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iiiAbstratNowadays, olloidal rods an be synthesized in large amounts.The rods are typially ylindrially and their length ranges fromseveral nanometers to a few mirometers. In solution, systemsof olloidal rodlike moleules or aggregates an form liquid-ryst-alline phases with long-range orientational and spatial order. Inthe present work, we investigate struture formation and fration-ation in systems of rodlike olloids with the help of Monte Carlosimulations in the NPT ensemble.Repulsive interations an suessfully be mimiked by the hardrod model, whih has been studied extensively in the past. Inmany ases, attrative interations like van der Waals or deple-tion fores annot be negleted, however. In the �rst part of thiswork, the phase behavior of monodisperse attrative rods is har-aterized for di�erent interation strengths. Phase diagrams as afuntion of rod length and pressure are presented.Most systems of synthesized mesosopi rods have a polydisperselength distribution as a onsequene of the longitudinal growthproess of the rods. For many tehnial and researh appliations,a rather small polydispersity is desired in order to have well de-�ned material properties. The polydispersity an be redued bya spatial demixing (frationation) of long and short rods. Fra-tionation and struture formation is studied in a tridisperse and apolydisperse bulk suspension of rods. We observe that the result-ing strutures depend distintly on the interation strength. Thefrationation in the system is strongly enhaned with inreasinginteration strength.Suspensions are typially on�ned in a ontainer. We also exam-ine the in�uene of adjaent substrates in systems of tridisperseand polydisperse rod suspensions. Three di�erent substrate typesare studied in detail: a planar wall, a orrugated substrate, anda substrate with retangular avities. We analyze the �uid stru-ture lose to the substrate and substrate ontrolled frationation.The spatial arrangement of long and short rods in front of thesubstrate depends sensitively on the substrate struture and thepressure. Rods with a prede�ned length are segregated at sub-strates with retangular avities.
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vZusammenfassungKolloidale Stäbhen können mittlerweile in groÿen Mengen hergestellt wer-den. Die Form der Stäbhen ist in der Regel zylinderförmig und ihre Längereiht von einigen Nanometern bis hin zu wenigen Mikrometern. Systemeaus kolloidalen stäbhenförmigen Molekülen oder Aggregaten können in Lö-sung �üssigkristalline Phasen mit langreihweitiger Orientierungs- und Rau-mordnung ausbilden. Im Rahmen dieser Arbeit werden Strukturbildung undFraktionierung in Systemen aus stäbhenförmigen Kolloiden mittels MonteCarlo Simulationen im NPT Ensemble untersuht.Replusive Wehselwirkungen können erfolgreih durh harte Stäbhen mod-elliert werden. Dieses Modell wurde in der Vergangenheit bereits ausgiebiguntersuht. Oft jedoh können attraktive Wehselwirkungen, wie z. B. vander Waals- oder Depletionskräfte, niht vernahlässigt werden. Im erstenTeil dieser Arbeit wird das Phasenverhalten von monodispersen attraktivenStäbhen bei untershiedlihen Wehselwirkungsstärken harakterisiert. Eswerden Phasendiagramme bezüglih der Parameter Druk und Stäbhenlängepräsentiert.Die überwiegende Mehrzahl von Systemen aus synthetisierten mesoskopis-hen Stäbhen weist eine polydisperse Längenverteilung aufgrund des Längs-wahstums auf. Für eine Reihe tehnisher und wissenshaftliher Anwen-dungen sind hingegen shmale Längenverteilungen wünshenswert, um wohlde�nierte Materialeigenshaften zu haben. Die Polydispersität kann durhräumlihe Trennung (Fraktionierung) langer und kurzer Stäbhen reduziertwerden. Fraktionierung und Strukturbildung werden in einer tridispersenund einer polydispersen Suspension untersuht. Wir beobahten, dass dieentstehenden Strukturen ganz wesentlih von der Wehselwirkungsstärke ab-hängen. Der Grad der Fraktionierung wird durh Attraktivität stark erhöht.Suspensionen be�nden sih typisherweise in Gefäsen. Wir untersuhen da-her auh den Ein�uss von begrenzenden Substraten auf Systeme aus tridis-persen und polydispersen Stäbhensuspensionen. Drei vershiedene Sub-stratstrukturen werden genauer betrahtet: Eine planare Wand, ein riefen-förmiges Substrat und Substrate mit rehtekigen Aussparungen. Wir un-tersuhen die Flüssigkeitsstruktur in Substratnähe und substratinduzierteFraktionierung. Die räumlihe Anordnung von langen und kurzen Stäbhenhängt sehr sensibel von der Substratstruktur und dem Druk ab. Stäbhenmit einer festgelegten Länge werden an Substraten mit rehtekigen Aus-sparungen abgesondert.
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Chapter 1IntrodutionDuring the last years, more and more rigid, rodlike olloids have been reatedsynthetially. Examples are arbon nanotubes [36℄, boehmite needles [10℄,ylindrial dendrimers [74℄, and metallosupramoleular oordination poly-eletrolytes (MEPE) [42℄. Rodlike moleules an serve as building bloks formesosopi strutures and are able to self-aggregate. Like small liquid rystalmoleules, olloidal rods an form phases with long-range spatial and/or ori-entational order. The length sale of suh rods typially ranges from severalnanometers to a few mirometers. Colloidal zin oxide (ZnO) nanorods, forexample, an be utilized in gas sensors [25℄ or in thin-�lm �eld-e�et transis-tors [81℄. Rods an be used as templates for a ontrolled reation of porousmaterials [40℄, as eletrially onduting nanowires [20℄, as waveguides [84℄,or as building bloks for sa�old-like networks [12℄. For many appliations,a rather monodisperse length distribution is desirable. Most synthesis meth-ods produe a suspension with a polydisperse length distribution beause ofthe longitudinal growth proess. Frationation is a possibility to establisha sorting mehanism in polydisperse suspensions. This work is dediated toinvestigate struture formation and frationation e�ets in polydisperse sys-tems of rodlike olloids. Speial attention is paid to the in�uene of attrativerod interations [67℄ and the impat of patterned adjaent substrates [68℄.1.1 Basi aspets about liquid rystalsFirst of all some basi aspets about liquid rystals. We all know fromeveryday experienes that substanes appear in di�erent phases like the solid,�uid, and gaseous phase. Water, for example, is rystalline at temperaturesbelow 0◦C, �uid in the temperature range between 0◦C and 100◦C, andgaseous at temperatures above 100◦C. Besides these three well known phases1



2 CHAPTER 1. INTRODUCTIONof matter other phases exist in nature as well. One example is the plasma,whih ours at extremely high temperatures like in stars. Another lass ofphases are the so-alled liquid rystalline phases and parts of this work aimat their haraterization in the employed model system.The name liquid rystal itself is onfusing. How an a liquid be rystallineor how an a rystal be �uid at the same time? The nomenlature for thisspei� state of matter makes sense, indeed, sine a liquid rystal ombinesaspets of both the �uid and the rystalline phase. A liquid rystal behaveslike a �uid in that it �ows and an be deformed easily. At the same timelong-range positional and/or orientational order is present as in rystals. The�rst experimental observation of liquid rystalline behavior was desribed byReinitzer in 1888 [66℄. Around 1900, Otto Lehmann identi�ed the substanesas a new thermodynamially stable phase and reated the term liquid rys-tal. The names mesophase or mesomorphi phase (mesos (Greek) = middle,intermediate) is also widely used.Liquid rystalline behavior is essentially onneted to a strong anisotropyof the underlying moleules. Thus, every moleule has a ombination ofpositional and orientational degrees of freedom. In the rystalline state,positions as well as orientations of the moleules are strongly onstrained.The moleules are arranged on a lattie and the orientations are also �xed.When a solid melts to a liquid, positional and orientational order disappearsat the same time. If, however, parts of the positional order or some kindof orientational order is preserved above the melting point, the system isin a liquid rystalline state. Single omponent systems, whih show liquidrystalline behavior in a ertain temperature range are alled thermotropi.If the moleules are in solution, the liquid rystal is said to be lyotropi andthe amount of solvent is a dominant ontrol parameter. Colloidal systemsstudied in this work are typially lyotropi.1.1.1 Liquid rystalline phasesThe most ommon liquid rystalline phases are formed by rodlike moleules,whih unify an elongated shape and a onsiderable rigidity. The orientationof a rigid body in three dimensions is determined by three oordinates, e. g.the Euler angles [30℄. For the desription of rodlike moleules, rotationsaround the long axis an usually be negleted. Thus, the orientation ofeah moleule i is spei�ed by a unit vetor ui, whih is parallel to therod axis. Rodlike moleules typially have a head-tail symmetry, i. e. uiand −ui are equivalent. A nemati liquid rystal is haraterized by a highdegree of long-range orientational order whereas the spatial orrelations areshort-ranged like those of a liquid. Most rod orientations ui point along



1.1. BASIC ASPECTS ABOUT LIQUID CRYSTALS 3
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(a) (b) ()Figure 1.1: Illustrations of three di�erent liquid rystals. (a) In the nematiphase, the rods align a global diretor n. (b) In the smeti A phase, therods are additionally arranged in layers. () In a smeti C liquid rystal, theorientation of the rods and the layer normal are di�erent.the global diretor n as skethed in Fig. 1.1 (a). The seond big lass ofliquid rystalline phases exhibit smeti order. Here, orientational and one-dimensional spatial order emerge simultaneously. The moleules are arrangedin layers as depited in Fig. 1.1 (b) and (). In the smeti A (SmA) andsmeti C (SmC) phase eah layer basially represents a two-dimensional�uid with the rods di�using freely within the layer but only rarely betweenthe layers. In a smeti A phase, the layer normal oinides with the globaldiretor n. If n is tilted with respet to the layer normal, the phase is alledsmeti C. Both the smeti A and smeti C possess only short-range in-plane orrelations between the moleule positions - typially in the range ofa few moleule diameters. Another example of a smeti phase is the smetiB phase where bond-orientational order exists. In di�erene to a rystal, themoleules are not arranged on a lattie, i. e. there is no long-range spatialorder. The in plane orrelation funtion of a smeti B phase, however, hasthe harateristis of hexati order. Smeti liquid rystals are often morevisous than nematis.A speial ase of the nemati phase is a holesteri liquid rystal asskethed in Fig. 1.2. The diretor of neighboring nemati layers is turnedby a onstant angle around an axis perpendiular to the diretor. A rotationof 360◦ de�nes the helial pith height p. The majority of liquid rystallinesubstanes show the nemati or smeti behavior introdued so far. A largervariety of liquid rystalline phases ours in nature, however [17, 93℄.Beneath rodlike moleules, a disklike shape of moleules leads to liquidrystalline phases, too. The normal vetor on the disk plane represents theorientation of suh a moleule. The nemati phase is haraterized by a



4 CHAPTER 1. INTRODUCTION
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p/2 Figure 1.2: Illustration of a holesteri liq-uid rystal. The nemati diretor n turns by
360◦ within the helial pith height p.global diretor n, again, whih is the average diretion of the orientationsas illustrated in Fig. 1.3 (a). A drawing of a olumnar phase is given inFig. 1.3 (b). Here, the moleules arrange themselves in olumns in additionto the orientational order. The olumns themselves form often hexagonalstrutures. Diskoti liquid rystals are subjet of investigations for morethan 30 years [39, 41, 87℄ but rodlike moleules are the predominant lass ofsubstanes, whih form liquid rystals. In this work, rodlike moleules willbe onsidered, exlusively.
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n

(a) (b)Figure 1.3: Shemati drawing of (a) the nemati and (b) the olumnar phasein diskoti liquid rystals.1.1.2 Appliations of liquid rystalsThe researh in liquid rystals as a state of matter is of fundamental interestfor its own. In addition, liquid rystals gained onsiderable importane intehnial appliations. The anisotropy of the liquid rystalline phases makes



1.1. BASIC ASPECTS ABOUT LIQUID CRYSTALS 5these materials birefringent. As a onsequene, the orientation of polarizedlight an be hanged by the material.The big advantage of a liquid rystal as a birefringent substane is thata setup of two rossed polarizers and the liquid rystal in between an beemployed as a voltage ontrolled light valve. This property is the basis forthe widespread usage of liquid rystals nowadays in displays (LCD) of devieslike notebooks, �atsreens, or mobile phones. In 1971, Shadt and Helfrihreported on the voltage-dependent optial ativity of a twisted nemati liquidrystal [71℄. Up to now, the development of liquid rystal displays evolvesrapidly and has beome a billion dollar business [72, 77, 82, 83℄.The simplest setup of the unit ell of a liquid rystal display is the so-alled twisted nemati (TN) ell. Further developments with improved har-ateristis omprise, e. g. the super twisted nemati (STN) and the triplesuper twisted nemati (TSTN) LCD [82℄. The operating mode of a TN unitell is illustrated in Fig. 1.4. A nemati liquid rystal is loated between two
transparent
electrodes

left
polarizer

right
polarizer

n n

(a) (b)Figure 1.4: Illustration of a voltage-ontrolled light valve. (a) Without appliedvoltage, the twisted nemati liquid rystal between the eletrodes turns thelight by 90◦. The ell is bright. (b) With applied voltage, the moleulesorientent along the eleti �eld. The light is �ltered out by the right polarizerand the ell is dark.transparent eletrodes, whih are arranged between two rossed polarizers.The eletrode surfaes are treated suh that a twist of 90◦ of the diretor narises when no voltage is applied (Fig. 1.4 (a)). As the light traverses theell the polarization is turned by 90◦. Thus, light passes the right polarizerand the ell appears bright. Fig. 1.4 (b) illustrates the situation with an ap-plied voltage. Now, the nemati diretor n aligns parallel to the eletri �eldand the light traverses the liquid rystalline material una�eted. The lightis �ltered out by the right polarizer and the ell is dark. Beneath the usage



6 CHAPTER 1. INTRODUCTIONin display devies, liquid rystals are also applied in photoni appliationsas spatial light modulators [55℄ or as adaptive optial interonnets betweenprinted iruit boards [103℄.1.2 Model systemsA fundamental understanding of the mehanisms, whih lead to liquid rystalformation is of general interest. In siene, model systems are employed, inwhih relevant parameters an be identi�ed and ontrolled preisely. In thefollowing, we give a brief overview of experimental and theoretial models.1.2.1 Lyotropi model systemsSystems of tobao mosai viruses (TMV) in solution are studied for morethan 50 years as model systems for lyotropi liquid rystals. An eletronmi-rograph of TMV is presented in Fig. 1.5. The TMV ombines two essentialFigure 1.5: An eletronmirographpiture of TMV. The sale bar is
0.2µm.features - the partiles are onsiderably sti� and rather monodisperse. Espe-ially the latter property is often not ful�lled by hemially synthesized rods.In Fig. 1.6, we present two examples of liquid rystals formed by TMV. Part(a) depits a sample with an isotropi phase in the upper and a nematiphase in the lower region. The piture shows the same sample twie. Twotransparent liquids are observed under white light in the left half. In theright half the sample is viewed under rossed polarizers. The isotropi regionis blak whereas the nemati region appears bright. The smeti phase ofTMV viewed under rossed polarizers is presented in Fig. 1.6 (b). The darklines, whih separate di�erently olored regions are dislinations.Another model system onsists of fd viruses in solution. Reent studieseluidated the kinetis of the isotropi-smeti transition in suspensions offd viruses and non-adsorbing polymers [22℄. The �rst step in the formationproess of a smeti liquid rystal is depited in Fig. 1.7 (a) where a nematidroplet an be seen. An interesting observation is the formation of a singlelayer in solution. The hexagonal shape of the layer in Fig. 1.7 (b) is a strongindiation that long-range order exists within the layer [22℄.
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isotropic

nematic (a) (b)Figure 1.6: Mesophases of TMV. (a) Isotropi-nemati oexistene viewedunder white light (left half) and viewed under rossed polarizers (right half).The image is taken from the Fraden lab. (b) Smeti phase of dried TMVviewed under rossed polarizers [100℄.

(a) (b)Figure 1.7: Optial images in suspensions of fd virus and non-adsorbingpolymers [22℄. (a) In the �rst step of the isotropi-smeti transition a nematidroplet forms. The length of the droplet is about 6µm. (b) Formation of ahexagonally shaped monolayer of fd viruses. The diameter of the monolayer isabout 23µm.1.2.2 Theoretial modelsThe understanding of the physial priniples that lead to long-range ori-entational order in rod systems was promoted fundamentally by Onsager'swork in the 1940s [57℄. He identi�ed the interplay of orientational entropyand orientation-dependent exluded volume as su�ient driving fore for therods to align along a global diretor, i. e. for the formation of a nemati



8 CHAPTER 1. INTRODUCTIONphase. Eah rod is onsidered as a spheroylinder of length L and diameter
D and interations are due to steri repulsion. The original work of Onsageronly onsidered nemati order. With the help of density funtional theory,smeti order an be treated analytially [14℄. Beause of the assumptions ofOnsager's theory (steri repulsion, dilute system, L ≫ D), the validity of thepreditions are basially restrited to lyotropi rod systems. Long-range ori-entational order in thermotropi liquid rystals is resembled more appropri-ate in the Maier-Saupe theory [49℄. Here, eah rod is exposed to an averageorienting �eld indued by its neighborhood whereas steri interations arenegleted. This approah is analogous to the explanation of the ferromag-netism by Weiss. Another approah is via the ontinuum theory developedby Oseen [59℄ and Frank [26℄, in whih moleular details are negleted. Thistehnique is used in many oasions where variations of the nemati diretor
n our on muh larger length sales than the moleular dimensions. Theontinuum theory for nemati liquid rystals has been developed in the �rsthalf of the last entury and is still a widely used tool [35, 43, 44, 86℄. Thedevelopment of omputers provides an additional tool to study the olletivebehavior of many-partile systems - omputer simulations. They establishthe possibilities to use realisti interpartile interations and to study thein�uene of on�ning walls. Computer simulations an also be adapted very�exible to new problems. The Monte Carlo (MC) and the moleular dy-namis (MD) simulation tehnique represent the most widespread omputersimulation tehniques. In both ases, pair interations have to be established.Two model potentials are preferentially used to mimi rodlike partiles.The �rst model � the Gay-Berne model � is an extension of the Lennard-Jones potential for uniaxial ellipsoids [28℄. The potential is available in ananalytial expression and fores and torques are obtained as derivatives ofthe potential. This feature is espeially helpful in moleular dynamis sim-ulations or for analytial alulations. The Gay-Berne potential is one ofthe few models, whih appropriately takes into aount the attrative inter-ations for rodlike moleules. The orientation of two rods with respet toeah other is haraterized by four salars and an attrative pair intera-tion like the Gay-Berne potential takes are for this. The phase behavior ofGay-Berne mesogens has been studied extensively [4, 9, 18, 19, 92℄, also withinorporated quadrupoles [102℄, and in on�ning geometries [33, 34, 98℄. TheGay-Berne model is typially employed to mimi thermotropi liquid rystals.The seond model onsists of spheroylinders. A spheroylinder is om-posed of a ylinder of length L and diameter D, whih is apped at bothends by hemispheres as illustrated in Fig. 1.8. The axis ratio λ ≡ L/Dharaterizes a spheroylinder ompletely. Colloidal rods are typially ylin-drially and in solutions of these rods short-range repulsive fores are often
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L
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center
interval Figure 1.8: Shemati drawing of a sphe-roylinder with axis ratio λ = L/D.predominant. Therefore, olloidal rods are frequently mimiked by hard sphe-roylinders, whih take into aount only hard ore repulsions. The phasediagram of hard spheroylinders has been explored with the help of simula-tions [7, 91℄ and density funtional theory [31℄ and is basially ompletelyknown [7℄ (Fig. 1.9). The �rst liquid rystalline phase, whih sets in at grow-

Figure 1.9: Phase diagram forhard spheroylinders [7℄. Theredued density ρ∗ is plottedalong the ordinate and the in-verse axis ratio D/L is plottedalong the absissa.ing axis ratio λ = L/D is the smeti phase (λ & 3.1). At λ & 3.7, a nematiphase exists at �nite densities. For �nite axis ratios, the isotropi-nematiphase transition is �rst order and ours at �nite density. In the limit ofin�nitely long ylinders (D/L → 0), the isotropi-nemati transition shiftstowards a vanishing density. At suitably high densities, solid phases withdi�erent layer staking appear. Other aspets investigated with the hard rodmodel are, for example, the rystal nuleation in overompressed �uids [73℄or the isotropi-nemati interfaial tension [94℄.In some ases, attrative interations between olloidal rods annot benegleted. For small olloidal rods, the van der Waals interation beomesrelevant. In the ase of single walled arbon nanotubes (SWNTs), the vander Waals interation is so strong that suitable dispersions of pure SWNTshave been ahieved only reently [65℄. In solutions of mesosopi rods andpolymers, attrative interations are based on depletion fores [48, 52℄. If avoid between neighboring rods gets too small for the polymer oils to enter,the system favors a redution of the gap in order to maximize the available



10 CHAPTER 1. INTRODUCTIONspae for the polymers. Depletion fores between rods have been investigatedfor polymer stabilized fd viruses in polymer solutions [22℄.Spheroylindrial rods with attrative interations are disussed ratherrarely in the literature. Often, the attrative ontribution is onsideredstrongly simpli�ed, depending only on the shortest distane of the interatingrods [16, 50, 96℄. In this work, we use an extension of a model potential byBolhuis et al. [8℄, whih depends on the rod distane as well as on the orien-tation of the interating rods. Reently, Martinez-Haya et al. [51℄ proposedan attrative rod potential on the basis of the Gay-Berne potential with aspheroylindrial ore. Both the potential used here and the potential fromMartinez-Haya et al. inorporate the four salars, whih de�ne the relativepair orientation of two rods.1.3 Length polydisperse systemsMost systems of synthesized mesosopi rods have a polydisperse length dis-tribution. This is a onsequene of the longitudinal growing proess, whihhas no harateristi length sale. Aording to Gibbs' phase rule, the num-ber of possible phases grows linearly with the number of onstituents. Thus,polydispersity enrihes the phase behavior. In the oexistene region ofisotropi and nemati phases, the system gains spatial and orientational en-tropy if short rods are preferentially in the isotropi phase and long rods inthe nemati phase. If this e�et dominates the orresponding loss in mixingentropy, frationation sets in. Bidisperse hard rod suspensions with only twoonstituents are widely studied. In these suspensions, a variety of new phe-nomena an be observed suh as a widening of the biphasi isotropi-nemati(I-N) region, a triphasi I-N-N oexistene region, and strong frationationof long and short rods [46℄. The phase diagram beyond the nemati phasereveals olumnar phases in systems of parallel spheroylinders [80℄. Reentworks also foused on smeti phases and report on a SmA-SmA phase tran-sition and strong frationation. Furhermore, the phases appear to depend onthe length ratio of the omponents as well as on their axis ratio [14℄. In binarymixtures of thik and thin hard rods, a depletion driven I-I demixing ours[88℄. In length tridisperse mixtures, nemati three-phase regions are found[97℄. Length polydisperse hard rod systems with a ontinuous distributionhave also been studied [15, 78℄. In addition to the phenomena mentionedabove, like a widening of the I-N oexistene region, the frationation isfound to depend distintly on the polydispersity. A moderate frationationis observed at a low polydispersity whereas the opposite is the ase at highpolydispersity [99℄. Smeti phases beome unstable at large polydispersity



1.4. OVERVIEW 11whereas olumnar phases beome stable [3℄.For many tehnial and researh appliations, a rather small polydisper-sity is desired in order to have preise material properties. Frationationas a result of phase separation presents one possibility to establish a lengthspei� sorting mehanism. In this work, we demonstrate with the help ofMonte Carlo simulations how attrative interations of the rods in�uenefrationation. We also point out, how suitably designed substrates an beexploit to generate highly monodisperse length distributions in preassignedregions, i. e. at the substrate. Various aspets of the in�uene of on�n-ing walls on monodisperse rod suspensions were already addressed in thepast [21, 23, 62, 76, 79, 89℄. The tehnial skills to design substrate pat-terns in the submirometer regime are fast-paed omprising a variety ofdi�erent tehniques [29℄ like olloidal lithography [104℄ or lithographiallyindued self-assembly [13℄, thus delivering the opportunity to suitably tailorsubstrate strutures.1.4 OverviewThis work is divided in three parts. The theoretial bakground is introduedin Chapter 2. After a brief overview of the statistial mehanis of polydis-perse rod systems, the model potential for attrative rods is introdued.We demonstrate the potential dependene for various rod on�gurations.An e�etive method to alulate the attrative interation is derived in Ap-pendix A. The Monte Carlo simulation sheme in the isobari-isothermal en-semble and also advaned simulation shemes like the biased multi-histogramsampling are introdued in Setion 2.4. The last setion of Chapter 2 oversthe observables, whih are employed to study the struture of the systems.We propose a resaling of the nemati order parameter for �nite partilenumbers. The orresponding derivation is presented in Appendix C.The results for bulk systems are presented in Chapter 3, whih is dividedin three setions dealing with monodisperse systems, a tridisperse suspension,and a polydisperse suspension. For all systems, the in�uene of attrativeinterations is investigated. The attrativity hanges the bulk behavior formonodisperse systems signi�antly as shown in the orresponding isothermsand phase diagrams. In tridisperse and polydisperse systems the fous lieson frationation e�ets and struture formation.The most extensive studies are performed for systems with adjaent sub-strates in Chapter 4. The suspensions investigated are tridisperse and poly-disperse sine we fous on frationation e�ets. Three di�erent substratetypes are onsidered: A planar wall, a orrugated wall, and a wall with ret-



12 CHAPTER 1. INTRODUCTIONangular avities. The substrates indue a broad spetrum of �uid struturesdepending on the applied pressure and the spei� hoie of the substratepattern. We ompare all patterns onerning their e�ieny to ontrol alength spei� aggregation at the wall. The in�uene of attrative intera-tions is disussed in Setion 4.1.6. The work �nishes with a omprehensivesummary of the results and an outlook in Chapter 5.



Chapter 2Theoretial and tehnialframework
2.1 Statistial mehanisWe onsider a system of N lassial rodlike partiles separated into nmaxdi�erent omponents, whih di�er in ertain properties, e. g. the mass or thelength. Eah omponent may have Nα partiles:

N =

nmax
∑

α=1

Nα. (2.1)The internal energy H of the system has a kineti (K) and a potential (U)ontribution:
H = K + U (2.2)

=

N
∑

i=1

ti +

N−1
∑

i=1

N
∑

j=i+1

vij , (2.3)where vij is a pairwise interation between the partiles i and j. The kinetienergy ti of a single partile i has a ontribution ttransi from the enter of massmotion and a ontribution troti from rotations. If pi is the momentum of theenter of mass and mi the mass of partile i, then ttransi is given by
ttransi =

p
2
i

2mi
. (2.4)For simpliity we assume that the rodlike partiles have a ylindrial sym-metry and are elongated along the z-axis. In a body �xed oordinate system13



14 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKthe inertial tensor is diagonal, with
Ii,1 = Ii,2 ≡ Ii (2.5)
Ii,3 = 0. (2.6)If we all (Ω̇i,1, Ω̇i,2, Ω̇i,3) the angular veloity with respet to the same ref-erene frame, then the rotational part of the kineti energy of partile i isgiven by

troti =
Ii

2
(Ω̇2

i,1 + Ω̇2
i,2) (2.7)

=
1

2Ii
(p2

Ωi,1
+ p2

Ωi,2
), (2.8)where pΩi,k is the onjugate momentum to the angle Ωi,k.For the sake of simpliity, we �rst fous on a monodisperse system (nmax =

1) at onstant volume V and temperature β = 1/kT . The partiles areloated in a ubi box of dimension 3
√

V . The partition funtion in the NV Tensemble then is
Z(N, V, T ) =

1

N ! h5N

∫

[

N
∏

i=1

d3
pi d

3
ri d

2
pΩi

d2Ωi

]

× exp

[

−β

(

∑

j

ttransj +
∑

j

trotj +
∑

j<k

vjk

)]

.

(2.9)
The integration over the momenta pi is arried out easily. All integralsare of the same type ∫ dx exp(−ax2) =

√

π/a. The same holds for pΩi
.Furthermore, redued units si ≡ ri/L are introdued. All in all, the partitionfuntion simpli�es to

Z(N, V, T ) =
V N

N ! Λ3Nτ 2N

∫

[

N
∏

i=1

d3
si d

2Ωi

]

exp(−β
∑

j<k

vjk), (2.10)where Λ = h/
√

2πmkT is the de Broglie wave length of a point mass. Theorresponding analogon for ylindrial partiles is τ = h/
√

2πIkT .Now we turn to the slightly more omplex partition funtion at onstantpressure P with nmax ≥ 1 omponents. The partition funtion in the NPT



2.2. THE MODEL 15ensemble is denoted Q(N, P, T ) [27℄:
Q(N, P, T ) = βP

[

nmax
∏

α=1

1

Nα! Λ3Nα
α τ 2Nα

α

]

∫

dV V N exp(−βPV )

×
∫

[

N
∏

i=1

d3
si d

2Ωi

]

exp(−β
∑

j<k

vjk).

(2.11)
One the partition funtion is known, all thermodynami properties of thesystem an be dedued. The Gibbs free energy G(N, P, T ), for example, isrelated to Q(N, P, T ) through

G(N, P, T ) = −kT ln Q(N, P, T ) (2.12)and all other thermodynami quantities are derivatives of G. However, theintegrals in Eq. (2.11) an only be solved in extremely idealized systems andthus the partition funtion is typially unknown.2.2 The modelColloidal partiles in solution usually di�er by a few orders of magnitude insize from the solvent moleules. For example a water moleule has a diameterof ∼ 2.8Å whereas the dimensions of olloids range from several nanometersto a few mirometers. The expliit onsideration of the solvent moleulesturns investigations of the olletive behavior of olloidal partiles into anextremely hallenging task. A broad range of problems, however, an betakled by an impliit onsideration of the solvent. E�etive pair potentialsbetween the olloids an be utilized, whih on the one hand omprise thesolvent independent olloidal interations like van der Waals fores and onthe other hand solvent indued interations like depletion fores [6, 58℄.The origin of the depletion fores is illustrated in Fig. 2.1 for two impen-etrable spherial olloids. We assume that the olloids are in solution withnon-adsorbing polymers and interat purely repulsively. Eah polymer anbe approximated by a sphere with radius equal to the radius of gyration, Rg.Sine the polymer and the olloid annot overlap, the enters of mass of thepolymer oils are prevented from entering a shell of thikness Rg around theolloid. Fig. 2.1 (a) depits the two olloids at large separation. The ex-luded volume for the polymers is the sum of both parts. The total exludedvolume does not hange until the surfaes of both olloids ome loser than
2Rg. In this ase, the total exluded volume will derease by the amount
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Rg

spherical colloids

excluded volume
for polymer coils

polymer coil

overlap of excluded volumes(a) (b)Figure 2.1: Illustration of depletion fores for spherial olloids. Around eahsphere, the polymers annot aess a shell of width Rg around the olloid. (a)The exluded volumes do not overlap at large separation. (b) The overlap ofexluded volumes gives rise to attrative interations.of overlap of exluded volumes as indiated in Fig. 2.1 (b). As a result, thetwo olloids feel an e�etive attrative interation, sine the polymers an in-rease their aessible volume by an inrease of the overlap volume. Fig. 2.2shows artoons for rodlike olloids. The hard rod model is skethed in part
(a) (b) ()Figure 2.2: (a) Shemati sketh of the hard rod model. The hard ore of therods forbids overlaps. (b) Attrative depletion interations are present if thegreen regions overlap. () The pair potential is minimal (=maximal attration)when the rods are parallel and the hard ores touh.(a) with an impenetrable ore region. Depletion fores between two rods areillustrated in Fig. 2.2 (b) and (). The green olor represents the exludedvolume. The overlap of the exluded volume is maximal when the two rodsare parallel and their hard ores touh.



2.2. THE MODEL 17The phase behavior of spherial olloids has been suessfully desribedwith the help of hard sphere and spherial square-well potentials. The latteronsists of a hard sphere part Uh that takes into aount for hard ore re-pulsions and an attrative part for short-range attration. For two spherialolloids of distane r we have
U sw(r) = Uh(r) + Ua(r) (2.13)with

Uh(r) =

{

∞ , if r < D
0 , otherwise (2.14)

Ua(r) =

{

−ǫ , if r ≤ Da

0 , otherwise , (2.15)where ǫ > 0 is the potential depth, D is the hard ore range, and Da > D isthe range of the attrative potential.Now we onsider two spheroylindrial olloids i and j with lengths Liand Lj . A spheroylinder onsists of a ylinder of diameter D and length L,whih is apped by two hemispheres at both ends. The repulsive part of theinteration is obtained by integrating Uh for all pairs of points on the twoylinder axes
Uh

r = D−2

∫ Li/2

−Li/2

dαi

∫ Lj/2

−Lj/2

dαjU
h (|rij + αjuj − αiui|) . (2.16)The diretions of the ylinders are ui and uj . rij onnets both enters ofmass. Note that the hard ores of rods i and j have a total length Li +D and

Lj + D, respetively. In analogy, the attrative part of the rod interation isde�ned as
Ua

r = D−2

∫ Li/2

−Li/2

dαi

∫ Lj/2

−Lj/2

dαjU
a (|rij + αjuj − αiui|) . (2.17)The sum of both parts gives the attrative rod (AR) potential

UAR = Uh
r + Ua

r , (2.18)whih has a spheroylindrial hard ore and an attrative interation whenthe surfaes of the rods ome loser together than Da−D. For equal ylinderlengths Li = Lj the AR potential orresponds to the potential desribed andinvestigated by Bolhuis et al. [8℄.The properties of UAR are demonstrated in Figs. 2.3 and 2.4 for di�erentgeometries of two rods with various lengths, where we hose ǫ = 1kT and
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y(a) (b)Figure 2.3: Attrative rod (AR) potential UAR for two rods i and j withdiameter D. Rod i is loated at the origin and is oriented parallel with the
z-axis. The enter of mass of rod j is loated at (x, 0, z) with x = 1.01D.The AR potential is shown as a funtion of z/D for rod j having an axis ratio
λj = 3 and rod i with axis ratios λi = 3 ( ) and λi = 6 ( ). In (a), theylinder axis of rod j is oriented parallel to that of rod i, in (b), it is rotatedby an angle of π/4 within the yz-plane.

Da = 1.15D. The plots show that the size of UAR depends on the shortestdistane between the rods as well as on their alignment. More spei�ally,it depends on the amount of surfae area of rod i su�iently lose to thesurfae of rod j. Furthermore, it is noteworthy that UAR, though de�nedvia a step funtion, goes to zero ontinuously. The strongest pair interationenergy Emin < 0 ours for parallel, perfetly aligned rods at a distane D,whih orresponds to the onditions
ui · uj = 1,

rij · ui = rij · uj = 0,

‖rij‖ = D.For not too small rods, obeying Li ≥ Lj ≥
√

D2
a − D2, integration ofEq. (2.17) yields

Emin = − ǫ

D2

[

2Lj

√

D2
a − D2−

− 1

4

(

Li − Lj − max[2
√

D2
a − D2, Li − Lj ]

)2
]

.

(2.19)
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(a) (b)Figure 2.4: Attrative rod potential UAR for two rods i and j with diameter
D. Rod i is loated at the origin and has a ylinder axis parallel to the z-axis.The enter of mass of rod j is loated at (x, 0, 0). Results are shown for rodaxis ratios (λi, λj) = (3, 3) ( ), (6, 3) ( ), and (6, 6) ( ). In (a),the rods are parallel and UAR is shown as a funtion of x. For x < 1 the hardores overlap and UAR beomes in�nite. In (b), x = 1.01D and UAR is shownas a funtion of the angle θ between the rod axes.The most CPU time onsuming part of UAR is the attrative interation. Forthe hard ore repulsion it is su�ient to hek whether the shortest distanebetween the two ylinder axes is smaller than D. A method to alulate theintegral in Eq. (2.17) is desribed in the appendix A.

2.3 The Monte Carlo methodMonte Carlo (MC) and moleular dynamis (MD) simulations are the mostprominent types of omputer experiments to investigate the behavior andthe properties of �uids. In MD simulations, the equations of motion areintegrated numerially. Marosopi observables suh as pressure, internalenergy, and orrelation funtions are obtained as time averages. During aMC simulation, many independent on�gurations of the system under on-sideration are generated and utilized to gain thermal averages. In this work,Monte Carlo tehniques are used exlusively.



20 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORK2.3.1 Theoretial bakgroundSuppose A is a quantity, whih depends only on the mirosopi variables
ri and (Ωi,1, Ωi,2) but not on the momenta1. For onveniene, Γ is intro-dued as abbreviation for a point in on�gurational state spae and dΓ ∼
dV
∏

d3sid
2Ωi. The thermal average 〈·〉 is then omputed in the standardway

〈A〉 =

∫

dΓ PB(Γ) A(Γ)

Q (2.20)with
PB(Γ) ≡ V N exp[−β(U(Γ) + PV )] (2.21)and
Q ≡

∫

dΓ V N exp[−β(U(Γ) + PV )]. (2.22)Note the di�erene between Q as de�ned in Eq. (2.11) and the Q de�nedhere.Suppose we are able to generate M random on�gurations Γ(i) (i =
1, .., M) of the system aording to PB in the omputer. The average inEq. (2.20) is then approximately given by

〈A〉 ≈ 1

M

M
∑

i=1

A(Γ(i)). (2.23)Metropolis et al. [54℄ developed a sheme, whih reates a Markov hainof on�gurations that are distributed orresponding to PB. To understandtheir method we assume the following [27℄: Let Γ(i) be the initial state ofthe system. We might have ertain mehanisms to generate a new state Γ(j),e. g. by moving and/or rotating partiles. The probability, with whih Γ(j) isproposed may be alled p
(ij)try . It is important to note that not every proposedon�guration will also be aepted. The aeptane probability p

(ij)a willbe spei�ed later. In this manner, from the point Γ(i) a set of new states
{Γ(j)}(i) an be aessed. It is intuitively lear that in thermal equilibriumthe probability to leave state Γ(i) must be equal to the probability to reahstate Γ(i) from the set {Γ(j)}(i). Otherwise some probability �ux would our,whih is not possible in thermal equilibrium. In pratie one imposes an evenstronger ondition alled detailed balane, whih demands the equality of in-and out-going probabilities for any two states Γ(i) and Γ(j):

PB(Γ(i)) p
(ij)try p(ij)a = PB(Γ(j)) p

(ji)try p(ji)a . (2.24)1Usage of the ri implies also a dependene on the volume V .



2.3. THE MONTE CARLO METHOD 21It is not a prerequisite but in many situations it appears that the generatingmehanism leads to a symmetri matrix p
(ij)try = p

(ji)try . In these ases thedetailed balane ondition (2.24) simpli�es to
p

(ij)a
p

(ji)a =
PB(Γ(j))

PB(Γ(i))
. (2.25)The atual aeptane probability p

(ij)a is not �xed by Eq. (2.25) but a om-mon hoie is
p(ij)a = min

[

1,
PB(Γ(j))

PB(Γ(i))

]

. (2.26)The big advantage of this method stems from the fat that no a priori knowl-edge of the distribution funtion of mirostates, i.e. the partition funtionis required. It is su�ient to know the Boltzmann fator, whih, in general,is given. For some investigations it is desirable to generate Markov hainswith other distribution funtions than PB. Setion 2.4.1 will deal with theseproblems.2.3.2 The Monte Carlo algorithmWe have applied the MC sheme, desribed in the last setion, to a systemof rods. For this system, the following trial moves were performed in randomorder: Moving a rod, rotating a rod, a ombination of movement and rotation,and volume hanges. During simulations of length-polydisperse mixtures,length hanges were allowed to speed up equilibration.Suppose rod i, whose enter of mass is originally loated at r
(o)
i , is hosento be moved. The on�gurational energy of the system in the old state isalled U (o). In a �rst step, a new position r

(n)
i = r

(o)
i + ∆r is proposedwhere ∆r is a random displaement vetor whose omponents are uniformlydistributed over an interval [−δm, δm]. The new position of partile i leadsto a hange ∆U = U (n) −U (o) of the on�gurational energy. In the next stepa deision is made whether the new position is aepted or not. For thispurpose, the Metropolis riterion (Eq. (2.26)) is used:

pa = min [1, exp(−β∆U)] . (2.27)The new position is aepted immediately if ∆U ≤ 0, whih avoids to om-pute the Boltzmann fator exp(−β∆U). Otherwise a random number isgenerated in the interval [0; 1). The new position is aepted if the randomnumber is smaller than the Boltzmann fator. Regardless of whether themove is aepted or not, the �nal on�guration has to be inluded into theMarkov hain.



22 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKFor the rotation of a rod, a random unit vetor is generated. This vetorde�nes the rotation axis, around whih the diretor is rotated by a randomangle ∆ϑ ǫ [−δr, δr]. The further proeeding is equivalent to the partilemovement. The sequene of single partile Monte Carlo steps is hosen en-tirely at random. This means that for a random partile we deide randomlywhether it is moved, rotated, or moved and rotated.MC simulations in the NPT ensemble require also a �utuating volume.It has turned out that a random walk in ln V supports fast equilibration [24℄.The old volume V (o) is resaled aording to ln V (n) = ln V (o) +∆(ln V ). Thenew partile positions beome r
(n)
i = r

(o)
i exp(∆(ln V )/3) with ∆(ln V ) ∈

[−δV , δV ]. Note that this proedure orrelates the three box dimensions Lx,
Ly, and Lz. This may ause problems in the equilibration of rod on�gura-tions with long-range positional order suh as smeti phases. In these ases
Lx, Ly, and Lz were allowed to �utuate independently. The generalizationis straightforward. The logarithmi sampling leads to an additional fatorof V in the partition funtion beause ∫ dV =

∫

d(ln V ) V . The aeptanerule aording to the Metropolis riterion for a volume move beomes
pa = min

[

1, exp
(

−β[∆U + P∆V − (N + 1) kT ln(V (n)/V (o))]
)] (2.28)with ∆V = V (n) − V (o). A volume move requires a realulation of all pairinterations and is therefore omputationally expensive. In the simulations,a volume move is attempted after one sweep (= N single partile updates).The interval widths δm, δr, and δV are adjusted suh that about 50% of thetrial moves are aepted.Saving CPU time A standard way to inrease the speed of simulationprograms is the usage of neighbor lists. There is no need to ompute the pairpotential of two rods if their shortest distane is larger than the ut-o� radius

Da. A Verlet list keeps trak of all partiles, whih are within a ertain range� the Verlet radius rV . For spherial partiles it is obvious to searh neighborswithin a spherial volume. For a rod of length Li, neighboring rods of length
Lj are sampled within a sphere of radius rV,sp = (Li +Lj)/2+Da +σsp. Theneighbor list has to be updated every time a partile has moved further than
σsp/2. Espeially in dense phases, suh a spherial list loates many neighborswhose surfae-to-surfae distanes are muh larger than the interation width(mp. Fig. 2.5). Sine the omputation of the attrative rod potential UARis quite expensive a seond spheroylindrial Verlet list is embedded in thespherial list, whih redues the number of neighbors drastially. This listkeeps trak of all rods whose enter intervals have a shortest distane smallerthan rV,sc = Da + σsc. The seond list must be updated every time an end
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rV,sp

(a) (b)Figure 2.5: (a) Illustration of a spherial Verlet list. All red rods are withinthe spherial Verlet list of radius rV,sp of the the green rod. (b) Illustrationof a spheroylindrial Verlet list embedded in a spherial Verlet list. In densephases many rods are within the spherial volume. The number of neighborsredues remarkably in the spheroylindrial volume. Neighbors are olored red,again.point of the enter interval has moved further than σsc/2. Partiularly rodrotations lead to frequent updates of the spheroylindrial list. However, foran update of the seond list only rods of the �rst list have to be onsideredso that over all the seond list saves up to 50% of CPU time in dense phases.Furthermore, all pair interations are stored and reused to ompute the oldinteration energy U (o).
Random numbers The 'heart' of all Monte Carlo simulations is the ran-dom number generator. Stritly speaking, a omputer annot produe num-bers by hane. In pratie an algorithm generates a (reproduible) sequeneof numbers, whih should be as unorrelated as possible. A suitably unor-related sequene of random numbers is required for a orret Markov hain.This requirement, however, is not ful�lled by all algorithms [75℄ [90℄. In thebeginning we used the widely aepted random number generator RAN3 [64℄.Investigations of on�ned geometries, however, led to some unphysial obser-vations, whih ould be attributed to orrelations in RAN3 (see Appendix B).These problems did not our with the random number generator MT19937[53℄, whih we therefore used to obtain orret results.



24 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORK2.4 Advaned Monte Carlo tehniquesThe Monte Carlo sheme desribed in Setion 2.3 produes a Markov hainwith the stationary distribution PB/Q. The vast majority of samples usedto ompute the average in Eq. (2.23) are generated where PB is maximal. Insome ases a di�erent sampling is reasonable. If an observable A is large in aregion where PB is small, only few samples are generated in this region givingrise to large statistial unertainties of the average. For most observables,however, this e�et is of minor relevane: On the one hand many observablesare su�iently smooth and on the other hand PB is dereasing exponentiallyso that the produt of A and PB is small where PB is small. Another problemmight our if PB has several maxima (see Fig. 2.6). The system an be
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xa xb(a) (b)Figure 2.6: (a) Shemati drawing of a probability distribution PB as funtionof a suitable parameter x. PB has two maxima and state a is thermodynam-ially stable. A system, whih is sampled around xb, may take very long totraverse the minimum in PB in order to �nd the global maximum at xa. (b)The orresponding free energy landsape as funtion of x. Maxima of PB turninto minima of G. The two minima di�er by an amount of ∆G in free energy.Thermal �utuations may not be large enough to ross the free energy barrierwithin a reasonable amount of time.trapped in one region and it may take extremely long until it reahes the otherminimum. Systems lose to strong �rst order phase transitions are typialexamples. The orresponding free energy landsape has two or more minimaall separated by energy barriers that an in many ases not be overome bythermal �utuations. For the same reason, real systems show hysteresis.Free energy barriers ompliate not only the analysis of �rst order phasetransitions. Investigations of protein folding, for example, have to deal with



2.4. ADVANCED MONTE CARLO TECHNIQUES 25omplex free energy landsapes, as well. Thus, rossing free energy barri-ers and measuring free energy di�erenes of two states (phases, onforma-tions) is of widespread interest. In the past, several simulation tehniques[5, 38, 85, 101℄ have been developed to takle these problems. In this work, bi-ased multi-histogram sampling is employed to drive a system smoothly fromone loal minimum of the free energy to another one and to estimate the freeenergy di�erene ∆G between both minima. Setion 2.4.1 is dediated tobiased multi-histogram sampling. The phase oexistene is haraterized by
∆G = 0. Gibbs ensemble simulations [60, 61, 70℄ an be employed to inves-tigate phase equilibria diretly. The appliability of this method, however,is strongly restrained in dense systems and is thus not appropriate for oursystems.2.4.1 Biased multi-histogram samplingSuppose the external ontrol parameters N , P , and T are hosen suh thatthe free energy landsape has one global and one loal minimum. In this ase,importane sampling aording to PB may be unsuitable for exploring therelevant on�gurational phase spae. Consider a solid state at low tempera-ture. Below the freezing temperature, the system has an absolute minimumfor the rystalline state at a high density and typially a loal minimum forthe �uid state of lower density. Typial free energy urves during meltingare depited in Fig. 2.7. Both states, the high and low density state, are
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xa xb(a) (b) ()Figure 2.7: Shemati drawings of the free energy at di�erent temperatures.The absissa may represent the density, for example. The global minimum in(a) turns into a loal minimum as the temperature is inreased. In (b), thetwo phases are in oexistene.separated by a system dependent energy barrier. In oexistene, the energybarrier represents the surfae energy of the two adjaent phases. This energy



26 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKbarrier leads to a more or less pronouned shift of the atual melting temper-ature from the oexistene temperature. For this reason, situations our, inwhih the system is still in the high density state whereas the low densitystate is thermodynamially stable. If the energy barrier is muh larger thanthermal �utuations, the system is trapped in the high density state whensampled aording to PB. Corresponding hysteresis e�ets our also withan isotropi starting on�guration. As a onsequene, the average of an ob-servable measured during the simulation depends on the initial ondition anddoes not reah the thermodynamially stable phase. The simulation shemeexplained in the following is appropriate to solve this problem.A ruial point for the multi-histogram method is the de�nition of asuitable reation oordinate or order parameter. On the one hand the rea-tion oordinate must distinguish between both phases. On the other hand a'good' reation oordinate should not hamper potential transient states byrestriting the system to a narrow path through the free energy landsape.Examples of reation oordinates are the density for �uids, the magnetizationfor ferromagnets, the amount of alignment for liquid rystals [94℄, or the sizeof a nuleus [2, 73℄. The interation energy per rod is a good andidate inthe ase of attrative rods sine it varies signi�antly between the isotropi,smeti, and hexati phase. The phase boundaries of the monodisperse rodsystems in setion 3.1 are determined by the use of this reation oordinate.In priniple, the free energy G as a funtion of the reation oordinate x isobtained from the probability distribution
p(x) ≡ 1

Q

∫

dΓ PB(Γ) δ(x̃(Γ) − x) (2.29)
= 〈δ(x̃ − x)〉 (2.30)as
G(x) = −kT ln (p(x)) . (2.31)It has already been pointed out that free energy barriers may hamper thesystem in exploring the relevant regions of the reation oordinate.Assume a situation similar to the one depited in Fig. 2.6 (b) with thesystem in the highly ordered phase2 (x = xb). The quantity of interest isthe free energy di�erene ∆G = G(xb) − G(xa). The barrier region an beexplored with the multi-histogram tehnique. In this method the free energylandsape is hanged arti�ally for a set of supporting points {xi} between

xa and xb. At eah supporting point, a system is simulated, whih di�ers2Starting from high order is usually superior to the other way round sine order isdestroyed more easily than reated.



2.4. ADVANCED MONTE CARLO TECHNIQUES 27from the original one by a bias potential Hb
i (x) ≡ Hb

i . The bias potential isonstruted suh that a minimum of the free energy arises in the viinity of xi.The sampling of eah system is now performed aording to the distribution
PB Wi, where

Wi = exp(−β Hb
i ). (2.32)For the bias potential, a quadrati term like

Hb
i(x) =

κ

2
(x − xi)

2 (2.33)is suitable in most ases. For su�iently large κ, the additional ontribution
Hb

i of the type (2.33) generates a minimum in the free energy lose to xi.The width of the window, to whih the system is restrited, is regulated bythe urvature κ. The resulting free energy is shematially drawn in Fig. 2.8.As a onsequene a system with Hamiltonian Hi = H + Hb
i will explore a
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Figure 2.8: Shemati drawing of the free energy G as funtion of the reationoordinate x. Aording to the original pro�le points lose to xi are visitedrarely. The additional bias potential generates a minimum in the viinity of xi.�nite region around xi.The objetive of the restrition to a small window region is to measurethe probability distributions pi(x) (Eq. 2.29) in every window and to on-net the orresponding free energy setions. In this manner, the free energypro�le between xa and xb is onstruted pieewise. The statistial aurayis improved if neighboring windows overlap. In some oasions, muh largerseparations are either adequate or inevitable [47℄. With the assumption that
G(x) is su�iently smooth the �rst derivative an be utilized to onstrutthe pro�le.The stationary distribution of the Markov hain in window i is propor-tional to PB Wi. The orresponding normalization fator, i. e. the partitionfuntion, is alled Qi ≡

∫

dΓ PB Wi. An average aording to the modi�edsampling distribution is denoted by 〈·〉PB Wi
. The probability distribution in



28 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKwindow i is thus given by
pi(x) =

Qi

Q
〈δ(x̃ − x)〉PB Wi

Wi(x)
. (2.34)From Eq. (2.34), the free energy in window i is alulated via −kT ln(pi).One the free energy around all supporting points xi is known the ompletepro�le an be onstruted. The normalization fators Qi are not measuredexpliitely but result from the vertial adjustments of the free energy partssuh that a smooth funtion in x is obtained. The free energy di�erenebetween the two states a and b is thus

∆G = −kT ln
Qb

Qa
. (2.35)In pratie, pi(x) is measured in bins of �nite width δ. Thus, pi(x) is ahistogram, whih keeps trak of the amount of generated on�gurations withan order parameter in the interval x ± δ/2. Therefore, the name biasedmulti-histogram method.2.4.2 Simulation of adjaent substratesIn Chapter 4, polydisperse rod systems with adjaent substrates are investi-gated. In the simulations, only one substrate at −z0 and a 'half' system inthe range −z0 < z < 0 is expliitly onsidered. The 'half' system is mirroredat the z = 0 plane and shifted diagonally so that eah rod with a enterof mass (x, y, z) and an orientation vetor (ux, uy, uz) reates an image rodwith a enter of mass (x + Lx/2, y + Ly/2,−z) and an orientation vetor

(ux, uy,−uz) as skethed in Fig. 2.9. In the original and the mirror region,periodi boundary onditions are applied in x- and y-diretion. One mustnote, however, that the mirroring tehnique is restrited to systems, whihare isotropi or axially symmetri to the z axis in the region lose to z = 0.This is the ase for all systems investigated with this tehnique.The mirroring method has two advantages: Firstly, larger substrate sep-arations an be investigated with a reasonable e�ort (Fig. 2.10). Wall sep-arations of 2z0 > 40D an easily be ahieved. Seondly, sine there is defato only one substrate, the method avoids long-living metastable states, inwhih the rods are not distributed equally between the opposing substrates.
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Figure 2.9: Visualization of the boundary onditions at the xy-plane in sim-ulations of substrates. The original rod (red) is mirrored at the xy-plane andshifted diagonally resulting as the green rod.
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Figure 2.10: Illustration of the "original" and the mirrored simulation box.The e�etive wall separation is 2z0. Note that the z-axes points towards right.2.5 Observables2.5.1 The nemati order parameterOrientational order is measured in terms of the nemati order parameter
S(N) = 〈 1

N

N
∑

i=1

P2(ui · n)〉 = 〈λmax〉, (2.36)where P2(·) is the seond Legendre polynomial and the average diretor n isthe eigenvetor of the largest eigenvalue λmax of the alignment tensor
Qµν =

1

2N

N
∑

i=1

(3ui,µui,ν − δµν). (2.37)



30 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKFor a perfetly aligned system of rods, one has S = 1. In an in�nitelylarge isotropi system, one has S = 0. For �nite systems, however, S(N)depends on the number of rods N . Espeially for small isotropi systems,
S(N) is typially larger than 0 and shows a strong system-size dependene.To overome this problem, Eppenga and Frenkel [24℄ suggested to replae
S(N) by

S∞ ≡ lim
N→∞

S(N), (2.38)the order parameter of a orresponding in�nite system. A method for alu-lating S∞ is given in Appendix C.The orientational order parameter S∞ is independent of the onsiderednumber of rods. This is partiularly helpful when measuring the orientationalorder of small subsets of rods in a system. It allows the determination ofthe orientational order for every omponent of a polydisperse suspension, inwhih ertain rod lengths are present only in small amounts. Another usefulappliation of S∞ is the alulation of the loal orientational order in a smallsubvolume of the simulation box. One typial example is the orientationalorder as a funtion of the distane from a substrate [98℄.2.5.2 Pair orrelation funtionsPair orrelation funtions reveal a deeper insight into the mirosopi stru-ture and allow distintion between di�erent phases. Partiularly, pair or-relation funtions along (g||) and perpendiular (g⊥) to the rod axis help toidentify the phase of a system [18℄. Like the radial pair orrelation funtion,the funtions g||(r||) and g⊥(r⊥) are loal densities divided by the overall den-sity of the system. The region where the loal density is obtained is hosenrelative to a referene rod with enter of mass r0 and a rod axis parallel to u0.Let c(r,u, h, R) be a ylinder with a enter of mass at r, a rod axis parallelto u, a height h and a radius R. Then g||(r||) onsiders the loal density inthe ylinders c(r0 ± u0 r||,u0, h||, R||), where we hose h|| = 0.05D − 0.1Dand R|| = 0.75D − 1D. The funtion g⊥(r⊥) takes aount of rods whoseenter of mass lie within the ylinder c(r0,u0, h⊥, r⊥ + δR/2) but not in theylinder c(r0,u0, h⊥, r⊥−δR/2). The desribed geometry is a hollow ylinderof height h⊥, radius r⊥ and shell thikness δR where h⊥ = 0.75D and δR ishosen between 0.05D and 0.1D. Fig. 2.11 illustrates the geometry of bothorrelation funtions.
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h⊥ Figure 2.11: Sketh of the regions relativeto a referene rod, whih are used to de-termine the longitudinal and transverse pairorrelation funtions g|| and g⊥.2.5.3 Density distribution funtionSystems with an adjaent wall are analyzed in terms of density distributionfuntions. The density distribution funtion ρ∗(z) is de�ned as the loalnumber density n(z) of rods with the z-oordinate of the enter of mass at znormalized to the bulk number density N/V :
ρ∗(z) ≡ n(z)

N/V
(2.39)

n(z) has the dimension partiles per volume and represents an ensembleaverage. Note that ρ∗(z) is dimensionless and may also be alled a redueddensity. In pratie, the z-axis has to be disretized into intervals (zi −
∆z/2, zi + ∆z/2]. Therefore, the simulation box is divided into slies ofthikness ∆z as indiated in Fig. 2.12. n(z) is the number of rods in the

∆z

zFigure 2.12: Illustration of the division of the simulation box into slies ofthikness ∆z.orresponding slie divided by the volume of the slie.For investigations of polydisperse mixtures, the density distribution fun-tion is measured for every rod omponent separately. For the rod omponent



32 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKwith axis ratio λ one has:
ρ∗

λ(z) =
nλ(z)

Nλ/V
, (2.40)where nλ(z) is the number density of rods with axis ratio λ in the slie loatedat z and Nλ is the total number of rods with axis ratio λ. In Setion 4.2,results for umulative density distribution funtions are presented, for whihmore than one rod length is subsumed. The umulative density distributionfuntion of the omponents λ1 and λ2 is given by

ρ∗
λ1,λ2

(z) =
nλ1

(z) + nλ2
(z)

(Nλ1
+ Nλ2

)/V
. (2.41)Note that ρ∗

λ1,λ2
(z) 6= ρ∗

λ1
+ ρ∗

λ2
.2.5.4 Spatially resolved mole frationThe e�etiveness of various substrate patterns as far as demixing is onernedis also studied in terms of the spatially resolved mole fration xλ(z). Themole fration an be expressed in terms of the loal number density as

xλ(z) =
nλ(z)
∑

λ

nλ(z)
. (2.42)Thus, xλ(z) is the number of rods with axis ratio λ in the respetive sliedivided by the overall number of rods in that slie.In Setion 4.2, results are presented, for whih the mole fration is on-sidered in a larger volume than that of a slie, for example the volume insidethe substrate struture. If the respetive volume starts at zmin and ends at

zmax, the integrated mole fration is given by
xint

λ =
nint

λ
∑

λ

nint
λ

. (2.43)with
nint

λ ≡
zmax
∫

zmin dz nλ(z). (2.44)Note that xint
λ is z-independent.



2.5. OBSERVABLES 332.5.5 Orientational orrelation funtionsIn addition to the density distribution funtion, whih probes enter of massorrelations, the two funtions gθ(z) and gφ(z), whih probe the in�ueneof the substrate on the orientational degrees of freedom, are introdued. gθand gφ will be alled orientational orrelation funtions. One distinguisheddiretion in simulations with an adjaent wall is the normal to the wall,i. e. the z-axis. Let cos θi be the salar produt of rod i with diretor ui andthe unit vetor in z-diretion ez:
cos θi = ui · ez = ui,z. (2.45)The orrelation funtion gθ(z) is de�ned via the seond Legendre polynomial

P2(·) as an ensemble average. The ontributions are restrited to the Nz rodsa distane z apart from the substrate:
gθ(z) ≡

〈

1

Nz

Nz
∑

i=1

P2(cos θi)

〉 (2.46)
=

〈

1

2 Nz

Nz
∑

i=1

(

3 cos2 θi − 1
)

〉

. (2.47)In other words, gθ(z) is nothing but the z-dependene of the nemati orderparameter (Eq. 2.36) with the diretor parallel to the z-axis. gφ is de�nedanalogously but with a the diretor parallel to the x-axis. The x-diretion isdistinguished in simulations of strutured substrates beause of the hoie ofthe struture.Some remarks about the orientational orrelation funtions: gθ and gφvanish if orrelations are absent and adopt one if the onsidered rods pointin the respetive diretion. If the majority of rods are perpendiular to the
z-axis, for example, gθ beomes negative with a lower bound of −1/2. Thus,
gθ and gφ provide information about the preferred loal orientation of therods and about the range of substrate indued orientational orrelations.
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Chapter 3Bulk behavior
3.1 Monodisperse systemsSystems of attrative spheroylinders are sarely disussed in the literature.For the AR potential, used here, the phase diagram has only been analyzedfor monodisperse systems with λ = 5 [8℄. Therefore, in this setion some newregions of the phase diagram of monodisperse suspensions are explored beforewe turn towards polydisperse systems. In the following, a dimensionlessinteration strength ǫ∗ ≡ ǫ/kT is used. A redued pressure is de�ned as
P ∗ = P 〈v〉/kT , where 〈v〉 is the average volume of a rod:

〈v〉 =
πD3

6
+

πD2

4N

N
∑

i=1

Li. (3.1)In monodisperse systems, 〈v〉 is the volume of a spheroylinder. Phase di-agrams for interation strengths ǫ∗ = 0.25 and ǫ∗ = 0.5 are presented as afuntion of the redued pressure P ∗ and the axes ratio λ, whih ranges from
λ = 3 to λ = 8.Simulations are started with an isotropi system at low pressure, whih isthen ompressed and equilibrated step by step to obtain an isotherm. Closeto phase boundaries, the pressure is inreased in partiularly small steps toavoid glassy states. Disontinuous phase transitions are always aompaniedby hysteresis. As long as the hysteresis is small, phase boundaries an beloalized well by ompressing and expanding the system. Generally, for allisotropi-nemati transitions the hysteresis was found to be su�iently small.In some ases, espeially if the hexati phase is involved, large hysteresisappears.Isotherms at ompression and expansion of a system of rods with λ = 3and interation strength ǫ∗ = 0.5 are presented in Fig. 3.1 (a). 〈Erod〉/Emin35
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P ∗ = 7.2.is plotted along the ordinate. 〈Erod〉 is the average interation energy perrod and Emin is the minimum pair interation energy as given in Eq. (2.19).Note that both 〈Erod〉 and Emin are negative. The hysteresis is so strong thatthe isotherm at ompression detets only the isotropi and the hexati phasewhereas at expansion a smeti A phase is observed over a large pressurerange. In order to identify the stable phases and thus to loate the phaseboundaries, biased multi-histogram simulations (Se. 2.4.1) are employed, inwhih the free energy G is determined as a funtion of 〈Erod〉/Emin. To bepreise, G + const is measured, but the onstant has no physial relevane.Parts (b)-(d) of Fig. 3.1 present free energy pro�les of systems at the pres-



3.1. MONODISPERSE SYSTEMS 37sure P ∗ = 7.75, P ∗ = 7.5, and P ∗ = 7.2, whih are indiated in Fig. 3.1 (a)by the dashed vertial lines. At P ∗ = 7.75, three minima appear, two fromthe metastable isotropi and smeti A phase and one from the thermody-namially stable hexati phase. At this point, we already see the advantagein utilizing the internal energy as reation oordinate. Firstly, 〈Erod〉 dis-tinguishes signi�antly between the hexati, smeti A, and the less orderedphases. Seondly, no additional omputational e�orts are neessary to deter-mine Erod during the simulation, sine one has to keep trak of the internalenergy, in any ase, to evaluate the Metropolis riterion. The probability ofoveroming a free energy barrier of height ∆Gb between two states is pro-portional to exp(−β∆Gb) [45℄. In our ase, the isotropi state is separatedfrom the smeti A or hexati state by an amount of ∆Gb ≈ 7kT at thepressure P ∗ = 7.75 (Fig. 3.1 (b)). The barrier ould not be passed within
5 × 107 Monte Carlo sweeps at even higher pressure (P ∗ = 7.9), where thebarrier height is supposed to be smaller. At ompression, the system does notross the free energy barrier to the stable smeti A phase until the smetiphase itself beomes unstable. Thus, the system swithes diretly from theisotropi to the hexati phase. At P ∗ = 7.75, the free energy di�erene ∆Gbetween the isotropi and the hexati state is about 70kT .The free energy pro�le at P ∗ = 7.5 is depited in Fig. 3.1 (). The globalminimum in G orresponds to the smeti A phase, whih is now thermo-dynamially stable. The isotropi and the smeti A state are separated bya barrier of ira 15kT and the free energy of the two phases di�ers by anamount of about 28kT . The isotropi state is stable at P ∗ = 7.2 as demon-strated in Fig. 3.1 (d).The free energy pro�les give information not only about the stabilityof phases but also about the surfae energy between two phases, whihare simultaneously present in the simulation box. An example is given inFig. 3.2 (a), where the free energy pro�le of a system of rods with axis ratio
λ = 8 and ǫ∗ = 0.5 is plotted. The two minima of the free energy orrespondto the nemati and the hexati phase. The hexati phase orresponds tothe global minimum and is, thus, thermodynamially stable. In the range
1 ≤ 〈Erod〉/Emin ≤ 1.6, the slope of the free energy is onstant as indiatedby the dashed line. The line tangential to the two minima of the respetivephases (double tangent) exhibits the same slope and is also drawn in thediagram.On the basis of Fig. 3.2 (a) some priniples of thermodynamis will beexempli�ed. The free energy di�erene between the nemati and the hexatiphase in this ase is ∆G ≈ 70kT . Sine the free energy G is extensive, asystem with twie as many partiles would possess a free energy di�erene of
140kT . A system prepared in the nemati state would have to overome an
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〈Erod〉/Emin ≈ 1.76 and () at 〈Erod〉/Emin ≈ 1.26.energy barrier of ∆Gb ≈ 30kT to reah the thermodynamially stable state.The energy barrier is onneted to the interfae of the two phases, i. e. a sur-fae osts energy. From the free energy pro�le, the surfae tension σ betweenthe hexati and the nemati phase an be estimated as σ ≈ 0.062kT/D2.The orresponding alulation is given in Appendix D. The snapshot inFig. 3.2 () shows a typial on�guration at 〈Erod〉/Emin ≈ 1.26, whih isin the regime of onstant slope in G. The onstant slope is beause of thefat that the size of the phases an be varied without hanging the interfa-ial area. From the snapshot (Fig. 3.2 ()) we see that the hexati phase�lls the simulation box ompletely in y- and z-diretion and a hange of thephase extension in x-diretion would not hange the surfae area. In the



3.1. MONODISPERSE SYSTEMS 39ideal ase, where a diret interfae of the phases is absent (for example ina Gibbs simulation), the free energy pro�le between the nemati and thehexati state would oinide with the double tangent, whih onnets bothminima in Fig. 3.2 (a).The knowledge of the surfae tension and the free energy di�erene ∆Gis su�ient to estimate the size of the ritial nuleus aording to lassialnuleation theory (CNT). Suppose the system is prepared in the nematistate and the free energy landsape is that of Fig. 3.2 (a). In suh a situation,the system is said to be overompressed. Beause of thermal �utuations,small hexati nulei build and dissolve again. If the nuleus exeeds a ertainsize, it will spontaneously grow instead of dissolving. We assume that theshape of suh a nuleus is like a ylinder of radius r and height h and therods are aligned with the long axis of the ylinder. The height h is notontinuous but an integer value of the layer thikness. We denote the hangein free energy assoiated with the formation of a ylindrially shaped hexatinuleus by ∆Gn(r, h). The system gains an amount of free energy −r2πh ∆g,where ∆g is the free energy density (∆g = ∆G/V ). The osts for the reationof a nuleus are due to the surfae tension. In our ase we distinguish betweenthe surfae tension σ|| and σ⊥, whih are related to the surfae parallel andto the surfae perpendiular to the rod diretion, respetively. Thus, the netfree energy hange related to the luster formation is
∆Gn(r, h) = −πr2h ∆g + 2πrhσ|| + 2πr2σ⊥. (3.2)The ritial nuleus size at a �xed height h is obtained from the extremalondition

∂∆Gn(r, h)

∂r
= 0, (3.3)whih leads to the ritial ylinder radius

rrit =
h σ||

h ∆g − 2σ⊥
. (3.4)In our ase, the ylinder is de fato in�nitely high. The �nite dimension ofthe simulation box and the periodi image onvention are responsible for anabsene of the top and bottom ontat zone between the nemati and thehexati phase (mp. Fig. 3.2 ()). Thus, the ontribution from σ⊥ vanishes.Formally, the situation is equivalent with the limit h → ∞, where the ritialylinder radius beomes rrit = σ||/∆g, whih, in our ase, orresponds toabout 13D. Note that σ|| is equal to the σ alulated above.The appliability of CNT to systems of rodlike partiles is subjet to legit-imate onerns. In overompressed systems of isotropi hard rods, nuleation



40 CHAPTER 3. BULK BEHAVIORof multilayer strutures is suppressed due to self-poisoning [73℄. The resultspresented here are all obtained using the highly ordered hexati state asstarting on�guration. The estimation of rrit aording to CNT should thusbe understood as the radius, at whih a shrinking hexati region beomesunstable.In Fig. 3.3, we present isotherms for di�erent rod lengths at ǫ∗ = 0.5.Plot 3.3 (a) shows the orientational order parameter S∞. Systems, whih
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(a) (b)Figure 3.3: (a) The orientational order parameter S∞ as a funtion of theredued pressure P ∗ for monodisperse systems with di�erent axis ratios λ. Thesymbols are measurements and are hosen di�erently for the di�erent phases(� = isotropi, N = nemati, # = smeti A, and � = hexati phase). (b)The redued interation energy per partile 〈Erod〉/Emin as funtion of thepressure P ∗. 〈Erod〉/Emin di�ers distintly between the hexati, the smetiA, and the less ordered phases.are deep in the isotropi state, have an order parameter S∞ < 0.1. Close tothe isotropi-nemati phase transition values, in the range 0.1 < S∞ < 0.2are found, whih arise from small transient nemati lusters that form in theisotropi system. During a simulation run, several luster formations anddissolutions an be observed.A jump of S∞ is found at the transition to the nemati phase, wherethe nemati order parameter lies in the range 0.5 < S∞ < 0.8 and in-reases distintly with P ∗. Another disontinuous inrease of S∞ oursat the nemati-smeti A transition, while within the smeti A phase S∞depends only slightly on P ∗. At further ompression, a transition to a hexatiphase ours. The phases are reognized by the orientational order and theanalysis of the spatial order, disussed below. The smeti-hexati transitionis aompanied by a small inrease of S∞, while a signi�ant jump in the av-erage interation energy per partile 〈Erod〉 ours. This is demonstrated in



3.1. MONODISPERSE SYSTEMS 41Fig. 3.3 (b), where 〈Erod〉/Emin is shown as a funtion of P ∗ for various axisratios λ. In fat, jumps in 〈Erod〉/Emin turn out to be a sensitive method forloalizing all but the isotropi-nemati phase transition. The isotropi andnemati phase is haraterized by 〈Erod〉/Emin . 0.5, the smeti A phase by
〈Erod〉/Emin ≈ 1 and the hexati phase by 〈Erod〉/Emin > 1.3.In order to reognize the liquid rystalline phases, spatial order is inves-tigated with the help of pair orrelation funtions. Results for the longi-
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42 CHAPTER 3. BULK BEHAVIORtudinal and the transverse pair orrelation funtion are shown in Fig. 3.4for rods with axis ratio λ = 6. The longitudinal pair orrelation funtion
g|| shows long range order in the smeti A and the hexati phase. In thenemati phase, g|| reveals a single peak at r|| ≈ 7D, orresponding to thetotal rod length of (6+1)D. In the isotropi phase, longitudinal orrelationsare hardly visible. Sine the pair orrelation funtion g|| is de�ned loallyvia the moleule axes, periodi osillations in g|| do not ensure a smeti Astate of the system, sine the parallel layers may show long-range bending.The �atness of the layers an be tested with the longitudinal pair-orrelationfuntion g

(n)
|| along the axis of the global diretor n. As shown in Fig. 3.4 (),

g
(n)
|| also shows the harateristi osillations of a smeti A system. In orderto hek system-size dependenies of the pair orrelation funtions, we haveperformed simulations with di�erent numbers of rods. In Fig. 3.4 (), theontinuous line shows g|| for a system of N = 1000 rods while symbols referto a system of N = 2000 rods. Apparently, g|| shows no signi�ant �nite-sizee�ets. System-size dependenies of g⊥ (not shown) were below the aurayof measurement.Correlations perpendiular to the rod axis show one maximum in theisotropi and two maxima in the nemati phase (inset of Fig. 3.4 (b)). At

P ∗ = 3.6, where the system is in a smeti A phase, a number of maxima isvisible, all approximately separated by a distane D. The hexati strutureat P ∗ = 4.4 beomes evident from the typial double peak pattern in g⊥ [32℄.Together with the nemati order parameter and Erod, the pair orrelationfuntions allowed the determination of the respetive phases.A omprehensive overview of the phase behavior found for monodispersesystems of attrative spheroylinders is given in Fig. 3.5, where phase dia-grams for systems with ǫ∗ = 0.25 and ǫ∗ = 0.5 are shown in the P ∗λ-plane.For ǫ∗ = 0.25, an isotropi and a smeti A phase exists for axis ratios
4 ≤ λ ≤ 8. A hexati phase sets in at higher pressures, beyond the smetipoints shown in Fig. 3.5 (a), but has not been studied in detail for ǫ∗ = 0.25.The nemati region widens with inreasing λ in agreement with the phasebehavior found for hard spheroylinders [7℄. Note that the AR model isequivalent to the hard spheroylinder model for ǫ∗ = 0.For ǫ∗ = 0.5, the nemati and the smeti A phase are restrited to rodsof intermediate length. The nemati phase exists only for rods with axisratios 4 < λ < 8, while a smeti A phase exists in the range 3 ≤ λ < 7.The smeti A and the nemati phase regions are lens shaped. For large axisratios λ, both regions are narrowed by a predominant hexati phase.
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(a) (b)Figure 3.5: Phase diagram for monodisperse systems of attrative sphero-ylinders as funtion of the parameters pressure P ∗ and axis ratio λ (a) atinteration strength ǫ∗ = 0.25 and (b) at interation strength ǫ∗ = 0.5.3.2 Tridisperse mixtureIn this setion, a tridisperse rod suspension is investigated. The system isomposed of long (λ = 7), intermediate (λ = 5), and short (λ = 3) rods. Theomposition is hosen suh that every omponent oupies the same volumefration, i. e. the mixing ratio is 0.226 : 0.304 : 0.47. Albeit its relativelysimple omposition, the tridisperse mixture serves as a kind of model mixturefor more realisti ompositions, whih will be disussed in Setion 3.3. Itreprodues most of the e�ets observed in polydisperse suspensions with theadditional advantage that an axis ratio resolved analysis is restrited to only afew omponents. Furthermore, thermal averages of λ-dependent observablesan be obtained with very good statistial auray sine there are manyrods with the same axis ratio.In the following, we analyze the struture formation in tridisperse sus-pensions of hard (ǫ∗ = 0) and attrative rods (ǫ∗ = 0.5). Therefore, it isilluminative to measure the orientational order parameter and the pair or-relation funtions separately for every omponent. Fig. 3.6 presents resultsfor S∞ as a funtion of the redued pressure P ∗. Some qualitative propertiesare independent of the interation strength. In a system with given ǫ∗ and
P ∗, the nemati order inreases with the axis ratio of the omponent. At lowpressure, the system is isotropi and S∞ is almost zero for all rod lengths.In ontrast, the orientational order at higher pressures depends distintlyon ǫ∗. In Fig. 3.6 (a) the system of attrative rods is analyzed. Below
P ∗ = 2.84, all omponents show almost no orientational order. From P ∗ =
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2.84 to P ∗ = 2.92, a distint jump an be seen in S∞ for the longest rods(♦) whereas the intermediate (N) and short rods (#) stay isotropi even atfurther ompression.Data for hard rods is presented in Fig. 3.6 (b). The isotherms for allomponents show the same behavior qualitatively. Below P ∗ = 4.84, in theisotropi phase, S∞ inreases slightly and approximately linearly with P ∗.For P ∗ ≥ 5 the nemati order of all rod lengths grows signi�antly fasterwith P ∗, an e�et that inreases with the rod length. In omparison to at-trative rods, three points should be emphasized: Firstly, nemati order setsin at a higher pressure. Beause of the absene of attrative interation, ori-entational ordering is indued by steri interation, exlusively. Seondly, allomponents ontribute to the order in the system and thirdly, at the tran-sition from the isotropi to the ordered state, the nemati order parameterinreases less abruptly than for attrative rods.Fig. 3.7 displays typial on�gurations of ordered systems. For the sakeof larity, small and intermediate rods are omitted. Attrative rods (Fig. 3.7(a)) build a highly ordered monolayer of long rods surrounded by an isotropi�uid of shorter rods. As demonstrated below, the layer shows hexati order.Hard rods (Fig. 3.7 (b)) do not arrange in a layer but develop a nematistruture.Pair orrelation funtions reveal a deeper understanding of the strutureof the onsidered systems. For a detailed analysis, the longitudinal andtransverse pair orrelation funtions g|| and g⊥, as introdued in Setion 2.5.2,
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(a) ǫ∗ = 0.5, P ∗ = 3.17 (b) ǫ∗ = 0, P ∗ = 6Figure 3.7: Representative on�gurations of (a) attrative rods (ǫ∗ = 0.5) atthe pressure P ∗ = 3.17 and (b) hard rods (ǫ∗ = 0) at the pressure P ∗ = 6.Rods with axis ratio λ = 3 and λ = 5 are not drawn in the snapshot. (a) Ahexati monolayer of long rods (λ = 7) has formed, whih is surrounded by anisotropi �uid of shorter rods (λ ∈ {3, 5}). (b) The system is nemati.are additionally apportioned to rod lengths. Thus, g(λref,λ)
|| and g

(λref,λ)
⊥ analyzethe normalized densities of rods with axis ratio λ in the viinity of referenerods with axis ratio λref. In the following, only the longest rods serve asreferene rods, i. e. λref = 7.Before we turn to the data analysis, it is instrutive to outline some typ-ial rod on�gurations, whih lead to peaks in the pair orrelation funtions.A onstellation like in Fig. 3.8 (a) orresponds to the losest distane inthe longitudinal diretion. The losest distane in the transverse diretionis skethed in Fig. 3.8 (). The former on�guration ontributes to g|| at

r||/D ≈ λref/2 + 1 while the latter ontributes to g⊥ at r⊥/D ≈ 1. The on-�gurations drawn in Figs. 3.8 (b) and (d) are listed beause the orientationaldegrees of freedom of the target rod (red olor) are no longer onstrained bythe referene rod (green olor). The ontributions to g|| and g⊥ are loatedat r||/D ≈ (λref + λ)/2 + 1 and r⊥/D ≈ λ/2 + 1, respetively. The fourmentioned rod on�gurations will be noted in short as '−|', '−−', '||', and'|−' on�gurations as indiated in Fig. 3.8, with the left dash representingthe orientation of the referene rod. Finally some remarks about the reasonswhy the four emphasized rod onstellations lead to maxima in the pair orre-lation funtions: They are distint beause the entropy of the target rod andthe entropy of the rest of the system are balaned well at the respetive sep-arations. Consider the '|−' onstellation, for example. If we inrease r⊥ to a
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r|| r||(a) '−|' on�guration (b) '−−' on�guration

r⊥ r⊥() '||' on�guration (d) '|−' on�gurationFigure 3.8: Shemati drawing to illustrate the ourrene of maxima in thepair orrelation funtions. The referene rod is olored green.value slightly larger than (λ/2+1)D, the orientational degrees of freedom ofthe target rod would not hange, but some inaessible volume between thereferene rod and the target rod would be generated, whih is unfavorablefor the rest of the system. The attrative rod potential UAR additionallyenhanes '||' on�gurations whereas attrative interations play only a minorrole for the other on�gurations.Pair orrelation funtions in the isotropi regime of a hard rod systemare depited in Fig. 3.9. Part (a) shows the longitudinal pair orrelationfuntion g||. Two maxima are observed in g
(7,3)
|| ( ), the �rst from '−|'and the seond from '−−' on�gurations. The �rst maximum is also observedin g

(7,5)
|| but here the seond one is very small. The data for g

(7,7)
|| is not shownbeause the urve is basially idential with g

(7,5)
|| . Correlations are absentfor r|| & 7D. In part (b) of Fig. 3.9, the transverse pair orrelation funtion

g
(7,λ)
⊥ is plotted for λ = 3, λ = 5, and λ = 7. The loation of the �rstpeak ('||' on�gurations) is idential for all λ at r⊥ ≈ 1D while the heightinreases with the axis ratio. The seond peak stems from '|−' on�gurationsand thus its loation depends on λ. Note that the loations of the seondpeaks oinide very preisely with λ/2+1. The height of the peaks dereaseswith inreasing rod length. The behavior of the pair orrelation funtions inombination with the small nemati order parameter underlines the isotropinature of the system at P ∗ = 2.Another set of pair orrelation funtions of hard rods is presented inFig. 3.10, where the struture of the suspension is investigated in the high
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48 CHAPTER 3. BULK BEHAVIORLongitudinal orrelations are not observed for r|| ≥ 9D. In the region between
r|| = 4D and the peak from the '−−' on�gurations, only rods with λ = 3show another broad maximum, whih arises from '−|' onstellations. Theurves for λ = 5 and λ = 7 grow monotonially. This an be explained asfollows: The volume needed for a rod to rotate freely is proportional to thethird power of its length. Thus, orientational degrees of freedom are muhmore suppressed for long rods than those for short rods in dense systems. Asa onsequene, it beomes preferable for long rods to align. The diretionof the long rods orresponds in good approximation to the diretion of theglobal diretor n. Obviously, only rods with λ = 3 have a su�ient amountof aessible volume to orient perpendiularly to the global diretor.The maxima in the transverse pair orrelation funtions (Fig. 3.10 (b))di�er only in the height for di�erent rod lengths whereas their loationsoinide. The orrelations are maximal approximately at integer values ofthe rod diameter and attain the bulk value for distanes larger than 4D.Signatures from '|−' on�gurations are missing. The ombination of theresults for the nemati order parameter and both orrelation funtions revealthe struture of a nemati �uid.Next we turn to attrative rods. Pair orrelation funtions below the or-dering transition are presented in Fig. 3.11. Some di�erenes to the isotropihard rod system will be pointed out, brie�y. In Fig. 3.11 (a), g

(7,5)
|| ( ) issigni�antly smaller than g

(7,3)
|| ( ) and the �rst peak from '−|' on�gu-
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(a) (b)Figure 3.11: Pair orrelation funtions in an isotropi system of attrativerods (ǫ∗ = 0.5) at P ∗ = 2.67. (a) Longitudinal pair orrelation funtion g||(r||)and (b) transverse pair orrelation funtion g⊥(r⊥). The �rst maximum in g⊥is enhaned beause of the attrativity, whih favors parallel alignment. Theinset highlights the seond maximum in g⊥.



3.2. TRIDISPERSE MIXTURE 49rations appears to be sharper. g
(7,5)
|| and g

(7,7)
|| ( ) di�er distintly in therange 4 ≤ r||/D ≤ 6 with g

(7,7)
|| being smaller and showing no evidene of'−|' onstellations. As shown in Fig. 3.11 (b), transversal pair orrelationsare quite pronouned in the immediate neighborhood of the referene rods.The orresponding peak of g⊥ at r⊥ ≈ 1D is a onsequene of the attrativeinteration. The inset of Fig. 3.11 (b) points out the harateristis of g⊥for r⊥ ≥ 2D. One reognizes a seond maximum in g

(7,7)
|| and also india-tions for '|−' onstellations of λ = 3 and λ = 5 rods. Overall, there are nolong-range orrelations due to attration in the onsidered system but on ashorter length sale attrativity has a ertain in�uene.Above the ordering transition, the struture of the system hanges dras-tially. In Fig. 3.12 (b), a di�erent kind of order is indiated by the doublepeak pattern in the transverse pair orrelation funtion g

(7,7)
⊥ ( ), whihis harateristi for a hexati struture [32℄. The hexati order is long-ranged
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(a) (b)Figure 3.12: Pair orrelation funtions of the ordered state of an attrativerod system at P ∗ = 3. (a) The longitudinal pair orrelation funtion g||(r||)and (b) the transverse pair orrelation funtion g⊥(r⊥). The double peakpattern in g⊥ is harateristi for hexati order. The inset highlights g
(7,5)
⊥ and

g
(7,3)
⊥ .and almost ompletely restrited to λ = 7 rods. Correlations with smallerrods are about two orders of magnitude smaller and hardly visible on thesale of g

(7,7)
⊥ . The inset for Fig. 3.12 (b) highlights g

(7,5)
⊥ and g

(7,3)
⊥ . A doublepeak modulation is found for g

(7,5)
⊥ but not for g

(7,3)
⊥ , whih approahes thebulk value for r⊥ ≫ 6D. The �uid has separated into a highly ordered layerof mainly long rods with only few intermediate rods inorporated. The vastmajority of λ = 3 and λ = 5 rods forms an isotropi �uid surrounding the



50 CHAPTER 3. BULK BEHAVIORlayer. The depletion of long rods in the isotropi part is demonstrated inFig. 3.12 (a) by g
(7,7)
|| , whih grows extremely slowly towards 1 with inreas-ing r||. Sine most long rods are used for the layer and thus loated in thetransverse diretion, only few λ = 7 rods are deteted by g

(7,7)
|| . The lak of amaximum at r|| ≈ 8D proves that the domain onsists of a single layer. In thefollowing, the struture of long rods will also be alled (hexati) monolayer.The peaks from '−|' and '−−' on�gurations are visible in g
(7,3)
|| whereas g

(7,5)
||shows only a broad maximum orresponding to '−−' onstellations.The observed results point out that attrativity of rodlike partiles hasgreat impat on the struture formation in polydisperse bulk systems, espe-ially at high pressure1. While the tridisperse mixture of hard rods is in aliquid-rystalline nemati state, attrative rods with the same ompositionseparate into a hexati monolayer of long and an isotropi �uid of shorterrods. Long-range positional orrelations are absent in the former systemwhile the opposite is true for the latter.The overall struture in the low pressure regime is less strongly a�eted bythe attrativity but the orrelation funtions show di�erenes for the diretneighborhood as Fig. 3.13 demonstrates for the transverse pair orrelationfuntion. For r⊥ & 2D, the presented urves oinide niely. The largestdi�erenes between hard and attrative rods are observed for large axis ratios.
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3.2. TRIDISPERSE MIXTURE 51For attrative rods, the �rst peak in g⊥ is sharper and is shifted towardssmaller r⊥ in omparison to hard rods due to the additional gain in internalenergy when two rods ome lose. The di�erene in the relative heightsof the �rst maxima between g
(7,7)
⊥ and g

(7,3)
⊥ arises from the fat that theattrative rod potential UAR grows with the rod length. Thus, the gain ininternal energy for long rods is greater than for short rods. In fat, for thehosen potential parameter Da = 1.15D, the minimal interation energy Emin(Eq. (2.19)) is approximately proportional to λ.Finally, some remarks about the in�uene of �nite-size e�ets. The de-pendene of the system size on the ordering transition of attrative rods isinvestigated in Fig. 3.14 (a) and (b). Part (a) displays the nemati order
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52 CHAPTER 3. BULK BEHAVIORparameter of the longest rods as a funtion of the pressure. The value of
S∞ in both the isotropi and in the ordered phase hanges only slightly with
N . Espeially the systems with N = 750 and N = 1000 rods behave quitesimilarly. For the smallest system, �nite-size e�ets lead to a shift of theordering transition towards higher pressure. The data point for the N = 500system at P ∗ = 3 is not drawn beause no reliable average ould be obtaineddue to several luster formations and dissolutions during the Monte Carlorun. The shift of the ordering transition between the smallest and the twolarger systems is about ∆P ∗ ≈ 0.15. Thus, one an onlude that �nite-sizee�ets are insigni�ant in the N = 1000 system. All results shown in thiswork are obtained from systems with N = 1000 or more rods. The averageinteration energy per rod 〈Erod〉 is depited in Fig. 3.14 (b). The jumps in
〈Erod〉 our at the same pressures as those in S∞. The urves of 〈Erod〉 for
N = 750 and N = 1000 oinide very well.The nemati order parameter of the longest rods of a hard rod system isplotted in Fig. 3.14 (). Again, the systems with N = 750 and N = 1000partiles behave almost identially exept for some deviations at P ∗ ≈ 4.7,i. e. in the region where nemati order sets in. In this region, however, thestandard deviation of S∞ is relatively large as demonstrated by the errorbarsfor N = 1000. For the system with N = 500 rods, S∞ is always slightlylarger exept for the highly ordered state at P ∗ > 5.5. A signi�ant shift ofthe ordering transition like for attrative rods is not observed.Subsuming the results for various system sizes one an draw the onlu-sion that for N = 1000 the observed strutures in the tridisperse suspensionof hard and attrative rods are only subjet to weak �nite-size in�uenes.3.3 Polydisperse mixtureMost systems of synthesized olloidal rods have a polydisperse length distri-bution. This is a onsequene of the longitudinal growth proess, whih hasno harateristi length sale. The length of the rods is, in general, a multipleof the length of its building bloks, e. g. atoms or ligands [1℄. In simulationsof length-polydisperse rod systems, the rod length has to be disretized intointervals of width ∆λ. A large ∆λ simpli�es a λ-dependent analysis of thesystem whereas a small ∆λ might be more realisti. In pratie, a ompro-mise has to be found. Most results presented in this setion are obtained for
∆λ = 1. A smaller disretization ∆λ = 0.1 does not hange the outomesigni�antly as demonstrated at the end of this setion.The polydisperse system investigated here onsists of rods with axis ratios
λ = 1, 2, . . . , 8. The length distribution is assumed to be �xed and hosen as
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(a) (b)Figure 3.17: Typial ordered on�gurations of (a) attrative rods (ǫ∗ = 0.5)at pressure P ∗ = 3.5 and (b) hard rods at pressure P ∗ = 6.3. For larity,short rods (λ ≤ 5) are omitted.the pair orrelation funtions. A good insight into the system is provided by
g

(6,λ)
‖ and g

(6,λ)
⊥ , whih analyze the loal density of rods with an axis ratio

λ around referene rods with an axis ratio 6. The isotropi struture of thesystem at low pressure is on�rmed in Fig. 3.18 (a) and (b). They showpair orrelations between rods with axis ratio λref = 6 and other rods, whihare typial for an isotropi state (mp. Fig. 3.4 (a) and (b)). Fig. 3.18 ()and (d) shows pair orrelation funtions for a highly ordered system with
ǫ∗ = 0.5 and P ∗ = 3.84. Correlations with long rods (represented by g

(6,8)
⊥( ) and g

(6,6)
⊥ ( )) show a double peak pattern, whih indiates hexatiorder while orrelations with smaller rods, represented by g

(6,4)
⊥ ( ), havethe weakly strutured urve of an isotropi state. These observations anbe explained as follows: Systems with ǫ∗ = 0.5 at high pressure form ahexati monolayer of predominantly long rods in oexistene with an isotropisystem of short rods. A large fration of the rods with axis ratio λref = 6 isinluded in the monolayer while the rest is loated in the isotropi part of thesystem. Contributions to g

(6,λ)
⊥ for large λ stem predominantly from referenerods inside the monolayer while the remaining rods of length λref = 6 aresurrounded by an isotropi system of small rods. For the same reason, g

(6,λ)
||is omparable to the isotropi urves for λ = 4 while for large λ, g

(6,λ)
|| growsextremely slowly towards 1 with inreasing r||, sine almost all long rods areloated transversely.In Fig. 3.19 (a)-(), the growth of the hexati monolayer is doumented
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P ∗ = 4.34. The hexati monolayer has formed ompletely at P ∗ = 4.84.Altogether, an inreasing pressure leads to the growth of a highly orderedmonolayer made up predominantly by long rods. This results in a rise of theoverall order parameter S∞ for large rod lengths in Fig. 3.16. In Fig. 3.19(d), g(6,λ)
⊥ is shown for a hard rod system at a high pressure. Here, no hexatiorder exists and, onsequently, no double peaks are visible.The loal frationation in the system an be measured diretly from

〈λ〉ngb(λref), whih is de�ned as the average axis ratio of the 36 nearest neigh-



3.3. POLYDISPERSE MIXTURE 57
 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  1  2  3  4  5  6  7  8  9

g ⊥

r⊥ /D

ε*=0.33, P*=4.17

6-8
6-6
6-4

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7  8  9

g ⊥

r⊥ /D

ε*=0.33, P*=4.34

6-8
6-6
6-4

(a) (b)
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  1  2  3  4  5  6  7  8  9

g ⊥

r⊥ /D

ε*=0.33, P*=4.84

6-8
6-6
6-4

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6  7  8  9

g ⊥

r⊥ /D

ε*=0, P*=6.3

6-8
6-6
6-4

() (d)Figure 3.19: (a)-() Transversal pair orrelation funtion g⊥(r⊥) for attra-tive rods with ǫ = 0.33 (a) at P ∗ = 4.17, (b) at P ∗ = 4.34, and () at
P ∗ = 4.84. The seond maximum in (a) vaguely indiates a double peakstruture, whih beomes more pronouned at higher pressures. (d) Transver-sal pair orrelation funtion g⊥(r⊥) of a hard rod system in the ordered phaseat P ∗ = 6.3.bors of referene rods with axis ratio λref. (In a perfet hexati monolayer,a rod i has 36 neighboring rods j with rij < 3D.) In Fig. 3.20, 〈λ〉ngb ispresented as a funtion of λref. In the isotropi state (�), 〈λ〉ngb is nearlyonstant, whih implies that long and short rods are surrounded by rodsof the same average length. The solid symbols in Fig. 3.20 show 〈λ〉ngb forhighly ordered phases with di�erent interation strengths at pressures, forwhih the orientational order for λ = 7 is approximately S∞ ≈ 0.7. Inthe ordered states, short rods are preferentially surrounded by rods of smalllength while rods with a large axis ratio aumulate long rods. The separa-tion of long rods inreases with the size of ǫ∗, showing that frationation isenhaned by the attrative interation of the rods.



58 CHAPTER 3. BULK BEHAVIOR
 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 1  2  3  4  5  6  7  8

〈λ
〉 n

gb

λref

ε*=0.5
ε*=0.5
ε*=0.25
ε*=0

Figure 3.20: Average axis ratios 〈λ〉ngb of the 36 losest neighbors of referenerods with axis ratio λref. Shown are results for an isotropi system with ǫ∗ =
0.5, P ∗ = 1.5 (�) and ordered systems with Sλ=7

∞ ≈ 0.7, obtained by ǫ∗ = 0.5at P ∗ = 4.0 (�), ǫ∗ = 0.25 at P ∗ = 5.5 (•) and ǫ∗ = 0 at P ∗ = 6.64 (N).A polydisperse suspension with a length distribution of the same shapeas that in Fig. 3.15, but ∆λ = 0.1 is studied in the following. Fig. 3.21 (a)shows the orresponding length distribution. The behavior of the nemati
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  1  2  3  4  5  6  7  8  9

N
λ/

N

λ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2.6  2.7  2.8  2.9  3  3.1  3.2  3.3  3.4

S
∞

P*

ε*=0.5

8≤λ
7≤λ<8
6≤λ<7
5≤λ<6
4≤λ<5
3≤λ<4

(a) (b)Figure 3.21: (a) The length distribution of the polydisperse mixture with ahigher resolution of the axis ratio λ. (b) Nemati order parameter S∞ as afuntion of the pressure P ∗ in the mixture of attrative rods with ∆λ = 0.1.order parameter of the mixture with ∆λ = 0.1 is presented in Fig. 3.21 (b).Di�erenes from the mixture with ∆λ = 1 shown in Fig. 3.16 (a) appear to bemarginal. S∞ jumps for rods with 8 ≤ λ and 7 ≤ λ < 8 from a small to a largevalue between P ∗ = 3 and P ∗ = 3.17. Intermediate rod lengths 6 ≤ λ < 7partiipate partially in the ordering proess whereas shorter rods remain



3.3. POLYDISPERSE MIXTURE 59isotropi at P ∗ ≥ 3.17. It is remarkable that the ordering transition oursexatly in the same pressure region as for the mixture with ∆λ = 1, i. e.between P ∗ = 3.0 and P ∗ = 3.17. One an onlude that the polydispersemixture with axis ratios restrited to integer values resembles mixtures withontinuous axis ratios in most aspets, at least for the applied parameterrange.
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Chapter 4Substrate indued e�etsThe struture of �uids, espeially of omplex �uids, an be a�eted signi�-antly in the viinity of a wall like the on�ning walls of the ontainer. Froma tehnial point of view, two adjaent walls an be realized easily in om-puter simulations. For not too large wall separations, the desribed geometryis a slit pore and a variety of studies foused on omplex �uids in slit pores[23, 32, 37, 63, 79, 98℄. The in�uene of a single on�ning wall an be in-vestigated either for very large wall separations or with speial simulationtehniques [21℄. In order to avoid the additional osts of the method de-sribed in [21℄ two plane parallel walls with large separations are simulatedwith the mirroring tehnique introdued in Setion 2.4.2. It turns out thatwall indued orrelations deay relatively fast with inreasing distane fromthe wall in mixtures of length-polydisperse rods and thus the �uid behaviornear one wall is not in�uened by the other wall.The struture of the on�ning walls has great relevane on the �uid prop-erties. We hek the impat of the three di�erent substrate patterns skethedin Fig. 4.1. The planar wall does not break any symmetry in the xy-plane.The groove pattern is translational invariant along the x-diretion. It is har-aterized by the depth zC and the width yC of the grooves. The translationalinvariane of the orrugated substrate is broken in a avity pattern. Theretangular avities have depth zC , width yC , and length xC . Results areompared for grooves that vary in yC and avities that di�er in xC .4.1 Tridisperse suspensionThis setion opes the behavior of the tridisperse mixture in the viinity ofa substrate. The pressures, whih are investigated in detail, are P ∗ = 0.5and P ∗ = 4 and are below the regime where a orresponding bulk system61
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Cz(a) (b) ()Figure 4.1: Illustrations of the three investigated substrate types. (a) Planarwall, (b) orrugated wall (grooves), and () avity pattern.of hard rods beomes anisotropi (mp. Fig. 3.6 (b) on page 44). We all
P ∗ = 0.5 low pressure and P ∗ = 4 high pressure. The emphasis lies on hardrod systems sine most interesting e�ets are observed at P ∗ ≈ 4, for whihbulk systems of attrative rods show a pronouned struture formation andfrationation, already. Here, we fous on substrate indued struture forma-tion and attrative rod systems are thus of minor interest. For omparison,some studies are performed with attrative rods. In these ases, interationsof rods with the substrate are purely repulsive as for the hard rod system.The struture of the systems is analyzed in terms of density distribu-tion funtions and orientational orrelation funtions as introdued in Se-tion 2.5.3 and Setion 2.5.5. The properties of the various substrate patternsonerning demixing and frationation are investigated in terms of the spa-tially resolved mole fration (see Se. 2.5.4).4.1.1 Planar substrateThe planar wall is examined �rst. Fig. 4.2 displays the density pro�le ofeah omponent of a hard rod system at low and high pressure. Part (a)shows the results for P ∗ = 0.5. The substrate is loated at |z − z0| = 0for all plots. The density pro�les of long ( ), intermediate ( ), andshort rods ( ) exhibit a maximum at |z − z0|/D = (λ + 1)/2. At therespetive distane from the substrate, the orientational degrees of freedomare no longer restrited by the substrate. The maximum in the densityis atually a depletion e�et beause an unaessible void is reated if arod with orientation parallel to the wall normal is loated at separationsslightly larger than |z−z0|/D = (λ+1)/2. Similar observations were already
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z-dependene of the nemati order parameter with the diretor n parallelto the z-axis ez. The odomain omprises the interval [−0.5, 1], where thelower bound is adopted by rods perpendiular to ez and the upper boundis reahed when all rods are parallel to the z-diretion. gθ vanishes for anisotropi distribution. The low pressure results for gθ are depited in Fig. 4.3(a). gθ is minimal (and negative) at |z − z0| = 0.5D for all rod lengthssine rods proximate to the substrate have to orient parallel to the substrateand thus perpendiular to ez. Eah urve adopts its maximal value at |z −
z0|/D = (λ+1)/2, whih is in perfet agreement to the observations from thedensity distribution funtions, where the orresponding peaks were addressedto '|−' onstellations. At larger distanes from the wall, gθ is identially zerore�eting the isotropi state of the system. Fig. 4.3 (b) shows gθ in the highpressure regime. The layer formation lose to the wall is on�rmed by 2-3minima in gθ whereas indiations for '|−' on�gurations are absent. Withinreasing distane from the substrate, the orrelations deay1, but muhslower than at low pressure. The orrelations of long rods deay slowest. gθ isaround zero at large separations from the wall (|z−z0| & 13D). Orientationalorrelations range distintly longer than orrelations of the density (Fig. 4.2(b)). The extension of the simulation box omprises 20D in z-diretion2.1A deay of orrelations in this ase is related to an inrease of gθ, if gθ < 0.2Note that the e�etive wall separation is 40D due to the applied mirroring simulationtehnique.



4.1. TRIDISPERSE SUSPENSION 65Thus, artefats from the �nite box dimensions should be small.The evolution of the density pro�le for the tridisperse system at ompres-sion is studied in more detail in Fig. 4.4. Data for the short rods is presented
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(a) (b)Figure 4.4: Density distribution ρ∗λ as a funtion of the distane |z − z0| tothe wall of the tridisperse hard rod system in ontat with a planar substratefor (a) small rods (λ = 3) and (b) long rods (λ = 7) at di�erent pressures.in part (a). The low pressure results ( ) were already disussed above. Atintermediate pressure ( ) signi�anies from '||' and '|−' onstellations arepresent. The multilayer struture at high pressure ( ) is re�eted in ρ∗
3by several maxima separated by 1D. Indiations for '|−' on�gurations areabsent. It is noteworthy that the density of short rods in the layers is smallerthan in the bulk. The density pro�le of long rods is displayed in Fig. 4.4(b). The urves for P ∗ = 0.5 and P ∗ = 4 have already been desribed. At

P ∗ = 2, one distint maximum from rods �at on the substrate is observed.There are also indiations for a seond layer at |z − z0| ≈ 1.8D and for '|−'on�gurations at |z − z0| ≈ 4D.Hard and attrative rod systems are ompared in Fig. 4.5. Note that therod-substrate interation is purely repulsive in both ases. Results for thelow pressure regime are plotted in Fig. 4.5 (a) and (b). The density pro�lesof short rods are almost idential (Fig. 4.5 (a)). The density distributionfuntion of large rods deviates slightly at the �rst maximum that stems fromrods lying �at on the substrate but is idential else. One observes that
ρ∗

7 of hard rods ( ) is somewhat larger than ρ∗
7 of attrative rods ( )at |z − z0| ≈ 0.7D. This e�et an be explained as follows: Imagine anisotropi system of attrative rods. A rod in the bulk experienes attrativeinterations from all diretions. If one rod is taken from the bulk and plaed�at onto the (hard) substrate, it is sreened from attrative interations on
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(a) P ∗ = 0.5 (b) P ∗ = 4Figure 4.7: Snapshots of hard rod systems in ontat with a planar substrate(a) in the low pressure and (b) in the high pressure region. The substrate isloated at the front plane of the box.4.1.2 Corrugated substrateThe seond investigated substrate type is a groove-like struture. The pat-tern is omposed of a planar wall loated at |z − z0| = 0 with equally-spaedside walls on top. The side walls onsist of staks of in�nitely long ylindersoriented along the x-axis. The depth of the grooves is zC = 4D for all datapresented here, i. e. eah side wall of a groove onsists of 4 ylinders of diam-eter D staked on top of eah other (see Fig. 4.8 (d)). Fig. 4.8 shows densitypro�les for grooves of width yC = 3.5D at di�erent pressures. For a lowpressure, short ( ) and intermediate rods ( ) are mainly homeotropiinside the grooves as the peaks at |z− z0| = 2D and |z− z0| = 3D in Fig. 4.8(a) reveal. Interestingly, long rods ( ) do not form a layer �at on thesubstrate as this is the ase for the planar wall. The side walls of the groovesrestrit the orientational degrees of freedom in the xy-plane. This in�ueneis apparently enough to suppress the layer formation. Note that at P ∗ = 0.5and for a groove width of yC = 3.5D the density of short rods is largest insidethe grooves. At further distanes from the substrate, three small peaks areobserved loated at |z − z0|/D ≈ zC + (λ + 1)/2 for all rod lengths. At therespetive positions the orresponding rods are no longer diretly a�eted bythe substrate struture.At a slightly higher pressure P ∗ = 1, we �nd a distint hange of ρ∗
7 and ρ∗

5inside the grooves as demonstrated in Fig. 4.8 (b). The density of long rods( ) is maximal at |z − z0| ≈ 0.8D and a seond layer is indiated weakly.
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5 being about 25%of ρ∗
7. The density of λ = 3 rods inside the grooves is about 20% of the bulkvalue.The struture of the system is eluidated further via the orientationalorrelation funtions gθ and gφ (see Setion 2.5.5) in Fig. 4.9. Part (a) de-pits gθ at low pressure (P ∗ = 0.5). The values of gθ at the peaks from
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4.1. TRIDISPERSE SUSPENSION 71The layer formation inside the grooves at high pressure is also re�etedin gθ and gφ as shown in Fig. 4.9 () and (d). Maxima of the loal densityare aompanied by strong orientational order parallel to the x-diretion sothat gθ and gφ adopt a loal minimum or maximum, respetively. Note thatperfet alignment perpediular to the z-axis orresponds to gθ = −0.5. Bothorrelation funtions are basially zero for |z − z0| ≥ 15D.Density distribution funtions for narrow grooves of width yC = 1.5D inthe low and high pressure regime are presented in Fig. 4.10. The essential
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(a) (b)Figure 4.10: Density distribution ρ∗λ as a funtion of the distane |z − z0|to the wall of a hard rod system in ontat with a orrugated substrate withnarrow grooves (yC = 1.5D) at (a) low and (b) high pressure. At low pressure,the density of long rods is largest inside the grooves in ontrast to the ase ofbroad grooves (Fig. 4.8 (a)).new aspet of the narrow grooves ompared to the broader grooves of width
yC = 3.5D is the fat that now the orientation spae of all rods is stronglyredued inside the grooves. Espeially at low pressure this e�et omes intoplay as shown in part (a) of Fig. 4.10. The density of short and intermediaterods is distintly lower than for the broad grooves but the maxima from'|−' on�gurations remain. Long rods possess the largest density due to theredution of shorter rods. The value of ρ∗

7, however, does not hange muhompared to the broader grooves. The qualitative behavior of the densitydistribution for |z−z0| ≥ 4D is quite similar to that of a density distributionfuntion in front of a planar wall loated at |z−z0| = 4D (mp. Fig. 4.2 (a)):The density is maximal for all rod lengths at distanes where orientations areno longer a�eted by the substrate. Only the longest rods form a weak layer�at on top of the wall/grooves and ρ∗
7 lowers measurably between the maximafrom '||' and '|−' onstellations. Obviously, narrow grooves at almost like a



72 CHAPTER 4. SUBSTRATE INDUCED EFFECTSplanar substrate for rods that are not inside the grooves.Fig. 4.10 (b) depits urves in the high pressure regime. Multiple layersare found inside the grooves, again. The values of the di�erent ρ∗
λ at thepeaks as well as their ratios are omparable to the broader grooves. Thedensity between the layers, i. e. in the minima, redues distintly, however.The density pro�les on top of the grooves di�er signi�antly from the broadgrooves, espeially for λ = 7 and λ = 5 rods. Two peaks our in ρ∗

7 and ρ∗
5.The value of ρ∗

7 at |z−z0| ≈ 4.7D is about twie as large as for broad groovesand the orrelations imposed by the narrow grooves range further into thebulk.Typial rod on�gurations at high pressure are drawn in Fig. 4.11 forboth broad and narrow grooves. The view is along the z-axis and the planar

(a) P ∗ = 4, yC = 3.5D (b) P ∗ = 4, yC = 1.5DFigure 4.11: Snapshots of the tridisperse hard rod suspension in ontat witha substrate with (a) broad and (b) narrow grooves at high pressure.wall is transparent. The side walls of the grooves are made up of in�nitelylong ylinders, whih are olored green in the snapshots.Before we turn to the next substrate pattern, here omes a brief summaryof the results for the grooves: We investigated a tridisperse mixture of hardrods in ontat with a substrate with broad and narrow grooves. The systemswere studied at low (P ∗ = 0.5) and high (P ∗ = 4) pressure. In the lowpressure regime, the density of small rods is largest in the broad grooveswhereas for narrow grooves the density of long rods dominates. At highpressure, multiple layers of predominantly long rods build in the grooves.



4.1. TRIDISPERSE SUSPENSION 734.1.3 Cavity patternThe third type of studied substrate patterns has a retangular avity stru-ture formed by a set of side walls in x- and y-diretion on top of the hardplane at |z−z0| = 0 (see Fig. 4.12 (d)). All avities have a width yC = 3.5D.The depth is hosen zC = 4D throughout this setion. In the following fourdi�erent lengths of the avities are investigated: Cavities where the longestrods �t in (xC = 8.5D), avities for the intermediate (xC = 6.5D) and shortrods (xC = 4.5D), and avities where no rod �ts in with its orientation pla-nar to the wall and parallel to the side wall (xC = 3.5D). One an image aavity pattern as a groove struture with additional ross walls that breakthe translational invariane of the groove struture in x-diretion.Density distribution funtions of the systems with the longest avities(xC = 8.5D) in the low, intermediate, and high pressure regime are pre-sented in Fig 4.12 (a)-(). The low pressure results are shown in part (a).The behavior of ρ∗
3 ( ) equals that from the planar wall and the groovestruture. The maximum of the '|−' onstellations is somewhat smaller,however. Larger deviations from the previously studied substrate types areobserved for the longer rods. ρ∗

5 ( ) is redued signi�antly in the range
|z − z0| ≤ 2D and ρ∗

7 ( ) is dereased to about 10% of the bulk value.The additional restrition of the aessible volume due to the ross wallshas its largest impat on longer rods, apparently. The harateristis for
|z − z0| ≥ 4D are essentially the same as for the groove struture.One pronouned and one weak layer of rods parallel to the substrate areobserved at intermediate pressure P ∗ = 2 (Fig. 4.12 (b)) inside the avities.The layers are mainly omposed of long rods. There is no indiation thatshort rods are inorporated in the seond layer. Instead, they show the peakfrom '|−' onstellations. All in all, the omposition inside the avities in theintermediate pressure regime is quite heterogeneous.The polydispersity inside the avities redues drastially in the high pres-sure regime as demonstrated in Fig. 4.12 (). The avities are essentially�lled with long rods arranged in three layers. ρ∗

5 is about 15% of ρ∗
7 and

ρ∗
3 is basially zero. One also �nds some layering on top of the avitiesbut with a distintly larger polydispersity. A �rst omparison of the planarwall, grooves, and long avities points out that the best results onerninga length spei� aggregation are obtained by the avities. These propertiesare illuminated in detail in Setion 4.1.4.Fig. 4.13 depits density distribution funtions for avities of length xC =

6.5D and xC = 4.5D in the high pressure regime. Results for the low pressureare omitted due to their similarity with the low pressure results of longavities. In the interior of the avities of intermediate length (Fig. 4.13 (a)),
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7 at |z − z0| ≈ 4.7D is omparable to thelonger avities (Fig. 4.12 ()) but the deay of ρ∗
7 for |z − z0| ≥ 6D is slower.Short avities of length xC = 4.5 in�uene the struture of the systemin a ompletely di�erent manner as demonstrated in Fig. 4.13 (b). In therange |z − z0| ≤ 2D, only ρ∗

3 is non zero. ρ∗
3 reveals two maxima inside theavities. The �rst maximum arises from short rods lying �at on the substratewhereas the seond maximum stems from '|−' onstellations. Maxima from
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(a) (b)Figure 4.13: Density distribution ρ∗λ as a funtion of the distane |z − z0|to the wall for hard rod systems in the high pressure regime in ontat with asubstrate with avities of (a) length xC = 6.5D and (b) length xC = 4.5D.homeotropially aligned rods are also observed in ρ∗
5 at |z−z0| = 3D and in ρ∗

7at |z−z0| = 4D. Thus, the short avities are not entirely �lled with short rodsbut longer rods penetrate the avities with their orientation perpendiularto the substrate plane.Fig. 4.14 gives an overview of the orientational orrelation funtion gθ forthe previously investigated avity strutures in the high pressure regime. InFig. 4.14 (a), gθ is plotted for the avity struture for the long rods (xC =
8.5D). The behavior is qualitatively very similar to the groove-like struture(Fig. 4.9 ()) with multiple layers inside the avities and the deay of theorrelations for |z − z0| > 6D. The orientational order of rods perpendiularto the z-axis is signi�antly smaller inside avities of intermediate length(xC = 6.5D) as demonstrated in Fig. 4.14 (b). We know already from thedensity pro�les that layer formation in these avities is less pronouned andlong rods are prevented from entering. Short rods ( ) exhibit orientationsin the xy-plane only in the �rst layer. gθ inreases quikly ending in themaximum arising from '|−' onstellations. Two planar layers are observedfor intermediate rods ( ). gθ for long rods ( ) is zero in the range 0 ≤
|z−z0|/D . 3.5 beause the density is zero. The maximum is reahed at theloations from '|−' onstellations and gθ forms several minima on top of theavities. Inside the short avities with xC = 4.5D (Fig. 4.14 ()) only shortrods lose to wall orient perpendiular to the z-axis. Instead of a multilayerformation, pronouned peaks indiate '|−' on�gurations. Interestingly, shortavities do not indue long range orientational orrelations sine gθ vanishesfor |z − z0| & 9D, already. Even the system with the planar wall (Fig. 4.14
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(a) xC = 8.5D, P ∗ = 4 (b) xC = 6.5D, P ∗ = 4

() xC = 4.5D, P ∗ = 4 (d) xC = 6.5D, P ∗ = 5Figure 4.15: (a)-() Snapshots of tridisperse hard rod systems in the highpressure regime (P ∗ = 4) with avities of di�erent length xC . (d) Cavities ofintermediate length (xC = 6.5D) at P ∗ = 5.
P ∗ = 5. All avities are essentially �lled with rods of intermediate lengtho�ering a better seletivity to λ = 5 rods than at the pressure P ∗ = 4.The smallest avities investigated have a length xC = 3.5D. Thus, noteven the short rods are able to align parallel to the x-axis inside the avities.Density distribution funtions at pressures P ∗ = 0.5 and P ∗ = 2 are pre-sented in Fig. 4.16. At low pressure (Fig. 4.16 (a)), only short rods feature apeak from '|−' on�gurations inside the avities. The densities of the longerrods do not adopt a maximal value at the respetive loations but exhibit atsmall plateau. At P ∗ = 2 (Fig. 4.16 (b)), all three rod omponents possess
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4.1. TRIDISPERSE SUSPENSION 79The small peak in ρ∗
3 at |z − z0| ≈ 0.7D stems from short rods diagonally inthe avities. The density pro�le undergoes a signi�ant hange at P ∗ = 6 asdemonstrated in Fig. 4.17 (b). In the region 7 ≤ |z − z0|/D ≤ 12, multiplemaxima are observed of predominantely long and intermediate rod lengths.Apparently, a seond layer of rods perpendiular to the substrate is reated.

ρ∗
7 exhibits three maxima in that range. The peak at |z − z0| = 8D anbe attributed to long rods oriented along the z-axis on top of the avitiesor on top of λ = 3 rods inside the avities. The peak at |z − z0| ≈ 9D isrelated to long rods on top of the layer at |z − z0| ≈ 4.7D and the peak at

|z − z0| ≈ 10D arises from a staking on top of λ = 5 rods. The explanationfor ρ∗
5 is straightforward. The modulations of ρ∗

3 are muh smaller. We pointout that the density of short rods redues signi�antly in the high densityrange of long rods.The homeotropi alignment of the system is analyzed in more detail interms of gθ in Fig. 4.18. At P ∗ = 4, homeotropi alignment is basially
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(a) (b)Figure 4.18: Orientational orrelation funtion gθ as a funtion of the distane
|z − z0| to the wall of a system of hard rods in ontat with a substrate withavities of length xC = 3.5D (a) at P ∗ = 4 and (b) at P ∗ = 6.restrited to the interior of the avities for all rod lengths as shown in Fig. 4.18(a). Only two minima with gθ < 0 appear, one exlusively from short rodsinside the avities and one from mainly short rods on top on the avities. At

P ∗ = 6 (Fig. 4.18 (b)), the rods are aligned more strongly along the z-axis,espeially in the region above the avities (|z − z0| > 4D). The formationof a seond homeotropi layer, as mentioned in the disussion of the densitypro�le, is veri�ed by gθ.In Fig. 4.19, simulation snapshots of systems at P ∗ = 4 and P ∗ = 6 aredepited. Fig. 4.19 (a) and (b) provide views along the z-axis. Part (a)
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(a) xC = 3.5D, P ∗ = 4 (b) xC = 3.5D, P ∗ = 6

() xC = 3.5D, P ∗ = 4 (d) xC = 3.5D, P ∗ = 6Figure 4.19: The tridisperse hard rod suspension in ontat with a substratewith avities of length xC = 3.5D. Views along the z-axis of systems areprovided in (a) at P ∗ = 4 and (b) at P ∗ = 6. Sideviews of the simulationboxes are shown in () at P ∗ = 4 and in (b) at P ∗ = 6. The �rst avity wallsparallel to the view plane are not drawn in order to enable a look inside theavities.depits the situation at P ∗ = 4. The avities are rather loosely �lled andone also an distinguish between avities with homeotropially aligned rodsand avities with isotropi short rods. The �lling of the avities is stronglyenhaned at P ∗ = 6 as shown in part (b). Most avities are densely pakedwith long and intermediate rods. Side views of the simulation boxes areprovided in Fig. 4.19 () and (d). The homeotropi alignment at P ∗ = 4 ismerely restrited to the interior of the avities. At P ∗ = 6, a nemati region



4.1. TRIDISPERSE SUSPENSION 81of predominantely long rods has built in the left half of the simulation boxwhereas short rods aumulate in an isotropi phase in the right half. Thus,the substrate pattern is responsible for a spatial separation of lengths in thesystem, whih is not observed for the orresponding bulk system.The thermodynami stability of the phase separated tridisperse system at
P ∗ = 6 an not be fully answered in the onsidered NPT ensemble. The �nitesize of the system and the partile onservation may result in a metastableon�guration. Nevertheless, metastable states play an important role in theearly formation proess of marosopi strutures. Slow partile transportan be a limiting fator in marosopi systems. Thus, long-living metastablestates an be observed [22℄. We stress, that the limitations mentioned hereare only direted towards systems at P ∗ ≫ 4. Systems with P ∗ ≤ 4 do notshow any indiations of phase separation.4.1.4 Length spei� aggregationThe investigations so far illuminated the spatial struture indued by variouskinds of substrate patterns. Now we turn towards the question how the dif-ferent substrate types modify the loal mixing ratio and how the struturesan be used to selet spei� rod types. The goal is to �gure out suitablesubstrate patterns, whih enable a preise ontrol of the length distributionin a prede�ned region. The spatially resolved mole fration xλ as introduedin Setion 2.5.4 provides a omprehensive overview of the e�ieny of a sub-strate pattern to modify the ratio of the omponents. Results in the lowpressure regime are presented in Fig. 4.20. The mole fration of the shortrods ( ) is inreased lose to the substrate in all plots but Fig. 4.20 (),whih shows data for the small grooves of width yC = 1.5D. In latter ase,approximately equal amounts of rod omponents are present. x3 is parti-ularly large in the avity patterns (Fig. 4.20 (d)-(f)). One has to keep inmind, however, that a large loal mole fration does not imply a large loaldensity. Espeially inside the grooves and avities the density of short rodsis smaller than in the bulk.Fig. 4.21 summarizes the mole frations in the high pressure regime. Themole frations of the system with the planar wall are plotted in Fig. 4.21 (a).
x7 ( ) is about 0.65 for rods in diret wall ontat (|z − z0| = 0.5D)and deays rapidly to a loal minimum at |z − z0| ≈ 1.3D where x3 adoptsa loal maximum. The horizontal lines in the plot orrespond to the bulkmixing ratio 0.47 : 0.304 : 0.226. x3 is slightly above the respetive line for
|z− z0| ≥ 4D beause of the displaement lose to wall and the onservationof partiles. x7 is lowered ompared to the bulk value for analogous reasons.The mole fration of intermediate rods ( ) remains basially unhanged
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(e) (f)Figure 4.20: Spatially resolved mole fration xλ as a funtion of the distane
|z − z0| to the wall for di�erent substrate patterns in the low pressure regime.(a) Planar wall, (b) grooves of width yC = 3.5D, () grooves of width yC =
1.5D, (d) avities of length xC = 8.5D, (e) avities of length xC = 6.5D,and (f) avities of length xC = 4.5D.
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(e) (f)Figure 4.21: Spatially resolved mole fration xλ as a funtion of the distane
|z − z0| to the wall in the high pressure regime (P ∗ = 4) of various substratepatterns. (a) Planar wall, (b) grooves of width yC = 3.5D, () grooves ofwidth yC = 1.5D, (d) avities of length xC = 8.5D, (e) avities of length
xC = 6.5D, and (f) avities of length xC = 4.5D.



84 CHAPTER 4. SUBSTRATE INDUCED EFFECTSand deviates only slightly from its bulk value inside the grooves as demon-strated in Fig. 4.21 (b) and (). The grooves are apable to prolong thedi�erentiation of long and short rods to 0 ≤ |z − z0|/D ≤ 4. Narrow grooves(Fig. 4.21 ()) appear to be more e�etive than broad grooves (Fig. 4.21 (b))in this sense. The longest avities (xC = 8.5D) provide the best seletionof long rods as shown in Fig. 4.21 (d). More than 80% of the rods in therange |z − z0| ≤ 3D have axis ratio 7 and short rods are mainly absent.The avities also redue x5 distintly, whih is not observed for the planarand the orrugated wall. The omposition inside the avities is thus highlymonodisperse. Cavities of intermediate length inrease the mole fration ofintermediate rods (Fig. 4.21 (e)), espeially around |z−z0| = 0. In the range
2 ≤ |z − z0|/D ≤ 4, short and intermediate rods ontribute about the equalamount. On the �rst view, short avities (Fig. 4.21 (f)) seem to generatea purely monodisperse suspension of short rods in the range z ≤ 2D. Butshort avities are �lled with homeotropially aligned intermediate and longrods to a large extent so that the volume inside the avities is mainly usedby longer rods. Note that the spatially resolved mole fration as well as thedensity distribution funtion are de�ned in terms of the enter of mass of therods. The signi�anies from the '|−' on�gurations of λ = 5 and λ = 7 rodsappear also in x5 and x7.In summary, we �nd that in regions lose to the substrate the mixing ratiohanges. Strutured substrates amplify this e�et and expand the respetiveregion. Cavities for the longest rods generate a highly monodisperse regionof long rods and also the amount of intermediate rods an be enrihed insideappropriate avities. This e�et improves at higher pressure as demonstratedin Fig. 4.22. Part (b) shows the mole fration of a system with avities ofintermediate length at P ∗ = 5. For omparison the data at P ∗ = 4 isplotted in part (a), again. The avities disriminate very sensitively betweenshort and intermediate rods while the latter ontribute about 80% to theomposition in the range |z − z0| ≤ 3D.4.1.5 Shallow avitiesFrom a tehnial point of view, avities with a lower depth zC might be fab-riated more easily. In this setion, avities of depth zC = 1D are disussed,brie�y. The low pressure regime is skipped sine no important hanges takeplae ompared to the low pressure regime of a planar wall. The density dis-tribution funtions in the high pressure regime are plotted in Fig. 4.23. Thepro�le of long avities (Fig. 4.23 (a)) is qualitatively similar to the planarwall (Fig. 4.2 (b)) but the density of intermediate and short rods is stronglyredued inside the avities. The ratio of ρ∗

5 to ρ∗
7 at the �rst maximum is
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(a) (b)Figure 4.22: Spatially resolved mole fration xλ as a funtion of the distane
|z − z0| to the wall of a tridisperse hard rod system in ontat with avities ofintermediate length xC = 6.5D at the pressure (a) P ∗ = 4 and (b) P ∗ = 5.The frationation is signi�antly more enhaned at P ∗ = 5.about 30% for the planar wall and 18% for the shallow avities. The bestratio, however, is obtained by the avities of depth zC = 4D and amounts to

12%.The result for the intermediate avity length is presented in Fig. 4.23 (b).The urve for long rods ( ) is shifted to the right by roughly one roddiameter. Thus, the region 0.5 ≤ |z − z0|/D ≤ 1.5 is exlusively �lled byshort and intermediate rods with the latter ontributing about 70% to thedensity.In the ase of short avities (Fig. 4.23 ()), the urves for long ( )and intermediate rods ( ) are shifted rightwards. The density of short rods( ) inside the avities is larger than for avities of length xC = 8.5D andlength xC = 6.5D but does not exeed the bulk value notieable.All in all, shallow and deep avities show similar properties. The avitiesare preferentially �lled with the longest rod omponent, whih an be plaedinside the avities with the orientation of the rods parallel to the wall. Thepossibility to generate prede�ned regions in the system where demixing takesplae is still given but to a redued extend.
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()Figure 4.23: Density distribution ρ∗λ as a funtion of the distane |z − z0|to the wall of systems with shallow avities with depth zC = 1D in the highpressure region (a) for long, (b) for intermediate, and () for short avities.4.1.6 Attrative rods on hard substratesThe majority of the studies in the previous setions utilized the hard rodmodel (ǫ∗ = 0). Only few results for attrative rods (ǫ∗ = 0.5) at lower pres-sures were disussed in Setion 4.1.1, in whih minor di�erenes ompared tohard rod systems were observed. Appropriately designed substrate patternsbear most e�ets on the struture of the �uid at high pressures, partiularlyonerning length spei� aggregation as demonstrated in Setion 4.1.4. Inthis sense, strutured substrates are muh less e�etive in systems of attra-tive rods sine pronouned frationation takes plae already in the bulk.Some qualitative properties of attrative rod systems above the bulkordering transition are explained on the basis of snapshots presented inFig. 4.24. The pressure is P ∗ = 3.5 for all pitures. Fig. 4.24 (a) depitsthe system in ontat with a planar wall. The system has separated into
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(a) ǫ∗ = 0.5, P ∗ = 3.5, planarwall (b) ǫ∗ = 0.5, P ∗ = 3.5, yC =
3.5D

() ǫ∗ = 0.5, P ∗ = 3.5, xC =
8.5D

(d) ǫ∗ = 0.5, P ∗ = 3.5, xC =
6.5DFigure 4.24: Snapshots of systems of attrative rods in ontat with varioussubstrate types at pressure P ∗ = 3.5. (a) Planar wall, (b) grooves of width

yC = 3.5D, () avities of length xC = 8.5D, and (d) avities length xC =
6.5D. In (a)-() the hexati luster adheres at the substrate but not in (d).a highly ordered monolayer of long and an isotropi �uid of shorter rods3.The luster adheres at the substrate. The two visible domains of long rodsare onneted via the periodi boundaries. A system with grooves of width

yC = 3.5D is shown in Fig. 4.24 (b) whereas short rods are not drawn in thesnapshot. The luster adheres at the substrate and the orientation of the3The same separation is also observed in bulk systems.



88 CHAPTER 4. SUBSTRATE INDUCED EFFECTSrods in the luster oinide with diretion of the grooves. A system with aavity pattern for the longest rods is presented in Fig. 4.24 (). Short rods areomitted. The luster orients along the grooves and adheres at the substrate,again. One must note, however, that most long rods are inorporated intothe luster and are therfore depleted from half of the avities. Fig. 4.24 (d)illustrates a system with avities of intermediate length. The luster is sur-rounded ompletely by the isotropi �uid of shorter rods and does not adhereat the substrate. These examples the shown to demonstrate the in�uene ofadjaent substrates on attrative rods. Further studies are needed to larifythe e�ets in detail.4.2 Polydisperse suspensionThis setion is dediated to study the struture of a polydisperse suspen-sion in ontat with the three substrate types, i. e. the planar wall, thegrooves, and the retangular avities. The length distribution is the sameas in Fig. 3.15 on page 53. The struture indued by the di�erent substratepatterns was investigated in detail in the previous setion for the tridispersesuspension. This setion fouses on a representative seletion of results forpolydisperse rod systems, whih are ompared to the tridisperse analogs.4.2.1 Planar substrateFig. 4.25 shows the density distribution funtions of a hard rod system inontat with a planar wall. For the sake of larity and to gain better statistis,umulative distribution funtions (Setion 2.5.3) are presented where the twolongest omponents (λ ∈ {7, 8}), the two intermediate (λ ∈ {4, 5}), andthe two shortest omponents (λ ∈ {1, 2}) are subsumed. The agreementof the low and high pressure results with the tridisperse mixture (Fig. 4.2)is remarkable. At P ∗ = 0.5, maxima from '|−' on�gurations appear inevery urve and a layer �at on the wall ours only for the longest rodsas demonstrated in Fig. 4.25 (a). The maxima from '|−' onstellations arebroader, however, sine in eah ase the density pro�les of two rod lengthsare merged. At P ∗ = 4 (Fig. 4.25 (b)), layer formation mainly from the longrods ( ) is visible. Intermediate rods ( ) are inorporated in the layersdistintly less. Espeially short rods ( ) are hardly a�eted by the layerformation.Hard and attrative rods at P ∗ = 2 are ompared in Fig. 4.26. Part (a)depits the umulative density distribution funtion for short and part (b)for long rods. The orresponding urves for hard and attrative rods are



4.2. POLYDISPERSE SUSPENSION 89
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8  9  10

ρ λ
1,

λ 2
*

|z-z0|/D

ε*=0, P*=0.5

λ=7,8
λ=4,5
λ=1,2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  1  2  3  4  5  6  7  8  9  10

ρ λ
1,

λ 2
*

|z-z0|/D

ε*=0, P*=4

λ=7,8
λ=4,5
λ=1,2

(a) (b)Figure 4.25: Cumulated density distribution ρ∗λ1,λ2
as a funtion of the dis-tane |z − z0| to the wall of a polydisperse hard rod system in ontat witha planar wall. (a) Low pressure results for long ( ), intermediate ( ),and short rods ( ). (b) The orresponding high pressure results. Thesimilarities to the tridisperse mixture (Fig. 4.2) are extensive.basially idential and deviate only slightly at the seond maximum in thesame way as shown in Fig. 4.5 () and (d) for the tridisperse suspension.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8  9  10

ρ 1
,2*

|z-z0|/D

P*=2

ε*=0
ε*=0.5

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9  10

ρ 7
,8*

|z-z0|/D

P*=2

ε*=0
ε*=0.5

(a) (b)Figure 4.26: Cumulated density distribution ρ∗λ1,λ2
as a funtion of the dis-tane |z − z0| to the wall for hard ( ) and attrative rods ( ) in themedium pressure regime (P ∗ = 2) for (a) short (λ ∈ {1, 2}) and (b) long rods(λ ∈ {7, 8}).



90 CHAPTER 4. SUBSTRATE INDUCED EFFECTS
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8  9  10

ρ λ
1,

λ 2
*

|z-z0|/D

ε*=0, P*=0.5, yC=3.5D

λ=7,8
λ=4,5
λ=1,2

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6  7  8  9  10

ρ λ
1,

λ 2
*

|z-z0|/D

ε*=0, P*=4, yC=3.5D

λ=7,8
λ=4,5
λ=1,2

(a) (b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6  7  8  9  10

ρ λ
1,

λ 2
*

|z-z0|/D

ε*=0, P*=0.5, yC=1.5D

λ=7,8
λ=4,5
λ=1,2

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7  8  9  10

ρ λ
1,

λ 2
*

|z-z0|/D

ε*=0, P*=4, yC=1.5D

λ=7,8
λ=4,5
λ=1,2

() (d)Figure 4.27: Cumulated density distribution ρ∗λ1,λ2
as a funtion of the dis-tane |z − z0| to the wall of a hard rod system in ontat with a orrugatedsubstrate. Broad grooves (yC = 3.5D) at (a) low pressure and (b) highpressure. Narrow grooves (yC = 1.5) at () low and (d) high pressure.4.2.2 Corrugated substrateHard rod systems in ontat with broad (yC = 3.5D) and narrow grooves(yC = 1.5D) are investigated in Fig. 4.27. The e�ets observed for the tridis-perse mixture (Figs. 4.8 and 4.10) also emerge in the polydisperse mixture,whih are:1. The density of short rods is largest in broad grooves whereas in narrowgrooves the long rods dominate in the low pressure regime (Fig. 4.27(a) and ()).2. Rods in the region |z − z0| > 4D behave similar to those in front of aplanar wall at P ∗ = 0.5 (Fig. 4.27 ()).3. At high pressure three layers of mainly long rods form inside the grooves



4.2. POLYDISPERSE SUSPENSION 91(Fig. 4.27 (b) and (d)).4. The layer formation on top of the grooves |z − z0| ≈ 4.7D is morepronouned for narrow grooves (Fig. 4.27 () and (d)).Apparently, the tridisperse and the polydisperse mixture show the samee�ets in the investigated parameter range. The density distribution fun-tions apportioned into long, intermediate, and short rods are omparable inboth systems. Thus, the results hold a universal harater and qualitativelysimilar e�ets are also expeted to our in length-polydisperse suspensionswith other length distributions. In the following, systems with avity pat-terns are studied where the density pro�les of the single omponents arepresented rather than the umulative density distribution funtions.4.2.3 Cavity patternAs demonstrated in Setion 4.1.4, adequately tailored avities are apable toindue a highly monodisperse segregation of prede�ned rod lengths lose tothe substrate. In the polydisperse suspension, eight rod lengths are presentwith integer values of the axis ratio allowing for a re�ned λ-dependent stru-ture analysis. Fig. 4.28 depits density pro�les of hard rod systems in on-tat with avities of length xC = 8.5D (part (a)) and xC = 6.5D (part (b))at high pressure. Data is presented for the three longest rod lengths with
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(λ + 1)D < xC and for the shortest rods with (λ + 1)D > xC . Three layersarise inside the long avities (Fig. 4.28 (a)). The density of λ = 7 rods ( )is largest and ρ∗

6 ( ) is somewhat less than 50% of ρ∗
7. It is quite remark-able, to whih extend ρ∗

5 ( ) is redued. The density of λ = 5 rods insidethe avities is about the bulk value whereas the two next longer omponentsexeed their bulk value several times. Rods with λ = 8 ( ) do not �t inlayers into the avities and thus aggregate on top.The layer formation inside avities of intermediate length (Fig. 4.28 (b)) isredued notieably but the main ontributions stem from the two longest rodomponents, whih are able to form layers inside the avities. In this ase,these are λ = 5 ( ) and λ = 4 rods ( ). Subsuming the observations,we onlude that avities of a ertain length are highly sensitive to the longestrods, whih an form layers inside. In the studied systems, shorter rods,whih in priniple ould enter the avities, are signi�antly restrained.A omprehensive overview of the demixing apabilities of the various sub-strate types delivers the integrated mole fration xint
λ as de�ned in Eq. (2.43).

xint
λ is obtained by integrating the mole fration xλ(z) from z = −z0 to

z = −z0 + 4D. Thus, xint
λ is the number of rods with axis ratio λ in theregion zmin ≤ z ≤ zmax divided by the overall number of rods in that region.Fig. 4.29 ontains the orresponding results. The symbols are measurementsand the lines are a guide to the eye. Fig. 4.29 (a) depits the data for thepolydisperse suspension at P ∗ = 4. In the system with the planar wall (#),

xint
λ is about 10% for axis ratios smaller than 5 and inreases monotoniallyfor longer rods. Eah omponent of the short rods (λ ≤ 4) redues to lessthan 5% in the system with the broad grooves (N) whereas the number oflonger rods (λ ≥ 6) inreases distintly. The number of λ = 7 rods inreaseseven further in the system with the long avities (�). About 50% of all rodshave axis ratio λ = 7 and together with λ = 6 rods they ontribute to about

80%. In the system with the intermediate avities ( ), rods with λ ≥ 6 arevery e�etively suppressed. xint
4 and xint

5 add up to approximately 50%. At
P ∗ = 5 (Fig. 4.29 (b)), the ontribution of shorter rods (λ ≤ 3) redues sig-ni�antly for intermediate avities ( ). Less than 10% of the rods stem fromeah omponent with λ ≤ 3 whereas λ = 4 and λ = 5 rods onstitute ira
70%. The urves for the other substrate types remain basially unhangedat P ∗ = 5.For ompleteness, data of xint

λ for the tridisperse mixture at P ∗ = 4 ispresented in Fig. 4.29 (). The orrespondene of the tridisperse and thepolydisperse mixture an be seen best if latter is lassi�ed in terms of short(1 ≤ λ ≤ 3), intermediate (4 ≤ λ ≤ 5), and long rods (6 ≤ λ ≤ 8).We �nish the investigations of the polydisperse mixture with some ob-servations in a system with the shortest avities of length xC = 3.5D in
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Fig. 4.30. In the orresponding system of a tridisperse mixture, homeotropialignment and phase separation has been observed at pressure P ∗ = 6. Here,one �nds similar e�ets, however, in a redued manner. Fig. 4.30 (a) depitsthe umulated density pro�le at P ∗ = 6.5. Long ( ) and intermediaterod lengths ( ) exhibit a pronouned homeotropi alignment in the avitiesas revealed by the maxima at |z − z0|/D = (λ + 1)/2. The double peaks ineah urve are due to the subsumption of two rod lengths. In partiular, thelongest rods show an inreased density in the range 8 ≤ |z − z0|/D ≤ 10,whih is aused by a seond layer of hometropially oriented rods. The snap-shot in Fig. 4.30 (b) illustrates the desribed observations.
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5) are olored yellow, and the shortest rods (1 ≤ λ ≤ 3) are green.4.3 Alternating avity patternIn the �nal setion of this hapter some observations are presented, whiharise in systems with alternating avity patterns. The hosen ompositions ofthe suspensions di�er from the tridisperse and polydisperse suspension. Theso-alled 62 mixture onsists of rods with λ = 6 and λ = 2. The onstituentsof the 7531 mixture have axis ratios λ = 7, λ = 5, λ = 3, and λ = 1. In bothmixtures, eah omponent omprises the same volume fration. The appliedpressures are in a range where the orresponding bulk systems start to order.Firstly, we onsider the 62 mixture. Two di�erent setups are investi-gated. The �rst one onsists of N = 2000 rods simulated with the mirroringtehnique to ensure that the behavior of the substrate at −z0 will not bein�uened by the substrate at z0. The substrate is omposed of avities ofalternating length x
(1)
C = 7.25D and x

(2)
C = 3.25D. The width of all avitiesis yC = 5D and the depth is zC = 3D. In the seond setup a system with

N = 1000 partiles and two opposing walls eah with the same avity stru-ture is employed. The avity lengths are x
(1)
C = 7.5D and x

(2)
C = 4D. Thesystem represents a slit pore with strutured walls.Results for the �rst setup are presented in Fig. 4.31. Part (a) depitsa bottom view of the system. The avities indue an alternating strutureof long and short rods in substrate proximity. The long rods form multiple
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(a) ǫ∗ = 0, P ∗ = 5 (b) ǫ∗ = 0, P ∗ = 5
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(a) ǫ∗ = 0, P ∗ = 5 (b) ǫ∗ = 0, P ∗ = 6
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4.3. ALTERNATING CAVITY PATTERN 97the ourrene of a double peak pattern inside the avities for λ = 6, whihis harateristi for hexati ordering and is not observed for P ∗ = 5. In theorresponding bulk system layer formation is also observed at P ∗ = 6 butthe order in the transverse diretion is learly not hexati as demonstratedby g
(6,6)
⊥ ( ) in Fig. 4.33.
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7 is distintly above the bulk value inthe range 0 ≤ |z − z0|/D . 12 and dereases quikly afterwards, i. e. wherethe smeti layer ends. The peak struture of the smeti layer outside theavities gets lost but the orientational orrelation funtion gθ remains loseto −0.5 (Fig. 4.34 (d)). The high ordered struture of λ = 5 rods is restritedto the interior of the avities.We summarize that a heterogeneous distribution of avity lengths induesa heterogeneous distribution of rod lengths in substrate proximity. In addi-tion, smeti layers an exeed the avity depth signi�antly. Thus, avitiesrepresent not only a possibility to generate highly monodisperse suspensionsbut may also serve as an interesting tool to study smeti monolayers indetail.
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(a) ǫ∗ = 0, P ∗ = 5 (b) ǫ∗ = 0, P ∗ = 5
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Chapter 5Summary and outlookIn this work, olletive behavior of olloidal rods has been investigated withthe help of Monte Carlo simulations onerning the phase behavior and stru-ture formation in bulk systems and substrate indued e�ets. For polydis-perse systems, nuleation and substrate indued frationation has been stud-ied. The in�uene of attrative and hard rods has been ompared. Theattrative rod potential for spheroylinders of Bolhuis et al. [8℄ has thereforebeen extended for arbitrary rod lengths to investigate polydisperse suspen-sions of olloidal rods. An e�etive method to alulate UAR is derived inAppendix A.In Setion 3.1, we investigated the bulk behavior of monodisperse systemswith axis ratios λ = 3 to λ = 8 for di�erent interation strengths and pre-sented isotherms as a funtion of the redued pressure P ∗. In some ases, the�rst order phase transitions were aompanied by a strong hysteresis. Wetherefore applied biased multi-histogram sampling to explore the relevantpart of the free energy landsape and to identify the thermodynamially sta-ble phases. With the obtained results, we also ould estimate the surfaetension between the nemati and the hexati phase. The struture of allinvolved phases was analyzed in more detail with suitable pair orrelationfuntions. A omprehensive overview of the phase behavior of monodispersesystems was provided by phase diagrams in the P ∗λ-plane. At low intera-tion strengths, the nemati and the smeti A phase exists in a relativelylarge pressure range. The nemati phase broadens with inreasing axis ratio
λ. At larger interation strengths, the hexati phase is predominant. Withinreasing axis ratio λ, the hexati phase sets in at dereasing pressure. Thenemati and the smeti A phase are lens shaped.In Setion 3.2, a tridisperse mixture of hard and attrative rods was inves-tigated, whih features many aspets of polydisperse systems. The spatialand orientational order in the system was studied separately for eah rod99



100 CHAPTER 5. SUMMARY AND OUTLOOKlength. We observed a distint dependene of the struture formation onthe interation strength of the potential. With attration, a monolayer withlong-range hexati in-plane order of long rods forms, whih is surroundedby an isotropi �uid of shorter rods. For hard rods, order sets in at higherpressure and the struture formation is less pronouned. The pair orrelationfuntions revealed the struture of a nemati �uid. Thus, layer formation likefor attrative rods is absent and frationation is negligible.The in�uene of attrativity has also been studied in a more realistilength-polydisperse suspension of rods in Setion 3.3. The observations forthe polydisperse mixture basially resemble those of the tridisperse mixture.With su�iently strong interations, we found the formation of a hexatimonolayer surrounded by an isotropi �uid. A strong frationation ourswith mainly long rods inorporated in the hexati monolayer and shorterrods aumulate in the isotropi �uid. In the ase of hard rods, we foundthe formation of a nemati droplet of mainly long rods resulting in a mod-erate frationation, whih was not observed for the tridisperse mixture. Thefrationation in the polydisperse systems is strongly enhaned by attrativeinterations. A monolayer formation with long-range order was also observedexperimentally is supensions of fd viruses [22℄. In these experiments, attra-tive interations were provided by depletion fores indued by non-adsorbingPEG polymers in the solution.In Chapter 4, the tridisperse and the polydisperse suspension were stud-ied in ontat with (strutured) substrates. The main results were obtainedfor low (P ∗ = 0.5) and high (P ∗ = 4) pressure in hard rod systems. Notethat the orresponding bulk systems of hard rods are isotropi at the on-sidered pressures. Again, we started with the tridisperse mixture, whih iseasier to disuss. Speial attention was paid on the �uid struture near thewall in the low and high pressure region and on the in�uene of di�erentlypatterned substrates onerning spatial frationation. The following resultswere obtained at low pressure: For the planar wall the density of short rodsis larger in the substrate proximity and a layer formation of longer rods isstrongly suppressed. For walls with parallel grooves, a larger density of shortrods exists in broad grooves whereas in narrow grooves the density of longrods is largest. Retangular avities of di�erent size do not hange the �uidstruture in a signi�ant way in the low pressure regime. A very di�erentbehavior is found at high pressure for all substrate types. Close to a pla-nar wall, we observed a multilayer overage with the density of long rodsenhaned in the layers. In systems with grooves, the multilayer formationsustains inside the grooves and long rods ontribute most. The observede�ets in broad and narrow grooves are alike, now. For avities, however,the �uid struture inside the avities depends distintly on the dimension of



101the avities. In long avities, we observed layer formation of almost exlu-sively long rods. Cavities of intermediate length indue layer formation ofthe medium sized rods while shorter avities are �lled with homeotropiallyaligned short and long rods. In terms of a substrate ontrolled frationation,avities provide by far the best ontrol over the length distribution at thesubstrate. Retangular avities also represent an example of purely geomet-ri moleule reognition. The majority of substrate investigations were donefor the hard rod model. At P ∗ . 2.9, attrative and hard rods behave quali-tatively similar. For P ∗ & 2.9, a hexati monolayer forms in bulk systems ofattrative rods. Exept for very unsuitable substrate patterns, the hexatimonolayer adheres at the substrate at pressure P ∗ = 3.5.All three investigated substrate types have also been studied in ontatwith a polydisperse mixture. The results for the tridisperse suspension areon�rmed in the low and high pressure regime. For example, avities aremainly �lled with the longest rods that �t inside and the density of shorterrods is redued markedly in the avities at high pressure. Finally, we turnedtowards alternating avity patterns. We demonstrated how patterns an beonstruted to indue an alternating substrate overage of long and shortrods and that smeti monolayers an be spatially �xated.In the future, a variety of new or ontinuative aspets an be investigated.The biased multi-histogram simulations ould be employed to determine thesurfae tensions for various types of systems. By ontrolling the shape ofthe interfae with suitable bias potentials it should be possible to measureall surfae tensions. So far, the hexati phase in monodisperse bulk systemswas not spei�ed in detail. The question whether it is a liquid rystallinesmeti B phase or the solid phase is still open but also far from trivial.It would also be interesting to test the omparability of the attrative rodpotential and systems with an expliit onsideration of depletion fores -regarding the perolation transition in dilute systems, for example. Thestudies with adjaent substrates ould be extended to an even higher pressureregime where phase separation is expeted. It would be interesting to see theimpat of the di�erent substrate types on the transition point and on the�uid struture using, for example, grand anonial ensemble Monte Carlosimulations. The various substrate patterns an also be studied onerningtheir in�uene on selfassembling rods.
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Appendix AAttrative part of the rodpotentialThe attrative part of the attrative rod (AR) potential given in Eq. (2.17) isobtained by integrating the attrative part Ua(·) of the square-well potential
Usw(·) over all pairs of loations on the ylinder axes of rods i and j. InEq. (2.17) the ylinder axes are parameterized by αi and αj . It is onvenientto use the step funtion Θ(x) to write down the integral. If the rods i and
j have ylinder lengths Li and Lj , the integration area in the αi, αj spaeis restrited to a retangle with −Li/2 ≤ αi ≤ Li/2, −Lj/2 ≤ αj ≤ Lj/2,whih we denote with R for onveniene. With the step funtion

Θ(r) =

{

0 , if r < 0
1 , if r ≥ 0

(A.1)Eq. (2.17) an be written as
Ua

r = − ǫ

D2

∫

R

dαi dαjΘ
(

D2
a − (rij + αjuj − αiui)

2) . (A.2)with the ut-o� radiusDa. The prefator ǫ represents the interation strength.The ylinder axis of rod i is a subset of the in�nite straight line, that in-ludes ri and is parallel to ui. A respetive straight line inludes the ylinderaxis of rod j. The vetor of shortest distane sij between these straight linesan be written as
sij = rij − µi ui + µj uj (A.3)with parameters µi and µj. Sine sij is perpendiular to ui and uj, one has

µi =
rij · ui − rij · uj ui · uj

1 − (ui · uj)
2 (A.4)

µj =
−rij · uj + rij · ui ui · uj

1 − (ui · uj)
2 . (A.5)103
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secant(a) (b)Figure A.1: (a) Calulating Ua
r is equivalent with �nding the overlap ofthe unit irle and the parallelogram with verties {P1, P2, P3, P4}. (b) Thedesired area an be split into a polygon inside the unit irle and segments ofa irle.De�ning

s− ≡
√

1 − ui · uj

D2
a − s2

ij

(A.6)and
s+ ≡

√

1 + ui · uj

D2
a − s2

ij

, (A.7)the integral in Eq. (A.2) an be simpli�ed with the help of a oordinatetransformation from (αi, αj) to (λi, λj) = T (αi, αj) with
T (αi, αj) =

1√
2

(

s− s−
s+ −s+

)(

αi + µi

αj + µj

)

. (A.8)Using the variables (λi, λj), Eq. (A.2) beomes
Ua

r = − ǫ

D2

1

s− s+

∫

T (R)

dλi dλj Θ
(

1 −
(

λ2
i + λ2

j

))

. (A.9)The argument of the step funtion in Eq. (A.9) is larger than zero onlyin the unit irle. The retangle R is transformed into the parallelogram
T (R) with the verties {P1, P2, P3, P4}. Thus, alulating Ua

r is equivalentwith �nding the overlap area of the unit irle with the parallelogram T (R)as depited in Fig. A.1 (a).



105For Li = Lj one obtains the overlap area of a unit irle and a lozenge[8℄. The overlap area an generally be split into a polygon {p1, . . . , pNpoly}inside the unit irle and up to four segments of a irle (Fig. A.1 (b)). Inorder to obtain the Npoly vertex points p1, . . . , pNpoly we onsider the lines
gi(xi) =

Pi+1 + Pi

2
+ xi

Pi+1 − Pi

2
, i = 1, .., 4 (A.10)where P5 = P1. The boundaries of T (R) are haraterized by xi ∈ [−1; 1] .The intersetion points x̃i,± of the unit irle and the lines gi are given by

gi(x̃i,±)2 − 1 = 0, i = 1, . . . , 4. (A.11)The polygon verties pj an be found by subsequently onsidering g1, g2, g3and g4. If x̃1,± are omplex, then g1 does not interset with the unit sphereand inludes no polygon verties. Otherwise one or two of the three points
P1, g1(x̃1,−) and gi(x̃1,+) are verties of the polygon. (The improbable ase
x̃1,+ = x̃1,− an be subsumed.) If P1 is within the unit irle, P1 is a polygonvertex. Otherwise, g1(x̃1,−) is a polygon vertex if x̃1,− ǫ [−1; 1]. The nextpolygon vertex is g1(x̃i,+) if x̃1,+ ǫ [−1; 1]. If the same proedure is repeatedfor g2, g3 and g4, all Npoly verties pk of the polygon are obtained in a ounter-lokwise order, due to the de�nition of the lines gi. The area of the polygonis easily alulated as

Apoly = −1

2

Npoly−1
∑

k=1

px
k py

k+1 − py
k px

k+1 (A.12)If a '+'-solution gn(x̃n,+) is being followed by a '-'-solution gm(x̃m,−), a seantis determined by these points. The orresponding segment of a irle is
Ase = arcsin

( c

2

)

− 1

2
sin
(

2 arcsin
( c

2

)) (A.13)with c = |gn(x̃n,−) − gm(x̃m,+)|.Finally, we mention two speial ases. If Npoly = 0, there is either nooverlap or the whole irle is within the parallelogram. In the ase Npoly = 2the overlap area is the segment of the unit irle that is haraterized by thetwo intersetion points and overlaps with the parallelogram.With these results the attrative part of the AR potential is given by
Ua

r = − ǫ

D2

1

s− s+

(

Apoly +
∑

Ase) . (A.14)



106 APPENDIX A. ATTRACTIVE PART OF THE ROD POTENTIAL



Appendix BCorrelations in RAN3The following ode shows the typial sequene of random number generationin the simulation program.#inlude <iostream>using namespae std;long seed=-24332;//initial seedlong N=1000;//number of partilesdouble ran3(long *idum);//generates a random floating point number in the interval [0,1)int i_ran3(long *idum, int N_too_high);//Return a random integer value in the range [0,N_too_high-1℄void random_unit_ve();int main(){ran3(&seed);//initialization of the random number generatordouble dx[3℄;//ummulative displaement vetordx[0℄=dx[1℄=dx[2℄=0;for(int i=0;i<100000;i++){for(int j=0;j<10000;j++){int r=i_ran3(&seed,N);//hoose partile randomlyint flag=i_ran3(&seed,3);//hoose Monte Carlo stepswith(flag){ase 0://move partiledx[0℄ += (ran3(&seed)-0.5);//displaement vetordx[1℄ += (ran3(&seed)-0.5);dx[2℄ += (ran3(&seed)-0.5);107



108 APPENDIX B. CORRELATIONS IN RAN3ran3(&seed);//aeptane probabilitybreak;ase 1://rotate partilerandom_unit_ve();//random axis of rotationran3(&seed);//random rotation angleran3(&seed);//aeptane probabilitybreak;ase 2://move and rotate partilerandom_unit_ve();ran3(&seed);dx[0℄ += (ran3(&seed)-0.5);dx[1℄ += (ran3(&seed)-0.5);dx[2℄ += (ran3(&seed)-0.5);ran3(&seed);}}out << dx[0℄ << '\t' << dx[1℄ << '\t' << dx[2℄ << endl;}return 0;}void random_unit_ve(){double vrnd[3℄;double l_vrnd;while(true){vrnd[0℄=2.0*ran3(&seed)-1.0;vrnd[1℄=2.0*ran3(&seed)-1.0;vrnd[2℄=2.0*ran3(&seed)-1.0;l_vrnd = vrnd[0℄*vrnd[0℄ + vrnd[1℄*vrnd[1℄ + vrnd[2℄*vrnd[2℄;if(l_vrnd<=1.0) break;}}//============= the random number generator ran3 ===========#define MBIG 1000000000#define MSEED 161803398#define MZ 0#define FAC (1.0/MBIG)double ran3(long *idum){stati int inext,inextp;stati long ma[56℄;stati int iff=0;long mj,mk;



109int i,ii,k;if (*idum < 0 || iff == 0) {iff=1;mj=labs(MSEED-labs(*idum));mj %= MBIG;ma[55℄=mj;mk=1;for (i=1;i<=54;i++) {ii=(21*i) % 55;ma[ii℄=mk;mk=mj-mk;if (mk < MZ) mk += MBIG;mj=ma[ii℄;}for (k=1;k<=4;k++)for (i=1;i<=55;i++) {ma[i℄ -= ma[1+(i+30) % 55℄;if (ma[i℄ < MZ) ma[i℄ += MBIG;}inext=0;inextp=31;*idum=1;}if (++inext == 56) inext=1;if (++inextp == 56) inextp=1;mj=ma[inext℄-ma[inextp℄;if (mj < MZ) mj += MBIG;ma[inext℄=mj;return mj*FAC;}int i_ran3(long *idum, int N_too_high){int iran;iran=(int)(ran3(idum)*N_too_high);if (iran>=N_too_high) iran=(N_too_high-1);return iran;}#undef MBIG#undef MSEED#undef MZ#undef FACThe volume move is omitted sine it does not hange the outome onsider-ably. Many MC simulation odes may have the same strutural setup. The
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Figure B.1: The three omponents of the umulative displaement vetor.RAN3 gives rise to a pronouned drift in all three omponents. MT19937generates the expeted random behavior.quantity of interest is the umulative displaement vetor dx[3℄. In the in-ner loop of the program, random numbers are generated in the symmetriinterval [−1/2, +1/2] as this is the ase for any partile displaement move.Every generated displaement vetor is umulated in dx[3℄. An unorre-lated sequene of random numbers would reate a random walk in 3D withthe modulus of dx[3℄ averaged over many runs with di�erent seeds propor-tional to the square root of the MC steps. Fig. B.1 displays the omponentsof the umulative displaement vetor generated with the ode shown above( ) and when MT19937 is used instead of RAN3 ( ). dx[3℄ has a verystrong drift in the �rst ase. This observation is quite robust against slightmodi�ations of the ode (e. g. removing the random numbers, whih areneeded for the aeptane probability). Other values for the seed lead toomparable results. MT19937 produes no obvious artifats and and is thusonsidered as appropriate.



Appendix CResaling of the nemati orderparameter for small numbers ofrodsIn simulations, the orientational order parameter S of a system of anisotropimoleules is typially obtained by averaging the largest eigenvalue λmax ofthe alignment tensor Q (Eq. (2.37)) over many on�gurations. In order toompare the orientational order of two systems with di�erent numbers ofrods N , a system-size independent order parameter is desirable. However,the value of 〈λmax(N)〉 turns out to be size-dependent. Espeially, for smallamounts of rods with an isotropi distribution, one usually gets 〈λmax(N)〉 >
0. Eppenga and Frenkel[24℄ investigated the N dependene of the eigenvaluesof Q by studying the eigenvalue problem of the tensor

M ≡ 1

N

∑

i

uiui, (C.1)whih has the same eigenvetors as Q. The eigenvalues µn of M and λn of
Q are related by µn = 2λn/3 + 1/3. The harateristi equation

det (M − µI) = 0 (C.2)an also be written as
− µ3 + µ2 + c1µ + c0 = 0, (C.3)where c0 and c1 are funtions of the rod orientations. The order parameter

S(n) = (3〈µmax〉−1)/2 depends on the largest root µmax of Eq. (C.3) averagedover many on�gurations. Finding an analyti expression for this average111
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Figure C.1: Orientational order parameter S∞ for an in�nite number of rodsompared to a orresponding order parameter S(N) for a system of N rods.The solid line shows the �tting funtion (Eq. (C.6)), whih allows to map
S(N) onto S∞. Symbols are averages of S(N) in ideal systems of N rodswith known S∞. The dashed lines orrespond to the approah of Eppengaand Frenkel for N = 5 and N = 10, respetively. Both methods oinide for
N = 100 and N = 500 (not shown).is extremely di�ult, if not impossible. Eppenga and Frenkel simplify theproblem by solving Eq. (C.3) for the oe�ients 〈c0〉 and 〈c1〉 and obtain for

λ = 3µ/2 − 1/2 the equation
λ3 − 3

4

λ

N

(

1 + S2res(N − 1)
)

− S3res
4

− 3(S2res − S3res)
4N

−

− 1 − 3S2res + 2S3res
4N2

= 0

(C.4)where Sres orresponds to the resaled order parameter, i.e. the value in thein�nite system. With S(N) ≈ λ Eq. (C.4) provides a relation between S(N),
N and Sres.The auray of this method an be tested numerially, by alulating
S(N) for a system of N non-interating rods. The rods are randomly dis-tributed with a rotationally symmetri distribution f(cos(θ)) around the zaxis e

z
where cos(θ) = u · e

z
. A omparison between S(N) and the orderparameter

S∞ =

∫ d(cos θ) P2(cos θ) f(cos θ) (C.5)for an in�nite system is shown in Fig. C.1 for various N and di�erent dis-tributions f(cos(θ)). It shows that S(N) and S∞ di�er espeially for low



113orientational order. The approah by Eppenga and Frenkel works well fornot too small numbers of rods. For N ≤ 10 deviations from the numeri re-sult an be seen. Using the numerial results, we de�ne a �t funtion, whihserves only two purposes: It is rather simple and it �ts the numerial datadown to small N . Both is ful�lled by
S∞ ≈ S(N)

(

1 − γ−1(S(N), N)
) (C.6)with

γ(S(N), N) ≡ 1 + 25
√

N
(S(N) − Si(N))

5/3

1 − S(N)
(C.7)where Si(N) ≈ 0.81/

√
N denotes S(N) for a system of N isotropially ori-ented rods with f(cos(θ)) = const. Note that S∞ gets 1 for S(N) = 1 while

S∞ vanishes for S(N) = Si(N), the minimum value of S(N) as shown inFig. C.1. The �t funtion in Eq. (C.6) is used to alulate S∞ from valuesof S(N) sampled in the simulations. For S(N) < Si(N), Eq. (C.7) � as wellas Eq. (C.4) � provides a omplex solution. In the rare ases where thishappened |S(N) − Si(N)| turned out to be small and we set S∞ = 0.
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Appendix DSurfae tension between a hexatiand a nemati phaseThe surfae tension an be extrated from the graph in Fig. D.1. For onve-
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Figure D.1: Free energy pro�le as funtion of the internal energy e. Theinternal energy e has to be mapped on the 'good' order parameter x.niene we introdue e ≡ 〈Erod〉/Emin. e0 orresponds to the internal energyper rod in the nemati phase and e1 to the internal energy per rod in the hex-ati phase. We onsider the two straight lines Gif and Gnif. Gif orrespondsto the free energy of a system with an interfae between the nemati and thehexati phase and Gnif gives the free energy with no interfae between thephases. The o�set ∆Gs = Gif − Gnif of the two straight lines gives the freeenergy related to the interfae. If the hosen order parameter e would be a115



116 APPENDIX D. ESTIMATION OF THE SURFACE TENSION'good' order parameter, the interfaial free energy ∆Gs would be related tothe surfae tension σ via ∆Gs = σAs where As is the interfaial area. Thespei� hoie of the internal energy e as order parameter, however, requiresa orretion, whih is due to the fat that the internal energy of a systemwith �xed size of the nemati and the hexati region would be di�erent withand without interfae. To see this, we map the free energies Gif and Gnif ona 'good' order parameter x, whih is 0 in the nemati and 1 in the hexatiphase (mp. Fig. D.1):
Gif(x) = ∆G − ∆G x + σAs (D.1)

Gnif(x) = ∆G − ∆G x. (D.2)The same has to be done for the internal energies eif and enif:
eif(x) = e0 + (e1 − e0) x + es (D.3)

enif(x) = e0 + (e1 − e0) x. (D.4)
es is hange in internal energy beause of the interfae. Resolving Eqs. (D.3)and (D.4) for x and substitution in Eqs. (D.1) and (D.2) yields

∆Gs = σAs + ∆G
es

e1 − e0
, (D.5)where the seond term on the right hand side is the orretion for two systems,whih are ompared at eif = enif.In the following we estimate es. Therefore, we assume that rods in theinterfaial region are in ontat with about 1/4 of their ontat zone with theorresponding other phase. Fig. D.2 illustrates the situation. The drawing

interface regions

D
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y

Hex NemNem

Figure D.2: Estimation of the interfaial energy es. The drawing is shematifor a simulation box like in Fig. 3.2 () on page 38. The view is along thenegative z-axis.



117shows a top view on the hexati region, i. e. the rods point out of the plane.The width of the interfaial region in x-diretion is estimated as one roddiameter D. Thus, the volume of the interfae region is about Vif = 2 LyLzD,if Lx,y,z denotes the box dimension in the respetive diretion. The internalenergy of the interfae is then roughly given by
es =

1

4

Vif
V

(e1 − e0) (D.6)
=

D

2 Lx

(e1 − e0). (D.7)From Eqs. (D.5) and (D.7) we �nd σ = 0.062kT/D2. Note that the orretionbeause of es is very small. An estimate of the surfae tension in the naiveway as σ = ∆Gs/As would yield 0.063kT/D2.
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