and home range scale – Science Journal 

International. 

Hüttmann, F. (in press): Constraints, Suggested Solutions and an Outlook towards a New 

Digital Culture for the Oceans and beyond: Experiences from 5 predictive GIS Models 

that contribute to Global Management, Conservation and Study of Marine Wildlife 

and Habitat. – In: Vanden Berghe, E. et al. (Eds). 2005. Proceedings ‘Ocean 

Biodiversity Informatics’ – International Conference on Marine Biodiversity Data 

Management, Hamburg, Germany, 29 November-1 December 2004 IOC Workshop 

Report BSH/ VLIZ Special Publication 20. 

Hüttmann, F. (2005): Research and management viewpoint: Databases and science-based 

management in the context of wildlife and habitat: Toward a certified ISO standard for 

objective decision-making for the global community by using the internet. – Journal 

of Wildlife Management, 69:466-472. 

Hüttmann, F., Franklin, S. E. & Stenhouse, G. B. (2005): Predictive spatial modeling of 

landscape change in the Foothills Model Forest. – The Forestry Chronicle 81:1-13. 

Hüttmann, F. & Diamond, A. W. (2006): Large-scale effects on the spatial distribution of 

seabirds in the Northwest Atlantic. – Landscape Ecology, 21:1089-1108. 

Johst, K., Brandl, R., & Pfeifer, R. (2001): Foraging in a patchy and dynamic landscape: 

Human land use and the White Stork. – Ecological Applications, 11:60-69. 

Kadmon, R., Farber, O. & Danin, A. (2004): Effect of roadside bias on the accuracy of 

predictive maps produced by Bioclimatic Models – Ecological Applications, 14:401-

413. 

Latus, C. & Kujawa, K. (2005): The effect of land cover and fragmentation of agricultural 

landscape on the density of White Stork (Ciconia Ciconia L.) in Brandenburg, 

Germany. – Polish Journal of Ecology, 53:535-543. 

Latus, C., Kujawa, K. & Glemnitz, M. (2000): The influence of landscape structure on White 

Stork’s Ciconia ciconia nest distribution. – Acta Ornithologica, 35:97-102. 



7 References 

 78

Legates, D. R. & McCabe, J. W. Jr. (1999): Evaluating the use of ‘goodness-of-fit’ measures 

in hydrologic and hydroclimatic model validation. – Water Resources Research, 

35:233-241. 

Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L., & Erickson, W. P. 

(2002): Resource Selection by Animals: statistical analysis and design for field 

studies. – Kluwer, Boston. 

Onyeahialam, A., Hüttmann, F. & Bertazzon, S. (2005). Modeling sage grouse: Progressive 

computational methods for linking a complex set of local biodiversity and habitat data 

towards global conservation statements and decision support systems. Lecture Notes 

in Computer Science (LNCS) 3482, International Conference on Computational 

Science and its Applications (ICCSA) Proceedings Part III:152-161. 

Pearce, J. & Boyce, M. S. (2006): Modelling distribution and abundance with presence-only 

data. – Journal of Applied Ecology, 43:405-412. 

Pearce, J. & Ferrier, S. (2000): Evaluating the predictive performance of habitat models 

developed using logistic regression. – Ecological Modelling, 133:225-245. 

Peterson, U., Jakubiec, Z., Okulewicz, J., Profus, P., & Haecks, J. (1999): Der 

Weißstorchbestand im Kreis Ketrzyn (Rastenburg), Masuren/Polen. – In: Weißstorch 

im Aufwind? - White storks on the up? - Proceedings, Internat. Symp. on the White 

Stork, Hamburg 1996, edited by H.Schulz, pp. 395-412. NABU (Naturschutzbund 

Deutschland e.V.), Bonn. 

Profus, P. (2005): Bestandsveränderungen des Weißstorchs Ciconia ciconia in Polen. – 

Charadrius, 41:12-20. 

Pulliam, H. R. (1988): Sources, sinks, and population regulation. – American Naturalist, 

132:652-661. 

Rohde, G. (1957): Die Ostgebiete des Deutschen Reiches. – Holzner-Verlag, Würzburg. 

Rubacha, S. & Jerzak, L. (2006): Changes in the White Stork Ciconia ciconia population 

number, density and breeding places in Zielona Gora region 1926-2004. – In: 

Tryjanowski P., Sparks T. H. & Jerzak L. (eds). The White Stork in Poland: studies in 

biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznan 2006. 



7 References 

 79

Salford Systems Ltd. Ltd. (2003). TreeNet 2.0 User Manual - Software TreeNet. San Diego, 

CA. http://www.salfordsystems.com/ 

Schimkat, J. (2006): Untersuchungen der Populationsdynamik von Regionalbeständen 

ostziehender Weißstörche (Ciconia ciconia) mittels eines Simulationsmodells – 

Dissertation, Universität Potsdam, Germany. 

Schröder, B. (2000): Zwischen Naturschutz und Theoretischer Ökologie: Modelle zur 

Habitateignung und räumlichen Populationsdynamik für Heuschrecken im 

Niedermoor. – Dissertation, Technische Universität Braunschweig, Germany. 

Schröder, B. & Reineking, B. (2004): Modellierung der Art-Habitat-Beziehung - ein 

Überblick über die Verfahren der Habitatmodellierung. – In: Dormann, C. F. et al. 

(eds): Habitatmodelle - Methodik, Anwendung, Nutzen, pp. 5-26. UFZ-Berichte, 2004 

Schulz, H. (1993): Der Weißstorch - Lebensweise und Schutz. – Naturbuch-Verlag, Augsburg. 

Schulz, H. (1999): Der Weltbestand des Weißstorchs (Ciconia ciconia): Ergebnisse des 5. 

Internationalen Weißstorchzensus 1994/95. – In: Schulz, H. (Hrsg.) (1999): 

Weißstorch im Aufwind? - White Storks on the up? - Proceedings, Internat. Symp. on 

the White Stork, Hamburg 1996. NABU (Naturschutzbund Deutschland e.V.), Bonn: 

335-350. 

Schumacher, B. (1977): Geschichte Ost- und Westpreußens. – Holzner-Verlag, Würzburg. 

Schüz, E. (1933): Der Bestand des Weißen Storches (Ciconia c. ciconia) in Ostpreußen 1931. 

– Verh.Orn.Ges.Bay., XX:191-225. 

Schüz, E. (1936): Internationale Bestands-Aufnahme am Weißen Storch 1934. – 

Ornithologische Monatsberichte, 44:33-41. 

Segurado, P. & Araujo, M. B. (2004): An evaluation of methods for modelling species 

distributions. – Journal of Biogeography, 31:1555-1568. 

Sproll, A. (2000): Zugverhalten und Mortalität des Weißstorches (Ciconia Ciconia) nach 

Ringfunden der Vogelwarte Rositten (Ostpreussen). – Diploma Thesis, 

Fachhochschule für Technik, Wirtschaft und Sozialwesen Zittau/Görlitz. 



7 References 

 80

Statistisches Handbuch für die Provinz Ostpreußen 1938 (1938): – Grenzlandverlag G. 

Boettcher, Schloßberg & Leipzig. 

Struwe, B. & Thomsen, K.-M. (1991): Untersuchungen zur Nahrungsökologie des 

Weißstorches (Ciconia ciconia, L. 1758) in Bergenhusen 1989. – Corax 14:210-238. 

Tischler, F. (1941): Die Vögel Ostpreußens. – Ost-Europa-Verlag, Königsberg & Berlin. 

Tryjanowski, P., Sparks, T. H. & Jerzak, L. (2006): Introduction. White Stork Ciconia ciconia 

research in Poland: where we are and where we are going? – In: Tryjanowski P., 

Sparks T. H. & Jerzak L. (eds). The White Stork in Poland: studies in biology, ecology 

and conservation. Bogucki Wydawnictwo Naukowe, Poznan 2006. 

Tryjanowski, P., Sparks, T. H., & Profus, P. (2005): Uphill shifts in the distribution of the 

white stork Ciconia ciconia in southern Poland: the importance of nest quality. – 

Diversity and Distributions, 11:219-223. 

van den Bossche W., Berthold P., Kaatz M., Nowak E. & Querner U., 2002. Eastern 

european White Stork populations: migration studies and elaboration of conservation 

measures. – Bonn, BfN Scripten 66. 

Zweig, M. H. & Campbell, G. (1993): Receiver-operating characteristic (ROC) plots: a 

fundamental evaluation tool in clinical medicine [published erratum appears in Clin 

Chem 1993 Aug;39(8):1589]. – Clinical Chemistry, 39:561-577. 



8 Appendix 

 81

8 Appendix 

8.1 Habitat data: GIS-Layer 

 

Figure 8.1: DEM-Layer 

 

Figure 8.2: Lake-, Forest- and River-Layer as digitized from the historical topographic 

maps (‘Großblätter’) and Coastline-Layer 
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Figure 8.3: Village-Layer showing size categories ‘1’ to ‘6’ as digitized from the 

historical topographic maps (‘Großblätter) 

 

 

Figure 8.4: Lake-, Forest and Settlement-Layer as derived from the Baltic Sea GIS 

(acquisition period 1981-1992) 
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Figure 8.5: Arable land-Layer as derived from the Baltic Sea GIS (Acquisition period 

1987-1993) 

 

Figure 8.6: Pasture land-Layer as derived from the Baltic Sea GIS (acquisition period 

1987-1993) 
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8.3 Model 2_mod: Variable Importance and Partial dependence plots 

Table 8.2: Importance of the predictor variables of Model 2_mod 

Predictor variable Relative Importance Score 

Distance to forest 100 

Distance to coastline 95.3 

Elevation 87.0 

Distance to settlement area, size range 1 to 4 85.7 

Distance to lake 84.1 

 

 

Figure 8.7: Partial dependence plots for predictor variables employed in Model 2_mod 
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8.4 Model 3: Observed and predicted number of White Stork breeding 
sites and MAE shown for every administrative district 

Table 8.3: Observed and predicted densities of White Stork breeding pairs, Mean 

absolute error (MAE) and difference shown for every administrative district 

for Model 3 

Administrative 
district 

Observed number 
of breeding sites 
per 100 km2(1934) 

Predicted number 
of breeding sites 

MAE Difference in 
% 

Allenstein-Land 24.70 29.49 4.79 -19.39 
Allenstein-Stadt 15.40 31.64 16.24 -105.47 
Angerburg 48.40 44.07 4.33 8.94 
Bartenstein 44.80 50.11 5.31 -11.86 
Braunsberg 44.70 48.60 3.90 -8.73 
Darkehmen 61.70 62.43 0.73 -1.19 
Elbing-Land 54.40 50.60 3.80 6.98 
Fischhausen 53.80 49.36 4.44 8.25 
Gerdauen 51.40 49.98 1.42 2.76 
Goldap 54.30 52.88 1.42 2.62 
Gumbinnen 68.20 62.59 5.61 8.23 
Heiligenbeil 52.00 52.00 0.00 0.01 
Heilsberg 39.20 46.57 7.37 -18.79 
Insterburg 52.30 53.07 0.77 -1.47 
Johannisburg 27.80 31.58 3.78 -13.61 
Koenigsberg-Land 56.70 51.51 5.19 9.15 
Koenigsberg-Stadt 52.00 54.48 2.48 -4.77 
Labiau 50.20 46.54 3.66 7.30 
Loetzen 46.10 43.61 2.49 5.41 
Lyck 49.70 42.80 6.90 13.88 
Marienburg 58.10 60.91 2.81 -4.84 
Mohrungen 40.00 43.20 3.20 -8.01 
Neidenburg 17.20 29.16 11.96 -69.54 
Niederung 72.30 59.39 12.91 17.86 
Ortelsburg 26.90 37.68 10.78 -40.08 
Osterode 19.90 32.27 12.37 -62.16 
Pillkallen 64.50 60.21 4.29 6.65 
Preussisch Ehlau 57.40 51.62 5.78 10.07 
Preussisch Holland 52.70 52.09 0.61 1.16 
Rastenburg 46.20 48.96 2.76 -5.98 
Roessel 33.80 41.78 7.98 -23.60 
Sensburg 31.70 30.57 1.13 3.58 
Stallupoenen 75.90 63.18 12.72 16.76 
Stuhm 34.70 40.39 5.69 -16.41 
Tilsit 64.40 61.48 2.92 4.53 
Treuburg 52.00 45.70 6.30 12.11 
Wehlau 40.60 45.04 4.44 -10.93 
Mean 46.92 47.50 5.22 -7.58 
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8.5 Model 3_mod: Observed and predicted number of White Stork 
breeding sites 

Table 8.4: Observed and predicted densities of White Stork breeding pairs shown for 

every administrative district for Model 3_mod 

Number of breeding sites per 100 km2 Administrative 
district Count 1934 Prediction for 

the year 1934 
Prediction for the 
period 1981-1993 

Difference 
between 1981-
1993 and 1936 

Allenstein-Land 24.70 30.5 32.0 1.5 
Allenstein-Stadt 15.40 31.7 37.3 5.6 
Angerburg 48.40 46.8 49.4 2.5 
Bartenstein 44.80 53.4 58.2 4.8 
Braunsberg 44.70 49.1 53.2 4.1 
Darkehmen 61.70 60.3 60.8 0.5 
Elbing-Land 54.40 49.2 54.7 5.5 
Fischhausen 53.80 50.6 53.3 2.7 
Gerdauen 51.40 50.2 60.8 10.6 
Goldap 54.30 49.6 44.2 -5.4 
Gumbinnen 68.20 59.6 59.6 0.0 
Heiligenbeil 52.00 52.7 59.3 6.7 
Heilsberg 39.20 46.6 53.3 6.7 
Insterburg 52.30 52.4 57.0 4.6 
Johannisburg 27.80 33.2 32.0 -1.2 
Koenigsberg-Land 56.70 53.7 59.0 5.3 
Koenigsberg-Stadt 52.00 53.5 54.2 0.7 
Labiau 50.20 49.0 47.7 -1.3 
Loetzen 46.10 43.6 51.0 7.4 
Lyck 49.70 38.9 51.8 12.9 
Marienburg 58.10 59.5 56.5 -3.0 
Mohrungen 40.00 41.9 41.9 0.0 
Neidenburg 17.20 31.4 31.4 0.0 
Niederung 72.30 55.9 54.3 -1.6 
Ortelsburg 26.90 40.1 36.9 -3.3 
Osterode 19.90 30.8 32.0 1.2 
Pillkallen 64.50 59.8 57.2 -2.5 
Preussisch Ehlau 57.40 53.1 51.6 -1.5 
Preuss. Holland 52.70 49.1 59.3 10.2 
Rastenburg 46.20 48.6 56.3 7.7 
Roessel 33.80 42.8 51.0 8.3 
Sensburg 31.70 32.0 32.0 0.1 
Stallupoenen 75.90 60.9 62.5 1.6 
Stuhm 34.70 39.6 52.1 12.5 
Tilsit 64.40 59.4 58.1 -1.3 
Treuburg 52.00 49.1 51.6 2.6 
Wehlau 40.60 48.6 53.1 4.5 
Mean 46.92 47.5 50.4 3.0 
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8.6 Model 3_mod: Variable Importance and Partial dependence plots 

Table 8.5: Importance of the predictor variables of Model 3_mod 

Predictor variable Relative Importance Score 

Percentage of pasture land 100 

Percentage of water 75.2 

Percentage of forest 64.0 

Elevation 45.2 

Number of settlement areas, size range 1 to 4 43.3 

Distance to coastline 32.1 

Percentage of arable land 26.0 
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Figure 8.8: Partial dependence plots for the predictor variables employed in Model 

3_mod: a) ‘percentage of pasture land’, b) ‘percentage of water’, c) 

‘percentage of forest’, d) ‘elevation’, e) ‘number of settlement areas, size 

range 1 to 4’, f) ‘distance to coastline’, and g) ‘percentage of arable land’ 



8 Appendix 

 91

8.7 CD containing the used data 

The CD contains the data used to create the different models. Furthermore the derived files 

for the modeling in TreeNet and the resulting models are given. 

If you have only the PDF version of the diploma thesis at hand but are interested in the used 

data or if you have any question regarding the used data or the project carried out please 

contact: 

Claudia Wickert, Ecoethology lab, Institute of Biochemistry and Biology, University of 

Potsdam (Email: cla_wi@hotmail.com), 

PhD Falk Hüttmann, EWHALE lab - Biology and Wildlife Dept., Institute of Arctic Biology, 

University of Alaska-Fairbanks (Email: fffh@uaf.edu), 

Professor Dieter Wallschläger, Ecoethology lab, Institute of Biochemistry and Biology, 

University of Potsdam (Email: wallsch@uni-potsdam.de). 
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