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Abstract

We have used techniques of nonlinear dynamics to compare a special model for
the reversals of the Earth’s magnetic field with the observational data. Although
this model is rather simple, there is no essential difference to the data by means of
well-known characteristics, such as correlation function and probability distribution.
Applying methods of symbolic dynamics we have found that the considered model
is not able to describe the dynamical properties of the observed process. These sig-

nificant differences are expressed by algorithmic complexity and Renyi information.

Keywords: reversals of Earth’s magnetic field, nonlinear models, symbolic dynam-

ics, data analysis



1 Introduction

The series of reversals of the Earth’s magnetic field has often been discussed as an
outstanding example of complex processes. It has been generally accepted that this
arrhythmic succession of reversals is an inherent signature of the geodynamo (Krause,
1984). From this viewpoint several simplified nonlinear models have been introduced
to describe the large-scale time behaviour of the geomagnetic field; e.g. the two-disk-
dynamo (Rikitake, 1958), a system of four ordinary differential equations (Cook and
Roberts, 1970),dynamo and a simple third-order recursion which may be related to a
dynamo model with a back-reaction of the magnetic field to the motion in form of a
third-order term (Krause and Schmidt, 1988, hereafter referred as KS).

The purpose of this contribution is to test the validity of the latter model. As has been
shown by KS, it is in good accordance with the distribution of the reversals observed.
Their approach compares only static properties (i.e. characterization of the distribution
of reversal lengths) of the model with those data. The evolution of the Earth’s magnetic
field, however, is a dynamical process. Dynamical aspects can analyzed by considering
the succession of reversal periods. We test here whether the model reproduces such
dynamical characteristics of the process under consideration. Both the series of reversals
measured and the model system are analyzed by means of techniques developed in the
theory of nonlinear dynamics. Due to the short data set typical parameters in this
theory, such as fractal dimensions or Lyapunov exponents, cannot be estimated reliably.
Hence, we apply another concept which is based on symbolic dynamics. This leads
to other characteristics, e.g. algorithmic complexity, Shannon information and Renyi
information. Using these quantities we propose a y2-test which allows a significant
distinction of the data and the considered model from a dynamical viewpoint.

The organization of this paper is as follows: The data and the model of KS are
described in section 2. The idea of symbolic dynamics and typical parameters of this
approach are introduced in section 3. Section 4 presents the results of our analysis.

Section 5 discusses and summarizes our findings.

2 The data of reversals and a nonlinear model

2.1 The data

We analyse here the data given by Cande and Kent (1992). Using geological techniques
these authors identified 184 reversals back to 83 Ma. The accuracy of dating the time
of one reversal is given as 10,000 a.

The younger data appear to be most reliable so the analysis was restricted to data
for the past 40 million years (Naidu, 1971; Cox, 1981; McFadden, 1984). In particular,

in the older epoch only 39 reversals were identified.



Several authors studied the distribution of the epochs of constant polarity, i.e. the
intervals between reversals, which ranges from 31,000 to 2,416,000 a. Cox (1968) was
the first who found out that the distribution of the reversal history of the past 48 million
years can be adequately fitted by an exponential one. Cox and several other authors have
refined this idea (Naidu, 1971; Cox, 1981; McFadden, 1984). They concluded that these
intervals seem to follow a gamma distribution. Basing on the second-order statistics no
further structural properties of the process under consideration have been found (Laj
et al., 1979, Phillips et al., 1975). It is, however, important to note that this technique
only refers to a linear behaviour. In the following we also consider aspects of nonlinear

dynamics.

2.2 A nonlinear model

Lorenz (1963) was the first to show that low-dimensional nonlinear differential equations
can exhibit a complicate and rather irregular behaviour, later called deterministic chaos.
Surprisingly, May (1975) found such complex structures also in the one-dimensional
logistic map. Inspired by these rich structural properties of such simple equations, KS

proposed to model the occurrence of the reversals by the third-order recursion

Znpr = aza(1 - 2) (1)
where the initial value zq € [~2/v/3,+2/+/3] is to be given and the control parameter a
is restricted to a € [0, 3].

The main property of this deterministic difference equation (1) is that the solution
Z, changes the sign during the recursion procedure if a > %\/§ KS related the sign of
z, to the polarity of the geomagnetic field. The recursion step n is equated to time as
z, = ¢(t,) = x(nAt). Hence, eq. (1) models some kind of reversals of the geomagnetic
field.

These authors found that the distribution of epoches with constant sign obtained
from model (1) is in some accordance with that from the data. Hence, they determined
optimum values of the control parameter ¢ and the delay time At of the model by
comparing the distribution of periods with constant polarity given by the data and the
model.

Typical characteristics of the analyzed data are the shortest interval between reversals
Imin = 31,0002 and the average length of the intervals [ = 281,000a. The corresponding
ratio [/l = 9.06 is reached for a = 2.5995 by model (1). For At = 4000a the distri-
bution of both the model and the data is in a surprisingly good accordance. Therefore,
KS argued that in view of the small amount of observational material the agreement is
of sufficient quality. It should be remarked that KS fitted their model to the data of
Lowrie and Alvarez (1981) and got therefore [/1,,;,, = 8.75 and At = 5000 a.



It is important to note that this comparison only refers to static properties. In order
to check whether or not the model is valid the dynamical properties must be included,
too. In the next section we discuss how to describe the nature of a system from a

dynamical viewpoint.

3 Symbolic dynamics

Typical parameters that characterize the dynamical properties in nonlinear systems are
Lyapunov exponents and Kolmogorov entropy (Eckmann and Ruelle, 1985). It is, how-
ever, impossible to get reliable estimates of these quantities from such short series as
we have in the case of the reversals identified up to now. Therefore, we take another
concept into account: the symbolic dynamics (Collet and Eckmann, 1980). It is based on
a coarse-graining of the dynamics, i.e. the data are transformed into a series of the same
length but the elements are only a few different symbols (letters from some alphabet).
This way the study of dynamics simplifies to the description of symbol sequences. In
doing so one loses a great amount of detailed information, but some of the invariant,
robust properties of the dynamics may be kept (Hao, 1991).

The following parameters quantify the dynamical behaviour of such a string: algo-
rithmic complexity, Shannon information and Renyi information. We show that these
techniques are efficient tools to study complex behaviour even in the case of short data

sets.

3.1 Transformations into symbolic strings

In the following two different kinds of such transformations are considered:

3.1.1 Natural transformation

The data of the reversals reflect no fine structures of the amplitudes, but give only the
magnetic polarity. Therefore, it is naturally to denote these amplitudes by the two

symbols +1 and —1 corresponding to the two states of polarity.

For model (1) the symbol at iteration step n is determined by

+1 ,ifz, >0
s1(n) = (2)

-1 ,ifz, <0

This way, we obtain symbolic descriptions of the data and the model in an equivalent
manner. As explained above, we use the time step At = 4,000a. This yields the length
Nmaz = 10,000 of both strings, for the data and the model.



3.1.2 Dynamical transformations

Next, we analyze the time intervals [, between the n** and the n+1t" reversals.

The first idea of transforming this series into a symbolic string is quite simple. One
devides the interval I which covers the values [,, of this series into a finite number of
parts and labels each part with a symbol. Of course, the different parts are disjunctiv.

We devide this interval I into four subintervals as follows:

1. The average time difference between two adjacent reversals [ splits the interval I

into two parts which classifies the reversal periods in short and long periods.

2. These classes are subdivided by the same procedure as above, i.e. we take the

average of only the set of short (resp. long) reversal periods as a separation point.

This way, we form a symbol sequence sp(n) with four symbols by assigning each
reversal period to the number of the corresponding subinterval.
The length of a symbol string that is based on this procedure is equal the number of

reversal intervals observed. Therefore, this string consists of 143 elements, only.

Another way to introduce symbols which emphasize the dynamical aspects is the
comparison of the length of adjacent reversal intervals: We investigate two variants of
this special symbolic description.

Firstly, we look at pairs of lengths of adjacent reversal periods (l,,—1,1,). To each

pair a symbol is assigned:

1, if Ly = lyyr >0
sa(n) = , ¥ (3)
0 ,if  Iy—=1lny1 <0

The length of this symbol string determined from the observed data is equal to the
number of pairs of adjacent reversal intervals, i.e. 142 elements.
Secondly, this method of symbolic description can be refined if we consider triplets

instead of pairs. The resulting symbol sequence is created by:

0 ,if  loys < lngy and lyps < I
oa(n) = 1 il gy < loyy and lugs > 1, "

2 i lgs > bngy and lyps < I

3 i lyys > lngy and s > Iy

Hence, the related symbolic description of the observed data consists of 141 elements.
All these transformations are performed in an analogous manner for the simulations
obtained from the model.
Note, that the dynamical transformations lead in our case to short string lengths.

The difficulties to analyze such strings are discussed in subsections 4.1 and 4.4.



3.2 Parameters for symbolic dynamics

In this subsection we introduce typical quantities that characterize the structure of a
given symbol sequence S7, = {s;},, where the s; are elements of a finite set (alphabet)
A. Originally, these techniques have been developed in information theory and in non-
linear dynamics. Hempelmann and Kurths (1990) showed how to apply these methods
to strings with rather small length, as is typical in geophysical records.

We denote the set which contains all possible subsequences (words) s* of length k
as AF. |A| is the number of different letters in this alphabet A, called cardinality. The
probability of a certain subsequence s* in the symbol sequence Sy, is written as p(s*).

The last definitions should be illustrated by a simple example: If the sequence
S17 = 10100100100010000 of length I = 17 is considered the underlying alphabet
A = {0,1} has the cardinality |A| = 2. The set which contains all words of length
2 A% = {(00)(01)(10)(11)} consists of |A%| = |A|* = 4 elements.

3.2.1 Algorithmic complexity

This measure was defined by Kolmogorov (1965) as the length of the shortest computer
program which regenerates a symbol sequence studied. To make this theoretical con-
cept operational, Lempel and Ziv (1976) proposed a procedure working with only two
operations: to copy and to insert. Kaspar and Schuster (1987) suggested an algorithm
that calculates a normalized measure of this kind of complexity. It works as follows:
The string Sz, = {s;}12, is divided recursively into words w;, Sp = {wj};le. The words
w; are such that wy = s; and wq41 is the shortest word following w, that cannot be
composed of wy, wy, ..., w, or some part of it. Thus algorithmic complexity ¢(L) counts
the number of words of this decomposition. The algorithmic complexity C' is defined as

the normalized number of these words

C = lim c(L)logL?L. (5)

L—oo

For instance the above sequence S3;7 = 10100100100010000 is splitted in (1)(0)
(100)(1001)(000)(10000). This yields ¢(17) = 5 and C = 1.2022 (C' is the estimate
of C' from a finite string).

The algorithmic complexity C' characterizes symbolic strings as follows:

1. In case of periodic (prime period m) or constant symbol sequences the algorithmic

complexity vanishes, because the relation ¢(L) < m holds.
2. The maximum value of C is taken in case of white noise: C' = log, |A]|.

3. Tt has been proven that for symbol sequences generated by Markov processes,
algorithmic complexity agrees with Shannon entropy (Chaitin, 1987). From our

experiences we find that these both quantities more generally agree. In this context



both algorithmic complexity and Shannon entropy are measures of randomness
(Wackerbauer et al., 1993).

3.2.2 Shannon information

Now, the symbol sequence Sy, is regarded as a set of realizations of a discrete random
variable whose outputs are elements of the alphabet A. This leads to the Shannon
information, a classical parameter of data analysis. The Shannon information of k-th
order Hy is defined by:

Hy=— Y p(s")logyp(s") (6)
ske Ak p(sk)>0

It is easily checked that

1. Hy > 0, and Hi = 0 only for constant symbol sequences.

2. In case of periodic symbol sequences S with a prime period m, m < k the Shannon

information takes the value Hy = logy, m.

3. The maximum of Hy, is taken if the probabilities of all words s¥ € A* are equal,
then Hy = klog, |A|

This rather abstract quantity Hy is simply to interpret: it measures the average number

of bits needed to specify an arbitrary word of length & in the sequence 5.

3.2.3 Renyi information

(9)

The concept of Renyi information H;"’ (Renyi, 1977) was introduced as a generalization

of Shannon’s ansatz:

HY = (1-q) " logy( Y p(sh)?) (7)

ske Ak

where ¢ is a real number and ¢ # 1. It includes different averaging of probabilities. H,gq)
converges to Shannon information Hy as ¢ — 1. The Renyi information is characterized

by the following basic properties:

1. H,gq) decreases with growing g.

2. If ¢ > 1 those words of length k£ with large probability dominantly influence the
Renyi information. This behaviour is strengthened for larger ¢ values. Vice versa

if 0 < ¢ < 1 then words with small probability mainly determine the value of H ng).

3. In case of periodicity with prime period m, m < k one gets ngq) = logy, m. If the

sequence is constant (m=1) then H,gq) =0.



4. If the behaviour of the sequence is such as white noise then it takes its maximum
value H,gq) = klog, |A|.

The calculation of Renyi information and Shannon information for rather short time
sequences leads to some difficulties. Therefore, in most cases only the information for

short words (k = 1...4) can be estimated with some reliability.

4 Results of data analysis

As expressed in the previous section, algorithmic complexity, Shannon information and
Renyi information are suitable quantities to distinguish different types of structures in
symbolic strings from a dynamical viewpoint. This offers an approach to check the
validity of model (1) for large-scale time behaviour of the geomagnetic field.

Firstly, we must, however, study effects which may be caused by the short number

of reversals documented up to now.

4.1 Difficulties with short symbol sequences

To investigate influences from such a small data length we perform a lot of Monte-
Carlo-experiments with model (1). We find that the estimated parameters depend on
the initial value zg of this model which is, of course, unknown for the geomagnetic field.
Therefore, from Monte-Carlo simulations the distributions of these parameters C', Hy
and ngq) are calculated and compared with the estimates obtained from the data. Our

procedure consists of the following steps:

1. Simulation: Symbol sequences are generated for 1000 initial values zy uniformly
distributed in the interval [-2/v/3,2/v/3]. To get a stationary state of the dynamics
the first 500 iterations are neglegted in each iteration. As the sequence length we

chose that of the corresponding symbol sequence built from the data.

(9)

2. Parameter estimation: The quantities C', Hj and H;"’ (k = 4 in case of natural
symbol strings and for symbol sequences built by s3, k£ = 2 for strings transformed

via 8y or 84, ¢ = 2,4,8) are calculated for each symbol sequence generated.

3. Distribution of parameters: The histograms of the above quantities are deter-
mined. This way, we get information about the distribution of the quantities

relating to the model.

4. Test of validity: The corresponding quantities obtained from the symbolic descrip-
tion of the data are compared with these histograms. We set up the null hypothesis:
the data are compatible with the model. It is tested whether or not this hypothesis

can be rejected.
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Figure 1: Distribution of algorithmic complexity for symbol strings built by rule s;. The
arrow shows the value which algorithmic complexity takes in case of the corresponding

sequence from the data

P
L I By L L B B B L B
e b b b b

1

1.25 1.30 1.35
Shannon information

N
o
IS
1)

Figure 2: Shannon information H,4 for sequences built via s¢



3.0 3.2 3.4 3.6 3.8 4.0
Shannon information
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4.2 Analysis of strings of natural symbols

Firstly, we analyze the strings which describe the polarity for each time ¢, (natural
transformation). The histograms of algorithmic complexity C' and of Shannon informa-
tion Hy calculated from the symbolic description of the model appear to be similarly.
Both look symetrically and one-humped distributed with mean value 0.10 and variance
0.038 for the algorithmic complexity resp. mean value 1.31 and variance 0.021 for the
Shannon information.

The corresponding quantities from the observational data are C' = 0.106 resp. Hy =
1.322. They are in a surprisingly good accordance with those from model (1) (Fig. 1,2).

We also estimate some other quantities, such as Renyi information or mutual in-
formation, and get analogous results: in every case no essential difference between the

strings from the data and from the model is found.

4.3 Analysis of strings of dynamical symbols

Regarding the symbol strings obtained from the dynamical transformation, we emphasize
the succession of different events. Thereby, the dynamical aspects of our process are
placed into the foreground.

Firstly, we regard the symbolic strings describing the single durations via sy(n). The
histogram of the Shannon information of ond o1 der H, is symmetrically distributed
with mean value 3.53 and variance 0.15 (Fig. 3). The Shannon information calculated
from the string obtained from the observational data takes the value 3.74. This is a first

indication for differences between the model and the data, but there are some realizations
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of the model whose corresponding values of Shannon information are in good accordance
with that from the observational record.

An opposite behaviour is found for the histogram of Renyi information HJ,2 < ¢ < 8:
These histograms are far from symmetrical in respect to the mean value. The value from
the data does not fit into these histograms, it is out of the supporting interval.

Similar results are obtained if we consider the algorithmic complexity and Shannon
information Hy of the other dynamically transformed symbol strings. The values from
the data differ widely from the corresponding histograms (Fig 4,5).

To get a more objective result, methods from statistical inference are applied.

4.4 y>-tests for comparison the model with the data

There is an effective tool that compares two distributions: the y2-test [15]. In the
following it is shown how to apply this concept to the problem considered in this paper.

The strings obtained from the data resp. the model are subdivided into small sub-
strings of length & (k = 10,11, 12). Now, we calculate the distribution of

1. the number of elements of a special symbol (for instance ”0”) in the substrings and
2. the unnormed algorithmic complexity ¢(k) of the substrings.

Hence, we get two distributions in each case which can be compared by means of a
x2-test. Because the model has to provide the reference distribution it is calculated with
high accuracy. We test the null hypothesis: The data are compatible with the model.

Carrying out these tests we have to coarsen the histograms built by the model in
such a manner that every class contains at least 5 realizations.

This approach is performed to the three types of dynamical transformation explained
in section 3.1.2. Qur results are given in table 1.

Hence, we conclude that our null hypothesis has to be rejected, i.e. model (1) is not

able to reproduce the dynamical properties of the observed reversals.

5 Discussions and Conclusions

In this paper we have used methods of nonlinear dynamics to test the validity of a
model (Krause and Schmidt, 1988) for the long-time behaviour of the geomagnetic field.
Although this model is only a simple third-order recursion, these authors found that
it agrees in a sufficient quality with the series of reversals measured. It should be
emphasized that their test of validity is based on the comparison of the distribution
obtained from the reversal intervals of the model and the data. This criterion, however,
refers only to static properties of systems, but the dynamical viewpoint is also essential

to describe the evolution of the geomagnetic field.
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Table 1: Results of y2-tests

transformation | length of | regarded quantity rejected for the
into symbols | substrings level of significance
89 10 number of symbols 10%
10 number of 70" 0.1%
3 11 c(11) 0.1%
10 c(10) 1%
S4 10 number of 1%
symbols

The main finding of our study is that this simplified model is not valid referred to
dynamical characteristics of the underlying process. Due to the short data length the
dynamical properties cannot be analyzed by means of well-known quantities, such as
Lyapunov exponents or Kolmogorov entropy. Therefore, we have applied the concept of
symbolic dynamics that leads to parameters, such as algorithmic complexity, Shannon

information and Renyi information.

This viewpoint is optimally expressed if a dynamical transformation via ss or s4
(eqs. 3 and 4) from the original series into a symbolic string is used. Basing on these
transformations we have got a clear-cut distinction between the properties of the model
and those of the reversal data. This distinction has been substantiated by means of a
x2-test. It yields that the null hypothesis, the data are compatible with the model, has

to be rejected.

All tests are carried out for the data of Lowrie and Alvarez (1981), too. Qualitatively,
the same result is found. But of course, there are some quantitative changes in the special

values of the characteristice. The results of the y?-tests are more sharp in case of the
data of Cande and Kent (1992).

These significant differences between the data and model (1) call for a better model
which does not only explain the static characteristics of the process under consideration.
Surprisingly, the rejection of the rather simple model (1) requires subtle techniques that

have to be based on dynamical transformations.

We have shown in this contribution that techniques from nonlinear dynamics can be
effectives tools in understanding complex processes, such as long-time behaviour of the
geomagnetic field. The special methods presented here seem to be of interest for the

study of other systems, too.
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