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Abstract

In this thesis the interplay between hydrodynamic transport and specific ad-
hesion is theoretically investigated. An important biological motivation for
this work is the rolling adhesion of white blood cells experimentally investi-
gated in flow chambers. There, specific adhesion is mediated by weak bonds
between complementary molecular building blocks which are either located on
the cell surface (receptors) or attached to the bottom plate of the flow chamber
(ligands).

The model system under consideration is a hard sphere covered with recep-
tors moving above a planar ligand-bearing wall. The motion of the sphere is
influenced by a simple shear flow, deterministic forces, and Brownian motion.
An algorithm is given that allows to numerically simulate this motion as well
as the formation and rupture of bonds between receptors and ligands. The
presented algorithm spatially resolves receptors and ligands. This opens up
the perspective to apply the results also to flow chamber experiments done
with patterned substrates based on modern nanotechnological developments.

In the first part the influence of flow rate, as well as of the number and geometry
of receptors and ligands, on the probability for initial binding is studied. This
is done by determining the mean time that elapses until the first encounter
between a receptor and a ligand occurs. It turns out that besides the number
of receptors, especially the height by which the receptors are elevated above
the surface of the sphere plays an important role. These findings are in good
agreement with observations of actual biological systems like white blood cells
or malaria-infected red blood cells.

Then, the influence of bonds which have formed between receptors and ligands,
but easily rupture in response to force, on the motion of the sphere is studied.
It is demonstrated that different states of motion—for example rolling—can be
distinguished. The appearance of these states depending on important model
parameters is then systematically investigated. Furthermore, it is shown by
which bond property the ability of cells to stably roll in a large range of applied
flow rates is increased.

Finally, the model is applied to another biological process, the transport of
spherical cargo particles by molecular motors. In analogy to the so far de-
scribed systems molecular motors can be considered as bonds that are able to
actively move. In this part of the thesis the mean distance the cargo particles
are transported is determined.





Zusammenfassung

In der vorliegenden Arbeit wird das Zusammenspiel zwischen hydrodynamisch-
em Transport und spezifischer Adhäsion theoretisch untersucht. Eine wichtige
biologische Motivation für diese Arbeit ist die rollende Adhäsion weißer Blutkör-
perchen, die experimentell in Flusskammern untersucht wird. Die spezifische
Adhäsion wird durch schwache Bindungen zwischen komplementären moleku-
laren Bausteinen vermittelt, die sich einerseits auf der Zelloberfläche, Rezep-
toren genannt, andererseits auf der unteren begrenzenden Platte der Flusskam-
mer, Liganden genannt, befinden.

Das untersuchte Modellsystem besteht aus einer festen Kugel, die mit Rezep-
toren bedeckt ist und sich unter dem Einfluss einer einfachen Scherströmung,
deterministischer Kräfte und der Brownschen Molekularbewegung oberhalb
einer mit Liganden bedeckten Wand bewegt. Es wird ein Algorithmus ange-
geben, mit dessen Hilfe diese Bewegung sowie das Entstehen und Reißen von
Bindungen zwischen Rezeptoren und Liganden numerisch simuliert werden
kann. In der numerischen Modellierung werden die Positionen von Rezeptoren
und Liganden räumlich aufgelöst, wodurch sich die Möglichkeit ergibt, die
Ergebnisse auch mit Flusskammerexperimenten, in denen moderne nanotechno-
logisch strukturierte Substrate verwendet werden, zu vergleichen.

Als Erstes wird der Einfluss von Strömungsrate sowie Zahl und Form der
Rezeptoren bzw. Liganden auf die Wahrscheinlichkeit, mit der es zu einer
Bindung kommen kann, untersucht. Hierfür wird die mittlere Zeit bestimmt,
die vergeht bis zum ersten Mal ein Rezeptor mit einem Liganden in Kon-
takt kommt. Dabei stellt sich heraus, dass neben der Anzahl der Rezep-
toren auf der Kugel insbesondere der Abstand, welchen die Rezeptoren von
der Oberfläche haben, eine große Rolle spielt. Dieses Ergebnis ist in sehr guter
Übereinstimmung mit tatsächlichen biologischen Systemen wie etwa weißen
Blutkörperchen oder mit Malaria infizierten roten Blutkörperchen.

Als Nächstes wird betrachtet, welchen Einfluss Bindungen haben, die sich zwis-
chen Rezeptoren und Liganden bilden, aber unter Kraft auch leicht wieder
reißen. Dabei zeigt sich, dass verschiedene Bewegungstypen auftreten, beispiels-
weise Rollen, deren Erscheinen in Abhägigkeit wichtiger Modellparameter dann
systematisch untersucht wird. Weiter wird der Frage nachgegangen, welche
Eigenschaften von Bindungen dazu führen können, dass Zellen in einem großen
Bereich von Strömungsraten ein stabiles Rollverhalten zeigen.

Abschließend wird das Modell auf einen etwas anderen biologischen Prozess
angewendet, nämlich den Transport kugelförmiger Lastpartikeln durch moleku-
lare Motoren. In Analogie zu den bisher beschriebenenq Systemen können diese
molekularen Motoren als sich aktiv bewegende Bindungen betrachtet werden.
In diesem Teil der Arbeit wird ermittelt, wie weit die Lastpartikel im Mittel
transportiert werden.
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Chapter 1

Introduction

1.1 Specific adhesion and transport

Adhesion between opposing surfaces occurs in many different ways in biological systems,
most prominently between the cells building up a multicellular organism. In contrast to
adhesion in man-made systems like tape or car wheels, adhesion in biological systems is not
based on non-specific interactions like the van der Waals interaction, but rather on specific
interactions based on the biomolecular binding process between receptor and ligand, which
complement each other like a lock and a key. A prominent example is antigen-antibody
recognition, one of the key properties of our immune system, which enables it to react
even to a single ligand presented by an invading pathogen.

In cell-cell adhesion, complex formation (bonding) between surface receptors expressed
on one cell and complementary ligands expressed on another cell allows the cells to specif-
ically adhere to each other. Cell-cell adhesion leads to a mechanically stable connection
and at the same time allows the cells to communicate with each other. In order to obtain
a complete picture of this process of specific adhesion, the understanding of physical as-
pects is equally important as the analysis of the chemical properties of the receptor-ligand
complex. In particular, a physical transport process is required to bring the two binding
partners to close proximity. In this context the notion of the formation of an encounter

complex, which in turn may react to the final complex, turned out to be a very useful
concept [40, 16, 141, 127]. Bonds that mediate specific adhesion are typically weak—a
property that allows for quick rearrangements in response to external stimuli. Forces play
a dominant role in this context as they are ubiquitous in biological systems and dramati-
cally shorten the lifetime of receptor-ligand bonds. Transport of receptors and ligands in
solution is dominated by thermally activated diffusion which is always present on the cel-
lular and subcellular level. On the typical scales of these systems motion is quite different
from what we are used to in our daily life because the influence of inertia is negligible.
Consequently, the particles’ velocities depend linearly on forces and once the total force
on a particle is zero, the particle stops immediately [118].

Adhesion and transport embody two antipodes: stop and motion, respectively. In
biological systems they are intertwined in various ways and define the basis for many
different processes of specific adhesion. In the simplest case transport is simply required
for receptor-ligand encounter, for example in the diffusion dominated process of virus
docking to cell surface receptors [1, 41]. A more complex interplay of transport and
adhesion exists for the rolling adhesion of white blood cells [144], which is one of the main
motivations for the work presented here. In this case, the convective transport of white
blood cells in the blood stream is slowed down and guided by specific adhesion bonds in
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order to allow these cells to adhere and extravasate the vessel at very specific sites. Similar
situations also arise in microbiology, when bacteria adhere to the intestinal wall [153], in
malaria infection, when infected red blood cells adhere to the vessel walls [11, 105], in the
initial stages of pregnancy, when the developing embryo adheres to the uterus [57], and
in biotechnology, e. g., when sorting cells on microfluidic chips [54]. A somehow different,
but related transport process based on specific adhesion is active transport by molecular
motors. Molecular motors are proteins firmly attached to a membrane enclosed organelle
or a vesicle (“cargo”) that can transport this cargo along filaments once adhesion has
occurred [124].

1.2 Biological systems and experimental setups

Rolling adhesion of leukocytes

One prominent example for specific adhesion combined with transport is the already men-
tioned rolling adhesion of leukocytes (white blood cells). Leukocytes are part of the
immune system and play an important role in the inflammatory response. They circulate
the body in the blood and lymph. At sites of inflammation, e. g., due to local injuries of
the peripheral tissues, leukocytes can leave the blood flow through the vessel walls [61, 1].
Using intravital microscopy this process, called extravasation, was already observed and
described in the late eighteen hundreds [95] but only recent biochemical developments
allowed to shed light on the complex mechanochemical regulation processes behind this
phenomenon.

PSfrag replacements

(a) (b) (c) (d)

endothelial
cell

leukocyte (e. g. neutrophil, T-cell)
Figure 1.1: Cartoon of the ex-
travasation cascade of white blood
cells (leukocytes). (a) A leuko-
cyte flows with blood stream. (b)
Rolling on endothelial cells through
labile selectin bonds. (c) Firm ad-
hesion mediated by integrins bonds,
the leukocyte starts spreading. (d)
Transendothelial migration.

Extravasation of leukocytes occurs in different steps. For some subtypes of leukocytes
like neutrophils and T-cells it is known that each of these steps can be independently
regulated allowing for an increased specificity. This is the so-called multistep paradigm

[144, 121]. The main steps of the extravasation cascade are depicted in Fig. 1.1. A leuko-
cyte traveling through the blood stream (Fig. 1.1a), and getting in contact with the vessel
wall can specifically adhere to the endothelial cells via selectin bonds. Selectin bonds are
labile tethers that are further weakened by tensile forces, thus, the drag by the blood
stream causes them to rupture. In the case that the formation of new bonds at the leuko-
cyte’s front end compensates the rupture of bonds at the leukocyte’s rear end the cell
rolls along the vessel wall (Fig. 1.1b). This process is called rolling adhesion. A main
effect of rolling is a strong decrease of the leukocyte’s velocity allowing for the detection
of molecular signals (e. g., chemokines) that are expressed on endothelial cells as part of
the inflammatory response. This leads to the activation of integrins [63] which form much
stronger bonds—enabling the cell to firmly adhere (Fig. 1.1c). Subsequently, the leuko-
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PSfrag replacements

leukocyte

lectin
domain

endothelial cell

10 nm

receptor ligand

L-selectin GlyCAM-1, CD34
E-selectin CLA [121], PSGL-1 [61]
P-selectin PSGL-1

Integrin LFA-1 ICAM-2
Integrin VLA-4 VCAM-1

(a) (b)

Figure 1.2: (a) Schematic drawings of selectins and their mucin-like counter receptors (lig-
ands) from [145]. The length of the molecules is some 10 nm, e. g., the length of P-selectin
is about 40 nm that of E-selectin about 30 nm [108] (the scale bar refers to left part only).
The cartoon also shows which molecules are located on the surface of the endothelial cells
and which on the leukocytes. (b) Receptors of the selectin family and some of their possible
ligands [121]. Some selected integrins and their ligands [145]. ’CAM’ is the abbreviation of
’cell adhesion molecule’.

cyte actively deforms and migrates through the vessel wall (transendothelial migration,
Fig. 1.1c) into the surrounding tissues where it follows chemoattractants (chemotaxis)
towards the source of inflammation [1, 61, 121].

Extravasation preferentially occurs in postcapillary venules, i. e., at points in a vessel
where the diameter is suddenly increased (swelling and dilation of vessels is part of the
immune response). At these points the mean flow velocity of the blood stream is decreased
and red blood cells being smaller and more flexible than leukocytes push those towards
the vessel walls which increases their contact probability to the wall [95, 121].

The specific adhesion sites (tether bonds) mediating rolling adhesion and firm arrest
of the leukocytes are complexes formed between receptor and ligand molecules comple-
mentarily located on the leukocytes and the endothelial cells, respectively. Fig. 1.2 lists
some receptor-ligand pairs being important for leukocyte adhesion and shows schematic
drawings of some of these molecules (taken from Ref. [145]). The selectin receptors (L-, E-,
P-selectin) are glycoproteins that can bind with their lectin domain (their binding sites,
see Fig. 1.2a) to specific carbohydrate groups of their mucin-like ligands [121, 61]. E- and
P-selectins as well as the L-selectin ligand are located on the surface layer of endothelial
cells (see Fig. 1.2a). Complementarily, L-selectins as well as the E- and P-selectin ligand
PSGL-1 are located on the tips of small protrusions of the leukocyte surface, called micro-

villi [103, 29]. The notation in literature which of the two complementary binding parts
has to be called receptor and which ligand is not unique. For the sake of simplicity, we
will from now on always call the respective molecule on the leukocyte’s surface receptor,
and the counter receptor on the wall ligand.

Flow chamber experiments

In order to investigate the extravasation process and to determine and understand the
different steps in this cascade many types of in vitro experiments have been established.
Special focus has been given to study the interactions between receptors and ligands (see
for example the reviews by Bongrand [20] and Pierres et al. [114]). Prominent examples for
such in vitro setups include the field of dynamic force spectroscopy, in which the behavior
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of receptor-ligand bonds under force is examined [45, 46], and flow chamber experiments.

In flow chamber experiments leukocytes are suspended in solution and perfused be-
tween two parallel plates (Fig. 1.3a shows an drawing of a flow chamber [95]). Leukocytes
are slightly denser than the surrounding medium so that they sediment to the lower wall
[104, 30], which usually is coated with an artificial lipid mono- or bilayer bearing the
ligands. The adhesive interaction between cells and substrate is then observed by phase
contrast microscopy along a field of view of some hundred micrometers [95]. The laminar
Poiseuille flow between the two plates of the flow chamber approximately mimics the flow
velocity profile in postcapillary venules, but not all properties of hemodynamic flow [131].
The change in flow velocity per change in distance from the wall is called shear rate and is
highest at the wall (see Fig. 1.3b). The product of shear rate and medium viscosity defines
the shear stress. Shear rate and shear stress are thus kinematic and dynamic quantities,
respectively. The setup of a flow chamber experiment allows to separately control many
of the parameters influencing the adhesion process, including salt concentration [34], wall
shear rate, viscosity and shear stress [30, 39], and the type and density of ligands on the
substrate [5, 3]. Furthermore, having low concentrations of leukocytes and no red blood
cells suspended in the medium provides a framework that facilitates the development of
theoretical models for interpreting experimental data.

One of the features that have been extensively studied using flow chamber experiments
is rolling mediated by selectin bonds. In order to support rolling, these bonds must form
and rupture rapidly. Moreover, it was found that rolling on L-selectin bonds is about
ten times faster than rolling on E- and P-selectin bonds. In principle, rolling velocity
can be regulated by intrinsic bond kinetics—via the intrinsic on- and off-rate for bond
formation and rupture, respectively—and the susceptibility to applied force (called reactive

compliance), i. e., the extend by which tensile forces weaken the bond strength. Using
substrates with very diluted ligand densities that resolve single tether events, Alon and
co-workers found that fast intrinsic on- and off-rates rather than the reactive compliance
regulate rolling velocity [5, 3]. They also found that the susceptibility to applied force for
selectin bonds is much smaller than for many other receptor-ligand complexes observed
in biological systems. Both of these are distinguished properties of selectins necessary to
mediate rolling over a large range of physiological shear stress.

Off-rates can directly be determined from lifetime measurements of single bonds [5].
However, the intrinsic on-rate can only be determined upon the complete knowledge of
the transport process preceeding bond formation. In flow chamber experiments binding
affinity is often measured as the fraction of tethered cells. Chen and Springer observed that
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for P-selectin bonds this frequency first increases with increasing shear rate goes through
a maximum and decreases again at large shear rates. They altered the medium viscosity
by adding different weight percentages of Ficoll (a highly branched polymer of sucrose
that is supposed not to alter the intrinsic bond behavior) and observed that the maximum
frequency appears always at the same shear rate. This suggests initial tethering to be a
purely transport and not force governed process [30]. L-selectins require wall shear rates
above a certain threshold to mediate rolling [53]. Different explanations for this shear

threshold effect have been given. Using video microscopy with high temporal resolution
Dwir et al. found that L-selectin bonds are also formed at small shear rates, however,
only above a critical shear rate these bonds seem to be sufficiently stabilized to support
rolling [39]. This has been interpreted to be due to a transport enhanced formation of
multiple bonds [129]. Another explanation suggests that L-selectins form so-called catch

bonds, i. e., bonds whose lifetime increases with increasing tensile force [161]. This would
mean that the threshold is a threshold in shear stress rather than in shear rate. Clearly,
in order to decide which of these explanations is correct, a detailed understanding of the
transport process that brings cell receptors and ligands to close proximity is necessary.

In principle, leukocyte deformations might play an important role during rolling ad-
hesion. However, no visible leukocyte deformations were reported for the shear rates and
ligand densities typically used in flow chamber experiments [3]. In order to check whether
some of the characteristic bond properties observed for leukocytes depend on (small) vis-
coelastic cell deformations, experiments have also been conducted using cell-free systems.
Cell-free means that instead of leukocytes, receptor-covered microspheres are perfused
through the flow chamber [65, 160, 140]. Typically, these microspheres are hardly de-
formable. For example, the above described shear threshold effect was also observed for
microspheres that were covered with a L-selectin counter-receptor and perfused over a L-
selectin bearing wall [65]. The hydrodynamic drag force on a leukocyte strongly depends
on the cell-radius [59], however, radii vary only slightly within one type of leukocytes.
Thus, flow chamber experiments also allow to study the impact of the particle diameter
to, e. g., the rolling velocity [140, 161].

For the flow chamber experiments described so far, the lower wall is covered with
ligands of a certain type and density. In principle, new nanotechnological developments,
e. g., by Spatz and co-workers, could be used to conduct some of these experiments also on
substrates bearing a regular ligand pattern with a well defined ligand-ligand distance [8].
This would then, e. g., allow to determine the critical ligand-ligand distance that supports
rolling.

Active transport by molecular motors and bead assays

Another important example that combines transport and specific adhesion is the active
“cargo” transport by molecular motors in cellular systems. Molecular motors are proteins
that bind with their head, or motor domains, to filaments and use energy from ATP hy-
drolysis (ATP = adenosine triphosphate) to walk along these filaments. Many types of
motor proteins are known; they differ from each other, e. g., in the type of filament they
bind to and their walking direction [1]. A prominent example is conventional kinesin, or
kinesin-1, a member of the kinesin superfamily (Fig. 1.4a). Kinesin walks along a protofil-

ament towards the so-called plus end of microtubules. These are long hollow cylindrical
tubes containing several protofilaments with a certain polarity that results from an asym-
metry in the subunits (i. e., tubulin) they are built of [98]. Kinesin has two head domains
that can bind to special sites on these protofilaments and it walks by a so-called hand-
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over-hand mechanism [9]. That means that each ATP hydrolysis cycle [33] is coupled to
a conformational change of the protein in which the trailing head “flips” forward and be-
comes the leading head. Thus, the motor protein walks in discrete steps from one binding
site to the next and is able to generate force. This force is used to pull a cargo particle
(mainly membrane enclosed organelles, or vesicles) attached to the motor’s tail domain
along the microtubule through the cytoplasm (Fig. 1.4c).

Two types of assays are often used to investigate the transport properties of kinesin
in vitro, gliding assays and bead assays. In gliding assays motors are fixed with their
tails to the substrate and microtubules are moved. A bead assay is a flow chamber where
microtubules are immobilized to the bottom wall and motor-coated beads (e. g., spherical
glass, or polystyrene particles) are added to the fluid filling the chamber (however, usually
no flow is applied) [19]. Then, using light microscopy walking motor proteins can be
investigated by tracking the beads to which they are attached to (Fig. 1.4b).

An important property of conventional kinesin is its processivity, which means that
after initial binding kinesin makes many steps before it unbinds. From experiments with
beads pulled by a single motor it was found that kinesin walks on average for about one
second (> 100 steps) before it unbinds. During that time it transports its cargo by about
one micrometer. Much longer walking distances are achieved when several motors can
pull on the cargo particle [19]. Then, walking is only interrupted if all motors unbind
simultaneously from the microtubule [83].

So far, we introduced two fairly different biological systems: leukocytes that roll driven
by the blood stream and cargo particles that are actively transported by molecular motors.
However, these two systems bear some analogies. Both, rolling and cargo transport are
mediated by very specific molecules, i. e., receptor-ligand complexes (bonds) and molecular
motors, respectively. From a conceptual point of view motor proteins include some prop-
erties of receptors (e. g., binding and force-dependent unbinding [126]), and the specific
binding sites on the protofilament of microtubule correspond to ligands. As mentioned,
both of these systems are in vitro observed using flow chambers. Thus, the analogies
pointed out allow to model leukocytes and receptor-covered microspheres rolling in flow
chambers on the one hand and motor-coated spheres moving in bead assays on the other
hand, within the same theoretical framework.
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1.3 Physical aspects and previous theoretical work

For a complete theoretical modeling of the described systems one must consider various
aspects from different fields. These include hydrodynamics, elasticity theory, the theory
of stochastic processes and reaction kinetics. In order to reveal certain effects it can be
also useful to consider some of these aspects separately, although they all contribute to
the total observed behavior of the system.

A dimensionless key number of hydrodynamics is the Reynolds number Re which mea-
sures the relative strength of inertial and viscous contributions to the flow due to a moving
particle. Given a typical length scale L, a typical particle velocity U and the viscosity and
density of the fluid medium η and ρ, respectively, the Reynolds number reads Re = ρUL/η
[115]. For a cell in a flow chamber we have typically Re ≈ 10−2 � 1 (with η = 10−3 Pa s,
ρ = 103 kg/m3, L = 10 µm, and U = 1 mm/s), thus viscous effects dominate and the
inertia of the cells can be neglected (Stokes regime). It is one of the characteristics of the
Stokes regime that the particle’s velocity is linearly related to forces acting on the particle.
This linear relation can be expressed via the so-called friction matrix. In an anisotropic
fluid the friction matrix depends on the position of the particle. In 1967 Goldman et
al. measured with finite element methods the friction matrix for a rigid sphere in linear
shear flow above a planar wall [59, 60]. In many flow chamber experiments the gap height
between the two plates is large compared to the size of the cells (cf. Fig. 1.3b). Then, the
shear rate does hardly change within some cell diameters above the wall. As leukocytes
are slightly denser than the surrounding fluid they sediment [104, 30] and experience an
approximately constant shear rate in the vicinity of the lower wall. Therefore, the classical
work by Goldman et al. is typically cited in the context of leukocyte rolling in flow cham-
bers in order to give an estimate for the shear force on rolling cells (e. g., [95, 66, 3, 129]).
A disadvantage of the Goldman data is that the friction matrix and shear force was only
tabulated for some selected height values. In the 1990s Jones and co-workers presented a
numerical scheme that allows to accurately calculate the same quantities but at arbitrary
heights [111, 31]. The validity of the one-wall approximation for the friction matrix close
to the bottom wall of a parallel plate flow chamber has been investigated by Jones. He
showed that for the gap height between the two plates being only slightly larger than the
sphere diameter the one-wall approximation strongly deviates from the exact solution. For
a gap height that is about five times larger than the sphere diameter the proper two-wall
friction matrix can be approximated by a superposition of the one-wall results [75]. At
even larger relative gap heights this superposition is indeed governed by the contribution
from the bottom wall.

Due to its small size (µm range) a cell in solution is subject to thermal fluctuations
which results in additional random movements known as Brownian motion. This random-
ness requires a statistical description of the cell’s trajectory. Brownian motion is a Markov

process [157] and the evolution of the cell’s phase space distribution function is determined
by a Fokker-Planck equation. As mentioned above inertial effects can be neglected in the
Stokes regime; in regard to Brownian motion this means that the distribution of momenta
relaxes much more rapidly to its equilibrium distribution than the distribution of posi-
tions. Times larger than the time scale of momentum relaxation are referred to as the
diffusion regime [44]. In the diffusion regime the time evolution of the particle’s config-
uration space distribution function is described by the Smoluchowski equation [36]. An
alternative approach to the statistical properties of the particle motion is based on the
Langevin equation. The integration of this equation provides sample trajectories and sta-
tistical quantities are obtained by averaging over many trajectories. In 1978 Ermak and
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McCammon derived—based on a Langevin equation—a Brownian dynamics algorithm for
the computation of the configuration space trajectories of M colloidal particles including
only simple hydrodynamics [44]. Ten years later Brady and Bossis presented a review
where they described a similar method that includes an improved treatment of hydrody-
namic interactions. They gave this method the name Stokesian dynamics to emphasize
the proper treatment of hydrodynamic interactions in the Stokes limit (hydrodynamic in-
teractions occur between particles but also between a particle and a boundary). In their
terminology Brownian dynamics is a special case of Stokesian dynamics [21].

According to the Einstein relation the hydrodynamic friction matrix is related to the
diffusion matrix via the temperature of the fluid. This relation was used to experimentally
verify theoretically computed friction coefficients by measuring the particle’s diffusion,
e. g., for a microsphere between two parallel plates [37].

Particles that tend to easily deform when shear stress is applied cannot in general
be treated as spherical objects. Shape and motion of these particles in hydrodynamic
flow are non-trivially coupled to each other. Both must then be determined from the
balance of hydrodynamic and mechanical forces on the particle’s surface. The latter
depend on the particular properties of the particle. For vesicles (i. e., closed bilayers
formed from phospholipids) these are determined, e. g., by the bending rigidity of their
incompressible fluid membrane. The shape of vesicles in shear flow in an unbounded
fluid was numerically computed by Kraus et al. [92]. Later Pozrikidis performed similar
simulations including also shear elasticity of the membrane in order to model red blood
cells [116]. The problem of a vesicle in shear flow above a wall was analytically treated by
Seifert [133] and numerically by Sukumaran and Seifert [147]. In the latter paper it was
found that the deformations of the vesicle lead to a lift force proportional to the applied
shear rate that pushes the vesicle away from the wall. Gravity counteracts this lift and
the vesicle moves at a stationary height above the wall. They also explored the effect of
unspecific adhesion by introducing a wall potential and found that unbinding occurs at a
critical shear rate proportional to the adhesion strength [147].

In contrast to vesicles or red blood cells, deformations of leukocytes also depend on
the structural properties of the cell body. However, at typical shear rates used in flow
chambers no crucial deformations are expected [130]. This agrees with observations by
Alon and co-workers who did not detect visible deformations at shear rates they applied
[3]. Therefore, the assumption of leukocytes being rigid spheres seems reasonable for the
shear rate and ligand densities commonly used in experiments. At very close contact to the
wall the fluid layer between cell and substrate may also induce deformations (lubrication

forces) that lead to lift forces in response to applied shear flow [134, 142].

A key property of the adhesion processes described above is their specificity mediated
by receptor-ligand bonds. The interplay between membrane fluctuations and specific ad-
hesion via anchored stickers have been investigated by Lipowsky [99]. Often, membrane
adhesion is induced by competing receptor-ligand pairs of different lengths. Depending
on the concentrations of receptor-ligand bonds membrane bending (which occurs to com-
pensate the length mismatch) can induce a lateral phase separation between the different
receptor-ligand bonds [10]. The process of rolling adhesion, however, is governed by fast
position changes. Then, initial bond formation and rupture behavior of bonds play a
dominant role. Formation of specific receptor-ligand bonds are preceeded by a transport
process leading to receptor-ligand encounter. This transport has been studied in different
contexts, e. g., by Berg and Purcell [16] and Berg [15] for the encounter of soluble ligands
to cell surface receptors. For rolling leukocytes, both, receptors and ligands are attached
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to surfaces and the receptor transport is connected to the transport of the whole cell. In
contrast to bond formation, bond rupture is strongly affected by force as described above.
In a seminal work, Bell (1978) proposed an empirical model for bond rupture according to
which the bond dissociation rate increases exponentially with applied tensile bond force.
Later on, this model has been rationalized (e. g., [47, 138]) in the framework of Kramers
theory for escape over an energy barrier [90]. Recently, also so-called catch bond mod-
els [35] were discussed, which predict a decrease of rupture rate at small tensile forces
[46, 12, 109].

In an early study of cell adhesion in flow by Hammer and Lauffenburger the conditions
of firm adhesion in terms of shear force, receptor and ligand density, and binding affinity
were examined. They treated the contact area (between cell and substrate) as a homo-
geneous region rather than spatially resolving single bonds [67]. In order to numerically
simulate rolling adhesion of leukocytes, Hammer and Apte (1992) setup an algorithm in
which leukocytes are modeled as rigid spheres, bonds form and dissociate with certain
rates and existing bonds behave as harmonic springs [66] (the article appeared in Biophys.

J., Vol. 63; in the same volume of this journal Tözeren and Ley presented a very similar
model [155]). One of the achievements of the Hammer and Apte model (known as adhesive

dynamics) is the spatial resolution of single bonds. The adhesive dynamics method was
applied to study various aspects of leukocyte adhesion in flow chambers, e. g., stationary
types of motion [28, 25] or detachment of adherent cells under the action of flow [26, 93, 81].
The numerical results of Ref. [66] revealed that leukocytes roll in the physical sense (i. e.,
they do not slip over the substrate) due to the action of labile bonds. Depending on
the parameters different distinct types of motion can be observed form simulation data.
Accordingly, Hammer and co-workers defined different states of motion (mainly based on
the mean translational cell velocity) and displayed the appearance of these states in state
diagrams for different planes of the multi-dimensional parameter space. This resulted,
e. g., in a state diagram for the plane spanned by the unstressed off-rate (i. e., the dis-
sociation rate when no tensile force is applied to the bond) and the reactive compliance

[28, 107], and a state diagram for two different types of receptor-ligand pairs expressing
the dependence on their respective densities [17]. In a semi-analytic approach Krasik and
Hammer calculated also the occurrence of the states rolling and firm adhesion depending
on the on-rate (i. e., rate of bond formation) and the unstressed off-rate [91].

The approach of modeling rolling adhesion by the Hammer group mentioned so far is
based on a single rigid sphere. Others have focused on the effects of deformations in leuko-
cyte adhesion. For example, N’Dri et al. performed a numerical study in which the cell
was modeled as a compound drop with nucleus and cytoplasm being fluids characterized
by their surface tension and viscosities. For high bond density their simulations revealed
tether-like deformations at the trailing end of rolling leukocytes [106]. Similar observa-
tions were obtained by Khismatullin and Truskey who modeled the cell as a compound
viscoelastic drop [78]. At high cell densities rolling adhesion is also affected by cell-cell
interactions (i. e., collisions and hydrodynamic interactions). Using a multiparticle version
of adhesive dynamics King and Hammer found that cell-cell interactions in flow chambers
results in an increased stability of rolling velocity [80, 82] and an enhancement of initial
binding [79]. Munn et al. studied the effect of leukocyte rolling in vessels and postcapillary
venules. They reported a supporting effect to rolling and initial binding by red blood cells
passing the leukocyte [102, 148].

Models for the simulation of active transport by molecular motors in in vitro assays
including effects of hydrodynamic interactions and thermal noise have been developed
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mostly for gliding assays. Gibbons et al. described such an algorithm with which they, e. g.,
studied the velocity of microtubules attached to many motors [58]. Recently, Kraikivski et
al. numerically studied the enhancement of nematic microtubule ordering due to molecular
motors pulling on the microtubules [89]. During recent years, theoretical models have also
been developed for the pulling out of membrane tethers from adhering vesicles by molecular
motors walking on adhering microtubules [87, 97]. In this experiments, tether pulling is
only possible if several motors work together. The transport of cargo by several motors
has recently been described theoretically by Klumpp and Lipowsky [83].

1.4 Overview

To properly interprete experimental data obtained in flow chamber experiments, a well-
founded understanding of the physical aspects involved is required. In this thesis, we focus
on the transport properties of a spherical particle in hydrodynamic flow which can bind
to a boundary wall through specific adhesion. We address these topics using a theoretical
model system which combines methods from hydrodynamics and stochastic dynamics.

Close to the bottom wall of a parallel-plate flow chamber, whose gap height between the
two plates is much larger than a typical cell radius, the laminar flow profile is approximately
linear and the mobility is hardly influenced by the presence of the upper wall [75]. In
addition, it was reported that at typical shear rates no visible elastic cell deformations
occur [3]. Thus, the model system we consider is basically a single rigid spherical particle
covered with receptors that moves in linear shear flow above a ligand-coated wall (the
situation is illustrated by the cartoon shown in Fig. 1.5a). The details of this model
are explained in Chapter 2. There, we start by introducing the relevant concepts from
hydrodynamics at small Reynolds numbers, in particular the mobility matrix and the
shear force resulting from the Stokes equation for a rigid sphere above a wall [31]. In order
to account for Brownian motion that arises from thermal forces on the sphere we include
concepts of stochastic processes and arrive at a Langevin equation with a non-trivial
multiplicative noise term [21]. The latter one results from the presence of the boundary
wall that in turn results in an anisotropy in vertical direction. We then illustrate the effects
of deterministic and thermal forces by considering the example of a sphere in linear shear
flow subject to gravity. In fact, cells and microspheres used in flow chamber experiments
are slightly denser than the surrounding medium [30]. Together with other forces pushing
the sphere towards the bottom wall (e. g., electric forces, or hydrodynamic or contact
interactions with other particles) this drift ensures that a sufficient number of spheres in
a flow chamber experiment can interact with wall ligands. For conceptual simplicity, in
Chapters 3 and 4 we consider only a constant gravitational drift.

The second part of Chapter 2 deals with formation and rupture of specific bonds
between receptors and ligands. For both processes appropriate rates are introduced. In
particular, using the notion of encounter complexes the process of bond formation can
be spitted into a transport and an intrinsic reaction step. Rates are then defined for
the two sub-steps and the overall process. Throughout this thesis we consider the rates
of bond formation to be force independent. In contrast, bond dissociation is modeled
by employing the famous Bell equation [13], which states that the rupture rate increases
exponentially with applied tensile bond force. We close Chapter 2 by introducing an
adhesive dynamics algorithm. This algorithm combines the Langevin dynamics with rules
for bond kinetics, and functional bonds are modeled as harmonics springs. In addition to
previous versions of this algorithm (e. g., [66]) we allow for spatially resolved receptors and
ligands, and Brownian motion of the sphere. This opens up the perspective to apply our
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Figure 1.5: (a) Illustration of a sphere covered with receptor patches above a wall covered
with a regular ligand pattern. (b) From left to right: Series of increasing complexity for
receptor-ligand encounters as investigated in Chapter 3. The receptors are modeled as patches
of radius rp and height r0, ligands as patches with radius rd and mutual distance d.

simulations to experiments with regularly patterned ligand distributions based on recent
nanotechnological developments [8].

In Chapters 3-5 we apply this model to describe several generic aspects of “receptor-
ligand systems” experimentally observed in flow chambers. In Chapter 3 we model re-
ceptors as spherical patches of a certain height on the surface of the sphere and ligands
as spherical patches on the boundary wall (cf. Fig. 1.5) and investigate the efficiency of
initial binding (encounter complex formation) in terms of the number of receptors, the
patch geometry, the ligand density, and the flow parameters. An encounter complex is
identified with the first overlap of any pair of receptor and ligand patches. In the lan-
guage of stochastic dynamics the formation of a receptor-ligand encounter is a (mean) first
passage time problem and the inverse of the mean first passage time defines the rate of
encounter formation. In order to solve the mean first passage time problem, we employ
both analytical and numerical methods. Numerically, we calculate the mean first pas-
sage time by repeatedly integrating the Langevin equation upon the first occurrence of a
receptor-ligand encounter for a series of increasing complexity (illustrated in Fig. 1.5b).
We start with the case of homogeneous receptor and ligand coverage. This simplest case
can also be solved exactly and provides a favorable test for the numerical treatment. In the
context of homogeneous coverage we discuss the influence of gravity and what difference it
makes when considering both a top and a bottom wall as a boundary instead of a bottom
wall only. In the following parts of this chapter we explore how the mean first passage
time for encounter formation is modified by non-homogeneous coverage. There, we focus
on the one hand on the influence of flow rate and on the other hand—for zero flow rate,
i. e., for purely diffusive motion—on the influence of the receptor geometry defined by the
number of receptor patches, their height and lateral dimension [85, 86]. Using a mean-field
approach (by using average values for the diffusion and drift terms) allows us to obtain
some of the results also analytically and to derive scaling laws for some limiting cases.
Our results reveal that the receptor height has an important influence on initial binding
efficiency and we discuss this finding in the context of biological systems of interest.

In Chapter 4 we investigate the motion of a sphere under the influence of labile tether
bonds as occurring in rolling adhesion experiments with leukocytes or microspheres. First,
we apply an analytical treatment in order to examine how the motion of cells in shear flow
close to the bottom wall changes due to bonds. Then, we present a new classification
for five distinct stationary states of cell motion (e. g., rolling) based on the translational
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and angular cell velocities. By extensive use of the adhesive dynamics algorithm we
identify the different stationary states of motion for many different sets of parameters and
summarize the results in state diagrams that display the occurrence of the different states
with respect to the rate of bond formation (i. e., on-rate) and dissociation (i. e., unstressed

off-rate). Furthermore, we define and analytically solve a simple model system based on
a one-step master equation. The analysis of this simple model helps to understand some
general effects revealed by our adhesive dynamics simulations. In the remaining part of
this chapter we use the adhesive dynamics algorithm to determine how bond forces of a
stationarily rolling cell are distributed relative to the cell center. In addition, we address
the robustness of rolling against an increase of shear rate. According to the Bell model,
at large shear forces bond strength is fairly reduced, therefore, bonds may become too
weak to further support rolling. We show that tether bonds with an increased elasticity
nevertheless are able to support rolling even at large shear rates.

In Chapter 5 we extend the scope of our model and consider a different system that
is also often studied in flow chamber-like assays, namely the active transport of beads by
molecular motors—like kinesin—along filaments that are immobilized to the bottom wall
of the chamber. We treat molecular motors connecting a bead with the filament as bonds
similar to receptor-ligand complexes and describe how bead transport can be simulated
using an extended version of the adhesive dynamics algorithm that accounts for the active
steps of the motor proteins. We then apply the algorithm to compute the mean run
length of beads and compare our results with results obtained from an analytical model
by Klumpp and Lipowsky [83]. We work out the impact of effects that were neglected in
the analytical model but are accounted for by our algorithm.



Chapter 2

Model and theoretical background

In this chapter we present a detailed description of our model system: a hard sphere
covered with receptors moving in linear shear flow above a planar ligand-coated wall.
We also give a brief summary of the underlying theory. In the first part we discuss the
solution of the hydrodynamic one-body problem by hydrodynamic scattering theory. We
then setup a proper Langevin equation that allows us to correctly incorporate Brownian

motion. This Langevin equation is then applied to a sphere falling due to gravity. In the
second part we consider the process of bond formation and dissociation. These processes
are translated into rules defining an adhesive dynamics algorithm.

2.1 Stokes equation and one-body problem

At low Reynolds numbers a particle moving in a Newtonian fluid with viscosity η is
described by the Stokes equation (linearized Navier-Stokes equation) and the continuity
equation [125]

η∇2u(r) −∇P (r) = −F(r), ∇ · u(r) = 0, (2.1)

where u(r) is the fluid velocity field, P (r) is the pressure field and F(r) is the force density
on the fluid by the particle. Here, we use the induced force picture, i. e., the fluid equations
of motion Eq. (2.1) are extended to the interior of the particle and the particle is replaced
by an appropriate force density F(r) acting on the fluid [48].

The unperturbed flow field has to satisfy the homogeneous version of Eq. (2.1) as
well as no-slip boundary conditions at the wall. In this thesis, we use linear shear flow,
u∞ = γ̇zex. This is the simplest possible but non-trivial flow. In addition, it provides a
good approximation to flow chamber velocity profiles close to the bottom wall.

The solution of Eq. (2.1) for the flow field in the region occupied by the rigid sphere
reads [31]:

u(r) = (U + Ω× (r −R)) Θ(R− ‖r −R‖) , (2.2)

where U,Ω are the translational and angular velocities of the sphere, respectively. R is
the position of its center (see Fig. 2.1), R the sphere radius and Θ the theta step-function.

As the Stokes equation (2.1) is linear in u and P it can be solved using the method of
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Greens functions (cf. e. g., [115, 49, 31]). This leads to the solution

u(r) = u∞(r) +

∫

T(r, r′)F(r′)dr′, (2.3)

P (r) = P∞(r) +

∫

Q(r, r′)F(r′)dr′, (2.4)

where T is the Green tensor for the fluid field and Q is the Green vector function for the
pressure field which satisfy

η∇2T(r, r′) −∇Q(r, r′) = −bδ(r − r′), ∇T(r, r′) = 0, (2.5)

i. e., ui(r) = Tij(r, r
′)bj and P (r) = Qj(r, r

′)bj are the solutions to (2.1) for a point force
density located at position r′ and strength and direction given by b. T can be written in
the form

T(r, r′) = T0(r− r′) + ∆T(r, r′), (2.6)

where T0 is called Stokeslet or the Oseen or Oseen-Burgers tensor (cf. [115]), the Green
tensor for the unbounded fluid and ∆T is the correction due to the presence of a boundary.
The correction term ∆T is regular both in r and r′ [31], while the singularity of the Green
tensor T at r = r′ is contained in the Oseen tensor. Explicitly the Oseen tensor and Q0

are given by

T0ij(x) =
1

8πη

(

δij
‖x‖ +

xixj

‖x‖3

)

, Q0 =
1

4π

x

‖x‖3
. (2.7)

For a planar boundary wall at z = 0 (cf . Fig. 2.1) with normal vector k = (0, 0, 1)
pointing into the fluid, Blake (1971) found that ∆T(r, r′) can be written as the sum of
image singularities located below the wall. So for r, r′ ∈ {(x, y, z) ∈ � 3|z > 0}, ∆T(r, r′)
reads ([115, 31]):

∆T(r, r′) = −T0(r − Pr′) + 2z′
2
D̄(r − Pr′) − 2z′S̄(r − Pr′), (2.8)
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with the reflection operator P = � − 2kk, (x1, x2, x3) ≡ (x, y, z) and the operators

D̄ij(x) :=
1

8πη

3
∑

l=1

Pjl
∂

∂xl

xi

‖x‖3
,

S̄ij(x) := x3D̄ij(x) +
1

8πη

3
∑

l=1

Pjl
δl3xi − δi3xl

‖x‖3
.

Thus, the one-body problem of a sphere above a wall is solved by the integral in
Eq. (2.3), when the induced force density F(r) is known. Due to the linearity of the
Stokes equation, the force density F(r) can be linearly expressed in terms of the incident
flow field u∞ and the rigid body motion of the sphere u through the so-called grand
resistance operator Z [125, 31]

F(r) = −
∫

Z(r, r′)(u∞(r′) − u(r′))dr′. (2.9)

The support of Z(r, r′) is on the surface of the sphere [110]. The operator Z is symmetric
in the sense that Zαβ(r, r′) = Zβα(r′, r), which follows from Lorentz’ reciprocity theorem
[115, 49].

Eq. (2.3) and Eq. (2.9) both relate the incident flow u∞ and the total flow u to
the force density F . Eq. (2.3) can be interpreted as the sum of an incident flow and
a (scattered) flow field due to the presence of the force density F . Eq. (2.9) tells us
what force density is caused by the driving flow, which is the difference between real and
unperturbed flows. This interpretation is better elucidated by writing equations (2.3) and
(2.9) in matrix notation, which then leads to a formalism called hydrodynamic scattering
theory [50]. This formalism was worked out, e. g., by Cichocki, Felderhof, Jones, and
Schmitz and is described in a series of papers [125, 50, 49, 110]. The basic idea is that
one can find two basis sets of solutions of the homogeneous Stokes equation appropriate
to the spherical symmetry of the unbounded problem. These sets are built up of the
vector spherical harmonics [49] and can be found, e. g., in [51, 49, 110]. One of these sets
is complete for expanding a solution of the homogeneous Stokes equation that is regular
everywhere [110]. Thus, the incident flow-field u∞ and the rigid body motion Eq. (2.2)
can be expanded in this set and we denote their (countable infinite) coefficient vectors
by c+ and cu, respectively. The second set is complete for expanding a solution of the
homogeneous Stokes equation that is singular at the origin but regular elsewhere and
vanishes at infinity. It turns out that the second term in Eq. (2.3) can be expanded in this
set and we denote the corresponding coefficient vector by c−. In this analysis also the force
density F , the grand resistance operator Z and the Green tensor T can be represented in
vector and matrix form, respectively [125]. We denote these representations as f ,Z, and
T, respectively. Then, equations (2.3) and (2.9) are rewritten in the form

c− = Tf , f = −Z(c+ − cu), (2.10)

where total flow is given as c+ +c−. This depicts the definition of force multipoles exerted
on the fluid by the particle and shows how the Green tensor propagates these multipoles.
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2.1.1 Friction and mobility matrices

We turn now to Cartesian multipole moments of the force density and the driving field.
The total force and torque the sphere exerts on the fluid follow from the force density as

FH =

∫

F(r)dr, TH =

∫

(r −R) ×F(r)dr . (2.11)

Because we consider a rigid object, higher (Cartesian) moments of the force density are
not required in our context. For the unperturbed flow at the mid-point of the sphere, we
make the following definitions:

U∞ = u∞(R), Ω∞ =
1

2
∇× u∞(r)

∣

∣

∣

∣

r=R

, E∞
ij =

1

2

(

∂iu
∞
j (r) + ∂ju

∞
i (r)

)

∣

∣

∣

∣

r=R

, (2.12)

where the vector Ω∞ is called vorticity and the tensor E∞ rate of strain tensor. Because
we restrict ourselves to linear shear flow, all higher moments of the unperturbed flow
vanish.

The linear relationship between the force density F(r) and the driving flow, given in
Eq. (2.9) can be specified for the first Cartesian moments of the force density [125]. It leads
to the following relation, which defines the friction matrix Ru and the (six-dimensional)
shear force FS [31]:

(

FH

TH

)

= −Ru

(

U∞ −U

Ω∞ −Ω

)

− FS , (2.13)

where FS = RE : E∞ with A : B = tr ABT. The shear force FS results from the perturba-
tion of the flow by the presence of the wall and vanishes for free flow. The two matrices
Ru and RE are conveniently written as

Ru :=

(

ζtt ζtr

ζrt ζrr

)

, RE :=

(

ζtd

ζrd

)

, (2.14)

where ζ denote the friction tensors and the superscripts t, r and d stand for translational,
rotational and dipolar, respectively. In order to obtain the translational and rotational
velocities of the sphere as a function of the hydrodynamic forces and torques, we have to
invert Eq. (2.13):

(

U

Ω

)

=

(

U∞

Ω∞

)

+ M

[(

FH

TH

)

+ FS

]

. (2.15)

The symmetric matrix M = Ru
−1 is called mobility matrix. It is convenient to define the

mobility tensors through

M = Ru
−1 =

(

µtt µtr

µrt µrr

)

, Ru
−1RE =

(

µtd

µrd

)

. (2.16)

The symmetry of Ru and its inverse M follows from the symmetry of the grand resistance
operator Z mentioned above. In order to calculate the friction and mobility tensors µ
for the special case of a sphere in linear shear flow above a wall, we follow the procedure
from Ref. [31]. The friction tensors ζ introduced in Eq. (2.14) and the mobility tensors
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µ introduced in Eq. (2.16) are expressed in terms of scalar functions together with irre-
ducible tensors formed form the Kronecker symbol δij , the Levi-Civita symbol εijk and
the normal vector k = ez. The scalar friction functions are given by elements of the ma-
trix representation Z of the grand resistance operator which was introduced in Eq. (2.10)
[110, 111]. For the unbounded fluid the matrix Z0 can be obtained from the solution of
the flow problem which is found in [125]. In the presence of a wall the required elements
of Z are not known analytically. As explained by Perkins and Jones [110], the elements of
the matrix representation Z can be determined by iteration of

Z = Z0 − Z0∆TZ, (2.17)

where ∆T is the matrix representation of the image Green tensor Eq. (2.8). The iteration
of (2.17) expresses Z in terms of the resistance matrix for the unbounded fluid Z0 and a
series of terms of increasing powers of ∆T. This series is called reflection series [110] and
is a series in powers of s = R/z ∈ [0, 1] as ∆T depends on the distance from the wall. In
the limit s → 0, that is far away from the wall, this series converges rapidly [31]. In the
other limit s → 1, that is close to the wall, the series convergence is bad but analytical
results for the scalar friction functions can be obtained with lubrication theory1. In order
to cover the whole interval, the two limit solutions are matched using a Padé summation
scheme. More details of this implementation are given in Appendix B.1.

2.2 Langevin equation

The motion of a particle subject to thermal, hydrodynamic and direct external forces like
gravity is called Stokesian Dynamics [21]. In this section we derive the corresponding
stochastic differential equation (Langevin equation). The Langevin equation will allow
us to base our statistical treatment on the repeated simulation of individual trajectories.
Because we are interested in the over-damped (Stokes) limit, we can neglect inertia in
Newton’s second law:

−FH + FD + FB = 0, (2.18)

where −FH , FD and FB are hydrodynamic, direct and thermal forces acting on the
sphere. An analogous balance exists for the torques. For the following treatment, forces
and torques as described above are united in one symbol. For example, if not explicitly said
differently, from now on the symbol F denotes (F,T), a six-dimensional vector comprising
force F and torque T, and U denotes the six-dimensional particle translational/angular
velocity vector.
In the absence of Brownian forces, FB = 0 and FD = FH . Inserting this into Eq. (2.15)
then gives

U = U∞ + M(FD + FS) (2.19)

and the particle trajectory can be found with a simple Euler algorithm as X(t + ∆t) =
X(t) + U∆t+ O(∆t2).

In the presence of Brownian motion, the situation is more complex, because thermal
noise leads to terms of the order ∆t1/2 and special care has to be taken to include all terms

1Lubrication theory deals with flows close to boundaries. Such flows can be approximated to be unidi-
rectional which means that the flow profile is assumed to depend only on the local pressure gradient and
the geometry of the domain of flow [115].
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up to order ∆t. Due to the fluctuation-dissipation theorem, for our problem Gaussian
white noise reads

〈gt〉 = 0, 〈gtgt′〉 = 2kBTaMδ(t− t′) , (2.20)

with Ta ambient temperature and Boltzmann constant kB . Here, the subscript t corre-
sponds to the fact that the thermal force g is a random process. According to the Einstein

relation the diffusion matrix of the sphere is D = kBTaM. To fulfill Eq. (2.20), the mobility
matrix and therefore also the diffusion matrix have to be positive definite. This is indeed
the case as the viscous flow about a sphere represents a dissipative system [32].

The left part of Eq. (2.20) states that the forces on the particles exerted by the fluid
are equally distributed in all directions so there is no net drift due to thermal fluctuations.
The right part of Eq. (2.20) states that forces at different times are not correlated, which is
a good approximation because the diffusive forces act on a much faster time scale than the
hydrodynamic forces. Because the mobility matrix M is position-dependent, we deal with
so-called multiplicative noise. Since the δ-correlation in Eq. (2.20) can be considered to
be the limit of a process with an intrinsic time scale for thermal relaxation, which is much
faster than the time scale of hydrodynamic movement, the Stratonovich interpretation of
the stochastic process is appropriate [157, 71]. This means that for each time step, the
mobility functions have to be evaluated at X(t+(1/2)∆t) (rather than at X(t) as in the Itô
interpretation). The Stratonovich interpretation also implies that the rules for integration
and coordinate transformation are the same as for the Riemann integral in non-stochastic
calculus.

The presence of the thermal noise Eq. (2.20) converts the position function X(t) into a
random process Xt. Multiplicative noise can result in additional drift terms. We therefore
write the Langevin equation as

∂tXt = U∞ + M(FD + FS) + kBTaY + gS
t , (2.21)

where in comparison to the deterministic equation Eq. (2.19) we have added both the
Gaussian white noise gS

t (to be interpreted in the Stratonovich sense) and some drift
term Y. The drift term Y can be derived by requiring Eq. (2.21) to be equivalent to
the appropriate Smoluchowski equation. The details of these calculations are given in
Appendix B.2. The result is

Y = B∇BT , M = BBT , Yi = Bik(∂lBlk), Mij = BikBjk . (2.22)

For additive noise, that is for position-independent mobility functions, the additional drift
term would vanish. In the case of position-dependent mobility matrices, the noise term gS

t

alone would lead to a drift of the particle towards regions of lower mobility (that is towards
the wall, where mobility vanishes due to the no-slip boundary condition) [36]. This drift,
however, is exactly compensated by the additional term Y. The limit of vanishing mass,
i. e., the limit of no inertia, is a singular limit [64]. The appearance of the drift term Y

can also be derived by a proper treatment of this limit [44, 64].

For the following, it is useful to non-dimensionalize Eq. (2.21). For length, the natural
scale is sphere radius R. For time, it is convenient to use 6πηR3/kBTa, which is the time
needed to diffuse the distance R. For force, we use 6πηR2γ̇, the Stokes force at velocity
Rγ̇, that is in linear shear flow a distance R away from the wall. The scalar friction and
mobility functions appearing in M, RE and Ru, also become dimensionless as explained in
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Appendix B.1. The Langevin equation Eq. (2.21) now reads

∂tXt = Pe
(

U∞ + M(fFD + FS)
)

+ B∇BT + gS
t , (2.23)

where the Péclet number

Pe =
6πηR3γ̇

kBTa
(2.24)

measures the relative importance of deterministic to Brownian motion. In the limit Pe→ 0
the particle only exhibits diffusive motion and in the limit Pe→ ∞ it is no longer subjected
to diffusion. The second dimensionless parameter f = ‖FD‖/6πηR2γ̇ measures the relative
importance of direct forces/torques versus the shear force/torque (FD in Eq. (2.23) is now
a unit vector pointing in the direction of the deterministic force/torque vector). Measuring
the time in units of the diffusive time scale is appropriate for Péclet numbers of order ten
or less for which diffusion effects are important. In this thesis we will use the above
given choice of time and force scale for the computation of mean first passage times in
Chapter 3 (the same scales are used in the next section 2.3, where for illustrative reasons
the Stokesian dynamics algorithm is applied to a simple example). For simulations with
larger Péclet numbers as carried out in Chapter 4 it is more suitable to scale time with
the inverse shear rate γ̇−1. This has the effect of dividing Eq. (2.23) by Pe. For the
simulations done in Chapter 5 which include motor dynamics we use internal scales of the
motor protein as force and time scale, respectively. In Appendix A.1 a synopsis of all three
choices for time and force scales used in this thesis is given, together with the respective
form of the dimensionless Langevin equation.

In order to solve Eq. (2.23) numerically, it has to be discretized with respect to time.
The appropriate Euler algorithm can be derived by rewriting Eq. (2.23) in the Itô-version,
which adds another drift term to the equation. As explained in Appendix B.3, the two
drift terms together lead to the result

∂tX = Pe
(

U∞ + M(fFD + FS)
)

+ ∇M + gI
t . (2.25)

Its discretized version is simply

∆X =
[

Pe
(

U∞ + M(fFD + FS)
)∣

∣

t
+ ∇M|t

]

∆t+ g(∆t) + O(∆t2) . (2.26)

This final result has been derived before in a different way by Brady and Bossis [21]. For
vanishing shear flow, it also agrees with the classical result by Ermak and McCammon [44].
In Appendix B.3, we describe the algorithms used to implement Eq. (2.26), in particular
the algorithm to generate the thermal forces g(∆t) and the update rule for the orientation
of the sphere. Furthermore, we explicitly give the update steps for the six degrees of
freedom in Eq. (B.23) (three translational and three rotational degrees of freedom).

In Chapters 3 and 4 we deal with two versions of this algorithm. Using the full
version Eq. (2.26), involving all six degrees of freedom we refer to 3D simulations. In some
simulations we use a pseudo-2D projection which is referred to as 2D algorithm. In this
version translational motion is restricted to the (xz)-plane and rotations are restricted to
rotations about the y-axis, thus resulting in only three degrees of freedom. The 2D version
is much faster not only due to the decreased dimension, but also due to the fact that the
rotational degree of freedom (in the following chapters denoted by θ) can then be treated
as a Cartesian coordinate which simplifies the update rule (cf. Sec. B.3). Physically, the
2D situation can be realized, e. g., if the sphere has a magnetic moment m and moves in
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a magnetic field B = Bey. Then, the resulting torque Tm = Bm × ey [72] acts to align
the moment with the external field (for alignment, i. e., m ‖ ey, the torque vanishes).

2.3 Sphere falling in shear flow

If the density of the sphere ρsphere is different from that of the surrounding fluid ρ, then
the sphere is subject to a buoyant force that is proportional to the density difference
∆ρ := ρ − ρsphere. Thus, if the sphere density is larger than that of the fluid ∆ρ < 0
a constant drift force towards the wall exists. As we will see later, this drift ensures
that on average the receptor covered sphere will bind to the ligand-coated wall in finite
time. The two independent parameters defined in Eq. (2.23) for this model system are
Pe and f = (2R∆ρg)/(9ηγ̇), with the earth acceleration constant g = 9.81 m/s2. For the
considerations done in Chapter 3, it is convenient to introduce also the parameter

Pez = f Pe =
4π∆ρR4g

3kBTa
, (2.27)

which we call the Péclet number in z-direction. Pe and Pez represent the strengths of
the hydrodynamic and gravitational forces in respect to the thermal force, respectively. It
must be noted that out of the three parameters Pe, f and Pez, only two are independent
(because f = Pez/Pe).

We first consider the path of a sphere falling in shear flow after it has been dropped
at some initial height z0 at time t0. Fig. 2.2 illustrates the effect of the Péclet number by
showing some representative simulation trajectories (more precisely, only the projections
onto the (x, z)-plane is shown, i. e., z(x) and θ(x)). For Pe = ∞ the motion of the sphere is
purely deterministic and only governed by the parameter f (see Fig. 2.2a). In the diffusive
limit Pe = 0, the sphere makes a pure random walk (except for the drift in z-direction
due to the gravitational force, see Fig. 2.2d).

As the mobility matrix does only depend on the height of the sphere above the wall
(cf. Appendix B.1), the motion in the z-direction is independent of the position in the
(x, y)-plane and the orientation of the sphere. Therefore, it can be treated separately. In
the deterministic regime the equation of motion in z direction is obtained from Eq. (2.25)
by dividing the z-component by Pe, and taking the limit Pe → ∞. We then get the
following differential equation

ż = −fα̂tt(1/z), (2.28)

with the scalar mobility function α̂tt defined in Appendix B.1. Using the approximation
αtt(1/z) ≈ 1 − 1/z, which is valid in the proximity to the wall (cf. page 111), Eq. (2.28)
can be integrated to provide

z(t− t0) = 1 + plog e−f(t−t0)+z0−1+ln(z0−1),

with the product logarithm x = plog a defined as the solution to the equation xex = a,
and plog a = 0 only if a = 0. Thus, the sphere does not reach the wall in finite time, only
if t → ∞ the height approaches the limit z → 1. In Fig. 2.3 translational and angular
velocities U = ẋ and Ω = θ̇, respectively, are shown over a large range of heights. When
z → 1 the mobility vanishes and therefore both translational and angular velocity approach
zero (no-slip boundary conditions). At large distance from the wall the sphere moves like
a particle in unbound fluid with U = zγ̇ and Ω = 1

2 γ̇. It has been shown by Goldman
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et al. that the ratio RΩ/U has a definite limit for z → 1, which is RΩ/U ≈ 0.5676 [60]
(this value can be obtained using the coefficients of the lubrication expansion tabulated
in Tab. B.1). As can be seen from Fig. 2.3 the ratio RΩ/U increases monotonically with
decreasing height. But it never comes close to rolling which is defined by RΩ/U = 1. In
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sample paths for ten consecutive points in time. The initial distribution was Ψ(z, t0) = δ(z−3)
at t = t0, Pez = 2. For large times the distribution function approximates the a stationary
shape given by Eq. (2.30).

Fig. 2.2a this ratio appears as the slope of the θ(x) curve (as R∂θ/∂x = Rθ̇/ẋ). There
again, it can be seen that the ratio RΩ̇/U , i. e., the slope of the θ(x)-curve, increases while
the sphere approaches the wall.

In the non-deterministic limit, i. e., for finite Pe, the height of the sphere is described
by a probability density function Ψ. The probability density Ψ(z, t) for the sphere being
at height z at time t is the solution to a one-dimensional Smoluchowski equation

∂tΨ(z, t) = −∂zJz, Jz = −Mzz(∂zΨ + PezΨ). (2.29)

This equation cannot be solved analytically as the mobility function Mzz is not known in
closed form. In Fig. 2.4 we show numerical solutions obtained by simulating the equivalent
Langevin equation. One clearly sees that first the δ-function at t = 0 is broadened due
to diffusion and then develops into a stationary solution which has its maximum at the
wall. This stationary solution has a simple analytical form which follows from Eq. (2.29)
by integrating Jz = 0:

Ψs(z) = Peze
−Pez(z−1) . (2.30)

Thus, the stationary solution is simply the barometric formula, as it should be for ther-
modynamic reasons. We also find that the first two moments (mean and variance) are the
same:

〈z − 1〉 =
√

〈z2〉 − 〈z〉2 =
1

Pez
. (2.31)

In the limit of vanishing gravitational force (Pez → 0), the probability distribution be-
comes flat and the probability of finding the sphere does not peak at the wall anymore.
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Linderman [94]). (b) Immobilized ligands on a wall and receptors attached to a sphere. The
encounter step is now defined by transport of cell receptor to the proximity of a wall ligand.
The on- and off-rate kon, koff might then still depend on membrane and molecular diffusion
of the receptor.

2.4 Dynamics of receptor-ligand complexes

The main focus of this thesis is the interaction of cells with the wall by specific bonds.
Here we discuss the process of formation and dissociation of such bonds.

2.4.1 Bond formation

Considering receptors R and ligands L with mutual affinity in solution their interactions
can be described by the following reaction equation [94]

R + L
kf




kr

C,

where C denotes the receptor-ligand complex and the rate constants kf and kr account
for the forward and reverse reaction, respectively, and define reaction kinetics according
to

dC

dt
= kfRL − krC.

Here R,L,C are the concentrations of receptors, ligands and complexes, respectively, given
in M = mol/l (mole per liter). Thus, the forward reaction rate is given in units of 1/(Ms)
and the reverse rate is given in units of 1/s ≡ Hz. In general, a chemical reaction of
at least second order is always preceded by a diffusional encounter process [40]. Thus,
it is convenient to consider the receptor-ligand complex formation as a two-step process,
according to (see e. g.,[40, 20] and Fig. 2.5a)

R + L
k+




k−

E
kon




koff

C.
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Thus, in the first step a physical transport process (mainly diffusion) brings receptor and
ligand to close proximity to form the encounter complex E. The rates for formation and
dissolution of the encounter complex are given by k+ and k−, respectively. The second
step is the actual reaction step with the intrinsic rates kon, koff . The notion of encounter
complexes has a long tradition and was first introduced to study reactions between ions,
e. g., Smoluchowski 1917 (“Koagulationskinetik” [143]). In the 1970s this concept was also
discussed in the context of biological reactions by Eigen [40] and Berg and Purcell [16].
Using again the principles of mass action kinetics the equations for the time change of E
and C read

dE

dt
= k+RL + koffC − (k− + kon)E,

dC

dt
= konE − koffC = kfRL − krC.

These equations define the units of the rates k−, kon, koff to be 1/s, and k+ to be measured
in 1/(M s). The encounter concentration can be approximated to be in quasi-steady
state dE/dt = 0 [40, 141]. Then, the overall rates kf , kr can be expressed in terms of
k+, k−, kon, koff via

kf =
k+kon

k− + kon
, kr =

koffk−
k− + kon

. (2.32)

From the preceeding relation two limiting cases for the mutual efficiency of diffusion and
intrinsic reaction can be derived. If the decay of the encounter complex is much slower
than the formation of the actual complex C, i. e., k− � kon, then

kf ≈ k+, kr ≈ k−
koff

kon
(2.33)

and the overall process is diffusion controlled. Reversely, if the reactional association is
much slower than the dissolution of the encounter complex, i. e., k− � kon, the process is
reaction controlled, leading to

kf ≈ kon
k+

k−
, kr ≈ koff . (2.34)

The notion of encounter complex is closely related to that of capture radius r0. The
capture radius defines the critical distance to which the two reactants have to approximate
each other in order to undergo their reaction, thus it defines at which distance encounter
occurs. When solving the diffusion equation with the boundary condition of fixed ligand
concentration c0 at infinity and an absorbing boundary on a sphere (with radius given by
the capture radius r0) around the receptor’s position, the number of ligands absorbing per
c0 can be identified with the rate k+ (Smoluchowski: “probability of adsorption per time”
[143]). On the other hand, solving the diffusion equation with the boundary condition that
the concentration on the capture sphere is constant and a perfect sink exists at infinity,
the resulting flux of ligands reaching infinity can be identified with the rate k−. For
example for ligands and receptors diffusing freely in solution, with total diffusion constant
DRL = DR +DL, these rates are [40, 13]:

k+ = 4πDRLr0, k− = 3DRL/r
2
0. (2.35)
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Thus, the equilibrium constant for the encounter step is k+/k− = 4πr3
0/3, i. e., given by

the volume of the encounter sphere.

The rates kf , kr for ligands free in solution can be determined from affinity measure-
ments (e. g., from BIAcore experiments [159]). Then, using Eq. (2.32) and Eq. (2.35) the
intrinsic rates kon, koff can be calculated. It was noted by Bell, that in addition knowing
similar expressions as in Eq. (2.35) for a different geometry, i. e., surface bound receptors
and ligands, the overall reaction rates k ′f , k

′
r for that geometry can be calculated using

again Eq. (2.32) [13] (provided that geometry does not affect the intrinsic rates).

For the systems under investigation in this thesis, receptors are attached to the surface
of a sphere that moves in hydrodynamic flow and ligands are attached to a boundary wall.
Thus, basically three kinds of motion for the receptors (or more precisely their binding
sites) can be determined (illustrated in Fig. 2.5b): i) convective and diffusive motion of
the sphere on which the receptors are attached, ii) diffusion of the anchorage point of the
receptor in the cell membrane, in the case the sphere represents a cell, and iii) molecular
diffusion of the receptor endpoint (binding site). It is important to note that these types
of transport are not of the same importance. Close receptor-ligand proximity, which
provides a necessary condition for encounter, can only be reached by means of the first
transport mechanism mentioned. The two others complement each other. Therefore, we
consider the end of the transport step to be the encounter of a receptor molecule with an
immobilized ligand molecule rather than the encounter of their respective binding sites. In
Chapter 3 we will calculate the mean time T for such encounters. In order to conceptually
match this quantity to the above explained theory, the expression R defining the receptor
concentration must be replaced by the number of cells. Then, k+, kf are given in units of
1/(s # of cells) and the encounter rate, i. e., the inverse of the mean encounter time T can
be identified with k+.

In this approach, applied in the following, the on-rate kon does not denote the intrinsic
reaction rate, as it still depends on membrane and molecular diffusion of the receptor
(relative to the ligand). The diffusion constant of membrane attached molecules in lym-
phocytes is of the order 10−10 cm2/s [13], which is the same order as for the diffusion
constant of the lymphocyte itself ∼ kBTa/(6πηR) (R ≈ 5 µm). The molecular diffusion
of the binding site (which marks the end of a polymeric chain), however, is faster than
the diffusion of the cell due to its three orders of magnitude smaller size. Forces along
the receptor/cell-center direction due to external shear flow which might influence the
motion of the receptor head turn out to be fairly weak (< 10−3 pN) [136]. Thus, besides
contributions from the overall motion of the cell, the receptor motility is dominated by
the molecular diffusion of its binding site. Indeed, in a very recent study on leukocyte
capture (by L-selectin) in flow chambers it was found that an increased molecular diffu-
sivity of receptors leads to an increased adhesion probability [162]. Here, their effect will
be neglected.

2.4.2 Bond dissociation

A receptor-ligand complex between surface attached receptor and ligand represents a bond.
In biological systems these bonds are generally based on weak non-covalent interactions,
allowing for quick rearrangements [128]. For example the fast processes occurring in rolling
adhesion were not possible if adhesion was due to (strong) covalent bonds. Here, we will
briefly discuss how bond dissociation can be treated as thermally activated escape over
a transition state barrier in the framework of Kramers theory and how the dissociation
rate (off-rate) is influenced by a force acting on the bond (a more detailed overview to
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this issue can be found in [42]). The specific structure of the binding site (pocket) of
a receptor determines the pathway for the ligand while bond formation and rupture,
respectively, occurs. Usually it is assumed that this pathway can be well described as
a one-dimensional potential energy landscape along a reaction coordinate x, representing
the distance between receptor and ligand (such energy landscape is schematically drawn in
Fig. 2.6). The bound state is represented by a deep minimum of the potential energy E(x)
and separated by a sharp transition state barrier of height Eb. The distance between the
bound state minimum and barrier’s maximum xc is called reactive compliance. Kramers’
assumption was that x undergoes Brownian motion in the potential E(x). Considering
the system in a quasi-stationary state, the bond dissociation rate follows from the inverse
mean first passage time for x to escape over the barrier [157, 90, 68] (the original work by
Kramers [90] has been reviewed by Hänggi et al. [68]). Regarding the limit of over-damped
motion, and sharp and large barrier, the off-rate k0 (escape rate) for no external force is
approximately [157, 90, 68]

k0 = νDe
−Eb/kBTa , (2.36)

with νD the frequency of attempts to cross the barrier. The attempt frequency νD depends
on the product of curvatures of the potential E(x) at its minimum and maximum position,
in a way that the frequency is the larger the sharper the extrema are. Each attempt to
escape is suppressed by the Arrhenius factor e−Eb/kBTa built from the barrier height Eb.
Typically values for biomolecular bonds are νD ' 109 Hz and Eb = 20kBTa [128], thus the
off-rate is of the order of Hz, which is much smaller than the attempt frequency νD.

In the case the bond is subject to force, the off-rate is supposed to change. In a seminal
paper, Bell proposed a model for bond rupture under force that was adopted from the
rupture mechanics of solids [13]

koff (F ) = k0 exp(F/Fd), (2.37)

with the detachment force Fd. This empirical relation can be rationalized in the framework
of Kramers theory. When the force F acts along the reaction coordinate x an additional
term −Fx is added to the potential energy landscape to become E(x)−Fx (see Fig. 2.6).
Thus, the transition state barrier in the presence of force is Eb(F ) ≈ Eb − Fxc. Inserting



2.4 Dynamics of receptor-ligand complexes 27

this expression for Eb into Eq. (2.36) leads to the Bell equation Eq. (2.37). Moreover, it
relates the detachment force Fd to the reactive compliance xc via Fd = kBTa/xc. Actually,
force also slightly affects the position of the barrier height and the shape of the potential.
This leads to corrections in the force-dependence of the barrier height and the attempt
frequency νD [47, 138] (the latter one as it depends on the shape of the potential). But,
the by far dominating effect of force is the exponential increase of the off-rate given in
Eq. (2.37). A typical value for the reactive compliance is xc = 1 nm, with this it follows for
the detachment force, providing a typical force scale for bond dynamics, Fd = kBTa/xc ≈
4 pN (with kBTa = 4.1 pN nm being the thermal energy at room temperature) [13, 128].

The results Eq. (2.36) and Eq. (2.37) from Kramers theory are based on the assumption
that the system is in quasi-stationary state. Therefore, for time-dependent forces F (t)
the Bell equation (2.37) does only apply in the so called adiabatic approximation. For
the adiabatic approximation it is assumed that the escape process and equilibration of
the system is much faster than changes occurring in the potential. Shillcock and Seifert
could show for the case of linear loading by comparing exact mean first passage time
results for the escape in the presence of time-dependent forces with results obtained in
the adiabatic approximation that the latter one works fairly well over a wide range of
loading rates [138]. The adiabatic approximation has been applied before, e. g., to study
adhesion clusters subject to a linear increased force [43] or the analysis of dynamic force

spectroscopy experiments [47]. In this thesis we will apply this approximation to model
bond-dissociation by using the Bell equation Eq. (2.37) in the presence of time-dependent
forces that occur, e. g., in rolling adhesion.

It was suggested by Dembo et al. to call a bond whose life-time decreases in the
presence of force as in Eq. (2.37) a slip bond and a bond that strengthens up with force
a catch bond [35]. Having been an academic issue for a long time, only recently catch
bond behavior could be directly observed for P-selection-PSGL-1 bonds by Marshall and
co-workers. Using both, flow chambers and atomic force microscopy they showed that
the lifetime of P-selection-PSGL-1 bonds first increases with increasing force and then
decreases with even further increasing applied force [101]. Recent theoretical studies gave
explanations for this effect in the framework of Kramers theory assuming an at least
two-dimensional energy landscape in which the unbinding pathway is determined by the
amount of applied force [46, 12, 109].

2.4.3 Adhesive dynamics algorithm

We now discuss how the algorithm Eq. (2.26) which defines the position/orientation up-
date of a sphere can be extended to include the probabilistic nature of bond formation
and rupture. Such rules have been setup by Hammer and co-workers [66] and been re-
fined several times (e. g., [28, 80, 25]) to model various aspects of leukocyte rolling. The
collection of these rules are now known as adhesive dynamics. Detailed descriptions of
this algorithm can be found for example in Refs. [66, 26]. In the following we list these
rules in the way we have implemented them in routines, which were used for the numerical
simulation experiments explained in Chapters 4 and 5.

The sphere’s motion is described by Eq. (2.21). If no bond between the sphere receptors
and wall ligand exist, we take only gravity into account for the deterministic force in
Eq. (2.21), i. e., the six-dimensional force/torque vector is given by FD = (−∆mgez,0) (cf.
2.3). Functional bonds lead to additional contributions to both the force- and momentum-
part of FD. More precisely, a (functional) bond between a ligand located at rl (the z-
component of this vector is zero) and a receptor located at rr on the sphere’s surface pulls
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Figure 2.7: Adhesive dynamics. (a) Each receptor is represented as a capture-ball of radius
r0. During encounter with a wall ligand, bond formation occurs with rate kon. (b) Closed
(stretched) bonds are modeled as harmonic springs (capture ball is not drawn).

with a force

FB = r̂bF (rb), r̂b :=
rl − rr

‖rl − rr‖
, rb := ‖rl − rr‖. (2.38)

F (x) is the force extension curve that describes by what force the bond must be pulled to
stretch it up to a total length x. Here, we mainly consider the bonds to be semi-harmonic
springs (cable model)

F (x) = κ(x− l0)Θ(x− l0), Θ(x) :=

{

1, x > 0
0, else

, (2.39)

with l0 the resting length and κ the spring constant. The cable model is the simplest
model for polymeric tethers. In the cable model a bond behaves as a spring only if it is
stretched (extension larger than the resting length), otherwise the bond exerts no force on
the sphere. Treating the receptor-ligand complex as a harmonic spring works fine in the
small extension regime [56]. For large extensions the force extension curve for polymers
is supposed to grow much faster than linear, and when the bond extension approaches
the total contour length of the receptor-ligand complex it even diverges (strain stiffening).
However, as described before typical bonds are weak and their rupture probability increases
exponentially with force. Therefore, we expect bond extensions to be restricted to the
linear regime. As the bond force pulls on the sphere’s surface also a torque results

TB = r̂× FB(rb),

where r̂ is the connection vector from the center of the sphere to the point on its surface
where the receptor is attached (see Fig. 2.7). Thus, the total force/torque contribution to
FD by the bonds is

κ

Nr
∑

i=1

qiF (ri
b)
(

r̂i
b, r̂

i × r̂i
b

)

, (2.40)

with Nr the total number of receptors and qi = 1 if the ith receptor forms a bond and zero
otherwise. The qi, i = 1, . . . , Nr are stochastic variables. Thus, the contribution Eq. (2.40)
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lets the “deterministic force” FD also become a stochastic variable.

With this at hand we can now define the adhesive dynamics rules, applied in each
update step ∆t (cf. Fig. 2.7):

• The sphere’s position and orientation is updated according to Eq. (2.26) (for an
explicit description see Appendix B.3).

• The receptor positions in the flow chamber coordinate system are calculated.

• Each inactive receptor is represented by a capture ball with radius r0 � 1.

• (*) If the distance between a receptor and any ligand is ≤ r0 a bond is established
with probability pon = 1 − exp(−∆t · kon), then the resting length of the bond is
set to the receptor-ligand distance at the instance of bond-formation (i. e., the bond
force at the moment of bond formation is zero) and is stored together with the ligand
position. A bond can only be formed if the corresponding receptor and ligand are
not already part of another bond.

• For each active bond, the contribution to FD is calculated.

• Each existing bond dissociates with a rate given by the Bell equation Eq. (2.37).
Thus, each bond ruptures with probability poff = 1 − exp(−∆t · koff (F )), where F
is the instantaneous force acting along this bond.

When a bond has ruptured, both the receptor and the ligand can form a new bond in the
next time step according to the rule (*). As the resting length of a bond is always smaller
than r0 � 1, modeling bonds as harmonic springs in both the extension and compression
regime would not make much difference to the results that are obtained by the cable model.
Given the probability for bond formation or rupture pon or poff , respectively, a standard
Monte-Carlo technique is used to decide whether the action happens or not: Using a
pseudo-random number generator a random number rand from the uniform distribution
in the interval [0, 1] is drawn. If then pon/off > rand the respective action takes place,
otherwise not.

The position update of the receptors is quite costly and only the positions of those
receptors close enough to the wall are needed. So, to save time we store the relevant
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receptors in a list, and consider only those. The list is created in the following way (see
Fig. 2.8): The z-coordinates relative to the center of the sphere z ′r is calculated for all
receptors, if z′r < −1 + 4r0 or a receptor is part of a bond it is marked as relevant.
Simultaneously, a vector relative to the sphere’s center ~n4 = (0, 0,−1)T is introduced.
The vector ~n4 is fixed relative to the sphere and updated at each time step (cf. Sec. B.3).
If the third component of ~n4 has become larger than −1 + r0 the list is updated. By
construction the list always includes all the receptors that can encounter a ligand, i. e.,
those for which z′r ≤ −1 + r0 is true. The arclength ξ between the lowest point of the
sphere and a receptor at z ′r = −1 + r0 is ξ = arccos(1 − r0) ≈ √

2r0. Allowing for ~n4 a
maximum deviation ξ with respect to its original orientation, all receptors whose arclength
from the lower apex of the sphere is maximally 2ξ must be taken into account. These fulfill
z′r < −(1 − cos(2ξ)) ≈ −1 + 4r0 (the described method is similar to the Verlet list of a
single particle in molecular dynamics simulations [55]). The smaller the angular velocity of
the sphere Ω the less often a list update is necessary and therefore, the more this method
is efficient.

The two main differences between our implementation of adhesive dynamics and the
original version of Hammer are: i) we explicitly resolve the ligand positions in space; ii) we
account for Brownian motion of the cell via the Langevin equation Eq. (2.26). Without
incorporating diffusive motion the use of spatially resolved receptors and ligands could
lead to numerical artefacts. For example at low densities of receptors and ligands purely
deterministic motion of the cell could be such that a receptor-ligand encounter never
occurs. Thus, the algorithm explained above opens up the perspective to apply adhesive
dynamics simulations to flow chamber experiments using substrates with regular ligand
patterns.



Chapter 3

Mean first passage times for

receptor-ligand encounter

Interactions mediated between receptors and ligands are highly specific. For these inter-
actions to occur a physical transport process bringing receptor and ligand molecules to
close proximity is required. For receptor-coated cells with ligands attached to a substrate
this transport is mainly governed by the transport of the cell itself. In this chapter we
consider the general case of a receptor coated sphere being subject to gravity and moving
in linear shear flow above a ligand bearing wall, thus, mimicking flow close the bottom
wall of flow chambers. For this setup we numerically compute the mean first passage times
(MFPT) for receptor-ligand encounters for a series of situations of increasing complexity.
We first consider homogeneous receptor and ligand coverage and show that the MFPT
can be calculated exactly. We then consider spatially resolved receptor patches and finally
also spatially resolved ligand patches for both movement in 2D and 3D. In an analytical
approach to the MFPT problem we treat the appearing position-dependent diffusion and
drift terms in a mean-field like manner which allows us to correctly predict the asymptotic
behavior of the MFPT for some limiting cases.

3.1 First contact with homogeneous coverage

If the sphere and the wall are homogeneously covered with receptors and ligands, respec-
tively, an encounter complex is established whenever the sphere comes sufficiently close to
the wall. The mean time which elapses after the sphere is set free at some initial position
until an encounter complex is established is then identical with the mean first passage
time (MFPT) for a sphere dropped at initial height z0 to reach the height z1. Note again
that the motion in z-direction is independent of the values of the other coordinates. For
a particle diffusing in an interval [z1, b], with z1 being an absorbing boundary and b a
reflective boundary, the MFPT T to reach z1 when started at z ∈ [z1, b] is the solution to
the following ordinary differential equation [157]

A(z)∂zT (z|z1) +D(z)∂2
zT (z|z1) = −1, T (z1|z1) = 0, ∂zT (z|z1)|z=b = 0. (3.1)

In our case, b = ∞. The drift term A(z) = −Pezα̂
tt(1/z) + ∂zα̂

tt(1/z) and the diffusive
term D(z) = Mzz = α̂tt(1/z) follow from Eq. (2.25), where α̂tt(1/z) is a scalar mobility
function as explained in Appendix B.1. Pez is the Péclet number in z-direction defined
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in Eq. (2.27). The general solution to Eq. (3.1) is [157]

T (z0|z1) =

z0
∫

z1

dz
1

Φ(z)





∞
∫

z

dy
Φ(y)

D(y)



 , Φ(z) = exp





z
∫

dx
A(x)

D(x)



 . (3.2)

This can be reduced up to an integral over α̂tt(1/z):

T (z0|z1) =
1

Pez

z0
∫

z1

dz
1

α̂tt(1/z)
. (3.3)

Thus, the dependence of T (z0|z1) on Pez, the only parameter in this problem, is obtained
exactly. It is important to note that the compact form for the MFPT in Eq. (3.3) is a result
of the constant vertical force. For a more general vertical potential force F⊥ = −∂zV (z)
with a potential V , the drift term reads A(z) = −∂zV (z)α̂tt(1/z)+∂z α̂

tt(1/z) and Eq. (3.2)
can be reduced to

T (z0|z1) =

z0
∫

z1

dz

α̂tt(1/z)

∞
∫

z

dyeV (z)−V (y) . (3.4)

This equation shows that the potential must satisfy the condition limy→∞(V (z)−V (y)) →
−∞ for the MFPT to be finite. This holds true, e. g., for the gravitational force studied
here or for the interaction of a charged object with an oppositely charged wall, but not,
e. g., for a Lennard-Jones potential.

The integral Eq. (3.3) over the scalar mobility function α̂tt can easily be calculated
numerically as α̂tt behaves well in the full range of z. In fact, close to the wall α̂tt(s) can
be approximated by α̂tt(s) ≈ 1 − s (cf. page 111). We then find

T (z0|z1) ≈
1

Pez

[

z0 − z1 + ln

(

z0 − 1

z1 − 1

)]

. (3.5)

A numerical analysis shows that the approximation Eq. (3.5) deviates only by a few
percent from the exact solution Eq. (3.3). Thus, T (z0|z1) is logarithmically divergent if
the absorbing point is close to the wall, z1 → 1, and linearly divergent if the starting point
is at infinite height, z0 → ∞.

For a sphere homogeneously covered with receptors each having a capture radius r0,
the mean time for forming an encounter complex is T (z0|1 + r0). This time will serve as
a useful limiting result in some of the considerations presented in the next sections. The
exactly known result Eq. (3.3) provides also a good test for the algorithm we implemented.
In Fig. 3.1a the MFPT obtained from simulation experiments and from quadrature of
Eq. (3.3) are compared. The two results agree very well (see Appendix C for a discussion
of the statistical and systematic errors of the simulation results). In Fig. 3.1b we show
the numerically obtained distribution of first passage times (FPT). One clearly sees that
the larger Pez, the stronger they peak around the mean. As typical for first passage time
problems [70], the standard deviations of the FPT distributions are of the same order of
magnitude as the mean value. For small Pez one finds that the standard deviations are
somewhat larger than the mean value. At large Pez we find the reverse result.

As already mentioned, the fact that the drift towards the wall does not vanish at
z → ∞, i. e., Pez > 0 for a constant drift, ensures that the MFPT is finite. For no such
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Figure 3.1: Results of first passage time simulations with encounter radius r0 = 10−3. (a)
Mean first passage time T as a function of the vertical drift Pez for different starting heights
z0. Dots are the results from simulations with N = 104 runs and time step ∆t = 10−5. Lines
are the results from quadrature of (3.3). (b) Distribution of first passage times for different
values of Pez (numerical parameters N = 105,∆t = 10−5.).

drift the sphere might diffuse with finite probability away from the wall and return only
after an infinite long time. However, in a flow chamber the MFPT is always finite as an
upper boundary for the sphere exists. Therefore, for the moment, we suppose that the
sphere moves between two parallel plates with the bottom one still at z = 0 and the top
one at height H � R. If the upper wall is not covered with ligands it acts as a reflective
boundary and the MFPT T2W (z0|z1) to reach the height z1 when started at height z0 is

T2W (z0|z1) =

z0
∫

z1

dz
1

α̂tt
2W (z)

H−1
∫

z

ePez(z−y)dy =
1

Pez

z0
∫

z1

dz

α̂tt
2W (z)

(

1 − e−Pez(H−1−z)
)

,

(3.6)

where α̂tt
2W (z) is the dimensionless scalar mobility function governing translational motion

in z-direction for the two-wall geometry. For large wall separations, i. e., H � R the two-
wall mobility function can be approximated by a superposition of the single-wall mobility
functions. It has been shown by Jones that this approximation agrees up to a few percent
already at a wall-wall distance of H = 10 [75]. In terms of α̂tt(1/z) this superposition
reads

1

α̂tt
2W (z)

=
1

α̂tt(1/z)
+

1

α̂tt(1/(H − z))
− 1, (3.7)

where the unbounded fluid result is subtracted to avoid double counting. Typically z1 <
z0 � H, so the dependence of the exponential in Eq. (3.6) on z is negligible. Furthermore,
for the two-wall mobility function α̂tt

2W (z) ≈ α̂tt(1/z) for z � H holds. Thus, as long as
Pez > 0, the MFPT T2W (z0|z1) is

T2W (z0|z1) ≈ T (z0|z1)
(

1 − e−PezH
)

. (3.8)

From this we conclude that the perturbation of the MFPT due to the presence of a second
wall at H � 1 is small, as long as the drift towards the bottom wall is not too small, i. e.,
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Pez > 1. In the case that Pez = 0 the MFPT is

T2W (z0|z1) =

z0
∫

z1

dz
H − 1 − z

α̂tt
2W (z)

≈ H

z0
∫

z1

dz

α̂tt(1/z)
. (3.9)

Thus, T2W depends linearly on the gap height H between the two walls. Hence, compared
to the MFPT in the case of a constant drift Pez > 1 the MFPT is a factor PezH larger
in the case of no drift.

We conclude the case of homogenous coverage by noting that in order to obtain dimen-
sionalized results, one has to multiply the MFPT by the diffusive time scale 6πηR3/kBTa.
This result does not depend on shear rate γ̇ because vertical and horizontal motion are
decoupled and rotational motion is not relevant here. However, it depends on viscosity η,
which sets the time scale for vertical motion. If one switched off thermal fluctuations, the
falling time would be exactly the same as the MFPT from Eq. (3.3), but this is a special
result for constant force and not true in general. If one removed the wall, the translational
symmetry in z-direction would not be broken and the MFPT would be T = (z0−z1)/Pez ,
that is the logarithmic term in Eq. (3.5) would be missing.

3.2 Effect of initial height

We now turn to spatially resolved receptor and ligand coverage. The MFPT T (~θ, ~x|C) now
will depend on the initial position ~x = (x, y, z0) and the initial orientation ~θ as well as on
the absorbing boundaryC in diffusion space. The latter is given by the special receptor and
ligand geometry. In an experimental setup with linear shear flow it is possible to measure
only particles which have been initially at a certain height. This is due to the fact that their
average velocity as obtained from the solution of the Stokes equation Eq. (2.15) depends
on their height in a unique way [30]. However, it is almost impossible to prepare a certain
initial orientation ~θ or (x, y)-position relative to the ligands. Therefore, the quantity of
interest to us will be a MFPT which is averaged over all possible initial orientations ~θ
and all initial positions (x, y), which will be denoted as 〈T (~θ, ~x|C)〉~θ,(x,y)

. The dependence
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Figure 3.2: The dependence of the MFPT
〈T (z0, θ, x|C)〉θ,x averaged over the sphere’s
initial position x and initial orientation θ
on the initial height z0 in two dimensions.
The sphere is covered with Nr = 10 re-
ceptor patches and the ligand density is
ρl = 0.01. We plot 〈T (z0, θ, x|C)〉θ,x (+)
and 〈T (z0, θ, x|C)〉θ,x + T (z = 10|z0) (×)
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obtained from Eq. (3.3). For z0 > 1 + r0
the latter curve is constant at the value
〈T (z = 10, θ, x|C)〉θ,x as predicted by the
addition theorem Eq. (3.11). (Numerical pa-
rameters: N = 105,∆t = 10−5.)

of 〈T (~x, ~θ|C)〉~θ,(x,y)
on the initial height for z0 > 1 + r0 can be derived exactly. For
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homogeneous ligand coverage the quantity of interest is

〈T (~θ, z0|C)〉~θ =
1

V~θ

∫

~θ

d3~θ T (~θ, z0|C),

where C is the absorbing hyper-surface in (~θ, z)-space and V~θ
a normalization constant.

Absorption is only possible if z < 1 + r0, thus, if we look at some intermediate height
z0 > zm > 1 + r0, then

T (~θ, z0|C) = T (~θ, z0|zm) +

∫

d3~θm p(~θm|~θ)T (~θm, zm|C), (3.10)

where p(~θm|~θ) is the conditional probability to pass the height zm with the orientation ~θm

when starting with the initial orientation ~θ at z0. T (~θ, z0|zm) is independent of the initial
orientation and can be calculated by means of Eq. (3.3). Now averaging Eq. (3.10) over
the initial orientation gives

〈T (~θ, z0|C)〉~θ = T (z0|zm) +
1

V~θ

∫

d3~θm

[∫

d3~θ p(~θm|~θ)
]

T (~θm, zm|C) (3.11)

= T (z0|zm) +
1

V~θ

∫

d3~θm T (~θm, zm|C) = T (z0|zm) + 〈T (~θm, zm|C)〉~θm
.

The term in square brackets being 1 follows from the spherical symmetry. Thus, if the
orientation-averaged MFPT is known for some initial height z0 > 1 + r0, then the MFPT
for any other initial height z ′0 > 1+ r0 can be calculated by means of equations Eq. (3.11)
and Eq. (3.3). A similar expression can be obtained for the average over the initial x, y
positions. In Fig. 3.2, this result is verified by simulations for the two-dimensional case,
that is the sphere can only move in the (x, z)-plane and rotate only around the y-axis
(compare Fig. 2.1 and page 19). Due to the decomposition Eq. (3.11), the initial height is
not essential. In the following, we therefore will always use the value z0 = 2, that is the
sphere has to fall by one radius until it hits the substrate for the first time.

3.3 Movement in two dimensions

3.3.1 Dependence on receptor number

We now study the effect of shear rate for heterogeneous receptor distribution if the sphere
is restricted to move only in two dimensions (cf. page 19). We consider a sphere which
is covered by Nr receptor patches. For the moment being, the wall is still considered to
be homogeneously covered with ligands. Shear rate is basically expressed by the Péclet
number Pe that was introduced in Eq. (2.24). The receptor patches can be equidistantly
distributed over the circumference as illustrated in Fig. 3.3. Each receptor patch has a
capture height of r0 and a width of 2rp. The 2D receptor density is then ρr = Nrrp/π.
Orientation is now represented by a single angle θ. The absorbing boundaryC is illustrated
in Fig. 3.3. For each receptor patch, binding can occur over a range 2θ0, which consists of
two parts. The inner part is valid already for rp = 0 and reflects the overlap due to a finite
r0. The outer part is results from a finite rp. Together this leads to θ0(z) = arccos(z/(1 +
r0)) + rp. The receptor patches establish a periodicity with period θs = 2π/Nr. As the
number of receptor patches grows, this period decreases and one finally achieves overlap.
Then, encounter becomes possible for all values of θ, that is we are back to the case of
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Figure 3.3: (a) Example of a sphere restricted to move in two dimensions and covered
with Nr = 4 receptor patches, which are regularly distributed over the circumference. (b)
Illustration of the range of θ in which encounter occurs. This range is given by 2θ0 with
θ0(z) = arccos(z/(1 + r0)) + rp. (c) The absorbing boundary C in the (z, θ)-plane is periodic
w. r. t. θ with period θs = 2π/Nr.

homogeneous receptor coverage. In our case of non-homogeneous coverage, the MFPT
depends on Pe, Pez , Nr, r0, rp and z0. For the following simulations rp = r0 = 10−3,
Pez = 50 and z0 = 2 is chosen unless other values are explicitly mentioned.

Fig. 3.4a shows the MFPT as a function of the Péclet number Pe. Note that in the log-
log plot, an apparent plateau appears at small value of Pe, although in a linear plot there
would be strictly monotonous decay. Three regimes can be distinguished. For Pe ≈ 0
(diffusive limit) the transport by the imposed shear flow is negligible and only diffusive
transport is present. For very large values of Pe, 〈T 〉θ plateaus at the value given by
Eq. (3.3) independent of Nr. In this limit the time for rotation to any certain orientation
is negligible compared to the mean time to fall down close to the wall, therefore, the result
for rotational symmetry is recovered. Between these two limits the MFPT decreases
monotonically with increasing Pe. Fig. 3.4b shows the data from Fig. 3.4a plotted as
a function of the receptor density ρr ∝ Nr. The larger Pe the less pronounced is the
dependence of 〈T 〉θ on Nr. For Pe ≈ 0, however, 〈T 〉θ strongly depends on Nr. The
latter relation is better illustrated in Fig. 3.4c. There, at Pe ≈ 0, 〈T 〉θ is shown for a
wide range of Nr. The simulations were done for fixed patch size rp but for four different
values of the capture radius r0 (cf. Fig. 3.3). For ρr → 1, 〈T 〉θ reaches the value given by
Eq. (3.3). As described by Eq. (3.3), 〈T 〉θ is the smaller the larger r0 is. An increase in
the number of receptor patches Nr leads to a strong decrease for the MFPT, however, no
special scaling behavior can be observed. It is remarkable that the limiting value for the
case of homogeneous receptor coverage is already reached for ρr ≈ 10−2. The larger the
capture radius r0 the more pronounced is this effect. This can be understood by observing
that the effective patch size as given by the angle θ0 ≥ rp (see Fig. 3.3) is monotonically
increasing with increasing r0.
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Figure 3.4: The MFPT averaged over the initial orientation 〈T 〉θ (log-log plots). (a) Plotted
as a function of the Péclet number Pe for different numbers of receptor patches Nr. (b) 〈T 〉θ
is plotted as a function of the receptor density ρr ∝ Nr for different values of Pe. (c) 〈T 〉θ as
a function of Nr in the diffusive regime (Pe ≈ 0) for different values of the capture height r0,
but fixed value of the patch radius rp = 0.001. (d) The distribution of θ-averaged first passage
time is shown for Nr = 5, 20, 50 receptor patches. (Numerical parameters for each data point:
N = 105,∆t = 10−5.) In (a,c) also fits to the numerical results are shown. In Sec. 3.5.1 it is
explained how these fits are obtained.

We next try to qualitatively understand the effect of shear rate for the simulation
results shown in Fig. 3.4a. In general, it is very hard to separate the effects of diffusion
and convection. The time for binding at Pe ≈ 0 is determined purely by diffusion and
will be denoted by TD. As shear flow increases, the rotation of the sphere is increasingly
dominated by convection. We now derive a convection time TF which competes with the
diffusion time TD at large Péclet numbers. For very large Péclet number, we expect the
MFPT to be the sum of the homogeneous result from Eq. (3.5) plus this additional time
TF . An important question then is, at which Pe the convection time TF becomes smaller
than the diffusion time TD.

In order to estimate TF , we note that the main effect of increased shear rate is faster
rotation in the direction of flow. Once a receptor has rotated such that it opposes a ligand
on the substrate, there is some probability p that the sphere is at the correct height that
an encounter can occur. If no encounter occurs with the complementary probability 1−p,
the sphere has to rotate about another angle θs = 2π/Nr until the next receptor points
downwards. Supposing the time, 2t0, to rotate about the angle θs is large enough that
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there is no correlation between the height of the sphere before and after the rotation, then
an encounter occurs again with probability p (therefore, this analysis also does not hold
at very large Pe). Thus, the mean time TF for encounter is

TF = pt0 + (1 − p)(p3t0 + (1 − p)(p5t0 + (1 − p)(. . .)))

= pt0

∞
∑

i=0

(2i + 1)(1 − p)i = t0
2 − p

p
≈ 2t0

p
, (3.12)

where the series has been summed up by means of the geometric formula. In the last
term we assumed that the probability p for the proper height is small due to a small
capture distance r0. It follows from the stationary probability distribution Ψs(z) given by
Eq. (2.30):

p =

1+r0
∫

1

dzΨs(z) = 1 − e−Pezr0 ≈ Pezr0 . (3.13)

The time t0 to rotate about half of the angle θs is approximately t0 = θs/Pe. Therefore,
we get

TF ≈ 4π

NrPePezr0
. (3.14)

In this analysis, the convection time TF scales inversely with the number of receptor
patches Nr and the Péclet number Pe. As Pe increases, TF gets smaller than TD and then
dominates the overall outcome. Comparing Eq. (3.14) to the simulation data for Pe ≈ 0
shows that this crossover occurs in the range Pe ≈ 101 − 102 and that the corresponding
value of Pe increases with increasing receptor number Nr, exactly as observed in the
simulation data over the full range of Pe. However, the exact scaling of this data is
not ∼ 1/Nr for large Pe as predicted by Eq. (3.14). In practice, the decay is somehow
slower due to correlations between the height of the sphere at two successive instances of
a receptor pointing downwards, which we have neglected in our analysis.

Dependence on Pez and limit of large Pez

We now turn to the effect of the downward driving force, that is Pez. Above we have
found that in two cases, homogeneous coverage from Eq. (3.3) and convection-dominated
rotation from Eq. (3.14), the MFPT scales inversely with Pez. In Fig. 3.5 〈T 〉θ is plotted
as a function of Pez for Nr = 10 and Pe ≈ 0. Again, we find the inverse scaling for small
Pez. However, for very large values of Pez the mean first passage time approximates a
constant value. The reason is that the larger Pez, the smaller the mean time to fall below
the height z = 1 + r0. As indicated by Eq. (2.30), then the sphere stays below this height
until an encounter occurs. This implies that in this limit, the MFPT depends only on
rotational motion and the falling motion is irrelevant. We therefore can identify it with
the MFPT for θ to reach one of the boundaries of the interval [L := θ0,R := θs − θ0]
(cf. Fig. 3.3). The length of this interval is denoted by ∆θ := R− L = θs − 2θ0. For the
following derivation of this time we assume that the rotation occurs with constant drift Aθ

and constant diffusion Dθ though both quantities depend on z, as does θ0. But average
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Figure 3.5: (a) MFPT 〈T 〉θ is shown as a function of vertical drift Pez with Pe ≈ 0, Nr = 10
for the two capture heights r0 = 0.001, 0.01. For small Pez, 〈T 〉θ scales as 1/Pez, for large
Pez a constant value is reached (only shown for r0 = 0.001). In the inset Pez

100 〈T (Nr = 10)〉θ
is plotted as function of the Péclet number Pe for Pez = 25, 75, 100 (numerical parameters:
∆t = 10−5, N = 105, inset: ∆t = 10−4, N = 104). (b) MFPT 〈T 〉θ as a function of Pe for
three different numbers of receptor patches Nr. Comparison between simulation results (dots)
and the estimate Eq. (3.18) at Pez = 2000 (numerical parameters: N = 104,∆t = 10−7).

quantities can be obtained by using the stationary solution:

Āθ =

∞
∫

1

Ψs(z)Aθ(z)dz, D̄θ =

∞
∫

1

Ψs(z)Dθ(z)dz, θ̄0 =

1+r0
∫

1

Ψs(z)θ0(z)dz

1 − e−Pezr0
(3.15)

(at later usage of these averages we will omit the bar). Although θ0 = 2rp for z > 1 − r0,
there is no proper meaning for θ0 for these heights. Therefore, we use the conditional prob-
ability that the sphere is below 1+r0 for the average of θ0 (for Pez large, the denominator
becomes approximately one). Drift and diffusion as a function of z follow from the defi-
nitions made in Appendix B.1 as Aθ(z) = Pe/2(1 − β̂dr(1/z)) and Dθ(z) = 3/4β̂rr(1/z).
Far away from the wall, they approach Aθ = Pe/2 and Dθ = 3/4 (the latter value results
because time is scaled with the translational rather than rotational diffusion constant). If
there are only few small receptor patches, then ∆θ ≈ θs = 2π/Nr. The probability πR/L

to reach the left or the right boundary is then the solution to [157]

Aθ∂θπR/L +Dθ∂
2
θπR/L = 0, πR(R) = 1, πR(L) = 0, πL(R) = 0, πL(L) = 1. (3.16)

The mean first passage time TR/L(θ) to reach the left/right boundary can then be obtained
from the differential equation for the product quantity ϑR/L := πR/LTR/L which reads

Aθ∂θϑR/L +Dθ∂
2
θϑR/L = −πR/L, ϑR/L(R) = 0, ϑR/L(L) = 0. (3.17)

Regarding the initial condition, we have to take an average over all possible angles between
0 and θs, including the intervals [0,L] and [R, θs] in which binding is immediate. We then
find:

〈T 〉θ =
1

θs

θs
∫

0

dθ(ϑR + ϑL) =
Aθ∆θ

2 coth(Aθ∆θ
2Dθ

) − 2Dθ∆θ

2A2
θθs

. (3.18)
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Figure 3.6: (a) Illustration of the situation with a density of receptor patches ρr as well as a
density of ligands ρl. The first passage time is now determined by an overlap of a receptor patch
with a ligand patch. (b) 〈T 〉θ,x as a function of the Péclet number Pe and the ligand density ρl

for different numbers of receptor patches Nr (numerical parameters: ∆t = 5 · 10−6, N = 104).

In the general case, one can numerically obtain average values for the drift and diffu-
sion constants as defined in Eq. (3.15) and use them in Eq. (3.18). For Pez = 2000 and
Nr = 10, this gives 〈T 〉θ = 0.11, which fits quite well to the value 〈T 〉θ = 0.108 obtained
from Fig. 3.5a. In the limit of large Pez also the quantitative agreement regarding the
dependence on Pe between Eq. (3.18) and our simulation results is rather good, as il-
lustrated in Fig. 3.5b. There, the simulation results for Pez = 2000 are compared with
the results obtained from the sum of the falling time Eq. (3.3) and the rotational MFPT
time Eq. (3.18) using the average values defined in Eq. (3.15). Only the diffusive limit for
the MFPT is somewhat overestimated by Eq. (3.18) compared to the simulation results.
The latter observation reveals the fact that the determination of the average values in
Eq. (3.15) by use of the stationary height distribution obviously becomes the less appro-
priate the smaller the MFPT is (for small times the sphere, or better the ensemble of
spheres over which the first passage times are averaged, is not in equilibrium).

For completeness, we also mention that the extreme case Pez → ∞ is somehow patho-
logical because in this case, the sphere is always found attached to the wall, and therefore
it is no longer able to rotate due to the no-slip boundary condition. Therefore, for values of
Pez much larger than in Fig. 3.5 〈T 〉θ is again increasing. In practice, there will always be
some repulsive (colloidal) interaction which keeps the sphere from making perfect contact
with the wall.

3.3.2 Dependence on ligand density

We now introduce spatially resolved ligands into the 2D-model. Fig. 3.6a shows the model
definition: the ligand patches are considered to have the same radius rd = rp as the
receptor patches and they are located at a distance d from each other. This results in a
one-dimensional ligand density given by ρl = 2rd/d. The mean first passage time will now
also depend on the initial x-position, T = T (z0, θ, x|C), where C is the hypersurface in
(z, θ, x) space where a receptor patch touches a ligand patch. But similarly as in the above
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Figure 3.7: (a) The MFPT 〈T 〉θ,x is shown in the diffusion limit (i. e., at Pe ≈ 0) as a function
the ligand density ρl for different numbers of receptor patches Nr. Inset (plot for ρr ≈ 1): The
mean first passage time scales as 〈T 〉θ,x ∝ 1/ρ2

l (numerical parameters: ∆t = 10−5, N = 105).
(b) Dependence of 〈T 〉θ,x in the diffusive limit (Pe ≈ 0) on ρr, ρl, where the receptor density
ρr has been varied by changing Nr at fixed rp (numerical parameters: ∆t = 10−5, N = 105).

section in regard to initial orientation, the dependence on the initial x-position is of minor
interest, and therefore we will discuss the MFPT averaged over the initial position and
orientation, denoted by 〈T 〉θ,x. Fig. 3.6b shows that by varying the Péclet number we can
identify the same three regimes for all ligand-densities as before. For Pe→ 0 in the limit
of pure diffusive transport, 〈T 〉θ,x approaches a finite value, depending on ρr and ρl. With
increasing Pe, 〈T 〉θ,x decreases monotonically and finally, for Pe → ∞, reaches the value
of the MFPT in the limit of homogeneous receptor and ligand coverage. In contrast to the
above case, however, in this limit the shear flow not only restores rotational invariance of
the sphere, but in addition also translational invariance of the substrate.

Fig. 3.7a provides more details for 〈T 〉θ,x as a function of ρl in the diffusive limit
(Pe ≈ 0). We find that in the range 0.1 < ρl < 1 the MFPT is almost not affected by ligand
concentration: as long as the ligand patches are sufficiently close to each other, a receptor
patch touching the wall will most probably find a ligand before diffusing away again. The
situation changes completely with small ligand density. For ρl � 1 the averaged mean first
passage time 〈T 〉θ,x scales with the ligand density ρl as 〈T 〉θ,x ∝ 1/ρ2

l ∝ d2. This can be
understood by calculating the position-averaged MFPT 〈T 〉x for a particle diffusing in an
interval [0, d] with diffusion constant D, which gives 〈T 〉x = d2/12D. This suggests that
the quadratic scaling with d results from the diffusive motion between adjacent ligand
patches. Fig. 3.7b summarizes our results for the dependence of the 2D MFPT 〈T 〉θ,x

on ligand density ρl and receptor density ρr in the diffusive limit. It can be clearly seen
that there exists a large plateau around the value for the case of homogeneous coverage
ρr = ρl = 1. This implies that if ligand and receptor patches are not too strongly diluted,
the mean encounter time is still close to the optimum value given by Eq. (3.3). On the
other hand if the number of receptor and/or ligand patches is highly reduced the mean
encounter time is strongly increased.
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Figure 3.8: (a) The MFPT 〈T 〉~θ was calculated as a function of the Péclet number Pe in the
limit of homogeneous ligand coverage for different values of the number of receptor patches
Nr. (b) The dependence of the MFPT on Nr for different values of the capture height r0.
Lines show the scaling with 1/Nr. (c) First passage time distribution for Nr = 30, 70 and
Pe ≈ 0, 1500 (N = 7 · 105). (d) Dependence of 〈T 〉~θ,x,y

on the 2D ligand density ρl in the

diffusive limit Pe ≈ 0. For ρl � 1 the mean first passage time is proportional to 1/ρl (dotted
lines). In the inset the mutual ratios of the averaged MFPTs are plotted for Nr = 20, 30, 70,
showing that the dependence on the ligand density is nearly independent on Nr (numerical
parameters for (a,b,d): ∆t = 5 ·10−5, N = 105, rp = 10−3, r0 = 10−3 for (a,c); r0 = rd = 10−2

for (d)).

3.4 Movement in three dimensions

We finally turn to the full 3D-situation, that is the sphere may diffuse about all three
axes as described by Eq. (2.26) and Eq. (B.24). Receptors are located in spherical patches
which are randomly distributed over the sphere. Each receptor patch has a radius rp

and a height (capture length) r0. That is the appropriate generalization of the situation
shown in Fig. 3.3 for the 2D-case. Thus, for Nr receptor patches the receptor density is
ρr = 2πNr(1 − cos(rp))/4π ≈ Nrr

2
p/4 (for rp � 1). In contrast to the preceeding sections

where the receptor patches could be regularly distributed over the circumference, this is no
longer possible on the surface of a sphere. Therefore, we distribute the patches randomly
over the sphere with equal probability for each position, with a hard disk overlap algorithm
making sure that no two patches overlap [66]. One has to bear in mind that then for small
Nr two different distributions may have slightly different binding properties. This effect
becomes weaker for larger Nr. Therefore, in the following we will only use Nr ≥ 10. The
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quantity we measure in our simulations is now 〈T 〉~θ
in the case of homogeneous ligand

coverage and 〈T 〉~θ,(x,y)
in the case that the ligands are located in spherical patches on

a 2D-lattice. Thus, we average the MFPT over the initial orientations and positions as
explained above.

In order to explore the dependence of 〈T 〉~θ on Nr and Pe the receptor-ligand encounter
in the case of homogeneous ligand coverage ρl = 1 was simulated. The average over
the initial positions was obtained by starting each run with a randomly chosen initial
orientation. After 100 runs a new receptor distribution was generated, thus averaging
out the effect of different receptor distributions, too. Typically 100,000 runs were used,
in order to achieve reasonable statistics. The results are shown in Fig. 3.8a. Again, we
find three different regimes as a function of the Péclet number Pe. This proves that
qualitatively the basic results of the 2D-treatment remain valid in 3D. However, in detail
there are important differences. In contrast to the 2D results presented above, 〈T 〉~θ

in the
limit Pe → ∞ is diffusion-limited and no longer given by Eq. (3.3) if Nr is small. That
is due to the fact that for Pe → ∞ the receptor patches effectively behave as ring-like
structures. The rotation of such a ring about the x- or y-axis is not affected by Pe and thus
still depends on diffusion. For large Nr the rings cover the whole sphere and for Pe→ ∞
〈T 〉~θ is again given by Eq. (3.3). In order to obtain proper results also for the case of
large Péclet numbers the algorithm must be designed with special care. With increasing
Pe also the mean rotation about the y-axis at each numerical time step increases. Thus,
at large enough Pe it happens that the sphere rotates by more than θ0 during time step
∆t and therefore an encounter may be missed by the algorithm. This failure can of
course be avoided by using a numerical time step that decreases with increasing Pe, i. e.,
∆t ∝ 1/Pe for Pe > 1. As argued before diffusive motion is still important in the high Pe
limit and therefore the MFPT in this limit has to be determined using a large number of
trajectories as for Pe ≈ 0. Based on these requirements it turns out that the computation
time explodes using a decreasing time step (we found that this procedure took a month
and more per data point when checked on a 2 GHz processor). Thus, this solution is not
applicable to explore the full range of Péclet numbers. To circumvent this dilemma we
keep the time step constant but check for encounter also along the receptors’ trajectories
(for receptors located on the lower half of the sphere), that are obtained by interpolation
between the receptor positions at two successive time steps. Thus, accounting for both the
deterministic nature of rotations about the y-axis and the purely diffusive motion about
the other two axis.

In Fig. 3.8b we plot the Pe → 0 limit of 〈T 〉~θ as a function of the number of receptor
patches Nr, for different values of the capture radius r0. The fitted straight line for
r0 = 10−3 shows that 〈T 〉~θ approximately behaves like 〈T 〉~θ ∝ 1/Nr. Neglecting effects of

curvature, the average distance between two receptors patches is d ∝ (4π/Nr)
1/2 and the

mean time to diffuse that distance is td ∝ d2 ∝ 1/Nr. This provides a simple explanation
for the observed scaling behavior. For high Nr, the MFPT reaches a plateau value, given
by Eq. (3.3). This plateau value depends on r0 and is the smaller the larger r0. Also the
crossover from the asymptotic behavior at small Nr to the plateau at large Nr is shifted
with increasing capture height r0 towards smaller Nr.

In Fig. 3.8c the effect of Péclet number and number of receptors on the distributions
of first passage times is shown for four combinations of Pe and Nr. As already observed
before, the FPT-distribution is the broader the larger the MFPT is. For the standard
deviations σT of the FPT distributions corresponding to the MFPT shown in this section
the following qualitative statement can be made: If the MFPT is large compared to
the limiting value for homogeneous coverage (e. g., for Pe ≈ 0, Nr small) the standard
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Figure 3.9: (a, b) Dependence of the MFPT 〈T 〉~θ on the receptor patch radius rp (Pe ≈ 0).
The dotted lines are fits of a/(b+ rp) to the simulation results. (a) Capture height r0 = 0.001,
(b) r0 = 0.01 (numerical parameters: N = 1−3 ·105,∆t = 5 ·10−5). (c) For Nr = 30 receptor
patches the dependence on rp is shown for different values of r0. For better comparison the
r0-dependent part of the MFPT as given by Eq. (3.3) was subtracted. (d) Some first passage
time distributions for the diffusive limit, Pe ≈ 0 and Nr = 30, showing the effect of the
receptor patch parameters r0, rp (∆t = 5 · 10−5, N = 7 · 105).

deviation of the FPT distribution is within a few percent given by the MFPT itself. If on
the other hand the MFPT T is close to the limit of homogeneous coverage T is larger (by
50 % or more) than the respective standard deviation σT .

In Fig. 3.8d we show the effect of finite ligand density ρl at Pe ≈ 0. For the simulations
we distributed the ligands in circular patches of radius rd = 0.01 on a quadratic lattice with
lattice constant d, thus resulting in a ligand density ρl = πr2

d/d
2. In our implementation,

the intersection between the receptor patch and the wall is approximated by an appropriate
circle, because it is easy to check if this circle overlaps with the ligand patch. The fits
given in Fig. 3.8d show that for small ρl, the MFPT scales as 〈T 〉~θ,(x,y)

∝ 1/ρl ∝ d2.

Because the curves for different Nr appear to be rather similar, in the inset we plot the
ratio of different pairs of these curves. As this results in approximately constant plateaus,
we conclude that the scaling with ligand density is hardly effected by Nr. As in 2D, the
inverse scaling with ligand density can be understood in simple terms by noting that the
MFPT to diffusional capture scales like d2. At a coverage around 0.01, saturation occurs
as it did for receptor coverage.

We finally discuss the influence of the receptor geometry described by the parameters
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r0 and rp. Because Pe changes the MFPT in a monotonous way, it is sufficient to study
the diffusive limit Pe ≈ 0. Fig. 3.9a and b show 〈T 〉~θ as a function of rp for r0 = 0.001 and
r0 = 0.01, respectively. In order to obtain smooth curves, in this case only one receptor
distribution was used for all runs. We find that the curves can be fitted well to the function

〈T (rp)〉~θ =
a

b+ rp
+ T (z0 = 2|z1 = 1 + r0), (3.19)

where the second term is the homogeneous result from Eq. (3.3). This means that even for
vanishing receptor size rp → 0 the MFPT remains finite. This makes sense because above
we have shown that the effective patch size is determined both by rp and r0. In detail,
Fig. 3.3 showed that capture occurs over the solid angle 2θ0 with θ0(z) = arccos(z/(1 +
r0)) + rp. For small r0 and rp, this allows us to define an effective patch size

reff
p = arccos(〈z〉/(1 + r0)) + rp ≈ arccos(1 − 1

2
r0) + rp ≈ √

r0 + rp, (3.20)

where we have used 〈z〉 = 1 + r0/2. Suppose now that the sphere diffuses over the time td
until a receptor patch points downwards, then it may encounter a ligand with a probability
p that is given by the normalized area of one effective receptor patch:

p =
1

2
(1 − cos(reff

p )) ≈ 1

4
(
√
r0 + rp)

2 ≈ 1

2

√
r0(

1

2

√
r0 + rp). (3.21)

If no encounter occurs, the sphere has to diffuse again over a time td until the next
encounter can occur. This leads to the mean encounter time T = td/p. Putting everything
together gives Eq. (3.19) with a = 2td/(

√
r0) and b = 1

2

√
r0. If checked against our

simulation results, we indeed find that the fit parameter b is an increasing function of r0,
but varies only slightly with Nr (cf. Tab. 3.1). The fit parameter a scales approximately

r0 Nr = 10 Nr = 20 Nr = 30

0.001 a = 0.216, b = 0.028 a = 0.105, b = 0.0274 a = 0.065, b = 0.026

0.01 a = 0.12, b = 0.11 a = 0.05, b = 0.095 a = 0.025, b = 0.081

Table 3.1: Results for the fit parameters a, b from Eq. (3.19), for different values of capture
height r0 and number of receptor patches Nr. For the fit the gnuplot fit-routine was used.

as ∼ 1/Nr and varies with r0, also consistent with the above analysis. In Fig. 3.9c 〈T 〉~θ
is plotted as a function of rp for several values of r0 and Nr = 30. One clearly sees that
increasing rp has a much smaller impact on 〈T 〉~θ than a comparable increase in r0, which
is qualitatively well described by the preceeding analysis. The FPT distributions shown
in Fig. 3.9d for Nr = 30, P e ≈ 0 further illustrates the strong impact of the capture height
r0 (for the sake of comparison the FPT distribution for Nr = 30, P e ≈ 0, r0 = 0.001, rp =
0.001 which is shown in Fig. 3.8c is also shown in Fig. 3.9d). In the scale of Fig. 3.9d the
difference between the rp = 0.001 and rp = 0.01 curves (both for r0 = 0.001) is hard to
identify. In contrast, the rp = 0.001 curve with capture height r0 = 0.1 exhibits a fairly
sharp maximum at small first passage times.

In Fig. 3.9a and b the receptor density is varied over almost four orders of magnitude
by changing rp, but the largest measured decrease for 〈T 〉~θ

is only by a factor four. In
contrast, an increase of the receptor density by one order of magnitude due to ten-fold
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more receptor patches leads to a decrease of 〈T 〉~θ
by almost also one order of magnitude.

However, this is only true as long as Nr is not too large, as for large Nr 〈T 〉~θ saturates
at the limiting value of homogeneous receptor coverage (cf. Fig. 3.8b). The crossover
from the 1/Nr behavior to the saturation should take place when the average distance
between two receptor patches d′ ∼ (4π/Nr)

1/2 becomes comparable to the size of one

receptor patch. This corresponds to reff
p ∼ (4π/Nr)

1/2 or Nr ∼ 4π/(
√
r0 + rp). This

estimate predicts that the crossover takes place between several tens to several hundreds
of receptor-patches, depending on r0, in agreement with the data shown in Fig. 3.8b.

3.5 Mean-field analysis for the MFPT

In this section we consider reaction-diffusion equations to obtain quantitative estimates
for the MFPT. From these we are able to derive the proper scaling for different limiting
regimes of the Péclet numbers and the number of receptor patches.

3.5.1 MFPT for homogeneous ligand coverage in 2D

In Sec. 3.2 we have shown that the angle averaged MFPT can be decomposed into periods
of falling and rotation. As motion in z-direction is not coupled to changes in the other
degrees of freedom the falling time could be solved exactly providing Eq. (3.3). In contrast,
the exact determination of the rotational MFPT is much more complicated as two degrees
of freedom are involved (translational motion in z and rotations in θ) and the drift and
diffusion coefficients depend via z on the configuration. As shown in Sec. 3.3, the latter
problem can be solved in a mean-field like approach by using drift and diffusion coeffi-
cients that are obtained from the stationary averages of the corresponding quantities (cf.
Eq. (3.15)). If then Pez is large enough so that the probability of the sphere to be above
capture height z > 1+ r0 is negligible, movements in z-direction become unimportant and
the calculation of rotational MFPT becomes effectively an one-dimensional problem with
solution given in Eq. (3.18). Indeed, as shown in Fig. 3.5b the sum of falling time Eq. (3.3)
and time for rotation is in good quantitative agreement with simulation results. For ar-
bitrary Pez this sum does not quantitatively predict the correct MFPT as illustrated by
Fig. 3.10a. In the following we show, that much better results can be obtained, taking the
point of view that the sphere rotates by diffusion and convection and whenever a receptor
patch points downwards absorption (i. e., an encounter) occurs only with a certain rate
k. Including the stationary probability distribution Eq. (2.30) to derive an expression
for the rate k accounts then for the translational motion in z-direction. Mathematically,
the MFPT of such a system is obtained form a reaction-diffusion-(convection) equation
(which got its name as it is commonly used to model chemical reactions between diffusing
reactants [119]).

Reaction diffusion equation

For the diffusive limit (i. e., Aθ = 0) the equation for the MFPT with reactive term on the
interval ] − θs/2, θs/2]

1 reads

Dθ∂
2
θT (θ) − k̄(θ)T (θ) = −1, k̄(θ) =

{

k̄, |θ| < θ0
0, else

. (3.22)

1For the solution of Eq. (3.18) we considered the interval ]0, θs] which is equivalent to the interval used
here due to the periodicity in θ.
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Figure 3.10: (a) MFPT 〈T 〉θ as a function of Péclet number Pe for different values of the
number of receptor patches Nr. Comparison between the sum of the estimates from Eq. (3.3)
and Eq. (3.18) (lines) with the full simulation results (dots). Péclet number in z-direction
Pez = 50. (b) At Pez = 1000 simulation results for 〈T 〉θ as a function of receptor patches Nr

minus the falling time T (z0 = 2|z1 = 1.001) (cf. Eq. (3.3)) for both Pe ≈ 0 and Pe = 1.5 · 103

are shown (dots). The lines are fits to these data according to Eq. (3.28) for Pe ≈ 0 and
Eq. (3.29) for Pe = 1.5 · 103, respectively (numerical parameters: N = 105, and ∆t = 10−6

for Pe ≈ 0 and ∆t = 10−7 for Pe ≈ 1.5 · 103).

Here, we set the rate k̄ to a finite but constant value within the interval ] − θ0, θ0[, i. e.,
when the receptor patch is pointing downwards, and zero outside. The rate k̄ is measured
in units of inverse time. Eq. (3.22) can be solved piecewise with T (1)(θ) on ] − θs/2,−θ0],
T (2)(θ) on ] − θ0, θ0[ and T (3)(θ) = T (1)(θ − θs) on [θ0, θs/2], leading to

T (3)(θ) = − θ2

2Dθ
+ a1θ + a2, T (2)(θ) =

1

k̄
+ a3e

q

k̄
Dθ

θ
+ a4e

−
q

k̄
Dθ

θ
,

where the four constants a1, a2, a3, a4 are obtained by demanding that T has a continuous
derivative at θ = ±θ0. The MFPT averaged over all initial orientations is then

〈T 〉θ =
1

θs

θs/2
∫

−θs/2

dθT (θ) =
k̄(θs − 2θ0)

3 + 24Dθ(θs − θ0) + 6
√

Dθk̄(θs − 2θ0)
2 coth(

√

k̄
Dθ
θ0)

12Dθ k̄θs
.

Using a rate k̄ to account for the probability of the sphere to be in binding range z < 1+r0,
implies that the height of the sphere at two consecutive times is independent of each other.
As the sphere moves on a continuous path this cannot be true. Therefore, this model only
makes sense in the limit of a small reactive interval, (i. e., θ0 � θs) when the period of
time of a receptor pointing downwards is small. Thus, defining a new rate k = 2θ0k̄ and
taking the limit k̄ → ∞, θ0 → 0 while keeping k constant, we obtain for the MFPT 〈T 〉θ

〈T 〉θ =
θ2
s

12Dθ
+
θs

k
. (3.23)

The newly defined rate k is measured in units of angle per time.
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The result given in Eq. (3.23) can also be obtained from

Dθ∂
2
θT (θ) − kδ(θ)T (θ) = −1, (3.24)

i. e., taking the limit k̄ → ∞, θ0 → 0 already in the setup of Eq. (3.22). Using the δ-function
approximation simplifies the underlying calculations and allows to obtain transparent re-
sults for non-vanishing drift, too.

Reaction-diffusion-convection equation in δ-approximation

In the derivation of Eq. (3.23) we neglected one subtlety regarding the initial height of
the sphere. When separating the MFPT in falling and rotation time, the initial height
condition in the calculation of the rotation time is z = 1 + r0. Therefore, when averaging
over the initial orientation, the MFPT is zero for θ ∈ [−θ0, θ0]. So, in the following we
consider Eq. (3.24) including a drift Aθ due to a finite Péclet number on the interval
] − ∆θ/2,∆θ/2], with ∆θ := θs − 2θ0

Dθ∂
2
θT (θ) +Aθ∂θT (θ) − kδ(θ)T (θ) = −1. (3.25)

The solution is again obtained by first solving Eq. (3.25) piecewise with T (1)(θ) on ] −
∆θ/2, 0 − [ and T (2)(θ) on ]0+,∆θ/2] leading to

T (1) = − θ

Aθ
+
Dθ

A2
θ

(

1 − a1e
−

Aθ
Dθ

θ
)

+ a2, T (2) = − θ

Aθ
+
Dθ

A2
θ

(

1 − a3e
−

Aθ
Dθ

θ
)

+ a4.

The four constants a1, a2, a3, a4 are now obtained by demanding that the solution is pe-
riodic, i. e., T (1)(−∆θ/2) = T (2)(∆θ/2), T (1) ′(−∆θ/2) = T (2) ′(∆θ/2) and continuous at
θ = 0, i. e., T (1)(0) = T (2)(0). The fourth condition follows from integration of Eq. (3.25)
from −ε to ε with some ε > 0 and then considering the limit ε → 0. This leads to
T (2)′(0+)−T (1) ′(0−) = k

Dθ
T (2)(0+). For the average over all initial orientations including

some for which MFPT is zero, we then get

〈T 〉θ =
1

θs

∆θ/2
∫

−∆θ/2

dθT (θ) =
Aθ∆θ

2 coth(Aθ∆θ
2Dθ

) − 2Dθ∆θ

2A2
θθs

+
∆θ2

kθs
. (3.26)

Before we can compare Eq. (3.26) with the simulation results from Sec. 3.3, we must specify
the rate k. The following estimate is again based on the assumption that θ0 � θs. Then,
applying the stationary probability distribution Eq. (2.30) for the sphere’s height, the
probability for an encounter while a receptor passes the interval [−θ0, θ0] is pz = 1−e−Pezr0 .
On the other hand if τ is the mean time the receptor is pointing downwards, then, the
probability for encounter is pk̄ = 1−e−k̄τ , involving the rate k̄. In the discussion above we
saw that k is related to k̄ via k = 2θ0k̄. In the diffusive limit (Aθ = 0), a good estimate for
the time τ is the mean first passage time to reach the boundary of [−θ0, θ0] when starting
at θ = 0. This time is given by τ = θ2

0/2Dθ [15]. For Aθ very large, we expect τ ∼ 1/Aθ,
these two limits may be combined to provide 1/τ = 2Dθ/θ

2
0 + Aθ/2θ0. Demanding that

pz = pk̄, we obtain as an estimate for k

k = Pezr0
2θ0
τ

= Pezr0

(

4Dθ

θ0
+Aθ

)

. (3.27)
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r0 Dθ Aθ/Pe 2θ0
k estimated
in Eq. (3.27)

k used in the
plot Fig. 3.4a,c

10−3 0.35 0.28 0.06 2.33 + 0.014Pe 2.51 + 0.014Pe

3 · 10−3 0.35 0.28 0.107 3.93 + . . . 5.79 + . . .

7 · 10−3 0.35 0.28 0.165 5.94 + . . . 11.86 + . . .

10 · 10−3 0.35 0.28 0.2 7 + . . . 21.75 + . . .

Table 3.2: Comparison between the values for k obtained by fit with its estimation. For the
fit the Marquardt-Levenberg algorithm implemented in gnuplot was used.

Now, using the average quantities for drift and diffusion coefficient, Aθ and Dθ, respec-
tively, given in Eq. (3.15), we can calculate the 2D MFPT for homogeneous ligand coverage
by means of Eq. (3.26) and Eq. (3.27). It turns out that this predicts the results shown
in Fig. 3.4a and Fig. 3.4c quite well for r0 = 10−3.

However, the larger r0 the larger θ0, so that the assumption θ0 � θs becomes less
appropriate. Indeed, our predictions match the curves in Fig. 3.4c for r0 ≥ 3 · 10−3 only
qualitatively. Therefore, instead of using the estimate given by Eq. (3.27), we consider
k as a fit parameter for Eq. (3.26) to the curves in Fig. 3.4c. The resulting values for k
together with the average quantities from Eq. (3.15) and the estimate Eq. (3.27) are listed
in Tab. 3.2. The resulting fits are the solid lines in Fig. 3.4a,c. Especially, in Fig. 3.4a the
estimates fit quite well for all Nr, although only one fit parameter was used for all curves
together.

Scaling limits

The favorable agreement between our estimate Eq. (3.26) and the simulation results for
the MFPT allows us to derive scaling laws from Eq. (3.26) for certain limits.

For a large driving force onto the wall Pez � 1 the rate defined in Eq. (3.27) becomes
large. Thus, Eq. (3.26) effectively reduces to Eq. (3.18) which was derived for motion in
an interval between two absorbing boundaries. Then, the two limits in regard to Pe give
different scaling in regard to Nr. For small Pe, we get (with ∆θ = θs − 2θ0)

〈T 〉θ =
(∆θ)3

12θsDθ
≈ 4π2

9N2
r

. (3.28)

For large Pe, we get

〈T 〉θ =
∆θ2

2θsAθ
≈ 4π

NrPe
. (3.29)

The validity of these expressions is explicitly verified in Fig. 3.10b. There, the MFPT
is shown as a function of Nr obtained from simulations for Pe ≈ 0 and Pe ≈ 1.5 · 103

(denoted by + and ×, respectively). The solid lines refer to Eq. (3.28) and Eq. (3.29) for
the low and high Péclet limit, respectively. For Aθ, Dθ, θ0 the average quantities according
to Eq. (3.15) are used (at Pez = 1000 these are Dθ = 0.226, Aθ = 0.2Pe, θ0 = 0.067).
The predicted curve Eq. (3.29) matches even better to the simulation results when using
slightly smaller values for θ0. This reflect the fact that the MFPT for high values of Pe
is smaller than in the diffusive limit. Therefore, for large Pe the sphere is on average less
close to the wall, resulting in a smaller mean-field value for θ0 than given in Eq. (3.15).

In the limit of small driving forces Pez ∼ 1, P e ≈ 0 the absorption rate Eq. (3.27) is



50 Chapter 3: Mean first passage times for receptor-ligand encounter

small and the second term in Eq. (3.26) becomes dominant. Then, the MFPT scales as
1/Pez in regard to the strength of drift in z-direction. This was verified in Fig. 3.5a. In
Tab. 3.3 the derived scalings (including the result Eq. (3.3)) are summarized.

Nr < 10 and Pez � 1
limit Nr � 1, Pez ∼ 1

Pe� 1 Pe� 1

〈T 〉θ 1/Pez 1/N2
r 1/(NrPe)

Table 3.3: Scaling behavior of the 2D MFPT for some asymptotic limits (in the limit of
homogeneous ligand coverage).

3.5.2 Reaction-diffusion equation for the 3D diffusive limit

To estimate the MFPT in the 3D diffusive limit is much more difficult than for 2D. For
example, if one considers only rotational diffusion of the sphere, it turns out that it is not
isotropic due to the presence of the wall (cf. Ref. [76] and Appendix B.3). In addition, the
“space of free diffusion”, which in the previous section was given as the interval located
between two receptor patches, is now the surface of the sphere except the receptor patches,
i. e., the boundary is the joint but unconnected boundary of all receptor patches. To
nevertheless get at least a qualitative estimate for the MFPT in the 3D diffusive limit,
we will use an approximation proposed by Berg and Purcell [16]. They were looking for
the mean first passage time of a ligand moving on a cell surface to find an immobilized
cell surface receptor. For that they considered diffusion on a ring between two concentric
circles. The outer one with radius R′ ∝ 1/

√
Nr and the inner one with radius r′ := reff

p

(cf. Eq. (3.20)) representing the receptor patch (see Fig. 3.11). In our case the sphere has
to move towards the ligands and not the other way round, nonetheless, we can adopt this
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Figure 3.11: (a) Illustration of the approximation used by Berg and Purcell: a receptor

patch with effective radius reff
p inside a disk of radius R′. (b) MFPT 〈T 〉~θ as a function of the

number of receptor patches Nr for homogeneous ligand coverage in the 3D diffusive limit. The
data shown is the MFPT for an initial height z0 = 2 (subtracted by the MFPT in the limit
of homogeneous receptor coverage Eq. (3.3)) for the two receptor heights r0 = 0.001, 0.01.
The data is compared to a fit according to Eq. (3.33). For the fit the Marquardt-Levenberg
algorithm of gnuplot was used.(Pez = 2000, rp = 0.001, N = 104,∆t = 10−6).
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approximation to our problem. In addition, we have to incorporate the possibility that
the sphere is not close enough to the wall and therefore a receptor-ligand encounter is not
possible, although the sphere is in the right orientation. We do this in a similar fashion as
in the 2D case by considering a reaction rate k. It turns out that now the limit r ′ � R′

cannot be obtained by replacing the reactive patch with a δ function. Therefore, we use so
called radiation boundary conditions, similar to the work done in Ref. [152]. The equation
for the MFPT then reads (assuming azimuthal symmetry)

D∂2
rT − D

r
∂rT = −1, (3.30)

with the boundary conditions ∂rT |r=R′ = 0 (reflective boundary), and ∂rT |r=r′ = k/DθT (r′)
(radiation boundary). The reactive rate k is again measured in units of “length”(angle) per
time. The solution to Eq. (3.30) for the given boundary conditions is given in Ref. [152].
Integrating it over the whole circle and assuming that the MFPT for being initially inside
the reactive patch is zero we get

〈T 〉 =
R′2

2D

(

ln
R′

r′
− 3

4
+
r′2

R′2
− r′4

4R′4

)

+
(R′2 − r′2)2

2R′2r′k
. (3.31)

Using the same arguments as in the previous section we note that the approximation
considered here makes only sense in the limit R′ � r′. Then, Eq. (3.31) reduces to

〈T 〉 =
R′2

2D

(

ln
R′

r′
− 3

4

)

+
R′2

2r′k
. (3.32)

If the rate k is infinity, i. e., “reaction” occurs with probability 1 when the reactive patch
is reached, the second term in Eq. (3.32) is zero and we have the result derived by Berg
and Purcell [16] to approximate the MFPT of ligands to immobile receptors on a spherical
surface.

Here, we like to utilize Eq. (3.32) as an estimate for the MFPT 〈T 〉~θ in the diffusive
limit computed in Sec. 3.4 (in the case of homogeneous ligand density). First, we notice
that an average rotational diffusion constant as in Eq. (3.15) can be calculated for rotations
about all three axes. As rotations about the z-axis do not change the height of the receptor
patches we take only rotation about the x- and y-axis into account. For the two latter
ones the mobilities are equal (azimuthal symmetry). So we set D = 2Dθ, with Dθ from

Eq. (3.15). We already defined the effective patch radius r ′ as r′ = reff
p =

√
r0 + rp which

approximates θ0 quite well for large Pez. For the rate we postulate k ∝ Pez. For the
radius R′ we expect R′ = a1/

√
Nr with a constant a1. In the following we fit Eq. (3.32)

for a1 to our simulation results. To reduce the uncertainties included in the estimate of
k we consider large vertical driving force, i. e., Pez � 1. Putting everything together our
estimate for 〈T 〉~θ in the limit of large Pez is

〈T 〉~θ =
a2

1

4DθNr

(

ln a1 −
1

2
lnNr − ln r′ − 3

4

)

. (3.33)

In Fig. 3.11b simulation results for the MFPT 〈T 〉~θ as a function of Nr for both r0 = 0.001
and r0 = 0.01 are shown. A fit of Eq. (3.32) for a1 at the r0 = 0.001 results gives a1 ≈ 2.92.
With this value for a1 the estimate Eq. (3.33) for r0 = 0.01, 0.001 (without any extra fit for
r0 = 0.01) is plotted in Fig. 3.11b, too. It can be seen that for small Nr, i. e., Nr < 1000
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andNr < 100 for r0 = 0.001 and r0 = 0.01, respectively, the accordance between Eq. (3.33)
and the simulation results is quite well. At large numbers of receptor patches the analytic
estimate fails, as for Nr � 1 Eq. (3.33) becomes negative, which is obviously unphysical.
The reason is that then the assumption made for the derivation Eq. (3.33), i. e., R′ � r′,
is no longer fulfilled. Indeed, at Nr = 1000 we have R′ ≈ 0.09 which is of the same order
of magnitude as r′ ≈ 0.03 (for r0 = 0.001).

2R′ is interpreted as to be the “mean distance” (measured on the surface of the sphere)
between two receptor patches. For N1 = 1 the fitted value for a1 suggests 2R′ ≈ 6 which is
slightly less than the circumference of a great circle on the sphere. In Ref. [16] the authors
gave an estimate of R′ =

√

π/Nr ⇒ a1 ≈ 1.8, which is smaller but of the same order of
magnitude as the value obtained from our fit.

Using Eq. (3.32) as the base to determine the proper asymptotic behavior of the
MFPT in regard to Nr → 1 we obtain 〈T 〉~θ ∝ ln(const/Nr)/Nr for the limit Pez � 1.
For r′k � Dθ the second term in Eq. (3.32) becomes dominant and we have 〈T 〉~θ ∝ 1/Nr.
Supposing for k again the estimate Eq. (3.27), we have r′k = 8DθPezr0r

′/θ0 ∝ Pezr0.
Thus, at intermediate values for Pez, the capture height r0 determines whether the MFPT
behaves rather as ∝ ln(const/Nr)/Nr (large r0) or rather as ∝ 1/Nr (small r0). In Fig. 3.8b
we actually were able to approximately determine 〈T 〉~θ

∝ 1/Nr for r0 = 0.001. But for
r0 = 0.07 the increase in the MFPT for Nr → 1 is steeper than 1/Nr.

3.6 Summary and discussion

In this chapter we presented the results for the mean first passage times (MFPT) for initial
encounter between spatially resolved receptors on a spherical Brownian particle in linear
shear flow and spatially resolved ligands on the boundary wall for both, motion restricted
to 2D and motion in 3D. The main results were obtained by repeated simulations of the
discretized Langevin equation Eq. (2.26). Each data point shown corresponds to at least
100,000 simulation runs. It is important to note that these simulations are very time
consuming because we resolve objects of the size of 10−3 R, that is for µm-sized particles
we resolve the nm-scale. The simulation results were interpreted further by an analytical
analysis based on reaction-diffusion equations. For the 2D case, the MFPT could be solved
in a mean-field like approach resulting in the correct asymptotic limits in regard to the
two dimensionless numbers characterizing the motion of the particle, the Péclet number
Pe and the Péclet number in z-direction Pez, respectively.

In general, we found that the MFPT was always monotonically decreased when the
Péclet number was increased. That means that a particle which is covered with receptors
in a way that it binds well to ligands already in the diffusive limit is even better suited to
initiate binding at finite shear rates. In our simulations we modeled the receptor geome-
try using three parameters: the number of receptor patches Nr, the radius of the receptor
patches rp, and the capture radius r0. The efficiency of binding is mainly increased by Nr,
but only up to a saturation value of the order of hundred. An increase of rp leads only to a
weak enhancement of binding efficiency. The influence of r0 to the MFPT is threefold: i)
it reduces the mean falling time, ii) it increases the effective patch size, and iii) according
to the stationary probability distribution for the z-direction, it becomes more probable for
the sphere to be within the encounter zone when r0 is increasing. An additional but more
indirect effect of receptor protrusions is that the further the cell is away from the wall, the
faster it can rotate (even in the diffusive limit) due to the larger mobility. As shown by
Eq. (3.11) rotations play a role only within binding range, i. e., for z < 1+r0. Therefore, a
large r0 lets the cell also benefit from faster rotations. Summarizing our findings in regard
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to receptor geometry, we conclude that the most efficient design for particle capture under
flow is to cover the particle with hundreds of receptor patches (Nr above threshold), each
with a rather small area (small rp), but formed as a protrusion (large r0).

Indeed, this strategy seems to be used by white blood cells, which have evolved intrigu-
ing mechanisms both on the molecular and cellular scale in order to adhere effectively to the
endothelium under the conditions of hydrodynamic flow. The typical size of white blood
cells is R ≈ 5 µm and they are covered with a few hundreds of protrusions (microvilli)
with the receptors (most notably L-selectin) localized to the microvilli tips [103, 29]. In
general, the microvilli of white blood cells are much more complex than the parameter r0

in our model: they are rather long (typical length 350 nm, that is R/15) and have their
own physical properties (e. g., very flexible in the transverse direction and viscoelastic in
the longitudinal direction) [137]. Nevertheless, it is striking that elevation of the receptors
above the main cell surface seems to be a major design principle for white blood cells. In
fact, the same strategy appears to be used also by malaria-infected red blood cells, which
are known to develop a dense coverage with elevated receptor patches (knobs) on the cell
surface [11, 105, 6]. A typical value for the cell radius is 3.5 µm [149]. The knobs have a
typical height of 20 nm, a radius of about 90 nm and a distance of 200 nm (for red blood
cells infected by single parasites) [105]. This dense and elevated coverage suggests that
like the white blood cells, the malaria-infected red blood cells also function in the regime
of homogeneous coverage.

In order to discuss the motion of white blood cells in more detail, it is instructive to
consider the parameters for a typical flow chamber experiment. In aqueous solution and at
room temperature, ρ = 1 g/cm3, η = 10−3 Pa s, and Ta = 293 K. Then, the dimensionless
parameters determining cell motion become

Pe = 4.67 R3γ̇, P ez = 10.16 R4∆ρ, ∆t =
Pe

γ̇
= 4.67 R3s, (3.34)

where R is given in µm, ∆ρ in units of g/cm3 and the shear rate γ̇ in units of 1 per
second; ∆t is the diffusive time scale. For leukocytes in flow chambers we typically have
R = 5, γ̇ = 100 and ∆ρ = 0.05, thus for the two Péclet numbers we get Pe = 6 × 104

and Pez = 317, respectively. Then, f = Pez/Pe = 0.005 (cf. Sec. 2.3), that is the effect
of hydrodynamic deterministic motion will be very strong. The experimental time scale
is given by the time for transversing the field of view, which is about 3 s at a shear rate
of 100 Hz and length of 650 µm. The diffusive time scale ∆t for leukocytes is about
600 s (10 min), which reflects their large size and shows that diffusive motion is by far
not sufficient to initiate binding. Binding becomes more favorable in the presence of
convection. For a start height of one radius above the wall (z0 = 2), our calculations give
a MFPT of about 5 s, that is much less than the diffusive time. However, this is still much
larger than the experimental time scale. This proves that only those cells have a chance
to bind that flow very close to the wall, exactly as observed experimentally. Therefore, in

vivo white blood cells depend also on other mechanisms driving them onto the substrate,
including contact and hydrodynamic interactions with other cells. These effects have been
studied in detail before. For example, Munn and coworkers have shown that adhesion
of leukocytes close to the vessel wall in post-capillary venules is enhanced by red blood
cells passing them [148]. King and Hammer have shown, using an algorithm capable of
simulating several cells, that already adherent leukocytes can recruit other leukocytes via
hydrodynamic interactions [79]. The results presented here, when specified to leukocytes,
show that indeed these mechanisms are crucial for effective leukocyte capture under flow.
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Our results also suggest that leukocytes are sufficiently large that thermal fluctuations
are not dominant. This changes when studying smaller particles, e. g., receptor-covered
spheres with R ≈ 1 µm, whose binding also has been investigated with flow chambers
[113, 112]. Eq. (3.34) shows that the Péclet numbers scale strongly with particle radius R,
therefore, these beads are subject to much stronger thermal fluctuations than leukocytes.
In Ref. [112] it has been verified that indeed in equilibrium such particles obey the baro-
metric distribution Eq. (2.30) calculated in Chapter 2. In Ref. [113] it was found that the
adhesion probability pad is proportional to the ligand density, pad ∼ ρl. With pad ∼ 1/T
it follows that T ∼ 1/ρl as found by our simulations in the limit of low ligand densities.

In this chapter we have mainly considered the generic case of a constant downward
acting force due to a density difference between the sphere and the surrounding fluid.
Applying our work to a more specific context it might be interesting to examine also
other forces which can easily be done in the framework presented here. As the addition
formula Eq. (3.11) for falling and rotational MFPT was not derived under the assumption
of a specific force, it is also true for non-constant forces. For general potential forces the
falling time Eq. (3.3) has then to be replaced by Eq. (3.4). Also the rotational MFPT
is influenced by a vertical force via the stationary height distribution. In Sec. 3.1 we
showed that neglecting gravitational force and considering only short-ranged forces like
van der Waals or electrostatic forces would result in infinite MFPTs for the setup of the
halfspace. With an additional wall as an upper boundary the MFPT turned out to be
finite also in the no-drift case. Nevertheless, we showed that already a slight density
difference of some percent for a micron-sized sphere fairly reduces the MFPT. Hence,
in flow chamber experiments designed to reveal any kind of sphere-wall interactions, a
non-vanishing gravitational drift is important to obtain appreciable statistics.

Throughout this thesis, we use the model of a rigid sphere. For cells, elastic deforma-
tions might be relevant. For free flow, a simple scaling estimate shows that the critical value
for the shear rate leading to substantial deviations from the spherical shape is (Eh)/(ηR)
[130], where E = 100 Pa and h = 100 nm are Young modulus and thickness of the cellular
envelope, respectively. The fact that the Young modulus E appears here indicates that
cells tend to passively deform less than vesicles, whose elasticity is characterized rather by
the bending rigidity [132, 147]. The scaling estimate leads to a critical shear rate of 103 Hz,
which is above the value of a few 102 Hz (corresponding to Pe ≈ 105 for white blood cells)
which often provides an upper limit in flow chamber experiments. When the cell closely
approaches the wall lubrication forces arise which tend to asymmetrically deform the cell
resulting in an additional lift force [23, 134]. This effect is of second order in shear rate
and strongly scales with the distance to the wall. Using an estimate for the lift force from
Ref. [134] it turns out that for minimum cell wall distances typically for leukocytes lift
force becomes relevant for shear rates only above the order of 102 Hz.

In Sec. 2.4.1 the process of bond formation between a receptor-covered particle and a
ligand-covered wall was separated into an encounter and a reaction step. For the MFPTs
calculated in this chapter we showed that the mean values and the standard deviations
of the corresponding first passage time distributions are of the same order of magnitude.
Hence, the inverse of the MFPT for encounter can be identified with the encounter rate
k+ defined in Sec. 2.4.1. For many receptor-ligand pairs the duration of each encounter
should be sufficiently long for the formation of an adhesion contact in the limit of zero
shear rate (i. e., the dwell time for receptor-ligand contact is expected to be much larger
than the inverse on-rate 1/kon). In that case formation of an adhesion contact is diffusion
limited and according to Eq. (2.33) the inverse MFPT for encounter should be a good
approximation for the mean adhesion time 1/kf with the forward reaction rate kf .



Chapter 4

Rolling adhesion of leukocytes

So far we focused on free hydrodynamic motion of a spherical particle up to the first oc-
currence of a receptor-ligand encounter. If these encounters are converted into functional
receptor-ligand bonds, then, the motion of a receptor carrying cell is substantially changed.
In this chapter, we classify different types of motion and analyze their appearance accord-
ing to the association and dissociation rates in the context of flow chamber experiments
with leukocytes. We perform this analysis by use of the Stokesian dynamics algorithm
including bond-formation and -dissociation processes. In addition, we show that the basic
features of the different types of motion can already be derived from a master equation
approach that essentially reduces the cell-motion to one degree of freedom. Furthermore,
we numerically measure the distribution of force due to bonds below the moving cell. And
we investigate how robust rolling can be with respect to the applied shear rate.

4.1 Rolling in experiment and simulation

The data of a rolling cell obtained in a flow chamber experiment and the data obtained
in a numerical simulation of leukocyte motion is plotted in Fig. 4.1. In Fig. 4.1a the
translational velocity U of a rolling leukocyte for some period of time is shown as experi-
mentally measured by Alon and co-workers [3]. The rolling state is identified by a strong
decrease of the cell velocity compared to the velocity of a free moving cell. Fig. 4.1b
shows besides the translational velocity also the angular velocity RΩ of a receptor-covered
sphere above a ligand bearing wall (the data is obtained by 2D simulations, cf. Sec. 2.2).
As Brownian motion is included in the simulation, the velocity of the cell U(t) is not
its instantaneous velocity, because for the trajectory of a Brownian particle (modeled as
a Wiener process) the limit limδt→0(X(t + δt) − X(t))/δt is not a well-defined quantity
[71]. The velocities plotted in Fig. 4.1b are rather obtained as the difference quotient
U(t) := (X(t + ∆t) − X(t))/∆t with some time interval ∆t. Here and throughout this
chapter, we choose ∆t = 0.02 s which experimentally corresponds to a camera resolution
of 50 Hz. At t = 2.9 s the first bond is formed and the cell starts rolling which can again
be seen from the sudden decrease in velocity. In addition, the simulation reveals that the
RΩ and U curves collapse onto one curve as soon as the cell starts rolling. Before initial
binding, the cell slips over the substrate with RΩ/U ≈ 0.57 as explained in Sec. 2.3. This
observation motivates us to define “rolling” by RΩ/U → 1 in regard to simulations which
is also the common definition for rolling in mechanics. This is in contrast to simulations
were usually only U is measured, and therefore rolling is defined by a strong decrease in
U .
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Figure 4.1: Snapshots of leukocyte motion. (a) Velocity of a leukocyte (neutrophil) rolling
on L-selectin ligand PNAd with 60 sites per µm2 [3, Fig. 1A]. (b) Translational and angular
velocity (U and RΩ, respectively) of a sphere with radius R = 4.5 µm in a 2D simulation at
the same ligand density (with on-rate kon = 35 Hz and unstressed off-rate k0 = 6.8 Hz).

4.1.1 The stopping-process: emergence of rolling

A molecular bond can only be formed in a contact zone, which is much smaller than the
cell itself. The contact zone is the region on the cell surface which is less than a distance
r0 away from the wall. After a functional bond is formed the cell slows down under the
action of this bonds. Eventually the cell will arrest unless the bond dissociates. In the
following we will examine this stopping process. In the course of this analysis we will see,
how the existence of bonds facilitate in rolling motion of the cell.
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Figure 4.2: A cell is stopped by a tether force
FB . rl and rr are ligand and receptors po-
sition, respectively. x, θ define two degrees of
freedom, χ the angle between the bond and the
wall. In equilibrium (i. e., ẋ = θ̇ = 0) the shear
force FS and the shear torque TS are balanced
by the tether force and its respective torque.
Not shown are gravitational force and repulsive
forces from the substrate that compensate all
downward acting forces.

Deterministic equations

As the Péclet number of leukocytes at typical shear rates is large we will neglect Brownian
motion of the cell in the following. Furthermore, we reduce our analysis to the pseudo
two-dimensional case introduced in Sec. 2.2. Assuming that the cell moves at constant
height above the wall (ż = 0), we are left with only two degrees of freedom x, θ. In the
following we fix z = R+ r0, that is, z is only slightly larger than R for a typical value of
the capture radius.

Reducing Eq. (2.15) for these two variables we obtain the following equations for the
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translational velocity ẋ ≡ U and angular velocity θ̇ ≡ Ω in dimensionless form:

(

ẋ

θ̇

)

= A

(

FB,x

TB,y

)

+~b, (4.1)

with FB,x the x-component of the bond force and TB,y the y-component of the torque
which is due to the tether bond. For a concise notation we introduced the following
abbreviations

A :=

(

β̂tt(s) 3
4 β̂

tr(s)
3
4 β̂

tr(s) 3
4 β̂

rr(s)

)

, ~b :=

(

1
t − 1

2 β̂
dt(s)

1
2(1 − β̂dt(s))

)

, (4.2)

based on the scalar mobility functions β̂(s) (with s ≡ R/z) introduced in Appendix B.1.
If no tether exists ẋ = b1 := (~b)1. In literature this free velocity is sometimes referred to
as the hydrodynamic velocity of the cell. From Fig. 4.2 we read off tether force FB and
tether torque TB

FB(t) = κ





−x(t) +R sin(θ(t))
0

R cos(θ(t)) − z



 , TB(t) = r̂× FB, r̂ =





−R sin(θ(t))
0

−R cos(θ(t))



 . (4.3)

In this analysis we assume the resting length of the bond to be zero, therefore, at t =
0 already a small bond force in z-direction exists (but no torque). Briefly after bond
formation the cell has not moved significantly and x/R, θ � 1 holds. Thus, the quantities
FB,x, TB,y can be approximated as

FB,x = κ(Rθ − x) + O(θ3), TB,y = κ(Rx− zRθ) + O(θ3) + O(xθ2). (4.4)

Reinserting these approximate expressions into Eq. (4.1), we obtain a first order linear
differential equation for x, θ

(

ẋ

θ̇

)

= C

(

x
θ

)

+~b, C := AX, X := κ

(

−1 R
R −zR

)

, (4.5)

which can readily be solved with the proper boundary conditions. In our case x(0) =
θ(0) = 0, resulting in

(

x(t)
θ(t)

)

= (E − exp(Ct))

(

x∞
θ∞

)

,

(

x∞
θ∞

)

:= −(C)−1~b, (4.6)

where E is the unit matrix. The matrix exp(Ct) can be expressed in terms of its eigenvalues
and eigenstates. The two eigenvalues of C are

λ± =
trC

2

(

1 ±
√

1 − 4 det C

(trC)2

)

. (4.7)

The determinant detC = detAdetX = κ2 detAR(z − R) is positive as A is part of the
positive definite mobility matrix (cf. Sec. 2.1.1) and z & R. Furthermore, the trace trC is
negative (it holds true that trC = 2RA12−A11−RzA22 < 0 for all heights z as the diagonal
elements of A are notedly larger than A12). As z−R � R one can expand the square root in
Eq. (4.7) in terms of (4 det C)/(trC)2 and we obtain the following approximate expression
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for the eigenvalues λ±: λ+ ≈ trC < 0 and λ− ≈ det C/trC < 0. Thus, the matrix C is
negative definite and limt→∞ exp(Ct) = 0. Finally, expressing Eq. (4.6) explicitly in terms
of the eigenvalues λ± and the corresponding eigenstates of C we obtain:

(

x(t)
θ(t)

)

=

(

1
λ+−(C)11

(C)12

)

b1 − λ−x∞
λ+ − λ−

(

1 − eλ+t
)

−
(

1
λ−−(C)11

(C)12

)

b1 − λ+x∞
λ+ − λ−

(

1 − eλ−t
)

.

(4.8)

Discussion and asymptotic behavior

The two eigenvectors λ± represent two different time scales as |λ+| � |λ−|. Shortly after
bond formation, t � 1/|λ+|, exp(λ+t) ≈ 0 and the time development of x, θ is governed
by the second term in Eq. (4.8). The initial velocities are the free hydrodynamic velocities
with Rθ̇(0)/ẋ(0) ≈ 0.5 so that x and θ do not increase at the same speed (see Fig. 4.3a).
At intermediate times tint with 1/|λ+| � tint � 1/|λ−| the velocities are approximately
given by

(

ẋ

θ̇

)

≈ λ−

(

1
λ−−(C)11

(C)12

)

b1 − λ+x∞
λ+ − λ−

eλ−tint . (4.9)

Expanding Rθ̇/ẋ in powers of (z−R)/R we obtain Rθ̇/ẋ = 1+O((z−R)/R) (i. e., rolling).
Thus, by the action of force and torque resulting from the tether bond translational and
angular velocity of the cell are adjusted, and the cell starts rolling a short time after the
first bond is formed. This can be seen in Fig. 4.3a, there the two velocities ẋ, θ̇ are plotted
as a function of time. In order to visualize the initial period of adjustment a logarithmic
scale for the time axis is applied there.

For large times t � 1/λ− Eq. (4.6) predicts that the cell asymptotically reaches the
position (x∞, θ∞) at which it stops. In Fig. 4.3a the cell velocities as predicted form
the time derivative of Eq. (4.6) is compared to the velocities which are obtained when
Eq. (4.1) is numerically integrated. We see that for short times the approximation works
quite well, until the cell has reached its rolling state (i. e., RΩ/U ≈ 1). At long time scales
the approximate solution provides only a qualitative prediction of the stopping process.
The figure shows that the higher order terms contributing to the bond force/torque leads
to a much faster stopping than predicted by the approximation of these quantities with
respect to first order in x, θ (see Eq. (4.4)). Also shown in Fig. 4.3a is the stopping
process in the case that the height z −R of the cell above the wall is equal to the resting
length of the tether bond1. In that case the spring constant in Eq. (4.3) is replaced by
κ → κ(1 − (z − R)/‖rl − rr‖) (see Fig. 4.2). The leading order term in the power series
of FB,x is then of second order in x, θ. So, the linear approximation of the equations
of motion cannot be applied in this case. Nevertheless, the qualitative behavior is very
similar to the case of zero bond resting length. Fig. 4.3a shows that at short times the
cell moves on with almost unchanged velocities, then, the velocities adjust to Rθ̇ ≈ ẋ (for
some time even Rθ̇ > ẋ) and finally the cell stops after about the same time as in the case
with zero bond resting length.

The mechanism that leads to cell rolling can best be understood from the time depen-
dence of the torque that is exerted by the tether, see Fig. 4.3b. The torque is approximately

1That is the case in the adhesive dynamics algorithm which is used to simulate the cell motion in the
presence of tether bonds. There, the initial length of the bonds is always chosen to be zero. Thus, the
bond may have a resting length of ≤ r0 (cf. Sec. 2.4.3)
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Figure 4.3: Comparison of the approximate solution Eq. (4.8) with values obtained from
numerical integration of Eq. (4.1) (z = 1.01R). All plotted quantities are in dimensionless
form, i. e., force is expressed in terms of 6πηR2γ̇, torque in terms of 6πηR3γ̇, velocity in γ̇R,
and time in 1/γ̇. For the dimensionless spring constant κ = 102 was used. For a set of typical
parameter values: R = 5 µm, γ̇ = 100 Hz, η = 10−3 Pas, κ = 1 corresponds to 10−5 N/m. (a)
Plot of the (angular) velocity ẋ (θ̇) as a function of time for three different calculations: from
numerical integration of Eq. (4.1), from analytical derivative of Eq. (4.8), and from numerical
integration of Eq. (4.1) under the assumption that the initial bond length r0 is the resting
length of the bond l0 = r0. For the time axis a logarithmic scale is used. (b) The same for
the bond force (torque) FB,x (TB,y).

given as TB,y = κ(Rx− zRθ) (see Eq. (4.4)). Initially, x increases faster than Rθ and as
z ≈ R the torque is positive, i. e., it supports the shear torque and the cell starts turning
faster. At the same time the force RFB,x ≈ −TB,y slows the translational motion of the
sphere down. The maximum torque ṪB,y = 0 is reached when zθ̇ = ẋ, i. e., when the cell
is approximately rolling. From that time on x and θ increase at approximately the same
speed and eventually the torque will become negative (if x < zθ) and will act against the
shear torque. Similar arguments hold when discussing the exact result of the torque given
in Eq. (4.3). It should be noted that this analysis in the linear approximation works only,
if z > R. The case z = R is not applicable as the scalar mobility functions vanish at this
height due to the no-slip boundary conditions (even if mobility was not vanishing at z = R
the linear approximation applied to this height would fail and instead of an asymptotic
stop it would predict a state in which the cell rolls at constant velocity).

Force and torque balance at mechanical equilibrium

When the cell is at rest, shear force (torque) is balanced by tether force (torque), see
Fig. 4.2

−FS,x = FB,x(∞) := F∞, −TS,y = TB,y(∞) := T∞, (4.10)

the limiting values for force and torque can be inferred from Eq. (4.1) as

(

F∞

T∞

)

= A−1~b.
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At a height z = 1.01 R, these quantities are F∞ = −1.7 · 6πηR2 and T∞ = −0.63 · 6πηR3.
The determination of the geometrical values x, θ and χ (see Fig. 4.2) from the approxi-
mation Eq. (4.6) provides suitable results only in the limit of very large spring constants
κ. Otherwise, these quantities have to be determined numerically or geometrically from
Fig. 4.2. From the force and torque balance equations the following two relations for the
angle χ can be derived

‖FB‖R cosχ = ‖TS‖, ‖FB‖x sinχ = ‖TS‖ +R‖FB‖. (4.11)

From this it follows that tanχ = R/x (|TS,y/RFB,x| + 1) which can easily be evaluated
knowing the proper spring constant. On the other hand these relations can be used to
estimate the spring constant of the tether, when the lever arm x is known. Alon and co-
workers actually measured the lever arm x by the following experiment [3]: they perfused
neutrophils on a wall covered with P-selectin and the direction of motion was reversed
every few seconds. Thus, a tethered cell was moving a distance of twice the lever arm
length x during flow reversal. Together with ‖rl−rr‖ = `−

√
`2 − x2, ` := R sinχ+x cosχ

the tether length in the rest position can be calculated. The experiment was performed
at different shear rates (30 − 80 Hz) and no significant dependence of x on the shear rate
was detected. With a measured value x ≈ 3.06 ± 0.53 µm and values for force and torque
given above it follows then: ‖rl − rr‖ ≈ 1 µm and χ ≈ 62◦ [3]. Thus, a lower limit for the
spring constant is given by

κ =
|FS,x|

cosχ(‖rl − rr‖ − l0)
>

|FS,x|
cosχ‖rl − rr‖

≈ 10−4 N/m, at γ̇ = 80 Hz, (4.12)

where l0 is the resting length of the tether bond. The independence of the bond length
on γ̇ in the range of measurement in Alon’s experiment could either mean that the spring
constant of the tether bond is much larger than the lower limit given above (e. g., if the
microvillus length strongly contributes to the total tether length), or that the tether is
stretched beyond the linear elastic regime of the bond. The estimate Eq. (4.12) has not
been given in the original work. But from different measurements (measuring the force
dependence of the off-rate, and fitting the results to the Hookean spring model [66]) they
derived an upper limit of 7.1 N/m for the tether bond spring constant of L-selectin bonds.
Due to the five orders of magnitude between the two limits these measurements don’t
provide a reliable estimate for the spring constant (which has neither been an aim of
Ref. [3]).

Multiple bonds

Above, we found that rolling (ẋ ≈ Rθ̇) is a consequence of the way in which tether force
and torque are acting on the cell. When multiple bonds exist (each one is formed while
the corresponding receptor passes the contact zone), the total force (torque) in the small
angle approximation is given as

(

FB

TB

)

= X

n
∑

i=1

(

xi

θi

)

= Xn

(

x
θ

)

− X

n
∑

i=1

(

xi
0

θi
0

)

, xi = x1 − xi
0, i = 1, . . . , n.

Here, n is the total number of bonds, Xn := nX and x = x1, θ = θ1 is the position of the
left-most (oldest) bond and xi

0, θ
i
0 are the positions of the left-most bond at the time the

ith bond is formed. The eigenvalues λn
± of the matrix Cn := AXn are nλ±, therefore, the
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process of stopping becomes the faster, the more bonds exist. The solution of the equation
of motion after the formation of the nth bond or the dissociation of one of the previously
existing n+ 1 bonds (at time t = tn0 ) is then given by

(

x(t− tn0 )
θ(t− tn0 )

)

= (E − exp(Cn(t− tn0 )))

(

xn,∞

θn,∞

)

+ exp(Cn(t− tn0 ))

(

xn
0

θn
0

)

. (4.13)

The rest configuration (xn,∞, θn,∞) of the n-bond state

(

xn,∞

θn,∞

)

:= −(Cn)−1

(

~b− C

n
∑

i=1

(

xi
0

θi
0

)

)

,

depends on the history of bond formation via xi
0, θ

i
0, i = 1, . . . , n. The time derivative of

Eq. (4.13) gives the velocities in the n-bond state

(

ẋ(t− tn0 )

θ̇(t− tn0 )

)

=

λn
−

(

1
λn
−
−(Cn)11
(Cn)12

)

((Cn)11 − λn
+)(xn,∞ − xn

0 ) + (Cn)12(θn,∞ − θn
0 )

λn
+ − λn

−

eλ
n
−

(t−tn0 )

− λn
+

(

1
λn
+−(Cn)11
(Cn)12

)

((Cn)11 − λn
−)(xn,∞ − xn

0 ) + (Cn)12(θn,∞ − θn
0 )

λn
+ − λn

−

eλ
n
+(t−tn0 ).

Now, a similar discussion as for the one bond case applies. At times t very close to tn0
the cell might slip again. After a time t� 1/|λn

+| the second term in the above equation

is approximately zero. Furthermore, at these times Rθ̇/ẋ = (Cn)12/(λ
n
− − (Cn)11) =

1 + O((z − R)/R) is independent of the number of closed bonds and the cell is again
rolling.

We summarize this analysis by noting that bonds lead to a synchronization of trans-
lational and angular velocities (rolling) which mathematically corresponds to RΩ/U ≈ 1.
Rolling might be interrupted for small periods of time due to the association of a new
bond or the dissociation of an existing one.

4.2 State diagram of leukocyte motion

4.2.1 Relevant parameters

All (thirteen) parameters appearing in our model are summarized in Tab. 4.1. For the
adhesive dynamics simulations carried out in this chapter we non-dimensionalize all quan-
tities using the radius of the cell R as length scale, the wall shear rate γ̇ as time scale
1/γ̇ and 6πηR2γ̇ as force scale. This results in ten dimensionless parameters also listed
in Tab. 4.1. The proper non-dimensionalized Langevin equation for this choice of scale is
given in Sec. A.1. The parameters R, Ta, γ̇, η,∆ρ influence the flow properties and besides
shear rate and viscosity we keep these parameters fixed. For the ambient temperature
Ta we choose room temperature Ta = 293 K. Sometimes experiments are done at body
temperature Ta = 310 K. However, this difference has only little influence to the cell’s
motion as Brownian motion for leukocytes in flow chambers is not the dominant factor as
indicated by large Péclet numbers (cf. Sec. 3.6). The radius of leukocytes depends on the
specific type, e. g., neutrophils which are often used in flow chamber experiments to study
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Parameter → typical value meaning reference
non-dimensionalized (dimensionless)

R→ 1 4.5 . . . 5 µm radius [154, 3]
γ̇ → 1 50 . . . 150 Hz shear rate [30]
Ta 293 . . . 310 K ambient temperature
η 1 . . . 3 Pa s viscosity [30]
Pe = 6πηR3γ̇/kBTa (103 . . . 105) Péclet number cf. Sec. 2.2
∆ρ 50 kg/m3 density difference [104]
2Rg∆ρ/9ηγ̇ (1 . . . 10 · 10−3) relative grav. force cf. Sec. 2.3
κ 10−5 . . . 10−2 N/m bond spring constant [56, 137, 66]
→ κ/6πηRγ̇ (10−1 . . . 103)
kon 103 . . . 104 Hz on-rate [39]
→ π = kon/γ̇ (7. . . 200)
k0 0.5 . . . 300 Hz unstressed off-rate [3, 39, 129]
→ ε0 = k0/γ̇ (6 · 10−3 . . . 6)
r0 50 nm capture radius
→ r0/R (10−2)
d 0.1 . . . 1 µm ligand-ligand distance [3]
→ d/R (0.02 . . . 0.2)
xc 2 . . . 4 · 10−11 m reactive compliance [3]
→ 6πηR2γ̇xc/kBTa (0.1. . . 0.6)
Nr 50 . . . 5000 Number of receptors [84, 66, 29]
hmin 15 nm minimum cell height [14]
→ hmin/R (3 · 10−3)

Table 4.1: Parameters used for the adhesive dynamics simulations. If no extra symbol for
the dimensionless quantity is defined we use the same symbol for both the dimensional and
dimensionless representation of this quantity.

rolling adhesion have a radius of about R = 4.25 µm [154]. For the effective hydrodynamic
radius, i. e., the radius that appears in the Stokes drag coefficient 6πηR, also the microvilli
contribute, which are about 300 nm in length [137]. For the simulations in this section,
we therefore use the value R = 4.5 µm.

The Nr receptor patches are randomly distributed on the cell surface (the random
distribution is in both the 2D and the 3D version of the algorithm; in 2D, however, the
receptors are only distributed on the great circle that lies in the plane whose surface normal
is the y-axis). The receptor patches might be identified with cell microvilli. The range
of microvilli on a leukocyte varies from several hundreds [29] up to 10,000 [84, 66]. In
our 3D simulations, we use Nr up to 5,000. In our 2D simulations the values used for Nr

are typically one order of magnitude smaller. Although, usually several receptors can be
found on the microvilli tips, we allow only one bond per receptor patch, i. e., Nr is also the
total number of receptors. Receptors and ligands are small polymers whose binding sites
(that have an extension in the nm-range) diffuse constantly within some region around
their linkage (cf. Sec. 2.4.1). As the diffusion constant of a nm-sized object is about three
orders of magnitude larger than that of the cell itself, it would be very costly to explicitly
resolve the binding sites of receptor and ligand. In the algorithm we solve this problem by
introducing a capture sphere with capture radius r0 = 50 nm, which is about the combined
length of ligand and receptor [108, 14].
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The on-rate kon for bond formation from a receptor-ligand encounter in Tab. 4.1
is given in units of Hz. Experimentally, it is very difficult to determine this rate di-
rectly. As was discussed in Sec. 2.4.1, this rate can be estimated using the notion of
encounter complex from the forward reaction rate kf . Following Schwarz and Alon a for-
ward reaction rate kf = 105 1/Ms can be inferred from BIAcore data of L-selectin. For
a three-dimensional diffusion constant of 10−6 cm2/s they then conclude that receptor-
ligand binding in solution is reaction-limited, and therefore the on-rate is approximately
kon = kfk−/k+ = 3/(4πr3

0)kf (cf. Eq. (2.34)). For a capture radius of 1 nm this leads
to kon of the order of 104 Hz for L-selectin receptors [129]. As argued above the capture
radius used in our algorithm is larger than 1 nm (1 nm the typical encounter distance for
the binding-sites of ligand and receptor). Accordingly, not every encounter of receptor
and ligand molecules includes an encounter of their respective binding sites. Therefore,
104 Hz defines an upper limit for the on-rates used in our simulations.

We consider ligands that are distributed on a square lattice with lattice constant d.
Here, d is obtained from d =

√

1/Nl and Nl is the average number of ligands per µm2.
In experiments done by Alon et al., Nl typically varies between (1 − 100)/µm2 [5, 3].
When considering ligand density instead of discrete ligands, as done in simulations by the
Hammer-group (e. g., [25]), the appropriate on-rate is determined by the forward reaction-
rate for surface attached molecules (units of µm2/s) multiplied with the ligand density
(units of 1/µm2). Furthermore, the forward reaction rate becomes a function of the rel-
ative motion of the cell with respect to the wall, as was shown by Chang and Hammer
by calculating the forward reaction rate based on the MFPT approach from a reaction-
diffusion equation [27]. In our adhesive dynamics algorithm we explicitely resolve receptors
and ligands in space as well as encounter duration in time. In addition, we use the ap-
proximation that both receptors and ligands are fixed at their positions (i. e., we neglect
membrane diffusion, see Sec. 2.4.1). Thus, kon is independent of the relative motion of the
cell to the wall.

For the force dependent off-rate we have the two Bell parameters k0, Fd, where the
detachment force is Fd = kBTa/xc with reactive compliance xc (cf. Sec. 2.4.2). Both,
unstressed off-rate k0 and reactive compliance xc have been measured for different selectin
bonds [5, 3]. The reactive compliance for L-selectin bonds is xc = 2 · 10−11 m [3], this
corresponds to a detachment force of 200 pN.

For closed bonds we use the linear force extension curve (cable model) explained in
Sec. 2.4.3 with spring constant κ. In previous simulations of leukocyte rolling by the Ham-
mer group values of up to 0.1 N/m have been used. For the P-selectin-PSGL-1 complex
Fritz et al. [56] measured a value of κRL = 5.3 · 10−3 N/m. Recently, also the role of
microvilli elasticity was discussed [25]. Shao et at. determined the spring constant of
microvilli in the low force regime to be κmv = 4.3 · 10−5 N/m [137]. The total spring
constant κ = κmvκRL/(κmv +κRL) of the microvilli/bond series would then be dominated
by the microvilli spring constant.

Besides the bond forces, we include only the buoyant force due to the small density
difference ∆ρ between the cell and the surrounding medium (cf. Sec. 2.3). Other non-
specific repulsion forces arising from electrostatic and steric stabilization forces are only
taken into account during the simulations in the sense that the cell can only approach the
wall up to a distance of hmin = 15 nm which is about the thickness of the glycocalyx [14].
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Figure 4.4: (a) Mean velocity 〈U〉, its standard deviation σU , and mean angular velocity
R〈Ω〉 as functions of the dimensionless rates π, ε0 (in log-scale for the two horizontal axes). (b)
〈U〉, R〈Ω〉, σU , σRΩ as functions of the off-rate ε0 for two different on-rates π. Parameters used
for these 2D-simulations: R = 4.5 · 10−6 m, T = 293 K, γ̇ = 100 Hz, ∆ρ = 0.05 · 103 kg/m3,
η = 1.002 · 10−3 Pa s, κ = 1 · 10−3 N/m, r0 = 1.0 · 10−2R , d = 2.9 · 10−2R, Nr = 500,
xc = 2 · 10−11 m. The average was obtained over three runs of 10 s duration.

4.2.2 Classification of states of motion

In the following the impact of some of the parameters defined in Tab. 4.1 is examined.
Whether a cell is able to roll or not depends on the one hand on external parameters
like ligand-density, shear rate and viscosity. On the other hand it depends also on the
internal parameters of the single receptor-ligand complex which in our model are the
on-rate kon, the off-rate k0 and the detachment force Fd. Fig. 4.4a shows the mean
translational and angular velocity, and the standard deviation of the translational velocity
σU :=

√

〈U2〉 − 〈U〉2 (here the average is an average over time and an ensemble of cells) in
a large range of values for the dimensionless on- and off-rate (π, ε0). To further illustrate
the dependence of the kinetic quantities on the on- and off-rate, in Fig. 4.4b the ε0-
dependence at fixed on-rate π is replotted. At π = 10, one nicely sees that with decreasing
ε0 translational- and angular velocities first approximate each other, i. e., U decreases and
RΩ increases and then tend to zero at very low off-rates. At smaller on-rates (in the
figure π = 0.04) both U and RΩ monotonically decrease with decreasing off-rate and
RΩ ≈ U occurs only when both quantities are close to zero. The standard deviations of
the velocities σU , σRΩ are small for very low and very high off-rates. In between, they pass
through a maximum at range of ε0 where the transition from unperturbed motion to cell
arrest (U ≈ RΩ ≈ 0) occurs.

In the following we summarize these observations by defining five different classes of
stationary states of cell motion (see also Tab. 4.2).

Free motion: For Uhd being the speed of a sphere close to the wall that moves driven by
linear shear flow, but is not influenced by any non-hydrodynamic sphere-wall interaction,
we call a cell to move freely if its speed is larger than 0.95 Uhd (an example is shown
in Fig. 4.6(1)). As mentioned already in Sec. 4.1.1, the velocity in this state is often
referred to as the hydrodynamic velocity. Free motion implies no bonds at all, however
the definition given by us allows also for bonds with a very fast dissociation rate (off-rate)
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state definition

free motion 〈U〉 > 0.95 Uhd

rolling adhesion R〈Ω〉/〈U〉 > 0.8 AND 0.95 > 〈U〉/Uhd > 0.01
firm adhesion 〈U〉 < 0.01 Uhd

transient adhesion I AND σU/〈U〉 < 0.5
transient adhesion II

0.01 < 〈U〉/Uhd AND R〈Ω〉/〈U〉 < 0.8
AND σU/〈U〉 > 0.5

Table 4.2: Five stationary states of leukocyte motion.

or very small detachment forces. In this case existing bonds dissociate before they are
stretched enough to apply forces that slow down the mean velocity of the cell below 95 %
of the hydrodynamic velocity. As the hydrodynamic velocity at a given shear rate also
depends on the height of the cell above the wall we determine Uhd at the minimal height,
zmin = R+ hmin, of the cell.

Firm adhesion (arrest): If the mean (translational) velocity is less than 1 % of the
hydrodynamic velocity (Fig. 4.6(2)). This allows for small jumps due to rare dissociation
events. Besides that tether bonds compensate shear force and torque (cf. Sec. 4.1.1).

Rolling adhesion: The ratio R〈Ω〉/〈U〉 is larger than 0.8. As was shown in Sec. 2.3 this
is well above the asymptotic maximum of this ratio in the limit z → R (i. e., when the cell
touches the wall). Fig. 4.6(5) and Fig. 4.6(6) show two examples of numerical leukocyte
rolling.

Transient adhesion: If none of these criteria applies we define the state as being tran-
sient. Within this category we distinguish two sub-classes according to the standard
deviation σU . By σU/〈U〉 < 0.5 the first sub-class (transient I ) is defined, otherwise
the cell’s motion is in the sub-class transient II. ‘Transient I’ occurs if bonds form and
rupture permanently, so that they reduce the (translational) velocity considerably below
the hydrodynamic velocity. But the bonds do not last long enough to increase the ratio
RΩ/U above 0.8. Fig. 4.6(4) shows an example for this kind of motion. ‘Transient II’
is characterized by alternating periods of arrest and free motion which is illustrated in
Fig. 4.6(3).

As the kinetic quantities 〈U〉, 〈Ω〉, σU vary continously with respect to π and ε0, the
classification given above is not unique. But it allows to clearly distinguish these states in
an on-off state diagram, i. e., the states are in general not degenerated. Other classifications
of leukocyte states have been given before. For example, in the first paper on adhesive
dynamics by Hammer and Apte also five states of motion were classified [66]. But in
contrast to our definition their classification is only qualitative. Later on Hammer and
co-workers defined states of motion, like free, rolling, firm adhesion, based on the mean
translational velocity only [91, 25].

4.2.3 2D state diagrams

In this section we apply the above given classification of stationary states of motion to
2D simulations of leukocyte motion. At a given set of parameter values we let the cell
start at a height z = R + r0. Due to the gravitational force, which drives the cell even
closer to the wall, the wall ligands will be immediately be within the capture range of the
cell-receptors. Then, as shown in Chapter 3, the mean time for receptor-ligand encounter
is close to zero for typical ligand and receptor densities found for leukocytes. Therefore,
cell-wall interactions arising from bonds are assumed to influence the cell motion for the
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Figure 4.5: The on-off state diagram displays different stationary states of leukocyte motion
obtained by 2D-simulations. The ordinate shows the dimensionless unstressed off-rate ε0, the
horizontal axis the dimensionless on-rate π. Snapshots for the cell velocities at the (π, ε0)
paramter values marked by numbered circles are shown in Fig. 4.6. Parameters used: R =
4.5 · 10−6 m, Ta = 293 K, γ̇ = 150 Hz, ∆ρ = 0.05 · 103 kg/m3, η = 1.002 · 10−3 Pas,
κ = 1 · 10−2 N/m, r0 = 1.0 · 10−2 R, d = 2.9 · 10−2 R, Nr = 500, xc = 2 · 10−11 m.

complete run of the simulation. To nevertheless rule out any initialization effects the
mean values and variances for U,Ω are only calculated for times greater than 1.8 s. The
total run length of each simulation is at least 10 s. To ensure proper classification of
the state of motion, the run time is extended to up to 50s if the standard deviation σU

is large. Furthermore, each simulation run is repeated up to ten times (each time with
another randomly chosen receptor distribution) and each run contributes to the mean
values 〈U〉, 〈Ω〉 and their standard deviations σU , σΩ. The numerical time step was chosen
to be between 10−5 − 5 · 10−4 (at a typical shear rate of γ̇ = 100 Hz these numerical time
steps corresponds to real time steps down to 10−7 s. The smaller range of time steps is
chosen when low ligand densities or stiff bonds (large κ) are considered (see also discussion
about the time step in Sec. A.2). Keeping the other parameters fixed and varying the rates
π, ε0 on a grid in double logarithmic scale, we can determine the different types of leukocyte
motion in an on-off state diagram.

Fig. 4.5 shows an example of such a state diagram. The parameters used there are listed
in the figure caption (as we keep the parameters R, Ta,∆ρ, r0 fixed for all the diagrams
shown in this section, they are not explicitly listed for the following state diagrams). All
five states can be identified in Fig. 4.5 and in Fig. 4.6(1-6) example trajectories for each of
these phases are shown. In the limit of very large off-rates ε0 the cell moves freely, i. e., no
matter how frequently bonds are formed, it results from an immediate dissociation that no
force on the cell can build up. At very small off-rates the cell is in the state of firm adhesion,
i. e., once a bond is formed it lasts long enough to stop the cell and to allow further bonds
to be formed which stabilize the cell in its rest position. In between these two limiting
cases for the off-rate we find the other three states. From these the rolling state appears
only for on-rates π above a certain threshold. Thus, the fast association/dissociation
kinetics is responsible for some receptors (in co-operation with their ligands) to support
rolling adhesion [3]. Fig. 4.5 shows the state ‘transient I’ over the full range of probed
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Figure 4.6: Translational and angular velocities U and RΩ, respectively, that give examples
of the different states of leukocyte motion defined in this section. The labels (1-6) refer to the
numbered points in the state diagram shown in Fig. 4.5. (1) Free motion, (2) firm adhesion,
(3) ‘transient II’, (4) ‘transient I’, (5,6) rolling adhesion.

on-rates. The off-rates at which it occurs are too large to support rolling but still too
small to allow for free motion. When both on- and off-rates are small the cell is in state
‘transient II’. In this state the cell stops most likely, whenever a bond is formed due to
the small off-rate. This results in periods of firm adhesion. The small on-rate, however,
makes it rather unlikely that bonds are formed, as can be seen in periods of free motion.

How the different parameters involved influence the border lines between the differ-
ent states of motion is shown and discussed in the following. To follow the experimental
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Figure 4.7: (a) On-off state diagrams for different viscosities η. The filled areas define the
states of motion as determined from simulations at a reference viscosity η = 3 mPas. The
lines denote the borders between the states of motion at a lower and a higher viscosity than
the reference viscosity. The thin (thick) lines refer to a viscosity η = 0.5 mPas (5 mPa s).
The figure legend tells which state is found below the corresponding line. (b) States of motion
at different spring constants κ. The filled areas are the states of motion for the intermediate
spring constant κ = 10−3 N/m. The thin (thick) lines refer to κ = 10−5 N/m (κ = 10−1 N/m).
(Other parameters used for simulations in both (a) and (b): Nr = 400, γ̇ = 100 Hz, d =
2.9 · 10−2 R, xc = 2 · 10−11 m; in (a): κ = 10−2 N/m; in (b): η = 1 mPas.)

situation we consider the effect of the original dimensional parameters and not the dimen-
sionless parameters which appear in the algorithm. For example, we vary the viscosity
which leads to a change in Pe, f , the dimensionless spring constant κ, and the value of
the dimensionless detachment force Fd. But we do not vary, e. g., Pe and keep the other
dimensionless parameters fixed.

The impact of viscosity is illustrated in Fig. 4.7a. There, the on-off diagrams for the
fluid viscosities η = 0.5, 3, 5 mPa s (the viscosity of the standard medium in which leuko-
cytes are usually perfused through flow chambers is about 1 mPa s) are shown. The border
lines between different states are obtained as demonstrated by Fig. 4.5: the leukocyte mo-
tion is simulated on a grid in double logarithmic scale in the (π, ε0) parameter space (for
Fig. 4.7a, a (11, 13)-grid is used). For each point the state is then determined according
to the rules given in Tab. 4.2. Finally, the lines separating two states is drawn by hand.
For η = 3 mPa s the states of motion (the two transient states are treated as one state)
are distinguished by areas filled with different grey scales. For η = 0.5, 5 mPa s only the
border lines between two states are shown. The figure legend explains which state can be
found below a given line. For the sake of clarity, the original simulation grids for the three
diagrams are omitted.

Fig. 4.7a clearly shows that the main effect of increasing the viscosity is the increase
in the range where rolling is possible. More precisely, the larger the viscosity, the lower
the off-rate ε0 at which firm adhesion sets in. This effect results from the Bell model for
bond dissociation. The shear stress (ηγ̇) and the maximum force in a tether bond are
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proportional to the viscosity η 2. Therefore, an increase in viscosity increases the off-rate
like

ε = ε0 [exp(FB,0/Fd)]
(η/η0) ,

with FB,0 the bond force at viscosity η0. Using a rough estimate for the bond force
FB,0 ≈ ‖FS‖/ cosχ at the parameters used here (see Fig. 4.2 for the definition of FS, χ;
for the angle we estimate χ ≈ 65◦, see discussion in Sec. 4.1.1), we have FB,0/Fd ≈ 0.4 at
η0 = 0.5 mPa s. Thus, if at some viscosity η firm adhesion occurs for off-rates smaller than
a certain value εfirm

0 , i. e., for ε0 < εfirm
0 , then, we expect firm adhesion for η0 to exist

at the same rate ε. For η0 this rate is estimated to be εfirm
0 exp(FB,0/Fd)

η/η0−1. With

η/η0 = 10, we therefore expect rolling at η0 for ε0 > εfirm
0 (η0) ≈ 30εfirm

0 (η). A factor of 30
is indeed roughly the factor between the off-rates at the border between rolling and firm
adhesion for η = 5 mPa s and η0 = 0.5 mPa s which can be read off from Fig. 4.7a. The
estimates done here suggest that the rolling state disappears at even smaller viscosities
(one or two magnitudes smaller than that of water) than used in Fig. 4.7a. This is indeed
observed for simulations (not shown) in this viscosity range. But one has to be very careful
with predictions for this (very) low viscosity regime as the assumption of a small Reynolds
number is no longer fulfilled there.

Impact of spring-constant. Fig. 4.7b shows the state diagrams for three different spring
constants κstiff , κint, κsoft = 10−1, 10−3, 10−5 N/m. The intermediate spring constant κint

is of the same order of magnitude as the spring constant of the P-selectin/ligand bond
[56]. The softest spring constant κsoft mimics the effect of soft microvilli [137]. From
Fig. 4.7b we first notice that the firm adhesion state for κstiff occurs at smaller off-rates
than in the case of the intermediate spring constant κint. This is most pronounced in
the small on-rate region. A closer view identifies two effects that are responsible for this
observation. First, the stiffness of the bond results in a small elongation which then leads
to an obtuse bond-wall angle (the angle χ in Fig. 4.2). The more obtuse this angle is, the
more the bond must be loaded to compensate the shear force. In addition the transport
of the cell and thus also the bond extension is governed by the shear rate γ̇. A stiffer
bond is therefore loaded faster. Both the faster loading [43] and the larger bond force
result in an effective increase of the off-rate ε. At larger on-rates the fast dissociation
is compensated by fast binding of new bonds and rebinding of just dissociated bonds.
Second, the softer the bond, the more the tethers can be elongated. Thus, bonds can exist
also beyond the contact area (if they are stretched to be larger than the capture radius r0)
effectively increasing the number of receptors. On the other hand, when we compare the
intermediate spring-constant κint with the soft one, κsoft, we notice that the firm adhesion
regions for κsoft is again shifted to smaller ε0. This effect results from our definition of the
firm adhesion state: the bonds which basically resist the shear stress to keep the cell at
rest are at the rear end of the cell (see, Sec. 4.4.1). If they dissociate they cannot rebind,
as the receptor (due to the soft bond) is already far beyond the contact zone. The lack
of rebinding results necessarily in a forward movement during which the remaining bonds
are loaded to compensate the shear force. The length of this forward motion increases
with decreasing spring constant. Thus, at the same rupture frequency the cell with the
softer bonds translates slightly faster than the cell with bonds of intermediate stiffness.

In Fig. 4.8 the impact of receptor number and ligand-ligand distance is shown. In
Fig. 4.8a the state diagram is given for Nr = 50, 200, 1000 receptors. To understand
the influence of receptor number we first estimate the mean number of receptors within

2The maximum force is the force which holds the cell at rest, see Sec. 4.1.1.
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Figure 4.8: (a) On-off state diagrams for different numbers of receptors Nr. Nr = 50 (thin
lines) Nr = 200 (filled areas) and Nr = 1000 (thick lines). (b) State diagrams for different
ligand-ligand distances d. d = 5 · 10−3 R (thin lines) d = 5 · 10−2 R (filled areas) and
d = 5 · 10−1 R (thick lines). (Other parameters used for simulations in both (a) and (b):
κ = 10−2 N/m, xc = 2 · 10−11 m, η = 1 mPa s; in (a): γ̇ = 75 Hz, d = 2.9 · 10−2 R; in (b):
γ̇ = 100 Hz, Nr = 400.)

the contact zone, which is a line in 2D. The angle 2ξ that spans this line is obtained
from 2R cos ξ = 2(R − r0). As r0 � R, one can approximate 2ξ ≈

√

8r0/R. Thus, the
average number of receptors in the contact region is Nr,contact = Nr

√

2r0/R/π ≈ 0.045 Nr.
On the other hand we use d = 2.9 · 10−2 R for the ligand-ligand distance in Fig. 4.8a,
i. e., 2R sin ξ ≈

√
8Rr0/d ≈ 10 ligands in the contact zone. Thus, at large receptor

numbers bond formation is limited by the number of possible ligand binding sites. For
Nr = 1000 we have Nr,contact ≈ 45 and a mean receptor-receptor distance of 0.63 r0,
i. e., the capture spheres already overlap. Thus, the cell is saturated with receptors and
no further enhancement of bond coupling to the wall is expected from larger receptor
numbers. Indeed, measuring the mean number of bonds in the rolling region gives values
around ten in accordance with the maximum number of available ligands. For Nr = 200
we have Nr,contact ≈ 9 which is close to the number of available binding sites. However,
in comparison to the Nr = 1000 case the regions of rolling and firm adhesion are shifted
to lower off-rates. This becomes clear when noticing that the mean receptor-receptor
distance is now about three times the capture radius, and therefore not every ligand is in
match with a receptor (the mean number of bonds in the rolling state is five or less, i. e.,
only every second receptor is able to form a bond). For Nr = 50 we have Nr,contact ≈ 2.3
and the number of bonds is limited by the number of receptors. In Fig. 4.8a we see that
the states of rolling and firm adhesion are shifted to smaller off-rates and higher on-rates.
Furthermore, the range in which leukocyte motion is transient is much larger than at higher
Nr. The large (π, ε0)-range for the transient states is a signature of few bonds being at
work as we will see again when discussing the influence of ligand-ligand distance. Single
tethers slow the cell down (depending on the off-rate they may either arrest the cell some
while, resulting in state ‘transient II’, or just decelerate them resulting in state ‘transient
I’), but after dissociation it is unlikely that the current state of motion is supported by
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further bonds. However, as long as at least two bonds are possible this effect is partly
compensated at large on-rates when the probability for receptor-ligand encounter to result
in a bond is high.

In Fig. 4.8b state diagrams for fixed Nr = 400 and three different ligand-ligand dis-
tances d = 5 · 10−3 R, 5 · 10−2 R, 5 · 10−1 R are shown. Using the same considerations as
before to estimate the number of ligands Nl,contact and receptors in the contact zone, we
get Nl,contact ≈ 0.6, 6, 60 for the respective d and Nr,contact ≈ 18. Thus, only in the case
of the smallest d the maximum number of bonds is limited by the number of receptors.
In addition, the border line between the rolling and firm arrest state in this latter case is
slightly tilted to go to larger ε0 with increasing π. This fact emphasizes that firm adhesion
may result on the one hand from small ε0 and on the other hand from a large number of
bonds. When firm adhesion results from a small off-rate, existing bonds keep the cell long
enough at rest that new bonds can be formed, even at comparable small on-rates. At larger
off-rates firm adhesion may result from a large number of bonds but only if the on-rate is
large enough to compensate bond dissociation. In the extreme case, d = 5 · 10−1 R, where
ligands are diluted to be less than one in the contact zone, we notice a large increase of
the (π, ε0) range in which cell motion is transient similar to the above discussed case of
diluted receptors. Firm adhesion is only possible for receptor-ligand pairs with a very high
π and low ε0. The rolling state has completely disappeared which proofs that stationary
rolling is only possible by the interplay of two or more bonds.

4.2.4 3D simulations

The results shown so far are computed using the 2D version of the Stokesian dynamics
algorithm (cf. Sec. 2.2). We now turn to 3D simulations. 3D simulations are of much
higher computational costs for three reasons: i) In 3D we have six degrees of freedom
compared to three in 2D. ii) The number of receptors and ligands in the 3D contact zone
must be larger than in the 2D contact line to allow for rolling. This point will be discussed
in more detail in this section. iii) In 2D it is often enough to average the velocity of a cell
at a fixed set of parameters over only one run in order to determine the state of motion.
In contrast, in 3D the randomly chosen receptor distribution has a much larger influence
to the cell’s rolling behavior than in 2D. Therefore, in general the average over more than
one run (each with a different receptor distribution) is needed. Here, we choose between
four and ten runs, more for large variances and less for small variances of the translational
velocity, respectively.

In Fig. 4.9a the mean velocity 〈U〉, its standard deviation σU and the mean angular
velocity R〈Ω〉 are shown as functions of the dimensionless on- and off-rate π and ε0,
respectively. The parameters for Fig. 4.9 are the same as for the analog 2D plot, Fig. 4.4,
except here, for the number of receptors Nr = 5000 is chosen. As explained in Sec. 4.1
velocity is only well defined within a finite time interval ∆t. Here, for U∆t the sum of the
projections of the sphere’s movements (within each update step) on the direction of the
shear flow (x-axis) is taken. Similarly, Ω∆t is the sum of the y-components of the angles
by which the sphere is turned in each update step of the algorithm during time step ∆t 3.

Despite the geometrical difference Fig. 4.4a,b and Fig. 4.9a,b look very similar. A
closer look reveals some slight differences: For example at π = 0.04 the maxima of the
standard deviations of the velocities in Fig. 4.9b are slightly larger than the respective
values in Fig. 4.4b. For π = 10 it can be seen (Fig. 4.9b) that rolling in the sense

3It must be noted that Ω∆t is in general not equal to the y-component of the total angle by that the
sphere has turned during time ∆t. The difference between these angles is of the order O(∆t).
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Figure 4.9: 3D simulations with parameters as for the 2D simulations in Fig. 4.4, except
for the number of receptors on the cell a value Nr = 5000 was used. (a) Mean velocity 〈U〉,
its standard deviation σU , and mean angular velocity R〈Ω〉 as functions of the dimensionless
rates π, ε0.(b) 〈U〉, R〈Ω〉, σU , σRΩ as functions of the unstressed off-rate ε0 for two different
on-rates π. The average was obtained over ten runs of 20 s duration.

R〈Ω〉/〈U〉 → 1 for off-rates smaller than a critical value occurs in 3D, too. But the
approximation R〈Ω〉/〈U〉 → 1 is somewhat more pronounced in the 2D case (Fig. 4.4b)
than in the 3D case (Fig. 4.4b). This is due to the fact that in 3D tether bonds might also
be located left or right of the cell’s center and therefore causing rotations about an axis
different from the y-axis.

Due to the similarity between 2D and 3D simulation results demonstrated by the
comparison between Fig. 4.4 and Fig. 4.9, we repeat here only the discussion of the impact
of receptor number and ligand-ligand distance, as these parameters strongly correlate with
the considered dimension. It can easily be derived that the mean number of receptors in
the contact zone is now Nr,contact = Nr r0/2. The radius of the projection of the contact
zone on the sphere’s surface to the wall is given by the value derived for the contact
line in the last section. Then, we get for the number of ligands in the contact zone
Nl,contact = 2πRr0/d

2. In Fig. 4.10a we have Nr = 1000, 2500, 5000 and d = 5 · 10−2R,
i. e., in the contact zone Nr,contact ≈ 5, 12.5, 25 and Nl,contact ≈ 25. Therefore, the number
of receptors limits the maximum number of bonds in all three cases. In addition, using the
estimate for the receptor patch density on the sphere given in Sec. 3.4, ρr = r20Nr/4, we
have ρr < 0.125, i. e., even for Nr = 5000 receptor patches, they do not cover the contact
zone completely. So, not every receptor encounters a ligand, and therefore the number
of tether bonds is even less than Nr,contact. In the rolling state, we actually measure an
average number of 1.5, 3, 4 for Nr = 1000, 2500, 5000, respectively. Fig. 4.10a shows that
the smaller Nr, the more are the states rolling and firm adhesion shifted to larger on-rates
and smaller off-rates. Also, similar to the 2D case, the (π, ε0)-range in which the cell is in
the state transient adhesion grows with decreasing Nr.

To demonstrate the impact of ligand-ligand distance, Fig. 4.10b shows the state dia-
grams for d = 5 ·10−3 R, 1 ·10−2 R, 5 ·10−2 R and Nr = 1000. Thus, the number of ligands
in the contact zone is Nl,contact ≈ 2500, 100, 25 and the number of receptors Nr,contact ≈ 5.
Again, the number of receptors in binding range is an upper bound for the maximum num-
ber of possible bonds. From Fig. 4.10b we see that the increase of Nl,contact from 100 to
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Figure 4.10: 3D on-off state diagrams. (a) For different numbers of receptors Nr. Nr =
1000, 2500, 5000 (thin lines, filled areas, thick lines) and d = 5 · 10−2 R. (b) For different
ligand-ligand distances d. d = 5 · 10−3 R, 1 · 10−2 R, 5 · 10−2 R (thin lines, filled areas, thick
lines) and Nr = 1000. Other parameters for both (a) and (b): γ̇ = 100 Hz, κ = 10−3 N/m,
xc = 2 · 10−11 m, η = 1 mPa s.

2500 has only very little influence on the state diagram, indicating that at d = 1 · 10−2 R
the number of ligands have already reached a saturation level for Nr = 1000. For the
average number of bonds in the rolling state we measure a value of about eight for both
d = 1 · 10−2 R and d = 5 · 10−3R. The fact that this number is larger than Nr,contact is
due to the elasticity of the tethers, which allows bonds to be moved outside the contact
zone. Reducing the number of ligands below the saturation level shifts the states rolling

and firm adhesion to larger on- and smaller off-rates, which can be seen for d = 5 · 10−2 R
(the configuration Nr = 1000, d = 5 · 10−2 R appears in both Fig. 4.10a and Fig. 4.10b).

We close this section with a general comment about a further difference between 2D
and 3D simulations. Due to the dimension perpendicular to the flow direction and the
wall normal it is in principle possible that two or more tethers are equally loaded in 3D
as was suggested in Refs. [129]. Consequently, they share the load and thus the force
enhancement of the off-rate as given by the Bell equation Eq. (2.37) is reduced. This
effect stabilizes rolling against increasing shear forces. However, for the ligand densities
and receptor numbers discussed here, we measure an average number of tether bonds of
less than ten. At this small number it is not very likely that two tethers are actually
located such that they can equally share the shear force. So this effect becomes more
important at higher ligand and receptor densities.

4.3 A simple on-off model for the state diagram

The mean translational velocity 〈U〉 as a function of the rates π, ε0 shows qualitative
agreement in both 2D and 3D simulations (cf. Fig. 4.4a and Fig. 4.9a). Moreover, the
state diagrams show a certain generic appearance over a large range of parameters. In this
section we introduce and solve a simple model which demonstrates how bond dynamics
results in these phases.
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Figure 4.11: Reduction from two degrees of freedom illustrated in (a) with velocities U
and Ω to one degree of freedom in (c). (c) Shows the model we use for the setup of a master
equation: An object that moves in horizontal direction with velocity U . Spring-like bonds
(Nm at maximum) reduce U . (b) The plot shows, how the (dimensionless) spring constant of
the simple model (κ(1D)) is related to the spring constant used in the simulations (κ(2D)).

4.3.1 Model definition

Neglecting contributions from Brownian motion the translational and angular velocities of
the cell at given height z and shear rate γ̇ are completely determined by the tether forces
as given by Eq. (2.15). Considering the 2D projection and the harmonic bond model,
the tether force itself is determined by tether extension and tether angle relative to the
wall (cf. Fig. 4.2). On a more abstract level the current states of all receptors determine
the state of motion of the cell. The state of a receptor is either “off” or “on”, where the
receptor’s on-state is specified by a pair of numbers (xb, χ) for the bond extension xb and
the tether to wall angle χ, respectively. Given the joint probability density function for
all receptors being in a certain state would then provide a solution to our problem, as the
velocities could then be calculated as expectation values with respect to this probability
distribution.

We will now calculate such probability density functions. However, we do not do this in
the context of our original model which involves two degrees of freedom for each receptor,
but in a simplified on-off model with only one degree of freedom per receptor. The on-
off model under consideration is inspired by work of Urbakh et al. [52] and illustrated
in Fig. 4.11. Ref. [52] describes sliding friction between two parallel plates, one moving
relative to the other due to a driving force. There, sliding friction is modeled by dynamical
formation and rupture of molecular bonds, and the relative motion between the plates is
numerically simulated. Besides the work of Urbakh et al., there is a large tradition on
such sliding friction models returning back to the 1960s, e. g., by Schallamach [122, 123].

As shown in Fig. 4.11c, in our model we consider an object moving with velocity U
parallel to the wall. Bonds between this object and the wall can be formed which slow the
object down. We assume that the height of the object above the wall h is small against
a typical bond extension. Then, the force exerted by the ith closed bond is F i

B = −κxi.
When the maximum number of bonds is Nm the object’s velocity in the over-damped
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limit, with mobility coefficient µ, is

U(xb) = U0 − µκxb, xb =

Nm
∑

i=1

qixi, (4.14)

where qi is one if the respective bond is closed and zero otherwise.

It must be noted that Eq. (4.14) cannot be inferred from Eq. (4.1) by projection on
the translational degree of freedom. In fact, if we fix Rθ = φx, φ ∈]0, 1[ (with initially
x = θ = 0) the first component of Eq. (4.1) reads (z ≈ R)

ẋ = b1 − κ(1 − φ)(A11 −RA12)x− κ

(

φ

6
A11 +RA12

φ2

2

(

1 − φ

3

))

x3

R2
+ O(x4).

As we have shown in Sec. 4.1.1 most of the time during rolling process φ ≈ 1 and the
term ∝ x3 becomes dominant in contrast to the proposed form of Eq. (4.14). In order
to provide nevertheless some comparability with the original model shown in Fig. 4.11a
we use an effective spring constant κ(1D), which is obtained in the following way: for a
given spring-constant κ(2D) we numerically integrate Eq. (4.14) until the cell is stopped
by a single bond and measure x∞, F∞. Then, we define the spring constant for our on-off
model as κ(1D) = F∞/x∞|κ(2D) . In other words we linearly interpolate the force-extension
curve in the stop-process between the start and the end point. The correspondence is
shown in Fig. 4.11b, it turns out that for the dimensionless quantities κ(1D) ≈ (κ(2D))1/3

holds. Furthermore, we use µ = µtt
xx for the mobility coefficient (cf. Eq. (2.16)).

We nondimensionalize time by U0/R, length by R. The model consists then of four
dimensionless parameters µ̂ = µκR/U0, π̂ = πR/U0, ε̂ = εR/U0, and Nm. In the following
we skip the hat for non-dimensionless quantities, Eq. (4.14) reads then U(xb) = 1 − µxb.

Master equation and transition rates

The state of the system is characterized by the number of closed bonds and the respective
extensions of these bonds. In the following we set up a master equation for the probabil-
ity density functions pi(x1, . . . , xi) of the system to have i closed bonds with extensions
x1, . . . , xi. As the four parameters of our model do not change with time the system
will reach a stationary state. After some initialization, the probability density functions
will therefore not explicitly depend on time and the stationary master equation for the
probability density function of the j-bond state reads [157]

Nm
∑

i=0

∫

dx′
i

[

W(xj |x′
i)pi(x

′
i) −W(x′

i|xj)pj(xj)
]

= 0,

with xi := (x1, . . . , xi) and j = 0, . . . , Nm. W(xi|xj) is the transition probability per unit
time from j-bond state xj to i-bond state xi. In our model two kinds of transitions exist:
i) discrete transition form j to i due to bond formation and rupture, respectively, and ii)
a drift with velocity U(x1 + . . . + xj) for each closed bond. In the following we separate
these two transitions by defining a transition rate W (xi|x′

j) through

W(xi|x′
j) = W (xi|x′

j) + δijU(x′1 + . . .+ x′j)

j
∑

k=1

∂

∂x′k
δ(j)(x′

j − xi),
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with δij the Kronecker symbol and δ(i)(xi) the i-dimensional Dirac delta function. The
master equation then becomes

j
∑

k=1

∂k [U(xb,j)pj(xj)] =

Nm
∑

i=0

∫

dx′
i

[

W (xj|x′
i)pi(x

′
i) −W (x′

i|xj)pj(xj)
]

, (4.15)

with the shorthand notations ∂k := ∂
∂xk

and xb,j := x1 + . . . + xj . Next, we specify the

transition rates W (xi|x′
j). The probability for one transition event within a short time

interval ∆t is of order O(∆t), whereas the probability for two or more transition events is
of the order O(∆t2). Such a process is called a “one-step process” [157]. Therefore, the
transition rates are only different from zero for transitions between two adjacent states,
i. e., for either one bond formation or one rupture event. From the i-bond state to the
j-bond state the transition rate is given by

W (xi|x′
j) = δij−1

j
∑

k=1

ε(x′k)δ
(i)(xi − x′

j,−k) + δij+1
πj

i

i
∑

k=1

δ(i)(xi − x′
j,+k), (4.16)

with the shorthand notation xj,−k := (x1, . . . , xk−1, xk+1, . . . , xj) and
xj,+k := (x1, . . . , xk−1, 0, xk, . . . , xj). The first term in Eq. (4.16) expresses rupture tran-
sitions where for now we allow for an off-rate ε(x) that is force (κx) dependent like in the
Bell model Eq. (2.37). The second term in Eq. (4.16) expresses bond formation events.
The on-rates are πi := (Nm − i)π, i. e., all non-closed receptors may form a bond with
equal probability per time. The normalized sum 1/i

∑i
k=1 stands for formal reasons and

ensures that the probability densities will be symmetric under bond permutations, e. g.,
p2(x1, x2) = p2(x2, x1). The δ-functions in Eq. (4.16) ensure that i) the bond’s initial
extension after formation is always zero, and ii) transition events change only one bond
at a time.

Inserting the transition rates Eq. (4.16) into the master equation Eq. (4.15) we get
a set of Nm differential equations and one algebraic equation for the probability density
functions pi(xi), i = 0, . . . , Nm:

0 = −π0p0 +

∫

dx1ε(x1)p1(x1), (4.17)

i
∑

k=1

∂k [U(xb,i)pi(xi)] = −
(

πi +
i
∑

k=1

ε(xk)

)

pi(xi) +
i+1
∑

k=1

∫

dxkε(xk)pi+1(xi, xk),

i = 1 . . . Nm − 1, (4.18)

Nm
∑

k=1

∂k [U(xb,Nm
)pNm(xNm)] = −

Nm
∑

k=1

ε(xk)pNm(xNm). (4.19)

The support of the probability density functions pi(xi), i = 1, . . . , Nm is the simplex
Si = {x ∈ � i|xj > 0, j = 1, . . . , i;x1 + . . . + xi < xb,max}. Here xb,max is the maxi-
mum possible total bond extension, which can be obtained from U(xb,max) = 0. In the
form written, Eq. (4.18) and Eq. (4.19) are partial differential equations. However, as all
closed bonds drift by the same amount per time, there is only one independent dynami-
cal variable and one can perform a coordinate transformation, that transforms Eq. (4.18)
and Eq. (4.19) into Nm first order ordinary differential equations, which can be solved by
standard methods (see Sec. D.1).
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The probability that i closed bonds exist is Pi :=
∫

dxipi(xi). The stationary state,
we are focusing on, is characterized by

πiPi =

i+1
∑

k=1

∫

dxi

∫

dxkε(xk)pi+1(xi, xk), i = 0, . . . , Nm − 1, (4.20)

i. e., the average number of rupture events is equal to the number of bond formations per
unit time. The Nm conditions Eq. (4.20) together with the normalization condition

Nm
∑

i=0

Pi = 1, (4.21)

provide Nm+1 boundary conditions needed to solve Eqs. (4.17 - 4.19) for pi, i = 0, . . . , Nm.

4.3.2 Solution for constant off-rates

In Appendix D.1 it is shown, how the general solution to Eqs. (4.18 - 4.19) with force
dependent off-rates can be integrated. It turns out that using the Bell model (or even
the linear approximation to the Bell equation), the formal integral solutions can only be
evaluated with high numerical effort. This masks the mechanism at work leading to the
typical appearance of the on-off state diagrams discussed in Sec. 4.2. Therefore, we discuss
here only the solution for the simplest case of force independent off-rates: ε(x) ≡ ε0. In
the Bell model this corresponds to the limit of large detachment forces: Fd � κx.

For the solution of the i-bond state we then make the following ansatz

pi(xi) =

Nm−i
∑

j=0

a(i, j)

[

i−1
∏

k=0

µ(νi+j + j + k)

]

(U(xb,i))
νi+j−1+j , (4.22)

with the constants a(i, j), i = 1, . . . , Nm, j = 0, . . . , Nm − i and νi, i = 1, . . . , Nm that
have to be determined by inserting the ansatz into Eqs. (4.18 - 4.19). As shown in the
Appendix D.2 this leads to

νi =
πi + iε0
iµ

, i = 1, . . . , Nm (4.23)

and for i = 1, . . . , Nm; j = 0, . . . , Nm − i:

a(i, j) = a(i+ j, 0)

j−1
∏

k=0

(i+ 1 + k)ε0
µ(i+ k)(νi+k + k − j − νi+j)

, if ∀j νi+j + j 6= νi, (4.24)

otherwise, if a j exists such that νi+j + j = νi, one has to set a(i − k, j + k) ≡ 0 for
k = 0, . . . , j − 1. So far, only the coefficients a(i, 0), i = 1, . . . , Nm are undetermined. In
the representation, Eq. (4.22), the total probability for the i-bond state reads

Pi =

Nm−i
∑

j=0

a(i, j) =

Nm−i
∑

j=0

a(i+ j, 0)

j−1
∏

k=0

(i+ 1 + k)ε0
µ(i+ k)(νi+k + k − j − νi+j)

. (4.25)

These are Nm equations expressing the coefficients a(i, 0), i = 1, . . . , Nm in terms of the
Nm total i-bond state probabilities Pi which itself are determined from the stationary
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state and normalization condition Eq. (4.20) and Eq. (4.21), respectively. The latter lead
to

P0 =



1 +
Nm−1
∑

i=0

i
∏

j=0

πj

(j + 1)ε0





−1

=

(

ε0
ε0 + π

)Nm

,

Pi = P0

i−1
∏

j=0

πj

(j + 1)ε0
=

(

Nm

i

)

εNm−i
0 πi

(ε0 + π)Nm
. (4.26)

The linear system of equations Eq. (4.25) is already in triangular form. Therefore, it is
straightforward to solve it for a(i, 0), i = 1, . . . , Nm in a recursive manner starting with
a(Nm, 0).

Expectation values for the moments of velocity

With these results at hand we can now follow our original intention, i. e., the computation
of the mean velocity and its standard deviation. Using the representation Eq. (4.22) we
obtain for the mth moment of the velocity:

〈Um〉 = P0 +

Nm
∑

i=1

∫

dxi pi(xi)(U(xb,i))
m = P0 +

Nm
∑

i=1

Nm−i
∑

j=0

a(i, j)

i−1
∏

k=0

νi+j + j + k

νi+j + j + k +m
.

Using Eq. (4.24) and the inversion of Eq. (4.25) it is then straightforward to explicitly
evaluate this expression. For the case of one receptor, Nm = 1, we have

〈Um〉Nm=1 =

(

P0 +
ν1

ν1 +m
P1

)

=

(

P0 +
ε0

ε0 + µm
P1

)

=
ε0

π + ε0

(

1 +
π

ε0 + µm

)

.

For Nm = 2 the mth velocity moment reads:

〈Um〉Nm=2 =
ε0

(ε0 + π)2

[

ε0 +
2π(ε0 + π)

ε0 + π + µm
+ π2 (ε0 + µ)(ε0 + π + µm) − 2mµ(ε0 + µm)

(ε0 + π + µm)(ε0 + µ+ µm)(ε0 + µm)

]

.

So, we obtain the mean velocity 〈U〉 for m = 1, and its variance σ2
U = 〈U2〉 − 〈U〉2 for

m = 1, 2.

4.3.3 Discussion and comparison to simulation-results

Fig. 4.12a shows the mean velocity 〈U〉 as a function of the on- and off-rate π and ε0,
respectively. A qualitative accordance with the analog 2D and 3D simulation results (cf.
Fig. 4.4a, Fig. 4.9a.) can be easily seen: 〈U〉 goes through a transition from 〈U〉 ≈ 1 to
〈U〉 ≈ 0 with decreasing off-rates. The transition-range is shifted to smaller off-rates with
decreasing on-rates. Within this transition σU has a maximum with respect to ε0 which
is the larger the smaller the on-rates are.

In the following we argue that this qualitative description of Fig. 4.12a holds in general
for arbitrary Nm ∈ {1, 2, 3, . . .}. In the limit ε0 → 0, i. e., when a closed bond will never
rupture, the stationary probability of i closed bonds becomes zero for i = 0, . . . , Nm − 1
and one for i = Nm, see Eq. (4.26). Then, also the coefficients a(i, j) are zero except
for a(Nm, 0) which is one. Therefore, in this limit, the moments of the velocity become
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Figure 4.12: Results from the on-off model. (a) Mean velocity 〈U〉 and its variance σU as
a function of the on-rate π and the off-rate ε0 analog to Fig. 4.4a and Fig. 4.9a. (b) Lines of
constant 〈U〉 with 〈U〉 = 0.01, 0.5, 0.95 for different maximum numbers of tethers Nm. (c) For
Nm = 3, density plot of σU/〈U〉 for 〈U〉 > 0.01. (d) Lines of constant 〈U〉 for 〈U〉 = 0.01, 0.5,
Nm = 4 and different values of the mobility coefficient µ: µ = 0.1, 1, 10.

〈Um〉 → δm0. Especially for m = 1, 〈U〉 = 0, i. e., the object under consideration is not
moving at all. In the other limit ε0 → ∞, i. e., when closed bonds will rupture instan-
taneously, the probability for i closed bonds becomes Pi = δi0, i = 0, . . . , Nm. Therefore,
〈Um〉 = 1,∀m ∈ {0, 1, 2, . . .} and the object moves as if no receptors were existing. The
same is true in the limit π → 0. For π → ∞, Pi = δiNm as for ε0 = 0. In contrast to the
case of zero off-rate, 〈U〉 is not zero in general but still a function of the off-rate:

lim
π→∞

〈Um〉 =

Nm−1
∏

k=0

ε0 + kµ

ε0 + (k +m)µ
=

Γ(ε0/µ+Nm)Γ(ε0/µ+m)

Γ(ε0/µ)Γ(ε0/µ+m+Nm)
, (4.27)

with the gamma-function Γ(x + 1) = xΓ(x) [7]. For the variance σ2
U = 〈U2〉 − 〈U〉2 ≥ 0

and σ2
U ≤ 1 holds true for all π, ε0. With the statements given above, we get σ2

U = 0 in the
limits ε0 → 0, ε0 → ∞. Therefore, the standard deviation σU exhibits a maximum along
the transition from 〈U〉 = 1 to 〈U〉 = 0.

The definition of all five states of motion given in Sec. 4.2.2 cannot be applied to the
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results of this model, as we deal with only one degree of freedom here, and rolling is not
well defined. Fig. 4.12b shows lines of constant 〈U〉 for Nm = 1, . . . , 10. The asymptotic
limit for large π of these lines is implicitly given by Eq. (4.27). The region of ε0 larger
than the implicitly defined value ε0(〈U〉 = 0.95, π) can be identified with the state free

motion. Similar, in the region ε0 < ε0(〈U〉 = 0.01, π) the object under consideration is in
state firm adhesion. In between, along the line ε0 = ε0(〈U〉 = 0.5, π), are the states rolling
and transient adhesion located. Fig. 4.12c shows a density plot of σU/〈U〉 for 〈U〉 > 0.01.
It can be seen that the smaller the on- and off-rates are, the larger σU/〈U〉 which indicates
the existence of the state transient adhesion II in the bottom-left corner of the simulation
state diagrams.

Larger Nm result in a shift of the lines of constant 〈U〉 to larger off-rates. The same
qualitative behavior was observed in Fig. 4.8a,b and Fig. 4.10a,b, where the impact of
ligand density and receptor number in 2D and 3D was illustrated. For m = 1, Eq. (4.27)
can be solved for ε0:

lim
π→∞

〈Um〉 =
ε0

ε0 + µNm
⇒ ε0(〈U〉 = U)|π→∞ =

µUNm

1 − U
.

Thus, for Nm → ∞ the asymptotic lines of constant 〈U〉 are shifted to ε0 → ∞. That
means for an infinite number of bonds the mean velocity is zero for all finite off-rates.

The influence of the fourth parameter of our model µ is shown in Fig. 4.12d. According
to the definition of µ it depends on viscosity η and spring constant κ(1D) as µ ∝ κ(1D)/η.
For example for the viscosity of water and soft bonds with κ(2D) = 10−5 N/m, one has
µ = 0.25, for the same viscosity but stiff bonds κ(2D) = 10−1 N/m one gets µ = 5.5 (both
at γ̇ = 100 Hz) using the relation given in Fig. 4.11. Fig. 4.12d shows that the lines
of constant 〈U〉 are shifted to larger off-rates with increasing µ. Comparing this to the
influence of viscosity in the 2D simulations (cf. Fig. 4.7a) we note that there the line of
〈U〉 = 0.01 is shifted to smaller off-rates with increasing viscosity (i. e., decreasing µ), too.
However, in Fig. 4.7a this effect occurred due to a completely different reason, which we
identified as a consequence of the Bell model. Also the shift of lines of constant 〈U〉 in
Fig. 4.7b due to changes in the spring constant is different from the one predicted by the
model. The failure of our simplified on-off model to give qualitatively correct predictions
with respect to to a change in µ is a consequence of not taking the Bell model into account.
Both, viscosity (via the maximum bond force) and spring constant (via the initial loading
rate) couple in the Bell equation to the off-rate. Another effect, which is not taken into
account by the simplified on-off model, is that for soft tether bonds the mean number of
closed bonds can be larger than the mean number of receptors located in the contact zone.

In summary, the on-off (sliding) model considered here is not able to predict rolling and
neglects all non-linear effects arising from the bond force acting on a sphere. Nevertheless,
the mean velocity in terms of the on- and off-rate obtained from this on-off model exhibits
the same generic features as the mean velocity curves obtained from adhesive dynamics
simulations.

4.4 Robustness of rolling

4.4.1 Force distribution

In contrast to the assumptions of the simple on-off model it is not equally likely for every
bond to rupture. In fact, from the Bell model it follows that the more a bond is stretched
the more likely it will rupture. Due to the rolling process and the curvature of the cell
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the bonds carrying the highest load are expected to be located at the rear end of the
cell. To quantitatively confirm this expectation, here, we present the results of numerical
measurements of the stationary force distribution relative to the cell center using the 2D
version of our adhesive dynamics algorithm.

For the force measurements we divide the projection line of the lower part of the sphere
onto the boundary wall into Lb parts of equal length, see Fig. 4.13. In the following we
will refer to these Lb parts as bins. Then, average quantities for the force are obtained
as explained in the following. At each time step ∆t during a simulation run the x and
z-component of the bond force FB,x and FB,z, respectively, are added up for each bin.
This leads to the discrete version of the time integral over the bond force in each bin:

∑

{∆t}

F i
B,x ≈

Tsim
∫

0

dtF i
B,x(t),

∑

{∆t}

F i
B,z ≈

Tsim
∫

0

dtF i
B,z(t), i = 1, . . . , Lb, (4.28)

where Tsim is the length of the simulation run, the superscript i stands for the ith bin, and
{∆t} denotes the set of all time steps during one simulation run. The force from a tether
bond is accounted for a certain bin if the corresponding receptor on the cell surface lies
in this bin. So, in principal (depending on the width of the bins) it is possible that more
than one bond lies in a bin at a certain time. Due to curvature effects this may happen
especially at the rear end of the cell.

From this the time-averaged force (denoted with a bar) in each bin is obtained as

F̄ i
B,x :=

1

Tsim

Tsim
∫

0

dtF i
B,x(t), F̄ i

B,z :=
1

Tsim

Tsim
∫

0

dtF i
B,z(t), i = 1, . . . , Lb. (4.29)

As we keep all parameters fixed, for long enough simulation times Tsim these averages
define stationary force density distributions fB,x(x), fB,z(x) relative to the sphere center,
with

fB,x(x) := F̄ i
B,x

2

Lb
, fB,z(x) := F̄ i

B,z

2

Lb
, i = [0.5Lb(1 − x)], x ∈ [−1, 1], (4.30)

where the Gauss bracket [x] denotes the largest integer less than x.

Results for the above defined quantities are shown in Fig. 4.14. There, the same
parameters as for the state diagram in Fig. 4.5 are used. The on-rate and unstressed off-
rate π and ε0, respectively, are chosen such that the cell is in the stationary rolling state.
Fig. 4.14a shows the stationary force distribution for the x-component of the tether force
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Figure 4.14: Force distributions from 2D adhesive dynamics simulations. The parameters
chosen (except for the spring constant κ) are the same as for the simulations for Fig. 4.5. (a,b)
Stiff bonds with spring constant κ = 10−2 N/m at three different combinations of dimensionless
on-rate π and unstressed off-rate ε0 (Lb = 500). (a) Distribution density of the x-component
of the bond force fB,x(x). (b) Distribution density of total bond force fB(x). (c,d) Soft bonds
with κ = 10−4 N/m at two different combinations of π, ε0 (Lb = 250). (c) fB,x(x); (d) fB(x).
(Numerical parameters are Tsim = γ̇2s, ∆t = 10−4. Furthermore, to obtain better statistics
the quantities defined in Eq. (4.29) are also averaged of 40-800 simulation runs. Length is
measured in units of R, force in units of 6πηR2γ̇.)

fB,x(x) according to Eq. (4.30) for a fairly stiff bond with spring constant κ = 10−2 N/m.

The integral F̄B,x :=
∫ 1
−1 fB,xdx defines the x-component of the time average of the total

bond force. When it has reached its maximum value (defined by the force balance at
mechanical equlibrium, see Fig. 4.2) the cell is in the state of firm adhesion. For the
three choices of (π, ε0) shown in Fig. 4.14a,b the cell rolls and therefore the time-averaged
total bond force is less than the maximum possible value. In fact, from Fig. 4.14a one
can see, that the larger the off-rate and the smaller the on-rate the smaller is F̄B,x. This
observation is in agreement with the result of Fig. 4.4a, where the mean velocity was found
to be the larger, the smaller the on-rate and the larger the off-rate is. The curves for
ε0 = 0.014, 0.16 in Fig. 4.14a show a regular pattern of maxima and minima which is even
better pronounced for the curve with the smaller off-rate. This regular pattern corresponds
to the regular ligand distribution (see Sec. 4.2.1) and the distance between two minima is
approximately given by the distance between two ligands. Here, the ligand-ligand distance
is d = 0.029 which fits well to the observed six minima between x = −0.15 and x = 0
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in Fig. 4.14a. Rolling at low off-rates is not a smooth process (compare the example
trajectory in Fig. 4.6(6)). It can rather be described as “stop-go” motion. This means
that bonds are loaded until the cell stops and then the cell pauses in this (motionless) state
until some bond ruptures. After bond rupture the cell rolls forward and the remaining
bonds are again loaded until the x-component of their total load compensates the driving
force from the shear flow. During the motion step the receptors move from one bin to
the next so that (besides geometrical effects) force is rather equally distributed over the
bins. If the cell moves only slowly or is even at rest the receptors stay in certain bins and
therefore their bond force strongly contributes to the time-averaged force density at the
position of this bin. Due to the regular ligand distribution the position of the cell center
relative to the ligands is similar for all stop steps which leads to the maxima and minima
of fB,x. In addition, we note that at the front end of the cell the minima of fB,x are
negative, which means that bonds on the front end may even pull in the direction of flow.
However, this effect is weak. For the highest off-rate shown in Fig. 4.14a, ε0 = 0.52, only
one maximum at the rear end of the cell can be identified. At this off-rate (compare the
example trajectory in Fig. 4.6(5)) stops of the cell are unlikely and therefore the receptors
permanently move from one bin to the other resulting in a less structured time-averaged
force distribution density.

In Fig. 4.14b the total force distributions fB :=
√

f2
B,x + f2

B,z for the same (π, ε0) pairs

as in Fig. 4.14a are shown. Comparing the scales of the ordinates in Fig. 4.14a and b we
see that the z-component contributes much more to the total force density than the x-
component. Furthermore, the signature of the regular ligand distribution is hardly visible.
This is due to the fact that the z-component of the bondforce is basically determined by
the height of the receptor above the wall but not by the positions of the ligands. The total
force along a tether bond leads to an exponential increase in the off-rate according to the
Bell equation, Eq. (2.37). Thus, there are two competing effects that contribute to the
shape of fB(x). On the one hand the bond force is the larger, the larger the receptor-wall
distance is. The latter one increases with increasing distance from the cell center. On the
other hand the larger the bond force, the more likely it is for the bond to rupture and
therefore the smaller is its contribution to the time-averaged force density distribution.
The interplay between these two effects explains the big maximum in fB(x) left to the
sphere center.

In Fig. 4.14c,d the force density distributions for soft bonds, with κ = 10−4 N/m
are shown. In contrast to the stiff bonds discussed before, the range where the force
density distribution is different from zero is now much larger. Using the same estimate
as in Sec. 4.2.3 we find that for the capture radius r0 = 0.01 the contact zone (the zone
where bonds can be formed) is at |x| ≤ 0.14. At the front end of the cell the end of the
contact zone also marks the end of the range of active bonds. At the rear end active bonds
also exist beyond the contact zone due to the rolling of the cell. The softer the bonds
the more they have to be elongated to build up a certain force and therefore the more
they are shifted to the rear end of the cell (see also discussion on page 69). Concerning
the off-rate a similar behavior as for stiff bonds can be observed. For the larger off-rate,
ε0 = 0.52, rupture probability is high already before the bonds are fully loaded resulting in
a more uniform force distribution. On the other hand for the smaller off-rate, ε0 = 0.014,
a narrow peak in the force density distribution exists which indicates that the left-most
bond is loaded until the cell stops and ruptures on average only after some pause time. As
the force distribution zone for soft tethers is much larger than the ligand-ligand distance d
no signature of d in fB,x(x) is observed (i. e., no regular pattern of minima and maxima).
Comparing again the scales of the ordinates in Fig. 4.14c and d we find that the x and
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Figure 4.15: 3D adhesive dynamics simulations showing that soft microvilli (MV) increase
the robustness of rolling against variations in shear rate γ̇. (a) Mean velocity 〈U〉 of a cell for
stiff and soft MV as a function of the shear rate. For the Nr = 2000 stiff MV also the mean
angular velocity R〈Ω〉 is shown. (b) The same as in (a) with a different scale. For the case
of Nr = 2000 soft MV also R〈Ω〉 is shown. (c) Mean number of bound MV as a function of
the shear rate γ̇. The average values have been obtained over 200 − 500 simulation runs of
Tsim = 20 s length. Other parameters used: kon = 100 Hz, k0 = 5 Hz, R = 5 µm, Ta = 310 K,
∆ρ = 50 kg/m3, η = 10−3 Pas, d = 0.02R, r0 = 0.01R, xc = 0.2 Å, ∆t = 5 · 10−4.

z-components of the bond force are now of the same order of magnitude, indicating that
the angle χ between the tether bond and the wall (cf. Fig. 4.2) is smaller for soft bonds
than for stiff ones.

4.4.2 Shear dependence of rolling velocity

So far, all numerical rolling experiments presented in this chapter were preformed at some
fixed shear rate. In this section we consider the question, how robust is rolling when
the shear rate γ̇ is increased? For that we use the 3D version of our adhesive dynamics
algorithm to measure the mean translational velocity 〈U〉 as a function of γ̇. As discussed
in Sec. 4.2.1 microvilli (MV) have their own elastic constant (spring constant). Here,
we consider receptor-ligand bonds with a spring constant of κRL = 5.3 · 10−3 N/m. In
addition, we consider both, cells where the receptors are located on the tips of MV with
κmv = 4.3 · 10−5 N/m, and beads without MV (this corresponds to the case of very
stiff MV and is therefore refered to as the stiff MV case). For the on-rate and off-rate
kon = 100 Hz and k0 = 5 Hz, respectively, are chosen. At γ̇ = 100 Hz this provides
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π = 1, ε0 = 0.05 for the dimensionless reaction rates, and from Fig. 4.10a we obtain that
cells with Nr > 2000 are in the stationary rolling state (with sample trajectories similar to
that shown in Fig. 4.6(6)). Fig. 4.15a and b shows the mean velocity 〈U〉 as a function of γ̇.
We consider rolling to be robust against an increase in shear rate if 〈U〉/γ̇ is not increasing
with γ̇. As can be seen from Fig. 4.15a for stiff MV 〈U〉 increases faster than proportional
to γ̇ at some range of shear rates and approximates the velocity of a freely moving cell
at large shear rates. The superlinear increase of 〈U〉 with respect to γ̇ occurs at higher
shear rates for cells covered with Nr = 2000 receptors (here, each receptor corresponds
to one MV) than for cells with Nr = 500. In addition, Fig. 4.15a also shows R〈Ω〉 for
the cells with Nr = 2000 stiff MV. It can be seen that the ratio R〈Ω〉/〈U〉 decreases, and
therefore the cells no longer roll at large shear rates. Fig. 4.15b shows the mean velocities
on a smaller scale, so the curves for cells with soft MV could be better resolved. One can
see that 〈U〉 for cells with soft MV increases much slower with γ̇ than for cells with stiff
MV. For Nr = 2000 soft MV the increase of the mean velocity 〈U〉 with respect to γ̇ is
linear for large shear rates and even sublinear at small shear rates. For these cells also
the R〈Ω〉 curve is shown. One can see that R〈Ω〉 also increases linearly with γ̇ for large
γ̇, and therefore the ratio R〈Ω〉/〈U〉 stays (approximately) constant (a value of > 0.8 for
this ratio can be determined which means according to the classification given in Tab. 4.2
that the cells still roll at large shear rates).

In Fig. 4.15c the mean number of bound MV is drawn against the shear rate (it must
be noted that for the data shown a MV is considered only if it is bound for more than
0.02s, thus, a vanishing mean number of bound MV means that the maximum lifetime of
bound MV is less than 0.02 s). We first notice that the larger Nr, the larger is the mean
number of bound MV to which we will refer to as N̄r in the following. In regard to the
dependence on the shear rate, we see that with increasing shear rate also N̄r increases up
to a (flat) maximum. For cells with stiff MV N̄r, decreases again at larger shear rates
and approximates zero for very large γ̇. This different behavior of N̄r as a function of
γ̇ provides an explanation for the different velocity robustness observed for soft and stiff
MV, respectively. However, in order to understand the different behaviors of N̄r in regard
to the stiffness of the microvilli, we recall the results of the last section (Sec. 4.4.1). There,
we have seen that the range of force distribution is much larger for soft bonds than for
stiff bonds (compare Fig. 4.14a,c). The larger the load carrying area on the cell bottom,
the more MV are involved that share the total load. In addition, we saw that the largest
load is carried by the bonds at the rear end of the cell. Thus, for soft bonds the zone of
bond formation is well separated from the zone of highest rupture probability. Therefore,
ruptured bonds are compensated by bonds formed in the contact zone and transported to
the rear end. This explains the only modest (i. e., linear) increase of 〈U〉 with increasing
shear rate. In contrast, stiff bonds carry an essential amount of load already in the contact
zone. After their rupture, less bonds are available for compensation. If loading and rupture
occurs fast (i. e., at large γ̇) there is less time for new bonds to form and compensation is
even less probable, resulting in an increase of 〈U〉 faster than linearly with γ̇.

4.5 Summary

In this chapter we studied the motion of a cell under the action of bonds. The parameter
values chosen are based on values typical for flow chamber experiments with leukocytes.
However, it must be noted that the results obtained can also be applied to rolling experi-
ments with cell free systems (i. e., with receptor bearing microspheres).

First, we saw, from the analytical analysis of the linear approximation of the deter-



86 Chapter 4: Rolling adhesion of leukocytes

ministic equations of motion and the numerical solution of the full equations that the cell
starts rolling in the sense RΩ/U → 1, when functional bonds exist. Then, we defined five
stationary states of leukocytes motion, including rolling, based on the mean translational
and angular velocity of the cells. The appearance of these states were displayed in on-off-

state diagrams and the influence of paramters like viscosity and ligand density to these
states of motion were discussed. In addition, we could explain the generic behavior of
the mean translational velocity, 〈U〉, by means of the exact solution of a simplified on-off
model for motion under the action of bonds that perpetually form and rupture.

The classification of states of motion given is not directly applicable to typical leuko-
cyte experiments done before as there only the translational and not the angular velocity
is measured. So by experimantal groups typically three states of motion are defined (tran-
sient adhesion, rolling, firm arrest) all based on the measured (instantaneous) translational
velocity [63, 135].

In contrast to the off-rate, it is very difficult to infer values for the on-rate of a receptor-
ligand complex from flow chamber experiments. The classification of stationary states of
motion according to our definition might provide a new method to obtain better estimates
for the on-rate: First, one could determine the state of motion of a sphere covered with
a special type of receptors, and then continously vary external parameters like viscos-
ity and ligand density until another stationary type of motion is reached. Finally, the
experimentally obtained parameters at which the state changes can be compared to our
simulation results providing a value for the on-rate. This procedure of course requires the
possibility to measure the angular velocity of the receptor covered sphere. Furthermore,
also the ligand-ligand distance should be controllable. Both of these challenges could be
accomplished in the near future using recent biotechnological developments. Receptors
can be attached to micron-sized beads which are covered with anisotropic surface layers
[24, 2]. If these layers are (anisotropically) reflective, rotational motion of the spheres
can be recorded (in principle also rotations of leukocytes can be observed by tracking
the excentric nucleus [4]). Ligand-ligand distances can be tuned using nano-patterend
bio-functionalized gold dot arrays [8].

We finally studied the effect of shear rate on rolling velocity and found that rolling is
much more robust against an increase in shear rate for soft bonds (soft MV) than for stiff
bonds. This was explained by an increase of tethers for soft and a decrease of tethers for
stiff bonds, respectively. Indeed, an increase of tethers for increased shear rates was found
to stabilize rolling over a large range of shear rates (102 Hz < γ̇ < 4 ·103 Hz) by Chen and
Springer [29]. At these large shear rates an increase of tethers results probably not only
from elastic deformations of the MV but also from viscous tether formation [137] and an
increase of the contact zone due to elastic deformations of the whole cell [137, 29].



Chapter 5

Cargo transport by processive

molecular motors

From a theoretical point of view the active cargo transport by processive motor proteins
along filaments bears some analogies to a receptor-covered sphere moving above a ligand
bearing wall. In this chapter, we apply an extended version of the adhesive dynamics

algorithm in order to simulate the cooperative transport of a sphere by several kinesin-like
motors along a microtubule (MT). In a recent theoretical study Klumpp and Lipowsky
calculated the mean transport distance of a cargo particle as a function of the maximum
number of simultaneously pulling molecular motors [83]. Here, we combine this model
with Stokesian dynamics, thus accounting for effects arising from Brownian motion of a
spherical cargo particle, its hydrodynamic interaction with the boundary wall and the
curvature of the cargo surface. We compare our results with the theoretical predictions.
A main result is that in the computer simulations (and presumably also in experiments),
the maximum number of motors that can simultaneously bind cannot be considered to be
a constant.

5.1 Adhesive motor dynamics

We consider spherical cargo particles uniformly covered with Ntot molecular motors whose
generic properties are similar to those of conventional kinesin. The motor proteins are
firmly attached to the cargo at their tail domains, so that Ntot is constant in time. The
head domains of the motors can bind and unbind to special sites on the microtubule
(MT). In comparison to the notation of the previous chapters the binding sites on the
MT are analogous to ligands and the motor heads correspond to receptors, see Tab. 5.1.
Furthermore, we consider the radius R of the cargo particle to be large compared to the
diameter of the MT hMT and the length of the motor protein l0, i. e., R � hMT and
R � l0, respectively. Then, contributions from the motors and the MT to the mobility

receptor (# of = Nr) motor protein attached to a cargo particle (# of = Ntot)
ligand (periodicity d) binding site on microtubule, periodicity δ

bond motor protein attached to MT

Table 5.1: Correspondence in notation between a rolling adhesion system (left) and a cargo
that is pulled by motors (right).
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Figure 5.1: (a) Illustration of a bead (sphere) pulled by one molecular motor. The bead is
subject to the motor force FB and an external force Ft which results in a bead velocity U .
The motor with resting length l0 is firmly attached to the bead and can bind to and unbind
from a MT and moves with velocity vm. χ denotes the angle between motor and MT. (b)
Force velocity relation for a single motor: velocity vm as a function of load |FB,x| according
to Eq. (5.3) with maximum velocity v0 and stall force Fs.

matrix can be neglected. This allows us to base the simulations carried out in this chapter
upon the adhesive dynamics algorithm described in Sec. 2.4.3.

Algorithm and parameters

Conventional kinesin is a polymeric dimer of total length of about 80 nm [124]. Here, we
consider two variants of the simple harmonic spring model in order to have a force extension
relation for this molecule. The first variant is the cable model given by Eq. (2.39), i. e., a
force is only needed to extend the motor beyond its resting length l0. The second variant
is the full harmonic spring with force extension relation F (x) given by

F (x) = κ(x− l0) (5.1)

that means, a force is needed for both compression and extension of the motor protein.
Actually, it was found that kinesin exhibits a non-linear force extension relation [151],
with the spring “constant” varying between κ = 0.2 · 10−4 N/m for small extensions and
κ = 0.6·10−4 N/m for larger extensions [151, 58]. For extensions close to the contour length
the molecule becomes infinitely stiff (strain stiffening) [38]. For small extensions, however,
the harmonic approximation works well. Using a photonic force microscope Rohrbach et
al. tracked the position of a latex bead that was attached to a single kinesin molecule.
From comparison to Brownian dynamics simulations of the bead position assuming the
kinesin to be a linear spring they obtained a spring constant of κ ≈ 0.8 · 10−4 N/m. For
the following simulations we use the value 10−4 N/m for the spring constant κ in both the
cable and the full harmonic spring model.

We allow the motor head to freely rotate about the point of fixation to the cargo. In
contrast to the position of the tail domain on the sphere, the head position of each motor
is not explicitly traced during the simulations as long as the motor is not attached to the
microtubule. The head domain is rather supposed to be located somewhere on a spherical
shell around its anchorage point. The radius of this sphere is given by the resting length
of the motor protein l0, and the thickness of the shell is called r0 (its meaning is similar
to that of an encounter radius). If such a shell has some overlap with an unoccupied
binding site on the MT the motor binds with rate kon = 5 Hz [97] (i. e., with probability
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Parameter → typical value meaning reference
non-dimensionalized (dimensionless)

R→ 1 1 µm (1) bead radius
k0 1 Hz unstressed off-rate [83]
→ ε0 = k0/k0 (1)
kon 4.7 Hz on-rate [97]
→ π = kon/k0 (5) [83]
Fd → 1 3 pN detachment force [83, 126]
κ 10−5 . . . 10−3 N/m motor spring constant [120, 38, 58]
→ κR/Fd (33.3)
δ 8nm kinesin step length [33]
→ δ/R (0.008)
v0 1 µm/s(1) maximum motor velocity [83]
λ0

s := v0/δ 125 Hz (125) forward step rate
r0 δ/2 capture radius
Fs 5.5 . . . 7 pN stall force [158]
→ Fs/Fd (2) [83]
l0 50 - 80 nm (resting) length [77, 124]
→ l0/R (0.05,0.065,0.08)
hMT 24 nm microtubule diameter [98]
→ hMT /R (0.024)

Table 5.2: Parameters used for adhesive motor dynamics. The dimensionless values in
brackets denote the values used for the simulations. For ambient temperature we use Ta =
293 K, for viscosity η = 1 mPas (if not otherwise stated), furthermore ∆ρ = γ̇ = 0.

pon = 1 − exp(−kon∆t) during the time step ∆t). As two binding sites along the MT are
δ = 8 nm apart from each other, we consider the “capture radius” to be r0 = δ/2. Escape
from the MT is modeled exactly as described in Sec. 2.4.3 with the Bell model parameters
k0 = 1 Hz and Fd = 3 pN for unstressed off-rate and detachment force, respectively
[126, 83].

The major conceptual difference between a motor connecting a sphere with a MT and
a receptor-ligand bond is that a motor can actively step forward from one binding site to
the next with step length δ. The mean velocity v0 of an unloaded kinesin motor is about
v0 = 1 µm/s depending on the ATP concentration of the surrounding medium [158]. If the
motor protein is mechanically loaded with force opposing the walking direction, the motor
velocity vm is decreased. For a single kinesin molecule that is attached to a bead on which
a trap force Ft pulls, the velocity was found to essentially linearly decrease [150, 158]:

vm = v0

(

1 − Ft

Fs

)

, 0 < Ft < Fs, (5.2)

with the stall force Fs (for which we use a value of 6 pN [158, 83] in the following) and the
trap force Ft acting antiparallel to the walking direction. In order to derive an expression
similar to Eq. (5.2) for one of many motors pulling on the sphere which is also valid in
the presence of high viscous friction, we have to identify the proper term that replaces
Ft in Eq. (5.2). First, we rewrite Eq. (5.2) as vm = µm(Fs − Ft), with some internal

motor mobility coefficient µm := v0/Fs. This version of Eq. (5.2) allows us to interpret
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the motor head as an over-damped (Stokesian) particle that constantly pulls with the stall
force Fs against some external load Ft resulting in the effective velocity vm. According to
Eq. (2.38) a motor pulls with force FB on the bead, so we can identify the “load” to be
−FB,x, where FB,x is the x-component of FB and the minus sign accounts for Newton’s
third law (actio = reactio). Thus, we obtain the following linear force velocity relation for
the single motor (see also Fig. 5.1b):

vm = v0











1 if FB · ex ≤ 0

1 − |FB,x|
Fs

if 0 < FB · ex < Fs,

0 if FB · ex ≥ Fs

(5.3)

where ex is the walking direction of the motor, see Fig. 5.1a. Thus, if the motor pulls
antiparallel to its walking direction on the bead, it walks with its maximum speed v0. If
it is loaded with force exceeding the stall force Fs, it stops. For intermediate loadings the
velocity decreases linearly with load force. Eq. (5.3) defines the mean velocity of a motor
in the presence of loading force. Actually, the motor walks with discrete steps of length
δ. In the algorithm we account for this by defining a step rate λs := vm/δ. Then, the
probability for a step during time step ∆t is pstep = 1− exp(−λs∆t). A step is rejected if
the next binding site is already occupied by another motor (mutual exclusion) [100].

All parameters used for the adhesive motor dynamics simulations together with typical
values are summarized in Tab. 5.2. For the algorithm and some theoretical considerations
in the following we non-dimensionalize all quantities using R for the length scale, 1/k0 for
the time scale and Fd for the force scale (see also Tab. A.1).

Single motor simulations

If an external force Ft (e. g., from an optical trap) pulls on the sphere and the motor pulls
with force FB,x, the bead velocity U is given by U = µtt

xx(FB,x − Ft), with µtt
xx being a

component of the mobility matrix of the sphere (cf. Eq. (2.16)) evaluated at the height
of the sphere’s center. On the other hand from Eq. (5.3) it follows that the motor head
moves with velocity vm = µm(Fs −FB,x) (with µm = v0/Fs, see above). In the stationary
state of motion the two velocities are equal, U = vm, and we obtain the force with which
the motor pulls (in walking direction) on the bead:

FB,x =
µtt

xx

µm + µtt
xx

Ft +
µm

µm + µtt
xx

Fs. (5.4)

Thus, if the internal friction of the motor (1/µm) is large compared to the viscous friction
of the sphere, i. e., 1/µm � 1/µtt

xx, the second term in Eq. (5.4) can be neglected and
one has FB,x ≈ Ft. That means, only the trap force pulls on the motor. If µm ≈ µtt

xx

both terms in Eq. (5.4) are of the same order of magnitude. Then, both external load
Ft and the friction force on the bead will have visible influence on the motor velocity.
Experimentally, these prediction can be checked in bead assays by varying the viscosities
of the medium (e. g., by adding sugar like dextran or Ficoll [30]), or in vivo where the
viscoelastic friction (i. e., scale dependent) on the cargo is high [69]. Numerically, we can
vary η in the adhesive motor dynamics algorithm.

Inserting Eq. (5.4) into Eq. (5.3) provides then a prediction for the velocity of a bead
subject to a pulling motor and an external force Ft. In Fig. 5.2a we compare this prediction
with actual measured velocities using the adhesive motor dynamics algorithm described
above. For this, we measured the mean velocity of the bead and the motor obtained from
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Figure 5.2: (a) Measured force velocity relation of a single motor (with l0 = 80 nm) pulling
a sphere of radius R = 1 µm for three different viscosities η = 1, 10, 100 mPa s. Shown is the
relation according to Eq. (5.2), the actual measured force velocity relation of the motor head
and the bead center, respectively, and the theoretical prediction according to Eq. (5.3) and
Eq. (5.4). (b) The measured force velocity relation for η = 1 mPa s is shown where in Eq. (5.3)
not |FB,x| but ‖FB‖ is used. The dotted line emphasizes the linear decrease of the velocity.
The negative velocity of the bead at large Ft results from thermal fluctuations. Fluctuations
against walking direction increase the escape probability. In case of escape they cannot be
compensated by fluctuations in walking direction. (Numerical parameters: ∆t = 10−5, number
of runs N = 2 · 103 − 9 · 104.)

a large number of simulation runs (to avoid effects resulting from the initial conditions we
first allowed the relative position/orientation of bead and motor to “equilibrate” before
starting the actual measurement). The mean velocity is then given as the total (summed
up over all simulation runs) walking distance divided by the total walking time. The
good agreement between the numerical results and the theoretical predictions provides a
favorable test to the algorithm. At η = 1 mPa s (the viscosity of water), friction of the
bead has almost no influence on the walking speed. At hundred times larger viscosities,
however, bead friction reduces the motor speed to almost half of its maximum value already
at zero external load. Although the velocities of the motor and the bead are expected to
be equal, Fig. 5.2a shows that the motor is slightly faster than the bead. This is due to the
discrete steps of the motor and can be considered as a numerical artefact: at the moment
the motor steps forward the motor stalk is slightly more stretched (loaded) than before
the step, therefore, the escape probability is increased. The result of unbinding at the next
time step would then be that the bead moved a distance δ less than the motor. For loads
close to the stall force the observed velocity is slightly larger than the prediction, which is
due to thermal fluctuations of the bead: a fluctuation in walking direction slightly reduces
the load on the motor, thus increasing the step rate, whereas fluctuations against walking
direction lead to zero step rate.

It was observed by Block et al. that vertical forces on the bead (i. e., in z-direction) also
reduce the velocity of the motor [18]. But the same force that leads to stall when applied
antiparallel to the walking direction has a rather weak effect on the motor velocity when
applied in z-direction. Using nevertheless the total force of the motor ‖FB‖ in Eq. (5.3)
instead of its x-component |FB,x| [88], we measure a force velocity relation as shown in
Fig. 5.2b. Again, the velocity decreases essentially linearly with applied external force,
but stalls already at around Ft ≈ Fs/2 due to the vertical contributions of the force ‖FB‖.
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As the effect of vertical loading reported in Ref. [18] seems to be much weaker than that
shown in Fig. 5.2b, we reject this choice of force velocity relation.

From the simulations carried out for Fig. 5.2a we can also obtain the mean walking
distance 〈∆xb〉 for a single motor as a function of external load. The results are shown in
Fig. 5.3. Using Eq. (5.3) and the Bell equation Eq. (2.37) we obtain

〈∆xb〉 =
vm

ε
=
v0
ε0

1 − |FB,x|/Fs

exp(‖FB‖/Fd)
. (5.5)

The numerical results shown in Fig. 5.3 fit well to the theoretical prediction of Eq. (5.5)
when assuming the angle χ between the motor and the MT to be χ = 60◦. The angle χ
depends on the bead radius R, the resting length l0 [9] and the polymer characteristics of
the motor protein, e. g., its stiffness κ.

5.2 Mean walking distance for several motors

5.2.1 Theoretical predictions

We now turn to several motors pulling on the bead. The mean walking distance in terms
of the maximum number Nm of simultaneously pulling motors has been calculated by
Klumpp and Lipowsky based on a one-step master equation approach [83]. In the follow-
ing, we briefly summarize some of their results for the sake of later comparison to our
simulation results.

Let Pi be the probability that i motors are simultaneously bound (cf. Sec. 4.3). Given
sufficient data sampling, the system can be assumed to be in a stationary state. Then,
the Pi can be calculated by equating forward and reverse fluxes ([83, Eq. [2]], cf. also
Eq. (4.20))

(Nm − i)πPi = (i+ 1)εPi+1, i = 0, . . . , Nm − 1, (5.6)

where it is assumed that the off-rate ε is a constant with respect to time. The solution
to Eq. (5.6) is given by Eq. (4.26). Under the condition that at least one motor is bound
the probability that i motors are simultaneously pulling is Pi/(1 − P0) for i = 1, . . . , Nm.
Then, the mean number of bound motors Nb (given that at least one motor is bound) is
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[83, Eq. [13]]

Nb =

Nm
∑

i=1

iPi

1 − P0
=

(π/ε) [1 + π/ε]Nm−1

[1 + π/ε]Nm − 1
Nm. (5.7)

The effective unbinding rate εeff , i. e., the rate with which the system reaches the unbound
state, is determined from εeff (1 − P0) = πP0. This quantity can also be identified with
the inverse of the mean first passage time T (1|0) for reaching the unbound state, when
starting with one motor bound (Supporting Text of Ref. [83]). If the medium viscosity is
small, i. e., similar to that of water, and no external force is pulling on the bead, we assume
that the velocity of the bead U does not depend on the number of pulling motors. The
mean walking distance, that is the mean distance the cargo is transported by the motors
in the case that initially one motor was bound, is then the product of mean velocity U
and mean lifetime (1/εeff ) [83, Eq. [14]]:

〈∆xb〉 =
U

εeff
=

U

Nmπ

[

(

1 +
π

ε

)Nm

− 1

]

. (5.8)

For kinesin-like motors with π � ε this expression can be approximated by 〈∆xb〉 ≈
(U/Nmε)(π/ε)

Nm−1, i. e., the mean walking distance grows exponentially with Nm. In the
stationary state the bead velocity U and the motor velocity vm are equal. For no external
load and small viscous friction on the bead one can approximate ε ≈ ε0 in Eq. (5.7) and
Eq. (5.8).

5.2.2 Simulation results

The results shown in this section are based on the following simulation procedure. In each
simulation run the sphere is covered with Ntot motors. Initially, one motor, located at the
lowest point of the sphere, is attached to the microtubule such that the minimum distance
h between the sphere and the microtubule is given by the resting length of the motor, i. e.,
h = l0. The other (Ntot − 1) motors are uniformly distributed on the sphere’s surface.
When the motor starts walking it pulls the sphere closer to the MT because there is a
z-component in the force exerted on the sphere by the motor stalk (which is strained after
the first step). Then, other motors can bind to the MT. The system needs some time to
reach a stationary state of motion, so initially the motor velocity vm and the bead velocity
U are not the same (for reasons of comparison a fixed initial position is necessary; other
initial positions have been tested but initialization effects were always visible). As for the
case described in Ref. [83], a simulation run lasts until no motor is bound. For each run
quantities like the mean number of bound motors Nb, the walking distance ∆xb and the
mean minimum distance h between sphere and MT are recorded.

In Fig. 5.4 the measured distributions of walking distances are shown for different motor
coverages Ntot and for two different values of the resting length of the motor protein.
For each value of Ntot the walking distance was measured about N = 104 times. The
simulations turn out to be very costly, especially for large Ntot as the mean walking distance
increases essentially exponentially with the number of pulling motors (cf. Eq. (5.8)). From
Fig. 5.4 we see that the larger Ntot, the more probable large walking distances are, resulting
in distribution functions that exhibit a flatter and flatter tail upon increasing Ntot. This
is in qualitative accordance with distribution functions calculated in Ref. [83] for different
Nm. However, it is important to note that the total number of motors on the cargo Ntot is
not the same as the maximum number of simultaneously pulling motors Nm appearing in
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Figure 5.4: Distribution of walking distances ∆xb in semi-logarithmic scale for different
values of motor coverage Ntot. The motor protein is modeled as a harmonic spring according
to Eq. (5.1). (a) Resting length of the motor protein l0 = 50 nm. (b) Resting length of
the motor protein l0 = 65 nm. (Numerical parameters: time step ∆t = 10−5, number of
simulation runs N ≈ 104.)

Eq. (5.7) and Eq. (5.8). For example, when we compare the distributions for the smaller
resting length l0 = 50 nm in Fig. 5.4a and for the larger one, l0 = 65 nm, in Fig. 5.4b
but for the same Ntot, we see that for the larger l0 longer walking distances are more
probable. This can easily be explained by the fact that the larger the motor proteins, the
more motors are on average close enough to the microtubule to bind.

If Ab is the area on the sphere’s surface that includes all points being less than l0 apart
from the MT (cf. Fig. 5.5a), then, we expect on average nb = Ntotab motors to be close
enough to the MT for binding, with the reduced area ab := Ab/(4πR

2). At this point
we encounter a major difference between the simulation experiment (and presumably also
of the experimental situation) and the theoretical model leading to Eq. (5.8). While the
model assumes a fixed Nm, in the simulations only Ntot is fixed as explained above. As the
motors are uniformly distributed on the cargo, the probability distribution function P (k)
for placing k motors inside the above defined area fraction ab is a binomial distribution.
As we have l0 � R, ab is small and P (k) is well approximated by the Poisson distribution

function

P (k, nb) =
nk

b

k!
exp(−nb), nb = Ntotab. (5.9)

It must be pointed out that even if for every simulation run the same motor distribution
is used, the number of motors ab close enough to the MT for binding is not a constant
quantity. It rather changes during the transport process as the orientation and vertical
position of the sphere may change. Such fluctuations in the orientation of the sphere are
most likely during periods where only one motor is bound to the MT.

Thus, in order compare the simulation results for the mean walking distance and the
mean number of bound motors with the theoretical predictions Eq. (5.8) and Eq. (5.7),
respectively, we have to average over different Nm. In the following we account for this in
two different ways.
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Figure 5.5: (a) Illustration of the area fraction ab of the sphere (cut and placed to the left
of the sphere) on which motor proteins can reach the MT (thin cylinder). ab depends on
the minimum distance h between the sphere and the MT and on the resting length l0. (b)
Area-fraction ab(l0/R) for h = 0. Using the gnuplot fit-routine a fit (solid line) to the exact
result (dotted line) was obtained (cf. Eq. (5.10)). The inset shows the effect of an increase in
h for different l0.

Method 1

Here, we consider the maximum number of simultaneously pulling motors Nm to be con-
stant during one simulation run. With respect to the ensemble of runs we consider Nm

to be distributed according to Eq. (5.9). The area fraction ab is the remaining surface
area from the intersection of the sphere and a cylinder with radius l0 that is aligned along
the protofilament on which the motors are allowed to walk (see Fig. 5.5a). It can be
obtained by solving the following integral which follows from geometrical considerations
(all quantities are dimensionless)

ab(l0, h) =
1

4π

2π
∫

0

[

1 − 1

cos2 φ

(

h̃−
√

h̃− (1 + h̃2 − l20) cos2 φ+ cos4 φ

)]

dφ, h̃ := h+ 1,

ab depends on the minimum distance h between cargo and MT and the resting length l0 of
the motor protein. By fitting to a simple ansatz it turns out that the previous expression
is quite well approximated by

ab(l0, h) = 4π(0.53l0)
1.49(1 − h/l0), h < l0. (5.10)

Fig. 5.5b displays ab(l0, h = 0) and the dependence on h for some selected values of l0.

Averaging the mean walking distance 〈∆xb〉(Nm) from Eq. (5.8) over all Nm with
weighting factors given by Eq. (5.9) we obtain the following expression (nb = abNtot):

〈〈∆xb〉〉Poisson =

Nm,max
∑

Nm=1

nNm−1
b

(Nm − 1)!

U

Nmπ

[

(

1 +
π

ε0

)Nm

− 1

]/Nm,max
∑

Nm=1

nNm−1
b

(Nm − 1)!
. (5.11)

Note that the first motor is always placed to ab, and therefore, P (Nm − 1, nb) denotes
the probability of having in total Nm motors inside the area fraction ab. Furthermore, we
introduced a cutoff Nm,max of maximal possible motors (Ntot is obviously an upper limit
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Figure 5.6: (a) Mean walking distance 〈∆xb〉 (data points with error bars) as a function
of motors on the bead Ntot obtained from adhesive motor dynamics. The lines are fits of
Eq. (5.11) w. r. t. the area-fraction ab. (b) Mean number of bound motors Nb (data points
with error bars). The lines are the values obtained from the Poisson-averaged mean number
of bound motors 〈Nb〉Poisson in Eq. (5.12) using for ab the fit value from (a). (Parameters:
π = 5, ε0 = 1, λ0

s = 125, ∆t = 10−5, N ∼ 104.)

for Nm,max). In the limit Nm,max → ∞ we have 〈〈∆xb〉〉Poisson = U(eπnb/ε0 − 1)/(πnb).

In a similar way one can calculate the Poisson-averaged mean number of bound motors
〈Nb〉Poisson. Here, it is important to include the correct weighting factor: For the N sim-
ulation runs the mean number of bound motors is obtained as 〈Nb〉sim =

∑

i tin(i)/
∑

i ti,
where ti is a period of time during which n(i) motors are bound and the sum is over all
such periods of time. Assuming the bead velocity U to be a constant, the time periods
ti can also be replaced by the walking distances ∆xb,i during ti. Picking out all simula-
tion runs with a fixed Nm, their contribution to the sum is the mean number of bound
motors Nb times the total walking distance of beads with given Nm. The latter is the
mean walking distance 〈∆xb〉Nm times the number of simulation runs with the given Nm

(for sufficiently large N). Clearly, the fraction of runs with given Nm is the probability
P (Nm − 1, nb) introduced in Eq. (5.9). Consequently, we obtain

〈Nb〉Poisson =

∑Nm,max

Nm=1 P (Nm − 1, nb)〈∆xb〉NmNb(Nm)
∑Nm,max

Nm=1 P (Nm − 1, nb)〈∆xb〉Nm

. (5.12)

In Fig. 5.6a the mean walking distance as a function of Ntot obtained by numerical
simulations of the transport process is shown (points with error bars). For the motor
stalk three different values of the resting length l0 = 50, 65, 80nm are chosen and both the
full-spring and the cable model are applied for the force extension relation. The larger the
resting length l0 the more motors can simultaneously bind for given Ntot, and therefore the
larger is the mean walking distance (cf. also the distributions in Fig. 5.4). Furthermore,
Fig. 5.6a also shows that it makes a clear difference whether the motor stalk behaves like
a full harmonic spring or a cable. If the motor protein behaves like a cable (semi-harmonic
spring, Eq. (2.39)) it exhibits force only if it is stretched. The vertical component of this
force always pulls the cargo towards the MT. Thus, the mean height between the cargo
and the MT (which determines how many motors can bind at maximum) results from the
interplay between this force and thermal fluctuations of the bead. In contrast, if the motor
also behaves like a harmonic spring when compressed, it once in a while may also push
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the cargo away from the MT. This results in less motors being close enough to the MT
for binding than in the case of the cable-like behavior of the motor stalk. Consequently,
given the same l0 and Ntot, the cargo is on average transported further when pulled by
“cable-like motors”.

To compare the simulation results for the mean walking distance with the theoretical
prediction Eq. (5.11), we use Nm,max equal to the maximum number of bound motors that
occurred during all of the N simulation runs. For the bead velocity U we use the mean
value measured during the simulations (this is up to 15 % less than the maximum motor
velocity v0; responsible are mainly geometrical effects). Then, the only unknown parameter
is the area fraction ab. The curves shown in Fig. 5.6a are obtained by fitting Eq. (5.11)
to the numerical data. The fit was done using an implementation of the Marquardt-
Levenberg algorithm from the numerical recipe book [117]. The resulting ab values are
summarized in Tab. 5.3. The increase in ab for larger resting length and the cable model

l0, motor-model fit value for ab measured h → ab (measured)

50nm, spring Eq. (5.1) 0.00211 7-14 nm → 0.0039-0.0034

50nm, cable Eq. (2.39) 0.0026 4-11 nm → 0.0041-0.0036

65nm, spring Eq. (5.1) 0.00315 7-13 nm → 0.006-0.0055

80nm, spring Eq. (5.1) 0.00403 8-14 nm → 0.0082-0.0076

80nm, cable Eq. (2.39) 0.00518 4-11 nm → 0.0085-0.0079

Table 5.3: Obtained fit values for the area fraction ab for different l0 and the two applied
polymer models. For comparison the area fraction which is obtained from the measured mean
distance h is also displayed.

is in accordance with the above discussed expectation. In the simulation also the mean
distance h between cargo and MT is measured. Using h to calculate the area fraction
provides about 60 % larger values for ab than obtained from the fit (see Tab. 5.3), but
shows the correct trend.

In Fig. 5.6b the mean number of bound motors (the average is obtained over all N
simulation runs) is shown as a function of Ntot (for the same three l0 values as in Fig. 5.6a
but only for the force extension relation Eq. (5.1)). Also shown (lines) are the theoretical
predictions based on Eq. (5.12) using for ab the corresponding fit values listed in Tab. 5.3.
The predicted behavior is only in qualitative accordance with simulation results. In fact,
the results obtained from simulations are up to 60 % larger than the values obtained from
Eq. (5.12). Indeed, from the larger measured area fraction (last column in Tab. 5.3) a
larger number of bound motors is expected than is predicted using the smaller ab obtained
from the fit.

The observed discrepancy probably results from the basic assumption leading to
Eq. (5.11) and Eq. (5.12), i. e., considering Nm to be constant during a simulation run.
As already pointed out above this is not the case. For example, after the escape of one
motor the pulling forces from the remaining motors may change the orientation of the
spherical cargo resulting in a larger or smaller Nm. During periods where more motors are
available for binding also more motors are on average bound leading to a stabilization of
the cargo orientation. This effect leads to a local drift of surface areas with denser motor
coverage towards the microtubule. Furthermore, we considered the off-rate ε to be given
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Figure 5.7: The data points shown here are the same as in Fig. 5.6. Data is, however, not
plotted against Ntot but against Nm(Ntot) according to Eq. (5.13). (a) Mean walking distance
〈∆xb〉. The lines are fits of Eq. (5.8) w. r. t. an effective on-rate πeff . For the fits the gnuplot

fit routine was used. Resulting fit values for the full spring model: πeff = 0.49, 0.56, 0.60 for
l0 = 50, 65, 80 nm, respectively. For the cable model: πeff = 0.65, 0.85 for l0 = 50, 80 nm,
respectively. (b) Mean number of bound motors Nb. The lines show Nb using Eq. (5.7) with
the effective on-rate πeff obtained in (a).

by the unstressed off-rate ε0. But in fact the off-rate is not a constant value, it rather
varies permanently, with ε ≥ ε0, for each motor depending on its individual load. This
results in an average off-rate rate that is larger than the unstressed off-rate.

Method 2

We now consider Nm to be a constant for fixed Ntot. For that we propose an estimate for
Nm as a function of Ntot given by

Nm =
l0
2R

(Ntot − 1) + 1 ≈ l0
2R

Ntot + 1, (5.13)

Ntotl0/2R is the mean number of motors on a spherical cap of height l0 for Ntot motors
uniformly distributed on the bead’s surface. The additional motor count contributes for
the first motor that is always distributed to be close enough for binding to the MT. The
choice in Eq. (5.13) for the estimate of Nm(Ntot) is somewhat arbitrary. However, it is
important that Nm(Ntot) is larger than the mean number of motors that can access the
MT. This can be compensated when matching Eq. (5.8) to the data points by not using
the on-rate π but some effective on-rate πeff < π.

Fig. 5.7 shows the same simulation results as Fig. 5.6 but plotted as a function of
Nm(Ntot) from Eq. (5.13). In Fig. 5.7a also fits of Eq. (5.8) for an effective on-rate πeff

are displayed. The resulting fit values are listed in the figure caption of Fig. 5.7. The
fitted curves turn out to match the simulation data about equally well as the fitted curves
in Fig. 5.6a do. The effective off-rates πeff are up to a factor ten smaller than the π-value
used in the simulation, indicating that most of the walking time less than the Nm(Ntot)
motors proposed in Eq. (5.13) can access the MT.

In Fig. 5.7b the simulation data for the mean number of bound motors and Eq. (5.7)
using πeff as a function of Nm(Ntot) defined in Eq. (5.13) is shown. The theoretical
prediction fits now better than the corresponding fitting method discussed above (cf.
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Fig. 5.6b). But still the simulation results are up to 30 % larger than the theoretical
predictions. Similarly as for the previous applied fitting method the discrepancy can partly
be explained by the non-constant off-rate ε. Although the second method of bringing the
simulation results and the theoretical prediction into accordance works slightly better, it
has to be taken with a grain of salt as the proposal of Nm in Eq. (5.13) is somewhat
arbitrary.

5.3 Summary and discussion

In this chapter, we introduced an extension of the adhesive dynamics algorithm presented
in Sec. 2.4.3 that is capable of simulating the active transport of a spherical cargo particle
by molecular motors. The important parameters and properties by which the motors are
modeled are based on results of single-molecule experiments with conventional kinesin
(mainly collected in [83]). The numerical measurement of the force velocity relation and
the mean walking distance of the sphere for a single motor pulling in the presence of
external load and high viscosities provided a favorable test to the algorithm.

Next, we computed the mean walking distance and the mean number of bound motors
as a function of the total number Ntot of motors attached to the sphere. Klumpp and
Lipowsky give theoretical predictions for these quantities as a function of the maximum
number Nm of simultaneously pulling motors [83]. We pointed out that Nm is not a con-
stant quantity neither in our simulation experiment nor in a real experiment. Thus, to
account for the difference between fixed Ntot and Nm, respectively, we applied two meth-
ods of fitting our numerical obtained mean walking distances to the theoretical predictions
from Ref. [83]. In general, these fits worked fine as the numerical data recover the same
functional relation for the mean walking distance with respect to Ntot as the theoretical
prediction does with respect to Nm. But the numerically obtained mean number of bound
motors turned out to be distinctly larger (up to 60 %) than the theoretical prediction
with respect to the before obtained fit values. This discrepancy possibly results from
fluctuations of the cargo and the discrete steps of the motors which both lead to tem-
porally non-constant unbinding and step rates. In addition, also the number of motors
that can access the microtubule changes during the transport process. By taking these
effects into account the numerically obtained values presented here provide a link between
the theoretical predictions by Klumpp and Lipowsky and results obtained from in vitro

experiments where the run length of motor-covered beads is measured (e. g., [33]).

For several motors pulling the cargo, we measured a mean separation between cargo
and MT of h = 4 − 14 nm. In a recent experimental study using fluorescence interference
contrast microscopy it was found that kinesin holds its cargo about 17 nm away from
the MT [77]. Our smaller distance probably results from neglecting any kind of volume
extension (except binding site occupation) of the motor protein, the simplified force exten-
sion relation applied to model the stalk behavior, and neglecting electrostatic repulsions.
Therefore, for future simulations it might be useful to account for these effects, e. g., by
including a more realistic polymer model for the motor protein and by using hardcore
interactions that account for the finite volume of the protein segments.

The simulations carried out so far demonstrated the applicability of the extended
adhesive dynamics algorithm to active motor transport. In future simulations a couple of
questions will be addressed which are difficult to treat analytically. For example Hill et
al. found from in vivo experiments—where the viscoelastic friction on the cargo is about
three orders of magnitude larger than that in a flow chamber—that the cargo moves
with constant velocity for some period of time and then switches to another constant
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velocity in a step-like fashion. The distribution of velocities is peaked at multiple values of
the minimum observed velocity. It was argued that each velocity corresponds to a certain
number of simultaneously pulling motors that share the load [69]. With our algorithm this
situation can also be simulated in silico using large viscosities. Then, the instantaneous
bead velocity can directly be correlated with the instantaneous number of pulling motors.

The question of ‘how efficient is initial binding of a cargo particle in terms of its motor
coverage’ can be addressed with the method of calculating the MFPT for receptor-ligand
encounter done in Chapter 3. Having many MTs aligned next to each other approximately
corresponds to the situation of homogeneous ligand coverage. Then, for a cargo that is
slightly denser than the surrounding medium the results for the MFPT in terms of Nr

(= Ntot) in the diffusive limit (i. e., no shear flow) presented in Chapter 3 can also be
applied for motor covered beads. It must be noted that in Chapter 3 it was found that
the binding efficiency is especially enhanced by a large capture height r0. For motors this
roughly corresponds to the resting length l0/R ≈ 0.05 which turns out to be large as well.



Chapter 6

Summary and outlook

6.1 Summary

Motivated by the process of rolling adhesion of white blood cells, we investigated various
aspects of specific receptor-ligand binding of a spherical particle to a wall in hydrodynamic
flow. The particle was covered with receptor patches of varying density and size, and the
wall was covered with a regular lattice of ligand patches of varying lattice constant. We
presented an algorithm that allows to numerically simulate the motion of the spherical
particle above the wall in linear shear flow by accurately taking into account the hydro-
dynamic interaction between the sphere and the wall, Brownian motion, and the influence
of deterministic forces acting on the particle.

In Chapter 3 we numerically calculated the mean first passage time (MFPT) for the
first encounter between a cell receptor and a wall ligand. Averaged over the sphere’s initial
orientation and initial position relative to the wall-ligands, the MFPT is a measure for the
efficiency of initial binding of a sphere to a wall. We showed that the inverse of this time
can be interpreted as the rate of encounter formation. For the MFPT dependence on the
sphere’s initial height above the wall we derived an exact expression. The MFPT in the
limiting case of homogeneous receptor and ligand coverage defines the optimum efficiency
of initial binding and could be solved exactly. Then, we investigated how the MFPT is
modified for non-homogeneous coverage by modeling receptors as spherical patches on the
sphere with capture height r0 and ligands as spherical patches on the wall.

An important dimensionless parameter that measures the relative importance of hy-
drodynamic and diffusive motion is the Péclet number Pe. In the diffusive limit, i. e., for
Pe ≈ 0, we obtained a finite value for the MFPT. With increasing Pe the MFPT was
always monotonically decreasing. Thus, the MFPT in the diffusive limit already defines
a measure for the efficiency of initial binding. In this limit, it turned out that above a
threshold value of a few hundreds, binding efficiency is enhanced only weakly upon in-
creasing the number of receptor patches. Similarly, at very diluted ligand coverages the
MFPT scales inversely with ligand density, but at ligand coverages above 1 % the MFPT
deviates only weakly from the optimum value reached at 100 % coverage.

Regarding receptor geometry, increasing height increases binding efficiency much stron-
ger than increasing lateral patch size. Our findings give an explanation why white blood
cells adhere to the vessel walls through receptor patches localized to the tips of microvilli,
and why malaria-infected red blood cells form elevated receptor patches, so-called knobs.
For the case that the motion of the sphere is restricted to 2D, we were able obtain the
MFPTs also by solving a reaction-diffusion equation. These analytical results allowed us
to derive the proper scaling behavior for some limiting cases in terms of the strength of
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the downward acting drift and the number of receptor patches, in very good agreement
with our numerical findings.

In Chapter 4, we investigated the motion of white blood cells under the action of
receptor-ligand bonds. For this we extended a version of Hammer’s [66] adhesive dy-
namics algorithm by including Brownian motion and spatially resolved ligands. We first
analytically demonstrated that a cell changes its motion from slipping to rolling under
the action of bond forces and torques in the sense that RΩ/U becomes approximately 1,
where Ω and U are angular and translational velocity of the cell, respectively. Then, we
showed that depending on the parameters the cell exhibits distinct types of motion. Using
the mean translational velocity 〈U〉, its standard deviation, and the mean angular velocity
〈Ω〉, we defined five stationary states of cell motion. We systematically investigated the
appearance of these stationary states with respect to the dimensionless on-rate π = kon/γ̇
(with shear rate γ̇) and dimensionless unstressed off-rate ε0 = k0/γ̇ of the bonds in so-
called on-off state diagrams. In these state diagrams the influence of different parameters
was mapped to a phenomenological state of motion observable in experiments. For ex-
ample for certain values of π, ε0 and depending on the other parameters rolling occurred
in the sense R〈Ω〉/〈U〉 → 1. We argued that the numerically obtained state diagrams in
Chapter 4 could be used to determine the on-rate of receptor-ligand bonds. This would be
possible by comparing our results to flow chamber experiments based on recent nanotech-
nological developments that allow to control the ligand-ligand distance [8] and to observe
the angular velocity by using receptor-covered beads which exhibit an optical anisotropy.

In addition to the numerical treatment, we also defined a simplified on-off model based
on a master equation with non-trivial continuous drift term. By solving this model for
constant off-rates, we were able to reproduce the numerically obtained general form of the
mean velocity curve 〈U〉 depending on π and ε0. But as the simplified model describes only
motion in one dimension and as we neglected any force dependence on the off-rate, in the
framework of the on-off model we were neither able to explain the appearance of rolling
nor the influence of large viscosities. We concluded this chapter by showing that receptors
that are located to the tips of soft microvilli (MV) mediate rolling in a much larger range
of applied shear rates than receptors located on stiff MV. We could explain this increased
robustness for soft MV by an increase in the number of bound MV in accordance with
findings from Chen and Springer [29] and by the fact that for soft MV, the zone of bond
formation is separated from the region were the tensile force on the bonds is highest.

In Chapter 5 we presented an extension of the adhesive dynamics algorithm that al-
lows to apply our theoretical framework also to the active transport of a spherical cargo
particle by molecular motors. Our algorithm includes microscopic details of this transport
process, like Brownian motion of the spherical cargo, single motor actions (e. g., steps) and
the effect of forces and torques exerted by a single motor on the cargo. We numerically
calculated the mean run length of a sphere as a function of the total number of motors Ntot

on the sphere. We showed that the mean run length of the sphere increases exponentially
with Ntot. Klumpp and Lipowsky derived a similar result for the mean run length depend-
ing on the maximum number of simultaneously pulling motors Nm [83]. Our simulations
showed that Nm is not a constant quantity as thermal fluctuations and torques exerted
by attached motors continuously change the orientation of the sphere.

6.2 Outlook

The work presented in this thesis provides a very general framework which in the future
could be used to study applications to different systems of interest in biophysics, cell
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biology and biotechnology. Here, we have applied it to the initial stages of cell adhesion
in shear flow (Chapter 3), rolling adhesion of white blood cells (Chapter 4) and cargo
transport by several molecular motors (Chapter 5).

Regarding the initiation of cell adhesion in shear flow we considered only the en-
counter step of the whole receptor-ligand complex formation. In order to obtain a better
comparison to experimental data, the presented analysis should be complemented by the
implementation of an adhesion scenario, which in general should also include molecular
determinants like residence times, receptor flexibility, and rupture probability of newly
formed bonds. For example, it was argued that bonds may strengthen with increasing
but small tensile force [46]. Such a catch bond behavior also affects the process of initial
binding. Within our algorithm, the Bell model (which describes pure slip bonds) can be
easily replaced with models that describe catch-slip bonds [12, 109]. A model extended
in this way might then explain why the adhesion frequency for leukocytes first increases
with increasing shear rate and then decreases again for even larger shear rates as exper-
imentally observed in flow chamber experiments using P-selectin ligands [30]. Similarly,
also the on-off state diagrams could be calculated for the case of catch bonds or other
molecular adhesion scenarios.

Regarding the active cargo transport by several molecular motors it would be inter-
esting to study also transport against the direction of an incident shear flow. This would
combine the work of Chapter 4 with the ideas pursued in Chapter 5. Then, two oppos-
ing effects exist characterized by the step rate λ and the shear rate γ̇, respectively. Their
interplay together with the rates for binding and unbinding kon and k0, respectively, deter-
mine whether the cargo moves in walking direction or in flow direction (the latter either
with hydrodynamic velocity or in a transient stop-go fashion, cf. Chapter 4). Experi-
mentally, such a setup might provide interesting perspectives for biomimetic transport in
microfluidic devices.

For the sake of computational and conceptual simplicity, in this thesis we have made
several simplifying assumptions, including the assumptions of a single rigid particle in
linear shear flow. In order to examine the contributions arising from deformations of the
particle to the processes studied here, one could combine our simulation framework for
specific adhesion with earlier work for deformable objects in shear flow, including droplets,
vesicles and red blood cells [106, 92, 116]. In particular, the boundary element method
could be used to account for the interactions between hydrodynamic flow and the cellular
membrane [147].

Regarding the assumption of a single sphere corresponding to low cell densities, the
derivation of the Euler algorithm Eq. (2.26) briefly sketched in Chapter 2 can also be
extended to M rigid spheres. Then, formally Eq. (2.26) looks the same with the velocity
U (force/torque F) replaced by a 6M dimensional velocity (force/torque) vector and the
mobility matrix M being a 6M ×6M matrix [21]. Jones et al. give detailed descriptions of
how to numerically obtain the mobility matrix for M spheres above a wall. The mobility
matrix then does not only depend on the heights above the wall but also on the relative
positions of the spheres to each other, which substantially increases the computational
cost [32, 74]. A nice application for a two-sphere algorithm arises then in the context of
active cargo transport studied in Chapter 5. For example, one could investigate synchro-
nization effects between the stationary velocities of two cargoes pulled by motors due to
hydrodynamic interactions. Furthermore, one could study the appearance of flow due to
cargo transport observed in cells (cytoplasmic streaming) [139].

Instead of a linear shear flow one could also consider to extend our analysis to Pois-
seuille flow, which is relevant for experiments in narrow flow chambers and better mimics
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the flow conditions in blood vessels. A numerical scheme to calculate the mobility matrix
for a sphere in Poisseuille flow between two parallel walls was recently given by Jones [75].

In order to check our predictions experimentally, one can work either with biomimetic
systems (e. g., latex microspheres covered with receptors) or with carefully prepared cellu-
lar systems. One especially appealing possibility is the use of malaria-infected red blood
cells, which develop a fairly regular arrangement of adhesion patches on the cell surface
(knobs). Using in addition a nanostructured substrate that forms a regular pattern of lig-
and patches one would obtain a very good experimental realization of our model system.
Thus, one would hope to find good agreement with the MFPTs calculated in Chapter 3.

The proper knowledge of the MFPT could also be used to design cell sorting exper-
iments. Suppose, one has a mixture of different cells each bearing some receptors and
the wall is covered with one kind of ligand. Then, the cells are flowed into the chamber
and flow is stopped. Certainly, only cells that bear receptors which fit to the ligands can
attach to the wall. If the flow is then turned on again, the attached cells will be separated
from the other cells. If the no-flow period is much shorter than the MFPT, only a few cells
can attach. If the no-flow period is much longer than the MFPT, attached cells might
already start to spread and are therefore difficult to remove. Only if the no-flow period is
of the order of the MFPT one gets an appreciable number of weakly attached cells. In this
sense the theoretical analysis presented in Chapter 3 might be essential for appropriate
biotechnological applications.
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Appendix A

Varia

A.1 Units

Defining the following units: UM = 1/6πηR for mobility; UR = R for length scale, UF

for the force scale and UT for the time scale and writing the Langevin-equation (2.21) in
non-dimensionalized and time discretized form we obtain

∆Xt = cs
(

U∞ + MFS
)

∆t+ cfMFD∆t+ cd∇M∆t+
√
cd∆gt, (A.1)

with the coefficients

cs = γ̇UT , cf =
UFUTUM

UR
, cd = kBTa

UMUT

U2
R

.

In the following table these coefficients for different choices of UF , UT that are used for
the different types of simulations carried out for this thesis are summarized:

cs cf cd in Chapter

UF = 6πηR2γ̇, UT = 1
γ̇ 1 1 kBTa

6πηR3 γ̇ 4

UF = 6πηR2γ̇, UT = 6πηR3

kBTa
Pe = 6πηR3 γ̇

kBTa
Pe = 6πηR3 γ̇

kBTa
1 2,3

UF = kBTa

R , UT = 6πηR3

kBTa
Pe = 6πηR3 γ̇

kBTa
1 1 –

UF = Fd, UT = 1
ε γ̇/ε Fd

6πηR2ε
kBTa

6πηR3ε 5

Table A.1: Coefficients for different choices of non-dimensionalizing the Langevin-equation
Eq. (2.21).

A.2 Numerical time step

The numerical results presented in this thesis are based on the Euler algorithm Eq. (2.26)
(see also App. B.3). Thus, the accuracy of these results depend on the used numerical
time step (see also App. C). Here, we present different considerations that provide an
upper limit for the time step.

For the MFPT calculations in Chapter 3 the numerical time step must be small enough
to sample the trajectories at a resolution of the order of the capture height r0 ≥ 10−3,
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i. e., when the sphere is close to the wall the mean step length should be smaller than r0.
For the random update this leads to r0 > 0.1

√
∆t ⇒ ∆t < 10−4 (including the effect of

reduced mobility close to the wall). In addition, we obtain from the deterministic part
of the update step in z-direction ∆t < r0/Pez . Thus, a time step of the order of 10−5

is reasonable for Pez of the order of 102. To keep a high spatial resolution also for large
Pe a linear interpolation of the receptor’s trajectory between two successive time steps is
considered rather than a further decreased time step (see Sec. 3.4).

For the simulations carried out in Chapter 4 also the action of bond forces must be
included for the time step estimate. Neglecting contributions from Brownian motion the
sphere moves (considering the x-direction only and neglecting torques) by

∆x = U∆t = (µtt
xxFB,x + b1)∆t

during time step ∆t, where µtt
xx is a component of the mobility matrix (cf. Eq. (2.16)),

FB,x is the bond force, and b1 the hydrodynamic velocity (cf. Eq. (4.1)). Typically, the
bond is stretched by the shear flow and the resulting bond force opposes the shear flow. If
the bond was formed at t = 0 it will be stretched by b1∆t within the first time step. This
leads to a bond force at t = ∆t: FB,x = −κb1∆t. This bond force reduces the velocity of
the sphere. However, if the numerical time step ∆t is chosen too large the bond force may
even revert the velocity. This artefact is avoided if b1 −µtt

xxκb1∆t > 0. Thus, a reasonable
numerical time step is given by

∆t� 6πηR

UTκ
<

1

UTκµtt
xx

, (A.2)

with the time scale UT introduced in Sec. A.1. If Nm bonds are simultaneously formed
one can replace κ → Nmκ having an effectively stiffer bond. In the above analysis we
neglected the effect of the bond resting length l0. Including this effect corresponds to
replacing the spring constant by κ(1 − l0/‖rl − rr‖) < κ (cf. Sec. 2.4.3). For rolling
adhesion simulations at shear rates γ̇ ≈ 100 Hz and for κ = 10−3 N/m the estimate
Eq. (A.2) gives ∆t � 5 · 10−3. Similar considerations for the case of no shear flow lead
the same estimate Eq. (A.2), which can therefore also be applied to the adhesive motor
dynamics simulations carried out in Chapter 5.

So far, we only considered upper limits for the time step. A lower limit is given
by limitations of available computing time. From a physical point of view a further
limitation arises. In Sec. 2.2 we introduced a Gaussian white noise process Eq. (2.20) as an
approximation for the physical noise. The approximation of uncorrelated noise is valid on
time scales that are larger than ∆m/6πηR = 2∆ρR2/(9η) ≈ 10−7 s (for ∆ρ = 50 kg/m3,
R = 5 µm, η = 1 mPas) [21]. Thus, processes that involve a configuration change much
faster than this time scale cannot properly be described by Eq. (2.26).
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Stokesian dynamics

B.1 Implementation of friction and mobility matrices

For the numerical implementation of the friction and mobility tensors for a sphere in
linear shear flow above a wall we use the results from Refs. [111, 31]. This implementation
procedure has been described and tested in detail in Ref. [31]. In this appendix, we briefly
summarize it.

Writing the friction tensors in terms of irreducible tensors formed from δij , εijk,k de-
fines the scalar friction functions. In the case that the normal vector to the wall is k = ez,
these tensors read

ζtt =





ψtt 0 0
0 ψtt 0
0 0 φtt



 , ζtr = ψtr





0 1 0
−1 0 0
0 0 0



 = ζrtT ,

ζrr =





ψrr 0 0
0 ψrr 0
0 0 φrr



 ,

ζtd
α =





−1
3δα3φ

td 0 1
2δα1ψ

td

0 −1
3δα3φ

td 1
2δα2ψ

td

1
2δα1ψ

td 1
2δα2ψ

td 2
3δα3φ

td



 , ζrd
α =

1

2
ψrd





0 0 ε3α1

0 0 ε3α2

ε3α1 ε3α2 0



 ,

ζdt
α =





1
2δα3ψ

dt 0 −1
3δα1φ

dt

0 1
2δα3ψ

dt −1
3δα2φ

dt

1
2δα1ψ

dt 1
2δα2ψ

dt −2
3δα3φ

dt



 , ζdr
α =

1

2
ψdr





0 δα3 0
−δα3 0 0
−δα2 δα1 0



 .

This defines the scalar friction functions φtt, ψtt, ψtr , φrr, ψrr, φtd, ψtd, ψdr. The scalar fric-
tion functions φ, ψ depend only on the inverse distance of the sphere from the wall, that is
the dimensionless variable s = R/z, which takes values from the interval [0, 1]. The friction
functions can be expanded in powers of s. The numerically obtained first 20 coefficients
of such a series expansion of the dimensionless scalar friction functions

φ̂tt = φtt/6πηR, ψ̂tt = ψtt/6πηR, φ̂rr = φrr/8πηR3,

ψ̂rr = ψrr/8πηR3, ψ̂tr = ψtr/8πηR2 = −ψ̂rt

are tabulated in Ref. [111]. For the other three dimensionless scalar friction functions

φ̂dt = φdt/6πηR2 = φ̂td, ψ̂dt = ψdt/6πηR2 = ψ̂td, ψ̂dr = ψdr/8πηR3 = −ψ̂rd
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the first 32 coefficients of a series expansion in powers of s are tabulated in Ref. [31]. For
small values of s the series expansion converges quite well and only a few coefficients are
needed to obtain accurate results. However, for s→ 1, i. e., close to the wall, the friction
functions are better described in a lubrication expansion, which reads

φ̂ ≈ C1
s

1 − s
+ C2 ln(1 − s) + C3 +C4

1 − s

s
ln(1 − s) + O(1 − s). (B.1)

The coefficients C1, C2, C3, C4 for the eight friction functions defined above can be found
in Ref. [31] and are cited in Tab. B.1 (Exact expressions for C1, C2, C4 for the case of
lubrication flow between two unequal-sized spheres have been given before by Jeffrey and
Onishi [73], the correct coefficients for a sphere above a wall then follow in the limit
that one sphere becomes infinitely large.). In order to match the two limit cases, to the

φ̂tt ψ̂tt φ̂rr ψ̂rr ψ̂tr φ̂dt ψ̂dt ψ̂dr

C1 1 0 0 0 0 −1 0 0

C2 −1
5 − 8

15 0 −2
5

1
10 −4

5
14
15

1
5

C3 0.97127 0.95429 ζ(3) 0.37089 0.19295 −0.30697 1.23538 0.18719

C3 − 1
21 − 64

375 0 − 66
125

43
250 −13

21
442
375 − 2

125

Table B.1: Coefficients of the lubrication expansion for the scalar friction function from
Ref. [31]. ζ(x) is the zeta function.

asymptotic expansion of the s→ 1 limit is subtracted from the friction functions

φ̂(s) =
∞
∑

n=0

fns
n,

leading to a new series expansion:

φ̂(s) − C1
s

1 − s
− C2 ln(1 − s) − C4

1 − s

s
ln(1 − s)

= f0 + C4 +

∞
∑

n=1

(

fn − C1 +
C2

n
− C4

n(n+ 1)

)

sn =:

∞
∑

n=0

gns
n.

This series is truncated at nmax ≡ K and the coefficients gn are calculated from the
coefficients fn, Ci. Next, the coefficients gn (n = 0, . . . ,K) are not used to calculate the
Taylor sum, but rather to calculate the Padé approximant to this function. The Padé
approximant is given as

PK(s) =
a0 + a1s+ a2s

2 + . . .+ aKs
K

1 + b1s+ b2s2 + . . .+ bKsK
,

where the coefficients ai, bj are the solution to

K
∑

n=1

bngK−n+k = −gn+k,

k
∑

n=1

bngk−n = ak, k = 1, . . . ,K.
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Figure B.1: Dimensionless scalar mobility functions. (a) Plotted versus the dimensionless
parameter s. (b) Plotted versus 1 − s, thus better illustrating the asymptotic behavior for
s→ 1 (in log-scale for the horizontal axis).

Finally, the numerically implemented friction functions become

φ̂(s) = C1
s

1 − s
+ C2 ln(1 − s) + C4

1 − s

s
ln(1 − s) + PK(s). (B.2)

For the calculation of the coefficients ai, bj of the Padé approximant we use the algorithm
provided by the Numerical Recipes [117].

As mentioned in the introduction the scalar friction functions have been calculated
using a finite element method and tabulated for some selected height values by Goldman
et al. [59, 60]. In Refs. [111, 31] these values are cited and compared to their own reflection
series results. These tables show excellent agreement between the two numerical results.
Furthermore, they provided us with the possibility to obtain favorable checks for the
implementation of the scalar friction functions.

Having implemented the scalar friction functions, the implementation of the mobility
tensors proceeds by substituting ζ ↔ µ, φ ↔ α,ψ ↔ β in the above decomposition of the
friction tensors. This defines the scalar mobility functions αtt, βtt, αrr, βrr, βtr, αdt, βdt, βdr.
Using Eq. (2.16) the dimensionless scalar mobility functions can be calculated from the
scalar friction functions:

α̂tt = 1/φ̂tt, β̂tt =
ψ̂rr

ψ̂ttψ̂rr − 4
3(ψ̂tr)2

,

α̂rr = 1/φ̂rr, β̂rr =
ψ̂tt

ψ̂ttψ̂rr − 4
3(ψ̂tr)2

,

β̂tr = −β̂rt = −4

3

ψ̂tr

ψ̂ttψ̂rr − 4
3(ψ̂tr)2

, α̂dt = −α̂td = −φ̂dtα̂tt,

β̂dt = −β̂td = −ψ̂dtβ̂tt − ψ̂drβ̂tr, β̂dr = β̂rd = −3

4
ψ̂dtβ̂tr − ψ̂drβ̂rr. (B.3)

The asymptotic behavior of the scalar mobility functions for s→ 1 follows from inserting
Eq. (B.1) into Eq. (B.3) (for example for α̂tt it follows α̂tt(s) ≈ 1− s [31]). In Fig. B.1 we
use our implementation to plot the eight dimensionless mobility functions.
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The limit of an unbounded flow corresponds to s→ 0 and results in

ζtt = 6πηRI, ζrr = 8πηR3I, ζtr = ζrt = ζrd = ζtd = 0, (B.4)

where I is the unity matrix. Thus, Eq. (2.13) reduces to

FH = 6πηR (U−U∞) , TH = 8πηR3 (Ω−Ω∞) . (B.5)

This are the well-known Stokes laws for the friction force and torque exerted on a sphere
moving in a fluid with relative velocity U−U∞. For the linear shear flow considered here,
U∞ = γ̇zex and Ω∞ = γ̇ey/2.

B.2 Relation to the Smoluchowski equation

The probability distribution Ψ(X, t) of a Brownian particle subject to external force/torque
F satisfies a continuity equation ∂tΨ+∇·J = 0. The probability flux J contains a diffusive
and a convective part [157]:

Ji = −Dij∂jΨ + MijFjΨ, (B.6)

where D and M are diffusion and mobility matrices, respectively, and F is external force.
In equilibrium, the flux has to vanish and the probability distribution has to become the
Boltzmann distribution. This leads to the Einstein relation D = kBTaM, which is a special
case of the fluctuation-dissipation theorem. Using Eq. (B.6) and the Einstein relation in
the continuity equation leads to the Smoluchowski equation [36]:

∂tΨ = ∂i (Mij(kBTa∂jΨ − FjΨ)) . (B.7)

We now will derive the equivalent Langevin equation. In the case of constant mobility
(additive noise), e. g., Mij = δij , the appropriate Langevin equation is given by

∂tXt = MF + gS
t , (B.8)

where gS
t is a Gaussian white noise term and the Stratonovich interpretation is used as

explained in Sec. 2.2. However, if M depends on X (multiplicative noise), an additional
drift term occurs in the Langevin equation

∂tXt = MF + kBTaY + gS
t . (B.9)

The following derivation of the drift term Y proceeds in two steps. First, we perform a
coordinate transformation which makes the noise additive. In the case of additive noise
the Langevin equation (B.8) and the Fokker-Planck equation (B.7) are equivalent. Then,
starting from the Fokker-Planck equation in the new coordinates we perform the transfor-
mation back to the old coordinates. Requiring the transformed Fokker-Planck equation
to be of the same form as in Eq. (B.7), determines the drift term Y.

As we use the Stratonovich interpretation for the noise process the usual rules for
differentiation and integration apply and we can perform the following coordinate trans-
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formation (cf. Ref. [36] for the one-dimensional case)

X′ =

X(t)
∫

S(X′′)dX′′, (B.10)

with some regular matrix S. The Langevin equation for the transformed coordinates then
reads

∂tX
′
t = S∂tXt = SMF + kBTaSY + SgS

t . (B.11)

From the requirement that M′
ij = δij , that is

〈SgtSgt〉 !
= 2kBTaE, Eij := δij , (B.12)

we can fix S to be the inverse of a matrix B with

S = B−1, M = BBT ⇔ Mij = BikBjk. (B.13)

As M is a symmetric positive definite matrix, it is always possible to find a matrix B with
M = BBT . Defining

F′ := BTF + kBTaSY, g̃S
t := SgS

t = B−1gS
t , (B.14)

the new Langevin equation for the primed coordinates and with additive noise reads

∂tX
′
t = M′F′ + g̃S

t . (B.15)

The corresponding probability distribution Ψ′(X′, t) is the solution of the Smoluchowski
equation

∂tΨ
′(X′, t) = ∂′kδki(kBTa∂

′
iΨ

′ − F ′
iΨ

′). (B.16)

Next, we transform (B.16) back to the unprimed coordinates. The preservation of proba-
bility requires that

Ψ′(X′, t) = JΨ(X, t), (B.17)

where J is the Jacobian of the coordinate transformation [96]:

J := det

(

∂Xi

∂X ′
j

)

= det (B) ,
∂Xi

∂X ′
j

= Bij. (B.18)

Inserting (B.17) into (B.16) gives

∂tΨ
′ = J∂tΨ = ∂′k(kBTa∂

′
kΨ

′ − F ′
kΨ

′) = kBTa∂
′
k∂

′
kJΨ − ∂′kF

′
kJΨ. (B.19)

Dividing by J we obtain for the first term on the right hand side of (B.19)

J−1∂′k∂
′
kJΨ = J−1(∂′k∂

′
kJ)Ψ + 2J−1(∂′kJ)∂′kΨ + ∂′k∂

′
kΨ

= ∂j(BjkBlk∂lΨ + Bjk(∂lBlk)Ψ).
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Here, we made use of the identities

J−1∇′J = ∇BT , J−1∂′iJ = ∂jBji, ∇′ = BT∇, (B.20)

J−1∂′i∂
′
jJ = J−1∂′i(JJ

−1)∂′jJ = J−1(∂′iJ)J−1∂′jJ + ∂′i(J
−1∂′jJ)

= (∂kBki)∂lBlj + Bli∂l∂kBkj.

Again, using the identity (B.20) the second term of the right hand side of (B.19) can be
evaluated to be

J−1∂′kF
′
kJΨ = J−1(∂′kJ)F ′

kΨ + ∂′kF
′
kΨ = ∂j(BjkF

′
kΨ).

Adding both terms and inserting the definitions (B.13) and (B.14) we have

∂tΨ = ∂j (kBTaMjl∂lΨ + kBTaBjk(∂lBlk)Ψ − MjlFl − kBTaYjΨ) .

Comparing this with the required result (B.7) we can read off Y

Y = B∇BT , Yi = Bik(∂lBlk).

Finally, shifting ∂tXt → ∂tXt−U∞ we obtain the Langevin equation as given by Eq. (2.21)
combined with Eq. (2.22).

B.3 Euler algorithm for a sphere above a wall

In order to solve Eq. (2.23) numerically we use an Euler algorithm. As the physical situa-
tion requires to use the Stratonovich interpretation of the noise term gS

t , the displacement
∆X of a particle from time t to time t+∆t depends on the position of the particle at time
t+ (1/2)∆t, which is not known at time t. As usual, this problem is solved by rewriting
the Langevin equation in the Itô-version. Then, the noise term can be evaluated at time
t and as a compensation an additional drift term ∂l(Bik)Blk is added to Eq. (2.23) [157].
Because BT

kl∂l(Bik) + Bik∂l(B
T
kl) = ∂l(BikB

T
kl) = ∂lMil, we arrive at Eq. (2.25). In this

equation, the random displacements g(∆t) must satisfy

〈g(∆t)〉 = 0, 〈g(∆t)g(∆t)〉 = 2M∆t. (B.21)

Following Ref. [44], gi(∆t) is calculated from a weighted sum of normal deviate random
numbers x̄i → {xi} satisfying 〈xi〉 = 0, 〈xixj〉 = 2δij∆t. This sum is given by

gi(∆t) =

i
∑

j=1

Bijx̄j,

where the weighting factors are the elements of the matrix B defined in (B.13). They can
recursively be calculated according to

Bii =

(

Mii −
i−1
∑

k=1

B2
ik

)

1
2

, Bij =

(

Mij −
j−1
∑

k=1

BikBjk

)

/Bjj, i > j, Bij = 0, i < j.
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Figure B.2: (a) Shows the
coordinate system fixed to
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In the case of a sphere above a wall we obtain the following dimensionless weighting factors
(cf. Ref. [76])

B̂11 =

√

β̂tt, B̂22 =

√

β̂tt, B̂33 =
√
α̂tt, B̂42 = −B̂51 = −3

4

β̂tr

√

β̂tt

,

B̂44 = B̂55 =
3

4

1
√

β̂tt

(

4

3
β̂ttβ̂rr − (β̂tr)2

) 1
2

≡
√

3

4ψ̂rr
, B̂66 =

1

2

√
3α̂rr. (B.22)

As pointed out in Ref. [70], using the Euler method, instead of normal deviate random
variables any uncorrelated random variable x̄i → {xi, i = 1, . . . , 6} can be chosen, as long
as they fulfill the required relation for the first moments 〈xi〉 = 0, 〈xixj〉 = 2δij∆t. Thus,
it is much faster to generate the random numbers according to x̄i =

√
24∆t(ξi −0.5), with

ξi, i = 1, . . . , 6 being uncorrelated random variables uniformly distributed in [0, 1].

Using the dimensionless constants cs, cf , cd which result from a special choice of scales
and have been introduced in Appendix A.1, the explicit update rules for six components
of ∆X in Eq. (2.26) are:

∆X1 = ∆t(cs(z − 0.5β̂dt(1/z)) + cf (Fxβ̂
tt(1/z) + 0.75Ty β̂

tr(1/z))) +
√
cdg1(∆t)

∆X2 = cf∆t(Fyβ̂
tt(1/z) − 0.75Txβ̂

tr(1/z)) +
√
cdg2(∆t)

∆X3 = ∆t(csFzα̂
tt(1/z) + cd∂zα̂

tt(1/z)) +
√
cdg1(∆t)

∆X4 = 0.75cf∆t(Txβ̂
rr(1/z) − Fyβ̂

tr(1/z)) −√
cdg4(∆t)

∆X5 = ∆t(0.5cs(1 − β̂dr(1/z)) + 0.75cf (Tyβ̂
rr(1/z) + Fxβ̂

tr(1/z))) + g5(∆t)

∆X6 = 0.75cf∆tTzα̂
rr(1/z) +

√
cdg6(∆t) (B.23)

Calculating the new configuration after each time step using (2.26) is straightforward
for the spatial degrees of freedom. For the update of the orientation of the sphere we use a
coordinate system spanned by three orthonormal basis vectors {~ni|i = 1, 2, 3; (~ni)j = δij},
see Fig. B.2. The origin of this coordinate system shall be identical with the center of mass
of the sphere and the relative orientation of this system and of the sphere are kept fixed.
Given then an orientation update from (2.26) ~θ := (∆X4,∆X5,∆X6), we decompose each
of the basis vectors ~ni into a component parallel to ~θ denoted by ~n‖ and a component

perpendicular to ~θ denoted by ~n⊥ (the index i is dropped for the sake of simplicity).
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These components are given by

~n‖ = θ̂(θ̂ · ~n), θ̂ := ~θ/‖~θ‖
~n⊥ = ~n− θ̂(θ̂ · ~n).

Then, the orientation update affects only ~n⊥ and the updated ~n′ is given by (with θ := ‖~θ‖)

~n′i = θ̂(θ̂ · ~ni)(1 − cos θ) + ~ni cos θ + θ̂ × ~ni sin θ, i = 1, 2, 3. (B.24)

It can easily be verified that ~n′
i · ~n′j = δij (Goldstein provides a similar expression with

θ ↔ −θ which corresponds to the rotation of a vector in a fixed coordinate system [62]).

In Ref. [76] it was pointed out that without external forces (torques) the following
limit holds

lim
∆t→0

〈~n′i − ~ni〉
∆t

= Drr~ni − (tr Drr)~ni, (B.25)

where Drr/kBTa is the rotational sector of the mobility matrix. Eq. (B.25) states that
rotational diffusion causes a systematic drift in the orientation of the coordinate system
fixed relative to the sphere. This is due to the fact that the group of rotations is non-
Abelian. Without the wall Drr is isotropic and the drift 〈~n′

i − ~ni〉 is parallel to ~ni. In the
presence of the wall the anisotropic part of Drr shifts the direction of 〈~n′

i − ~ni〉 away from
that of ~ni [76]. Together with Eq. (B.21) it can be shown that the update rule Eq. (B.24)
obeys Eq. (B.25). In Ref. [76] a different version of the Euler algorithm is given. There,
the update of the normal vectors ~ni is given by ~θ × ~ni which is of first order in ~θ plus an
additional term which ensures that for 〈~n′

i −~ni〉 relation B.25 is fulfilled which is a second
order effect with respect to θ.



Appendix C

Reducing the systematic error in

MFPT algorithm

Applying the Euler algorithm Eq. (2.26) to the mean first passage time problems (MFPT)
carried out in Chapter 3 gives rise to two sorts of errors. First, there exists the statistical
error, which is proportional to 1/

√
N , where N is the number of iterations the algorithm is

applied. The extent of the statistical error of the measured mean value can be calculated
during the simulation. For the measurements performed in Secs. 3.3 - 3.4 typically N ∼ 105

iterations where chosen resulting in statistical errors in the range of < 1%. Error bars in
these sections refer to the statistical error.

The systematic error for the mean first passage time calculated by use of an Euler
algorithm scales with

√
∆t, although the error of the particle position is only of the order

of ∆t [70]. Thus, to decrease the systematic error by a factor of 10 one must increase
the numerical cost by a factor of 100. One way to obtain accurate results at moderate
numerical cost is to measure the mean first passage time for various intermediate numerical
time steps. Fitting these results to a+ b

√
∆t allows the extrapolation to ∆t→ 0. Fig. C.1

shows an example where this procedure was applied to the case of homogeneous coverage
as considered in Sec. 3.1. The resulting mean first passage time then deviates by 0.2%
from the value obtained from quadrature of Eq. (3.3). This is the same accuracy as we
have for the implemented mobility functions themselves (cf. Appendix B.1).

 0.0818

 0.082

 0.0822

 0.0824

 0.0826

 0.0828

 0.083

 0.0832

 0.0834

 0.0836

 0.0838

 0  2e-05  4e-05  6e-05  8e-05  0.0001

simulation
extrapolating fit

PSfrag replacements

numeric time step ∆t

M
FP

T
T

(z
0
,
z

1
)

Figure C.1: Mean first passage time T (z0, z1)
with initial height z0 = 2 and final height
z1 = 1.001 as a function of the numerical time
step ∆t (Pez = 100). The points are the re-
sults from simulation experiments (error bars
denote their statistical error) with N = 105 it-
erations. The full line is a fit to a + b

√
∆t us-

ing the gnuplot implementation of the nonlinear
least-squares (NLLS) Marquardt-Levenberg al-
gorithm. Extrapolating the fit to ∆t → 0 re-
duces the systematic error which is caused by
the finite time step.



Appendix D

On-off model for adhesion states

In this appendix we provide a scheme how the general solution to (4.17-4.19) can be con-
structed. Furthermore, we give some steps explicitly which were omitted in the calculation
in Sec. 4.3.2.

D.1 General solution of the on-off model

Equations (4.17-4.19) can be solved recursively starting with Eq. (4.19). First, we perform
a linear orthogonal transformation ONm for the coordinates that transforms Eq. (4.19) into
an first order ordinary differential equation. The transformed coordinates are given by1

x′j = ONm

ji xi,

where ONm has the following properties ONm

1j = 1/
√
Nm, j = 1, . . . , Nm and

∑Nm

k=1 ONm

ik =
0, i = 2, . . . , Nm. Then, the sum of partial derivatives transforms as

Nm
∑

i=1

∂

∂xi
=

Nm
∑

i=1

∂x′j
∂xi

∂

∂x′j
=

Nm
∑

i=1

ONm

ji

∂

∂x′j
=
√

Nm
∂

∂x′1
.

Due to the orthogonality of the transformation O and the preservation of probability, the
probability density function for the transformed coordinates is p̄Nm(x′

Nm
) =

pNm

(

(

ONm
)−1

x′
Nm

)

. Integrating the transformed equation Eq. (4.19) and transform-

ing back to the original coordinates xNm , one obtains

pNm(xNm) =
p̄Nm

U(xb,Nm
)
exp



− 1

Nm

xb,Nm
∫

∑Nm

j=1 ε((x
′ +Nmxj − xb,Nm

)/Nm)

U(x′)
dx′



 , (D.1)

with a normalization constant p̄Nm .

In a similar fashion the i-bond probability density function can be obtained for i =

1Here, the Einstein summation convention is applied. That is, an index that appears twice is summed
over.
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1, . . . , Nm − 1. It turns out that the solution for pi involves an integral over pi+1:

pi(xi) =
1

U(xb,i)



p̄i exp



−1

i

xb,i
∫

πi +
∑i

j=1 ε((x
′ + ixj − xb,i)/i)

U(x′)
dx′





+
1

i

xb,i
∫

xb,max

dx′ exp



−1

i

xb,i
∫

x′

πi +
∑i

j=1 ε((x
′′ + ixj − xb,i)/i)

U(x′′)
dx′′





×
i+1
∑

j=1

∫

dxjε(xj)pi+1(xi(x
′), xj)



 . (D.2)

The sum in the last term
[

∑i+1
j=1

∫

dxjε(xj) . . .
]

can be replaced by
[

(i+ 1)
∫

dxi+1ε(xi+1) . . .
]

as the i-bond probability density function must be symmetric with respect to a permu-
tation of its arguments. The normalization constants p̄i, i = 1, . . . , Nm have to be chosen
such that Eq. (4.20) and Eq. (4.21) are fulfilled.

It must be noted that Eq. (D.2) is only a formal expression built form the general
solution for an inhomogeneous first order differential equation. Using the Bell model for
the escape rates ε(x) = ε0 exp(κx/Fd), the series of integrals in (D.1, D.2) can only be
evaluated with high numerical cost which is far beyond the original intention of this on-off
model.

D.2 Constant off-rates

For a constant off-rate, ε = ε0, Eqs. (4.17 - 4.19) simplify to

π0p0 = ε0P1 (D.3)

i
∑

k=1

∂k [U(xb,i)pi(xi)] = − (πi + iε0) pi(xi) + (i+ 1)ε0

∫

dxi+1pi+1(xi, xi+1),

i = 1, . . . , Nm − 1 (D.4)

Nm
∑

k=1

∂k [U(xb,Nm
)pNm(xNm)] = −Nmε0pNm(xNm) (D.5)

Inserting the ansatz Eq. (4.22) for the i-bond state pi(xi) into Eq. (D.4), the term on the
left-hand side becomes

i
∑

k=1

∂k [U(xb,i)pi(xi)] = −
Nm−i
∑

j=0

µi(νi+j + j)a(i, j)
i−1
∏

l=0

µ(νi+j + j + l)U(xb,i)
νi+j−1+j .

The first term on the right-hand side of Eq. (D.4) becomes

− (πi + iε0) pi(xi) = − (πi + iε0)

Nm−i
∑

j=0

a(i, j)

i−1
∏

l=0

µ(νi+j + j + l)U(xb,i)
νi+j−1+j ,
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and the second term

(i+ 1)ε0

∫

dxi+1pi+1(xi, xi+1) =

(i+ 1)ε0

Nm−i
∑

j=1

a(i+ 1, j − 1)
i−1
∏

l=0

µ(νi+j + j + l)U(xb,i)
νi+j−1+j .

The ansatz provides a solution if the coefficients of different powers of U(xb,i) equal zero.
From the “j = 0” term one obtains Eq. (4.23), the other terms lead to

a(i, j) =
(i+ 1)ε0

(πi + iε0) − µi(νi+j + j)
a(i+ 1, j − 1), j = 0, . . .Nm − i. (D.6)

From Eq. (4.23), it can be seen that the denominator diverges if νi = νi+j + j for some
j, i. e., two exponents in the ansatz Eq. (4.22) are equal. In that case we set a(i, j) ≡ 0.
Eq. (D.6) can recursively be applied to give an expression for a(i, 0), i = 1, . . . Nm as
done in Eq. (4.24). If for some j, a(i, j) was set equal to zero this then implies also that
a(i− k, j + k) ≡ 0 for k = 0, . . . , j − 1.

In the special case of two possible bonds, Nm = 2, the coefficients a(i, j) are:

a(2, 0) = P2,

a(1, 0) = P1 − P2
2ε0

µ(ν1 − 1 − ν2)
,

a(1, 1) = P2
2ε0

µ(ν1 − 1 − ν2)
.

If now ν1 = ν2 + 1 the a(1, 1)-term in the ansatz Eq. (4.22) becomes redundant and has
to be abandoned. Then, the a(i, j) are just given by a(2, 0) = P2, a(1, 0) = P1, a(1, 1) = 0.



Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell. Garland Science, fourth edition, 2002.

[2] M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer, and
G. Schatz. Magnetic multilayers on nanospheres. Nature Materials, 4:203–206,
2005.

[3] R. Alon, S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The Kinetics of
L-selectin Tethers and the Mechanics of Selectin-mediated Rolling. The Journal of

Cell Biology, 138(5):1169–1180, 1997.

[4] R. Alon and group: private communications.

[5] R. Alon, D. A. Hammer, and T. A. Springer. Lifetime of the P-selectin-carbohydrate
bond and its response to tensile force in hydrodynamic flow. Nature, 374:539–542,
1995.

[6] R. Amino, R. Menard, and F. Frischknecht. In vivo imaging of malaria parasites -
recent advances and future directions. Curr. Opin. Microbiol., 8(4):407–414, 2005.

[7] G. Arfken. Mathematical Methods for Physicists. Academic Press, Inc., third edition,
1985.

[8] M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner,
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[10] M. Asfaw, B. Różycki, R. Lipowsky, and T. R. Weikl. Membrane adhesion via
competing receptor/ligand bonds. Europhysics Letters, 76(4):703–709, 2006.

[11] L. Bannister and G. Mitchell. The ins, outs and roundabouts of malaria. Trends in

Parasitology, 19(5):209–213, 2003.

[12] V. Barsegov and D. Thirumalai. Dynamics of unbinding of cell adhesion molecules:
Transition from catch to slip bonds. PNAS, 102(6):1835–1839, 2005.

[13] G. I. Bell. Models for the Specific Adhesion of Cells to Cells. Science, 200:618–627,
1978.

[14] G. I. Bell, M. Dembo, and P. Bongrand. Cell Adhesion: Competition Between
Nonspecific Repulsion and Specific Bonding. Biophysical Journal, 45:1051–1064,
1984.



122 BIBLIOGRAPHY

[15] H. C. Berg. Random Walks in Biology. Princeton University Press, 1993.

[16] H. C. Berg and E. M. Purcell. Physics of Chemoreception. Biophysical Journal,
20:193–219, 1977.

[17] S. K. Bhatia, M. R. King, and D. A. Hammer. The State Diagram for Cell Adhesion
Mediated by Two Receptors. Biophysical Journal, 84:2671–2690, 2003.

[18] S. M. Block, C. L. Asbury, J. W. Shaevitz, and M. J. Lang. Probing the kinesin
reaction cycle with a 2D optical force clamp. PNAS, 100(5):2351–2356, 2003.
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