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Chapter 1

Introduction

The mystery of nature’s variability has been perceived as a potential threat since ancient
times (Genesis 41:29-30): “Seven years of great abundance are coming throughout the
land of Egypt, but seven years of famine will follow them. Then all the abundance in
Egypt will be forgotten, and the famine will ravage the land.” Only this prophecy made
by Joseph in the Old Testament led to the storage of excess food produced in the years of
abundance and saved the ancient Egyptians from starving in the years of famine. Like-
wise in modern times the British hydrologist Harold Edwin Hurst studied the Nile River
minimal flows to “prophesy” the inter-annual water level variability (Hurst, 1951). The
aim of his work was to determine the size of a reservoir large enough to allow a constant
outflow given the highly variable inflows and thereby finally ensure a constant food pro-
duction under varying natural water resources. During his analysis, Hurst observed that
water levels seem to be strongly influenced by those observed in the distant past. The
slow algebraic decay of this interdependence (or autocorrelation) was different from stan-
dard models. This is later referred to as Hurst phenomenon or long-range dependence
contrary to short-range dependence specifying an exponential decay.

Droughts and the resulting scarcity of aliments are still challenges to overcome (e.g.,
Rebetez et al., 2006). These challenges are enhanced by floods which result in a menacing
excess of water, and create the need for hydraulic structures potent enough to withstand
extreme (i.e. unlikely high) water discharges. It is desirable that the structure itself is
conserved, in case of dams and dykes, as well as the properties behind it. In recent years
floods have become more abundant and more destructive (Kundzewicz and Schellnhuber,
2004). Extreme floods have been recorded in central Europe in the last decades, e.g., at
the Donau 1997 or at the Elbe 2002 (Becker and Grünewald, 2003). Therefore flood risk
assessment and the associated uncertainty have become a highly relevant topic on the sci-
entific as well as on the political agenda (e.g., Apel et al., 2004; Merz, 2006; WMO/UNEP,
2002). Flood risk assessment involves an estimate of the probability of exceeding a certain
water level or discharge, i.e. an extreme value analysis. In a similar way as Hurst’s stor-
age problem, this analysis is affected by the autocorrelation of the observed water levels
(Koutsoyiannis, 2003; Coles and Tawn, 1999). It reduces the information obtained from
a new observation because the interdependence determines to a certain extent the sub-
sequent observation. In this way the autocorrelation structure of the underlying process
influences the uncertainty of quantities estimated from its samples. Especially processes
with long-range dependence, as observed by Hurst, show this effect. If the autocorrela-
tion of the underlying process is not known, appropriate assumptions are needed for a
meaningful uncertainty analysis.

Assumptions on such a “natural variability” are also necessary in other contexts. The
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detection of particular departures from a natural behaviour requires the specification of
what is still consistent with random deviations inherent to the system. The most promi-
nent example of this kind of problem is the detection of climate change and the associ-
ated attribution to anthropogenic influence (IPCC, 2001). An outstanding ansatz in this
respect is the so-called fingerprint method (e.g., Hasselmann, 1997). Spatial patterns of
climate variables under different forcing conditions are obtained from general circula-
tion models and are sought in the observations. Instead of these multivariate patterns
one can study global or hemispheric temperature observations with respect to the detec-
tion of an anthropogenic trend. For these one-dimensional records one might hypothe-
sise polynomial trends and, instead of physically motivated processes, various types of
correlated noise terms to model the “natural variability”. Such approaches have been
used by, e.g., Wigley and Jones (1981); Woodward and Gray (1995); Bloomfield (1992)
and Cohn and Lins (2005). The selection of an adequate noise model plays a decisive
role in these analyses. In their work on the northern hemisphere temperature series,
Cohn and Lins (2005) demonstrated the susceptibility of trend tests to changes in the as-
sumption made for the noise model. In particular, the assumption of a long-range depen-
dent process alters the test result in a way that a linear trend is not found to be significant.
This analysis is an instructive example of the interplay of long-range memory and deter-
ministic trends.

A reliable detection of long-range dependence has, thus, relevant consequences in
various respects. Long-range dependence influences a trend assessment in geophysical
records, examples range from temperature (e.g., Bloomfield, 1992; Craigmile et al., 2004;
Cohn and Lins, 2005) over stratospheric ozone (e.g., Vyushin et al., 2007) to water dis-
charge records (e.g., Kallache, Rust, and Kropp, 2005). Furthermore, uncertainty analy-
ses might be affected, e.g. in the case of flood return level estimates (e.g., Koutsoyiannis,
2003; Rust et al., 2006). These problems have also been addressed within the framework
of the project “Scaling Analysis of Hydro-Meteorological Time Series”, funded by the
German Federal Ministry of Education and Research (BMBF). Aims of this project were,
among others, the development of methods for the detection and quantification of long-
range dependence, as well as to provide reliable strategies for trend detection and un-
certainty analysis in extreme value statistics under consideration of dependence effects.
This thesis sets out to tackle the fundamental problem of detection and quantification of
long-range dependence.

Long-range dependence is an asymptotic property of a stochastic process, character-
ising the decay of the correlation between observations separated by increasingly large
time lags. Therefore, it is in principle not possible to unambiguously infer an underlying
long-range dependent process from a finite sample. The strategy suggested in this the-
sis, is to escape this dilemma by rephrasing the detection of long-range dependence as
a model selection problem: does a short-range or a long-range dependent model more
adequately describe the observations? To answer this question it is necessary to have
a suitable set of long-range and short-range dependent models along with an adequate
parameter estimation strategy. Furthermore, it is inevitable to impose a principle which
allows to compare such models, particularly the most suitable long-range and the most
suitable short-range dependent model.

Models to describe the Hurst phenomenon, or long-range dependence, were not at
hand when Hurst first observed the slowly decaying dependence for the Nile river min-
imum flows, or for other geophysical observations. A seminal contribution towards
the development of such models was made in the 1960s by the French mathematician
Benoı̂t Mandelbrot. Mandelbrot introduced a stochastic process into the statistics com-
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munity which was able to reproduce the Hurst phenomenon (Mandelbrot and van Ness,
1968). This so-called fractional Gaussian noise model is related to the concept of self-
similarity, or fractals. Fractional Gaussian noise as well as other self-similarity concepts
became increasingly popular during the 1980s and are still frequently used. They can
be found, for example, in the theory of turbulence (e.g., Frisch, 1995), seismology (e.g.,
Okubo and Aki, 1987), atmospheric science (e.g., Cahalana et al., 1994) , and many more
(e.g., Bunde and Havlin, 1994). Critical votes against the ubiquitousness of fractals were
raised in the late 1990s (e.g., Avnir et al., 1998). Despite being an attractive concept, sim-
ple scaling relations do not always provide an adequate description of the observed data,
as examples from time series analysis (e.g., Metzler, 2003; Maraun, Rust, and Timmer,
2004) or turbulence (e.g., Renner et al., 2002) show.

Regarding the description of the Hurst phenomenon, flexible alternatives to fractional
Gaussian noise emerged in the framework of stochastic processes in the years following
Mandelbrot’s seminal contribution. A milestone was set with fractional differencing, a
concept independently introduced by Granger and Joyeux (1980) and Hosking (1981).
They defined a new class of stochastic processes, called fractional difference processes,
having the same asymptotic properties (i.e. for large time scales) as fractional Gaussian
noise. Thus, they also provide a description of the Hurst phenomenon, or long-range
dependence. Formulated in the framework of linear stochastic models, fractional dif-
ference processes can be combined with the widely used autoregressive moving average
processes (Box and Jenkins, 1976) to create a flexible class of models capable of describing
the Hurst phenomenon. This class forms the basis for a strategy to detect and quantify
long-range dependence, which is developed in this thesis.

The above mentioned problems from hydrology and climatology as well as the de-
mands on the methods needed to resolve them can be summarised in the following ques-
tions which will be addressed in the following:

• What is an adequate strategy for choosing between different models which may be
used to describe the autocorrelation structure? How can long-range dependence be
detected in a reliable way?

• What effect does autocorrelation have on trend detection?

• What are the consequences of considering or ignoring autocorrelations for flood
risk assessment? How can the uncertainty of flood return level estimates in auto-
correlated records be quantified?

The last two questions address effects of long-range dependence and are discussed along
examples from hydrology and climatology in Chapters 5, 6 and 7. Prior to this discus-
sion, the methodological apparatus required to tackle the first question is developed in
Chapters 3 and 4.

This thesis is structured as follows. Basic concepts of time series analysis and the no-
tion of long-range dependence are introduced in the second chapter. This provides the
basis for the subsequent discussion of the stochastic processes used in the remainder of
this thesis, with respect to parameter estimation and simulation. A central point in the
stochastic modelling approach pursued here is the selection of an adequate process to rep-
resent the autocorrelation function of the observations. The third chapter thus presents
a goodness-of-fit test and standard approaches for choosing between nested models1.

1The model g is nested in model f if it constrains one or more parameters of f , typically to zero. This
notion is different from nested in the context of climate models.
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These methods are enhanced by a simulation-based selection approach for non-nested
models.

The framework constructed in the first chapters is used in Chapter 4 to formulate a
strategy for the detection of long-range dependence based on a parametric modelling ap-
proach. The major difference to other methods is that, beyond investigating the observed
large scale behaviour, this method investigates whether this behaviour is more likely to
be consistent with a short-range or a long-range dependent model.

In Chapter 5, we investigate an outstandingly long record of surface air temperatures
for long-range dependence, and use the resulting model for a trend test. A prominent
example is the record of northern hemisphere mean temperature anomalies. This series
has been investigated for trends under consideration of various models for the residual
fluctuations by, e.g., Bloomfield (1992); Woodward and Gray (1995) and Cohn and Lins
(2005). Using the parametric modelling approach, we re-investigate for long-range de-
pendence, and discuss the assumption of a linear trend as suggested by Cohn and Lins
(2005).

In Chapter 6, we analyse two run-off records with daily time resolution from southern
Germany and one record of monthly mean values from Poland, with respect to long-
range dependence. For one of these records, we estimate a hundred-year return level, i.e.
the water level (or discharge) exceeded on average once every hundred years, and use
the stochastic models found previously for an uncertainty analysis (Chapter 7).

The various sections in the appendix complement this thesis by providing an exten-
sive review on detrended fluctuation analysis (Appendix A) and additional material re-
garding long-range dependence (Appendix B). Furthermore, an approach for estimating
confidence intervals for records from autocorrelated series is proposed in Appendix C.
Finally, the data sources and data preprocessing is discussed (Appendix D).



Chapter 2

Time Series Analysis
and Stochastic Modelling

A time series is a sequence of data points measured at successive time intervals. Un-
derstanding the mechanism that generated this time series or making predictions are the
essence of time series analysis. Applications range from physiology (e.g., Timmer, 1998)
and systems biology (e.g., The et al., 2005), over economy (e.g., Lo, 1991) and geophys-
ical problems as daily weather forecasts (e.g., Orrel et al., 2001) or detection and predic-
tion of climate change (e.g., Held and Kleinen, 2004) to astronomy (e.g., Timmer et al.,
2000).

This chapter introduces some concepts of linear time series analysis and stochastic
modelling. Starting with random variables, we briefly introduce spectral analysis and
discuss some special stochastic processes. An emphasis is made on the difference be-
tween short-range and long-range dependence, a feature especially relevant for trend
detection and uncertainty analysis. Equipped with a canon of stochastic processes, we
present and discuss ways of estimating optimal process parameters from empirical data.

2.1 Basic Concepts of Time Series Analysis

2.1.1 Random Variables

A random variable X is a mapping X : Ω → R from a sample space Ω onto the real axis.
Given a random variable one can define probabilities of an event. As a simple example
we consider a die with a sample space Ω = {1, 2, 3, 4, 5, 6}. The probability P for the
event d ∈ Ω, d =“the number on a die is smaller than 4” is denoted as P(X < 4). Such
probabilities can be expressed using the cumulative probability distribution function

FX(x) = P(X ≤ x). (2.1)

For a continuous random variable X, FX(x) is continuous. A discrete random variable X
leads to FX(x) being a step function.

With miniscules x we denote a realisation x ∈ R, a possible outcome of a random
variable X. A sample is a set of N realisations {xi}i=1,...,N .

Dependence

Two random variables X and Y are independent if their joint probability distribution P(X <

x, Y < y) can be written as a product of the individual distributions: P(X < x, Y < y) =
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P(X < x)P(Y < y), or, using the conditional distribution, P(X < x | Y < y) = P(X < x).
They are called dependent otherwise. A particular measure of dependence is the covari-
ance which specifies the linear part of the dependence:

cov(X, Y) = E [(X − E [X])(Y − E [Y])] , (2.2)

where E [X] =
∫

R
x fX(x)dx denotes the expectation value with fX(x) = dFX(x)/dx be-

ing the probability density function (Feller, 1968).
A normalised measure quantifying the strength and direction1 of the linear relation-

ship of two random variables X and Y is the correlation

cor(X, Y) =
cov(X, Y)√

var(X)
√

var(Y)
, (2.3)

with var(X) = cov(X, X) being the variance of X. It is a normalised measure tak-
ing values in the interval −1 ≤ cor(X, Y) ≤ 1. An absolute correlation of unity, i.e.
|cor(X, Y)| = 1, implies Y being a linear function of X.

The variables X and Y are said to be uncorrelated if their covariance function, and
thus their correlation, vanishes:

cov(X, Y) = 0. (2.4)

Correlated random variables are also dependent. The opposite statement is not neces-
sarily true, because the correlation captures only the linear part of the dependence. In-
dependent random variables Xi with identical distribution function are referred to as
independent and identically-distributed random variables (IID).

For a set of random variables X1, X2, . . . , XM the covariance matrix Σ with elements
Σij is defined as

Σij = cov(Xi, Xj). (2.5)

2.1.2 Stochastic Processes

The word stochastic originates from the Greek stochazesthai (στωχάξǫσθαι) meaning “to
aim at” or “to guess at” (Merriam-Webster, 2005). It is used in the sense of random in
contrast to deterministic. While in a deterministic model the outcome is completely de-
termined by the equations and the input (initial conditions), in a stochastic model no exact
values are determined but probability distributions. In that sense, a stochastic model can
be understood as a means to guess at something.

The choice between a deterministic and a stochastic model is basically one of what
information is to be included in the equations describing the system. On the one hand
information can be limited simply by the lack of knowledge. On the other hand it might
not be benefitting the modelling objective to include certain information.

A stochastic process X(t) or Xt is an indexed collection of random variables with
the indices specifying a time ordering. The index set can either be discrete (t ∈ N) or
continuous (t ∈ R). In the latter case the collection consists of an uncountable infinite
number of random variables.

With xt=1,...,N = (x1, x2, . . . , xN) we denote a realisation of the stochastic process Xt

for 1 ≤ t ≤ N. Where unambiguous, we omit the index. Depending on the context, x

also denotes an empirical data record which is considered as a realisation of a possibly
unknown process.

1Direction specifies the sign of the correlation. The direction is positive if X increases when Y increases
and negative otherwise. It is not meant in the sense of variable X influencing variable Y or vice versa.
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Stationarity

If the joint probability distribution P(Xt1
< x1, Xt2 < x2, . . . , Xtn < xn), with ti ∈ N, is

identical with a displaced one P(Xt1+k < x1, Xt2+k < x2, . . . , Xtn+k < xn) for any admissi-
ble t1, t2, . . . , tn and any k, the process is called completely stationary.

An alleviated concept is stationarity up to an order m with the first m moments of the
joint probability distribution existing and being equal to those of the displaced one. For
practical applications, frequently stationarity up to order m = 2 or weak stationarity is
required. Testing for higher orders or for complete stationarity is usually not feasible.

Autocovariance

The covariance of two instances Xt1
and Xt2 at two different times t1 and t2 of a stochastic

process Xt is called autocovariance

cov(Xti
, Xtj

) = E
[(

Xti
− E

[
Xti

] )(
Xtj

− E
[

Xtj

] )]
. (2.6)

For processes which are stationary at least up to order m = 2 the autocovariance depends
only on the differences τ = ti − tj and can be written as

cov(τ) = E
[(

Xt − E [Xt]
)(

Xt+τ − E [Xt]
)]

. (2.7)

Analogously, the autocorrelation can be defined as

ρ(Xti
, Xtj

) =
cov(Xti

, Xtj
)

√
var(Xti

)
√

var(Xtj
)

, (2.8)

and in case of at least weak stationarity it can be written as

ρ(τ) = ρ(Xt, Xt+τ). (2.9)

In the following, we refer to Equation (2.9) as the autocorrelation function or ACF.

Given a sample of an unknown process, we can estimate process characteristics as the
ACF. An estimator for a characteristic T is a function of the sample and will be denoted
by T̂. A nonparametric estimate for the autocovariance of a zero mean record xt=1,...,N

is the sample autocovariance function or autocovariance sequence (Brockwell and Davis,
1991)

ĉov(τ) =
1

N

N−τ

∑
t=1

xtxt+τ , 0 ≤ τ < N. (2.10)

Using the divisor N instead of N − τ ensures that the estimate for the autocovariance ma-
trix Σ is non-negative definite. Consequently an estimate for the autocorrelation function
can be formulated as

ρ̂(τ) =
ĉov(τ)

σ̂2
x

, (2.11)

with σ̂2
x = ĉov(0) being an estimate of the record’s variance.

For a more detailed description of these basic concepts refer to, e.g., Priestley (1992);
Billingsley (1995), or Brockwell and Davis (1991).
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2.1.3 Spectral Analysis

While the time domain approach to time series analysis originates from mathematical
statistics, the spectral or frequency domain approach has its root in communication engi-
neering. Whenever a signal fluctuates around a certain stable state we might use periodic
functions to describe its behaviour. Spectral analysis aims at splitting the total variability
of a stationary stochastic process into contributions related to oscillations with a certain
frequency.

For the definition of the spectral density of a continuous stationary process X(t) con-
sider initially the process

XT(t) =

{
X(t), if − T ≤ t ≤ T
0, otherwise

. (2.12)

This process is absolutely integrable due to the compact support [−T, T]. We now can
define a Fourier integral as

GT(ω) =
1√
2π

∫ T

−T
XT(t)e−iωtdt. (2.13)

and a power spectral density

S̃(ω) = lim
T→∞

|GT(ω)|2
2T

. (2.14)

We use the notion of power as energy per time to obtain a finite spectral density. The aim
is to represent the stochastic process and not only a single realisation. We thus have to
average over multiple realisations. This leads us to a definition of a power spectral density
for stochastic processes

S(ω) = lim
T→∞

E

[ |GT(ω)|2
2T

]
. (2.15)

In the following, we refer to the power spectral density simply as the spectral density. A
detailed derivation of this concept is given by Priestley (1992).

Relation to the Autocovariance

The relation between the spectral density S(ω) and the autocovariance function cov(τ) of
a zero mean process is surprising at first sight. Using some basic properties of the Fourier
transform, we can establish that the spectral density can be expressed as the Fourier trans-
form of the autocovariance function:

S(ω) =
1

2π

∫ ∞

−∞
cov(τ)e−iωτdτ. (2.16)

In a more general setting, when the spectral density function does not exist but the inte-
grated spectrum F(ω) does, this result manifests in the Wiener-Khinchin theorem using
the more general Fourier-Stieltjes form of the integral (Priestley, 1992)

ρ(τ) =
∫ ∞

−∞
eiωτdF(ω), (2.17)

with ρ(τ) being the ACF. Thus, the spectral density and the ACF are equivalent descrip-
tions of the linear dynamic properties of a process.
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Estimation of the Spectral Density

Given a zero mean series x sampled at discrete time points t = 1, . . . , N, an estimator for
the spectral density function (2.15) can be formulated using the periodogram I(ωj)

Ŝ(ωj) = I(ωj) =
1

2πN
|

N

∑
t=1

xte
−itωj |2, (2.18)

with the Fourier frequencies ωj = 2π j/N and j = 1, . . . , [(N − 1)/2], where [.] denotes
the integer part. The periodogram is not a consistent2 estimator for the spectral density
because its variance does not decrease with increasing length N of the sample. To ob-
tain a consistent estimator we can locally smooth the periodogram with, e.g., a suitable
rectangular or bell-shaped window (e.g., Priestley, 1992).

Instead of the angular frequency ω, it is convenient to use the frequency f = ω/2π
in practical applications. In this way, we can specify frequencies as reciprocal periods,
which are expressed in units of the sampling interval, e.g., 1/days for data with a daily
resolution.

2.1.4 Long-Range Dependence

For some stochastic processes, such as the popular autoregressive and moving average
type models that will be introduced in Section 2.2, the ACF, denoted as ρSRD(τ), decays
exponentially and is thus summable:

∞

∑
τ=−∞

ρSRD(τ) = const < ∞. (2.19)

These processes are called short-range dependent (SRD) or short-range correlated.

This characteristic contradicted other findings from, e.g., a spatial analysis of agricul-
tural data by Smith (1938) or the famous Nile River flow minima studied by Hurst (1951).
The behaviour they observed for the ACF for large lags – often referred to as Hurst phe-
nomenon – was not consistent with hitherto existing models describing dependence. It
was well represented assuming an algebraic decay of the ACF: ρLRD(τ) ∝ τ−γ. This type
of decay leads to a diverging sum

∞

∑
τ=−∞

ρLRD(τ) = ∞. (2.20)

Processes with an ACF following (2.20) are called long-range dependent (LRD), long-range
correlated or long-memory processes.

Alternative Definitions of Long-Range Dependence

0 Today, it is common to use equation (2.20) as definition for a long-range dependent
process (Robinson, 2003). The following alternative formulations in the time and spectral
domain, respectively, are consistent with (2.20).

2An estimator T̂N for the parameter T based on N observations is consistent iff for all ǫ > 0

limN→∞ P((T̂N − T) < ǫ) = 1.
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Time Domain Let Xt be a stationary process. If there exists a real number γ ∈ (0, 1)
and a constant cρ > 0 such that

lim
τ→∞

ρ(τ)

τ−γ
= cρ (2.21)

holds, then Xt is called a process with long-range dependence or long memory.

Spectral Domain If there exists a real number β ∈ (0, 1) and a constant c f > 0 such that

lim
ω→0

S(ω)

|ω|−β
= cS (2.22)

holds then Xt is called a process with long-range dependence.
The concept of long-memory refers to non-periodic stochastic processes. Therefore

the recurrence due to periodicities, such as the Milankovitch cycles3 in the climate system,
is not to be considered as long-range dependence, even if their (deterministic) behaviour
causes dependence for infinite time lags.

2.2 Some Stationary Stochastic Processes

This section introduces some examples of stationary stochastic processs, SRD, as well as
LRD processes. Throughout this thesis, they are used to describe temperaure anoma-
lies (Chapter 5) or run-off records (Chapter 6). Furthermore, they are the fundament of
the bootstrap based approach for the quantification of uncertainty of flood return level
estimates for dependent processes (Chapter 7).

Gaussian Processes

A stochastic process Xt with joint probability distribution P(Xt1
< x1, Xt2 < x2, . . . , Xtk

<

xk) for all tk ∈ N being multivariate normal is called a Gaussian process. It is completely
defined by its first two moments, the expectation value E [Xt] and the autocovariance
function cov(Xti

, Xtj
) or autocovariance matrix Σ. This implies that a weakly stationary

Gaussian process is also completely stationary (cf. Section 2.1.2). Furthermore, a Gaus-
sian process is thus a linear process, because the autocovariance matrix specifies only lin-
ear relationships between the different instances Xtk

. Simple examples for discrete time
Gaussian stochastic processes are the Gaussian white noise and autoregressive processes
described in the following.

2.2.1 Processes with Short-Range Dependence

Gaussian White Noise Process

Let {Xt}t=0,±1,±2,... be a sequence of uncorrelated4 Gaussian random variables, then Xt

is called a Gaussian white noise process or a purely random process. It possesses “no
memory” in the sense that the value at time t is not correlated with a value at any other
time s: cov(Xt, Xs) = 0, ∀t 6= s. Hence, the spectrum is flat. A plot of a realisation and
the corresponding periodogram of a zero mean Gaussian white noise process is given in
Figure 2.1. In the following, we frequently refer to a Gaussian white noise process simply

3Milankovitch cycles are quasi-periodic changes in the earth’s orbital and rotational properties resulting
from being exposed to the gravitational force of multiple planets. The change in the orbital parameters effect
the earth’s climate.

4or, more generally, independent
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Figure 2.1: Realisation of a white noise process with 500 points (left) and the corresponding peri-
odogram with the spectral density as red solid line (right).

as white noise. To state that Xt is such a process with mean µ and variance σ2, we use the
notation Xt ∼ WN (0, 1).

First Order Autoregressive Process (AR[1])

An instance Xt at time t of an autoregressive process depends on its predecessors in a
linear way. A first order autoregressive process (AR[1]), depends thus only on its last
predecessor and it includes a stochastic noise or innovations term ηt in the following way:

Xt = aXt−1 + ηt. (2.23)

If not explicitely stated otherwise, we assume throughout this thesis the driving noise
term ηt to be a zero mean Gaussian white noise process with variance σ2

η : ηt = WN (0, σ2
η).

Figure 2.2 shows a realisation and the corresponding periodogram of an AR[1] process.

0 100 200 300 400 500

−
4

−
2

0
2

4

t

X

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1e
−

03
1e

−
01

1e
+

01

P
o

w
er

ω

Figure 2.2: Realisation of an AR[1] process with 500 points (left) and the corresponding peri-
odogram with the spectral density as red solid line (right). The autoregressive parameter is set to
a = 0.7.
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Mean and Autocovariance function Assuming X0 = 0 the derivation of the mean and
autocovariance function for this process is straightforward. Iteratively using (2.23) yields

Xt = aXt−1 + ηt

= a(aXt−2 + ηt−1) + ηt

...

= at−1η1 + at−2η2 + · · · + a2ηt−2 + aηt−1 + ηt. (2.24)

Taking expectation values on both sides and using E [ηt] = 0 yields E [Xt] = 0. Using this
result, the autocovariance function for τ ≥ 0 is

cov(Xt, Xt+τ) = E
[
(at−1η1 + at−2η2 + · · · + ηt)(at+τ−1η1 + at+τ−2η2 + · · · + ηt+τ)

]

= σ2
η(a2(t−1)+τ + a2(t−2)+τ + · · · + aτ)

=

{
σ2

η t, if|a| = 1

σ2
η aτ

(
1−a2t

1−a2

)
, else.

(2.25)

Stationarity Setting |a| < 1 leads to cov(Xt, Xt+τ) being asymptotically (i.e. for large t)
independent of t and thus the process is called asymptotically stationary. For a = 1 we
obtain a non-stationary process, i.e. with X0 = 0

Xt = Xt−1 + ηt = Xt−2 + ηt−1 + ηt = · · · =
t

∑
i=0

ηi . (2.26)

This process is known as the random walk (Feller, 1968). In the limit of small step sizes,
the random walk approximates Brownian motion.

Higher Order Autoregressive Processes (AR[p])

The autoregression in (2.23) can be straightforwardly extended to include more regressors
with larger time lags. A general definition of an AR[p] process with p regressors is

Xt =
p

∑
i=1

aiXt−i + ηt, (2.27)

with ηt ∼ WN (0, ση) being white noise. Rearranging the terms and using the back-shift
operator BXt = Xt−1, (2.27) reads

(1 − a1B − a2B2 − · · · − apBp)Xt = ηt. (2.28)

It is convenient to define the autoregressive polynomial of order p

Φ(z) = (1 − a1z − a2z2 − · · · − apzp). (2.29)

Now, (2.27) reads simply
Φ(B)Xt = ηt. (2.30)

Deriving the condition for asymptotic stationarity of an AR[p] process is somewhat more
intricate. It leads to investigating whether the roots of Φ(z), with z ∈ C, lying outside the
unit circle of the complex plane (cf. Priestley, 1992; Brockwell and Davis, 1991).
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The general form of the autocorrelation function is given by

ρ(τ) = A1φ
|τ|
1 + A2φ

|τ|
2 + · · · + Apφ

|τ|
p , (2.31)

with φi being the reciprocals of the roots of Φ(z):{φi ∈ C | Φ(1/φi) = 0}. For real values
φi ∈ R the terms in (2.31) decay exponentially and the asymptotic behaviour for large
τ is thus also an exponential decay. Complex values φi ∈ C with non-zero imaginary
part lead to damped oscillatory terms indicating a “pseudo-periodic” behaviour of Xt.
A realisation of an AR[2] process with a1 = 0.4 and a2 = −0.8 is depicted in Figure 2.3
together with the corresponding periodogram. The two reciprocal roots of the AR poly-
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Figure 2.3: Realisation (left) and spectral density and periodogram (right) of an AR[2] process
with a pseudo-periodic behaviour. The dotted vertical line at ω = 1.35 marks the predominant
frequency of the oscillating behaviour .

nomial are φ1 = 0.2 − 0.87i and φ2 = 0.2 + 0.87i. The argument of the complex number
arg(φ1) = 1.35 gives the dominant frequency of the oscillating behaviour. The absolute
value |φ1| = 0.89 is related to the damping of the oscillation. A characteristic time scale
is given by T1 = −1/ ln|φ1| = 8.96.

Moving Average Processes (MA[q])

A different class of linear processes is based on the idea of averaging random shocks ηt

which occur independently in time, e.g., ηt ∼ WN (0, ση). Such processes can be written
as

Xt = ηt + b1ηt−1 + · · · + bqηt−q (2.32)

and are called moving average processes of order q or MA[q] processes. Analogously to
AR[p] process we can use the back-shift operator B for a convenient notation:

Xt = Ψ(B)ηt, (2.33)

involving the moving average polynomial

Ψ(z) = (1 + b1z + b2z2 + · · · + bqzq). (2.34)

The MA process (2.32) is thus a special case of the general linear process

Xt =
∞

∑
i=−∞

biB
iηt, (2.35)



14 Time Series Analysis and Stochastic Modelling

which allows also for future shocks to be included. In contrast, the MA[q] process defined
in (2.32) includes only those terms involving past and present shocks ηt−i with i ≥ 0,
leading to a causal process.

Autocovariance Different from AR processes, where Xt is a linear combination of its
predecessors and a random shock, a variable Xt of a MA process depends only on a finite
amount of past and present random shocks. This leads to a cut-off in the autocorrelation
function for MA[q] processes for lags larger than q, whereas the ACF of AR[p] processes
gradually fades to zero (2.31).

Stationarity and Invertibility Being a linear combination of independent identically
distributed random variables ηt, the MA process is trivially stationary for any choice of
the parameters bi. A more interesting characteristic of these processes is the invertibility.
In case (2.33) can be written as

ηt = Ψ−1(B)Xt, (2.36)

the process is called invertible. Invertibility requires the complex zeros of Ψ(z) lying out-
side the unit circle (cf. Brockwell and Davis, 1991).

ARMA and ARIMA Processes

The combination of AR[p] and MA[q] processes leads to the concept of ARMA[p, q] pro-
cesses

Xt =
p

∑
i=1

aiXt−i +
q

∑
j=0

bjηt−j. (2.37)

A convenient notation using the back-shift operator is

Φ(B)Xt = Ψ(B)ηt (2.38)

with Φ(z) and Ψ(z) being the AR and MA polynomials, respectively. If Φ(z) and Ψ(z)
have no common zeros, we can write (2.38) as

Xt =
∞

∑
i=0

γiηt−i, (2.39)

with

Γ(z) =
∞

∑
i=1

γiz
i = Ψ(z)/Φ(z) (2.40)

being the quotient of the MA and AR polynomial. Such ARMA[p, q] processes are invert-
ible if the complex roots of Ψ(z) lie outside the unit circle. Analogously to AR processes,
they are stationary if we find the roots of Φ(z) outside the unit circle. As a linear station-
ary stochastic process, an ARMA[p, q] process is completely defined by its autocovariance
function cov(τ) or, equivalently, in terms of the spectral density.

Despite the general nature of this formulation, ARMA[p, q] models cannot describe
all stationary linear processes. Their generality can be compared to that of a rational
function. This analogy arises from their spectral density function being essentially the
quotient of Ψ(eiω) and Φ(eiω):

S(ω) =
σ2

η

2π

|Ψ(eiω)|2
|Φ(eiω)|2 , (2.41)

and thus a rational function in the spectral domain.
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Integrated Processes Box and Jenkins (1976) included a class of non-stationary pro-
cesses Yt in the framework, namely those being partial sums of stationary ARMA[p, q]
processes Xt: Yt = ∑

t
i=0 Xi. Using the difference operator5 (1 − B)d, we can also obtain

Xt as the increment process of Yt writing

Xt = (1 − B)dYt, (2.42)

with d being at first an integer value, later we allow d ∈ R. Now, equation (2.38) can be
generalised to

Φ(B)(1 − B)dYt = Ψ(B)ηt (2.43)

including now also integrated processes. Since Yt is the outcome of the sum or integration
of Xt such processes are called integrated ARMA[p, q] or ARIMA[p, d, q] processes, with
the integer d specifying the degree of integration.

2.2.2 Processes with Long-Range Dependence

In the following, we introduce two representatives of long-range dependent processes.
The first example, the fractional Gaussian noise (fGn), has its roots in the fractal commu-
nity and has been made popular in the 1960s by the French mathematician Benoı̂t Man-
delbrot. It was the first mathematical model to describe long-range dependence. About
two decades later Granger and Joyeux (1980) and Hosking (1981) proposed a different
way to describe this phenomenon. They introduced the concept of fractional differencing
leading to fractional differenced processes (FD) and fractional ARIMA processes. Fur-
ther examples of models for long-range dependence can be found in, e.g., Beran (1994) or
Doukhan et al. (2003).

Increments of Self-Similar Processes

In the 1960s Mandelbrot introduced self-similar stochastic processes, actually dating back
to Kolmogorov (1941), in the statistics community (Mandelbrot and Wallis, 1968a). A pro-

cess Yt is called self-similar if Yt
d
= c−HYct, where a

d
= b means a and b are equal in dis-

tribution. H is called the self-similarity parameter or Hurst exponent and c is a positive
constant. To model data with a stationary appearance one considers the stationary incre-
ment process Xt = Yt − Yt−1 of the self-similar process Yt. Following Beran (1994), its
autocorrelation function reads

ρ(τ) =
σ

2

[
(τ + 1)2H − 2τ2H + (τ − 1)2H

]
, (2.44)

with asymptotic behaviour (τ → ∞) resulting from a Taylor expansion

ρ(τ) → H(2H − 1)τ2H−2, for τ → ∞. (2.45)

Thus, for 0.5 < H < 1 the variance decays algebraically and the increment process Xt is
long-range dependent. For 0 < H < 0.5 the ACF is summable; it even sums up to zero,
resulting in SRD. This “pathologic” situation is rarely encountered in practice; it is mostly
the result of over-differencing (Beran, 1994).

The increments of self-similar processes are thus capable of reproducing LRD and
offered an early description of the Hurst phenomenon. The well-known fractional Brown-
ian motion is a Gaussian representative of a self-similar process. Its increment series is a
long-range dependent stationary Gaussian process with asymptotic properties as given
in (2.45) and is referred to as fractional Gaussian noise (fGn).

5For d = 1, (1 − B)Xt = Xt − Xt−1. This can be regarded as the discrete counterpart of the derivative.
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Fractional Difference Processes (FD)

After Mandelbrot promoted self-similar processes, it were Granger and Joyeux (1980)
and Hosking (1981) who formulated a different model to describe long-range depen-
dence. This model fits well into the framework of the linear processes discussed in Sec-
tion 2.2.1. They allowed the difference parameter d in (2.42) to take real values. This
results in a fractional difference filter

(1 − B)dXt = ηt, (2.46)

with d ∈ {d ∈ R | −1/2 < d < 1/2} and ηt being white noise. The fractional difference
operator is defined using an infinite power series

(1 − B)d =
∞

∑
k=0

(
d

k

)
(−1)kBk, (2.47)

with the binomial coefficient

(
d

k

)
=

Γ(d + 1)

Γ(k + 1)Γ(d − k + 1)
, (2.48)

and Γ(x) denoting the gamma function. The process Xt has the asymptotic properties of
a long-range dependent process as given in (2.21) and is referred to as fractional difference
process (FD). For d > 1/2 the second moment is not finite anymore. In such cases the
increment process X = (1 − B)Y can be described as a stationary FD process.

Fractional ARIMA Processes (FARIMA[p, d, q])

The FD process has been formulated in the framework of linear models. Although the
power series expansion of (1 − B)d is infinite, it can be included into the concept of
ARIMA models leading to fractional ARIMA or FARIMA6 processes. Using the notation
of (2.43), we get

Φ(B)(1 − B)dXt = Ψ(B)ηt, (2.49)

with Φ(z) and Ψ(z) being again the autoregressive and moving average polynomials
defined in (2.29) and (2.34). Now, we allow d being a real number with d ∈ {d ∈ R |
−1/2 < d < 1/2}. The spectral density of FARIMA processes can be obtained from the
corresponding result for ARMA processes (2.41), multiplied by |1 − eiω|−2d:

S(ω) =
σ2

η

2π

|Ψ(eiω)|2
|Φ(eiω)|2 |1 − eiω|−2d. (2.50)

For small frequencies ω → 0 the limiting behaviour for the spectral density is given by

S(ω) ≈
σ2

η

2π

|Ψ(1)|2
|Φ(1)|2 |ω|−2d = c f |ω|−2d. (2.51)

With 2d = β (2.51) recovers the asymptotic behaviour required for a long-range depen-
dent process given by (2.22). The relation to the Hurst exponent is 2d = β = 2H − 1.

6Sometimes referred to as ARFIMA processes
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2.2.3 Motivation for Autoregressive Moving Average Models

The ARMA[p, q] model class presented in the preceeding sections has a flexibility or gen-
erality which can be compared to that of a rational function as can be seen from (2.41).
Including fractional differencing (2.50), we obtain the FARIMA[p, d, q] class and this ratio-
nal function is supplemented by a term converging for small frequencies to a power-law,
cf. (2.51). This allows for flexible modelling of the spectral density (or ACF) including
LRD. Because here the main goal is a suitable description of the ACF and especially the
detection of LRD, the latter is a motivation for using FARIMA[p, d, q] processes.

Besides flexibility and feasibility, there are physically based arguments for autore-
gressive moving average models. Quite generally autoregressive processes can be re-
garded as discretised linear ordinary differential equations including a stochastic noise
term. This allows to describe relaxations and oscillations and offers thus a framework
for modelling many physical systems. In Chapter 6 we motivate the use of ARMA[p, q]
models for river run-off with a conceptional water balance model.

2.3 Parameter Estimation for Stochastic Processes

The model building process consists of two parts: the inference of a proper model struc-
ture and the estimation of the unknown model parameters. A thorough discussion of
the model selection is presented in the subsequent chapter. Here we assume that a suit-
able model is known and present parameter estimation strategies for the stochastic pro-
cesses (Section 2.2.2), particularly a maximum likelihood approach to FARIMA[p, d, q]
processes.

Besides the likelihood approach there are also other ways to estimate the fractional
difference parameter. We discuss the detrended fluctuation analysis (DFA) as a frequently
used heuristic method7 in the following, while the description of the rescaled range anal-
ysis and the the semi-parametric8 log-periodogram regression is deferred to Appendices
B.3.1 and B.3.2, respectively. These semi-parametric and heuristic approaches are for-
mulated on the basis of the asymptotic behaviour and focus on estimating the Hurst
exponent H or the fractional difference parameter d to quantify long-range dependence.
It is not intended to include the high frequency behaviour in the description, it is rather
attempted to reduce its influence on the estimation of H or d.

A section on generating realisations of a FARIMA[p, d, q] process concludes this chap-
ter.

2.3.1 Maximum Likelihood for FARIMA[p, d, q] Processes

Consider a zero mean stationary FARIMA[p, d, q] process. As a Gaussian process, it is
fully specified by the autocovariance matrix Σ(θ), which in turn depends on the pro-
cess parameters θ = (d, a1, . . . , ap, b1, . . . , bp, ση). We can thus formulate the probability
density for obtaining a realisation x as

p(x|θ) = (2π)−
N
2 |Σ(θ)|− 1

2 e−
1
2 x†

Σ
−1(θ)x, (2.52)

7As heuristic we denote an estimator without an established limiting distribution. The specification of
confidence intervals and thus statistical inference is not possible.

8We call an approach semi-parametric if only the behaviour for large scales (small frequencies) is de-
scribed. Contrary to a heuristic approach, the limiting distribution for the estimator is available.
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with x† denoting the transposed of x. For a given realisation x′, the same expression can
be interpreted as the likelihood for the parameter vector θ

L(θ|x′) = p(x′|θ). (2.53)

This suggests the formulation of an estimator for θ based on a realisation x′: the estimate
θ̂ is chosen such that (2.53) is maximised. It is convenient to use the logarithm of the
likelihood, L(θ|x′) = logL(θ|x′). Due to its monotonicity, the estimator can then be
formulated as the argument of the maximum log-likelihood

θ̂ = arg max
θ

L(θ|x′). (2.54)

Asymptotic Properties of the Maximum Likelihood Estimator

For causal and invertible Gaussian processes and an increasing sample size N → ∞ the
maximum-likelihood estimator (MLE) is unbiased and converges to the true parameter
vector θ

0 almost surely (Yajima, 1985; Dahlhaus, 1989). Furthermore, the estimator con-
verges in distribution

N1/2(θ̂− θ
0)

d→ ξ (2.55)

to a Gaussian random variable ξ ∼ N (0, V
θ

0), with V
θ

0 = 2D−1(θ
0) being the covariance

matrix for the parameter vector θ = (θ1, θ2, . . . , θM)† at θ = θ
0. The M × M matrix

D = Dij(θ
0) is defined by

Dij(θ
0) =

1

2π

∫ π

−π

∂

∂θi
log S(ω; θ)

∂

∂θj
log S(ω; θ)dω|

θ=θ
0 . (2.56)

The rate of convergence of θ̂ is N−1/2 as expected also for the short-range dependent case.
This is particularly interesting since some estimates exhibit a slower rate of N−α in the
presence of long-range dependence as, e.g., regression parameters or the mean value as
shown in (B.6).

Dahlhaus (1989) established asymptotic efficiency of the MLE for long-range depen-
dent processes 9. This implies minimal variance (as specified by the Cramér-Rao bound),
or, equivalently, the Fisher information matrix

Γn(θ
0) = E

[
[L′(θ̂|x)][L′(θ̂|x)]†

]
(2.57)

converges to the inverse of the estimators covariance matrix

lim
n→∞

Γn(θ
0) = V−1

θ
0 . (2.58)

The maximum likelihood estimation (2.54) is formulated as a nonlinear optimisation
problem which can be solved numerically. This requires inverting the covariance matrix
Σ(θ) for every optimisation step in the parameter space. This is a costly and potentially
unstable procedure and thus not feasible for long records. A convenient approximation
to the MLE has been proposed by Whittle (1953) and is described in the following.

9See also the correction notes at
http://math.uni-heidelberg.de/stat/people/dahlhaus/ExtendedCorrNote.pdf

http://math.uni-heidelberg.de/stat/people/dahlhaus/ExtendedCorrNote.pdf
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2.3.2 Whittle Estimator

The main idea of Whittle (1953) was to give suitable approximations for the terms in the
log-likelihood

L(θ|x′) = −N

2
log 2π − 1

2
log|Σ(θ)| − 1

2
x†

Σ
−1(θ)x (2.59)

which are dependent on θ: the determinant log|Σ(θ)| and x†
Σ
−1(θ)x. For both terms the

approximation involves an integral over the spectral density S(ω; θ) of the process which
is in a successive step approximated by a Riemann sum. Finally, an appropriate rescaling
of the spectral density S(ω; θ) = θ1S(ω; θ

∗) with θ
∗ = (1, θ2, . . . , θM)† and θ1 = 2πσ−2

η

yields a discrete version of the Whittle estimator:

1. Minimise

Q(θ
∗) =

[(N−1)/2]

∑
j=1

I(ωj)

S(ωj; θ
∗)

(2.60)

with respect to θ
∗.

2. Set

σ̂2
η = 2πθ̂1 =

4π

n
Q(θ

∗). (2.61)

I(ωj) denotes the periodogram of the realisation x′ at the Fourier frequencies ωj = 2π j
N

with j = 1, . . . ,
[

N−1
2

]
where [.] denotes the integer part. A detailed derivation of the

discrete Whittle estimator for LRD processes has been given by Beran (1994).

Asymptotic Properties of the Whittle Estimator

It can be shown, that the Whittle aproximation has the same asymptotic distribution as
the exact ML estimator (Beran, 1994). Therefore, it is asymptotically efficient for Gaussian
processes. The assumption of a zero mean process has been made for simplification of
the representation, the asymptotic result does not change if the mean is consistently esti-
mated and substracted (Beran, 1995). Besides simplifying the optimisation, the choice of
the scale factor brings about a further convenience: the estimate of the innovations vari-
ance σ2

η = 2πθ1 is asymptotically independent (i.e. for N → ∞) of the other parameter
estimates.

Confidence Intervals

The asymptotic distribution (2.55) can be used to obtain approximate α100% confidence
regions for the parameter estimate θ̂ as

CIα = {θ ∈ R
(p+q+1) | (θ− θ̂)†V−1(θ̂)(θ− θ̂) ≤ N−1χ2

(p+q+1),α}, (2.62)

with χ2
m,α specifying the α-quantile of the χ2 distribution with m degrees of freedom,

where m is the number of parameters (Brockwell and Davis, 1991). For a single param-

eter estimate θ̂j we can also obtain approximate confidence intervals using the standard
normal distribution. Writing the jth diagonal element of the estimator’s covariance ma-

trix V(θ̂) as vjj we obtain

CIα = {θ ∈ R | |θ − θ̂j| ≤ N−1/2Φ((1+α)/2)v
1/2
jj }, (2.63)
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with Φ((1+α)/2) being the (1 + α)/2-quantile of the standard normal distribution (Beran,
1994).

An alternative variant is to use a bootstrap approach. This approach consists of gen-
erating an ensemble of time series of original length using the model obtained for the
empirical series and a subsequent parameter estimation from all ensemble members.
Confidence intervals can then be obtained from the empirical frequency distribution of
the estimates following Davison and Hinkley (1997). A variant based on resampling the
residuals can be found in Hipel and McLeod (1994). Bootstrap approaches are especially
useful if the asymptotic confidence intervals are not reliable, e.g., if the residual distribu-
tion is not Gaussian.

Non-stationary Long-Range Dependence

So far, we have assumed a fractional difference parameter in the stationary range −1/2 <

d < 1/2. Velasco and Robinson (2000) showed that the Whittle estimation presented here
can be extended to non-stationary processes with 1/2 ≤ d < 1. It is consistent for d < 1
and preserves its asymptotic normality for d < 3/4. For larger d the asymptotic normality
can be recovered using a cosine bell taper for the calculation of the periodogram. For such
a non-stationary process we cannot easily express the likelihood as in (2.53). We can,
however, calculate an approximate log-likelihood using the ML-estimate of the residuals
variance σ̂2

ǫ as

L(θ̂|x) ≈ −N

2
log 2π − N

2
log σ̂2

ǫ . (2.64)

Performance

Smith et al. (1997) performed an extensive simulation study on bias and variance of the
fractional integration parameter and the autoregressive and moving average parameters
in FARIMA[p, d, q] models using ML estimation. Given the correct model the ML esti-
mation outperforms the log-periodogram regression. Mis-specifying the model orders
results in biased estimates of d, as well as of the autoregressive parameters. Similar re-
sults have been obtained by Taqqu and Teverovsky (1997) investigating three types of
Whittle estimators. The estimator proposed here is the most accurate of those under in-
vestigation provided the correct model is chosen. This stresses the need of reliable model
selection (Chapter 3).

Numerical Aspects

In contrast to moment based estimators, such as the Yule-Walker equations or the inno-
vations algorithms (e.g., Brockwell and Davis, 1991) the optimisation problem in (2.54)
is generally carried out numerically. It is thus burdened with problems inherent to non-
linear optimisation, for instance, getting trapped in local minima. This problem can be
partially surmounted by initialising the algorithm with preliminary estimates. For the
AR or ARMA components, these estimates can be obtained using the Yule-Walker equa-
tions, the innovations algorithm, or an estimate obtained by minimising the conditional
sum of squares (Brockwell and Davis, 1991; Schumway and Stoffer, 2006).

The optimisation routines used in the following are those implemented in R’s10 optim

routine, namely the simplex method (Nelder and Mead, 1965) or, alternatively, a quasi-

10R is a software package for statistical computing and freely available from http://www.r-project.org/

(R Development Core Team, 2004)

http://www.r-project.org/
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Newton algorithm (Press et al., 1992). While the latter is faster, the simplex method is
more robust. For box-constrained numerical optimisation, the algorithm by Byrd et al.
(1995) is available.

Implementation

The numerical algorithm given in S-Plus by Beran (1994) and translated to R by Mar-
tin Mächler was used in a modified and supplemented form available as the R-package
farisma11. Extensions are made with respect to the initial guesses of the parameter values
and tools for visualisation, simulation and model selection were supplemented.

2.3.3 Detrended Fluctuation Analysis – A Heuristic Approach

The first attempts to describe the long-range dependent phenomenon were made before
suitable stochastic models had been developed. Starting with the rescaled range statistic
(cf. Appendix B.3.1) proposed by Hurst in 1951, several heuristic methods have emerged
to estimate the Hurst coefficient H. The approaches are based, for example, on a direct
calculation of the autocovariance sequence or on studying the behaviour of the variance
of the mean of subsamples with increasing length in a log-log plot. A relatively recent ap-
proach investigates the variance of residuals of a regression in subsamples and is thus to
a certain extend robust to instationarities. This approach has become widely used in the
physics community and is known as detrended fluctuation analysis (DFA) or residuals
of regression. Other heuristic methods are discussed by, e.g., Beran (1994) or Taqqu et al.
(1995). These heuristic methods are not suitable for statistical inference about the long-
range dependence parameter, but are rather diagnostic tools to start with. Confidence
intervals cannot be obtained straightforwardly which renders the interpretation of the
result difficult. For statistical inference one can either consider the log-periodogram re-
gression (Appendix B.3.2) or the full parametric modelling approach presented above
(Beran, 1994).

Residuals of regression or detrended fluctuation analysis (DFA) was developed by
Peng et al. (1993, 1994) while studying DNA nucleotides and later heartbeat intervals
(e.g., Peng et al., 1995). Their aim was to investigate for long-range dependent processes
underlying these records excluding the influence of a possible trend. Direct estimation
of the autocorrelation function from empirical data is limited to rather small time lags
s and is affected by observational noise and instationarities like trends. DFA received a
lot of attention in recent years and became a frequently used tool for time series analysis
with respect to LRD (e.g., Kantelhardt et al., 2001). Many works investigating for LRD in
various fields of research are based on this method. Some examples are empirical temper-
ature records (e.g., Koscielny-Bunde et al., 1996, 1998; Monetti et al., 2001; Eichner et al.,
2003; Blender and Fraederich, 2003), or temperature series from climate models (e.g.,
Bunde et al., 2001; Govindan et al., 2002), run-off (e.g., Koscielny-Bunde et al., 2006) and
wind speed records (e.g., Govindan and Kantz, 2004). Also with respect to extreme
events DFA has been used (e.g., Bunde et al., 2005). This popularity is probably due to
the simplicity of the method. There are, however, difficulties and pitfalls which are easily
overlooked when applying DFA. The latter are described in more detail in Appendix A.2.

For a description of the method, consider again the time series {Xi}i=1,...,N . Similar to
Hurst’s rescaled range analysis (cf. Appendix B.3.1), the detrended fluctuation analysis

11http://www.pik-potsdam.de:∼hrust/tools/
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is based on the aggregated time series Y(t) = ∑
t
i=1 Xi. First, divide Y(t) into M non-

overlapping segments of length s. Then, for DFA of order n (DFAn), in each segment

m = 1, . . . , M fit a polynomial of order n. This polynomial trend p
(n)
s,m is subtracted from

the aggregated series:

Ys,m(t) = Y(t) − p
(n)
s,m(t). (2.65)

For every segment m the squared fluctuation is calculated as

F2
m(s) =

1

s

ms

∑
t=(m−1)s+1

Ys,m(t)2. (2.66)

Averaging over all segments m = 1, . . . , M yields the squared fluctuation function for the
time scale s:

F2(s) =
1

M

M

∑
m=1

F2
m(s). (2.67)

This procedure is repeated for several scales s. The time scales s are limited at the lower
bound by the order n of DFA and at the upper bound by the length of the record. Due
to the increasing variability of F2(s) with s, a reasonable choice for the maximum scale is
smax ≈ N/10. The fluctuation function F(s) is then investigated in a double logarithmic
plot.

Interpretation of the Slope

Using the asymptotic behaviour of fractional Gaussian noise (fGn) and FARIMA pro-
cesses, Taqqu et al. (1995) showed that the resulting fluctuation function obtained with
DFA is asymptotically proportional to sH, with H being the Hurst exponent. Thus the

asymptotic slope in the log-log plot yields an estimate ĤDFAn (or, equivalently, d̂DFAn

(2.49)) of the Hurst exponent (or fractional difference parameter)(Taqqu et al., 1995). For
increments of self-similar processes, as fGn, the asymptotic behaviour is already reached
for very moderate sample size. For those processes, one can choose to fit a straight line
in the range 1 < log s < log N/10. Values for log s > log N/10 are frequently excluded
due to a large variability.

Asymptotically, we can relate the Hurst exponent H to the exponent γ quantifying
the algebraic decay of the ACF (2.21) by

H = 1 − γ/2 , with 0.5 < H < 1. (2.68)

It can be as well related to the fractional difference parameter (2.49) by d = H − 0.5
(cf. Section 2.2.2; Taqqu et al., 1995). For an uncorrelated process we get a squared fluctu-
ation function F2(s) ∝ s (i.e. F(s) ∝ s0.5) which reflects the linear increase of the variance
of the aggregated series Y(t) with t (Beran, 1994).

More details on the basics of DFA can be found in (Kantelhardt et al., 2001). Hu et al.
(2001) and Chen et al. (2002) investigate extensively the effects of various types of insta-
tionarities on DFA using simulation studies with realisations of the self-similar increment
process fGn.

Limiting Behaviour, Uncertainty Analysis

Studies regarding the variability of the estimate ĤDFAn are rare. Analytical approaches to-
wards a derivation of the limiting distribution could not be found in the literature. While
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a first impression of bias and variance can be obtained from the simulations in Taqqu et al.
(1995), a more detailed study is given in Appendix A.1. Furthermore, Weron (2002) per-
formed a systematic Monte Carlo study to quantify the variability of ĤDFAn based on
realisations of Gaussian white noise. He derived empirical confidence intervals which
can be used for testing the null hypothesis of a Gaussian white noise process. Weron es-
timated the slope of the logarithmic fluctuation function for scales s > 10 and s > 50. For
many practical applications the asymptotic behaviour has not been reached for such small
scales. This implies that suitable conditions to transfer these confidence intervals are rare.
Furthermore, neither the upper bound for the straight line fit has been specified, nor the
number of sampling points s for which the fluctuation function has been calculated. Al-
though Weron’s confidence bands might therefore not be suitable for a direct transfer
to many practical applications, the idea he presented leads to a promising approach of
obtaining confidence intervals using a simulation approach. If it is possible to specify
a parametric model for the observed record, such as a FARIMA[p, d, q], confidence inter-
vals can be easily estimated using a parametric bootstrap (Davison and Hinkley, 1997). If,
however, such a model has been identified, an estimate including asymptotic confidence
intervals for the Hurst coefficient can be derived directly (Section 2.3.1).

2.4 Simulations from Long-Range Dependent Processes

There are several ways of obtaining a realisation of a LRD model. An extensive survey of
generators has been conducted by Bardet et al. (2003). Here, we focus on the description
of the direct spectral method which was implemented and used in this work. It makes
use of some essentials of spectral analysis: a) the relation between the spectrum S(ω) and
the ACF (2.16), b) the periodogram I(ω) (2.18) as an estimate for the spectral density and
c) the sampling properties of I(ω). The latter are such that the Fourier coefficients aj and
bj of a Gaussian process {Xt}t=1,...,N , defined by

aj = N−1/2
N

∑
t=1

Xt cos(ωjt), bj = N−1/2
N

∑
t=1

Xt sin(ωjt), (2.69)

are Gaussian random variables. This implies that the periodogram

I(ωj) =
1

2π

{
a2

j + b2
j , j = 1, . . . , (N/2) − 1

a2
j , j = 0, N/2

(2.70)

is basically the sum of two squared normal variables and thus follows a scaled χ-squared
distribution with two degrees of freedom and an expectation value S(ωj; θ). The pe-
riodogram can be written as a scaled χ-squared distributed random variable with two
degrees of freedom (Priestley, 1992)

I(ωj) =
1

2
S(ωj; θ)ζ , with ζ ∼ χ2

2. (2.71)

Exploiting these properties, we can specify Gaussian random numbers aj and bj such that
(2.71) holds, i.e.

aj, bj =
1

2
S(ωj; θ)ξ , for j = 1, . . . , (N/2) − 1, (2.72)

and
aj = S(ωj; θ)ξ , for j = 0, N/2, (2.73)
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where ξ ∼ N (0, 1) is a Gaussian random variable. Using further a property of Fourier se-
ries f (ωj) from real valued records {xt}t=1,...,N : f (−ωj) = f ∗(ωj), we obtain a realisation
of the process with spectral density S(ωj; θ) by the inverse Fourier series of a realisation
of Zj = aj + ibj for j = −N, . . . , N. Using the Fast Fourier Transform (FFT), this algorithm
is fast at least for N being dyadic (order O(N log N)) and thus it is particularly interesting
for simulating long records.

Besides the effect of aliasing (Priestley, 1992), the periodicity of the realisation is a
problem: the end of the record is highly correlated with the beginning. It is thus necessary
to generate much longer records and extract a series of needed length from it.



Chapter 3

Model Selection

Entia non sunt multiplicanda
praeter necessitatem.
William of Ockham (1295-1349)

The most crucial and delicate step in model building is the choice of an adequate
model which satisfactorily describes the data. The notion of a satisfactory description is
subjective and depends on the research questions. If physical understanding or expla-
nation is the goal of the modelling efforts, lex parsimoniae – the principle of parameter
parsimony – may be a guiding principle. It states that among models with the same ex-
planatory power the one with fewer parameters is to be preferred. The principle dates
back to the English Franciscan friar William of Ockham and is also known as Ockhams
razor. If, on the other hand, prediction is the focus of the modelling effort, useful models
in the sense of Box and Jenkins (1976) are those with a high predictive power regardless
of a physical interpretation; model complexity – in terms of number of parameters – is
secondary in this respect.

The final aim of our modelling effort is the derivation of statistical quantities from
time series such as trend (Section 5.1.3) and quantile (Chapter 7) estimates. For a reli-
able inference, we need the information about the dependence structure. Therefore, it
is not the prediction of future observations which is in the focus, it is rather the reliable
identification of the ACF. In this respect, we use lex parsimoniae as a guiding principle.

For model choice or model selection, we can identify two different concepts: goodness-
of-fit tests and model comparison strategies. With a goodness-of-fit test, the hypothesis is
tested that the observed record is a realisation of the model proposed. The second concept
compares the fitness of two or more models in order to choose one or a few models out of
a set of suitable models. Commonly, model selection involves goodness-of-fit tests and
model comparison strategies. A plausible strategy is to base the model comparison on a
set of models which pass the goodness-of-fit test. Within the family of the FARIMA[p, d, q]
processes, model selection reduces to choosing appropriate model orders p and q, and to
deciding whether a fractional difference parameter d is needed or not.

This chapter presents a goodness-of-fit test particularly suitable within the frame-
work of FARIMA[p, d, q] models and Whittle maximum likelihood estimation. Further,
we discuss standard model comparison strategies. These are approaches within a test-
theoretical setting, such as the likelihood-ratio test, and criteria from information theory,
such as the Akaike information criterion. Being confronted with non-nested models1,

1The model g is nested in model f if it constrains one or more parameters of f , typically to zero. This
notion is different from nested in the context of climate models.
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non-Gaussian processes or simply situations where asymptotic results are not applicable,
other than the standard approaches have to be considered. In this context, we take up
an approach proposed by Cox (1961) and Hinde (1992) and develop a model selection
strategy for non-nested FARIMA[p, d, q] models.

3.1 Goodness-of-Fit Tests

It seems plausible to expect from a “good” model a description of the data such that the
difference between data and model output (the residuals) does not exhibit any structure
of interest with respect to the modelling task. If the aim is to describe the correlation
structure, it is plausible to demand for independent (or at least uncorrelated) residuals.
This implies that there is no evidence for more (linear) structure in the underlying dy-
namics. Consequently many goodness-of-fit tests are based on testing the residuals for
compatibility with a white noise process. A fundamental test in this respect is the Port-
manteau test. It is based on the sum over the squared autocovariance series of the resid-
uals. Several modifications have been proposed to improve the finite sample properties
of the Portmanteau test. A comprehensive discussion can be found in Li (2004). Here, we
restrict ourselves to a brief description of the basic Portmanteau statistic and a spectral
variant which fits well in the framework of Whittle-based parameter estimation. A short
note on hypothesis testing precedes the discussion.

3.1.1 Hypothesis Testing

Hypothesis testing is an algorithm to decide for or against an uncertain hypothesis min-
imising a certain risk. An example for a hypothesis is the “goodness-of-fit”, i.e. H0 “the
observed data is a plausible realisation of the model”. The information relevant for this
hypothesis is summarised in a test statistic, e.g., the sum of the squared residual autoco-
variance series. Knowing the distribution of the test statistic under this null hypothesis H0,
we choose a critical region including those values of the test statistic which we consider as
extreme and as evidence against the hypothesis. The probability of finding the test statis-
tic under the assumption of H0 in this critical region is called the α-value or size of the test.
Common α-values are 0.01 and 0.05 corresponding to a 1% and 5%-level of significance.

The probability of the test statistic falling into the critical region under an alternative
hypothesis HA is called the power (pow) of the test; 1 − pow is referred to as the β-value.
If the observed value falls inside the critical region, we reject the null hypothesis. If
it is found outside we conclude that there is not enough evidence to reject H0. Note,
that this lack of evidence against H0 does not imply evidence for the null hypothesis
(Cox and Hinkley, 1994).

A test with low power cannot discriminate H0 and HA and is said to be not sensitive
to the alternative hypothesis. For large α-values the test is referred to as not being specific;
H0 is frequently rejected even if it is true. The optimal test would be both, sensitive and
specific.

If not stated otherwise, we use a 5%-level of significance in the following.

3.1.2 Portmanteau Test

Let {xt}t=1,...,N be the record under consideration and ft(θ) the model output at index t.
The parameter vector θ has elements θ = (θ1, . . . , θm)†. The residual series is denoted as
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rt = xt − ft(θ). The Portmanteau or Box-Pierce statistic is

Ql = N
l

∑
τ=1

ρ̂2
res(τ), (3.1)

with ρ̂res(τ) being the autocorrelation sequence of the residuals rt. Under the null hy-
pothesis H0 “the residuals are uncorrelated”, QN is asymptotically χ-squared distributed
with l − m degrees of freedom (Box and Jenkins, 1976; Li, 2004).

3.1.3 Spectral Variant of the Portmanteau Test

Beran (1992) suggested a goodness-of-fit test for long-memory processes which is equiv-
alent to the Portmanteau test but formulated in the spectral domain. The test statistic
involves quantities which are necessarily calculated during the Whittle parameter esti-
mation, thus it integrates smoothly into the framework. The test is a generalisation of a
result from Milhoj (1981) for short memory processes. Define

AN =
4π

N ∑
j

(
I(ωj)

S(ωj; θ)

)2

and BN =
4π

N ∑
j

I(ωj)

S(ωj; θ)
, (3.2)

with S(ωj; θ) being the spectral density of the model under consideration. I(ωj) denotes
the periodogram and the sums extend over all Fourier frequencies ωj. The test statistic is
now defined as

TN(θ̂) =
AN(θ̂)

B2
N(θ̂)

. (3.3)

It can be shown that N1/2(AN(θ̂), BN(θ̂)) converges to a bivariate Gaussian random vari-
able. We can simplify the test considering that TN(θ̂) itself is asymptotically normal with
mean π−1 and variance 2π−2N−1:

P(TN ≤ c) ≈ Φ(π
√

N/2(c − (1/π))), (3.4)

with Φ denoting the standard normal distribution function. Milhoj (1981) showed numer-
ically that this approximation is acceptable already for moderate sample size of N ≈ 128.

3.2 Model Comparison

A central idea in model selection is the comparison of the model residual variances, resid-
ual sums of squares or likelihoods. Intuitively, it is desirable to obtain a small residual
variance or a large likelihood. However, increasing the number of parameters trivially re-
duces the variance. Consequently, one has to test whether a reduction in residual variance
due to an additional parameter is random or a significant improvement. An improve-
ment is called random, if the effect could have been induced by an arbitrary additional
parameter. An effect is called significant if a special parameter improves the quality of
the fit in a way which is not compatible with a random effect.

In the following, we present standard procedures from the test theoretical framework,
such as the likelihood-ratio test, and criteria from information theory, such as the criteria
of Akaike, Hannan and Quinn or Schwarz.
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3.2.1 Likelihood-Ratio Test

The likelihood-ratio test (LRT) is based on the ratio of the two likelihood functions for two
nested models f and g evaluated at the maximum. We assume that g is nested in f and
constrains k-parameters. According to lex parsimoniae, we ask if the models perform
equally well and take then the simpler one. The null hypothesis is now H0 “g is an
admissible simplification of f ”. A convenient asymptotic distribution for the test statistic
is obtained using the log-likelihood functions l f and lg. The log-likelihood-ratio is then
expressed as the difference

lr = −2(lg − l f ). (3.5)

Under H0 this test statistic is asymptotically χ-squared distributed with k degrees of free-
dom. Increasing the α-values with the sample size N leads to a consistent model selection
strategy, i.e. the probability of identifying the right model approaches one with increasing
sample size.

3.2.2 Information Criteria

A different approach was carried forward with a paper by Akaike (1973). It had tremen-
dous influence on the way model comparison was carried out in the 1970s. Hitherto
existing strategies relied on eye-balling or heuristic criteria. Due to increasing computa-
tional power it became possible to estimate parameters in models involving considerably
more than two or three parameters. Therfore, it was now necessary to find a reliable
procedure to choose among them.

Akaike Information Criterion

Akaike suggested a simple and easy to apply criterion. It is basically an estimate of the
relative Kullback-Leibler distance to the “true” model. The Kullback-Leibler distance,
or negentropy, is a measure of distance between a density function p(x|θ) and the true
probability density. It is thus different from the test theoretical approach described above.
This measure was initially called “An Information Criterion” which later changed into
Akaike Information Criterion (AIC). It is defined as

AIC = −2l(θ|x) + 2m, (3.6)

with l(θ|x) being the log-likelihood and m the number of parameters of the model under
consideration. The term 2m, frequently referred to as “penalty term”, is indeed a bias
correction. The model with the smallest AIC, i.e. the smallest distance to the true model,
is typically chosen as the best. Within the framework of a multi-model approach, one
might also retain all models within 2 of the minimum (cf. Ripley, 2004).

In the decades after it has been proposed AIC enjoyed great popularity in many
branches of science. One major reason why it was much more used than, e.g., Mallows’
Cp criterion (Mallows, 1973) developed at the same time might be its simplicity. Simu-
lation studies, and later Hannan (1980), showed that the AIC systematically selects too
complex models, which led to modified approaches.

Hannan-Quinn Information Criterion

A consistent criterion was later proposed by Hannan and Quinn (1979). The difference to
the Akaike criterion is a modified “penalty term” including the number of data points N

HIC = −2l(θ|x) + 2mc log log N, (3.7)
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with c > 1. This criterion is known as the Hannan-Quinn information criterion (HIC).

Bayesian-Schwarz Information Criterion

Another consistent criterion was formulated within the framework of Bayesian mod-
elling by Schwarz (1978):

BIC = −2l(θ|x) + m log N, (3.8)

termed Schwarz information criterion or Bayesian information criterion (BIC).

3.2.3 Information Criteria and FARIMA[p, d, q] Models

Beran et al. (1998) investigated these three information criteria regarding order selection
in FARIMA[p, d, 0] processes and proved consistency for HIC and BIC regarding the se-
lection of the autoregressive order p. An extensive simulation study was conducted by
Bisaglia (2002) also in the context of FARIMA[p, d, q] but with nontrivial moving average
order q. As a result Bisaglia obtained that HIC and BIC can be quite successful when
choosing among the class of FARIMA[p, d, q] processes with 0 ≤ p, q ≤ 2 for realisations
coming from a FARIMA[1, d, 1] process with d = 0.3. The rate of success, i.e. the fraction
of correctly identified models, depends, however, heavily on the AR and MA compo-
nents of the true model. It varies between 0.5% (N = 500, a1 = −0.5 and b1 = −0.3 ) and
99% (N = 500, a1 = 0.9 and b1 = 0). Although in many cases the rate of success is larger
than 70%, in specific cases it can be unacceptable small.

Unfortunately, the information criteria do not provide any measure of performance by
themselves. It is, however, desirable to identify situations with a success rate as low as
0.5%. In these situations one might either consult a different selection strategy or, at least,
one wishes to be informed about the uncertainty in the selection. In situations which
can be related to Bisaglia’s simulation studies one might refer to those for a measure of
performance. In other situations one has to conduct such studies for the specific situation
at hand.

A further problem is that Akaike derived his information criterion for nested models
(Akaike, 1973; Ripley, 2004) which makes it inappropriate when asking for a choice be-
tween, e.g., a FARIMA[1, d, 0] and an ARMA[3, 2]. Reverting to a common model where
both variants are nested in (here FARIMA[3, d, 2]) and testing the two original models for
being admissible simplifications might result in a loss of power (Cox, 1961).

Confronted with these difficulties, we develop a simulation-based model selection ap-
proach for FARIMA[p, d, q] processes which is particularly suitable for non-nested mod-
els.

3.3 Simulation-Based Model Selection

In the previous section, we have discussed some standard techniques to discriminate be-
tween nested models. In many practical data analysis problems one is often confronted
with the task of choosing between non-nested models. Simple examples are linear re-
gression problems, where we might have to decide between two different sets of explana-
tory variables (e.g., Cox, 1961). More complex examples include discriminating different
mechanisms in cellular signal transduction pathways (e.g., Timmer et al., 2004).

Cox (1961) was the first to consider the problem of testing two non-nested hypothe-
ses within the framework of the likelihood approach and to derive an asymptotic result.
Later a simulation approach was suggested by Williams (1970). It is based on the idea
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to obtain a distribution of the test statistic on the basis of the two fitted models. We take
up this idea and develop and test a framework for discriminating between non-nested
FARIMA[p, d, q] processes.

3.3.1 Non-Nested Model Selection

Cox (1961) suggested a test statistic for discriminating non-nested models based on the
log-likelihood. Consider l f (θ̂) and lg(Ξ̂), the log-likelihood of two models f and g with

parameter estimates θ̂ and Ξ̂, respectively. The test statistic is defined as

Tf =
(

l f (θ̂|x) − lg(Ξ̂|x)
)
− E

θ̂

[
l f − lg

]
, (3.9)

where E
θ̂

[
l f − lg

]
denotes the expected likelihood ratio under the hypothesis H f “model

f is true”. A large positive value of Tf can be taken as evidence against Hg “model g
is true”, and a large negative value as evidence against H f . Note that the expression in
(3.9) is not symmetric in f and g due to the expectation value in the last term. It can be
shown that Tf is asymptotically normal under the null hypothesis H f . The variance of the
distribution of Tf is not known in general, which renders testing impossible. For specific
situations, however, it is possible to calculate the variance; for some examples, see also
Cox (1961).

In the following section, we develop a simulation-based approach for discriminating
models coming from the FARIMA[p, d, q] class based on this test statistic.

3.3.2 Simulation-Based Approach for FARIMA[p, d, q]

Instead of (3.9) we consider only the difference lrobs = l f (θ̂|x) − lg(Ξ̂|x) and compare
it to the distributions of lr f and lrg (Hinde, 1992). These two distributions are obtained
similarly to the value for lrobs but from records x f and xg simulated with the respective
model. If the two distributions of lr f and lrg are well separated, we can discriminate the
two models. Depending on the observed record, we favour one or the other model or
possibly reject both. A large overlap of the distributions indicates that the two models
are hard to distinguish.

Schematically this procedure can be described as follows:

1. Estimate parameters θ̂ and Ξ̂ for models f and g from the observed record, calculate
the log-likelihood-ratio lrobs = l f (θ̂|x) − lg(Ξ̂|x).

2. Simulate R datasets x f ,r, r = 1, . . . , R with model f and parameters θ̂. Estimate

parameters θ̂ f ,r for model f and Ξ̂ f ,r for model g for each ensemble member x f ,r.

Calculate lr f ,r = l f (θ̂ f ,r|x f ,r) − lg(Ξ̂ f ,r|x f ,r). This yields the distribution of the test
statistic under the hypothesis H f .

3. Simulate R datasets xg,r, r = 1, . . . , R with model g and parameters Ξ̂. Estimate

parameters θ̂g,r for model f and Ξ̂g,r for model g for each ensemble member xg,r.

Calculate lrg,r = l f (θ̂g,r|xg,r) − lg(Ξ̂g,r|xg,r). This yields the distribution of the test
statistic under the hypothesis Hg.

4. Compare the observed ratio lrobs to the distribution of lr f ,r and lrg,r. In case the dis-
tributions are well separated (Figure 3.1), this might yield support for the one or the
other model (Figure 3.1, (a), solid line), or evidence against both of them (Figure 3.1,



3.3 Simulation-Based Model Selection 31

(b), dashed line). If the two distributions show a large overlap (Figure 3.2) models
f and g cannot be discriminated. Depending on the observed value, we find situ-
ations where we can still reject one model (Figure 3.2, b) and situations where no
model can be rejected (Figure 3.2, a).

The representation of the distributions as density estimates or histograms (Fig-
ures 3.1 and 3.2, left) appear more intuitive because the separation or overlap of the
distributions is directly visible. Density estimates or histograms require, however,
additional parameters, such as the smoothing band width or the bin size. There-
fore we prefer in the following the representation using the empirical cumulative
distribution function (ECDF) (Figures 3.1 and 3.2, right).
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Figure 3.1: Possible outcomes of the simulation-based model selection. The two distributions
are well separated. A one-sided 5% critical region is marked by the filled areas. The solid and
dashed vertical line exemplify two possible values for an observed log-likelihood-ratio. The left
plot shows the density function and the right plot the empirical cumulative distribution function.
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Figure 3.2: Possible outcomes of the simulation-based model selection. The two distributions are
not well separated. The colour and line-coding is the same as in Figure 3.1.

The diagram in Figure 3.3 depicts the procedure in a flow-chart-like way. Besides a
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Figure 3.3: Schematic representation of the simulation-based model selection.

visual inspection of the result in a plot of the densities (histograms) or the empirical cu-
mulative distribution functions, we can estimate critical regions, p-values and the power
of the tests. Examples of this simulation-based model selection strategy in different set-
tings are given by, e.g., Hinde (1992) or Timmer et al. (2004).

Critical Regions, p-values and Power

Critical Regions If we follow the specification (3.9) of the test statistic for testing the
hypothesis H f against Hg, we expect a deviation towards negative values if H f is not
true. To estimate the limit of a critical region, i.e. a critical value, at a nominal level α for
R runs, we use

l̂r
crit

f ,α = lr f ,([αR]) . (3.10)

lr f ,(r) denotes the r-th largest value and [αR] the integer part of αR.

Reversing the hypothesis and testing Hg against H f , we expect a deviation towards
positive values if Hg is not true and use lrg,([(1−α)R]) as an estimate for the critical value.

p-values Furthermore, we might estimate p-values in a similar way. A one-sided p-
value for testing hypothesis H f against Hg can be estimated as

p̂ f (lrobs) =
#(lr f ,r < lrobs)

R
, (3.11)

where #(lr f ,r < lrobs) denotes the number of likelihood ratios lr f ,r smaller than the ob-
served value lrobs.

Power The power pow f (α, g) of testing H f against Hg associated with a specified level α

is also straightforwardly estimated. The power is defined as the probability of finding the
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statistic under the alternative hypothesis in the critical region (Cox and Hinkley, 1994).
An estimate for the power is thus given by

p̂ow f (α, g) =
#(lrg,r < l̂r

crit

f ,α )

R
. (3.12)

3.3.3 An Illustrating Example

As an example consider the problem of discriminating between an AR[1] and a FD pro-
cess on the basis of a time series of length N = 400. We start with a realisation of an
AR[1] process and consider this series as an observed one. This time series is depicted in
Figure 3.4 in the time domain as well as in the spectral domain. We suppose that the un-
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Figure 3.4: Realisation of an AR[1] process with a1 = 0.6, σ2
η = 1 and length N = 400 in the time

domain (left) and spectral domain (right) together with the spectral densities of the AR[1] (green)
and FD (red) processes.

derlying process is either AR[1] or FD and we use the simulation-based model selection
to discriminate the two models.

Fitting the AR[1] and the FD Model

Following the procedure given above, we use the Whittle estimator (Section 2.3.2) to ob-

tain the following parameter estimates θ̂ = (â1, σ̂η, f )
† and Ξ̂ = (d̂, σ̂η,g)† for model f and

g, respectively. This results in â1 = 0.57(0.04), with the value in parentheses denoting the

standard deviation, and σ̂2
η, f = 0.995 for the AR[1] process (model f ); d̂ = 0.47(0.04) and

σ̂2
η,g = 1.049 for the FD process (model g).

In both cases the goodness-of-fit test (3.4) does not reject the model on the 5%-level
of significance: the p-values obtained are p̂ f = 0.551 and p̂g = 0.063 for the AR[1] and
FD process, respectively, and thus both are larger than 0.05. This implies that we are not
able to discriminate the processes solely on the basis of this test. The periodogram of the
original series is compared to the spectral density of the fits in Figure 3.4 (right).
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The Simulation-Based Model Selection

Following the scheme depicted in Section 3.3.2, we are left with two sets of log-likelihood-
ratios: lr f ,r obtained from the ensemble x f ,r with the underlying process being AR[1] and
lrg,r obtained from the ensemble xg,r with the underlying process being FD. The two hy-
potheses are shown in Figure 3.5 as histograms (left) and cumulative distribution func-
tions (right). The likelihood ratio calculated for the original series lrobs (black vertical line)
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Figure 3.5: Distributions of the log-likelihood-ratio for the AR[1] (lr f , green) and the FD (lrg, red)
model as histogram (left) and cumulative distributions function (right). The critical regions are
indicated as filled regions and the log-likelihood-ratio for the original series is shown as black
vertical line. The distributions are obtained from R = 10 000 runs.

is located close to the centre of H f and in the 5% critical region of Hg. This thus supports
the AR[1] in favour of the FD process.

The visualisation of the hypotheses in Figure 3.5 provides us with an idea to what ex-
tent the two models are distinguishable and which hypothesis to reject. In this example
the distributions are well separated and the observed value is close to the centre of the
AR-hypothesis but at the edge of the distribution resulting from the FD model. Addi-
tional to this visual impression, we estimate also critical regions, the power of the tests
and p-values in the way described above.

Estimating Critical Regions Consider the AR[1] model as the hypothesis under test
and the FD as the alternative. For the given example using (3.10) we find a critical value

at α = 0.05 of l̂r
crit

f ,0.05 = lr f ,([500]) = 5.393. The critical region extends towards smaller
values and thus the observed value lrobs = 10.463 lies outside. Thus the hypothesis H f

“the realisation stems from an AR[1] model”, cannot be rejected
For the inverse situation of testing FD against the alternative AR[1], we find a lower

limit of a critical region at l̂r
crit

g,0.05 = lrg,([500]) = 1.115. The observed value is thus inside
and we can reject the hypothesis that the realisation stems from an FD model.

Estimating the Power of the Test Considering again the AR[1] model as the hypothesis
under test, with (3.12) we obtain an estimate p̂ow f (α = 0.05, g) = 0.9978. Simultaneously,

we have obtained an estimate β = 1 − p̂ow f (α = 0.05, g) = 0.0022. This estimate of the

power being close to one is a result of the distributions being well separated. This high
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power implies that H f (AR[1]) is very likely rejected for realisations from an FD process
(Hg).

The corresponding power estimate for the inverse situation amounts to p̂owg(α =

0.05, f ) = 0.999.

Estimating p-Values For the AR[1] model we estimate a p-value p̂ f = 0.3533 using (3.11).
We thus have no evidence to reject this hypothesis. Since in our example, no lrg,r exceeds
the observed likelihood ratio, we find p̂g = 0 and thus strong evidence against the FD
hypothesis.

On the basis of the above procedure we can thus very confidently reject the hypothesis
of the data being generated from an FD model in favour of the autoregressive alternative.
In the given example, we know the underlying process and find that it was correctly
identified.

In order to investigate whether the simulation-based model selection strategy can be
referred to as a statistical test, we have to evaluate whether the rate of rejection corre-
sponds to the nominal level α.

3.3.4 Testing the Test

In the setting presented above, we straightforwardly estimated critical regions, p-values
and the power, for testing simple hypotheses, i.e. we assume that the null as well as the
alternative hypotheses are models with known parameters, namely the ML estimates for
the specified models. This is different from the situation where the parameters are not
known or, in other words, from testing composite hypotheses, i.e. the record is either
compatible with an AR[1] or with an FD process. In the latter situation the parameters
are not known but have to be estimated. This is the question we actually have to ad-
dress. Thus we test the size of such a test in a simulation study. In the current setting,
this implies to investigate whether the rejection rate according to the estimated p-values
correspond to the nominal rate α. We furthermore investigate to what extend the estimate
of the power is a useful approximation.

Testing the Size

We use again the AR[1] example process and perform an extensive simulation study us-
ing different values for the parameter a1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and various sample sizes
N ∈ {100, 200, 400, 800, 2 000, 4 000}2. For a1 and N fixed, we generate M = 1 000 realisa-
tions. For each such realisation we use the simulation-based model selection (again with
1 000 runs) to estimate p-values for a test against a FD model. The fractional difference
parameter d of this alternative hypothesis is estimated from the realisations. On the basis
of this p-value for a given realisation, we can either reject or accept the null hypothesis
on a prescribed nominal level of significance α. The fraction of the number of rejections
of the total number of realisations M is called the rejection rate rα. For a statistical test
this rate must agree with the nominal level α for large M, or, equivalently, rα/α → 1 for
M → ∞.

2Obtaining results for larger N, e.g., N = 8 000 could not be accomplished within one week of computa-
tion time for a given a1 and M = 1 000 runs on one node of the IBM p655 Cluster equipped with IBM Power4
CPUs with 1.1 GHz.



36 Model Selection

Figure 3.6 shows the relative rate of rejection rα/α for three nominal levels of α. In the
four upper panels (a-d) the dependence on the sample size N is given for four values of
a1. The two bottom panels (e,f) depict the dependence on the parameter a1 for a small
and a large sample size. The largest deviations from unity in all panels can be observed
for a nominal level of α = 0.01. For this level, we expect only ten of the 1 000 realisations
to be rejected. Thus a deviation of 50% implies five instead of ten rejected realisation. In
this range the statistic is very limited.

The plot for the N-dependence with a small autoregressive parameter (a1=0.1, panel
a), suggests that an increasing sample size reduces the difference between nominal level
and calculated rejection rate. For larger a1, the sample size does not have a clear influence
anymore (panels b-d). Except for a1 = 0.9, the rejection rates are predominantly smaller
than the corresponding nominal level. The a1-dependence for small sample size (N =
100) (panel e) shows that the rejection rate increases with the autoregressive parameter
a1. For a1 = 0.1, we find the rejection rate being about 50% smaller than the nominal
level. Only for a1 = 0.9 more realisations of the AR[1] process are rejected than expected
from the value of α. For a larger sample size (N = 4 000), the mismatch between nominal
level and rejection rate reduces, especially for small a1 (panel f). In this case, we observe
a relative rejection rate rα/α < 1 for a1 = 0.9 and α ∈ {0.05, 0.1}.

In situation where we find a rejection rate smaller than the nominal level, we speak
of a conservative test; the rejection under the null hypothesis is not as likely as expected.
In the opposite case of a rejection rate larger than the nominal value, one is more likely
to reject a true null hypothesis than expected. For the present example, this implies that
the AR hypothesis is rejected in favour of an FD process. The consequence is falsely
detecting LRD. Thus in the case of discriminating between an AR[1] and an FD process,
special attention has to be paid to processes with large autoregressive parameters.

For the situation of the example under consideration (a1 = 0.6 and N = 400), the
relative rejection rates are close to one for N = 400 and a1 = 0.5 (r0.05/0.05 = 1.14) or
a1 = 0.7 (r0.05/0.05 = 0.96). We can thus expect that the selection procedure is close to a
statistical test in this case.

Estimating the Power

With further simulations we study the estimates of the power for the simulation-based
model selection. The power is the rate of rejection for records from the alternative hy-
pothesis. Thus we need to study realisations of a suitable process serving as such. In this
setting this is an FD process with a difference parameter d chosen adequately to the corre-
sponding null hypothesis. This parameter changes with the length N and the parameter
a1 of the AR[1] process. Thus, we estimate d from 20 realisations of the null hypothesis
AR[1] for given a1 and N and take the average value for the alternative hypothesis. With
this alternative hypothesis we generate 1 000 realisations and obtain an estimate for the
power according to (3.12) for each run. This sample of power estimates is then compared
to the rate of rejection obtained from the ensemble by means of a box-plot. The results for
various a1 and N is shown in Figure 3.7. The blue crosses mark the difference parameter
used for the alternative hypothesis. The power increases with N but in a different man-
ner for different a1. The most rapid increase can be observed for a1 = 0.5 and a1 = 0.7.
In general the power estimates are very variable in regions of low power and especially
for parameters a1 = 0.1 and a1 = 0.9 where the AR[1] and the FD process have quite
similar spectral densities. For the other two parameter values (a1 = 0.5 and a1 = 0.7)
the estimate of the power is on average good. Particularly, for the setting of the example
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Figure 3.6: Relative rate of rejection at the 1% (circles), 5% (triangles) and 10% (crosses) nominal
levels of significance. The four top panels show the dependence on the length N for a1 = 0.1 (a),
a1 = 0.5 (b), a1 = 0.7 (c) and a1 = 0.9 (d). The two bottom panels show the dependence on the
AR-parameter a1 for N = 100 (e) and N = 4 000 (f).
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studied above (a1 = 0.6, N = 400), the power estimate close to one should be reliable.

In some cases, we find a fractional difference parameter d > 0.5 which corresponds
to the non-stationary domain. We are, however, still able to obtain estimates and an
approximate likelihood as discussed in Section 2.3.2.

In case we cannot distinguish the two models, for example due to a low power, we
can obtain a rough estimate of the time series length needed for a satisfactorily power on
the basis of simulations, as described in the following.

3.3.5 Estimating the Required Sample Size

The power of the test changes with the length of the series under consideration. This
is depicted in Figure 3.8. The model parameters used in the simulations are the ML
estimates θ̂ and Ξ̂ obtained for the original time series length.
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Figure 3.8: Power of testing the AR[1] hypothesis (green) and FD hypothesis (red) calculated for
various lengths.

In cases where it is not possible to discriminate the models, i.e. the length of the ob-
served record does not lead to satisfactory power of the test, we might repeat the pro-
cedure with increasing length of the simulated series. We then get an idea what record
length is needed to distinguish the two models. Interpretation of this result has to be
treated with care, because on the one hand, we use the estimates θ̂ and Ξ̂ instead of the
“true” parameter values. These estimates depend on the sample size N. On the other
hand, every hypothesis is trivially falsified for a sufficient length of the time series. An
increasing power does thus not mean that we are able to decide for one model; we might
end up with rejecting both. However, for a moderate increase of sample length, we might
still get an appropriate idea of the power.

In the context of geophysical records the lack of data basically implies to postpone the
analysis until sufficient data has been collected. In other settings, with the possibility of
influencing the size of the sample beforehand, this approach might be useful to design
the experiment. This ensures that a sufficient size of the sample can be taken. Then the
research question can be answered while an unnecessary surplus of data collection can
be avoided, e.g., to reduce costs.
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3.3.6 Bootstrapping the Residuals

Within the framework of FARIMA[p, d, q] models, the ensemble members x f ,r or xg,r can
be generated from a white noise process ηt using a linear filter (cf. Section 2.2.1)

xt =
M

∑
i=0

γiηt−i. [2.39]

In general the sum (2.39) extends over infinitively many elements M. In practical appli-
cation, the filter is truncated at a suitable length. The γi can be derived from the model
parameters (Brockwell and Davis, 1991; Beran, 1994).

For invertible models (2.39) can be inverted to obtain the residual series {rt} from
the time series {xt} given the model. In situations where the distribution of the residual
series is not close to a Gaussian, we might consider replacing the realisation {ηt} of the
white noise process with a realisation of a bootstrap resampling of the residuals {ri}
(Hinde, 1992; Davison and Hinkley, 1997). In this way the distribution of the residuals is
conserved.

3.4 Summary

We started the discussion on model selection with an example of a goodness-of-fit test: a
spectral variant of the Portmanteau Test. This test is particularly suitable for the kind of
models used and parameter estimation strategy we pursue here. For model comparison,
we suggested the standard likelihood-ratio test and the Akaike-type information criteria
(AIC, BIC, HIC). These methods can be used for choosing between nested models.

Starting from a general likelihood-ratio approach, we developed a simulation-based
strategy for the discrimination of non-nested FARIMA[p, d, q] models. The formulation
of this approach is within the framework of statistical hypothesis testing, i.e. the con-
cepts of critical regions, p-values, and power are used. We illustrated this method with
a simulated example series from an AR[1] process. On the basis of one realisation, the
AR[1] model could correctly be identified as the underlying process. The FD model as
alternative hypothesis could be rejected, with a power close to one.

In order to study to what extend the estimates provided for the p-values and the
power can be interpreted in the sense of a statistical test, we performed an extensive
simulation study related to the above example. The results showed a dependence of the
relative rejection rate on the parameter value a1 and on the sample size N. The quality of
the power estimates depend as well on the sample length and on the parameter values.
We find useful estimates of the power in regions of high power and especially when the
spectral densities of the AR[1] and the FD process are not similar (here a1 = 0.5 and
a1 = 0.7). In regions of low power and especially towards the boundaries of the interval
(0, 1) for a1, estimates become highly variable and are to be interpreted with care.

If we cannot discriminate between the two models, a simulation study with an in-
creased record length gives an idea how many data points are needed for a reliable de-
cision. Because the simulations with increased length will be based on the parameters
estimated for the observed length, the range of this analysis is limited.

Given the idea of generating ensembles from the two hypotheses under test, one can
think of other statistics than the likelihood ratio. Especially in the context of detecting
LRD, statistics focusing on the low frequency behaviour might be suitable. Two statistics,
one based on the log-periodogram regression and one based on the DFA are discussed in
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Appendix B.4. In the example presented here, the likelihood ratio as test statistic results,
however, in the more powerful test.

In the following chapter, we develop a strategy to detect LRD on the basis of para-
metric modelling and the model selection strategies presented and developed here.





Chapter 4

Detection of Long-Range
Dependence

“Nothing is what it seems!”
Morpheus to Neo in The Matrix, 1999

The phenomenon of long-range dependence (LRD, Section 2.1.4) has received atten-
tion since the 1950s, the time the British hydrologist H. E. Hurst studied the Nile River
minimum flows, until today (Hurst, 1951; Hipel and McLeod, 1978; Montanari et al., 2000;
Giratis et al., 2001; Doukhan et al., 2003; Robinson, 2003; Lohre et al., 2003). Its discussion
is not limited to hydrology but is prevailing in other fields of the geosciences as well as in
economics (e.g., Smith, 1993; Govindan et al., 2002; Govindan and Kantz, 2004; Lo, 1991;
Henry and Zaffaroni, 2003). With this variety of applications different ways of detecting
and describing the phenomenon arose. We can basically distinguish two strategies for
the detection of LRD.

1. The historically older one is the search for a certain asymptotic behaviour in the
autocorrelation function, in the spectrum, or similar statistics (Section 2.1.4). These
approaches consist of a simple parametric description of the asymptotic behaviour
of the statistic under consideration in regions where these asymptotics are assumed
to hold. Such strategies are referred to as semi-parametric. If the asymptotic be-
haviour is sufficiently assured to hold and if the properties of the estimator are
known, as it is the case for the log-periodogram regression (Appendix. B.3.2), in-
ference about LRD can be made (Robinson, 2005). For estimators with unknown
limiting distributions, as, e.g., DFA-based estimation (Section 2.3.3), inference in
not possible straightforwardly. Such approaches are referred to as heuristic; they
are useful for a preliminary analysis but not for statistical inference (Beran, 1994).

2. An alternative strategy is a full-parametric modelling approach including model
selection as outlined in Chapter 3. The difference to semi-parametric or heuris-
tic approaches is that non-asymptotic behaviour is not disregarded but explicitly
modelled. Within the likelihood framework a limiting distribution for the estima-
tor is available, and thus inference about the parameter values – in particular about
the fractional difference parameter d – is possible (Section 2.3). More subtle is the
model selection discussed in Chapter 3. The inference about model parameters,
such as the fractional difference parameter, is only meaningful if the proper model
is used. The problem of selecting a suitable model corresponds to selecting an ad-
equate region for the log-periodogram regression (Beran, 1994): a small region as
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well as a complex model lead to a smaller bias but brings along a larger variance
for the estimate, and vice versa.

In this chapter, we develop a strategy for the detection of LRD based on the full-
parametric modelling approach and the model selection strategy proposed in Chapter 3.
In the first section, we generate two example series: one from a LRD and one from a
SRD process. The latter is constructed such that its realisations with a given length can
be easily mistaken for realisations of the LRD process. In the subsequent sections, these
series are analysed with DFA and the log-periodogram regression. Finally, we develop
the full-parametric strategy and illustrate its abilities to discriminate SRD and LRD with
these example series.

4.1 Constructing the Example Process

Contrary to the example studied in Section 3.3.3, we consider two processes which are
similar in their high frequency behaviour and differ only in the low frequency region, i.e.
one is LRD, the other SRD. Realisations of them are then taken as “observed” records.
Based on these “observations” we aim to decide whether the underlying process is SRD
or the LRD.

In order to strongly challenge the various model selection strategies, we construct
a SRD process such that it mimics a given LRD process as closely as possible. To this
end, we generate a realisation of a LRD model and search for an SRD model representing
this realisation reasonably well. Within the framework of the FARIMA[p, d, q] family, a
simple LRD process is the FARIMA[1, d, 0] (or, for short, FAR[1]) process. A realisation
of this process can be reasonably well modelled with an ARMA[3, 2] process (for details,
cf. Appendix B.5). We expect a realisation of this SRD model to be easily mistaken for
stemming from the FAR[1] process. It is thus an ideal candidate to illustrate and test
detection strategies for LRD.

Figure 4.1 shows the realisation of the ARMA[3, 2] (green) and the FAR[1] process
(red) in the time and frequency domain. Both realisations have N = 215 = 32 768 data
points.
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Figure 4.1: Time domain (left) and frequency domain (right) representation of the ARMA[3, 2]
realisation (green, a1 = 2.178, a2 = −1.488, a3 = 0.309, b1 = −1.184, b2 = 0.218) compared to the
FAR[1] realisation (red, d = 0.3, a1 = 0.7).
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For the analyses in the following sections, we consider these two records as “ob-
served” data and try to infer the underlying processes.

4.2 Detrended Fluctuation Analysis

For the detection of LRD it has become a widely used practice to compare the DFA fluc-
tuation function (Section 2.3.3) in a double-logarithmic plot to an expected asymptotic
slope for SRD or uncorrelated processes (e.g., Bunde and Havlin, 2002; Király and Jánosi,
2002; Bunde et al., 2004; Eichner et al., 2003). For the “observed” records, obtained from
the ARMA[3, 2] and the FAR[1] process, we depict these fluctuation function in Figure 4.2.
From a visual inspectation of the left panel one might be tempted to consider the slopes H
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Figure 4.2: DFA1 fluctuation functions in double logarithmic representation for the ARMA[3, 2]
(green) and the FAR[1] (red) realisation (left). The two solid black lines mark the asymptotic
behaviour expected for SRD, or uncorrelated, processes (H = 0.5) and for a LRD process with
H = 0.75. The dashed vertical line marks the lower bound of scales considered. Straight line
fits for various ranges of scales to the DFA1 fluctuation function of the ARMA[3, 2] realisation are
shown in the right panel.

of both fluctuation functions being approximately constant with H > 0.5 for large scales
s. For log s > 2, for example, the plot suggests that in both cases the slopes are rather
compatible with H = 0.75 than with H = 0.5. Thus, this provides no evidence for an
SRD process in neither case. Following this line of argument, we would falsely infer a
LRD process with H = 0.75 underlying both realisations. This demonstrates that a reli-
able discrimination of realisations from LRD or SRD processes is not easily achieved on
the basis of DFA. Consequently such results should be interpreted with care.

A more detailed analysis of the fluctuation function of the ARMA[3, 2] realisation in
the right panel of Figure 4.2 shows already that the slope systematically increases with
decreasing lower bound of scales for the fit (i.e. an increasing range of scales considered).
This should raise awareness and provides first evidence that the asymptotic behaviour
has not been reached. If it had been reached, the slope should fluctuate around a constant
value but should not exhibit a systematic variation. A critical review on the use of DFA
to infer LRD explicitely addressing this point is given in Appendix A together with a
detailed analysis of bias and variance for Hurst exponent estimation.
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4.3 Log-Periodogram Regression

Contrary to a DFA-based estimator, a limiting distribution does exist for the estimator d̂lp

based on the log-periodogram regression (Appendix B.3.2). We can thus provide confi-
dence intervals and test whether the estimate for the fractional difference parameter is
compatible with zero. For both realisations, we perform the log-periodogram regression

for various bandwidths and give a 95% confidence interval for the estimate d̂lp. Figure 4.3
illustrates the regression for the ARMA[3, 2] realisation (left) and the FAR[1] realisation

(right). The estimates d̂lp with the corresponding asymptotic 95% confidence intervals
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Figure 4.3: Log-periodogram regression for various bandwidths (different colours) for the
ARMA[3, 2] (left) and the FAR[1] realisation (right).

are shown in Figure 4.4. For the ARMA[3, 2] realisation we observe an increase of the
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Figure 4.4: Log-periodogram regression estimates dlp of the fractional difference parameter d for

different bandwidth obtained from the ARMA[3, 2] realisation (green) and the FAR[1] realisation
(red). The abscissa specifies the bandwidths as index j of the largest Fourier frequency ωj included
in the fit. The green and red dashed lines specify the asymptotic 95% confidence intervals around
the corresponding estimates. The corresponding solid lines mark the true value of the fractional
difference parameter.
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estimate d̂lp changing from negative to positive values. It thus passes d = 0. Further-
more, the 95% confidence interval for three of the smallest four bandwidths encloses the
value d = 0 expected for SRD processes. This is different for the FAR[1] realisation: the
estimates are all strictly positive and not compatible with d = 0 within a 95% confidence
interval. In this case, we find, as expected, no evidence of SRD. Depending on the choice
of the bandwidth we get ambiguous results for the ARMA[3, 2] realisation. Here, the in-
ference of the decay of the ACF (i.e. SRD or LRD) depends on the choice of the bandwidth.
As mentioned before, the problem of choosing an optimal bandwidth is comparable to
the model selection problem. Optimal bandwidth choice is discussed in, e.g., Robinson
(2003).

4.4 Full-Parametric Modelling Approach

Instead of describing only the asymptotic behaviour for large time-scales/low frequen-
cies from an empirical data set, a different approach for the detection of LRD is proposed
in the following. We rephrase the question as a model selection problem: Is the empirical
record best represented by a LRD or a SRD model? This implies that we need to impose some
kind of principle to make the selection of a “best” model well defined. The principle we
follow can be ascribed to lex parsimoniae – the principle of parameter parsimony. In a
modelling framework, it can be expressed as follows: a model should be as complex as
necessary but not more complex (Chapter 3). We thus have to decide about the neces-
sary model complexity. This is accomplished by model selection strategies described in
Chapter 3.

In order to discriminate a more complex SRD (ARMA[p, q]) from a simpler LRD
(FARIMA[p′, d, q′]) model, we might require non-nested model selection, for example
FARIMA[1, d, 0] and ARMA[3, 2]. Alternatively, it is possible to use the simplest common
model (here FARIMA[3, d, 2]) and test with the standard likelihood-ratio test whether one
or the other model is an admissible simplification of the common model. According to
Cox (1961) those tests have potentially lower power than a direct comparison of the two
non-nested models. It is thus convenient to have a strategy for non-nested model selec-
tion at hand.

For both “observed” records, we estimate parameters for an ARMA[3, 2], a FAR[1],
and a FARIMA[3, d, 2] process. The two simple models are then tested for being an
admissible simplification of the FARIMA[3, d, 2] using the standard likelihood-ratio test
(Section 3.2.1). A direct comparison of the ARMA[3, 2] and the FAR[1] is finally realised
with the simulation-based model selection (Section 3.3).

4.4.1 Modelling the ARMA[3, 2] Realisation

We begin with estimating model parameters for the three processes considered as po-
tential models for the ARMA[3, 2] realisation. The resulting parameters and p-values for
the goodness-of-fit test (Section 3.1.3) are listed in Table 4.1. The parameter estimates
for the FAR[1] model are, within one standard deviation, compatible with the parame-
ters of the original FAR[1] process used to motivate the ARMA[3, 2] model. Likewise,
the ARMA[3, 2] estimates are compatible with the parameters of the underlying process.
The standard deviation of the FARIMA[3, d, 2] parameter estimates is about one order
of magnitude larger than for the other two models, except for d. Taking these standard
deviations into account, the AR and MA parameters are compatible with those from the
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Parameter ARMA[3, 2] FAR[1] FARIMA[3, d, 2]
d - 0.300(0.015) 0.316(0.022)
a1 2.182(0.041) 0.705(0.014) 1.750(0.531)
a2 −1.493(0.078) - −1.094(0.883)
a3 0.309(0.036) - 0.248(0.387)
b1 −1.179(0.043) - −1.062(0.528)
b2 0.210(0.042) - 0.372(0.552)

p-val 0.946 0.931 0.935

Table 4.1: Parameters and asymptotic standard deviation in parentheses for the ARMA[3, 2],
FAR[1] and the FARIMA[3, d, 2] model estimated from the ARMA[3, 2] realisation.

ARMA[3, 2]. Similarly, the estimate for the fractional difference parameter d is compati-
ble with the corresponding parameter of the original FAR[1] process. None of the three
models can be rejected on any reasonable level of significance according to the goodness-
of-fit test. Furthermore, d = 0 is not within the asymptotic 95% confidence interval for

the estimate d̂lp for both fractional models.

In Figure 4.5 (left), we compare the spectral densities of the two competing models,
FAR[1] and the ARMA[3, 2], to the periodogram of the “observed” series. The spectral
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Figure 4.5: Periodogram of the ARMA[3, 2] (left) and FAR[1] (right) realisation together with the
spectral densities of the ARMA[3, 2] (green) and FAR[1] (red) model fitted to these realisation.
The dashed vertical lines mark regions on the frequency axis where the spectral densities diverge
(left), are similar (middle) and are quasi identical (right).

densities are quasi indistinguishable for frequencies ω & ω2 = 0.13. Differences are
visible in the range 4 · 10−3 = ω1 & ω & ω2. Here, the ARMA[3, 2] spectral density does
not exactly reproduce the power-law like behaviour of the FAR[1] process. However, it
mimics it to a certain extend. Divergence of the spectral densities can be observed for
ω . ω1: in this range the difference between the SRD and the LRD model manifests.

Likelihood-Ratio Test

Standard likelihood-ratio tests (Section 3.2.1) of the FARIMA[3, d, 2] against the two sim-
pler models yield p-values of p = 1 and p = 0.793 for the ARMA[3, 2] and the FAR[1],
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respectively. We can thus not reject neither model as being an admissible simplifica-
tion of the FARIMA[3, d, 2] on any reasonable level of significance. The power of testing
FARIMA[3, d, 2] against FAR[1] is not large enough to reject the false simplification. We
are thus in a situation where we cannot decide about the SRD or LRD on the basis of
a likelihood-ratio test. Furthermore, the fractional difference parameter estimate for the
FARIMA[3, d, 2] model is also not compatible with zero, giving no indication for SRD.
We consequently need a more specific test for a reliable decision and we consider the
simulation-based approach introduced in Section 3.3.

Simulation-Based Model Selection

Analogously to the procedure outlined in Section 3.3.2, we now perform the simulation-
based model selection with the likelihood ratio as test statistic. The two models we con-
sider as candidates for the underlying process are the FAR[1] and the ARMA[3, 2]. To
facilitate the presentation, we denote in the following the ARMA[3, 2] and FAR[1] pro-
cess as model f and g, respectively.

Figure 4.6 shows the cumulative distribution functions of the two log-likelihood-
ratios. We find the value obtained for the “observed” record lrobs well outside the critical
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Figure 4.6: Empirical cumulative distribution function of log-likelihood-ratios lr f ,r (green) and
lrg,r (red) obtained from 1 100 simulations. The critical regions upto α-levels of 0.05 are filled with
the respective color. The log-likelihood-ratio lrobs for the observed series is shown as a vertical
line.

region of model f and inside the critical region of model g. The estimate of the power of
testing H f against Hg for the specified critical level α = 0.05 yields p̂ow f (0.05, g) = 0.979.

For the inverse situation of testing Hg against H f we find p̂owg(0.05, f ) = 0.977. We can

thus very confidently reject Hg (FAR[1]) in favour of H f (ARMA[3, 2]) and correctly iden-
tify the underlying process.
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4.4.2 Modelling the FAR[1] Realisation

Next, we estimate the model parameters obtained from the FAR[1] realisation. The re-
sulting paramters and p-values for the goodness-of-fit test (Section 3.1.3) are listed in
Table 4.2. Again, no model can be rejected on the basis of the goodness-of-fit test and

Parameter ARMA[3, 2] FAR[1] FARIMA[3, d, 2]
d - 0.287(0.015) 0.296(0.019)
a1 2.178(0.044) 0.710(0.014) 0.704(3.582)
a2 −1.488(0.083) - 0.001(1.298)
a3 0.309(0.039) - −0.002(1.216)
b1 −1.184(0.045) - −0.007(3.588)
b2 0.218(0.045) - 0.002(1.707)

p-val 0.333 0.356 0.359

Table 4.2: Parameters and asymptotic standard deviation in parentheses for the ARMA[3, 2],
FAR[1] and the FARIMA[3, d, 2] model estimated from the FAR[1] realisation.

the original FAR[1] parameters are recovered within one standard deviation. Also for the
FARMA[3, d, 2] model, the estimates are compatible with the parameters of the original
FAR[1] process.

Figure 4.5 (right) compares the ARMA[3, 2] and the FAR[1] spectral densities to the
periodogram of the FAR[1] realisation. The picture is very similar to the left panel in the
same figure. The two spectral densities are quasi identical in the high frequency region
but differ for low frequencies. Especially for ω < ω1 the difference between the LRD and
SRD asymptotic behaviour is clearly visible.

Likelihood-Ratio Test

A standard likelihood-ratio test of the ARMA[3, 2] model being an admissible simplifica-
tion of FARIMA[3, d, 2] is rejected on a 5%-level with a p-value of p = 0.006. The same
test for FAR[1] as simplified model cannot be rejected (p = 0.889). In this case, with the
underlying process being LRD, we can discriminate ARMA[3, 2] and FAR[1] already on
the basis of standard nested-model selection. The simulation-based selection criterion
for non-nested models is not needed. Thus, also for the second “observed” record, a
correct identification of the underlying process could be achieved on the basis of a full-
parametric model.

4.5 Summary

We illustrated three different strategies for the detection of LRD along the lines of a chal-
lenging example: one realisation of a FAR[1] and one from an ARMA[3, 2] process with
parameters chosen such that realisations with a specific length have very similar spectral
characteristics.

With the heuristic DFA, the two realisations were not distinguishable. Furthermore,
with the log-log plot as the central argument, we falsely “inferred” a LRD processes un-
derlying both records. The log-periodogram regression revealed differences in the two
series. For the FAR[1] realisation, the asymptotic 95% confidence intervals did not en-
close d = 0 for all the bandwidths used. Some did enclose this value for the ARMA[3, 2]
realisation. Here, a suitable strategy for selecting the proper bandwidth is required.
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The third approach to detect LRD is based on the full-parametric modelling and
model selection strategies presented previously. We fitted FAR[1], ARMA[3, 2], and the
smallest common model, FARIMA[3, d, 2], to both realisations. For the ARMA[3, 2] re-
alisation, we could not reject neither the FAR[1] nor the ARMA[3, 2] as admissible sim-
plifications of the FARIMA[3, d, 2] on the basis of a standard likelihood-ratio test. Here,
we had to use the simulation-based approach to directly compare the two alternatives
FAR[1] and ARMA[3, 2]. The likelihood-ratio test was, however, sufficient in the case of
the FAR[1] realisation. For both “observed” records the proper model and, in particular,
the correct dependence structure could be identified.

This example illustrated the reliability of the full-parametric modelling approach with
respect to the detection of LRD. Furthermore, it turned out that the standard model se-
lection, in some cases, such as the example at hand, does not have enough power to dis-
criminate the two alternatives under consideration. In such cases, a suitable strategy for
the discrimination of non-nested models, such as the simulation-based model selection,
is required

The approach presented here, i.e. rephrasing the problem of detecting LRD as a model
selection problem, is different from other approaches mainly because of the direct com-
parison of the most suitable SRD and the most suitable LRD process. A pivotal element in
this model comparison is the model selection strategy based on the log-likelihood-ratio.





Chapter 5

Modelling Temperature Records

The fluctuation of temperature anomalies, i.e. a deviation from a long-run mean value,
has been frequently discussed in recent years with respect to LRD (e.g., Smith, 1993;
Koscielny-Bunde et al., 1996; Talkner and Weber, 2000; Caballero et al., 2002; Monetti et al.,
2001; Smith, 2003; Eichner et al., 2003; Fraedrich and Blender, 2003; Cohn and Lins, 2005;
Gil-Alana, 2005). The specific interest in this feature is partly motivated by a decreased
sensitivity in the detection of trends and structural breaks compared to the uncorrelated
or short-range correlated case (cf. Section B.1; e.g., Sibbertsen, 2001; Craigmile et al.,
2004; Kallache, 2007). Furthermore, it is a feature – if detected for temperature records
– that might be expected to be reproduced by climate models. The line of argument
in this respect, proposed by Govindan et al. (2002), is the following: climate models do
not show LRD but have similar spectral power on low frequencies as observed tempera-
ture records, they might compensate for this deficiency by overestimating the trend. Be-
cause trends in temperature are a politically highly relevant subject, the detection of LRD
in temperature records was subjected to considerable interest and was also controver-
sially debated (Fraedrich and Blender, 2003; Bunde et al., 2004; Fraedrich and Blender,
2004; Vyushin et al., 2004). A matter of scientific discussion were as well the methods
used to infer a LRD process underlying the temperature records, particularly DFA (e.g.,
Metzler, 2003; Maraun et al., 2004). We discuss DFA with respect to the inference of a
LRD underlying process in Chapter 4 and Appendix A.

One of the first series of temperature anomalies investigated for LRD with DFA was
a record from Prague (Koscielny-Bunde et al., 1998). In the following, we analyse the
same record using the full-parametric strategy developed in Section 4.4. A discussion on
difficulties and pitfalls using DFA is illustrated with the very same temperature record in
Appendix A.3 (cf. also Maraun, Rust, and Timmer, 2004).

Besides the Prague temperature series, we investigate the northern hemisphere mean
temperature anomalies (Jones et al., 1999) for LRD. This series is suspected to stem from
an underlying LRD process, too (Cohn and Lins, 2005).

During the following analysis, we assume the record Yt to be a realisation of a process
which we consider as a linear superposition of various influences, namely a trend Tt,
periodic components St (seasonal cycle), and a stationary stochastic process Xt:

Yt = Tt + St + Xt. (5.1)

Under this assumption, we can separately estimate and remove the trend and seasonal
components. The remaining noise term, or residual term, can then be analysed for LRD.
A concise description of this preprocessing for the following analyses, i.e. the subtraction
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of the seasonal cycle and trend components, as well as a static transformation function is
given in Appendix D.

5.1 Prague Daily Maximum Temperature

We consider the daily maximum temperature series measured at the Clementinum in
Prague (Czech Republic). The record as it has been used by Koscielny-Bunde et al. (1998)
extends from 01/01/1800 to the 31/12/1992 and thus comprises almost 200 years (70 492
measurements). The first ten years are depicted in Figure 5.1.
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Figure 5.1: First ten years of the daily maximum temperature measured at the Clementinum in
Prague.

Prior to the parametric modelling of the stochastic noise term, we estimate and re-
move the annual cycle. The latter is the most prominent signal in the record (Figure 5.1).
Furthermore, we estimate and subtract a polynomial trend (Appendix D.3.1). The result-
ing residual series is regarded as a realisation of the stochastic process Xt in (5.1). For this
series, we estimate model parameters for the FARIMA[p, d, q] and ARMA[p, q] class us-
ing the Whittle estimator (Section 2.3.2) and choose a suitable model (Chapter 3). Finally,
we discuss the detection of LRD (Chapter 4) and present a simple trend test based on the
parametric model found.

5.1.1 Stochastic Modelling

The autocorrelation sequence of the residuals is shown in Figure 5.2. It is outside the
95% confidence interval for white noise for lags smaller than 3 months. For larger lags
the variance of the estimation renders any interpretation difficult. In the following, we
pursue a full-parametric description of the ACF.

Consider a family of FARIMA[p, d, q] processes with 0 ≤ p ≤ 8 and 0 ≤ q ≤ min(p, 7)
and additionally the ARMA[p, q] class with orders 1 ≤ p ≤ 8 and 0 ≤ q ≤ min(p, 7).
Larger orders p and q lead to difficulties in the numerical estimation procedure. The
reduction of this large set of models (here 87) is done in three steps:

1. goodness-of-fit test on a 5%-level of significance to eliminate inappropriate models
(Section 3.1.3),
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Figure 5.2: Autocorrelation sequence of the Prague temperature residuals. The dashed red lines
mark the asymptotic 95% confidence intervals pertaining to white noise.

2. a preselection with the Hannan-Quinn Information Criterion (HIC, Section 3.2.2),
to reduce the potentially large set to a small number1 of models which are then
mutually compared with a

3. likelihood-ratio test or simulation-based model selection (Sections 3.2.1 and 3.3).

Goodness-of-Fit Test

On the basis of the goodness-of-fit test (3.4) applied to the before mentioned set of models,
we can reject the following processes on a 5%-level of significance:

• FARIMA[p, d, q] with (p, q) ∈ {(1, 0), (1, 1), (2, 0), (2, 1)},

• ARMA[p, q] with (p, q) ∈ {(1, 0), (2, 0), (1, 1), (2, 1), (7, 1)}.

HIC-Based Model Selection

We compare the remaining ARMA[p, q] and FARIMA[p, d, q] models by means of the HIC
(Figure 5.3). In Section 3.2.2 we discussed the drawbacks of this approach and thus we
consider it only as a rough guide used to restrain the set of potentially suitable processes.
For the FARIMA[p, d, q] processes, the lowest value is attained for FARIMA[2, d, 2] fol-
lowed by the orders [3, d, 2], [4, d, 1], [3, d, 1], [3, d, 3], [4, d, 2], [5, d, 1], [4, d, 3], [5, d, 2] and
[5, d, 0]. Restricting the fractional difference parameter to d = 0, we find the ARMA[5, 3]
process having the smallest HIC, followed by the [6, 1], [8, 1], [5, 1], [4, 1], [8, 2] and [6, 2].
The models named here are retained and compared using the likelihood-ratio test or the
simulation-based approach.

1In the following, we reduce the number of models to typically around three to ten models for each,
the short-range as well as the long-range dependent processes. This number is fuzzy and depends on the
situation at hand. As a rule of thumb, models within a range of about two units of HIC can be considered as
comparable (Ripley, 2004). In principle, all models can be mutually compared with the likelihood-ratio test
or the simulation-based approach. Involving the information criteria is just a matter of convenience.
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Figure 5.3: HIC for various ARMA[p, q] (green) and FARIMA[p, d, q] (red) models fitted to the
Prague temperature anomalies. The model orders [p, q] are plotted along the abscissa. The orders
are discrete and the lines between the points are drawn only to guide the eye.

Likelihood-Ratio-Based Model Selection

As far as the models are nested, we use a likelihood-ratio test on a 5%-level of significance.
The resulting p-values for tests within the ARMA[p, q] and the FARIMA[p, d, q] family are
given in Tables 5.1.

From the first two entries in Table 5.1 (left), we find ARMA[8, 1] as an admissible sim-
plification of ARMA[8, 2]. ARMA[6, 2] is not suitable as such a simplification. Further-
more, ARMA[8, 1] cannot be simplified by ARMA[6, 1] (line 3) and ARMA[5, 3] does not
find an admissible simplification in neither ARMA[5, 1] nor ARMA[4, 1]. Thus we leave
this series of tests with an ARMA[5, 3] and an ARMA[8, 1] model. These two models are
not nested and we revert to ARMA[8, 3] as a common larger model. Both alternatives are
admissible simplifications of the larger model (lines 6 and 7). We thus try to discriminate
them using the simulation-based approach (Figure 5.4, left). The empirical cumulative
distribution function of the likelihood ratios obtained by simulation of the ARMA[8, 1]
and ARMA[5, 3] models show a large overlap and the observed value is in neither critical
region. We thus cannot reject one of the two models and, for the moment being, we keep
both.

As for the ARMA[p, q] models, we compare the FARIMA[p, d, q] models with lowest
HIC on the basis of a likelihood-ratio test (Table 5.1, right). From the first three lines we
find FARIMA[5, d, 1] and FARIMA[3, d, 2] as admissible simplification of FARIMA[5, d, 2].
FARIMA[5, d, 1] can be further simplified by FARIMA[4, d, 1] (line 5) but not by [5, d, 0]
(line 4). FARIMA[4, d, 1] is also an admissible simplification of FARIMA[4, d, 3] (line 6)
but cannot be further simplified by FARIMA[4, d, 0] (line 7). The FARIMA[3, d, 2] resulting
from line 3 is an admissible simplification of FARIMA[3, d, 3] and can be further simpli-
fied by FARIMA[2, d, 2] (lines 8 and 10). It cannot be simplified by a FARIMA[3, d, 1] (line
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ARMA[p, q]
Model f Model g p-val

1 [8, 2] [8, 1] 0.292
2 [8, 2] [6, 2] 0.004
3 [8, 1] [6, 1] 0.037
4 [5, 3] [5, 1] 0.001
5 [5, 3] [4, 1] <0.001
6 [8, 3] [8, 1] 1
7 [8, 1] [5, 3] 1

FARIMA[p, d, q]
Model f Model g p-val

1 [5, d, 2] [5, d, 1] 0.182
2 [5, d, 2] [4, d, 2] <0.001
3 [5, d, 2] [3, d, 2] 0.673
4 [5, d, 1] [5, d, 0] 0.004
5 [5, d, 1] [4, d, 1] 0.492
6 [4, d, 3] [4, d, 1] 0.198
7 [4, d, 1] [4, d, 0] <0.001
8 [3, d, 3] [3, d, 2] 0.145
9 [3, d, 2] [3, d, 1] 0.006

10 [3, d, 2] [2, d, 2] 0.476
11 [4, d, 2] [4, d, 1] 0.201
12 [4, d, 2] [2, d, 2] 0.712

Table 5.1: p-values for a likelihood-ratio test of model g being an admissible simplification of
model f .

9). We thus remain with two non-nested models, FARIMA[2, d, 2] and FARIMA[4, d, 1].
Reverting to the common larger model, FARIMA[4, d, 2], results in both alternatives be-
ing an admissible simplification (lines 11 and 12). We thus need the simulation-based
approach to discriminate them (Figure 5.4, right). The observed log-likelihood-ratio is
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Figure 5.4: Simulation-based model selection (200 runs) for ARMA[5, 3] against ARMA[8, 1] (left)
and FARIMA[2, d, 2] against FARIMA[4, d, 1] (right). The black solid line represents the corre-
sponding log-likelihood-ratio for the observed series.

in the critical region of the distribution obtained from the FARIMA[4, d, 1]. We thus reject
the hypothesis that the latter is a more suitable model than FARIMA[2, d, 2]. This leaves
us with the FARIMA[2, d, 2] model as the most suitable LRD model found in the set of
models we started with.
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Parameter Estimates and Spectral Densities

The ML parameter estimates obtained for the three remaining models are summarised in
Table 5.2. Three of the nine parameters estimated for the ARMA[8, 1] are compatible with

Parameter FARIMA[2, d, 2] ARMA[5, 3] ARMA[8, 1]
d 0.109(0.017) – –
a1 1.210(0.066) 1.548(0.275) 1.762(0.012)
a2 −0.332(0.042) −0.139(0.544) −0.879(0.012)
a3 – −0.679(0.368) 0.145(0.008)
a4 – 0.314(0.116) −0.035(0.008)
a5 – −0.050(0.019) 0.005(0.008)
a6 – – −0.003(0.008)
a7 – – 0.002(0.008)
a8 – – −0.005(0.004)
b1 −0.513(0.057) −0.741(0.275) −0.955(0.011)
b2 −0.106(0.007) −0.567(0.326) –
b3 – 0.342(0.095) –

p-val 0.074 0.071 0.075

Table 5.2: Maximum likelihood parameter estimates and asymptotic standard deviation in paren-
theses for the FARIMA[2, d, 2], ARMA[5, 3] and ARMA[8, 1] process obtained from the Prague
temperature residuals. The last line gives the p-values of the goodness-of-fit test.

zero within one standard deviation, giving evidence that this model is over-parametrised.
We take this as motivation to dismiss this process. The remaining two models are then
FARIMA[2, d, 2] and ARMA[5, 3]. Figure 5.5 compares the spectral densities of these most
suitable LRD and SRD processes to the periodogram of the temperature residuals. Nat-
urally, we find the strongest deviations in the low frequency range. The two processes
are almost indistinguishable for frequencies f > 0.01 = 1/100 days. Discriminating these
two models addresses the question whether the underlying process is either LRD or SRD.

5.1.2 Detecting Long-Range Dependence

We finally compare the most suitable SRD (ARMA[5, 3]) and LRD (FARIMA[2, d, 2]) model.
Reverting to the smallest common model (FARIMA[5, d, 3]) and performing a LRT leads
to the ARMA[5, 3] and the FARIMA[2, d, 2] being both admissible simplifications. In this
case the standard approach does not have enough power and we use the simulation-
based model selection (Figure 5.6). We can reject the ARMA[5, 3] process with a power of
p̂owARMA[5,3](FARIMA[2, d, 2], 0.05) = 0.884. This leaves us with the FARIMA[2, d, 2] as
the most suitable model for the Prague temperature residuals. Thus, on the basis of the
full-parametric modelling approach, we can conclude an underlying LRD process.

To corroborate this argument, we analyse an artificial series generated from a SRD
process constructed such that its realisations mimic the characteristics of the Prague se-
ries as closely as possible (Appendix A.3). We find that, a realisation of this process
could not be distinguished from the original record by means of DFA. Both, the empirical
Prague temperature residuals and this simulated record are classified as stemming from
a LRD process. The full-parametric approach, instead, could unambiguously identify the
underlying process of the artificial record as SRD. Thus, for this example, we find a larger
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Figure 5.5: Spectral densities of the FARIMA[2, d, 2] (red) and ARMA[5, 3] (green) processes with
optimised parameters in a double logarithmic plot together with the periodogram of the Prague
temperature residuals. The dotted vertical line mark the frequency f = 0.01 (period of 100 days).
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Figure 5.6: Simulation-based model selection (200 runs) for FARIMA[2, d, 2] against ARMA[5, 3].
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specificity2 for the full-parametric approach than for DFA.

5.1.3 Conservative Trend Test

We can straightforwardly perform a conservative test for a trend based on a parametric
model. Assuming a potential trend does marginally influence the stochastic modelling
of the natural variability, we can repeat the above model building procedure for the tem-
perature anomalies, i.e. the transformed series with the seasonal cycle, but not with the
trend, removed. This model can be used to generate an ensemble of records representing
the natural variability, i.e. the hypothesis of no trend. To each ensemble member we can
fit the polynomial of second order (D.5) and obtain distributions for the parameters a, b
and c of the trend model. These can be used for testing H0 “a = 0, b = 0 and c = 0”.
This test is conservative because a potential trend influences the FARIMA[p, d, q] param-
eter estimation in the way that those parameters describing the low-frequency behaviour
are biased towards larger values, especially the fractional difference parameter. Thus the
stationary stochastic model derived exhibits low-frequency power which might mask a
small trend. This results in a trend test with low power. A more refined test based on a
semi-parametric estimation of the trend is discussed, e.g., by Kallache, Rust, and Kropp
(2005) and Kallache (2007).

Model Selection and Parameter Estimates The model selection is essentially the same
as for the detrended series with the exception that the differences between ARMA[p, q]
and FARIMA[p, d, q] models in terms of HIC are larger. The model we find to be the
most suitable also is the FARIMA[2, d, 2] process with parameters and p-value for the
goodness-of-fit test (3.3) given in Table 5.3. Compared to the estimates obtained from the

Parameter FARIMA[2, d, 2]
d 0.143(0.016)

a1 1.127(0.081)
a2 −0.282(0.048)
b1 −0.463(0.072)
b2 −0.099(0.008)

p−val 0.044

Table 5.3: Maximum-Likelihood estimates and standard deviation in parentheses for the
FARIMA[2, d, 2] model for the normalised Prague temperature anomalies. The last line gives the
p-value of the goodness-of-fit test.

temperature residuals in Table 5.2, a somewhat larger estimate for the fractional differ-
ence parameter is obtained. The other estimates are compatible within one standard devi-
ation. The p-value for the goodness-of-fit test is smaller than the one obtained previously.
This indicates that not subtracting the polynomial trend leads to the FARIMA[2, d, 2] be-
ing not an adequate model, according to the goodness-of-fit test (3.4)

Ensemble Generation and Trend Test We use the FARIMA[2, d, 2] model and simulate
an ensemble of 1 000 records. The polynomial (D.5) is fitted to each ensemble member
and the three coefficients a, b and c are recorded. Figure 5.7 shows the marginal empirical

2We require an appropriate method for the detection of LRD to be a) sensitive and detect the LRD reali-
sation as such and b) specific, i.e. to classify only the LRD realisations as stemming from a LRD process.
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distribution functions of the single parameters and the corresponding parameter of the fit
to the empirical record as a vertical line. If we consider separate one-sided tests for a > 0,
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Figure 5.7: Marginal empirical cumulative distribution functions for the three parameters a, b
and c from the second order polynomial fit. The vertical lines marks the corresponding parameter
estimate for the empirical series. The horizontal dotted line mark the 5% and 95%-level.

b < 0 and c > 0, we find the estimates from the empirical record in a 5% critical region
in all three cases. A joint p-value calculated by counting all members with a parameter
estimate θ = (a, b, c)† more extreme than the observed results in p̂ = 0.002. This leads
to the rejection of H0 and thus we find evidence against the hypothesis of no trend on a
statistical basis.

This trend in the temperature record is probably a result of multiple effects. Besides
the effect due to global warming (IPCC, 2001), an increasing temperature as a result of a
growing city might also influence the record (Oke, 1973).

5.2 Northern Hemisphere Mean Temperature

In recent years the northern hemisphere mean surface air temperature has been inves-
tigated with respect to LRD (e.g., Smith, 2003; Cohn and Lins, 2005; Gil-Alana, 2005;
Rybski et al., 2006). The basis of these analyses is a temperature record compiled at the
Climate Research Unit (University of East Anglia) by Jones et al. (1999). The actual data
set comprises monthly values from 1856 to 2005. A detailed description of the data set
and some analyses are given by Jones et al. (1999) and Jones and Moberg (2003). While
Gil-Alana (2005) studies seasonally adjusted monthly means, Cohn and Lins (2005) in-
vestigate annual means using low-order FARIMA[p, d, q] models.

Gil-Alana as well as Cohn and Lins address the question whether the series shows an
underlying trend in the mean, i.e. can be regarded as a realisation of

Yt = a + bt + Xt, (5.2)

were Xt is possibly a LRD process. Cohn and Lins (2005) proposed a trend test for the null
hypothesis H0 “b = 0” based on a modified likelihood-ratio test. Assuming a LRD pro-
cess for Xt implies that the trend test is less sensitive than for SRD processes. In this case
“small” trends are likely not to be detected. Particularly for Xt being a FARIMA[1, d, 0] or
FARIMA[0, d, 1] process, H0 cannot be rejected on a 5%-level of significance in their anal-
ysis. However, for the seasonally adjusted monthly record Gil-Alana proposed a LRD
process including a linear trend in the mean, thus b > 0.

Here, we follow Cohn and Lins and study the annual mean series of temperature
anomalies. The anomalies are taken as differences to the mean temperature of the pe-
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riod from 1950 to 1979 (Figure 5.8, left). For the linear trend (5.2) parameter estimates
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Figure 5.8: Northern hemisphere mean temperature anomalies (left) from 1856 to 2005 and a
linear trend (red). The right panel shows the corresponding residuals.

â = −9.031(0.638) and b̂ = 0.0046(0.0003) are obtained using ordinary least squares.
The given standard deviation (in parentheses) is calculated under the assumption of an
uncorrelated record. In the following, we use FARIMA[p, d, q] models to describe the
temperature anomalies as well as the residual series. The latter is obtained by subtracting
the linear trend from the anomalies (Figure 5.8, right). The assumption of a simple lin-
ear trend made here is motivated by the analyses of Gil-Alana (2005) and Cohn and Lins
(2005). A discussion of this assumption and of the use of LRD processes to model such a
series closes this section.

5.2.1 Temperature Anomalies

As in Cohn and Lins (2005), we describe the temperature anomalies with FARIMA[p, d, q]
and ARMA[p, q] models. In contrast to their approach, we use higher orders p and q,
namely 0 < p < 4 and 0 < q < min(p, 3). Larger values for p and q are numerically not
feasible.

Stochastic Modelling

The autocorrelation sequence of the northern hemisphere temperature anomalies are
shown in Figure 5.9. For lags smaller than about 25 years, the autocorrelations are out-
side the 95% confidence interval for white noise. For a parametric description of the ACF,
we proceed analogously to the strategy proposed in Section 5.1.1. First, we reduce the set
of models with the goodness-of-fit test and the HIC criterion and compare the remaining
models by means of the likelihood-ratio test or the simulation-based model selection.

Goodness-of-Fit Test On the basis of the goodness-of-fit test (3.4) with a 5%-level of
significance, we cannot reject any model from the set and compare thus all models by
means of the HIC criterion.
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Figure 5.9: Autocorrelation sequence of the northern hemisphere temperature anomalies. The
dashed red lines mark the asymptotic confidence intervals pertaining to white noise.
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Figure 5.10: HIC for FARIMA[p, d, q] (red) and ARMA[p, q] (black) processes obtained for the
mean northern hemisphere annual temperature anomalies.
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ARMA[p, q]
Model f Model g p-val

1 [4, 1] [4, 0] 0.526
2 [4, 1] [2, 1] 0.032
3 [4, 1] [1, 1] 0.037
4 [4, 0] [2, 0] 0.001

FARIMA[p, d, q]
Model f Model g p-val

1 [4, d, 0] [2, d, 0] 0.037
2 [4, d, 0] [1, d, 0] 0.082
3 [1, d, 0] [0, d, 0] 0.129

Table 5.4: p-values for a likelihood-ratio test of model g being an admissible simplification of
model f . The ARMA[p, q] (left) and FARIMA[p, d, q] (right) models are represented only by their
orders [p, q].

HIC-Based Model Selection The HIC for the ARMA[p, q] and the FARIMA[p, d, q] mod-
els is shown in Figure 5.10. The FARIMA[p, d, q] models with lowest HIC which we re-
tain in the following are the FARIMA[0, d, 0] and the orders [1, d, 0], [2, d, 0] and [4, d, 0].
Restricting the fractional difference parameter to zero, we find among the ARMA[p, q]
models ARMA[4, 0] and the orders [1, 1], [4, 1], [2, 0] and [2, 1] having the lowest HIC.

Likelihood-Ratio-Based Model Selection Among these models, we use the likelihood-
ratio test at a 5%-level of significance to further reduce the set. Table 5.4 shows the p-
values for tests within the ARMA[p, q] and FARIMA[p, d, q] class. Within the ARMA[p, q]
class (left table), we find the ARMA[4, 0] as an admissible simplification of the ARMA[4, 1]
(line 1). Neither ARMA[2, 1] nor ARMA[1, 1] can be regarded as such an admissible sim-
plification of ARMA[4, 1] (lines 2 and 3). According to the last line of the table we reject
ARMA[2, 0]. Thus ARMA[4, 0] remains as the most suitable SRD model here.

Among the FARIMA[p, d, q] processes (right table), we find FARIMA[1, d, 0] as an ad-
missible simplification of FARIMA[4, d, 0] (line 2), FARIMA[2, d, 0] has to be rejected as
such (line 1). FARIMA[1, d, 0] can in turn be simplified with FARIMA[0, d, 0] (line 3). We
thus remain with the latter as the most suitable LRD model.

Parameter Estimates and Spectral Densities

The corresponding parameter estimates of the two remaining models are given in Ta-
ble 5.5. For the fractional difference parameter d in case of the FARIMA[0, d, 0] process, we

Parameter FARIMA[0, d, 0] ARMA[4, 0]
d 0.622(0.064) –
a1 – 0.617(0.079)
a2 – 0.126(0.093)
a3 – −0.104(0.093)
a4 – 0.245(0.079)

p-val 0.546 0.921

Table 5.5: Maximum-likelihood parameter estimates, asymptotic standard deviations and
goodness-of-fit p-values for the FARIMA[0, d, 0] and ARMA[4, 0] process obtained from the north-
ern hemisphere mean temperature anomalies.

find an estimate d̂ = 0.622(0.064) which is not in the stationary range (−0.5 < d < 0.5). If
we thus choose to describe the northern hemisphere mean annual temperature with this
mean stationary processes we are confronted with an infinite second moment (cf. Sec-
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tion 2.2.2). Cohn and Lins do not give values for the FARIMA[p, d, q] parameter esti-
mates. It is thus not transparent whether they use stationary or variance instationary
processes.

The roots zi of the AR polynomial Φ(z) of the ARMA[4, 0] model reveal that this
process is stationary. There are two relaxating, and one oscillating component. With a
modulus mod (z1) = 1.071 one root is close to the unit circle and thus the process is
close to instationarity (cf. Section 2.2.1). The latter corresponds to a characteristic time
scale of τ ≈ 14.5 years3. The dominating period of the oscillating component with about
4.8 years falls into the range of periods of the El Niño/Southern Oscillation which exhibits
a broad peak with a maximum at about 4 years (Latif et al., 1998).

The periodogram and the spectral densities of the two models are shown in Fig-
ure 5.11. The periodogram exhibits a strong increase for frequencies f < 0.1, i.e. for peri-
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Figure 5.11: Periodogram of the northern hemisphere mean temperature anomalies (black) and
spectral density of the ARMA[4, 0] (green) and FARIMA[0, d, 0] process (red) in double logarith-
mic representation.

ods larger about 1 year. Dominant are thus the first ten points of the periodogram. These
increase is well described by the FARIMA[0, d, 0] process. What is not well accounted for
is the difference in power in the range 0.1 < f < 0.2 (periods of 5 to 10 months) compared
to the range 0.2 < f . In this range the spectral density of the ARMA[4] model shows a
broad peak, representing the oscillating component and it follows the periodogram more
closely than the FD spectral density.

Detection of Long-Range Dependence

We finally try to discriminate between the ARMA[4, 0] and the FARIMA[0, d, 0] as the
most suitable SRD or LRD model, respectively. Because they are not nested, we refer
to the simulation-based model selection depicted in Figure 5.12 (right). The observed
value for the log-likelihood-ratio is in neither critical region, thus implying that we cannot
discriminate the two models on the basis of this criterion. Both models perform equally
well in describing the temperature anomalies. If we restrict, however, the analysis to
stationary processes, we have to dismiss the FARIMA[0, d, 0]. In that case we would

3As characteristic time scale we denote the period τ during which the autocorrelation is reduce by a factor
of 1/e.
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Figure 5.12: Simulation-based model selection (10 000 runs) between FARIMA[0, d, 0] and
ARMA[4, 0] for the northern hemisphere temperature anomalies.

favour the ARMA[4, 0] as the most suitable model for the northern hemisphere mean
temperature record.

In the following, we repeat the analysis for the temperature series with a linear trend
subtracted, i.e. the temperature residuals.

5.2.2 Temperature Residuals – Accounting for a Linear Trend

Stochastic Modelling

Figure 5.13 shows the autocorrelation sequence of the northern hemisphere temperature
residuals. The autocorrelations enter the 95% confidence interval for white noise at about
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Figure 5.13: Autocorrelation sequence of the northern hemisphere temperature residuals. The
dashed red lines mark the asymptotic confidence intervals pertaining to white noise.

11 years and thus earlier than for the temperature anomalies. For modelling the tem-
perature residuals (Figure 5.8, right), we use the same orders of FARIMA[p, d, q] and
ARMA[p, q] models and enter immediately into the model selection procedure.
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ARMA[p, q]
Model f Model g p-val

1 [4, 1] [4, 0] 0.516
2 [4, 1] [1, 1] 0.022

FARIMA[p, d, q]
Model f Model g p-val

1 [4, d, 0] [1, d, 0] 0.011
2 [4, d, 0] [0, d, 0] 0.024

Table 5.6: p-values for a likelihood-ratio test of model g being an admissible simplification of
model f .

Goodness-of-Fit Test Using the goodness-of-fit test at a 5%-level of significance, we can
reject only the ARMA[1, 0] process as a suitable model.

HIC-Based Model Selection The HIC for the various processes is shown in Figure 5.14.
Within the FARIMA[p, d, q] class, we retain as models with lowest HIC the FARIMA[0, d, 0]
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Figure 5.14: HIC for FARIMA[p, d, q] (red) and ARMA[p, q] (black) processes obtained for the
northern hemisphere mean temperature residuals.

and orders [4, d, 0] and [1, d, 0]. The ARMA[p, q] models with low HIC which remain in
the set for further analysis are the ARMA[4, 0] and orders [1, 1] and [4, 1].

Likelihood-Ratio-Based Model Selection The remaining models are compared using
a likelihood-ratio test at a 5%-level of significance. The corresponding p-values for the
ARMA[p, q] and the FARIMA[p, d, q] are given in Table 5.6. We find the ARMA[4, 0] being
an admissible simplification of the ARMA[4, 1], while the ARMA[1, 1] is not. Thus, again
the ARMA[4, 0] is the most suitable SRD model.

In case of the FARIMA[p, d, q] family, we find neither the FARIMA[1, d, 0] nor the
FARIMA[0, d, 0] being an admissible simplification of the FARIMA[4, d, 0]. Thus in case
of the temperature residuals, it is the latter which is the most suitable LRD model.

Parameter Estimates and Spectral Densities

The parameter estimates for these two models are given in Table 5.7. For FARIMA[4, d, 0],

the estimate d̂ is compatible with d = 0 within one standard deviation. We find, however,
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Parameter FARIMA[4, d, 0] ARMA[4, 0]
d −0.186(0.200)
a1 0.628(0.198) 0.466(0.078)
a2 0.112(0.097) 0.127(0.086)
a3 −0.108(0.097) −0.085(0.086)
a4 0.279(0.084) 0.298(0.078)

p-val 0.823 0.801

Table 5.7: Maximum likelihood parameter estimates, standard deviations, and goodness-of-fit
p-values for the FARIMA[4, d, 0] and the ARMA[4, 0] process obtained from the mean northern
hemisphere temperature residuals.

a pseudo-periodic component with a period of about 4.8 years. For the ARMA[4, 0] pro-
cess, we find approximately the same period of about 4.6 years. The longest relaxation
time decreased from more than 14 years for the anomalies to below 10 years for the resid-
ual series. The interpretation of these components is to be treated with care because of
the strong assumption of the underlying trend to be linear. This is discussed in Section
5.2.3.

The periodogram of the residuals and the spectral densities of the ARMA[4, 0] and the
FARIMA[4, d, 0] process is depicted in Figure 5.15. Only the first three points of the peri-
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Figure 5.15: Periodogram of the northern hemisphere mean temperature residuals (black) and
spectral density of the ARMA[4, 0] (green) and FARIMA[4, d, 0] process (red) in double logarith-
mic representation.

odogram exhibit an extreme increase in spectral power, different from the periodogram
of the anomalies in Figure 5.11. As expected, the subtraction of the trend changed the low
frequency power. Having this argument in mind, we might hypothesise, that subtracting
a different – and possibly more adequate trend estimate – might also change the spectral
power in the range of frequencies pertaining to the three points. The rivalry between
LRD and a trend component becomes obvious here. For larger frequencies, the spectral
densities for both models show the broad peak with the dominant frequency at about 4.6
years as already observed for the ARMA[4, 0] model of the temperature anomalies.
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Detection of Long-Range Dependence

FARIMA[0, d, 0] and also ARMA[4, 0] as models for northern hemisphere mean temper-
ature residuals have been considered also by Bloomfield (1992). They carried out model
selection using the AIC criterion (Section 3.2.2). In our analysis, we find the ARMA[4, 0]
and FARIMA[4, d, 0] as the most suitable SRD and LRD models, respectively. They are
nested and can be directly compared using the likelihood-ratio test. With a p-value of
p = 0.274 we cannot reject the hypothesis that the ARMA[4, 0] is an admissible simpli-
fication of the corresponding LRD process on any reasonable level of significance. Fur-
thermore, the estimate for the fractional difference parameter for FARIMA[4, d, 0] is com-
patible with zero within one standard deviation. Consequently, the northern hemisphere
mean temperature residuals obtained from subtracting a linear trend are, according to
this analysis, most suitably described with a SRD process.

5.2.3 Long-Range Dependence and the Linear-Trend Assumption

Cohn and Lins (2005) suggested a process allowing for a relatively large variability on
large scales (low frequencies), i.e. a LRD process, to account for the variability of the
residuals obtained from subtracting a linear trend. Due to its large variability for low
frequencies, this process can also account for the full variations of the temperature series
without subtraction of the linear trend. This does not necessarily imply the absence of
a trend. It is also plausible that the misspecification of the trend form requires a highly
variable (LRD) process to explain the residual variance.

The assumption of a linear trend in the mean made by Cohn and Lins is difficult
to justify. On the one hand because there are various radiative forcing factors4 being
held responsible for a change in the global mean temperature (e.g. Kaufmann and Stern,
1997; Rahmstorf and Schellnhuber, 2006). Kaufmann and Stern (1997) account for these
by explicitely including different forcing factors in a statistical description of the hemi-
spheric mean temperatures. On the other hand one can expect a non-linear response
of the temperature to the forcings. A way to account for this effect has been suggested
by Smith et al. (2003). They include responses from physical models to the individual
forcings in their analysis. The latter approach is a central idea of the fingerprinting put
forward by, e.g, Santer et al. (1994) and Hasselmann (1997). Smith et al. (2003) used, how-
ever, only a bivariate temperature series, while fingerprinting aims at identifying multi-
variate space-time patterns resulting from climate models with different combinations of
forcings included.

Without any plausible hypothesis for the underlying trend it is impossible to reliably
identify the residual process. Especially the discrimination of slow variations, which can
be considered as trend, and a LRD process is challenging. Many theoretical works and
also applications with respect to this problem can be found in the recent literature (e.g.,
Teverovsky and Taqqu, 1997; Deo and Hurvich, 1998; Giratis et al., 2001; Craigmile et al.,
2000, 2004; Kallache et al., 2005). In the example considered here, the long-time excur-
sions from the linear trend curve depicted in Figure 5.8 is attributed to a LRD process by
Cohn and Lins (2005). This decision is, however, not unambiguous. We showed that also
an ARMA[4, 0] process can account for that variability. Furthermore, if the trend compo-
nent is constructed including non-linear responses from climate models to the forcings,

4Forcing factors related to anthropogenic activity are, e.g., changes in greenhouse gas concentration, tro-
pospheric ozone and aerosols. Naturally variable factors are changes in the solar radiation and volcanic
eruptions leading to spontaneous rise in aerosol concentration.
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the northern hemisphere mean temperature can be well described without the use of LRD
processes (Bloomfield, 1992).

5.3 Summary

We investigated the Prague daily maximum temperature and the annual northern hemi-
sphere mean temperature for an underlying LRD process. With the parametric modelling
approach (Section 4.4), we find a LRD model (FARIMA[2, d, 2]) to describe the Prague
temperature anomalies best. The underlying LRD model is in line with other analyses of
this record using DFA (Koscielny-Bunde et al., 1998). To challenge the strategies to detect
LRD, we used the Prague temperature anomalies and constructed a SRD process which
mimics the observed record as closely as possible. The analysis is then repeated for a
realisation of this artifical process (Appendix A.3). Contrary to results from the DFA, the
parametric modelling approach could correctly identify the realisation stemming from an
SRD process. In this case, the full-parametric modelling approach with a proper model
selection strategy turned out to be more specific than DFA.

With a parametric model at hand it was straightforward to construct a trend test based
on simulations. The second order polynomial trend was found to be significant using a
test which is rather conservative. Apart from global warming, the temperature increase
in the Prague region might be partially attributed also to the urban heat island effect.

For the northern hemisphere mean temperature anomalies we found an ARMA[4, 0]
and a FARIMA[0, d, 0] process to most suitably describe the record. For the latter, we
found an estimate for the fractional difference parameter which is not in the stationary
domain anymore. After subtraction of a linear trend, i.e. the temperature residuals, we
could clearly identify the SRD ARMA[4, 0] process as the most suitable model. The hy-
pothesis of a linear trend is, however, problematic because it is likely that the warming in
the last decades follows a more complex pattern.



Chapter 6

Modelling Run-off Records

The type of models commonly associated with run-off records are motivated by phys-
ical processes and are either conceptual models based on a cascade of reservoirs (e.g.,
Romano et al., 2001), or so-called distributed models describing the water balance in the
soil on the basis of spatially distributed grid cells (e.g., Beven, 1998). The objective of
these modelling approaches is, on the one hand, the monitoring and prediction of the
water balance, especially the prediction of river run-off given a certain input, such as pre-
cipitation and temperature. On the other hand, process-based modelling is a means of
gaining insight into the processes governing the dynamics. This type of models allows
to study the response of a system to a possible change in external conditions, such as a
change in temperature or precipitation patterns, e.g., due to climate change.

The objective of the stochastic modelling approach pursued here is of different nature.
The goal is a suitable description of the autocorrelation function of the daily run-off. Such
a description enables to obtain statistical estimates on the basis of an assumption which is
more general than independent observations, i.e. the assumption of an underlying linear
stochastic process. This influences the estimation of statistical characteristics, such as
mean flows, return levels, trend parameters and the detection of structural breaks, such
as change points or regime shifts. The main effect is a more appropriate specification
of the uncertainty which is highly relevant especially with respect to return level and
thus flood-risk estimation (e.g., Koutsoyiannis, 2003; Apel et al., 2004; Merz and Thieken,
2005).

We use models formulated in the framework of linear modelling and seek a para-
metric description of the ACF of run-off records. Three records are investigated in the
following: daily mean run-off measured at the gauges Achleiten at the Danube River and
Vilsbiburg at the river Große Vils and further monthly mean run-off at Tczew at the River
Wisla. As well as for the temperature records, we assume periodic seasonal cycles, a
possible trend and the so-called run-off anomalies being linearly superposed as specified
in (5.1). A similar preprocessing is applied also to the run-off data (Appendix D.2): We
use a Box-Cox transformation advocated for river run-off by Hipel and McLeod (1994)
(Appendix D.2.2) to obtain a marginal distribution being closer to a Gaussian. We fur-
ther subtract annual and, if present, weekly cycles as well as a polynomial trend. Weekly
cycles in the run-off series are of anthropogenic origin. They are due to, e.g., industrial
use, such as pumped-storage power station. Before addressing the run-off records, we
discuss the motivation for describing run-off records using ARMA-type models.
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ARMA-Type Models for Run-Off Records

Quite general arguments for using the linear stochastic models of the ARMA-type are
given in Section 2.2.3. A more elaborated physically based motivation for river run-
off was proposed by Salas and Smith (1981). We follow the representation given by
Hipel and McLeod (1994) and denote the precipitation in year t as Xt. According to the
conceptual representation sketched in Figure 6.1, we assume evaporation bXt and in-
filtration aXt through the soil into the groundwater storage depending linearly on the
precipitation Xt. Thus the surface run-off flowing into the river is (1 − a − b)Xt = dXt.
The groundwater storage at the start of year t is denoted as St−1 and the groundwater
contribution to the runoff Zt is cSt−1. It is now necessary to assume ranges for the con-

Figure 6.1: Conceptual model of a watershed, taken from Hipel and McLeod (1994).

stants: 0 ≤ a, b, c, d ≤ 1 and 0 ≤ a + b ≤ 1. The total runoff Zt is now the sum of the
direct surface flow and the groundwater contribution

Zt = cSt−1 + dXt. (6.1)

This combined with the mass balance equation

St = (1 − c)St−1 + aXt (6.2)

yields
Zt = (1 − c)Zt−1 + dXt − [d(1 − c) − ac]Xt−1. (6.3)

If we now subtract the means µZ and µX from the variables Zt and Xt, respectively, we
obtain

(Zt − µZ) = (1 − c)(Zt−1 − µZ) + d(Xt − µX) − [d(1 − c) − ac](Xt−1 − µX). (6.4)

Assuming now the precipitation Xt being IID variables, (6.4) describes an ARMA[1, 1]
process. Hipel and McLeod (1994) show also the results for the alternative assumptions
of an AR[1] (or ARMA[1, 1]) model for the precipitation Xt. This results in an ARMA[2, 1]
(or ARMA[2, 2]) process for the runoff Zt. Thus, a simple conceptual approach to mod-
elling a watershed motivates on physical grounds ARMA[p, q] processes as models for
run-off records.
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6.1 Danube Daily Mean Run-off at Achleiten

The gauge Achleiten at the Danube River is located close to the city of Passau in the
south-east of Germany. The total catchment area of this gauge extends to 76 653 km2.
Daily mean run-off has been recorded from 01/01/1901 to 31/12/2003 and thus com-
prises Nyears = 103 years or N = 37 620 days. The average run-off taken over the whole
observation period is about 1 430 m3/s. Figure 6.2 shows the daily observed run-off at
the gauge as time series (left) and as histogram (right). Before attempting to achieve a
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Figure 6.2: Daily mean run-off at the gauge Achleiten at the Danube River as time series (left) and
histogram (right). For illustration, only for the period from 1901 to 1959 is shown in the left plot.
The histogram is depicted for Q < 5 000 m3/s.

description using the stochastic models, we subject the empirical record to the prepro-
cessing as mentioned above (cf. Appendix D.3.2). The record after the transformation
and subtraction of the periodic cycles will be denoted as the anomaly series or simply
anomalies.

6.1.1 Stochastic Modelling

The autocorrelation series estimated from the anomalies (Figure 6.3, left) reveals signifi-
cant autocorrelations. These correlations are not falling inside the 95% confidence interval
for white noise in the first one and a half years.

Additionally to estimating the ACF, we perform a first and second order detrended
fluctuation analysis, DFA1 and DFA2 (cf. Section 2.3.3). Such an analysis has been carried
out for the same record also by Koscielny-Bunde et al. (2006). We compare the result in
a double-logarithmic plot to the asymptotic slopes of a SRD process (H = 0.5) or a LRD
process with Hurst coefficient H = 0.75, corresponding to a fractional difference param-
eter d = 0.25 (Figure 6.3, right). For large scales, the plot rather suggests compatibility
with the latter. As discussed in Appendix A.2 we cannot infer an underlying LRD process
on the basis of DFA. Thus we use the FARIMA modelling approach in the following to
achieve a description of the ACF.

The set of processes we start with contains FARIMA[p, d, q] models with 0 ≤ p ≤ 8
and 0 ≤ q ≤ min(p, 7) and additionally ARMA[p, q] with orders 1 ≤ p ≤ 8 and 0 ≤ q ≤
min(p, 7). Higher orders p and q are numerically not feasible. We estimate parameters
for these models using the Whittle estimator (Section 2.3.2) and reduce the set of models
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Figure 6.3: Autocorrelation series for the Danube run-off anomalies. The dashed red lines mark
the asymptotic 95% confidence intervals for white noise (left). The right panel shows the DFA1
(black) and DFA2 (red) fluctuation functions in a double-logarithmic representation. The two
solid lines mark the asymptotic slopes of a LRD (H = 0.75) and a SRD (H = 0.5) process.

according to the three steps outlined in Section 5.1.1: the goodness-of-fit test, the HIC-
based model selection and, finally, the likelihood-ratio-based model selection.

Goodness-of-Fit

Initially, we reduce the model canon using the goodness-of-fit test (3.3). On a 5%-level of
significance, we can reject the following processes:

• FARIMA[0, d, 0] and

• ARMA[p, q] with (p, q) ∈ {(p′, q′) ∈ N × N0 | (1 ≤ p′ ≤ 4, q′), (5 ≤ p′ ≤ 8, q′ =
0), (6 ≤ p′ ≤ 8, q′ = 1), (p′ = 8, q′ = 2)}.

HIC-Based Model Selection

The remaining models are compared by means of the Hannan-Quinn information crite-
rion (HIC, Section 3.2.2), see Figure 6.4. The models with lowest HIC we retain are the
ARMA[p, q] (green) with (p, q) ∈ {(7, 6); (5, 2); (7, 5); (8, 5); (8, 6); (8, 6); (5, 3)}. Among
the FARIMA[p, d, q] models (red), we retain orders (p, q) ∈ {(7, 6); (5, 2); (7, 5); (3, 1);
(2, 2); (2, 1); (8, 5); (8, 6)}.

Likelihood-Ratio-Based Model Selection

Among the models remaining, we use the likelihood-ratio test on a 5%-level of signifi-
cance to further reduce the set of models. The p-values corresponding to the ARMA[p, q]
and FARIMA[p, d, q] class are given in the left and right part of Table 6.1, respectively.

From the first two lines in the left table, we see that ARMA[8, 6] finds an admissible
simplification in ARMA[7, 6] and ARMA[8, 5]. Both cannot be simplified by ARMA[7, 5]
(lines 3 and 4). ARMA[5, 3] finds an admissible simplification in ARMA[5, 2] (line 5),
but the latter cannot be used as a simplification of neither ARMA[7, 6] nor ARMA[8, 5].
We use the bootstrap-based model selection to discriminate between the two non-nested
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Figure 6.4: HIC for various ARMA[p, q] (green) and FARIMA[p, d, q] (red) models obtained for
the Danube run-off anomalies. The model orders [p, q] are plotted along the abscissa.

ARMA[p, q]
Model f Model g p-val

1 [8, 6] [8, 5] 0.868
2 [8, 6] [7, 6] 0.293
3 [8, 5] [7, 5] 0.003
4 [7, 6] [7, 5] 0.007
5 [5, 3] [5, 2] 0.635
6 [7, 6] [5, 2] <0.001
7 [8, 5] [5, 2] <0.001

FARIMA[p, d, q]
Model f Model g p-val

1 [8, d, 6] [8, d, 5] 0.818
2 [8, d, 6] [7, d, 6] 0.288
3 [8, d, 5] [7, d, 5] 0.004
4 [7, d, 6] [7, d, 5] 0.007
5 [5, d, 3] [5, d, 2] 0.638
6 [7, d, 6] [5, d, 2] <0.001
7 [8, d, 5] [5, d, 2] <0.001
8 [7, d, 6] [3, d, 1] <0.001
9 [8, d, 5] [3, d, 1] <0.001

10 [7, d, 6] [2, d, 2] <0.001
11 [8, d, 5] [2, d, 2] <0.001

Table 6.1: p-values for a likelihood-ratio test of model g being an admissible simplification of
model f .



76 Modelling Run-off Records

−4 −2 0 2 4

0.
0

0.
4

0.
8

ARMA[8,5](green), ARMA[7,6](red)

lr

E
C

D
F

Figure 6.5: Bootstrap based model selection (500 runs) for ARMA[8, 5] against ARMA[7, 6]. The
vertical line mark the log-likelihood-ratio obtained for the observed series.

models (Figure 6.5). The distributions show a large overlap indicating, that both models
perform equally well. We thus cannot discriminate the two models on the basis of the
simulation-based model selection.

With the first 7 lines of the right table, we can follow the line of argument made for
the ARMA[p, q] models and find FARIMA[7, d, 6] and FARIMA[8, d, 5] as suitable LRD
models. Those two models cannot be simplified by neither FARIMA[3, d, 1] (lines 8 and
9) nor FARIMA[2, d, 2] (lines 10 and 11) and thus not by FARIMA[2, d, 1]. We thus keep
FARIMA[8, d, 5] and FARIMA[7, d, 6] as the most suitable LRD models.

The likelihood-ratio test for the two ARMA[p, q] models being admissible simplifi-
cations of the corresponding FARIMA[p, d, q] yield p-values close to one. We can thus
reduce the set of models to ARMA[7, 6] and ARMA[8, 5] and conclude that a SRD process
is most suitable to describe the ACF of the run-off anomalies.

Parameter Estimates and Spectral Densities

Table 6.2 gives the corresponding parameter values for the two ARMA[p, q] models re-
maining. The difference in the parameter estimate is largest for a1. For the ARMA[8, 5],
we find a1 consistent with zero within one standard deviation. For ARMA[7, 6], it is the
MA parameter b6 which is not significantly different from zero. From the reciprocal roots
of the autoregressive polynomial, we infer two pseudo-periodic components for each
model (cf. Section 2.2.1). In both cases, we find frequencies (given in 1/days) close to
f = 2/7 ≈ 0.285 and f = 3/7 ≈ 0.425, which are related to a weekly cycle1.

Figure 6.6 compares the periodogram of the run-off anomalies and the spectral den-
sities of the ARMA[7, 6] (red) and ARMA[8, 5] model (green). For frequencies f = 2/7
and f = 3/7 one can observe the peaks in the spectral densities of the models, which
are related to the two cyclic components (enlarge part in the right panel). Because these
processes involve higher order autoregressive components modelling of a weekly peri-
odicity is possible. A brief discussion on weekly cycles in river run-off in given in Section
6.2.3.

1Because the weekly cycle in general cannot be expected to be of sinusoidal form, higher harmonic com-
ponents with frequencies f = k/(7 days) are needed.
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ARMA[7, 6] ARMA[8, 5]
a1 0.135(0.079) 0.022(0.068)
a2 0.633(0.088) 0.706(0.066)
a3 0.572(0.062) 0.617(0.049)
a4 0.453(0.066) 0.505(0.060)
a5 −0.431(0.060) −0.449(0.044)
a6 −0.605(0.067) −0.638(0.054)
a7 0.232(0.027) 0.215(0.014)
a8 – 0.011(0.007)
b1 1.070(0.079) 1.184(0.067)
b2 0.383(0.050) 0.446(0.042)
b3 −0.381(0.033) −0.381(0.033)
b4 −1.030(0.048) −1.093(0.046)
b5 −0.707(0.068) −0.769(0.052)
b6 0.025(0.024) –

p-val 0.204 0.207

Table 6.2: Maximum-likelihood parameter estimates, standard deviation and p-value for the
goodness-of-fit test for the ARMA[7, 6] and ARMA[8, 5] processes obtained from the Danube run-
off anomalies.
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Figure 6.6: Periodogram of the Danube run-off anomalies (black) and spectral density of the
ARMA[7, 6] model (red) and ARMA[8, 5] (green). The vertical blue lines indicate the frequen-
cies corresponding to a weekly cycle: f = 1/7, f = 2/7 and f = 3/7. Note, that the green line is
basically covered by the red one. The right plot shows only frequencies 1/7 . f . 3/7.
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6.1.2 Detecting Long-Range Dependence

Irrespective of the choice between the two ARMA[p, q] processes, we can infer the under-
lying process as being SRD. This contradicts the impression obtained from the DFA result
in Figure 6.3 and the results from Koscielny-Bunde et al. (2006). They report a Hurst ex-
ponent of H = 0.82 (corresponding to d = 0.32) and thus a LRD process underlying the
Danube run-off anomalies at Achleiten obtained using DFA.

6.2 Große Vils Daily Mean Run-off at Vilsbiburg

The gauge Vilsbiburg at the river Große Vils is located in the Danube River catchment in
the south-east of Germany about 80 km north-east of Munich. The total catchment area of
this gauge extends to 320 km2 and is thus about 240 times smaller than the Danube catch-
ment drained at Achleiten. The daily mean run-off has been recorded from 01/11/1939
to 07/01/2002 and thus comprises N = 22 714 days or approximately Nyears = 62 years.
The run-off averaged over the whole observation period is about 2.67 m3/s. Figure 6.7
shows the daily observations at the gauge as time series (left) and as histogram (right).
Again, the preprocessing described in Appendix D.3.3 is used prior to modelling. Be-
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Figure 6.7: Daily run-off of the river Große Vils at the gauge Vilsbiburg as time series (left) and

histogram for Q < 10 m3/s (right).

cause we subtract a trend during the preprocessing, we refer to the resulting data set as
residual series.

6.2.1 Stochastic Modelling

The estimated autocorrelation series (Figure 6.8) reveals significant autocorrelations not
falling inside the 95% confidence interval for white noise in the first two years.

For a parametric description of the autocorrelation function, we start with a set of
FARIMA[p, d, q] processes with 0 ≤ p ≤ 8 and 0 ≤ q ≤ min(p, 7) and additionally
ARMA[p, q] with orders 1 ≤ p ≤ 8 and 0 ≤ q ≤ min(p, 7). Larger model orders are
numerically not practical. The reduction of this set of models is carried out in the usual
way (Section 5.1.1): the goodness-of-fit test, the HIC-based model selection and, finally,
the likelihood-ratio-based model selection.
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Figure 6.8: Autocorrelation series for the Große Vils run-off residuals. The dashed red lines mark
the asymptotic 95% confidence intervals pertaining to white noise.

Goodness-of-Fit

In a first step we reduce the model canon using the goodness-of-test with a 1%-level of
significance. A 5%-level would lead to a rejection of all models in the set. On the basis of
this test, we can reject the following processes:

• FARIMA[p, d, q] with (p, q) ∈ {(1, 0), (2, 0), (3, 1), (4, 4), (5, 3)} and

• all ARMA[p, q] besides orders (p, q) ∈ {(7, 6), (8, 2), (8, 4), (8, 6)}.

HIC-Based Model Selection

Figure 6.9 compares the HIC for all ARMA[p, q] (green) and FARIMA[p, d, q] (red) pro-
cesses in the set. We restrict the further analysis, however, to those models passing the
goodness-of-fit test on a 1%-level. The four ARMA[p, q] processes (green) which pass
the goodness-of-fit test are marked with an outer green circle. Since these are only four
models, we consider all of them in the following.

The FARIMA models with lowest HIC which we retain for further analysis are cer-
tainly FARIMA[3, d, 0] and in addition the model orders [4, d, 0], [2, d, 1],[4, d, 1], [1, d, 1]
and [2, d, 2].

Likelihood-Ratio-Based Model Selection

Among the four ARMA[p, q] and six FARIMA[p, d, q] models with the lowest HIC, we
perform the likelihood-ratio test or, if non-nested, a simulation-based model selection to
obtain the most suitable SRD and LRD model. The p-values for the log-likelihood-ratio
test are summarised in Table 6.3. We test ARMA[7, 6] and ARMA[8, 4] for being admis-
sible simplifications of ARMA[8, 6]. In both cases we cannot reject this null hypothesis
(left table, lines 1 and 2). Furthermore, ARMA[8, 2] is an admissible simplification of
ARMA[8, 4] (line 3). We thus remain with ARMA[7, 6] and ARMA[8, 2]. These models
are non-nested and are compared using the simulation-based approach (Figure 6.10, left).
The distribution of the log-likelihood-ratios obtained for these models show a large over-
lap. We can, however, clearly reject the ARMA[8, 2] as the more suitable model compared
to the ARMA[7, 6]. Thus the latter remains as the most suitable SRD model.
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Figure 6.9: HIC for various ARMA[p, q] (green) and FARIMA[p, d, q] (red) models fitted to the
Große Vils run-off anomalies. The model orders [p, q] are plotted along the abscissa. The green
circles mark the ARMA[p, q] processes which pass the goodness-of-fit test.

ARMA[p, q]
Model f Model g p-val

1 [8, 6] [8, 4] 0.433
2 [8, 6] [7, 6] 1
3 [8, 4] [8, 2] 1

FARIMA[p, d, q]
Model f Model g p-val

1 [4, d, 1] [4, d, 0] 0.056
2 [4, d, 1] [2, d, 1] 0.013
3 [4, d, 1] [1, d, 1] 0.003
4 [4, d, 0] [3, d, 0] 0.448
5 [2, d, 2] [2, d, 1] 0.084
6 [2, d, 1] [1, d, 1] 0.021

Table 6.3: p-values for a likelihood-ratio test of model g being an admissible simplification of
model f .
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Figure 6.10: Bootstrap based model selection (200 runs) for ARMA[7, 6] against ARMA[8, 2] (left)
and FARIMA[3, d, 0] against FARIMA[2, d, 1] (right). The vertical line mark the log-likelihood-
ratio obtained for the observed series.

We further test FARIMA[4, d, 0], FARIMA[2, d, 1] and FARIMA[1, d, 1] for being ad-
missible simplifications of FARIMA[4, d, 1] (right table, lines 1 - 3). This leaves us with
FARIMA[4, d, 0] as the only admissible simplification. This model can be further sim-
plified by FARIMA[3, d, 0] (line 4). FARIMA[2, d, 2] finds an admissible simplification in
FARIMA[2, d, 1] (line 5) which cannot be further simplified by FARIMA[1, d, 1] (line 6).
Thus, we remain with the two non-nested models, FARIMA[3, d, 0] and FARIMA[2, d, 1],
which are compared using the simulation-based approach (Figure 5.4, right). The distri-
butions of likelihood-ratios obtained for the two models largely overlap but we can reject
the FARIMA[2, d, 1] in favour of the FARIMA[3, d, 0]. The latter is thus the most suitable
LRD model found.

Parameter Estimates and Spectral Densities

The parameter estimates and asymptotic standard deviation for the ARMA[7, 6] and
FARIMA[3, d, 0] models are listed in Tables 6.4. Five parameter estimates obtained for
the ARMA[7, 6] process are compatible with zero within one standard deviation. This
indicates an over-parameterisation of this process. The largest relaxation has a charac-
teristic time scale of about 1 year. Additionally, a pseudo-periodic component with a
frequency close to f = 2/7 can be identified, indicating again that this model compen-
sates for the remnants of the weekly cyle. For the FARIMA[3, d, 0] processes, we find a

fractional difference parameter significantly different from zero and with d̂ ≈ 0.44, this
LRD parameter is in the upper third of the admissible range for stationary processes.

Figure 6.11 shows the ARMA[7, 6] and the FARIMA[3, d, 0] spectral densities together
with the periodogram of the Große Vils run-off residuals. The divergence between SRD
and LRD manifests in the low frequency domain f < 5 · 10−4 (periods larger 54 years) and
affects only about ten points in the periodogram. For frequencies 5 · 10−4

< f < 5 · 10−2

the ARMA[7, 6] spectral density closely follows the algebraic decay of the FARIMA[3, d, 0]
model. A striking difference is in the vicinity of the weekly periodicities (Figure 6.11,
right). Similar to the Danube record (Section 6.1.1), here the ARMA[7, 6] model shows as
well a peak close to f = 2/7. This peak cannot be reproduced by the FARIMA[3, d, 0] and
the remnants of the weekly cycle are not accounted for by this model. In the following,
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ARMA[7, 6] FARIMA[3, d, 0]
d - 0.439(0.016)
a1 1.219(0.295) 0.415(0.017)
a2 0.092(0.414) −0.043(0.007)
a3 0.048(0.210) 0.028(0.008)
a4 0.123(0.205) -
a5 −0.912(0.187) -
a6 0.408(0.146) -
a7 0.022(0.100) -
a8 - -
b1 −0.364(0.295) -
b2 −0.506(0.186) -
b3 −0.382(0.226) -
b4 −0.413(0.180) -
b5 0.574(0.069) -
b6 0.096(0.137) -

p-val 0.021 0.014

Table 6.4: Maximum likelihood parameter estimates, standard deviation and the p-value of the
goodness-of-fit test for the ARMA[7, 6] and FARIMA[3, d, 0] processes obtained from the Große
Vils run-off residuals.
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Figure 6.11: Spectral representation of the SRD (ARMA[7, 6], green) and LRD (FARIMA[3, d, 0],
red) model together with the periodogram of the Große Vils run-off residuals. The vertical dotted
lines mark the frequencies f = {1/7, 2/7, 3/7}. The right plot shows only frequencies 1/7 < f <

3/7.
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we try to discriminate these two remaining models.

6.2.2 Detecting Long-Range Dependence

As the most suitable SRD model, we identify ARMA[7, 6]; as the most suitable LRD model
the FARIMA[3, d, 0] process. Formulating the detection of LRD as a model selection prob-
lem, we aim to discriminate between the two alternatives and use the simulation-based
model selection (Figure 6.12). The observed likelihood-ratio can be found in the 5% criti-
cal region of the distribution originating from the FARIMA[3, d, 0]. The ARMA[7, 6] yields
a very broad distribution of likelihood-ratio and the observed value is not near to the
critical region. According to this result we are tempted to consider the ARMA[7, 6] as the
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Figure 6.12: Simulation-based model selection (200 runs) for FARIMA[3, d, 0] against ARMA[7, 6].
The vertical line marks the likelihood-ratio obtained for the observed series.

most suitable model for the Große Vils run-off anomalies. Having in mind, that five of the
parameter estimates are compatible with zero within one standard deviation, we might
suspect that this model is over-parametrised. It is furthermore difficult to decide whether
the superior fit of the ARMA[7, 6] is a result of the difference in the range of the weekly
periodicities (Figure 6.11) or because the record is rather compatible with a SRD model
than a LRD model. Consequently, the result of the simulation-based model selection has
to be interpreted with care in this case. discuss the problems resulting from the weekly
cycle in the subsequent section.

6.2.3 Weekly Cycles in River Run-Off

In the periodogram of the daily run-off anomalies, obtained after subtraction of a mean
annual cycle, we can observe an increased power at frequencies related to a weekly cycle.
Being of anthropogenic origin, i.e. an influence resulting from adding and subtracting wa-
ter according to human needs, this periodic component is not estimated and subtracted
as easily as the annual one. As a consequences, we can still observe power at the weekly
frequencies which influence the stochastic modelling. Models with a complexity (that
allow for enhanced spectral power at the weekly frequencies, i.e. a pseudo-periodic com-
ponent, are then preferred in the model selection. This might be problematic with respect
to our modelling objectives (the detection of LRD).
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So far, we have been mainly interested in the type of decay of the power at low
frequencies. With the periodic components at a weekly scale, a second characteristic
emerges, which we ask to be adequately represented by the model. A model capable of
doing that might outperform one which adequately describes the decay at low frequen-
cies but not not the weekly periodic components. This illustrates a typical problem of
full-parametric modelling.

A simple alternative to avoid the difficulties introduced by a weekly periodic compo-
nent is the investigation of monthly mean run-off, exemplified for a series of the Wisla
River in Poland.

6.3 Wisla Monthly Mean Run-off at Tczew

The gauge Tczew at the Wisla (Vistula) River is located in the north of Poland, south
of Gdansk. The total catchment area of this gauge extends to 194 376 km2 and is about
2.5 times larger than the area drained at Achleiten. The monthly mean run-off has been
recorded from November 1900 to October 1994 and thus comprises Nyears = 94 years or
N = 1 128 months. Averaging over the whole observation period yields a mean run-off of
about 1 042 m3/s. Figure 6.13 shows the observed Wisla run-off as a time series (left) and
as a histogram (right). For monthly mean run-off, the only periodic cycle to be removed
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Figure 6.13: Monthly mean run-off for the Wisla River at the gauge Tczew as time series from the

period 1901 to 1950 (left) and histogram (full record from 1900 to 1994) for Q < 4 000 m3/s (right).

is the annual one. Further preprocessing contains the Box-Cox transformation and the
subtraction of a possible trend (Appendix D.3.4). The resulting data set is referred to as
the residual series.

6.3.1 Stochastic Modelling

The autocorrelation series estimated from the residual record (Figure 6.14), reveals signif-
icant correlations not falling within the 95% confidence interval for white noise for lags
smaller than 10 months.

To achieve a parametric description of the ACF, we start with a set of models con-
taining FARIMA[p, d, q] processes with orders 0 ≤ p ≤ 7 and 0 ≤ q ≤ min(p, 6) and
additionally ARMA[p, q] with orders 1 ≤ p ≤ 7 and 0 ≤ q ≤ min(p, 6), but the fractional
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Figure 6.14: Autocorrelation sequence for the Wisla run-off residuals. The dashed red lines mark
the asymptotic 95% confidence intervals pertaining to white noise.

difference parameter restricted to d = 0. Larger orders are not feasible due to numer-
ical constrains. We estimate parameters for these models using the Whittle estimator
(Section 2.3.2) and reduce the set of models in the same way as in the previous analyses
(Section 5.1.1): the goodness-of-fit test, the HIC-based model selection and, finally, the
likelihood-ratio-based model selection.

Goodness-of-Fit

Initially, we use the goodness-of-fit test (3.3) with a 5%-level of significance to reduce the
set of models. On the basis of this test we can reject the following processes:

• None of the FARIMA[p, d, q] but

• ARMA[p, q] with (p, q) ∈ {(p′, q′) ∈ N × N0 | (5 ≤ p′ ≤ 7, q′ = 5), (6 ≤ p′ ≤
7, q′ = 6), (p′ = 7, q′ = 3), (p′ = 7, q′ = 4)}.

HIC-Based Model Selection

The remaining models are compared by means of the Hannan-Quinn information crite-
rion. Figure 6.15 shows the HIC for all ARMA[p, q] (green) and FARIMA[p, d, q] processes
(red) in the set. We consider, however, only those passing the goodness-of-fit test. For
orders p < 3 the FARIMA[p, d, q] models show a smaller HIC than their ARMA counter-
parts. This changes for p ≥ 3, indicating that for more complex models, in terms of the
AR order p, the fractional difference component is not needed. The lowest HIC is found
for the FARIMA[1, d, 0] process. Within the fractional family of models it is followed by
FARIMA[1, d, 1] and FARIMA[2, d, 0]. For the ARMA family, the smallest HIC is attained
by the ARMA[1, 0] followed by the orders [4, 0], [3, 1], [4, 1], [5, 0] and [3, 2].

Likelihood-Ratio-Based Model Selection

Among the models remaining, we use the likelihood-ratio test on a 5%-level of signifi-
cance to further reduce the set of models. The p-values corresponding to the ARMA[p, q]
and FARIMA[p, d, q] class are given in the left and right part of Table 6.5, respectively.
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Figure 6.15: HIC for various ARMA[p, q] (green) and FARIMA[p, d, q] (red) models fitted to Wisla
run-off residuals. The model orders [p, q] are plotted along the abscissa.

Within the ARMA[p, q] class (left Table), we find the ARMA[4, 0] as an admissible simpli-
fication of the ARMA[5, 0] (line 1) and also of the ARMA[4, 1] (line 3). The ARMA[4, 1]
cannot be simplified by ARMA[3, 1] (line 4). The latter is, instead, an admissible sim-
plification of ARMA[3, 2] (line 5). The remaining ARMA[4, 0] and ARMA[3, 1] cannot be
further simplified by ARMA[1, 0] (line 2 and 6). Those two models are compared using
the simulation-based model selection (Figure 6.16). The two distributions show a large
overlap and we cannot discriminate the models. We thus retain both as suitable SRD
models.

Among the three FARIMA[p, d, q] models, we find the FARIMA[1, d, 0] as an admis-
sible simplification of the two alternatives, the FARIMA[2, d, 0] and the FARIMA[1, d, 1].
We thus retain it as the most suitable LRD model.

ARMA[p, q]
Model f Model g p-val

1 [5, 0] [4, 0] 0.189
2 [4, 0] [1, 0] 0.010
3 [4, 1] [4, 0] 0.118
4 [4, 1] [3, 1] 0.049
5 [3, 2] [3, 1] 0.104
6 [3, 1] [1, 0] 0.019

FARIMA[p, d, q]
Model f Model g p-val

1 [2, d, 0] [1, d, 0] 0.411
2 [1, d, 1] [1, d, 0] 0.434

Table 6.5: p-values for a likelihood-ratio test of model g being an admissible simplification of
model f .
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Figure 6.16: Simulation-based model selection (200 runs) for ARMA[4, 0] (red) against ARMA[3, 1]
(green). The vertical line mark the log-likelihood-ratio obtained for the observed series.

Parameter Estimates and Spectral Densities

Table 6.4 gives the parameter estimates and corresponding standard deviation for the
ARMA[4, 0], the ARMA[3, 1] and FARIMA[1, d, 0] processes. The estimates for the param-

ARMA[4, 0] ARMA[3, 1] FARIMA[1, d, 0]
d - - 0.161(0.058)
a1 0.571(0.030) 1.266(0.166) 0.401(0.068)
a2 −0.016(0.034) −0.431(0.097) -
a3 −0.014(0.034) 0.064(0.034) -
a4 0.092(0.030) - -
b1 - −0.698(0.165) -

p-val 0.646 0.696 0.571

Table 6.6: Maximum-likelihood parameter estimates, standard deviation and goodness-of-fit p-
value for the ARMA[4, 0], ARMA[3, 1] and FARIMA[1, d, 0] processes obtained from the Wisla
run-off residuals.

eter a2 and a3 for the ARMA[4, 0] model (Table 6.4) are consistent with zero within one
standard deviation. This indicates that the model might be over-parametrised. From the
reciprocal roots of the autoregressive polynomial (2.29) (Section 2.2.1) we find a pseudo-
periodic component with a prevailling period of about five months ( f ≈ 0.21). This
might be a result of an increased spectral power in the frequency range close to the semi-
annual cycle ( f = 0.17). The largest characteristic time scale of the relaxations is about
3.5 months. For the ARMA[3, 1] we find a pseudo-periodic component with a period of
about nine months ( f ≈ 0.11). The largest characteristic time scale of this model is about
six months. For the FARIMA[1, d, 0] model, we find the estimate for the fractional dif-
ference parameter d̂ = 0.161 significantly different from zero but small compared to the
LRD model for the Große Vils run-off residuals.

Figure 6.17 shows the spectral density of the three competing models (ARMA[4, 0],
ARMA[3, 1] and FARIMA[1, d, 0] with the periodogram of the record in a double-logarith-
mic plot. The oscillating component manifests as a broad peak at f ≈ 0.2 in the spectral
density of the ARMA[4, 0] model. This oscillation with a period of about 5 months is not
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Figure 6.17: ARMA[3, 1], ARMA[4, 0] and FARIMA[1, d, 0] spectral density with the periodogram
of the Wisla run-off residuals in a double logarithmic plot. The blue dashed lines mark the annual
and semi-annual frequency.

reproduced by the other two models. The pseudo-periodic component of the ARMA[3, 1]
model, instead, has a predominant frequency of f ≈ 0.11 (period of approximately nine
months). This feature can hardly be identified in the plot. Whereas there is no physical
argument for the nine month periodicity, an increased spectral power in a semi-anual
range is plausible. It might be either due to a remnant of the annual cycle or due to time
periods of increased run-off being separated in time by about six months, e.g., snow melt
in spring and increased rain-fall in autumn.

6.3.2 Detecting Long-Range Dependence

The remaining task is to discriminate the FARIMA[1, d, 0] from the ARMA[3, 1] and the
ARMA[4, 0], respectively. Comparison is carried out using the simulation-based model
selection (Figure 6.18). In both cases, the overlap of the distributions is large and we find
the observed value close to the critical value of the FARIMA[1, d, 0] process. However,
only in the comparison to the ARMA[4, 0], we find it inside the critical region. Thus,
strickly speaking, only if we decide to choose the ARMA[4, 0] as the most suitable SRD
model, we can reject the FARIMA[1, d, 0] and thus an underlying LRD process. As an ad-
ditional argument, we might consider that two of the four parameters of the ARMA[4, 0]
are compatible with zero within one standard deviation (Table 6.6). This might be taken
as indication for an over-parametrisation of the ARMA[4, 0]. On the basis of this argu-
ment, we can decide to prefer the ARMA[3, 1] as the most suitable SRD model. This
decision further implies that we cannot discriminate between an underlying SRD and
LRD process because ARMA[3, 1] and FARIMA[1, d, 0] are not distinguishable with the
simulation-based model selection at a 5%-level of significance.
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Figure 6.18: Simulation-based model selection (200 runs) for FARIMA[1, d, 0] (green) against
ARMA[4, 0] (red) (left plot) and against ARMA[3, 1] (red) (right plot). The vertical lines mark
the likelihood-ratio obtained for the observed series.

6.4 Summary

We investigated run-off records from three different rivers and modelled their ACF with
processes from the FARIMA[p, d, q] class. Prior to modelling, a Box-Cox transformation
was applied and periodic components, such as the annual and week cycle, were sub-
tracted as well as low order polynomial trends. A description of the resulting run-off
residual (or anomaly) series was achieved using various ARMA[p, q] and FARIMA[p, d, q]
processes. The selection of the most suitable model was carried out sequentially by first
eliminating those models which do not pass a goodness-of-fit test, second by reducing the
set of models according to the Hannan-Quinn information criterion and finally by using
the likelihood-ratio test or the simulation-based model selection for choosing between
nested or non-nested models, respectively.

Further, we focused on the detection of long-range dependence, i.e. inferring an un-
derlying LRD process from the data. For the gauge Achleiten, the result obtained with
the parametric modelling approach is unambiguous: the most suitable model found is an
SRD process, contrary to earlier claims based on DFA (Koscielny-Bunde et al., 2006). For
the other two records, Große Vils at the gauge Vilsbiburg and Wisla at the gauge Tczew,
the situation is ambivalent. For the Große Vils we find an ARMA[7, 6] process as the
most suitable SRD model and the most suitable LRD model is a FARIMA[3, d, 0]. Using
the simulation-based model selection, we find the ARMA[7, 6] as more suitable to repre-
sent the Große Vils run-off residuals. However, this process is able to describe spectral
power at frequencies related to a weekly cycle. Thus its superiority might be due to an
inadequate removal of this periodic component rather than due to the underlying process
being SRD. The problem encountered for the Wisla record is different because data with
a monthly resolution has been used and the weekly periodic component do not interfere.
Here, the competing processes, ARMA[3, 1] and FARIMA[1, d, 0], are simply not discrim-
inable with the simulation-based model selection at the chosen level of significance

Nevertheless, we can conclude from this analysis that LRD is not an ubiquitous and
unambiguous phenomenon in river run-off records. With the Achleiten record, we fur-
ther demonstrated that using a DFA log-log plot might yield deceptive results, i.e. sug-
gesting LRD where SRD processes are more suitable to describe the observed record
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(cf. also Appendices A.2 and A.3 and (Maraun, Rust, and Timmer, 2004; Metzler, 2003).
A further aspect that emerged during this study is the influence of a weekly periodic

component. Due to its anthropogenic nature it is not as easily estimated and subtracted
as the annual cycle. The periodicity is fixed but the amplitude might vary in an irregular
way. Remnants of the weekly cycle can be described with autoregressive components of
higher order. This feature can bias the detection of LRD.

Long-range dependence in run-off records is a characteristic which needs to be ac-
counted for in trend tests (e.g., Kallache et al. (2005) and Craigmile et al. (2004)), struc-
tural breaks (e.g., Krämer and Sibbertsen, 2002), and also for determining confidence
intervals for statistics obtained from the record (e.g., Koutsoyiannis, 2003). Those statis-
tics can be the mean run-off or certain quantiles, such as the 0.99-quantile of the annual
maxima records. The latter is denoted as the 100-year return level and is an important
quantity for setting design values for dams, dykes and other water related constructions.
In the following chapter we propose a bootstrap-based strategy to derive confidence in-
tervals for these return level estimates. This strategy is based on the models found for the
daily or monthly mean run-off records.



Chapter 7

Bootstrap Based Confidence Intervals
for Return Level Estimates

The need for a further development of concepts and methods in risk assessment with re-
spect to flooding has been expressed, among others, by Merz (2006): “Upcoming damage
due to natural disasters can be seen as a consequence of todays decisions. In this respect,
and taking rising damage due to natural disasters during the last decades into account
(Münchner Rück, 2003), the contemporary methods for risk management are to be vali-
dated and further developed. This holds also for the risk of flooding. Globally, about 196
million people are affected by flooding; only between 1980 and 2000 about 170 000 people
died (UNDP, 2004). Approximately half the losses due to natural disasters can be traced
back to floodings (Kron and Tumerer, 2002).1” A fundamental building block in flood
risk assessment is the determination of water levels exceeded on average once in a spec-
ified period. The estimation of these so-called return levels and their uncertainty plays
an important role in hydrological engineering and decision making. Particularly the 100-
year return level is frequently used as the basis for setting design values for hydraulic
structures, such as bridges or flood protection buildings like dams or dykes. Because
those constructions protect facilities of substantial value or are by themselves costly ob-
jects, it is certainly of considerable importance to have appropriate concepts of estimation
and uncertainty assessment at hand. Otherwise severe damages, misallocation of public
funds, or large claims against insurance companies might be possible.

In situations where common statistical approaches might not be applicable as usual,
e.g., dependent records, specification of uncertainty bounds for a return level estimate
cannot be made on the basis of the mathematically founded asymptotic theory for IID
observations. An unjustified assumption of independent observations implies an under-
estimation of this uncertainty (e.g., Beran, 1994; Coles and Dixon, 1999; Koutsoyiannis,
2003). In the following, we focus on an improvement of uncertainty assessment of com-
mon statistical methods used for return level estimation. The strategy we suggest here is
formulated within the framework of the block maxima approach (Appendix C.1) and is
based on a bootstrap strategy. In Appendix C we suggest four different ways of gener-
ating bootstrap ensembles which can be used to evaluate the variability of a return level
estimate. In a validation study, it turns out that one of these approaches performs reason-
ably well. It is studied in more detail regarding the variation of ensemble size ibidem.

The proposed concept explicitly takes autocorrelation into account and leads to an
acceptable estimation of confidence intervals. It is based on a semi-parametric bootstrap

1This paragraph was translated from German.
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approach involving a model for the ACF and a resampling strategy of the maxima se-
ries. The approach is briefly outlined in the following and exemplified with a case study:
we estimate a 100-year return level with confidence intervals for the daily run-off series
measured at the gauge Vilsbiburg at the river Große Vils in the Danube River catchment.

7.1 Sketch of the Bootstrap Approach

We initially estimate a return level from the annual maxima of the record under inves-
tigation. This is achieved by fitting a general extreme value distribution (GEV) to the
maxima series (Appendix C.1). The resulting ML estimates of the GEV parameters can
then be used to calculate a m-year return level (Appendix C.1.3). In the following, we
focus on the estimation of a 100-year return level (m = 100). The likelihood approach
allows to derive asymptotic confidence intervals for this estimate under the assumption
of independent observations (Appendix C.1.3). We compare these asymptotic confidence
intervals to the uncertainty bounds obtained using the semi-parametric bootstrap ap-
proach denoted as bootstrapsp, which is outlined in the following.

Sampling from a dependent process yields less information per observation regard-
ing the marginal distribution than sampling from an independent process. This follows
directly from the definition of dependence: given an observation we can derive from the
dependence structure what the following observation is likely to be (Appendix C.2.1).
Consider now the observed maxima series as a sample of a process with ACF ρ(τ) and a
marginal distribution function F. If we knew this process, we could obtain many samples
of equal length, estimate a 100-year return level from each sample, and study the variabil-
ity of these estimate. This would lead to a distribution of return level estimates under the
given conditions and thus opens up the possibility to obtain confidence intervals. Since
we neither know the ACF nor the marginal distribution function, we replace both with
their estimates. These are used to generate a long series from which samples of appropri-
ate length are drawn. The distribution of return level estimates, which are obtained from
each of the samples, is then used to quantify the variability of the return level estimator
in terms of confidence intervals.

Once we have models for the ACF and the distribution of the maxima series (length
Nmax), we can generate the bootstrap ensemble (ensemble size Nens) of artificial data sets
according to the semi-parametric strategy. It is described in detail in Appendix C.2.5 and
briefly sketched of the following:

1. Generate a long realisation with length N = NensNmax from the model describing
the ACF (FARIMA[p, d, q]).

2. Generate a series of same length by sampling with replacement from the empirical
maxima series. If the original series was transformed prior to modelling its ACF,
transform also the resampled series with the same transformation, e.g., a Box-Cox
transformation (Appendix D.2.2) with the same parameter λ as obtained for the
original series.

3. Use the iterative amplitude adjusted Fourier transform (IAAFT, Appendix C.2.4) to
combine the two realisations.

4. Restore the original scale of measurement using the inverse Box-Cox transforma-
tion.

5. Split the long series in Nens records of length Nmax.
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6. Estimate the 100-year return level (or 0.99 quantile) from each ensemble member.

7. Utilise the distribution of return level estimates to estimate a confidence interval.

In the following a case study exemplifies this strategy.

7.2 Case Study: Vilsbiburg/Große Vils

Consider the run-off record from the gauge Vilsbiburg at the river Große Vils. We studied
this series already with respect to its ACF in Section 6.2. Here, we initially perform an
extreme value analysis and model in a second step the ACF of the annual maxima series.
Finally, we obtain and compare results from the bootstrapsp for two different model as-
sumptions made for the ACF of the daily record: the most suitable SRD and LRD model
found in Section 6.2.

7.2.1 Modelling the Maxima Distribution

In order to obtain an estimate for the 100-year return level, we carry out an extreme
value analysis as described in Appendix C.1.3. This means to extract the annual maxima
series and use ML estimation to determine the parameters and the asymptotic standard
deviation of a GEV distribution. In order to test whether the estimated shape parameter

ξ̂ = 0.04 is significantly different from zero, we compare the result to a Gumbel fit by
means of a likelihood-ratio test (Coles, 2001). With a p-value of 0.74 we cannot reject
on any reasonable level the Gumbel distribution being a suitable model. The associated
quantile and return level plots are shown in Figure 7.1 together with their 95% asymptotic
confidence limits based on the assumption of independent observations.

According to (C.13), setting m = 100, we calculate a 100-year return level r100 and use
the delta method (C.15) to approximate the standard deviation: r100 = 97.7(7.9).
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Figure 7.1: Result of the maximum-likelihood estimation of the Gumbel location and scale param-

eters (µ = 28.5(2.0)m3/s, σ = 15.0(1.5)m3/s.) for the Vilsbiburg annual maxima series compared
to the empirical maxima series in a quantile plot (left panel) and return level plot (right panel).
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7.2.2 Modelling the ACF of the Maxima Series

For modelling the correlation structure of the maxima series, we revert to the results from
Section 6.2: we found a FARIMA[3, d, 0] as the most suitable LRD and an ARMA[7, 6] as
the most suitable SRD model. We exemplify the procedure using the FARIMA[3, d, 0]
process. The result obtained from the bootstrap is compared to the results obtained when
assuming an ARMA[7, 6] process underlying the daily run-off observations.

Using the specified model (FARIMA[3, d, 0]), a long series is generated with Nlong =
100Ndata. This simulated daily series is partially back-transformed according to the trans-
formations made in Appendix D.3.3: the overall mean and the seasonal cycles in mean
and variance are added. The Box-Cox transformation is not inverted in this step. From
the resulting record, we extract the “annual” maxima series using a block size of 365.
We compare the ACF of this maxima series to the original maxima series (Figure 7.2).
The latter has been Box-Cox transformed as well to achieve a comparable situation. The
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Figure 7.2: Autocorrelation sequence of the empirical maxima series and a section of same length
cut out of the simulated series (left). The right panel shows the autocorrelation sequence of the
full simulated maxima series. The 95% confidence intervals pertaining to white noise are marked
as dashed lines.

autocorrelations of the original series as well as of a section of the simulated record ba-
sically fluctuate within the 95% confidence interval for a white noise process. However,
the full maxima series from the simulated run of 6 200 data points exhibits significant
autocorrelation (Figure 7.2, right). This indicates that, although an existing autocorrela-
tion structure is not necessarily visible in a short sample of a process, it might still be
present. Ignoring it, or taking it into account, yields different estimates of confidence in-
tervals. The uncertainty of the ACF estimate is thus an uncertainty of the estimation of
confidence intervals.

In the next step, we model the correlation structure of the simulated maxima series
with a FARIMA[p, d, q] process with orders pmax ≤ p = 3, qmax ≤ q = 1 2. Larger orders
are not feasible due to numerical constraints. Among these models, we use the model
selection strategies to choose an adequate process to represent the ACF of the simulated
maxima series.

The smallest values for the HIC is attained for a FARIMA[0, d, 0] model with d =
0.398(0.010). The goodness-of-fit yields a p-value of p = 0.319 indicating a suitable

2Here pmax and qmax denote the model orders used for the maxima series.
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model. A likelihood-ratio test against FARIMA[1, d, 0] (p = 0.515), FARIMA[1, d, 1] (p =
0.060) and FARIMA[2, d, 1] (p = 0.118) yields that the FARIMA[0, d, 0] is an admissible
simplification of the three others and is thus an appropriate model for the ACF of the
simulated maxima series. In the following, we assume that this process is also a suitable
model for the ACF of the emprirical maxima series.

7.2.3 Confidence Intervals for Return Level Estimates

With the model for the ACF and the distribution of the maxima series, we generate the
boostrap ensemble and obtain the 100-year return level estimates as described in Sec-
tion 7.1. The result is shown in Figure 7.3 (top). From this distribution we obtain an
estimate for a one-sided α100% confidence limit denoted as rα. It is calculated as follows:
sort the R estimates r̂r, r = 1, . . . , R in ascending order and take the estimate at position
(N + 1)α. This estimate is denoted as r̂((N+1)α). With an ensemble size Nens = 9 999 we
ensure (N + 1)α being an integer for common choices of α (Davison and Hinkley, 1997).

The 95%-quantiles of the bootstrap ensemble (r̂0.95
boot ≈ 135m3/s) and the asymptotic

distribution (r0.95
asymp ≈ 110m3/s) are marked as vertical lines (Figure 7.3). The bootstrap

95% confidence level r̂0.95
boot clearly exceeds the quantile expected from the asymptotic dis-

tribution confirming the substantial increase in uncertainty due to dependence. The dif-
ference between the two limits is larger than 20% relative to the return level estimate.
Furthermore, the upper tail of the bootstrap ensemble decays slower than the tail of the
asymptotic distribution. The interpretation of such a confidence level is the following: In
95% of 100-year return level estimates the expected (“true”) 100-year return level will not
exceed the 95% confidence limit.

If we use the ARMA[7, 6] process as a model for the daily run-off, instead of the
FARIMA[3, d, 0], and repeat the procedure outlined in Section 7.1, we obtain an AR[1]
process with â1 = 0.267(0.026) as model for the ACF of the annual maxima. With this
model the semi-parametric bootstrap procedure yields a different result for the distribu-
tion of return level estimates as depicted in Figure 7.3 (bottom). The difference between
the bootstrap distribution and the asymptotic distribution is here smaller, especially the
95% confidence limits differ only by less than 2% with respect to the return level estimate.

7.3 Summary

We consider the estimation of return levels from annual maxima series using the GEV as
a parametric model and maximum likelihood (ML) parameter estimation. If we explic-
itly account for autocorrelation in the records, a substantial increase in uncertainty of the
flood return level estimates is revealed in cases where the underlying process is assumed
to be LRD. In the standard uncertainty assessment, i.e. the asymptotic confidence inter-
vals based on the Fisher information matrix or the profile likelihood, autocorrelations
are not accounted for. The resulting confidence intervals might be too small to reflect
the actual variability of the estimator for correlated records. On the way to fill this gap,
we study and compare four bootstrap strategies for the estimation of confidence inter-
vals in the case of correlated data (Appendix C). The semi-parametric bootstrap strategy
outperforms the three other approaches and might be of considerable value for flood-
risk assessment of water management authorities to avoid floodings on the one hand or
misallocation of public funds on the other hand. Furthermore, we expect the approach
to be applicable also in other sectors where an extreme value analysis with dependent
extremes has to be carried out.
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Figure 7.3: Frequency distribution of the 100-year return level estimates from the bootstrapsp en-
semble with 9 999 members based on the FARIMA[3, d, 0] (top) and the ARMA[7, 6] model (bot-
tom) for Vilsbiburg as histogram (grey) compared to the asymptotic distribution of the ML estima-
tor derived from the Fisher information matrix (dashed). The 100-year return level estimate from
the empirical maxima series is marked as dotted vertical line. The 95%-quantiles of the asymptotic
and bootstrap distributions are indicated as dashed and solid vertical lines, respectively.
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The practicability of the approach is illustrated for the gauge Vilsbiburg at the River
Vils in the Danube catchment in southern Germany. We derived a 95% confidence limit
for the 100-year flood return level on the basis of the most suitable SRD as well as LRD
model. For the latter, the confidence limit has been found to be about 20% larger than
the one derived from the asymptotic distribution. This is a dimension worth being con-
sidered for planing options. This result depends in a delicate way on the model selected
for the daily series and accentuates the importance of a reliable model selection strategy.
Falsely concluding LRD will result in an overestimation of the uncertainty limits and
might lead to dykes and dams being constructed larger than necessary for the desired
level of safety. Conversely, ignoring LRD if present, leads to smaller constructions and
results in a misleading perception of the level of safety.





Chapter 8

Conclusions and Outlook

8.1 Summary and Conclusions

It is desirable to reduce potential threats or impacts that result from the variability of
nature, such as droughts or heat waves that may lead to food shortage, or the other ex-
treme, floods that may lead to severe damage of infrastructure. To prevent such catas-
trophic events, it is necessary to understand, and to be capable of characterising, nature’s
variability and the underlying dynamics. A prominent example in this respect is the
calculation of design values for flood protection buildings.

Typically one aims to describe the dynamics of geophysical records with physically
motivated systems of differential equations. There are, however, situations where this
does not support the objectives, or is not feasible. These situations are typically those
where little is known about the equations governing the underlying dynamics, or the
system is so complex that the model parameters cannot be identified. In such situations
it is beneficial to regard certain influences as random, and describe them with stochastic
processes. In this thesis, we focus on a description of the autocorrelation function, and
thus concentrate on linear stochastic processes to represent the variability of run-off and
temperature records. Special emphasis is put on the detection of long-range dependence,
which is an algebraic (i.e. slow) decay of the autocorrelation function. It is a priori not
evident what process out of the large class of linear stochastic processes is adequate for
modelling the record under consideration. Choosing an appropriate model out of a large
canon of potentially suitable models is a crucial task. This choice influences subsequent
analyses and might thus have far reaching consequences. For example, tests for trends
are sensitive to the assumptions made for the underlying process describing the natural
variability. The latter is important with respect to temperature series and the detection
of climate change. A different example of considerable interest is the variability of river
run-off. Here, an inappropriate model choice might imply an underestimation of the
uncertainty of flood return level estimates. This leads to a reduction of design values for
dykes and consequently to less protection than expected.

Along the guiding questions raised in the introduction, the following conclusions can
be drawn:

• What is an adequate strategy for choosing between different models which
may be used to describe the autocorrelation structure? How can long-
range dependence be detected in a reliable way?

Model selection for nested linear stochastic models of the FARIMA-type is com-
monly carried out with the likelihood-ratio test or Akaike-type information crite-
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ria. If models are non-nested, one can revert to a common “larger” model, in which
both alternatives are nested in, and use the likelihood-ratio test to find the suitable
simplification. This method of choosing between non-nested models has poten-
tially lower power than a direct comparison and can easily lead to the inability
to discriminate between the models. We suggested a simulation-based approach
to directly compare non-nested models of the FARIMA-type (Chapter 3). This ap-
proach follows the procedure of a statistical test, with the log-likelihood-ratio as
the test statistic. Its distribution is obtained via simulations using the two models
under consideration. For two simple models and different parameter values, we
investigated how reliable estimates of p-value and power are, which are obtained
from the simulated distributions of the test statistic. The result turned out to be
dependent on the parameter values. In many cases the estimates allow an adequate
model selection to be established. Under these circumstances, this approach has
potentially more power than the alternative way, which involves a “larger” model.
Furthermore, an important feature is that it immediately reveals the ability or in-
ability to discriminate between the two models under consideration. With respect
to the estimation of, e.g., flood return levels, this is an important piece of infor-
mation. Especially if a long-range and a short-range dependent model cannot be
distinguished, it is important to recognise this problem and account for it in the
uncertainty assessment.

Regarding the detection of long-range dependence (Chapter 4), we suggested to
rephrase the problem as a model selection task, i.e. comparing the most suitable
long-range dependent and the most suitable short-range dependent model. Ap-
proaching the task in this way requires a) a suitable class of long-range and short-
range dependent models along with suitable means for parameter estimation and b)
a reliable model selection strategy, capable of discriminating also non-nested mod-
els. With the flexible FARIMA-class, the Whittle estimator, and the model selection
strategies presented and developed in Chapter 3, those requirements are fulfilled.
and it is possible to evaluate whether a proposed long-range dependent model is
indeed more adequate for the observations than the most suitable short-range de-
pendent model found. This direct confrontation of the two models with character-
istics being mutually exclusive presents a new way of looking at the problem of
detecting long-range dependence.

The performance of the suggested approach is tested in a simulation study. Hereby,
the processes underlying the simulated records are constructed in a way to pro-
vide a challenging example with respect to the detection of long-range dependence.
Compared to detrended fluctuation analysis (DFA, a heuristic method frequently
used to detect long-range dependence), this parametric modelling approach is more
specific, i.e. realisations of short-range dependent process are more likely to be de-
tected as such. The imprudent use of DFA is prone to falsely concluding long-range
dependence. This, in turn, makes the latter a seemingly ubiquitous phenomenon
and bears the risk of trivialising this concept (cf. Appendix A).

• What is the effect on trend detection caused by autocorrelation?

With the analysis of the Prague daily maximum temperature and the northern
hemisphere mean temperature, we could demonstrate to what extent the modelling
approach can be profitable for trend detection strategies (Chapter 5). In this case,
we find a long-range dependent model to be most adequate to represent tempera-
ture anomalies. On the basis of this model, we performed a conservative test for a
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polynomial trend which accounts for correlation. The approach pursued is based
on simulating records without a trend, using the model found for the temperature
anomalies. Finding a trend in these artificial series, such as the one observed in the
empirical record, turned out to be highly unlikely. This implies that the trend in
the Prague record is statistically significant. More refined strategies for trend as-
sessment under correlation involving stochastic models and non-parametric trend
estimates are discussed by, e.g., Kallache (2007).

From the modelling perspective, long-range dependence and deterministic trends
are competing descriptions of observed departures from the mean value. This is
illustrated with an analysis of the northern hemisphere mean temperature record.
The temperature anomalies could be described equally well by either a complex
short-range dependent (ARMA[4, 0]) or a potentially long-range dependent process
(FARIMA[0, d, 0]). After subtraction of a linear trend, the short-range dependent
process turned out to be the more suitable model, according to the simulation-based
model selection. In this context, it is necessary to discuss the adequacy of a linear
trend assumption. Given the effects of multiple exogenous forcing factors and a
complex non-linear feedback mechanism in the climate system, it is not obvious that
a linear, or even low-order polynomial, trend is an adequate hypothesis. However,
trend-form misspecification implies a large fraction of variance on large scales that
is to be explained by the stochastic process chosen to model the residuals. This
favours long-range dependent processes, because of their ability to represent this
large-scale variability. This implies that, as soon as more adequate assumptions on
the trend form are made, long-range dependent processes might not be required to
model the residuals, and conventional short-range dependent models might suffice.
This illustrates a quite general problem when discriminating a trend from natural
variability: the less assumptions are made for either the trend form or the natural
variability, the more difficult their discrimination is.

• What are the consequences of considering or ignoring autocorrelations
for flood risk assessment? How can the uncertainty of flood return level
estimates in autocorrelated records be quantified?

We demonstrated the effect of autocorrelation on the flood return level uncertainty
analysis with a run-off time series recorded at the Gauge Vilsbiburg in southern
Germany (Chapter 7). Assuming an underlying short-range dependent process
for the observed run-off anomalies, the confidence interval obtained for the 100-
year flood return level is approximately consistent with the one obtained from the
asymptotic theory developed for uncorrelated observations. If we assume instead
an underlying long-range dependent process, the asymptotic confidence interval
does not provide a suitable approximation. The upper 95% confidence limit of the
100-year return level increases by 20% relative to the return level estimate. We con-
sider this as a dimension that cannot be disregarded in practical applications. This
effect, in turn, has influence on flood risk assessment or flood risk management,
because the estimation of return levels and their uncertainty plays an important
role in hydrological engineering and decision making: it forms the basis for setting
design values for hydraulic structures like bridges, dams and dykes.

This accentuates the need for a means to reliably quantify the uncertainty in the
case of dependence. With the bootstrap-based approach developed in Appendix C,
we suggested a methodology to accomplish this task. A crucial prerequisite for
this method to yield reliable estimates is the adequate specification of a model for
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the autocorrelation function, especially the reliable detection of long-range depen-
dence. With respect to return level estimation, falsely detecting short-range de-
pendence leads to an underestimation of the uncertainty and, thus, to an unjusti-
fied belief in safety. Falsely detecting long-range dependence, however, leads to an
overestimation of uncertainty bounds and thus to over-dimensioned design values.
While this reduces vulnerability and is in line with the precautionary principle, it
might entail a misallocation of public funds. Supporting stakeholders in water man-
agement authorities in making such decisions was a motivation to develop reliable
strategies for model selection and the detection of long-range dependence. The
Bavarian Water Management Authority, for example, asked for further cooperation
and is interested in making available these concepts for flood risk assessment.

The latter two applications, trend detection in temperature and uncertainty analysis
in flood return level estimation, accentuate the importance of having reliable methods at
hand for the detection of long-range dependence. In the case of trend detection, falsely
concluding long-range dependence implies an underestimation of a trend and possibly
leads to a delay of measures needed to take in order to counteract the trend. Ignoring
long-range dependence, although present, leads to an underestimation of confidence in-
tervals and thus to an unjustified belief in safety, as it is the case for the return level un-
certainty analysis. A reliable detection of long-range dependence is thus highly relevant
in practical applications. Other examples are the assessment of the maximum strength
of wind gusts, which is important for designing wind turbines, or the exploration of fi-
nancial market volatility. With rephrasing the detection problem as a model selection
task and suggesting refined methods for model comparison, this thesis contributes to the
discussion on, and development of, methods for the detection of long-range dependence.

8.2 Outlook

Simulation-Based Model Selection

The way it was used throughout the thesis, the simulation-based approach uses reali-
sation of a FARIMA-type process. These realisations can be obtained from a Gaussian
white noise process using a linear filter. Instead of Gaussian white noise, one can use
realisations generated by a bootstrap resampling procedure. The latter generates records
by resampling with replacement from a set of residuals, which is obtained applying the
inverse linear filter to the observations. This variation of the approach might be espe-
cially useful in cases where the residuals from inverse filtering do not closely follow a
Gaussian distribution. In such cases, it might lead to a significant improvement of the
model selection in such situations.

A further potential application of the simulation-based model selection strategy is on
the discrimination of stochastic models with trend components. Consider a combined
estimation of trend and correlation structure, with the explanatory variables of the trend
component formulated either as a polynomial in time or in the form of covariates. Be-
cause different explanatory variables do not have to be nested, they cannot be discrim-
inated by standard methods such as the likelihood-ratio test. The proposed simulation-
based approach might improve these trend detection strategies.

The algorithms for parameter estimation and parts of the model selection has been
made available1 for the software environment R (R Development Core Team, 2004). This

1http://www.pik-potsdam.de/~hrust/tools.html

http://www.pik-potsdam.de/~hrust/tools.html
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package is intended for publication at the corresponding comprehensive archive net-
work2. This accessibility to the methods within a consistent and widely used software
environment facilitates the use of these concepts for scientists from various disciplines,
such as physics, geosciences and economy.

Uncertainty in Return Level Estimates

Quantifying the uncertainty of return level estimates obtained from correlated series with
the approach presented here turns out to be a complex procedure as well as a numerically
costly undertaking. This might hinder its use on a day-to-day basis by water management
authorities. The computer time needed depends on the ensemble size, i.e. the accuracy
required, and on the length of the empirical maxima series. For the given example, the
time consumed to generate the bootstrap ensemble, once the model for the maxima series
has been identified, is of the order of magnitude of several hours. It is desirable to im-
prove the efficiency of this approach or find suitable methods for an approximation. This
will allow water management authorities to benefit from this kind of uncertainty analysis
and possibly reduce the impact of floods or optimise the allocation of public funds.

Furthermore, the validation study showed that the distribution of return level esti-
mates is close to, but not identical with, the reference distribution. A further investigation
of this discrepancy might be useful. A proximate starting point is the way members of
the ensemble of simulated maxima series are generated.

Aside from the uncertainty due to dependence in the series, a further important chal-
lenge in extreme value statistics is the instationarity of distributions. General methods
have been proposed for the block maxima approach and maximum likelihood parameter
estimation. Because autocorrelation and trends can be competing descriptions, it would
be useful to direct further work in extreme value statistics towards models accounting
for instationarities as well as for autocorrelation. Such a comprehensive approach is cer-
tainly beneficial for scientific purposes and is also of considerable value to practitioners.
Apart from this, such refined approaches to the analysis of extreme events might play
an important role in the assessment of the fraction of risk attributable to anthropogenic
climate change. A problem which might become important in the near future.

2The Comprehensive R Archive Network: http://cran.r-project.org/

http://cran.r-project.org/
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Appendix A

Review of Detrended Fluctuation
Analysis

Detrended fluctuation analysis (DFA, Section 2.3.3) has been widely used to infer a LRD
process from empirical time series and also to quantify the strength of the dependence,
i.e. estimating the Hurst exponent H, or, equivalently, the fractional difference parameter
d = H − 0.5 (e.g. Bunde and Havlin, 2002; Király and Jánosi, 2002; Bunde et al., 2004;
Eichner et al., 2003). Little work has been done on characterising the inferential power of
DFA and the properties of the estimator for the Hurst exponent, e.g., quantifying bias and
variance. In this chapter, we present a simulation study which provides estimates of bias
and variance for power-law noise processes. Furthermore, we critically review the limits
of the method to infer LRD, suggest refinements and point to typical pitfalls. Finally, we
exemplify the discussion with an analysis of the Prague daily temperature anomalies.

A.1 Bias and Variance for Self-Similar Increment Processes

Analogously to the work of Bardet et al. (2003) and Weron (2002), we use Monte Carlo
(MC) simulations to study the bias and variance of the estimator ĤDFAn for DFA1 and
DFA2 (n = 1, 2) introduced in Section 2.3.3. In addition to a white noise process, we con-
sider a process with a spectral density S(ω) = |ω|−β, also referred to as power-law noise.
The spectral density of this process is similar to the one of fGn or FD processes; especially
the asymptotic behaviour for low frequencies ω is the same. Realisations of power-law
noise with a prescribed exponent β = 2H − 1 can be obtained using the inverse Fourier
transform (Section 2.4; Timmer and König, 1995).

Bias

We estimate the bias and variance from MC ensembles of realisations from power-law
noise with different length N and prescribed Hurst exponents 0 < H < 1. The estimate
ĤDFAn is obtained as the slope of a straight line fit to log F(s) versus log s for s > 10. We
calculate the bias using

bias(ĤDFAn) = ĤDFAn − H, (A.1)

with the bar denoting the ensemble mean. For ĤDFA1 and ĤDFA2 and an ensemble size
of 2 500 runs the bias is shown in Figure A.1. The estimator based on DFA1 exhibits a
positive bias for power-law noise with 0 < H < 0.5, increasing with decreasing H. The
bias reduces with an increasing record length. This is in line with an analytical result
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Figure A.1: Bias of ĤDFA1 (left) and ĤDFA2 (right). The bias is estimated from a MC ensemble of
power-law noise realisations with a prescribed Hurst exponent H and various sample lengths N.

derived by Taqqu et al. (1995). In contrast, we find a negative bias for 0.5 < H < 1,
increasing in magnitude with H. An increasing record length reduces the bias faster than
for 0 < H < 0.5. For the white noise process (H = 0.5) no bias is observed for all length of
the records. This “neutral point” moves towards H ≈ 0.6 for the DFA2 based estimator.
This is accompanied with an overall increase of the bias.

Variance

The variance of ĤDFAn estimated from the same ensemble is shown in Figure A.2. A strik-
ing difference to the previous plot is the asymmetry. The variance var(ĤDFA1) increases
monotonically with 0 < H < 1. This implies that for a given length N the Hurst exponent
can be estimated more precisely for 0 < H < 0.5 then for a white noise process (H = 0.5).
Furthermore, Figure A.2 depicts a decreases in variance with the length N of the series.
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Figure A.2: Variance of ĤDFA1 (left) and ĤDFA2 (right). The variance is estimated from a MC
ensemble of power-law noise realisations with a prescribed Hurst exponent H. The colour coding
of the record length is analogue to Fig. A.1.
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Figures A.1 and A.2 allow for a quick and rough estimate of bias and variance for
increments of self-similar processes with 0 < H < 1. For a more precise DFA-bases
Hurst-exponent estimation from empirical data, one would have to adjust this simulation
studies to the situation at hand, i.e. adjust the record length and the fit interval for the
straight line and find a suitable parametric model to represent the data. This leads to a
parametric bootstrap approach suitable to estimate confidence intervals. A parametric
ansatz using one of the models described in Section 2.2.2 is suitable to accomplish this
task. A different approach was suggested by Fraedrich and Blender (2003), they split the
series under consideration in m records and performed the analysis m times to obtain an
estimate for the variability. This, however, is only feasible if very long records, e.g., from
simulation runs, are available.

A far more serious shortcoming of standard DFA analyses, as it is commonly used,
is the a priori assumption of scaling. Straight lines are frequently fit to log F(s) versus
log s without evaluating any criteria supporting this simple model (cf. Appendix A.2 and
Maraun, Rust, and Timmer, 2004).

A.2 DFA and the Detection of Long-Range Dependence

Detrended fluctuation analysis including a subsequent straight line fit to the logarithmic
fluctuation function log F(s) with log s as regressor yields an asymptotically unbiased es-
timator for the Hurst exponent H and thus for the fractional difference parameter d. This
has been shown by Taqqu et al. (1995) for processes with the same asymptotic behaviour
as fractional Gaussian noise or FARIMA processes. The limiting distribution of this esti-
mator has not been studied so far. This makes statistical inference for the Hurst exponent
impossible (cf. Section 2.3.3).

We first investigate the non-asymptotic behaviour of this estimator for power-law
noise. Subsequently, we discuss the need to infer that the asymptotic behaviour has been
reached for the series under consideration before Hurst exponent estimation is meaning-
ful.

A.2.1 Inference of Scaling

Prior to the estimation of a scaling exponent, the existence of a scaling region has to be
inferred from an empirical record (e.g., temperature anomalies, run-off, financial time se-
ries, etc.). Besides in Maraun, Rust, and Timmer (2004), it has not been studied, if DFA
can be used to infer such a scaling region. It is thus not clear if LRD can be inferred
from realisations of a process when it is not a priori clear, that this process exhibits scal-
ing. It is therefore still an open question how sensitive and specific1 DFA behaves when
investigating processes of unknown correlation structure.

A necessary condition for the existence of LRD is the scaling of the fluctuation func-
tion F(s) in the asymptotic region according to (2.21). Thus, in the remainder of this
section, we address the following questions:

1. How to conclude scaling from the DFA fluctuation function?

1A procedure, that detects compatibility with LRD with a high probability, whensoever present, is called
sensitive. An algorithm that with a high probability rejects LRD, when not present, is said to be specific. The
optimal algorithm would be sensitive and specific. A sensitive but unspecific algorithm, however, would
produce many false positive results, i.e. one would frequently detect LRD. This algorithm would not be
suitable for a reliable inference. On the other hand, an un-sensitive but specific algorithm would be very
conservative and would often reject the existence of LRD.
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2. Does a region of scaling necessarily imply LRD?

Two Example Processes

To illustrate the line of argument, we consider a SRD as well as a LRD process and apply
DFA to both. As an example for a LRD process we simulate power-law noise according
to the method given in Timmer and König (1995) with a Hurst exponent of H = 0.6. This
process shows power-law scaling in the ACF for a wide range of scales. For the SRD
process we choose a superposition of three AR[1]-processes (cf. Section 2.2.1),

x(i) =
3

∑
j=1

Ajyj(i) , yj(i) = ajyj(i − 1) + ηj(i) , (A.2)

with ηj(i) being Gaussian white noise of zero mean and variance 1− a2
j . The latter ensures

var(yj) = 1. We choose A1 = 0.913, A2 = 0.396, A3 = 0.098, a1 = 0.717, a2 = 0.953 and

a3 = 0.998. Using aj = e−1/τj we find the following characteristic time scales for the
individual AR[1] processes: τ1 = 3 days, τ2 = 21 days and τ3 ≈ 1.5 years. The choice
of the model parameters is motivated by the example of the Prague temperature record
studied in Section A.3.1 and will become clear during the discussion.

Establish Scaling

Figure A.3 shows the fluctuation functions for a realisation of each of the two exam-
ple processes with length N = 70 492 corresponding to the Prague temperature record
(cf. Section A.3.1). For every order of magnitude, 50 values of equal distance in logarith-
mic scale are calculated.
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Figure A.3: Fluctuation functions calculated for an artificial LRD process with exponent H = 0.6
(× DFA1, ⋄ DFA2) and a superposition of three AR-processes (+ DFA1, △ DFA2) as defined in
Section A.2.1. For every order of magnitude, approx. 50 values are calculated. For clarity, only
every third value is plotted.

To reliably infer power-law scaling of the fluctuation function, a straight line in the
log-log plot has to be established. Since a straight line is tantamount to a constant slope,
local estimates of the slope ĤDFAn of log F(s) versus log s have to be evaluated for con-
stancy in a sufficient range (e.g., Kantz and Schreiber, 1995; Tsonis and Elsner, 1995;
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Timmer et al., 2000). The extend of a sufficient range is still a matter of debate (e.g.,
Avnir et al. (1998) and references therein). This concept has been introduced in the con-
text of estimating correlation dimensions (Caputo et al., 1986; Tsonis and Elsner, 1995)
and, in a different setting, has also been suggested for DFA (Peng et al., 1993).

Calculating Local Slopes

For a finite amount of data the estimation of the local slopes brings along a certain vari-
ability. Even for a process like the power-law noise, the local slopes of the empirical
fluctuation function show variations around a constant H. This has two consequences
for the calculating and interpreting the local slopes:

1. estimating the local slopes by finite differences results in a large variability and

2. this variability has to be quantified to allow for statistical inference.

Regarding the first point, the variability can be reduced fitting a straight line to log F(s)
versus log s within a small window. The window is then shifted successively over all cal-
culated scales s. Figure A.4 shows the local slopes of a realisation of the SRD model for
different window sizes. Choosing the optimal window size, one has to trade bias for
variance: for small windows, the bias is small, but the variability renders the interpreta-
tion difficult, whereas for large windows, the variance is reduced at the cost of a biased
estimate of H. Thus, the extreme case of a single straight line fit to the whole range of
scales considered is maximally biased. Since only one value of for the estimate ĤDFAn is
calculated, this does not allow to evaluate constancy.
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Figure A.4: Local slopes α (or H) of a realisation of the short-memory model for different window
sizes. 50 points per order of magnitude are calculated, but for clarity reasons only every second
value is plotted for the smallest window size. For small windows, the bias is very low, but the
variability renders the interpretation difficult, whereas for large windows, the variance is reduced

at the cost of a biased estimator ĤDFA1.

The second problem of quantifying the variability for a given length of the record is
not straightforward. Since vicinal local slopes are not independent, confidence regions
cannot be estimated straightforwardly from the procedure described in Section A.2.1
(Denker and Keller, 1986). Instead, we perform Monte Carlo simulations: for the two
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example processes, we simulate 1 000 realisations to estimate mean and standard devia-
tion for the estimator ĤDFA1 for the scales considered. The distribution of the estimates is

approximately Gaussian. Thus, we employ the interval [ĤDFA1 − 1.96σ̂, ĤDFA1 + 1.96σ̂] as
estimates of the 95% confidence region, with the bar denoting again the ensemble mean.
σ̂2 is the variance of ĤDFA1 estimated from the ensemble.

Inferring Scaling for the Example Records

Figure A.5 displays the local slopes of the DFA1 (a) and DFA2 (b) fluctuation functions,
estimated from one realisation of each of the example models. The realisation of the
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Figure A.5: Local slopes α (or H) of the DFA1 (a) and DFA2 (b) fluctuation function calculated for
an artificial LRD process with exponent H = 0.6 (×) and a superposition of three AR-processes
(+) as defined in Section A.2.1 (window size 21 points). The dashed and the dotted lines border
the shadowed 1.96σ̂ intervals obtained from 1 000 realisations of the two processes, respectively.

LRD process shows fluctuations around a constant H within the corresponding 1.96σ̂
interval, increasing like σ̂ ∝

√
s (Peng et al., 1993). The local slope ĤDFA1(s) of the SRD

realisation, however, decreases constantly in the beginning and basically follows the local
slope of the LRD realisation for scales larger than log s ≈ 2.5. Thus, for a certain choice
of parameters, a SRD model can mimic scaling in a finite range. Due to the principle of
variance superposition for DFA (Hu et al., 2001) a suitable superposition of three AR[1]
processes produces this effect in the fluctuation function analogously to the same effect
in the spectral domain described in Hausdorff and Peng (1996).

Investigating for LRD one studies primarily the behaviour on large scales s or small
frequencies assuming that influences from low frequencies are negligible here and do not
bias the estimation of the LRD parameter. In our example, the 1.96σ̂-cones from the LRD
and SRD process are virtually indistinguishable in this range. Thus, based on the given
record length and only considering large s, one cannot distinguish the realisations of the
two models by means of DFA. For longer time series, the cones would shrink and the
region of overlapping would become smaller.

Inference of SRD

However, a general dilemma related to the inference of LRD emerges: For a finite time
series, one will always find a SRD model to describe the data (Beran, 1994). Thus, con-
sidering the inference of LRD, DFA is sensitive, but not specific. An alternative ansatz is
to investigate if the underlying process is SRD. This requires
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1. to show compatibility with a SRD model and

2. to exclude possible LRD models.

The first condition is always fulfilled, since one will always find a SRD model to describe
a finite data set. The second condition is not fulfilled for the given example, because the
record length is not sufficient to detect the SRD character H = 0.5 for large s of the AR-
model by means of DFA. For longer time series as shown in Figure A.6, when a plateau
of H = 0.5 is identifiable, LRD can be excluded and the specificity of DFA to infer SRD
increases.

A.2.2 Pitfalls

We discuss typical difficulties for DFA and similar heuristic approaches. Problems arise
for example when investigating the results only in a double logarithmic plot, or, if the
observed behaviour is not consistent with the asymptotic behaviour. Also the transfer
from a scaling exponent of the fluctuation function to the ACF is only possible in the
asymptotic limit.

The Double Logarithmic Plot

Investigating only the double logarithmic plot of the fluctuation function, one is tempted
to rashly conclude for LRD. Due to properties of the logarithm, fluctuations are sup-
pressed in a double logarithmic plot and the deviation from a straight line is not easily
visible (Tsonis and Elsner, 1995). Also, restricting the analysis to a straight line in the log-
log plot forces F(s) in the procrustean bed of power-laws. It will always yield some value
for the slope but the suitability of the linear description is not evaluated. For the infer-
ence of LRD, this procedure would be sensitive but not specific. This results in attributing
LRD to all processes with an estimate ĤDFAn > 0.5 for the largest scales observed. Such a
result would trivialise the concept of LRD and provide no insight into the process. Thus,
to reliably infer a power-law, a straight line may not be assumed a priori but has to be
established, as discussed in Section A.2.1. Even if scaling is present, it is difficult to de-
termine the beginning and ending of the scaling region in the log-log plot. However, the
estimate ĤDFAn derived from a straight line fit strongly depends on the fit boundaries if
the realisation does not stem from a scale free process.

Finite scaling of short-memory processes

According to Section 2.1.4, the autocorrelations of SRD processes decay exponentially for
large s and are negligible on scales large compared to the decorrelation time

τD = 1 + 2
∞

∑
s=1

ρ(s) = 1 + 2
∞

∑
s=1

e−s/τ

≈ 2τ for τ ≫ 1. (A.3)

Consequently, for scales large enough, the slope of the fluctuation function of such a
process converges to H = 0.5. However, for a finite set of data one cannot be a priori
sure that the series is long enough to observe this. For a record of the SRD model defined
in Section A.2.1 (length 70 492 points) the local slopes of the fluctuation function for the
largest observed scales are compatible with power-law scaling. A plateau about H = 0.5
is not observed (Figure A.5). Thus, one might be tempted to conclude an underlying LRD
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process. However, analysing a much longer record (1 000 000 points) of the same model
yields such a plateau about H = 0.5 for large s (Figure A.6). Therefore, for a process with
unknown correlation structure it is misleading to use solely the estimate ĤDFAn > 0.5 as
argument for LRD. It might very well be that the record is too short to observe the plateau
about H = 0.5 characteristic for SRD. This stresses the need for confidence intervals for
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Figure A.6: Local slopes α (or H) from the empirical fluctuation function of the short-memory
model (A.2), estimated from 200 realisations of length N=1 000 000 (solid line). A region of ap-
proximatively constant slope occurs between log s ≈ 2.8 (s ≈ 600) and log ≈ 3.8 (s ≈ 6 000,

corresponds to approximately 16 years). On larger scales, the slope reduces to ĤDFA1 = 0.5, re-
vealing the SRD nature of the model.

the estimate and for means to reliably discriminate between SRD and LRD processes.

DFA to ACF transfer of a finite “scaling” region

As shown in Sect. A.2.1, under certain conditions also SRD processes can mimic a finite
“scaling” region. Thus, the question arises, if such a scaling region derived from the
fluctuation function corresponds to a power-law like behaviour in the same region in the
ACF. Such an assumption was used by, e.g., Koscielny-Bunde et al. (1996). To challenge
this hypothesis, we compare the properties of the fluctuation function (Figure A.6) with
the analytical ACF (Figure A.7). The dashed lines depict the ACF of the single AR[1]
processes with the largest and the smallest time scale. The ACF of the superposition of
the three AR[1] processes is given by the dashed-dotted line. The solid line represents
a power-law with exponent γ = 0.8. This value can be expected when applying H =
1 − γ/2 (2.68) to the estimate ĤDFA1 ∼ 0.6 derived from the fluctuation function. The
range of scales where the power-law-like behaviour holds for the fluctuation function is
log s & 2.5 (Figure A.5). We find that the region of almost constant slope of the ACF is
located on smaller scales between s ≈ 1 and maximally s ≈ 1 000 (≃ 3 years). Thus,
based on a finite scaling region found in the fluctuation function of a SRD process, it is in
general not valid to conclude that an equal scaling region exists also for the ACF.
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Figure A.7: Analytical ACF of the SRD model (A.2) (dashed dotted line). The dashed lines depict
the ACF of the single AR[1] processes with shortest and longest time constant. In a range of
scales from log s ≈ 0 (s ≈ 1) to maximally log s ≈ 3 (s ≈ 1 000) the ACF approximately follows
the power law with γ = 0.8 (solid line). For larger scales, it turns into an exponential decay
determined by the AR[1] process with the largest time constant τ ≈ 1.5years.

A.3 Investigating the Prague Temperature Anomalies

In the following, we analyse the temperature anomalies from Prague and compare DFA
and the full parametric approach applied to the same series in Section 5.1. To challenge
both strategies, we furthermore impose the task of discriminating the Prague record from
an artificial SRD time series. The latter is a realisation of a superposition of three AR[1]
processes. The superposition was constructed such that its realisations mimic the Prague
temperature residuals as closely as possible. The structure of this process is given in (A.2),
the corresponding parameters in Section A.2.1. By definition this process is SRD.

We start with a DFA for the Prague normalised temperature anomalies and for a re-
alisation of the AR-superposition. This is followed by the full-parametric modelling ap-
proach applied only to the AR-superposition. The most suitable parametric model for the
temperature series itself has been determined already in Section 5.1.

A.3.1 Detecting Long-Range Dependence using DFA

DFA is reported to eliminate the influences of a possible trend in the mean on the analy-
sis (e.g., Kantelhardt et al., 2001), we thus use the normalised temperature anomalies and
study DFA1 and DFA2. An investigation of higher orders of DFA does not significantly
affect the discussion presented while for DFA1 the effect of a trend might be suspected.
The fluctuation function F(s) (2.67) is calculated for approximately 50 points per order of
magnitude upto smax = N/4 and is shown in Figure A.8 in double logarithmic represen-
tation. The behaviour is qualitatively different from white noise. To depict the variability
of this estimate of the fluctuation function, we performed simulations with the AR model
(A.2) and estimate its fluctuation function from 1 000 realisations with the same length
as the observed record. We approximate a 95% confidence region by plotting 1.96σ̂ in-
tervals as grey shadows. As expected, the variability of the fluctuation function estimate
increases wit the time scale s. Because the observed fluctuation functions for DFA1 and
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Figure A.8: DFA1 (+) and DFA2 (△) fluctuation function of Prague daily temperature data cal-
culated for approximately 50 points per order of magnitude. Only every 4th point is shown to
enhanced clarity. The shadows mark 1.96σ̂ confidence regions derived from 1 000 runs of the AR
model.

DFA2 are both well inside the 95% confidence interval, we consider the Prague tempera-
ture anomalies compatible with the AR model from the viewpoint of DFA.

Following the discussion in Section A.2.1, we estimate the local slopes to investigate
for power-law scaling. From the fluctuation function of the Prague record, we estimate
the local slopes using a straight line fit in a small window of 21 points. Figure A.9 shows
the result and compares it to 1 000 runs from the AR model and from power-law noise
with exponent H = 0.6. Accounting for the variability, we find the observed slopes
consistent with a constant slope as expected from the power-law noise process (light grey)
for log s & 2.5. In the same range of scales, however, the observed slopes also agree with
the AR model. Since we are looking for a scaling region, we consider at the most log s &
2.5. Thus, from the given data, one cannot decide whether the Prague temperature time
series is a realization of a SRD (dark grey) or a LRD process (light grey). This plot shows
furthermore, that considering the scales log s . 2.5, the power-law noise is not a sufficient
model for the observed series.

A.3.2 Detecting Long-Range Dependence using Parametric Models

In Section 5.1.1 we found the FARIMA[2, d, 2] being the most suitable model for the
Prague maximum temperature residuals with parameters given in Table 5.2. The frac-

tional difference parameter was estimated to be d̂ = 0.109(0.017) for this model. Em-
ploying the Gaussian limiting distribution, we find a 95% confidence interval for the
difference parameter of [0.076, 0.142] and thus d = 0 for SRD processes is not included.
We thus infer the underlying process to be LRD.

It remains to investigate whether we can correctly identify the realisation of the AR-
superposition as coming from an SRD process. This is pursued in the following.
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Figure A.9: Local slopes α (or H) of the fluctuation functions plotted in Figure A.8 for DFA1 (a)
and DFA2 (b) of the Prague daily temperature data. The dotted lines border the 1.96σ̂ confidence
regions of the short-range correlated model (A.2) (dark shadow), the dashed lines those of the
long-memory model with H = 0.6 (light shadow).
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Stochastic Modelling of the AR[1] Superposition

The AR model (A.2) is constructed such that realisations generated from it mimic the
characteristics of the Prague temperature anomalies. We thus do not have to account for
deterministic components, such as the seasonal cycle or a trend. Starting with the set of
FARIMA[p, d, q] and ARMA[p, q] models compiled in Section 5.1.1 we reduce these with
the model selection strategies analogously to the procedure for the temperature anoma-
lies (Section 5.1): the goodness-of-fit test, the HIC-based model selection and, finally, the
likelihood-ratio-based model selection.

Goodness-of-fit On the basis of the goodness-of-fit test (3.4) applied to the before men-
tioned set of models we reject only the FD (FARIMA[0, d, 0]) model on a 5%-level of sig-
nificance.

HIC Model Selection Figure A.10 depicts the HIC values for the models considered.
It is striking that for the most cases the ARMA[p, q] model has a smaller HIC than the

13
90

60
13

90
80

13
91

00

Model Order [p,q]

H
IC

[0
,0

]
[1

,0
]

[1
,1

]
[2

,0
]

[2
,1

]
[2

,2
]

[3
,0

]
[3

,1
]

[3
,2

]
[3

,3
]

[4
,0

]
[4

,1
]

[4
,2

]
[4

,3
]

[4
,4

]
[5

,0
]

[5
,1

]
[5

,2
]

[5
,3

]
[5

,4
]

[5
,5

]
[6

,0
]

[6
,1

]
[6

,2
]

[6
,3

]
[6

,4
]

[6
,5

]
[6

,6
]

[7
,0

]
[7

,1
]

[7
,2

]
[7

,3
]

[7
,4

]
[7

,5
]

[7
,6

]
[7

,7
]

[8
,0

]
[8

,1
]

[8
,2

]
[8

,3
]

[8
,4

]
[8

,5
]

[8
,6

]
[8

,7
]

ARMA[p,q]
FARIMA[p,d,q]

Figure A.10: HIC for various ARMA[p, q] (green) and FARIMA[p, d, q] (red) models fitted to real-
isation of the AR model (A.2) The model orders [p, q] are plotted along the abscissa.

corresponding FARIMA[p, d, q] model. Investigating the fractional difference parameter
for the latter models (Table A.1) reveals that besides FARIMA[1, d, 0], FARIMA[1, d, 1] and
FARIMA[2, d, 0] all estimates are compatible with the d = 0 within one (or, in one case,
1.96) standard deviation. We retain these models, as well as ARMA[p, q] models with
orders (p, q) ∈ {(2, 1), (2, 2), (3, 1), (3, 2)}. Keeping other FARIMA[p, d, q] models is not
meaningful, because their fractional difference parameter is compatible with zero and
thus they are equivalent to the corresponding ARMA[p, q] processes.

Likelihood-Ratio Test With a likelihood-ratio test, we investigate whether the three
models with a non-trivial fractional difference parameter are admissible simplifications of
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Model d̂(σ
d̂
)

[1, d, 0] 0.148(0.010)
[1, d, 1] 0.158(0.011)
[2, d, 0] 0.160(0.011)
[2, d, 1] 0.000(0.015)
[2, d, 2] 0.000(0.037)
[3, d, 1] 0.000(0.037)
[3, d, 2] 0.012(0.017)
[4, d, 1] 0.000(0.040)
[3, d, 3] 0.028(0.038)
[4, d, 2] 0.027(0.038)
[5, d, 1] 0.000(0.042)
[4, d, 3] 0.023(0.022)
[5, d, 2] 0.000(0.041)

Table A.1: Estimates and asymptotic standard deviation of the fractional difference parameter
obtained for the FARIMA[p, d, q] models with smallest HIC.

ARMA[p, q]
Model f Model g p-val

1 [3, 2] [2, 2] 1
2 [3, 2] [3, 1] 0.713
3 [2, 2] [2, 1] 0.584
4 [3, 1] [2, 1] 0.939

FARIMA[p, d, q]
Model f Model g p-val

1 [2, d, 1] [2, d, 0] <0.001
2 [2, d, 1] [1, d, 1] <0.001
3 [2, d, 1] [1, d, 0] <0.001

Table A.2: p-values for a likelihood-ratio test of model g being an admissible simplification of
model f for ARMA[p, q] and FARIMA[p, d, q] models of the realisation stemming from the AR[1]-
superposition (A.2).

the FARIMA[2, d, 1], the simplest models with trivial difference parameter. The p-values
in Table A.2 (right) reveal that we can reject this hypothesis for all three cases on a 5%-
level (or even 1%-level) of significance. This implies, that there is no evidence for a LRD
process underlying this data series.

Among the ARMA[p, q] models, we find the ARMA[2, 2] and ARMA[3, 1] as admissi-
ble simplifications of the ARMA[3, 2] (Table A.2, left, lines 1 and 2). Both models can be
further simplified by ARMA[2, 1] (lines 3 and 4). The latter is the most suitable model out
of the canon we started with for the realisation of the AR-superposition (A.2).

Using the full-parametric modelling approach we are thus able to correctly identify
the realisation of a superposition of three AR[1] processes as coming from an SRD process.
This was not possible by means of DFA. The original model, a superposition of AR[1]
processes (A.2), was not included in the model canon we used to describe the example
series with. However, such a superposition can be well approximated with ARMA[p, q]
processes.

A.4 Summary

In a simulation study, we investigated bias and variance for a DFA-based estimator for the
Hurst exponent using realisations of power-law noise. These properties of the estimator
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are not only influenced by the time series length but also by the Hurst exponent of the
underlying process. Without knowledge about bias and variance, inference about the
Hurst exponent cannot be made.

We further considered the inference of LRD by means of DFA with respect to the
notions of sensitivity and specificity. The inference of a LRD process underlying a given
time series requires not only to show compatibility of the data with a LRD process in
a certain range of scales. Furthermore, other possible correlation structures, especially
SRD, have to be excluded.

Power-law like behaviour in some range of scales of the DFA fluctuation function
alone is frequently taken as evidence for LRD. To reliably infer power-law scaling, it
must not be assumed but has to be established. This can be done by estimating local
slopes and investigating them for constancy in a sufficient range. However, finite data
sets bring along natural variability. To decide, if a fluctuating estimation of the slope
has to be considered as being constant, we calculated empirical confidence intervals for a
LRD and a simple SRD model.

Discussing typical difficulties of interpreting DFA results, we note that scaling cannot
be concluded from a straight line fit to the fluctuation function in a log-log representation.
Additionally, we show that a local slope estimate ĤDFAn > 0.5 for large scales does not
necessarily imply long-memory. If the length of the time series is not sufficiently large
compared to the time scales involved, also for SRD processes ĤDFAn = 0.5 may not be
reached. Finally, we demonstrated, that it is not valid to conclude from a finite scaling
region of the fluctuation function to an equivalent scaling region of the ACF.

With the Prague temperature anomalies and a corresponding artificial series from a
SRD process, we exemplify the problems and pitfalls discussed. Using DFA we could
not discriminate the Prague record from the artificial series. Furthermore, by means of a
log-log plot, we classify the underlying process of both series as LRD, leading to a false
positive result for the SRD process. A reliable identification was possible with the full-
parametric ansatz (Section 4.4).

Because it is always possible to find and SRD process to describe a finite set of data,
some criterion is needed to evaluate the performance of the description taking the com-
plexity of the model into account. We thus approach the problem of distinguishing SRD
and LRD processes on the basis of a realisation of a parametric modelling point of view
developed in Chapter 4.



Appendix B

Long-Range Dependence – Effects,
Methods, Mechanisms

A simple example to illustrate the effect of long-range dependence on the estimation of
statistical quantities is illustrated in the first section. This is followed by some physical
explanations of the phenomenon. Further, we describe the log-periodogram regression
and the rescaled-range statistic as methods to quantify LRD. This is followed by introduc-
ing two LRD specific statistics which can be used as further criteria for the simulation-
based model selection described in Section 3.3.2. These statistics are based on the log-
periodogram regression and on DFA. Subsequently, we describe the generation of an
artificial series, which is used as a challenging example to illustrate the LRD detection
strategies described in Chapter 4.

B.1 Effects of Long-Range Dependence

We illustrate the effect of LRD on statistical quantities estimated from a realisation of a
stochastic process with a simple example: consider the arithmetic mean X̄ = N−1 ∑

N
t=1 Xt

as an estimator for the the expectation value µ, i.e. µ̂ = X̄. A basic result in statistics is
the decrease in variance of the arithmetic mean with an increasing sample size N. For
random variables Xt, identically distributed with expectation value µ and variance σ2,
the variance of the arithmetic mean X̄ can be calculated as (Beran, 1994)

var(X̄) =
σ2

N2

N

∑
s,t=1

cor(Xs, Xt). (B.1)

For independent Xt with cor(Xs, Xt) = 0 for s 6= t this reduces to the well known result
var(X̄) = σ2/N. In case of a dependent process Xt, the calculation of var(X̄) requires to
consider the ACF ρ(τ). For a weakly stationary process, we find

var(X̄) =
σ2

N

[
1 + 2

N−1

∑
τ=1

(
1 − τ

N

)
ρ(τ)

]
. (B.2)

In case of a more specific description of the stationary process equation (B.2) can be fur-
ther simplified. It is instructive to consider two examples: an autoregressive process
(AR[1], cf. Section 2.2.1), as a prominent representative of a SRD processes, and a LRD
process, specified only by the limiting behaviour (2.21).
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Example 1: Short-Range Dependence

With the autocorrelation function for an AR[1] process ρ(τ) = aτ with |a| < 1 as de-
scribed in Section 2.2.1, equation (B.2) reads

var(X̄) =
σ2

N

[
1 + 2

N−1

∑
τ=1

(
1 − k

N

)
aτ

]
, (B.3)

which in the limit of large N reduces to

var(X̄) ≈ σ2

N

[
1 +

2a

1 − a

]
=

σ2

N
ca, (B.4)

with ca = 1 + 2a
1−a being a constant depending on the AR coefficient. In this case the

variance of the mean decreases at the same rate as for uncorrelated data, namely var(X̄) ∝

N−1, but with a different constant.

Example 2: Long-Range Dependence

For a process with an algebraically decaying ACF, ρ(τ) ∝ τ−γ with γ ∈ (0, 1), for large
lags the sum in (2.20) does not converge to a constant value. It behaves instead as

N−1

∑
τ=−(N−1)

ρ(τ) ∝ N1−γ, (B.5)

which in turn leads to

var(X̄) ∝
σ2

Nγ
. (B.6)

Because γ < 1, this algebraic decay of the variance of the mean is slower than the expo-
nential decay for uncorrelated or short-range correlated processes (Beran, 1994).

These examples point towards the pivotal difference in records from LRD and SRD
processes: given a sample of length N, for SRD processes the mean value can be estimated
with the variance decreasing as 1/N, while for a LRD process the variance of this estima-
tor decreases only with 1/Nγ and is thus in general larger. Consequently, the uncertainty
of statistical measures inferred from records of LRD processes is larger than in the case of
SRD. Statistical measures which are affected are, e.g., regression coefficients (Sibbertsen,
1999), semi-parametric trend estimates (Kallache et al., 2005; Craigmile et al., 2004) or
quantiles estimated from the frequency distribution (Koutsoyiannis, 2003). The latter
effect is of tremendous importance in extreme value statistics, e.g., when setting design
values for hydraulic constructions as dams, bridges or dykes (cf. Section 7; Rust et al.,
2006). The effect on regression coefficients is relevant with respect to trend detection, a
highly debated topic in the early years of climate change research: assuming a LRD pro-
cess underlying temperature records allows small trends to “hide” in the low frequency
variability and renders detection more difficult (cf. Sections 5.1.3, 5.2; Kallache, 2007). It
is thus of considerable importance to reliably detect an underlying LRD process. Having
discovered that a frequently used heuristic approach is prone to falsely detect LRD (Sec-
tion A.2; Maraun, Rust, and Timmer, 2004), the development of a different approach to
the detection of LRD based on parametric modelling and model selection is suggested in
Chapter 4.
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B.2 Physical Explanations of the Phenomenon

In the time after Hurst (1951), various explanations or descriptions of the Hurst phe-
nomenon emerged. In the 1960s Mandelbrot suggested increments of self-similar pro-
cesses to describe this effect (cf. Section 2.2.2). The aggregation of processes with different
time scales was suggested by Hipel and McLeod (1978). Certain types of instationarities
being held responsible for the phenomenon were discussed by Klemes (1974). The latter
two approaches are discussed in brevity in the following. An extensive overview about
the Hurst phenomenon from a hydrological perspective has been given by Koutsoyiannis
(2002, 2003).

Aggregation of Processes with Different Characteristic Time Scales

Hipel and McLeod (1978) showed that it is possible to preserve the Hurst phenomenon
(in particular the rescaled range statistic, Section B.3.1) for a finite time series with con-
ventional linear stochastic models (cf. Section 2.2.1). Granger (1980) showed that a su-
perposition of n first order autoregressive processes (AR[1], Section 2.2.1) lead to a long-
range dependent process in the limit of large n. The parameters a and ση of these pro-
cesses (2.23) have to be independent random variables following a beta distribution.
Physically, the parameter a is related to the relaxation time of the process. This implies
that a suitable superposition of relaxations with different characteristic time scales can
evoke the Hurst phenomenon.

Instationarities

Instationarities in the empirical series, such as a trend in the mean, have been held re-
sponsible for the Hurst phenomenon (e.g., Klemes, 1974). The latter motivated the de-
velopment of methods supposed to eliminate the influence of trends, like the detrended
fluctuation analysis (DFA) described in Section 2.3.3.

Other Explanations

Further variants of models showing the Hurst phenomenon are proposed for example
by Davidsen and Schuster (2002); Koutsoyiannis (2002) and Lillo et al. (2002). Especially
interesting is the idea of Maheu (2005). He suggests that heteroscedasticity, i.e. a non-
homogeneous variance, might also account for the phenomenon. Heteroscedasticity can
also be found in run-off records (Elek and Márkus, 2004).

B.3 Further Heuristic and Semi-Parametric Methods to Quantify

LRD

B.3.1 Rescaled Adjusted Range

Hurst (1951) studied the flow of the Nile using the rescaled adjusted range statistic (R/S).
Consider the inflow Xt at time t, the cumulative inflow Yt = ∑

t
i=1 Xi and the mean X̄t,s =

1/s ∑
t+s
i=t+1 Xt. The rescaled adjusted range is then

R/S = E

[
R(t, s)

S(t, s)

]

t

, (B.7)
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with

R(t, s) = max
0≤i≤s

[Yt+i − Yt −
i

s
(Yt+s − Yt)] − min

0≤i≤s
[Yt+i − Yt −

i

s
(Yt+s − Yt)],

and

S(t, s) =

√√√√s−1
t+s

∑
i=t+1

(Xi − X̄t,s)2.

For large s, a plot of log R/S versus log s is approximately scattered around a straight line
with slope H (Beran, 1994).

The R/S statistic was refined by Mandelbrot and others (e.g., Mandelbrot and Wallis,
1968b; Mandelbrot, 1972, 1975). Later Mandelbrot (1975) derived the asymptotic be-
haviour for R/S for short-range and long-range dependent processes. The latter can be
described following Beran (1994):

For Xt such that X2
t is ergodic and t−

1
2 ∑

t
k=1 Xk converges weakly to Brownian motion

as t → ∞ then for s → ∞ and Q(t, s) = R(t, s)/S(t, s)

s−
1
2 Q(t, s)

d→ ξ, (B.8)

with ξ being a nondegenerate random variable.
It remains open for which range of s the described asymptotic behaviour starts and

what the confidence interval of the estimate is. For a finite sample the distribution of H
is neither normal nor symmetric. All this makes inference about the value of H difficult.

In fact, in the presence of unanticipated high frequency behaviour, Lo (1991) noticed
the invalidity of a test for H = 0.5, i.e. uncorrelated series. Based on the asymptotic
theory for the R/S statistic by Mandelbrot (1975) this null hypothesis is rejected too often.
Lo (1991) developed a corrected statistic accounting for a wide range of high frequency
components.

The R/S statistic was not designed to discriminate between short-range and long-
range dependent processes, it is rather a tool to measure the Hurst exponent H in situa-
tions where the region of asymptotic behaviour is known. This is a severe shortcoming
encountered also in the description of further heuristic approach such as DFA (cf. Ap-
pendix A). In many fields where long-range dependence is to be taken into account, such
as geophysics or econometrics, also high frequency components are present. They need
to be accounted for in order to obtain reliable results.

B.3.2 Log-Periodogram Regression

In case a full-parametric description of the spectral density (Chapter 4) cannot be achieve
or is not pursued. The fractional difference parameter can be estimated using a semi-
parametric approach in the spectral domain. Referring to a definition of LRD (2.22), the
spectral density S(ω) close to the origin behaves as

S(ω) ∝ c f |ω|−β, |ω| → 0. [2.22]

The exponent β can be related to the fractional difference parameter d by β = 2d. Taking
the logarithm on both sides, the equation motivates a regression approach to estimate β
or, equivalently, the fractional difference parameter d. Consider

log I(ωj) ≈ log c f − β log |ωj| + uj, (B.9)

with a positive constant c f and j = l, . . . , m.
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The GPH Estimator

Geweke and Porter-Hudak (1983) (GPH) were the first to suggest the estimation of a pa-
rameter quantifying the long-range dependence (either β or d) using this kind of regres-
sion. However, instead of log ωj they considered log|1 − eiωj | as regressor motivated by
the exact form of the spectral density for fractional ARIMA processes (2.50). Furthermore,
they included frequencies ωj in the regression starting with j = 0 to obtain the estimate

d̂lp = β̂/2. Geweke and Porter-Hudak argued for the following Gaussian limiting distri-
bution of this estimator:

m1/2(d̂lp − d)
d→ N

(
0,

π2

24

)
. (B.10)

With this result, they provided a simple way to approximate confidence intervals and
carry out hypothesis testing (cf. Section 3.1.1).

However, Robinson (1995a) showed that their arguments do not hold. Mainly because
the residuals uj cannot be considered as asymptotically independent or homoscedastic.
Despite this, the desired limiting distribution (B.10) could be established by Robinson
for Gaussian processes using log ωj as regressor as suggested in (B.9) and by trimming
out the smallest frequency ωj (Robinson, 1995a). This result was generalised to linear
processes by Velasco (2000).

Semi-Parametric Whittle-Estimation

An even more efficient estimator was suggested by Künsch (1986) with the limiting dis-
tribution provided by Robinson (1995b). It is essentially based on Whittle estimation of
the model S(ω) = Cω−2d for the first m frequencies:

d̂K = arg min
d

{
log

[
1

m

m

∑
j=1

I(ωj)

ω−2d
j

]
− 2d

m

m

∑
j=1

log ωj

}
. (B.11)

Under milder regularity conditions than those required for (B.9), the limiting distribution
is given by

m1/2(d̂k − d)
d→ N

(
0,

1

4

)
, (B.12)

having a smaller variance and leading thus to a more efficient estimator. Different from

(B.9) no closed form for d̂k can be given. The estimate has to be obtained numerically in
the same way as described for the full-parametric Whittle estimator in Section 2.3.2.

Bandwidth Choice and Related Approaches

For d̂K, as well as for d̂lp a bandwidth m has to be chosen for the estimation. A brief review
on various approaches on the choice of an optimal bandwidth is given in Robinson (2003).
Henry and Robinson (1996) discuss an optimal choice of the bandwidth in the sense of a
bias-variance trade-off.

The log-periodogram regression for the non-stationary domain d > 0.5 has been dis-
cussed by Hurvich and Ray (1995). A similar approach to estimate the long-range depen-
dence parameter using wavelet analysis is described by Percival and Walden (2000) and
Wornell (1993).
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Combining Log-Periodogram Regression and ARMA[p, q] Parameter Estimation

It is conceivable to estimate the (fractional) difference parameter d and the autoregressive
moving average parameters ai and bj separately. In the early days of ARIMA[p, d, q] pro-
cesses (with d ∈ N), the estimation for integer differences has been carried out by heuris-
tic methods and for the following inference about the AR and MA parameters d was
assumed to be known (Box and Jenkins, 1976). For fractional differences d ∈ R, the first
step can be carried out using, e.g., the log-periodogram regression; the inference about
ARMA parameters, for example, by maximum likelihood. For the log-periodogram re-
gression it is possible to specify a confidence interval for the estimate of d in contrast
to the heuristic methods of estimating the integer difference paramters. However, the
influence of estimating d on the estimation of the autoregressive and moving average pa-
rameters is not accounted for. In a combined approach, i.e. simultaneous estimation of
the parameters d, ai and bj, this influence can be quantified via the covariance matrix V

of the parameter vector θ (Section 2.3.1).

B.4 Specific Test Statistics for Model Selection

In this section, we evaluate two statistics which can be used in the simulation-based
model selection described in Section 3.3.2. Being especially interested in the low fre-
quency behaviour, we investigate the performance of the log-periodogram regression
(Section B.3.2) and the DFA (Section 2.3.3) as further model selection criteria. For both
approaches one has to choose an appropriate bandwidth for the straight line fit. We use
this free parameter to optimise the power (Section 3.3.3), i.e. the separation of the two
distributions resulting from the simulations. For both criteria, we calculate p-values and
power and try to identify an optimal bandwidth. It turned out to be also instructive to
examine the dependence of the estimates on the bandwidth.

As an example, we consider the setting introduced in Section 4: a realisation of an
ARMA[3, 2] process (Section 4.1; Appendix B.5) and models FAR[1] and ARMA[3, 2]. We
estimate the model parameters from the realisation and obtain thus two fully specified
models. These two models are used to generate two ensembles of realisations. For all

ensemble members the estimates d̂lp (or d̂DFA, Section 2.3.3) are calculated. The esti-
mate from the observed series is then compared to the distribution obtained from the
ensembles. The p-values and power can be obtained in the same way as described for
the likelihood-ratio (cf. Section 3.3.2). For better readability, we denote the ARMA[3, 2]
model as f and the corresponding hypothesis as H f , analogously g represents the FAR[1]
model.

B.4.1 Log-Periodogram Regression

Bandwidth-Dependence of the Power

The power for a critical nominal level of α = 0.05 as a function of the bandwidth of the
linear fit is shown in Figure B.1 (left) for testing H f against Hg (green) and vice versa
(red). In both cases a maximum power is achieved for a bandwidths 0 < ω < ω1 =
0.0021: p̂ow f (g, 0.05) = 0.851 and p̂owg( f , 0.05) = 0.836. Thus this test is not as powerful

as the one based on the likelihood-ratio which exhibits a power p̂ow > 0.9 for both
test situations (Section 4.4.1). The distribution functions for the ensembles of fractional
difference parameter estimates for the two hypothesis are shown in Figure B.1 (right) for
the bandwidth with maximal power. The estimate obtained for the “observed” series is
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Figure B.1: Power of testing H f against Hg (green) and vice versa (red) at level α = 0.05 for var-
ious bandwidths 0 < ω < ω1 in the spectral domain (left). The lower bound ω1 where maximal
power is achieved is marked with a dashed vertical line. Distributions of the estimated fractional
difference parameters obtained from the bootstrap ensembles using the log-periodogram regres-
sion and the bandwidths of maximal power (right).

depicted as a vertical bar and is located in the gap between the two critical regions. Thus,
neither hypothesis can be rejected in this example.

Calculating p-Values

We further calculate p-values analogously to Section 3.3.2. For the bandwidth of maxi-
mal power, testing H f yields a p-value of p̂ f = 0.126. Testing Hg, we find p̂g = 0.071.
Figure B.2 shows the p-values for different bandwidths together with the power for the
two tests. The left plot refers to testing H f , the right plot Hg. In regions of high power,
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Figure B.2: p-values for different bandwidths together with the power for testing H f (left) and
Hg (right) based on the log-periodogram regression. The dotted horizontal lines mark the 1%, 5%
and 10%-level (bottom to top).

we find p-values for H f fluctuating above any reasonably level of significance in the left
plot. Whereas testing Hg p-values close to, or even below the 5%-level of significance can
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be observed in this region. This can be taken as indications for rejecting the FAR[1] in
favour of the ARMA[3, 2].

Bandwidth-Dependence of the Estimate

We confront the estimates d̂lp for different bandwidth with the corresponding mean val-
ues and standard deviations of the ensembles. This might provide further indications for

the model selection (Figure B.3). For a small bandwidth the fluctuation of the estimate d̂lp
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Figure B.3: Dependence of the mean and standard deviation of the distributions and the estimate
on the bandwidth. The vertical line marks the bandwidth where maximal power is attained.

obtained from the observed series is large. It falters between the mean values of both hy-
pothesis. With an increasing bandwidth this estimate approaches the course of the mean
of H f and stays close to it while the two distributions merge. This may be taken as further
indication for the ARMA[3, 2] hypothesis.

B.4.2 Detrended Fluctuation Analysis

Bandwidth-Dependence of the Power

We calculate the power as a function of the range of scales (or bandwidth) for the straight
line fit to the log-fluctuation function obtained with DFA (Figure B.4, left). For testing
H f , we find a maximum power at the standard 5%-level of p̂ow f (g, 0.05) = 0.861 for

a range of scales log s > log s1 = 2.6. The maximum power p̂owg(g, 0.05) = 0.851 for

Hg is attained for a range of scales log s > log s1 = 2.7. Also using this statistic does
not yield a test as powerful as the one based on the likelihood ratio (Section 4.4.1). The
two distribution functions for the fractional difference parameter estimates are shown in
Figure B.4 (right) together with the estimate of the “observed” series. Similar to the log-
periodogram regression, we find the observed value lrobs = 0.190 in a gap between the
two critical regions. We can thus not reject neither hypothesis.

Calculating p-Values

We calculate the p-values for the range of scales with maximum power. This yields
p̂ f = 0.132 for a test of compatibility with H f and p̂g = 0.057 for Hg. Figure B.5 shows
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Figure B.4: Power of testing H f hypothesis against Hg (green) and vice versa (red) for various
ranges of scales log s > log s1 in the time domain (left). Distributions of the estimated fractional
difference parameters (right) obtained from the bootstrap ensembles using DFA in the time do-
main and the range of scales where maximal power for testing hypothesis f is achieved.

the p-values together with the respective power for a variety of ranges of scales used for
the straight line fit. Here, we also find the p-values in regions of high power predomi-
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Figure B.5: Power and p-value for the testing H f (left) and Hg (right) based on the DFA. The
horizontal lines mark the 1%, 5% and 10%-levels (bottom to top).

nantly above a 10%-level for H f and frequently below the 5%-level for Hg. We note that
the p-values do not fluctuate as much as they do in the spectral domain. However, the
difference to the 10%-level in the case of model f and the difference to the 5%-level in
case of model g are also less pronounced.

Bandwidth-Dependence of the Estimate

The p-values changing with the range of scales used for the fit (Figure B.6) indicate that

the estimates d̂DFA rather follows the mean of H f . The distinction is not as clear as it is
in the case of the log-periodogram regression in Figure B.3. This, as well as the p-values
obtained in the previous paragraph, may be taken as a hint to favour the ARMA[3, 2].
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Figure B.6: Development of the mean and standard deviation of the hypothesis with varying
range of scales for DFA. The vertical line marks the range where maximal power is attained.

B.5 Constructing the Example Process – Detailed Description

The aim of this section is to generate challenging example series for testing the strategies
to detect LRD (Chapter 4). We start with a realisation {xi}i=1,...,N of an FARIMA[1, d, 0]
(or, for short, FAR[1]) process with parameters a1 = 0.7, d = 0.3 and length N = 215 =
32 768. The length and the parameters are chosen such that they are plausible for river
run-off, the context which we are going to apply this detection strategy in (Chapter 6). A
realisation of this process is shown in the time and spectral domain in Figure B.7. Now,

0 1000 3000 5000

−
5

0
5

FAR[1]
Index

D
at

a

5e−04 1e−02 5e−01

1e
−

05
1e

−
01

1e
+

03

FAR[1]

P
o

w
er

ω

Figure B.7: Realisation of a FAR[1] process with parameters a1 = 0.7, d = 0.3 and length N =
32 768, in the time domain (left, only the first 5 000 data points) and in the frequency domain
(right).

we aim to find a SRD model which describes this realisation well. We expect such a SRD
model to produce realisations which will be difficult to discriminate from realisations of
the original LRD process.
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Selecting an ARMA[p, q] model for the FAR[1] Realisation

We fit various ARMA[p, q] models with p < 4 and q < min(p, 2) and compare the values
for the Hannan-Quinn criterion (HIC) (cf. Section 3.2.2) in Figure B.8. The smallest value
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Figure B.8: Multiple ARMA[p, q] fits to the realisation of the FAR[1] process shown in Figure
B.7. The plot shows the values for the Hannan-Quinn criterion (HIC) for models with the order
1 < p < 4 and 0 < q < min(p, 2).

is attained for the ARMA[3, 2] process. Very close to this value, separated by less than 2
units, we find the ARMA[4, 1] model. About 4 units more yields the HIC for ARMA[4, 2].
Note, that at this stage we do not necessarily intent to find one “best model”. We are
rather looking for some ARMA[p, q] model representing the given FAR[1] realisation well
enough, such that realisations can be easily mistaken for coming from an LRD process.
There is no need to discriminate between these three similar performing models. For our
upcoming example, we choose the ARMA[3, 2] process with parameters a1 = 2.178, a2 =
−1.448, a3 = 0.309, b1 = −1.184 and b2 = 0.218. The model is completely specified and
we can now generate a realisation, which are used to study the detection strategies for
LRD in Chapter 4.





Appendix C

Bootstrap Methods for Confidence
Interval Estimation

We develop and discuss non-asymptotic strategies to assess the variability of return level
estimates from correlated data. These strategies are based on the bootstrap. With boot-
strap we denote here the generation of an ensemble of artificial maxima series simulated
from a model which was motivated by an empirical record (Davison and Hinkley, 1997).
In the following, we discuss and compare four different approaches by means of a simu-
lation study: given a known stochastic process, we generate an ensemble of realisations
which is used to assess the “true” variability of a 100-year return level estimate. On
the basis of one such realisation which is considered as an “observed” record we aim to
quantify the estimators variability using the four bootstrap approaches. The results of the
various approaches are compared to the “true” variability.

Prior to the discussion of the bootstrap approaches, we introduce the basic concepts
of extreme value statistics and return level estimation which are required here.

C.1 Extreme Value Statistics and the General Extreme Value Dis-

tribution

We introduce the Fisher-Tippett theorem, one of the fundamentals in extreme value statis-
tics and corresponding parameter estimation strategies for models of extremes. Further-
more, a generalisation of this theorem to stationary processes is discussed.

C.1.1 The Fisher-Tippett Theorem

The pivotal element in extreme value statistics is the three-types theorem, discovered by
Fisher and Tippett (1928) and later formulated in full generality by Gnedenko (1943). It
motivates a family of probability distributions, namely the general extreme value distri-
butions (GEV), as models for block maxima from an observed record, e.g., annual maxi-
mum discharge. Consider the maximum

Mn = max{X1, . . . , Xn} (C.1)

of a sequence of n IID random variables X1, . . . , Xn with common distribution function.
This can be, for example, daily measured run-off at a gauge. Mn represents the maximum
over n daily measurements. In hydrological applications the block size n defaults to
n = 365, i.e. annual maxima. This choice eliminates the influence of seasonality. Larger
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values for n are rarely possible because increasing n reduces the length of the maxima
series.

The three types theorem states that the probability distribution of the maxima series
converges to a specific distribution G(z):

Pr{(Mn − bn)/an ≤ z} → G(z), as n → ∞, (C.2)

with an and bn being normalisation constants and G(z) a non-degenerate distribution
function known as the general extreme value distribution (GEV)

G(z) = exp

{
−

[
1 + ξ

(
z − µ

σ

)]−1/ξ
}

. (C.3)

z is defined on {z ∈ R|1 + ξ(z − µ)/σ > 0}. The model has a location parameter µ, a
scale parameter σ and a form parameter ξ. The latter decides whether the distribution is
of type II (Fréchet, ξ > 0) or of type III (Weibull, ξ < 0). The type I or Gumbel family

G(z) = exp

[
− exp

{
−

(
z − µ

σ

)}]
, {z ∈ R| − ∞ < z < ∞} (C.4)

is obtained in the limit ξ → 0 (Coles, 2001).
It is convenient to transform (C.2) into

Pr{Mn ≤ z} ≈ G((z − bn)/an) = G∗(z). (C.5)

The resulting distribution G∗(z) is also a member of the GEV family and allows the nor-
malisation constants and the location, scale and shape parameter to be estimated simul-
taneously.

C.1.2 The Fisher-Tippett Theorem for Dependent Series

We consider an autocorrelated stationary series {X1, X2, . . .} and define a condition of
near-independence: for all i1 < . . . < ip < j1 < . . . < jq with j1 − ip > l,

|Pr{Xi1 ≤ un, . . . , Xip
≤ un, Xj1 ≤ un, . . . , Xjq ≤ un} − (C.6)

Pr{Xi1 ≤ un, . . . , Xip
≤ un}Pr{Xj1 ≤ un, . . . , Xjq ≤ un}| ≤ α(n, l), (C.7)

where α(n, ln) → 0 for some sequence ln, with ln/n → 0 as n → ∞. It can be shown
that the three types theorem holds also for correlated processes satisfying this condition
of near-independence (Leadbetter et al., 1983; Coles, 2001). This remarkable result im-
plies that the limiting distribution of the maxima of uncorrelated and (a wide class) of
correlated series belongs to the GEV family.

C.1.3 Parameter Estimation for the General Extreme Value Distribution

To fully specify the model, we estimate the GEV parameters for location (µ), scale (σ)
and shape (ξ) from the data. Estimates can be obtained in several ways: probability
weighted moments (Hosking et al., 1985; Hosking, 1990), maximum likelihood (Smith,
1985; Coles, 2001) or Bayesian methods (Smith, 1987; Coles and Tawn, 1996; Coles, 2001).
These different approaches have advantages and also drawbacks which are discussed in,
e.g., Hosking et al. (1985); Coles and Dixon (1999) and Smith (2001). In the following we
focus on ML estimation as the most general method. Within this framework models can
be easily extended, for example to non-stationary distributions (Coles, 2001) as used in
(Kallache, 2007; Bárdossy and Pakosch, 2005).
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Maximum-Likelihood Estimation

Let {Mn,1, Mn,2, . . . , Mn,m} be a series of independent block maxima observations, where
n denotes the block size and m the number of blocks available for estimation. We denote
Mn,i as zi. The likelihood function now reads

L(µ, σ, ξ) =
m

∏
i=1

g(zi; µ, σ, ξ), (C.8)

where g(z) = dG(z)/dz is the probability density function of the GEV. In the following,
we consider the negative log-likelihood function l(µ, σ, ξ|zi) = − log L(µ, σ, ξ|zi). For the
GEV, we have

l(µ, σ, ξ|zi) = −m log σ − (1 + 1/ξ)
m

∑
i=1

log

[
1 + ξ

(
zi − µ

σ

)]
−

m

∑
i=1

[
1 + ξ

(
zi − µ

σ

)]−1/ξ

.

(C.9)

with 1 + ξ
(

zi−µ
σ

)
> 0, for i = 1, . . . , m.

For the Gumbel distribution (ξ → 0) extra treatment is required and the log-likelihood
reads

l(µ, σ, ξ|zi) = −m log σ −
m

∑
i=1

(
zi − µ

σ

)
−

m

∑
i=1

exp

{
−

(
zi − µ

σ

)}
. (C.10)

Minimising the log-likelihood with respect to θ = (µ, σ, ξ)† leads to the ML estimate

θ̂ = (µ̂, σ̂, ξ̂)† for the GEV. Under suitable regularity conditions – among them indepen-
dent observations zi – and in the limit of large block sizes (n → ∞) θ̂ is multivariate
normal distributed:

θ̂ ∼ NMV(θ0, IE(θ0)
−1) (C.11)

with IE(θ) being the expected information matrix (or Fisher information matrix) mea-
suring the curvature of the log-likelihood. Denoting the elements of the inverse of IE

evaluated at θ̂ as β j,k we can approximate an (1 − α)100%-confidence interval for each

component j of θ̂ by

θ̂j ± z α
2

√
β j,j, (C.12)

with z α
2

being the (1 − α/2) quantile of the standard normal distribution (Coles, 2001).
For maximum-likelihood parameter estimation for the GEV, we use the package evd

(Stephenson and Ferro, 2004) written for the open source statistical language environ-
ment R (R Development Core Team, 2004)1.

Calculating an m-Year Return Level

The m-year return level can be calculated straightforwardly once the location, scale and
shape parameter are estimated. In case of the Gumbel distribution (ξ = 0) the equation
reads

r̂m = µ̂ − σ̂ log(y), (C.13)

with y = − log(1 − 1
m ). For a non-zero shape parameter ξ we have

r̂m = µ̂ − σ̂

ξ̂

(
1 − y−ξ̂

)
, (C.14)

1Both are freely available from http://cran.r-project.org.

http://cran.r-project.org
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An approximated confidence interval for r̂m can be obtained under the hypothesis of
a normally distributed estimator making use of the standard deviation σ̂rm

. The latter can
be calculated from the information matrix using the delta method (Coles, 2001). For the
Gumbel distribution we obtain

σ2
r̂m

= β11 − (β22 + β21) log

(
− log

(
1 − 1

m

))
+ β22

(
log

(
− log

(
1 − 1

m

)))2

. (C.15)

C.2 Bootstrapping the Estimators Variance

We discuss four different strategies to generate a bootstrap ensemble. Three of them
explicitely account for correlations in the series.

bootstrapcl The first ansatz is a classical bootstrap resampling of the maxima (Efron,
1979; Davison and Hinkley, 1997), denoted in the following as bootstrapcl: one ensemble
member is generated by sampling with replacement from the annual maxima series. Au-
tocorrelation is not taken into account here.

iaaftd We denote the second strategy as iaaftd, it makes use of the daily observations.
Ensemble members are obtained using the iterative amplitude adjusted Fourier trans-
form (IAAFT) – a surrogate method described in Section C.2.4. The IAAFT generates
artificial series (so-called surrogates) preserving the distribution and the correlation struc-
ture of the observed daily record. Subsequently, we extract the maxima series to obtain
an ensemble member. Linear correlation is thus accounted for in this case.

bootstrapfp The third strategy is a full-parametric bootstrap approach, which is denoted
as bootstrapfp. It is based on a parametric model for the distribution function and one for
the autocorrelation function of the annual maxima. Here, the Fisher-Tippett theorem
motivates a parametric model for the maxima distribution.

bootstrapsp Based on the latter, we propose a semi-parametric approach, denoted as
bootstrapsp. It similarly uses a parametric model for the ACF of the maxima series. Instead
of the GEV, we choose a non-parametric model for the distribution function.

While the first two strategies are common tools in time series analysis and are well de-
scribed elsewhere (Davison and Hinkley, 1997; Schreiber and Schmitz, 2000), we focus on
describing the full-parametric and semi-parametric bootstrap strategy. Before going into
detail, we discuss the main idea, which is used to “emulate” sampling from a dependent
process.

C.2.1 Emulating Dependence

A return level estimate is derived from an empirical maxima series which we consider
as a realisation of a stochastic process. The aleatoric uncertainty of such an estimate is
basically a consequence of the variability between different realisations of this process.
The latter is in general larger for samples from dependent processes. A simple example
illustrates this effect in the following.

As a measure for the variability between the empirical distributions of different re-
alisations/samples, we consider the deviation of a realisation’s empirical distribution
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function from the true distribution function. It is more likely to have obtained a good
representative for the true maxima distribution from one sample if this variability is low.
Consider two long realisations (N = 10 000), one from an LRD (FARIMA[1, d, 0], Sec-
tion 2.2.2) and one from an uncorrelated process. We compare the difference between the
empirical cumulative distribution functions F̂s(x) of short sections and the empirical cu-
mulative distribution F̂0(x) of the entire realisation by means of the Kolmogorov-Smirnov
distance D = maxx |F̂s(x) − F̂0(x)| (DeGroot, 1975). Smaller distances D indicate a larger
similarity between F̂s and F̂0. Figure C.1 shows the empirical cumulative distribution
function of differences D for various sections. For the correlated process, we find the dis-
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Figure C.1: Empirical cumulative distribution function F̂(D) of the Kolmogorov-Smirnov dis-
tances D between sections of 100 points and the entire series of 10 000 points. For the uncorrelated
record (circles) distances D are located at smaller values than for the correlated record (triangles).

tribution of distances D located at larger values. This implies a larger diversity among
the distributions than for the uncorrelated process. Realisations of correlated processes
are therefore not as likely to yield as representative results for the underlying distribution
as a comparable sample of an uncorrelated process.

Because the variability of the return level estimator is a consequence of the corre-
sponding maxima distribution, we employ this illustrative example for our purposes and
derive a strategy to emulate the sampling from a dependent series. Instead of sampling
from a dependent process with the desired marginal distribution, we use the follow-
ing procedure: 1) generate a long sample from an uncorrelated process with the desired
marginal distribution, 2) rearrange the values such that they satisfy a desired autocor-
relation structure, and 3) divide the long record into sections of the original length and
estimate the desired quantities from them. Due to the rearrangement, similar values
are nearby (in time) and samples, i.e. short sections, get less informative regarding the
marginal distribuion function. Ideally, the marginal distribution function and the ACF
used to generate this long record should be close to the underlying properties of the pro-
cess under consideration. This means to provide a satisfying model for the distribution
of the maxima series and for its ACF. Realisations of these two models are then combined
to obtain one sample satisfying both characteristics, the desired distribution function and
the ACF.

In the following, we describe the way these two models are obtained and how their
realisations are combined.
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C.2.2 Modelling the Distribution

The aim of modelling the distribution is to provide means to generate realisations from
this model used in a later step of the bootstrap procedure. For the semi-parametric ap-
proach, the distribution of the maxima is modelled by the empirical cumulative distri-
bution function from the observed series. Realisations can be obtained simply by sam-
pling with replacement from the observed maxima series (Davison and Hinkley, 1997).
The full-parametric ansatz instead exploits the Fisher-Tippett theorem for extreme values
(Section C.1). It uses the parametric GEV family as a model for the maxima. Realisations
are then obtained directly by sampling from this model.

C.2.3 Modelling the ACF using FARIMA[p, d, q] Processes

The autocorrelation function is modelled using FARIMA[p, d, q] processes (Section 2.2.2),
for parameter estimation and model selection we use the Whittle estimator (Section 2.3.2)
and the model selection strategies described in Chapter 3.

There is, however, a further difficulty to overcome: the modelling of the ACF of the
maxima series is not straightforward. The reason is that the maxima series are in practice
relatively short and, analysed with standard methods, appear to be weakly correlated or
even uncorrelated, as exemplified with the ACF estimate in Figure 7.2 (left, solid line).
Direct modelling using the empirical maxima series is therefore frequently not feasible.
To supermount this difficulty, we first model the ACF of the daily run-off records with
a FARIMA[p, d, q] process and assume this to be a good representation of the true ACF.
We use this model to generate one or more series sufficiently long to model the ACF of
their maxima series with a FARIMA[p, d, q] process. The latter is then assumed to be a
reasonable model for the empirical maxima series as well. However, generating time
series longer than the length of the empirical one means to interpret the ACF (or the
spectrum) of the model on time scales larger than the length of the empirical series.

C.2.4 Combining Distribution and Autocorrelation

Having a model for the distribution function and for the ACF, we can generate realisa-
tions, i.e. a sample {Xi}i=1,...,N from the distribution model and a series {Yi}i=1,...,N from
the FARIMA[p, d, q] model. To obtain a time series {Zi}i=1,...,N with distribution equal to
the one of {Xi} and ACF comparable to that of {Yi}, we employ the iterative amplitude
adjusted Fourier transform (IAAFT), described in the following.

The IAAFT was developed by Schreiber and Schmitz (1996) to generate surrogate
time series used in tests for nonlinearity (Theiler et al., 1992). The surrogates are gen-
erated such that they retain the linear part of the dynamics of the original time series
including a possible non-linear static transfer function. This implies that the power spec-
trum (or ACF, equivalently) and the frequency distribution of values are conserved. The
algorithm basically changes the order of the elements of a record in a way that the peri-
odogram stays close to a desired one (Schreiber and Schmitz, 2000).

Besides using the IAAFT on the daily series to generate an ensemble of surrogates (de-
noted as iaaftd), we employ this algorithm also to create records {Zi} with a periodogram
prescribed by a series {Yi} and a frequency distribution coming from {Xi}.
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C.2.5 Generating Bootstrap Ensembles

With the preceedingly described three building blocks we are now able to obtain realisa-
tions with distribution and ACF of comparable to the empirical maxima series. This pro-
vides the basis to generate the full-parametric and semi-parametric ensembles bootstrapfp

and bootstrapsp, respectively. The strategies can be outlined as follows:

0. If necessary, transform the daily run-off data (length Ndata) such that this the distri-
bution follows approximately a Gaussian distribution. In many practically relevant
cases, this can be achieved using a logarithmic or the more general Box-Cox trans-
formation (Section D.2.2; Hipel and McLeod, 1994; Box and Cox, 1964).

1. Model the correlation structure of the empirical maxima:

(a) Remove periodic cycles (e.g., annual, weekly).

(b) Model the correlation structure of the resulting anomaly series (e.g., daily or
monthly) with FARIMA[p, d, q] processes (Section 2.2.2) and select the most
suitable model (Chapter 3).

(c) Generate one or more long series from this model (Nlong & 100Ndata).

(d) Add the periodic cycles from step 1a. The result is a long series sharing the
spectral characteristics, especially the seasonality with the empirical record.

(e) Extract the annual maxima series.

(f) Model the ACF of this series using a FARIMA[pmax, dmax, qmax]2 process, select
an appropriate model. In case several realisations are obtained in step 1c, the
parameter estimates can be averaged.

2. Model the distribution of the empirical maxima series (length Nmax) according to
the approach used:

bootstrapfp: Estimate the parameters of a GEV model from the empirical maxima
series using, for example, maximum-likelihood estimation (Section C.1.3).

bootstrapsp: Use the empirical maxima distribution as model.

3. Generate an ensemble of size Nens of maxima series (length Nmax) with correlation
structure and value distribution from the models found in 1 and 2:

(a) Generate a series {Yi}i=1,...,Nens Nmax
with the FARIMA[pmax, dmax, qmax] model

from step 1f.

(b) Generate a sample {Xi}i=1,...,Nens Nmax
according to the approach used:

bootstrapfp: from the GEV model specified in step 2a.

bootstrapsp: from sampling with replacement from the empirical maxima se-
ries.

(c) By means of IAAFT {Xi} is reordered such that its correlation structure is sim-
ilar to that of {Yi}. This yields {Zi}i=1,...,Nens Nmax

.

(d) Splitting {Zi} into blocks of size Nmax yields the desired ensemble of maxima
series.

4. Back-transform the ensemble members applying the inverse transformation from
step (0).

2Here, the index max indicates that these parameters or model orders pertain to the maxima series
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Finally, estimate the desired return level from each ensemble member (Section C.1.3).
This yields a frequency distribution of return level estimates which can be used to assess
the variability of this estimator.

C.3 Comparison of the Bootstrap Approaches

On the basis of a simulation study, we carry out a comparison of the four different boot-
strap approaches bootstrapcl, iaaftd, bootstrapfp, and bootstrapsp. The stochastic process we
use here is chosen such that its correlation structure as well as its value distribution are
plausible in the context of river run-off. This is a FARIMA[p, d, q] process similar to those
used by Montanari et al. (1997) to model run-off. Since the marginal distribution of this
process as described in Section 2.2.2 is Gaussian, we subsequently carry out an expo-
nential transformation to obtain a log-normal distribution. This process (including the
transformation) is used to generate a Monte Carlo ensemble of (simulated) daily run-off
series. For each ensemble member we extract the maxima series and estimate a 100-year
return level. The resulting distribution of 100-year return level estimates represents the
estimator’s variability for this process. In the following, this distribution is used as a
reference to measure the performance of the various bootstrap approaches. In order to
call a bootstrap approach useful, we require it to reproduce this reference distribution of
return level estimates reasonably well on the basis of one ensemble member. In practical
applications, this one ensemble member is replaced by an observed series.

We now take a representative realisation out of this ensemble and consider it as a
record, we possibly could have observed. On the basis of this “observed” series, we
generate the four bootstrap ensembles according to the approaches presented in Sec-
tion C.2.5. The resulting four frequency distributions of the 100-year return level esti-
mates are then compared to the distribution of the reference ensemble and to the asymp-
totic distribution of the ML-estimator for IID observations.

C.3.1 Monte Carlo Reference Ensemble

We simulate the series for the reference ensemble with a FARIMA[1, d, 0] process with
parameters d = 0.25 (or H = 0.75), φ1 = 0.9, variance σ2 ≈ 1.35, zero-mean Gaussian
driving noise η ∼ WN (0, ση), and length N = 36 500 (100 years of daily observations).
The skewness typically found for river run-off is achieved by subsequently transforming
the records to a log-normal distribution. To resemble the procedure of estimating a 100-
year return level we extract the annual maxima (n = 365) and estimate a 0.99 quantile
using a Gumbel distribution as parametric model. From an ensemble of 100 000 runs, we
obtain a distribution of 100-year return levels (0.99 quantiles) serving as a reference for
the bootstrap procedures.

C.3.2 The Bootstrap Ensembles

On the basis of the “observed” series we generate the four bootstrap ensembles iaaftd,
bootstrapcl, bootstrapfp, and bootstrapsp. Following the outline in Section C.2.5, we start
with a log-transformation as a static transformation (step 0). Because there are no peri-
odic cycles in this example, we skip step 1a and start modelling the correlation structure
of the “observed” daily series using FARIMA[p, d, q] processes (Section C.2.3) and the
proposed model selection strategies (Chapter 3). The model selected is a FARIMA[1, d, 0]
with parameters and asymptotic standard deviation: d = 0.250(0.008), φ = 0.900(0.005)
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and σ2
η = 0.0462 (step 1b). This model is used to generate an artificial series longer than

the original one (Nlong = 100Ndata, step 1c). The extracted annual maxima series (step 1e)
contains Nmax = 10 000 data points. Modelling this artificial maxima series results in a
FARIMA[0, d, 0] (step 1f) with d = 0.205(0.008) and σ2

η = 0.535.

The next step (2) consists of building a model for the distribution of the maxima
series. For the full-parametric bootstrap ensemble bootstrapfp, we get back to the “ob-
served” series and model the annual maxima (Nmax = 100) with a parametric Gumbel
distribution (step 2a). This results in ML-estimates for the location and scale parameters:
µ = 10.86, σ = 8.35. The semi-parametric approach bootstrapsp does not need a model
but uses a classical bootstrap resampling from the empirical annual maxima series. We
can now generate the desired bootstrap ensembles bootstrapfp and bootstrapsp both with
1 000 ensemble members (Nens = 1 000, step 3). Finally, the ensemble is back-transformed
using the exponential function (step 4).

Figure C.2 compares the frequency distributions of estimated return levels from the
four bootstrap ensembles to the reference distribution (grey filled) and to the asymptotic
distribution of the ML-estimator (dotted). The left plot shows the result of the bootstrapcl

(solid) and the iaaftd (dashed) ensembles. While bootstrapcl accounts for more variability
than the asymptotic distribution, iaaftd exhibits less variability, although it takes autocor-
relation of the daily data into account. This might be due to the fact that the records in the
iaaftd ensemble consists of exactly the same daily run-off values arranged in a different
order. While this allows for some variability on the daily scale, an annual maxima series
extracted from such a record is limited to a much smaller set of possible values. Because
the temporal order of the maxima series does not influence the return level estimation,
the variability of the estimates is reduced.

The right panel in Figure C.2 shows the result from the bootstrapsp (solid) and the
bootstrapfp (dashed) ensembles. The latter strategy is slightly better than bootstrapcl but
still yields a too narrow distribution. In contrast, the result from the bootstrapsp ensemble
gets very close to the reference ensemble. Thus, this approach is a promising strategy to
improve the uncertainty analysis of return level estimates and is studied in more detail
in the following section.

C.3.3 Ensemble Variability and Dependence on Ensemble Size

The dependence on the ensemble size can be studied performing an extensive simulation
study. We generate different sets of bootstrapsp ensembles, each set containing 100 ensem-
bles of a fixed size. We are interested in the variability of the ensemble runs within one
set of fixed size and in the effect of the ensemble size. The ensemble size varies between
Nens = 50 and Nens = 6 000. Figure C.3 shows these quantiles estimated from these en-
sembles for different ensemble sizes.
The variability of the quantile estimates within a set of ensembles of the same size de-

creases with increasing ensemble size, as indicated by the converging clouds of grey dots.
Consequently, the ensemble size should be chosen according to the accuracy needed. For
small sizes, the means of the selected quantiles are close to the values from the reference
ensemble, especially for the three upper quantiles. With an increasing size, difference to
the reference ensemble increases for the extreme quantiles until they stagnate for ensem-
bles with more than about 2 000 members. In this range, the the difference between the
95% quantile of the bootstrap and the reference ensemble is less than 4% of the return
levels estimate. A reason for this mismatch might be the dependence of ensemble mem-
bers in one ensemble. One might thus hypothesise, that also the quantiles estimated from
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Figure C.2: Comparison of the result for different bootstrap ensembles to the MC reference en-
semble (grey area) and the asymptotic distribution of the ML-estimator (dotted). The bootstrap
ensembles consist each of 1 000 members. The left plot shows the results of the non-parametric
bootstrap resampling and the daily IAAFT surrogates. The full-parametric and semi-parametric
bootstrap strategies are shown in the right plot.

50 100 200 500 1000 2000 5000

3
0

4
0

5
0

6
0

7
0

Various Ensemble Sizes

Ensemble Size

Q
u

a
n

ti
le

s
 o

f 
B

o
o

ts
tr

a
p

 E
n

s
e

m
b

le

5
%

2
5

%
7

5
%

9
5

%

Figure C.3: The quantiles of the semi-parametric bootstrap ensembles of different size. 100 en-
sembles of the same size are grouped in a set. The 5%, 25% 50% 75% and 95%-quantiles of each
ensemble in a set is marked with a grey dot. This results in grey areas representing the variability
within a set of ensembles. The solid lines connect the mean values of the set for each quantile.
The quantiles from the reference ensemble are represented as a dotted line.



C.4 Summary 143

the ensemble members are dependent. It is conceivable to generate independent ensem-
ble members, simply by cutting one member out of the long series, instead of Nens, and
repeat this Nens times. This is, however, numerically more costly.

C.4 Summary

We develop and compare four methods to generate bootstrap ensembles of maxima se-
ries which are used to quantify the aleatoric uncertainty of a return level estimator in the
presence of correlation. With a simulation study, we could verify that one of the four
strategies, the semi-parametric bootstrap bootstrapsp, works reasonably well and outper-
form the other three strategies. This approach is studied in more detail with respect
to inter-ensemble variability and a variable ensemble size. This variability among en-
sembles decreases with an increasing ensemble size. For large ensemble sizes, the mean
values for the quantiles obtained from one set of ensembles does not coincide with the
quantiles of the reference ensemble. The difference is small compared to the quantiles
obtained on the basis of the IID assumption. A reason for this mismatch might be the
dependence of the ensemble members within one ensemble. This can be a starting point
for further investigation.

The approach is presented in the framework of GEV modelling of annual maxima us-
ing maximum likelihood. The concept can also be applied in the context of other models
for the maxima distribution (e.g., log-normal, Pearson type III, etc.) or different parame-
ter estimation strategies (e.g., probability weighted moments). Furthermore, it is conceiv-
able to extend the class of models describing the dependence to FARIMA[p, d, q] models
with conditional driving noise (FARIMA-GARCH (Elek and Márkus, 2004)) or seasonal
models (Montanari et al., 2000; Lohre et al., 2003).

The properties of the modelling approach using FARIMA[p, d, q] and a subsequent
adjustment of the values has been investigated in more detail using simulation studies
by Venema, Bachner, Rust, and Simmer (2006). It was demonstrated that the combination
of FARIMA[p, d, q] models and the IAAFT is able to reproduce also other characteristics
of time series then the distribution and power spectrum. Also the increment distribution
and structure functions for river run-off are reasonably well recovered.

In the approach described, we obtain a model for the ACF of the maxima series only
with the help of a model of the daily series. The longer this daily series is the more reliable
the model will be. It is, however, also possible to include available annual maxima in the
procedure for periods where daily series have not been recorded





Appendix D

Data Sources and Preprocessing

This part of the appendix gives the sources of the data which was analysed in this thesis.
Furthermore, the methods used to preprocess these records are briefly explained and, in
addition, the preprocessing itself is presented in detail for the Prague daily mean temper-
ature studied in Section 5.1, and the three run-off records analysed in Chapter 6.

D.1 Data Sources

Temperature

The record of the maximum temperature measured at the Clementinum in Prague (Czech
Republic) was obtained from the xDAT data based hosted at the Potsdam Institute for Cli-
mate Impact Research (Potsdam, Germany) and maintained by the Scientific Data Man-
agement Group: M. Flechsig, A. Glauer, C. Rachimow, M. Wrobel. The data set was down-
loaded 22 April 2003 and was provided by the Czech Hydro-meteorological Institute.

Northern hemisphere mean temperatures from 1856 to 2005 at a monthly resolution
was obtained from the Climate Research Unit (University of East Anglia). The data set
used here can be found at http://www.cru.uea.ac.uk/ftpdata/tavenh2v.dat. A de-
tailed description on how the data set was obtained is given by Jones et al. (1999).

Run-Off

The run-off data from the Danube river at Achleiten and the Große Vils at Vilsbiburg were
kindly provided by the Bayerisches Landesamt für Umwelt (München, Germany) in per-
son of Dr. J. Neummann within the framework of the project “Skalenbezogene Analyse
hydrologischer Zeitreihen: Bestimmung von Trends, Charakterisierung der Fluktuatio-
nen, stochastische Modellierung und Extremwertstatistik” financed by the German Fed-
eral Ministry of Education and Research.

Vistula run-off data measured at the gauge Tczew was obtained from the Global Run-
off Data Centre at the Federal Institute of Hydrology (Koblenz, Germany). The data file
was generated at 20 September 2006. The GRDC internal numbering is 6458010.

D.2 Preprocessing

As preprocessing, we understand a) a static transformation function applied to the ob-
served values in order to symmetrise the frequency distribution and to obtain a more

http://www.cru.uea.ac.uk/ftpdata/tavenh2v.dat
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Gaussian like shape, and b) the estimation and subtraction of periodic cycles and polyno-
mial trends. A periodic cycle is, for example, an annual cycle in the case of temperature
records and, additionally, a potential weekly cycle for the run-off records.

The static transformation function as well as the estimation and subtraction of the
periodic cycles are explained in the following. This is followed by a detailed description
of the preprocessing of the individual data sets.

D.2.1 Estimation of Periodic Cycles

A description of a periodic component can be obtained by estimating the mean and the
variance for days with a specified position s in the cycle, i.e. for an annual cycle: 1 January,
2 January, and so on. For a record with n cycles of length S, we have (Hipel and McLeod,
1994)

µ̂s =
1

n

n

∑
j=1

xs,j, s = 1, 2, . . . , S, (D.1)

where s denotes the location in the cycle and j indexes the successive cycles. For daily
data and an annual cycle S = 365. Analogously, one can estimate the variance as

σ̂2
s =

1

n − 1

n

∑
j=1

(xs,j − µ̂s)
2, s = 1, 2, . . . , S. (D.2)

We can now calculate a series of normalised anomalies by

ỹs,j =
xs,j − µ̂s

σ̂s
, (D.3)

or, even simpler, if there is no need to account for seasonality in the variance

ỹs,j = xs,j − µ̂s. (D.4)

The latter expression can be derived within the framework of linear filtering as shown,
e.g., by Hipel and McLeod (1994).

D.2.2 Box-Cox Transformation

With a non-linear static transformation function asymmetries and discrepancies to a Gaus-
sian distributions can be reduced. Such a transformation is the Box-Cox transformation
(Box and Cox, 1964). For records {xi}i=1,...,N with xi > 0 for all i ∈ {1, . . . , N}, it is defined
as

y =

{
(xλ−1)

λ , λ 6= 0
log(x), λ = 0

.

The parameter λ is chosen such that the unconditional Gaussian likelihood is maximised.
In the context of run-off records, the use of the Box-Cox transformation is discussed by,
e.g., Hipel and McLeod (1994).
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D.3 Preprocessing of Run-Off and Temperature Records

D.3.1 Prague Daily Maximum Temperatures

Annual Cycle

The most dominant feature in the Prague temperature record is the annual seasonal cycle
which we interpret as a deterministic time dependent variation of the mean and possi-
bly the variance with a fixed period. An estimate of this cycle is shown in Figure D.1
(left). The temperature maximum is approximately at the beginning of August. A mini-
mum variance can be observed in October. We can now calculate a series of normalised
temperature anomalies (Figure D.1, right) using (D.3).
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Figure D.1: Mean annual cycle for Prague maximal temperature series (left). The lines mark the
mean (black) plus/minus one standard deviation (grey). The right plot shows the first ten years
of the normalised temperature anomalies ∆T.

Box-Cox Transformation

We check the compatibility of the deseasonalised record with a Gaussian distribution
using a quantile-quantile plot (QQ-plot, Figure D.2, left). Besides the tails the agreement
is already quite good. A Box-Cox transformation can be used to transform the record
such that its distribution is closer to a Gaussian. The improvement is small in this case.

The likelihood for the transformation attains its maximum setting λ̂ = 1.07. Although
the improvement is minor, we consider in the following the Box-Cox transformed record.

Trend in the Mean

To investigate for a potential instationarity in the mean, we plot the Box-Cox transformed
temperature anomalies together with a ten year running mean (red, Figure D.2). The plot
suggests a small decrease in the mean value during the first half of the 19th century and
an increase during the 20th century. Because the trend is not monotonic, we consider a
polynomial of second order,

y = a + bt + ct2, (D.5)
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Figure D.2: QQ-plot against a Gaussian for the normalised temperature anomalies (left). De-
seasonalised and Box-Cox transformed anomalies (right, grey) with the overall mean (black) a
10-year running mean (red) and a polynomial fit of second order (blue).

to parametrically describe the trend. The regression parameters are estimated using least-
squares and the result is shown as a green line (Figure D.2, right). The record with this
trend component subtracted is referred to as residuals in the following.

It is not straightforward to decide whether the second order polynomial is to be pre-
ferred to, e.g., a straight line or – even more fundamental – if such a deterministic trend
component is significant in a statistical sense at all. The reliability of such a statistical
test depends on the assumption of the underlying stochastic process (cf. Cohn and Lins,
2005). Standard approaches like the F-test, likelihood-ratio test or t-test assume a white
noise process, i.e. independent observations. Because we have a strongly correlated
record, as shown by the autocorrelation series (Figure 5.2), this assumption is not ad-
equate. More refined strategies are thus needed. We suggest a conservative test ac-
counting for correlation in Section 5.1.3. More advanced, non-parametric trend detection
strategies for correlated series are discussed by, e.g., Kallache, Rust, and Kropp (2005),
Craigmile et al. (2004) and Kallache (2007).

D.3.2 Danube Daily Mean Run-Off at Achleiten

Box-Cox Transformation

The histogram of the Danube run-off record (Figure 6.2, right) reveals the asymmetric
shape of the observed run-off frequency distribution. We use a Box-Cox transforma-

tion (Section D.2.2) with a ML estimate of the parameter λ̂ = −0.098 to obtain a more
Gaussian-like shape. A comparison of the transformed record to a Gaussian distribution
is carried out after subtraction of the periodic cycles and the trend (Figure D.5, right).

Periodic Cycles

For the transformed series, we estimate an annual periodic component for the mean and
variance (Appendix D.2.1). Figure D.3 (left) depicts one cycle of this component. The
discharge peaks at about the middle of the year. Having removed the annual cycle, peaks
in the periodogram of the resulting anomalies Q∗ at f = 1/7, f = 2/7 and f = 3/7
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Figure D.3: Mean annual cycle for the Achleiten run-off record (left), mean (black) plus/minus
one standard deviation (grey). The right plot shows the mean weekly cycle for the period 1901-
1959 (red) and 1960-2003 (green). To facilitate the presentation, the standard deviation is not
shown here. Q∗ denotes the Box-Cox transformed run-off and Q̃ is a dimensionless quantity.

(corresponding to periods of 7 days and higher harmonics) 1 give evidence for an addi-
tional weekly component (Figure D.4, left). In a first attempt, we estimate and remove a
weekly cycle analogously to the annual one. This reduces but not eliminates the peaks in
the periodogram at the considered frequencies. Contrary to the annual cycle, the weekly
periodicity is of anthropogenic nature, e.g. due to flow regulations or industrial use. This
cycle is thus not necessarily constant within the time period considered. An analysis
based on the windowed Fourier transform suggests a major change in the amplitude of
the weekly cycle at about 1960. Therefore, instead of assuming a constant cycle over
the full observation period, we allow two different cycles: one for the periods 1901 to
1959 and a second for 1960 to 2003 (Figure D.3, right). The σ intervals are large com-
pared to the variability of the mean values and we refrain from plotting them to obtain a
clearer picture of the difference in the cycles’ amplitudes. Compared to the pronounced
annual seasonality, these cycles are rather small in magnitude. They are, nevertheless,
subtracted, since they hinder the further analysis. Figure D.4 (right) reveals a substantial
reduction in the peaks of the periodogram, corresponding to the weekly cycle.

Trend in the Mean

This preprocessing leaves us with the anomaly series depicted in Figure D.5 (left). A vi-
sual inspection of the ten-year running mean (red) suggests no noticeable tendency. The
straight line fit (green) to the dimensionless values yields an increase of 3.14 · 10−3 per
year. If we assume uncorrelated observations, a t-test for the slope being compatible with
zero results in a p-value of p = 0.07 and is thus not significant on a 5%-level. A signif-
icance test as well as confidence intervals for a correlated series is not straightforward
(Appendix D.3.1). In this case, however, the trend will as well not be significant (on the
5%-level) if we account for the autocorrelation (cf. Cohn and Lins, 2005).

The QQ-plot of the anomalies versus a Gaussian distribution shows compatibility for
the central part of the distribution but reveals minor deviations in the tails (Figure D.5,

1If the weekly cycle is not well approximated by a sinusoidal function at the respective frequency ( f =
1/7), higher harmonic components at frequencies f ∈ {2/7, 3/7} can be used to ameliorate the description.
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Figure D.4: Periodogram of the Danube run-off anomalies at Achleiten with the annual cycle
in mean and variance removed (left). The same record with additionally the weekly periodic
component removed (right). The dashed blue lines mark the frequencies corresponding to the
annual ( f = 1/365) and weekly periodicities ( f = 1/7, f = 2/7 and f = 3/7).
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Figure D.5: Danube run-off anomalies as time series (grey, left) with a 10-year running mean (red)
and a straight-line fit (blue). The right panel compares the residuals to a Gaussian in a QQ-plot.
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right).

D.3.3 Große Vils Daily Mean Run-Off at Vilsbiburg

Box-Cox Transformation

The histogram in Figure 6.7 (right) reveals the asymmetric frequency distribution of the
observed run-off values. We thus initially use a Box-Cox transformation (Section D.2.2)

with a maximum-likelihood estimate of the exponent λ̂ = −0.588 to obtain a more
Gaussian-like shape. The comparison of the transformed record to a Gaussian is carried
out after the periodic cycles and the trend have been subtracted (Figure D.8, right).

Periodic Cycles

For the transformed series, we estimate an annual periodic component for the mean and
variance analogously to Section D.3.1. Figure D.6 (left) depicts the annual cycle in mean
and standard deviation. The period of increased discharge is winter. After subtracting
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Figure D.6: Annual cycle of the mean (black) and the mean plus/minus one standard deviation
(grey) for the Vilsbiburg run-off data (left). The mean weekly cycle is shown in the right plot. To
facilitate the presentation, the standard deviation is not shown. Q∗ denotes the Box-Cox trans-
formed run-off and Q̃ is a dimensionless quantity.

the annual cycle, peaks in the periodogram of the run-off anomalies (Figure D.7, left)
at frequencies f = 1/7 and f = 2/7 give evidence for a weekly component. Thus,
we analogously estimate the mean and variance for this component (Figure D.6, right).
Compared to the annual cycle the weekly cycle is rather small. Nevertheless, we subtract
it for further analysis. Figure D.4 (right) shows that this substantially reduces the peaks
in the periodogram.

Trend in the Mean

Subtraction of the weekly cycle leaves us with the series depicted in Figure D.8 (left).
A ten-year running mean (red) suggests a slightly increasing tendency which we model
with a straight line (green). Due to the autocorrelation in the series it is not straightfor-
ward to decide whether this deterministic trend component is significant. We subtract
this trend and refer to the discussion on significance in Section D.3.1.
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Figure D.7: Periodogram of the run-off anomalies (left) and the same record with the weekly pe-
riodic component removed (right). The dashed vertical lines mark the frequencies corresponding
to an annual ( f = 1/365) and a weekly periodicity ( f = 1/7, f = 3/7).
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Figure D.8: Transformed run-off series for the gauge Vilsbiburg with the annual and weekly pe-
riodic components removed as time series (left) and compared to a Gaussian in a QQ-plot (right).
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A QQ-plot of the residuals from the straight-line fit versus a Gaussian distribution
reveals that the similarity of the frequency distribution to a Gaussian is large close to the
centre but not in the tails, Figure D.8 (right).

D.3.4 Wisla Monthly Mean Run-Off at Tczew

Box-Cox Transformation

Figure 6.13 (right) reveals the asymmetric shape of the observed run-off distribution. We

thus first use a Box-Cox transformation (Section D.2.2) with a ML estimate λ̂ = −0.180 to
obtain a more Gaussian-like shape which facilitates the further analysis.

Annual Cycle

For the transformed series, we estimate an annual periodic component for the mean and
variance on the basis of the monthly data analogously to Section D.3.1. Figure D.9 (left)
depicts one cycle of this component. We find the peak discharge in spring and low water
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Figure D.9: Mean annual cycle for the Wisla run-off record (left), mean (black) plus/minus one
standard deviation (grey). The right plot shows the periodogram of the Box-Cox transformed
run-off record with the annual cycle in mean and variance removed The dotted vertical lines
mark the frequency corresponding to an annual periodicity ( f = 1/365). Q∗ denotes the Box-Cox
transformed run-off.

levels in autumn. The periodogram of the record with the annual cycle subtracted is
depicted in Figure D.9 (right).

Trend in the Mean

This preprocessing leaves us with the series depicted in Figure D.10 (left). A ten-year
running mean (red) visually suggests a slight increasing tendency which we model with
a straight line (green). Least-squares estimation of the slope on the basis of the dimen-
sionless run-off anomalies yields an increase of 2.35 · 10−3 per year. In the same way as
discussed for the previous analyses a significance test and confidence intervals for this
trend is not straightforward as the series shows prominent autocorrelation. Under the as-
sumption of uncorrelated observations, a t-test for the slope yields a p-value of p = 0.031
leading to significance on the 5%-level. With reference to discussion on significance in
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Figure D.10: Wisla run-off anomalies at gauge Tczew with the annual periodic component re-
moved as time series (left) and compared to a Gaussian in a QQ-plot (right).

Section D.3.1, we subtract this trend. In the following, we denote the obtained trans-
formed series with the seasonal and trend component removed as residual series. The
QQ-plot of these residuals versus a Gaussian distribution shows that the transformed
series is close to normal (Figure D.10, right).
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BIBLIOGRAPHY 159

Hinde, J. (1992). Choosing between non-nested models: a simulation approach. In
L. Fahrmeir, B. Fracis, R. Gilchrist, and G. Tutz (Eds.), Advances in GLIM and Statisti-
cal Modelling, Number 78 in Lecture Notes in Statistics. New York: Springer.

Hipel, K. and A. McLeod (1994). Time Series Modelling of Water Resources and Environmental
Systems. Developement in Water Science. Amsterdam: Elsevier.

Hipel, K. W. and A. I. McLeod (1978). Preservation of the rescales adjusted range 2.
Simulation studies using Box-Jenkins models. Water Resour. Res. 14(3), 509–516.

Hosking, J. R. M. (1981). Fractional differencing. Biometrika 68, 165–176.

Hosking, J. R. M. (1990). L-moments: analysis and estimation of distributions using linear
combinations of order statistics. J. R. Statist. Soc. B, 105–124.

Hosking, J. R. M., J. R. Wallis, and E. F. Wood (1985). Estimation of the generalized
extreme-value distribution by the method of probability-weighted moments. Techno-
metrics 27(3), 251–261.

Hu, K., P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley (2001). Effects of trends on
detrended fluctuation analysis. Phys. Rev. E 64, 011114.

Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil
Eng. 116, 770–799.

Hurvich, C. M. and B. K. Ray (1995). Estimation of the memory parameter for nonsta-
tionary or nonivertible fractionally integrated processes. J. Time Ser. Anal. 16(17-41).

IPCC (2001). Climate change 2001: The scientific basis, contribution of working group I
to the Third Assessment Report. Intergovernmental Panel on Climate Change (IPCC).

Jones, P. D. and A. Moberg (2003). Hemispheric and large-scale surface air temperature
variations: An extensive revision and an update to 2001. J. Clim. 16(1), 206–223.

Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor (1999). Surface air tempera-
ture and its changes over the past 150 years. Rew. Geophys. 37(2).

Kallache, M. (2007). Trends in the Mean and Extreme Values of Hydro-Meteorological Time
Series. Ph. D. thesis, University of Bayreuth, Bayreuth.

Kallache, M., H. W. Rust, and J. Kropp (2005). Trend assessment: Applications for hy-
drology and climate. Nonlin. Proc. Geoph. 2, 201–210.

Kantelhardt, J. W., E. Koscielny-Bunde, H. H. A. Rego, S. Havlin, and A. Bunde (2001).
Detecting long-range correlations with detrended fluctuation analysis. Physica A 295,
441–454.

Kantz, H. and T. Schreiber (1995). Dimension estimates and physiological data. Chaos 5,
143–153.

Kaufmann, R. K. and D. I. Stern (1997). Evidences for human influence on climate from
hemispheric temperature relations. Nature 388, 39–44.
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Santer, B. D., W. Brüggemann, U. Cubasch, K. Hasselmann, H. Höck, E. Maier-Reimer,
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