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Abstract — Two deterministic processes leading to roughening interfaces are considered.
It is shown that the dynamics of linear perturbations of turbulent regimes in coupled
map lattices is governed by a discrete version of the Kardar-Parisi-Zhang equation. The
asymptotic scaling behavior of the perturbation field is investigated in the case of large
lattices. Secondly, the dynamics of an order-disorder interface is modelled with a simple
two-dimensional coupled map lattice, possesing a turbulent and a laminar state. It is
demonstrated, that in some range of parameters the spreading of the turbulent state is

accompanied by kinetic roughening of the interface.

I. INTRODUCTION

Dynamics of growing and roughening interfaces have been intensively investigated recently|[1].
This phenomenon is of importance in deposition, crystal growth, two-phase flow in porous media,
etc. The universal equation governing the motion of the interface was derived by Kardar, Parisi
and Zhang (KPZ)[2]:
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Here H(x,t)is the local position of the interface, v is viscosity (surface tension), A is the nonlinear-

ity parameter and £ is the driving white Gaussian noise: < {(x,t)é(a',t") >= Dé(x —a’)o(t —1').
According to the KPZ equation (1), from the initially flat interface a rough surface develops,
which width obeys a scaling law|[2]

& =< (H(x,t)— < H(z,t) >)? >~ 25, (2)



This growth is faster than ~ ¢'/2 which appears in a linearized KPZ equation (also called
Edwards—Wilkinson equation|[3]) resulting from (1) when A = 0.

While the KPZ equation assumes external randomness, it has been recently demonstrated
that deterministic systems with spatio-temporal chaos can have similar properties. In ref.[4] the
Kuramoto-Sivashinsky equation
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was investigated and it was shown that it has the same scaling properties as KPZ. Here the source
of random roughening is the turbulent dynamics of the solution, which is effectively renormalized
as noise for large scale modes[5]. A discrete dynamical analog of (1) was considered in ref.[6].

Here we consider two situations, where deterministic spatio-temporal chaos leads to roughen-
ing interfaces. In contrast to the approach of [6, 4], we do not model the KPZ equation itself,
but demonstrate that it desribes the evolution of some deterministic nonlinear fields. In the first
example, we do not even have an interface. In section Il we study the dynamics of perturba-
tions in a simple coupled map lattice model and show, that with a Hopf-Cole-type ansatz one
obtains for the evolution of this perturbation field a discrete version of the KPZ equation|[7]. In
the second example (Section III) we consider a two-dimensional system, where both irregular
(turbulent) and regular (laminar) regimes coexist. The dynamics of the interface between these

states is investigated, and the regime of roughening is described.
II. DYNAMICS OF PERTURBATIONS IN ONE-DIMENSIONAL CML

The simplest model demonstrating spatial-temporal chaos is a coupled map lattice (CML)
[8, 9, 10]. In this model a field u(x,t) that depends on discrete space © = 1,2,..., L and time

t=0,1,2,... obeys an evolution equation
u(z,t+1) = f(D(e)ule,1)). (4)

Here f(-) is a nonlinear transformation and D is a linear operator depending on the coupling
parameter ¢. A widely used choice for D corresponds to the nearest—neighbor interaction of
diffusive type:

D(e)v(:z;) =cv(x—1)+ (1 —2e)v(x) + ev(x + 1). (5)

If the mapping u — f(u) is chaotic, spatiotemporal chaos is typically observed in the distributed
system (4) [8, 9, 10]. In order to study perturbations of a turbulent state u®(z,t), we linearize

(4) and get for the evolution of the perturbation w(x,t)

. ‘ (6)



Our goal is to study the statistical properties of the perturbation field w for large system size L
and time .
The main idea is the similarity of eq.(6) to the KPZ equation. Indeed, eq. (6) may be

considered as a discrete analog of the diffusion equation with multiplicative noise

2
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This equation with the ansatz W = exp(H ) is transformed to the KPZ equation (1). If the KPZ
equation is derived from eq. (7), one has A = 2R, v = R.

We now explore the analogy between the discrete equation (6) and the multiplicative noise

equation (7) and apply the ansatz
w(x,t) = @), (8)

Then we get from eq.(6) a discrete analog of the KPZ equation:

h(x,t+1) — h(x,t) =Ina(x, )+
+In[l —2e 4+ cexp(h(x — 1,1) — h(x, 1)) + cexp(h(x 4+ 1,t) — h(x,1))]. 9)

It is worth noting that for the discrete case there is an important restriction in performing the
ansatz (8), namely, w(x,?) must be positive for all ,¢. In the continuous case this can be ensured
by a proper choice of the initial field, while in the discrete case also the condition a(x,t) > 0
must be fulfilled for all x,t.

It follows from (8) that the exponential growth of the field w(x,t) in time corresponds to
the linear motion of the interface position h(x,t); the mean velocity is exactly the Lyapunov
exponent. Except for this mean motion, the interface h(x,t) also fluctuates (due to fluctuations
of a(x,t)) and we now can investigate these fluctuations using the correspondence to the KPZ
equation.

Because ¢ is an effective diffusion constant related to R in eq.(7), eq.(9) corresponds to the
KPZ equation (1) with

A=2¢, v=e.

Note that the parameter ¢ is the diffusion constant both in the KPZ equation and in the discrete
eq.(6). The parameter A in the KPZ equation describes the change in the growth rate of the tilted
interface. For the discrete eq. (6) this corresponds, because of the ansatz (8), to the change of
the Lyapunov exponent when exponentially growing in space perturbations are considered; such
generalized Lyapunov exponents have been introduced recently by Politi and Torcini [11]. The
problem remains in finding a value for the noise strength D. The values of a(x,?) are produced
by chaotic motions in the CML (4) and, of course, are neither Gaussian nor 6 — correlated. These
differences are, however, not important if the asymptotic behavior coincides with that predicted
by the KPZ equation. While a large number of models belong to the universality class of KPZ

equation, we have to check this for the perturbation field in CML once more.
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Figure 1: Snapshot of the fields w(x,t) and h(x,t) for the CML eqs. (4-6),(10) with L =
1024, ¢ =0.1, ¢=4.

We used in the numerical calculations the following “skewed” doubling transformation

bu for u<c!
flu) = { v (10)

cu  for ¢cP'<u<l
c—1

In this transformation the local instantaneous expansion rate a(x,t) takes the values ¢ and
c(e —1)7!, so varying the parameter ¢ we can consider both cases of weak (¢ &~ 2) and strong
(¢ >> 1) noise. Numerical simulation shows that the CML (4) —(6), (10) indeed demonstrates
properties of the KPZ equation. If a system of finite length L is considered, then for sufficiently
large ¢ a statistically stationary roughened interface appears (Fig. 1)[we consider here only
statistical properties of the interface’s fluctuations, thus its mean position is always subtracted].
The probability distribution density of & obeys a Gaussian law, and the spatial spectrum scales
as k2, as is expected from the KPZ equation[12].

It is worth noting that the observed field w(x, ) demonstrates highly intermittent properties,
as one can see from Fig. 1. In fact, what is observed in the w vs. z graph is a narrow region
near the maximum of the field h(z,?), due to the exponent in (8). This narrow region moves in
space irregulary, as is shown in Fig. 2.

For the KPZ equation a scaling growth of the width of the interface (starting from the flat one)

is given by eq.(2). However, as was mentioned in [4], this scaling is observed only for large times
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Figure 2: Spatio-temporal dynamics of the perturbation field. The sites, where the field exceeds

a threshold, are marked with dark squares.

and for long systems, because only for large t and L the nonlinear term in the KPZ equation
dominates. Applying the estimations of ref.[4] to the CML model (4) —(6), (10), we conclude that

the scaling (2) may be observed only for systems with sufficiently large ¢ (large noise) and small
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Figure 3: Growth of the “interface width” ¢? in the CML with e = 0.1, ¢=5, L = 8000. The

broken lines have slopes 0.5 and 2/3. One can see a crossover to a nonlinear regime at ¢ ~ 10°.



e (small diffusion). In Fig. 3 the results of the simulations with ¢ =5, ¢ = 0.1 are presented.
The observed exponent is clearly larger than the value 0.5 predicted by linear theory[4], but still
slightly less then the asymptotic KPZ value 2/3, probably due to still insufficient length of the

system.

III. ROUGHENING OF ORDER-DISORDER INTERFACE IN
TWO-DIMENSIONAL CML

In this section, the roughening of an interface in a two-dimensional CML is investigated. This
system may be regarded as an example for the propagation of a turbulent regime into a laminar
one. We analyse here the behavior of the interface between these two regimes. (The dynamics
of complex interface between different laminar states has been recently described in [13].) As
a model, we take a two-dimensional CML where each site is coupled diffusively with its eight

nearest spatial neighbours:

ity = (1= 2o ) + S + )+ FE ) + fur ) +

& r— — r— x — xr
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For the map f(u) we choose a somewhat modified tent-map, in order to be able to prepare an
initial state with a well defined interface between an ordered and a disordered regime. The map

is given by equation (11)

f(u) = max [—b, (1 —2u — %D] , b>0 (11)

and is visualized in Fig. 4.

Two regimes are possible in this map: a steady state given by a superstable fixed point

u = —b, and a chaotic state for which 0 < v < 1 and the dynamics is governed by the usual
1
f
0 1 b
j_ N I

Figure 4: Visualization of the modified tent map.
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Figure 5: Top panel: Initially prepared smooth interface in a 2d CML. The black squares denote
maps with values of —b, while the gray-scaled squares are randomly initialized with values between
0 and 1. In the figure only a part of a lattice with dimensions L, = 1000 and L, = 80 is shown.
Bottom panel: The interface after ¢ = 10000 iterations, b = 0.05,¢ = 0.0905. It can be seen

clearly, that the initially smooth interface has roughened.

tent map. Choosing initial conditions according to these states, we can easy prepare a flat order-
disorder interface (see Fig. 5). The boundary conditions for all computations are periodic in the
x direction parallel to the interface and open in “flow” direction .

We have fixed the parameter b = 0.05 and investigated the dynamics of the interface for
different lengths of the system and coupling constants €. A typical situation of the evolution of
the interface after some time is shown in Fig. 5. At each time ¢ the local position of the interface
h(x) is defined as

h(x) = min{y : u(x,y) > 0}.

The averaged position of the interface and the velocity are given by

1 L ol <hi>—h
< hy >= L—w;ht(aj), v = tlir?o |tt—0|'
The width is defined as .,
1 T
€2 = — D (hu(x)— < hy >)2.
T =1
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Figure 6: Velocity and width of the interface in dependence on the coupling strength ¢, obtained

at = 10%. It can be seen clearly that the velocity shows a step-like structure.

In Fig. 6 the velocity of the interface in dependence on the coupling ¢ is shown. The size of
the lattice in these computations was L, = 50 and L, = 100. The curve shows averaging over 10
different initial conditions.

Below some critical value ¢. ~ 0.09 the interface does not move at all: the coupling is too
small to make an excitation of an ordered state by neighbouring disordered states possible. The
interface for ¢ < ¢. remains flat. Above this threshold the velocity of the interface increases
rapidly. Furthermore, it shows a staircase-like structure with well defined plateaus. These steps
correspond to rational values of the velocity (v = 1/4, 1/5, etc.). It is not yet clear, however,
whether the staircase is complete (like devil’s staircase in the circle map) or the steps coexist
with continuous regions[14].

The bottom panel of Fig. 6 presents the averaged width at ¢+ = 10*. It can be seen that
the roughening of the interface is most dominant just after ¢. where the interface starts to
move. Furthermore one can see a window-like structure, which means that the interface shows
no roughening in regions where the velocity belongs to a plateau. Above some particular value
of ¢, when the velocity becomes large enough, the interface shows no roughening.

Consider now the situation where the roughening of the interface is maximal, i.e. near the
threshold .. All the following calculations are therefore done with a value ¢ = 0.0905 of the
coupling constant. In Fig. 7 the scaling of the width of the interface with time is shown. It
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Figure 7: Growth of the interface width with time on a double logarithmic scale. The slope of the
dashed curve is & 0.55. The different curves (showing an averaging over 100 initial conditions)

belong to lattices with different lenghts L., from bottom to top: L, = 100,200, 300,400, 500, 1000.

can be seen that the width £? of the interface saturates for ¢ — oo. This value of the saturated
width ¢2 is dependent on the size L, of the lattice and grows linearly with the length L,. The
growth of the interface shows a power law scaling with an exponent &~ 0.55 (see Fig. 7). This
means that the model presented behaves nearly like the linearized version of the KPZ equation
(the Edwards-Wilkinson equation). Indeed, the nonlinearity in the KPZ equation describes
dependence of the local velocity on the tilting of the interface. In our case, even for the largest
size L, = 1000 the width was of order ¢ & 3, so the tilt /L, ~ 0.003 is obviously too small
to provide nonlinear effects. Nonlinear corrections could be relatively important for very large

lattices and correspondingly large times, what is, however, beyond our computational facilities.

IV. DISCUSSION

In conclusion, we have presented two coupled map lattice models where roughening interfaces
are observed. The first model describes the dynamics of the perturbation field in spatiotemporal
chaos. The intermittency observed for this perturbation field seems to be a general phenomenon,
not restricted to the particular CML considered in section II. To verify this hypothesis detailed
investigations of other types of CMLs and PDEs are needed. In the second part we have studied
the dynamics of order-disorder interfaces. An interesting feature is the alternating sequence of
parameter intervals where the interface roughens or stays flat. This fine structure is caused, prob-
ably, by the anisotropy of correlations in the 2D CML due to the front motion. A detailed study
of these correlations will be presented elsewhere. Finally we would like to mention that CMLs
may be considered not only as toy models, but as promising tools to get a deeper understanding
of the underlying mechanisms of complex structures in high dimensional systems.
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