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Deutsche Zusammenfassung:

Eine der zentralen Fragestellungen der modernen Astrophysik ist es, unser Verständnis für die Bil-
dung von Sternen und Sternhaufen in unserer Milchstraße zu erweitern und zu vertiefen. Sterne
entstehen in interstellaren Wolken aus molekularem Wasserstoffgas. In den vergangenen zwanzig
bis dreißig Jahren ging man davon aus, daß der Prozeß der Sternentstehung vor allem durch das
Wechselspiel von gravitativer Anziehung und magnetischer Abstoßung bestimmt ist. Neuere Erken-
ntnisse, sowohl von Seiten der Beobachtung als auch der Theorie, deuten darauf hin, daß nicht Mag-
netfelder, sondern Überschallturbulenz die Bildung von Sternen in galaktischen Molekülwolken bes-
timmt.

Diese Arbeit faßt diese neuen Überlegungen zusammen, erweitert sie und formuliert eine neue The-
orie der Sternentstehung die auf dem komplexen Wechselspiel von Eigengravitation des Wolken-
gases und der darin beobachteten Überschallturbulenz basiert. Die kinetische Energie des turbulen-
ten Geschwindigkeitsfeldes ist typischerweise ausreichend, um interstellare Gaswolken auf großen
Skalen gegen gravitative Kontraktion zu stabilisieren. Auf kleinen Skalen jedoch führt diese Turbu-
lenz zu starken Dichtefluktuationen, wobei einige davon die lokale kritische Masse und Dichte für
gravitativen Kollaps überschreiten können. Diese Regionen schockkomprimierten Gases sind es nun,
aus denen sich die Sterne der Milchstraße bilden. Die Effizienz und die Zeitskala der Sternentstehung
hängt somit unmittelbar von den Eigenschaften der Turbulenz in interstellaren Gaswolken ab. Sterne
bilden sich langsam und in Isolation, wenn der Widerstand des turbulenten Geschwindigkeitsfeldes
gegen gravitativen Kollaps sehr stark ist. Überwiegt hingegen der Einfluß der Eigengravitation, dann
bilden sich Sternen in dichten Gruppen oder Haufen sehr rasch und mit großer Effizienz.

Die Vorhersagungen dieser Theorie werden sowohl auf Skalen einzelner Sternentstehungsgebiete als
auch auf Skalen der Scheibe unserer Milchstraße als ganzes untersucht. Es zu erwarten, daß proto-
stellare Kerne, d.h. die direkten Vorläufer von Sternen oder Doppelsternsystemen, eine hochgradig
dynamische Zeitentwicklung aufweisen, und keineswegs quasi-statische Objekte sind, wie es in der
Theorie der magnetisch moderierten Sternentstehung vorausgesetzt wird. So muß etwa die Masse-
nanwachsrate junger Sterne starken zeitlichen Schwankungen unterworfen sein, was wiederum
wichtige Konsequenzen für die statistische Verteilung der resultierenden Sternmassen hat. Auch auf
galaktischen Skalen scheint die Wechselwirkung von Turbulenz und Gravitation maßgeblich. Der
Prozeß wird hier allerdings noch zusätzlich moduliert durch chemische Prozesse, die die Heizung
und Kühlung des Gases bestimmen, und durch die differenzielle Rotation der galaktischen Scheibe.
Als wichtigster Mechanismus zur Erzeugung der interstellaren Turbulenz läßt sich die Überlagerung
vieler Supernova-Explosionen identifizieren, die das Sterben massiver Sterne begleiten und große
Mengen an Energie und Impuls freisetzen. Insgesamt unterstützen die Beobachtungsbefunde auf
allen Skalen das Bild der turbulenten, dynamischen Sternentstehung, so wie es in dieser Arbeit ge-
zeichnet wird.





Summary:

Understanding the formation of stars in galaxies is central to much of modern astrophysics. For sev-
eral decades it has been thought that the star formation process is primarily controlled by the inter-
play between gravity and magnetostatic support, modulated by neutral-ion drift. Recently, however,
both observational and numerical work has begun to suggest that supersonic interstellar turbulence
rather than magnetic fields controls star formation.

This review begins with a historical overview of the successes and problems of both the classical
dynamical theory of star formation, and the standard theory of magnetostatic support from both
observational and theoretical perspectives. We then present the outline of a new paradigm of star
formation based on the interplay between supersonic turbulence and self-gravity. Supersonic turbu-
lence can provide support against gravitational collapse on global scales, while at the same time it
produces localized density enhancements that allow for collapse on small scales. The efficiency and
timescale of stellar birth in Galactic gas clouds strongly depend on the properties of the interstellar
turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent
support, and fast, efficient, clustered star formation occurring in its absence.

After discussing in detail various theoretical aspects of supersonic turbulence in compressible self-
gravitating gaseous media relevant for star forming interstellar clouds, we explore the consequences
of the new theory for both local star formation and galactic scale star formation. The theory pre-
dicts that individual star-forming cores are likely not quasi-static objects, but dynamically evolving.
Accretion onto these objects will vary with time and depend on the properties of the surrounding
turbulent flow. This has important consequences for the resulting stellar mass function. Star for-
mation on scales of galaxies as a whole is expected to be controlled by the balance between gravity
and turbulence, just like star formation on scales of individual interstellar gas clouds, but may be
modulated by additional effects like cooling and differential rotation. The dominant mechanism for
driving interstellar turbulence in star-forming regions of galactic disks appears to be supernovae ex-
plosions. In the outer disk of our Milky Way or in low-surface brightness galaxies the coupling of
rotation to the gas through magnetic fields or gravity may become important.
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6.44 Nicht ‘wie’ die Welt ist, ist das Mystische, sondern ‘daß’ sie ist.
6.52 Wir fühlen, daß selbst, wenn alle ‘möglichen’ wissenschaftlichen

Fragen beantwortet sind, unsere Lebensprobleme noch gar nicht
berührt sind. Freilich bleibt dann eben keine Frage mehr; und
eben dies ist die Antwort.

(Ludwig Wittgenstein, Logisch-Philosophische Abhandlung)
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Chapter 1

INTRODUCTION

1.1 Overview

Stars are important. They are the primary source
of radiation, with competition only from the 3K
black body radiation of the cosmic microwave
background and from accretion processes onto
black holes in active galactic nuclei, which them-
selves are likely to have formed from stars. And
stars have produced the bulk of all chemical el-
ements heavier than H and He that made up
the primordial gas. The Earth itself consists pri-
marily of these heavier elements, called metals
in astronomical terminology. These metals are
made by nuclear fusion processes in the inte-
rior of stars, with the heaviest elements origi-
nating from the passage of the final supernova
shockwave through the most massive stars. To
reach the chemical abundances observed today in
our solar system, the material had to go through
many cycles of stellar birth and death. In a literal
sense, we are star dust.

Stars are also our primary source of astronomical
information and, hence, are essential for our un-
derstanding of the universe and the physical pro-
cesses that govern its evolution. At optical wave-
lengths almost all natural light we observe in the
sky originates from stars. During day this is more
than obvious, but it is also true at night. The
Moon, the second brightest object in the sky, re-
flects light from our Sun, as do the planets, while
virtually every other extraterrestrial source of vis-
ible light is a star or collection of stars. Through-
out the millenia, these objects have been the ob-
servational targets of traditional astronomy, and
define the celestial landscape, the constellations.
When we look at a dark night sky, we can also

note dark patches of obscuration along the band
of the Milky Way. These are clouds of dust and
gas that block the light from stars further away.

Since about a century ago we know that these
clouds are associated with the birth of stars. The
advent of new observational instruments and
techniques gave access to astronomical informa-
tion at wavelengths far shorter and longer that
visible light. It is now possible to observe as-
tronomical objects at wavelengths ranging high-
energy γ-rays down to radio frequencies. Espe-
cially useful for studying these dark clouds are
radio and sub-mm wavelengths, at which they
are transparent. Observations now show that all
star formation occurring in the Milky Way is as-
sociated with these dark clouds of molecular hy-
drogen and dust.

Stars are common. The mass of the Galactic disk
plus bulge is about 6 × 1010 M� (e.g. Dehnen &
Binney 1998), where 1 M� = 2 × 1033 g is the
mass of our Sun. Thus, there are of order 1012

stars in the Milky Way, assuming standard val-
ues for the stellar mass spectrum (e.g. Kroupa
2002). Stars are constantly forming. Roughly 10%
of the disk mass of the Milky Way is in the form
of gas, which is forming stars at a rate of about
1 M� yr−1. Although stars dominate the baryonic
mass in the Galaxy, it is dark matter that deter-
mines the overall mass budget, invisible material
that indicates its presence only via its contribu-
tion to the gravitational potential. The dark mat-
ter halo of our Galaxy is about 10 times more
massive than gas and stars together. At larger
scales this inbalance is even more pronouced.
Stars are estimated to make up only 0.4% of the
total mass of the Universe (Lanzetta, Yahil, &
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2 CHAPTER 1. INTRODUCTION

Fernandez-Soto 1996), and about 17% of the to-
tal baryonic mass (Walker et al. 1991).

Mass is the most important parameter determin-
ing the evolution of individual stars. Massive
stars with high pressures at their centers have
strong nuclear fusion there, making them short-
lived but very luminous, while low-mass stars
are long-lived but extremely faint. For example,
a star with 5 M� lives only for 2.5 × 107 yr, while
a star with 0.2 M� survives for 1.2 × 1013 yr, that
is longer than the current age of the universe. For
comparison the Sun with an age of 4.5 × 109 yr
has reached approximately half of its life span.
The mass luminosity relation is quite steep with
roughly L ∝ M3.2 (Kippenhahn & Weigert 1990).
During its short life the 5 M� star will then emit
a luminosity of 1.5 × 104 L�, while the bright-
ness of the 0.2 M� star is only ∼ 10−3 L�. For
reference, the luminosity of the Sun is 1 L� =
3.85 × 1033erg s−1.

The light from star-forming external galaxies in
the visible and blue wavebands is dominated by
young, massive stars. This is the reason why we
observe beautiful spiral patterns in many disk
galaxies, like NGC 4622 shown in Figure 1.1, as
spiral density density waves lead to gas com-
pression and subsequent star formation at the
wave locations. As optical emission from exter-
nal galaxies is dominated by massive stars, and
these massive star are always young, they do not
have sufficient time to disperse in the galactic
disk, but still trace the characteristics of the insta-
bility that triggered their formation. Hence, un-
derstanding dynamical properties of galaxies re-
quires an understanding of how, where, and un-
der which conditions stars form.

In a simple approach, galaxies can be seen as
gravitational potential wells containing gas that
has been able to radiatively cool in less than the
current age of the universe. In the absence of any
hindrance, the gas would then collapse gravita-
tionally to form stars on a free-fall time (Jeans
1902)

τff =

(

3π

32Gρ

)1/2

= 150 Myr
( n

0.1 cm−3

)−1/2
,

(1.1)

Figure 1.1: Optical image of the spiral galaxy NGC 4622
observed with the Hubble Space Telescope. (Courtesy of
NASA and The Hubble Heritage Team — STScI/AURA)

where n is the number density of gas molecules
scaled to typical Galactic values. Interstellar gas
consists of one part He for every ten parts H.
Then ρ = µn is the mass density with µ =
2.11 × 10−24 g, and G is the gravitational con-
stant. The free-fall time τff is very short com-
pared to the age of the Milky Way, which is about
1010 yr. However, there is still gas left in the
Galaxy and stars continue to form from this gas
that presumably has already been cool for many
billions years. What physical processes regulate
the rate at which gas turns into stars, or differ-
ently speaking, what prevented that Galactic gas
from forming stars at high rate immediately after
it first cooled?

Observations of the star formation history of the
universe demonstrate that stars did indeed form
more vigorously in the past than today (e.g. Lilly
et al. 1996, Madau et al. 1996, Baldry et al. 2002,
Lanzetta et al. 2002), with as much as 80% of star
formation being complete by redshift z = 1, more
than 6 Gyr before the present. What mechanisms
allowed rapid star formation in the past, but re-
duce its rate today?
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The clouds in which stars form are dense enough,
and well enough protected from dissociating UV
radiation by self-shielding and dust scattering in
their surface layers for hydrogen to be mostly
in molecular form in their interior. The den-
sity and velocity structure of these molecular
clouds is extremely complex and follows hierar-
chical scaling relations that appear to be deter-
mined by supersonic turbulent motions (e.g. Blitz
& Williams 1999). Molecular clouds are large,
and their masses exceed the threshold for grav-
itational collapse by far when taking only ther-
mal pressure into account. Just like galaxies as a
whole, naively speaking, they should be contract-
ing rapidly and form stars at very high rate. This
is generally not observed. The star formation effi-
ciency of molecular clouds in the solar neighbor-
hood is estimated to be of order of a few percent
(e.g. Elmegreen 1991, McKee 1999).

For many years it was thought that support by
magnetic pressure against gravitational collapse
offered the best explanation for the slow rate
of star formation. In this theory, developed
by Shu (1977; and see Shu, Adams, & Lizano
1987), Mouschovias (1976; and see Mouschovias
1991b,c), Nakano (1976), and others, interstel-
lar magnetic fields prevent the collapse of gas
clumps with insufficient mass to flux ratio, leav-
ing dense cores in magnetohydrostatic equilib-
rium. The magnetic field couples only to elec-
trically charged ions in the gas, though, so neu-
tral atoms can only be supported by the field if
they collide frequently with ions. The diffuse in-
terstellar medium (ISM) with number densities
n of order unity remains ionized highly enough
so that neutral-ion collisional coupling is very ef-
ficient (as we discuss below in Section 2.3). In
dense cores, where n > 105 cm−3, ionization frac-
tions drop below parts per million. Neutral-ion
collisions no longer couple the neutrals tightly
to the magnetic field, so the neutrals can dif-
fuse through the field in a process known in as-
trophysics as ambipolar diffusion. (The same
term is used by plasma physicists to describe ion-
electron diffusion.) This ambipolar diffusion al-
lows gravitational collapse to proceed in the face
of magnetostatic support, but on a timescale as

much as an order of magnitude longer than the
free-fall time, drawing out the star formation pro-
cess.

We review a body of work that suggests that mag-
netohydrostatic support modulated by ambipo-
lar diffusion fails to explain the star formation
rate, and indeed appears inconsistent with ob-
servations of star-forming regions. Instead, this
work suggests that support by supersonic turbu-
lence is both sufficient to explain star formation
rates, and more consistent with observations. In
this picture, most gravitational collapse is pre-
vented by turbulent motions, and any gravita-
tional collapse that does occur does so quickly,
with no passage through hydrostatic states.

1.2 Turbulence

At this point, we should briefly discuss the con-
cept of turbulence, and the differences between
supersonic, compressible (and magnetized) tur-
bulence, and the more commonly studied incom-
pressible turbulence. We mean by turbulence, in
the end, nothing more than the gas flow result-
ing from random motions at many scales. We fur-
thermore will use in our discussion only the very
general properties and scaling relations of tur-
bulent flows, focusing mainly on effects of com-
pressibility. Some additional theoretical aspects
of supersonic turbulent self-gravitating flows rel-
evant for star-forming interstellar gas clouds are
introduced in Section 3, however, for a more de-
tailed and fundamental discussion of the com-
plex statistical characteristics of turbulence, we
refer the reader to the book by Lesieur (1991).

Most studies of turbulence treat incompressible
turbulence, characteristic of most terrestrial ap-
plications. Root-mean-square (rms) velocities are
subsonic, and density remains almost constant.
Dissipation of energy occurs entirely on the scales
of the smallest vortices, where the dynamical
scale ` is shorter than the length on which vis-
cosity acts `visc. Kolmogorov (1941a) described
a heuristic theory based on dimensional analy-
sis that captures the basic behavior of incom-
pressible turbulence surprisingly well, although
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subsequent work has refined the details substan-
tially. He assumed turbulence driven on a large
scale L, forming eddies at that scale. These eddies
interact to from slightly smaller eddies, transfer-
ring some of their energy to the smaller scale. The
smaller eddies in turn form even smaller ones,
until energy has cascaded all the way down to
the dissipation scale `visc.

In order to maintain a steady state, equal
amounts of energy must be transferred from each
scale in the cascade to the next, and eventually
dissipated, at a rate

Ė = ηv3/L, (1.2)

where η is a constant determined empirically.
This leads to a power-law distribution of kinetic
energy E ∝ v2 ∝ k−10/3, where k = 2π/` is the
wavenumber, and density does not enter because
of the assumption of incompressibility. Most of
the energy remains near the driving scale, while
energy drops off steeply below `visc. Because of
the local nature of the cascade in wavenumber
space, the viscosity only determines the behav-
ior of the energy distribution at the bottom of the
cascade below `visc, while the driving only deter-
mines the behavior near the top of the cascade at
and above L. The region in between is known as
the inertial range, in which energy transfers from
one scale to the next without influence from driv-
ing or viscosity. The behavior of the flow in the
inertial range can be studied regardless of the ac-
tual scale at which L and `visc lie, so long as they
are well separated. The behavior of higher order
structure functions Sp(~r) = 〈{v(~x) − v(~x +~r)}p〉
in incompressible turbulence has been success-
fully modeled by She & Leveque (1994) by as-
suming that dissipation occurs in the filamentary
centers of vortex tubes.

Gas flows in the ISM vary from this idealized
picture in a number of important ways. Most
significantly, they are highly compressible, with
Mach numbers M ranging from order unity in
the warm, diffuse ISM, up to as high as 50 in cold,
dense molecular clouds. Furthermore, the equa-
tion of state of the gas is very soft due to radia-
tive cooling, so that pressure P ∝ ργ with the
polytropic index falling in the range 0.4 < γ <

1.2 (e.g. Spaans & Silk 2000, Ballesteros-Paredes,
Vázquez-Semadeni, & Scalo 1999b, Scalo et al.
1998). Supersonic flows in highly compressible
gas create strong density perturbations. Early
attempts to understand turbulence in the ISM
(von Weizsäcker 1943, 1951, Chandrasekhar 1949)
were based on insights drawn from incompress-
ible turbulence. Although the importance of
compressibility was already understood, how
to incorporate it into the theory remained un-
clear. Furthermore, compressible turbulence is
only one physical process that may cause the
strong density inhomogeneities observed in the
ISM. Others are thermal phase transitions (Field,
Goldsmith, & Habing 1969, McKee & Ostriker
1977, Wolfire et al. 1995) or gravitational collapse
(e.g. Wada & Norman 1999).

In supersonic turbulence, shock waves offer ad-
ditional possibilities for dissipation. Shock waves
can transfer energy between widely separated
scales, removing the local nature of the turbu-
lent cascade typical of incompressible turbulence.
The spectrum may shift only slightly, however, as
the Fourier transform of a step function represen-
tative of a perfect shock wave is k−2, so the asso-
ciated energy spectrum should be close to ρv2 ∝
k−4, as was indeed found by Porter& Woodward
(1992) and Porter, Pouquet, & Woodward (1992,
1994). However, even in hypersonic turbulence,
the shock waves do not dissipate all the energy,
as rotational motions continue to contain a sub-
stantial fraction of the kinetic energy, which is
then dissipated in small vortices. Boldyrev (2002)
has proposed a theory of structure function scal-
ing based on the work of She & Leveque (1994)
using the assumption that dissipation in super-
sonic turbulence primarily occurs in sheet-like
shocks, rather than linear filaments. First com-
parisons to numerical models show good agree-
ment with this model (Boldyrev, Nordlund, &
Padoan 2002a), and it has been extended to the
density structure functions by Boldyrev, Nord-
lund, & Padoan (2002b).

The driving of interstellar turbulence is neither
uniform nor homogeneous. Controversy still
reigns over the most important energy sources at
different scales, as described in Section 5.3, but



1.3. OUTLINE 5

it appears likely that isolated and correlated su-
pernovae dominate. However, it is not yet un-
derstood at what scales expanding, interacting
blast waves contribute to turbulence. Analytic
estimates have been made based on the radii of
the blast waves at late times (Norman & Ferrara
1996), but never confirmed with numerical mod-
els (much less experiment). Indeed, the thickness
of the blast waves may be more important

Finally, the interstellar gas is magnetized. Al-
though magnetic field strengths are difficult to
measure, with Zeeman line splitting being the
best quantitative method, it appears that fields
within an order of magnitude of equipartition
with thermal pressure and turbulent motions are
pervasive in the diffuse ISM, most likely main-
tained by a dynamo driven by the motions of the
interstellar gas. A model for the distribution of
energy and the scaling behavior of strongly mag-
netized, incompressible turbulence based on the
interaction of shear Alfvén waves is given by Gol-
dreich & Sridhar (1995, 1997) and Ng & Bhat-
tacharjee (1996). The scaling properties of the
structure functions of such turbulence was de-
rived from the work of She & Leveque (1994)
by Müller & Biskamp (2000; also see Biskamp
& Müller 2000) by assuming that dissipation oc-
curs in current sheets. A theory of very weakly
compressible turbulence has been derived by us-
ing the Mach number M � 1 as a perturbation
parameter (Lithwick & Goldreich 2001), but no
further progress has been made towards analytic
models of strongly compressible magnetohydro-
dynamic (MHD) turbulence with M � 1. See
also Cho & Lazarian (2003), Cho et al. (2002).

With the above in mind, we propose that stel-
lar birth is regulated by interstellar turbulence
and its interplay with gravity. Turbulence, even
if strong enough to counterbalance gravity on
global scales, will usually provoke local collapse
on small scales. Supersonic turbulence estab-
lishes a complex network of interacting shocks,
where converging flows generate regions of high
density. This density enhancement can be suffi-
cient for gravitational instability. Collapse sets in.
However, the random flow that creates local den-
sity enhancements also may disperse them again.

For local collapse to actually result in the forma-
tion of stars, collapse must be sufficiently fast for
the region to ‘decouple’ from the flow, i.e. it must
be shorter than the typical time interval between
two successive shock passages. The shorter this
interval, the less likely a contracting region is to
survive. Hence, the efficiency of star formation
depends strongly on the properties of the under-
lying turbulent velocity field, on its lengthscale
and strength relative to gravitational attraction.
This principle holds for star formation through-
out all scales considered in this review, ranging
from small local star forming regions in the so-
lar neighborhood up to galaxies as a whole. For
example, we predict in star burst galaxies self-
gravity to completely overwhelm any turbulent
support, whereas in the other extreme, in low sur-
face brightness galaxies we argue that turbulence
is strong enough to essentially quench any notice-
able star formation activity.

1.3 Outline

To lay out this new picture of star formation in
more detail, in Section 2 we first critically dis-
cuss the historical development of star formation
theory, and then argue that star formation is con-
trolled by the interplay between gravity and su-
personic turbulence. We begin this section by de-
scribing the classical dynamic theory, and then
move on to what has been until recently the stan-
dard theory, where the star formation process
is controlled by magnetic fields. After describ-
ing the theoretical and observational problems
that both approaches have, we present work that
leads us to an outline of the new theory of star
formation. Then we introduce some further prop-
erties of supersonic turbulence in self-gravitating
gaseous media relevant to star-forming interstel-
lar gas clouds in Section 3. We consider the trans-
port properties of supersonic turbulence, discuss
energy spectra in Fourier space, and quantify the
structural evolution of gravitational collapse in
turbulent flows by means of one-point probabil-
ity distribution functions of density and veloc-
ity and by calculating the ∆-variance. In Sec-
tion 4 we then apply the new theory of turbulent
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star formation, first to local star forming regions
in the Milky Way in. We discuss the properties
of molecular clouds, stellar clusters, and proto-
stellar cores (the direct progenitors of individual
stars), and we investigate the implications of the
new theory on protostellar mass accretion, and
on the subsequent distribution of stellar masses.
In Section 5, we discuss the control of star forma-
tion by supersonic turbulence on galactic scales.
We ask when is star formation efficient, and how
are molecular clouds formed and destroyed. We
review the possible mechanisms that generate
and maintain supersonic turbulence in the inter-
stellar medium, and come to the conclusion that
supernova explosions accompanying the death of
massive stars are the most likely agents. Then
we apply the theory to various types of galaxies,
ranging from low surface brightness galaxies to
massive star bursts. Finally, in Section 6 we sum-
marize, and describe unsolved problems open for
future research.



Chapter 2

TOWARDS A NEW PARADIGM

Stars form from gravitational contraction of
molecular cloud material. A crude estimate of the
stability of such a system against gravitational
collapse can be made by simply considering its
energy balance. To become unstable gravitational
attraction must outweigh the combined action of
all dispersive or resistive forces. In the most sim-
plistic case, the absolute value of the potential en-
ergy of a system in virial equilibrium is exactly
twice the total kinetic energy, Epot + 2 Ekin = 0.
If Epot + 2 Ekin < 0 the system collapses, while
for Epot + 2 Ekin > 0 it expands. This estimate
can easily be extended by including surface terms
and additional physical forces. In particular tak-
ing magnetic field effects into account may be-
come important for describing interstellar clouds
(Chandrasekhar, 1953; see also McKee et al., 1993,
for a more recent discussion). In the presence
of turbulence the total kinetic energy not only
includes the internal energy but also the contri-
bution from turbulent gas motions. Simple en-
ergy considerations can in general already pro-
vide qualitative insight into the dynamical be-
havior of a system (Bonazzola et al., 1987).

A thorough investigation, however, requires a
linear stability analysis. For the case of an non-
magnetic, isothermal, infinite, homogeneous,
self-gravitating medium at rest (i.e. without tur-
bulent motions) Jeans (1902) derived a relation
between the oscillation frequency ω and the
wavenumber k of small perturbations,

ω2 − c2
s k2 + 4πG ρ0 = 0 , (2.1)

where cs is the isothermal sound speed, G the
gravitational constant, and ρ0 the initial mass
density. The derivation neglects viscous effects

and assumes that the linearized version of the
Poisson equation describes only the relation be-
tween the perturbed potential and the perturbed
density (neglecting the potential of the homo-
geneous solution, the so-called ‘Jeans swindle’,
see e.g. Binney and Tremaine, 1997). The third
term in Equation (2.1) is responsible for the ex-
istence of decaying and growing modes, as pure
sound waves stem from the dispersion relation
ω2 − c2

s k2 = 0. Perturbations are unstable against
gravitational contraction if their wavenumber is
below a critical value, the Jeans wavenumber kJ,
i.e. if

k2 < k2
J ≡

4πGρ0

c2
s

, (2.2)

or equivalently if the wavelength of the perturba-
tion exceeds a critical size given by λJ ≡ 2πk−1

J .
Assuming the perturbation is spherical with di-
ameter λJ, this directly translates into a mass limit

MJ ≡
4π

3
ρ0

(

λJ

2

)3

=
π

6

(π

G

)3/2
ρ
−1/2
0 c3

s . (2.3)

All perturbations exceeding the Jeans mass MJ

will collapse under their own weight. For
isothermal gas c2

s ∝ T and subsequently MJ ∝

ρ
−1/2
0 T3/2. The critical mass MJ decreases when

the density ρ0 grows or when the temperature T
sinks.

The Jeans instability has a simple physical inter-
pretation in terms of the energy budget. The en-
ergy density of a sound wave is positive. How-
ever, its gravitational energy is negative, because
the enhanced attraction in the compressed re-
gions outweighs the reduced attraction in the
dilated regions. The instability sets in at the

7
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wavelength λJ where the net energy density be-
comes negative. The perturbation will grow al-
lowing the energy to decrease even further. For
a fundamental derivation of this instability from
the canonical ensemble in statistical physics see
de Vega and Sánchez (2001). In isothermal gas,
there is no mechanism that prevents complete
collapse. In reality, however, during the collapse
of molecular gas clumps, the opacity increases
and at densities of n(H2) ≈ 1010 cm−3 the equa-
tion of state becomes adiabatic. Then collapse
proceeds slower. Finally at very high central den-
sities (ρ ≈ 1 g cm−3) fusion processes set in. This
energy source leads to a new equilibrium (e.g.
Tohline 1982): a new star is born.

Attempts to include the effect of turbulent mo-
tions into the star formation process were already
being made in the middle of the 20th century by
von Weizsäcker (1943, 1951) based on Heisen-
berg’s (1948a,b) concept of turbulence. He also
considered the production of interstellar clouds
from the shocks and density fluctuations in com-
pressible turbulence. A more quantitative theory
was proposed by Chandrasekhar (1951a,b), who
investigated the effect of microturbulence in the
subsonic regime. In this approach the scales of
interest, e.g. for gravitational collapse, greatly ex-
ceed the outer scale of turbulence. If turbulence
is isotropic (and more or less incompressible), it
simply contributes to the pressure on large scales,
and Chandrasekhar derived a dispersion relation
similar to Equation (2.1) by introducing an effec-
tive sound speed

c2
s,eff = c2

s + 1/3 〈v2〉 , (2.4)

where 〈v2〉 is the rms velocity dispersion due to
turbulent motions.

In reality, however, the outer scales of turbu-
lence typically exceed or are at least compara-
ble to the size of the system (e.g. Ossenkopf and
Mac Low, 2001), and the assumption of micro-
turbulence is invalid. In a more recent analy-
sis, Bonazzola et al. (1987) therefore suggested
a wavelength-dependent effective sound speed
c2

s,eff (k) = c2
s + 1/3 v2(k) for Equation (2.1). In

this description, the stability of the system de-
pends not only on the total amount of energy, but

also on the wavelength distribution of the energy,
since v2(k) depends on the turbulent power spec-
trum. A similar approach was also adopted by
Vázquez-Semadeni and Gazol (1995), who added
Larson’s (1981) empirical scaling relations to the
analysis.

A most elaborate investigation of the stability of
turbulent, self-gravitating gas was undertaken by
Bonazzola et al. (1992), who used renormalization
group theory to derive a dispersion relation with
a generalized, wavenumber-dependent, effective
sound speed and an effective kinetic viscosity
that together account for turbulence at all wave-
lengths shorter than the one in question. Accord-
ing to their analysis, turbulence with a power
spectrum steeper than P(k) ∝ 1/k3 can support a
region against collapse at large scales, and below
the thermal Jeans scale, but not in between. On
the other hand, they claim that turbulence with a
shallower slope, as is expected for incompressible
turbulence (Kolmogorov 1941a,b), Burgers turbu-
lence (Lesieur 1997), or shock dominated flows
(Passot, Pouquet & Woodward 1988), cannot sup-
port clouds against collapse at scales larger than
the thermal Jeans wavelength.

Analytic attempts to characterize turbulence
have a fundamental limitation, so far they are
all restricted to incompressible flows. However,
molecular cloud observations clearly show ex-
tremely non-uniform structure. It may even be
possible to describe the equilibrium state as an
inherently inhomogeneous thermodynamic criti-
cal point (de Vega, Sánchez and Combes, 1996a,b;
de Vega and Sánchez, 1999). This may render all
applications of incompressible turbulence to the
theory of star formation meaningless. In fact, it
is the main goal of this review to introduce and
stress the importance of compressional effects in
supersonic turbulence for determining the out-
come of star formation.

In order to do that, we need to recapitulate the de-
velopment of our understanding of the star for-
mation process over the last few decades. We
begin with the classical dynamical theory (Sec-
tion 2.1) and describe the problems that it en-
counters in its original form (Section 2.2). In par-
ticular the timescale problem lead astrophysicists
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think about the influence of magnetic fields. This
line of reasoning resulted in the construction of
the paradigm of magnetically mediated star for-
mation, which we discuss in Section 2.3. How-
ever, it became clear that this so called “standard
theory” has a variety of very serious shortcom-
ings (Section 2.5). They lead us to rejuvenate the
earlier dynamical concepts of star formation and
to reconsider them in the modern framework of
compressible supersonic turbulence (Section 2.6).
Consequently, we propose in Section 2.6 a new
paradigm of dynamical turbulent star formation.

2.1 Classical Dynamical Theory

The classical dynamical theory focuses on the
interplay between self-gravity on the one side
and pressure gradients on the other. Turbu-
lence can be taken into account, but only on
microscopic scales significantly smaller than the
collapse scales. In this microturbulent regime
random gas motions yield an isotropic pressure
which can be absorbed into the equations of mo-
tion by defining an effective sound speed as in
Equation (2.4). The dynamical behavior of the
system remains unchanged, and we will not dis-
tinguish between effective and thermal sound
speed cs in this and the following two sections.

Because of the importance of gravitational insta-
bility for stellar birth, Jeans’ (1902) pioneering
work has triggered numerous attempts to derive
solutions to the collapse problem, rigorous an-
alytical as well as numerical ones. Particularly
noteworthy are the studies by Bonnor (1956) and
Ebert (1957) who independently of each other
derived analytical solutions for the equilibrium
structure of spherical density perturbations in
self-gravitating isothermal ideal gases and a crite-
rion for gravitational collapse (see Lombardi and
Bertin, 2001, for a recent analysis; and studies
by Schmitz, 1983, 1984, 1986, 1988, and Schmitz
& Ebert, 1986, 1987, for the treatment of gener-
alized polytropic equations-of-state and/or rota-
tion). It has been shown recently that this may
be a good description for the density distribu-
tion in quiescent molecular cloud cores just be-

fore they begin to collapse and form stars (Bac-
man et al. 2000, Alves, Lada, and Lada 2001).
The first numerical calculations of protostellar
collapse became possible in the late 1960’s (e.g.
Bodenheimer & Sweigart, 1968; Larson, 1969;
Penston, 1969a,b) and showed that gravitational
contraction proceeds in a highly nonhomologous
manner, contrary to what has previously been as-
sumed (Hayashi 1966). This is illustrated in Fig-
ure 2.1, which shows the radial density distribu-
tion of a protostellar core at various stages of the
isothermal collapse phase. The gas sphere ini-
tially follows a Bonnor-Ebert critical density pro-
file but carries a four times larger mass than al-
lowed by the equilibrium conditions. Therefore
it is gravitationally unstable and begins to col-
lapse. As the inner part has no pressure gradient
it contracts in free fall. As matter falls inwards,
the density in the interior grows and decreases
in the outer parts. This builds up pressure gra-
dients in the outer parts, where contraction be-
comes significantly retarded from free fall. In the
interior, however, the collapse remains approxi-
mately free falling. This means it actually speeds
up, because the free-fall timescale τff scales with
density as τff ∝ ρ−1/2. Changes in the den-
sity structure occur in a smaller and smaller re-
gion near the center and on shorter and shorter
timescale, while practically nothing happens in
the outer parts. As a result the overall matter
distribution becomes strongly centrally peaked
with time, and approaches ρ ∝ r−2. This the
well known density profile of isothermal spheres.
The establishment of a central singularity corre-
sponds to the formation of the protostar which
grows in mass by accreting the remaining enve-
lope until the reservoir of gas is exhausted.

In reality, however, the isothermal collapse phase
ends when the central density reaches densities
of n(H2) ≈ 1010 cm−3. Then gas becomes opti-
cally thick and the heat generated by the collapse
is no longer radiated away freely. The central re-
gion begins to heat up and contraction comes to
a first halt. But as the temperature reaches T ≈
2000 K molecular hydrogen begins to dissociate.
The core becomes unstable again and collapse
sets in anew. Most of the released gravitational
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Figure 2.1: Radial density profile (a) and infall velocity profile (b) depicted at various stages of dynamical collapse. All
quantities are given in normalized units. The initial configuration at t = 0 corresponds to a critical isothermal (γ =
1) Bonnor-Ebert sphere with outer radius rout = 1.82. It carries α = 4 times more mass than allowed by hydrostatic
equilibrium, and therefore begins to contract. The numbers on the left denote the evolutionary time and illustrate the
‘runaway’ nature of collapse. Since the relevant collapse timescale, the free-fall time τff , scales with density as τff ∝ ρ−1/2

central collapse speeds up as ρ increases. When density contrast reaches a value of 106 a “sink” cell is created in the center,
which subsequently accretes all incoming matter. This time roughly corresponds to the formation of the central protostar,
and allows for following its subsequent accretion behavior. The profiles before the formation of the central point mass
indicated by solid lines, and for later times by dashed lines. The figure is from Ogino et al. (1999).

energy goes into the dissociation of H2-molecules
so that the temperature rises only slowly. This
situation is similar to the first isothermal collapse
phase. When all molecules in the core are dissoci-
ated, the temperature rises sharply and pressure
gradients again become able to halt the collapse.
The second hydrostatic core has formed. This is
the first occurrence of the protostar which subse-
quently grows in mass by the accretion of the still
infalling material from the outer parts of the orig-
inal cloud fragment. As this matter is still in free
fall, most of the luminosity of the protostar at that
stage is generated in a strongly supersonic accre-
tion shock. Consistent dynamical calculations of
all phases of protostellar collapse are presented
by Masunaga, Miyama, & Inutsuka (1998), Ma-
sunaga & Inutsuka (2000a,b), Wuchterl & Klessen
(2001), and Wuchterl & Tscharnuter (2002).

It was Larson (1969) who realized that the dy-
namical evolution in the initial isothermal col-
lapse phase can be described by an analytical

Table 2.1: Properties of the Larson-Penston solution of
isothermal collapse.

before core for-
mation

after core forma-
tion

(t < 0) (t > 0)

density ρ ∝ (r2 + r2
0)

−1 ρ ∝ r−3/2, r → 0
profile (r0 →0 as t→0−) ρ ∝ r−2, r → ∞

isotherm. sphere
with flat core

velocity v ∝ r/t as t→0− v ∝ r−1/2, r → 0
profile v ≈ −3.3 cs v ≈ −3.3 cs

as r → ∞ as r → ∞

accretion Ṁ = 47 c3
s /G

rate

similarity solution. This was independently dis-
covered also by Penston (1969b), and later ex-
tended by Hunter (1977) into the regime after
the protostar has formed. This so called Larson-
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Penston solution describes the isothermal col-
lapse of homogeneous ideal gas spheres initially
at rest. Its properties are summarized in Table 2.1.
Two predictions are most relevant for the astro-
physical context. The first is the occurrence of su-
personic infall velocities that extend over the en-
tire protostellar cloud. Before the formation of the
central protostar the infall velocity tends towards
-3.3 times the sound speed cs, and afterwards
approaches free fall collapse in the center with
v ∝ r−1/2 while still maintaining v ≈ 3.3cc in the
outer envelope for some time (Hunter 1977). Sec-
ond, the Larson-Penston solution predicts pro-
tostellar accretion rates which are constant and
of order Ṁ ≈ 30c3

s /G. It is important to note
that the dynamical models conceptually allow for
time-varying protostellar mass accretion rates, if
the gradient of the density profile of a collaps-
ing cloud core varies with radius. Most relevant
in the astrophysical context, if the core has a flat
inner region and decreasing density outwards
(as it is observed in low-mass cores, see Sec-
tion 2.4), then Ṁ has a high initial peak, when the
flat core gets accreted, and later declines as the
lower-density outer-envelope material is falling
in (e.g. Ogino et al. 1999). For the collapse of a
Plummer-type sphere with specifications such as
to fit the protostellar core L1544, the time evolu-
tion of Ṁ is illustrated in Figure 2.2 (see Whit-
worth & Ward-Thompson 2001). Plummer-type
spheres have flat inner density profile followed
by an outer power-law decline, and thus similar
basic properties as the Larson-Penston spheres in
mid collapse. The dynamical properties of the
Larson-Penston solution set it clearly apart from
the inside-out collapse model (Shu 1977) derived
for magnetically mediated star formation (Sec-
tion 2.3). One-dimensional numerical simula-
tions of the dynamical collapse of homogeneous
isothermal spheres typically demonstrate global
convergence to the Larson-Penston solution, but
also show that certain deviations occur, e.g. in
the time evolution Ṁ, due to pressure effects (Bo-
denheimer & Sweigart 1968; Larson 1969, Hunter
1977; Foster & Chevalier 1993; Tomisaka 1996b;
Basu 1997; Hanawa & Nakayama, 1997; Ogino et
al. 1999).

Figure 2.2: Time evolution of the protostellar accretion rate
for the collapse of a gas clump with Plummer-type density
distribution similar to observed protostellar cores. For de-
tails see Whitworth & Ward-Thompson (2001)

With the rapid advances in computer technology,
both two-dimensional and three-dimensional
computations became possible. Some of the
first two dimensional calculations are reported
by Larson (1972), Tscharnuter (1975), Black
& Bodenheimer (1976), Fricke, Moellenhoff, &
Tscharnuter (1976), Nakazawa, Hayashi, & Taka-
hara (1976), Bodenheimer & Tscharnuter (1979),
Boss (1980a), and Norman, Wilson, & Barton
(1980). Two-dimensional dynamical modeling
has the advantage to be fast compared to three-
dimensional simulations, and therefore allows
for including a larger number of physical pro-
cesses while reaching higher spatial resolution.
The obvious disadvantage is that only axissy-
metric perturbations can be studied. Initial at-
tempts to study collapse in three dimensions are
reported by Cook & Harlow (1978), Bodenheimer
& Boss (1979), Boss (1980b), Rozyczka et al. (1980),
or Tohline (1980). Since these early studies, nu-
merical simulations of the collapse of isolated
isothermal objects have been extended, for exam-
ple, to include highly oblate cores (Boss, 1996)
or elongated filamentary cloud cores (e.g. Bastien
et al. 1991; Inutsuka & Miyama, 1997), differen-
tial rotation (Boss & Myhill, 1995), and differ-
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ent density distributions for the initial spherical
cloud configuration with or without bar-like per-
turbations (Burkert & Bodenheimer 1993; Klapp,
Sigalotti, & de Felice 1993; Burkert & Boden-
heimer 1996; Bate & Burkert 1997; Burkert, Bate,
& Bodenheimer 1997; Truelove et al. 1997, 1978;
Tsuribe & Inutsuka 1999a; Klein 1999; Boss et al.
2000). The inclusion of magnetic fields into the
treatment will be discussed in Section 2.4.

Whereas spherical collapse models can only treat
the formation of single stars, the two- and three-
dimensional calculations show that the formation
of binary and higher-order multiple stellar sys-
tems can well be described in terms of the clas-
sical dynamical theory and is a likely outcome
of protostellar collapse and molecular cloud frag-
mentation (for a comprehensive overview see Bo-
denheimer et al. 2000). Observationally, the frac-
tion of binary and multiple stars relative to single
stars is about 50% for the field star population
in the solar neighborhood. This has been deter-
mined for all known F7-G9 dwarf stars within 22
pc from the Sun by Duquennoy & Mayor (1991)
and for M dwarfs out to similar distances by Fis-
cher & Marcy (1992; also Leinert et al. 1997). The
binary fraction for pre-main sequence stars ap-
pears to be at least equally high (see e.g. Table
1 in Mathieu et al. 2000). These findings put
strong constraints on the theory of star forma-
tion, as any reasonable model needs to explain
the observed high number of binary and multi-
ple stellar systems. It has long been suggested
that sub-fragmentation and multiple star forma-
tion is a natural outcome of isothermal collapse
(Hoyle 1954), however, stability analyses show
that the growth time of small perturbations in the
isothermal phase is typically small compared to
the collapse timescale itself (e.g. Silk & Suto 1988;
Hanawa & Nakayama 1997). Hence, in order
to form multiple stellar systems, either perturba-
tions to the collapsing core must be external and
strong, or subfragmentation occurs at later non-
isothermal phase of collapse after a protostellar
disk has formed. This disk may become gravi-
tationally unstable if the surface density exceeds
a critical value given by the epicyclic frequency
and the sound speed (Safranov, 1960; Toomre

1964) and fragment into multiple objects (as sum-
marized by Bodenheimer et al. 2000). This natu-
rally leads to two distinct modes of multiple star
formation.

Contracting gas clumps with strong external per-
turbation occur naturally in turbulent molecular
clouds or when stars form in clusters. While col-
lapsing to form or feed protostars, clumps may
loose or gain matter from interaction with the
ambient turbulent flow (Klessen et al. 2000). In
a dense cluster environment, collapsing clumps
may merge to form larger clumps containing
multiple protostellar cores, which subsequently
compete with each other for accretion form the
common gas environment (Murray & Lin, 1996;
Bonnell et al. 1997, Klessen & Burkert, 2000,
2001). Strong external perturbations and cap-
ture through clump merger leads to wide bina-
ries or multiple stellar systems. Stellar aggregates
with more that two stars are dynamically unsta-
ble, hence, some protostars may become ejected
again from the gas rich environment they ac-
crete from. This not only terminates their mass
growth, but leaves the remaining stars behind
more strongly bound. These dynamical effects
may transform the original wide binaries into
close binaries (see also Kroupa 1995a,b,c). Binary
stars that form through disk fragmentation are
close binaries right from the beginning, as typi-
cal sizes of protostellar disks are of order of a few
100 AU1.

The formation of clusters of stars (as opposed to
binary or small multiple stellar systems) is eas-
ily accounted for in the classical dynamical the-
ory by simply considering larger and more mas-
sive molecular cloud regions. The proto-cluster
cloud will fragment and build up a cluster of stars
if it has highly inhomogeneous density structure
similar to the observed clouds (Keto, Lattanzio,
& Monaghan 1991; Inutsuka & Miyama 1997,
Klessen & Burkert 2000, 2001) or, equivalently,
if it is subject to strong external perturbations,
e.g. from cloud-cloud collisions (Whithworth et
al. 1995; Turner et al. 1995), or is highly turbulent
(see Section2.5 and Section 2.6).

1One astronomical unit is the mean radius of Earths orbit
around the Sun, 1 AU = 1.5 × 1013 cm.



2.2. PROBLEMS WITH CLASSICAL THEORY 13

2.2 Problems with Classical The-
ory

The classical theory of gravitational collapse bal-
anced by pressure and microturbulence did not
take into account the conservation of angular
momentum and magnetic flux during collapse.
It became clear from observations of polarized
starlight (Hiltner 1949, 1951) that substantial
magnetic fields thread the interstellar medium
(Chandrasekhar & Fermi 1953a), forcing the mag-
netic flux problem to be addressed, but also rais-
ing the possibility that the solution to the angu-
lar momentum problem might be found in the
action of magnetic fields. The typical strength
of the magnetic field in the diffuse ISM was not
known to an order of magnitude, though, with
estimates ranging as high as 30 µG from polar-
ization (Chandrasekhar & Fermi 1953a) and syn-
chrotron emission (e.g. Davies & Shuter 1963).
Lower values from Zeeman measurements of HI

(Troland & Heiles 1986) and from measurements
of pulsar rotation and dispersion measures (Rand
& Kulkarni 1989, Rand & Lyne 1994) comparable
to the modern value of around 3 µG only gradu-
ally became accepted over the next two decades.

The presence of a field, especially one as strong
as was then considered possible, formed a ma-
jor problem for the classical theory of star for-
mation. To see why, let us consider the behavior
of a field in an isothermal region of gravitational
collapse (Mestel & Spitzer 1956, Spitzer 1968). If
we neglect all surface terms except thermal pres-
sure P0 (a questionable assumption as shown by
Ballesteros-Paredes et al. 1999a, but the usual one
at the time), and assume that the field, with mag-
nitude B is uniform within a region of average
density ρ and effective spherical radius R, we can
write the virial equation as

4πR3P0 = 3
MkBT

µ
−

1
R

(

3
5

GM2 −
1
3

R4B2
)

,

(2.5)
where M = 4/3πR3ρ is the mass of the region,
kB is Boltzmann’s constant, T is the temperature
of the region, and µ is the mean mass per parti-
cle. So long as the ionization is sufficiently high
for the field to be frozen to the matter, the flux

through the cloud Φ = πR2B must remain con-
stant. Therefore, the opposition to collapse due
to magnetic energy given by the last term on the
right hand side of equation (2.5) will remain con-
stant during collapse. If it is insufficient to pre-
vent collapse at the beginning, it remains insuffi-
cient as the field is compressed.

If we write the radius R in terms of the mass
and density of the region, we can rewrite the two
terms in parentheses on the right hand side of
equation (2.5) to show that gravitational attrac-
tion can only overwhelm magnetic repulsion if

M > Mcr ≡
53/2

48π2
B3

G3/2ρ2
=

(4 × 106M�)
( n

1 cm−3

)2
(

B
3 µG

)3

,
(2.6)

where the numerical constant is correct for a uni-
form sphere, and the number density n is com-
puted with mean mass per particle µ = 2.11 ×
10−24 g cm−3. Mouschovias & Spitzer (1976)
noted that the critical mass can also be written in
terms of a critical mass-to-flux ratio
(

M
Φ

)

cr
=

ζ

3π

(

5
G

)1/2

= 490 g G−1 cm−2, (2.7)

where the constant ζ = 0.53 for uniform spheres
(or flattened systems, as shown by Strittmatter
1966) is used in the final equality. (Assuming a
constant mass-to-flux ratio in a region results in
ζ = 0.3 [Nakano & Nakamura 1978]). For a typ-
ical interstellar field of 3 µG, the critical surface
density for collapse is 7M� pc−2, corresponding
to a number density of 230 cm−2 in a layer of
thickness 1 pc. A cloud is termed subcritical if it
is magnetostatically stable and supercritical if it is
not.

The very large value for the magnetic critical
mass in the diffuse ISM given by equation 2.6
forms a crucial objection to the classical theory of
star formation. Even if such a large mass could
be assembled, how could it fragment into objects
with stellar masses of 0.01–100 M�, when the crit-
ical mass should remain invariant under uniform
spherical gravitational collapse?
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Two further objections to the classical theory
were also prominent. First was the embarrass-
ingly high rate of star formation predicted by a
model governed by gravitational instability, in
which objects should collapse on roughly the
free-fall timescale, Equation (1.1), orders of mag-
nitude shorter than the ages of typical galaxies.

Second was the gap between the angular momen-
tum contained in a parcel of gas participating in
rotation in a galactic disk and the much smaller
angular momentum contained in any star rotat-
ing slower than breakup (Spitzer 1968). The disk
of the Milky Way rotates with angular velocity
Ω ' 10−15 s−1. A uniformly collapsing cloud
with initial radius R0 formed from material with
density ρ0 = 2 × 10−24 g cm−3 rotating with the
disk will find its angular velocity increasing as
(R0/R)2, or as (ρ/ρ0)

2/3. By the time it reaches
a typical stellar density of ρ = 1 g cm−3, its angu-
lar velocity has increased by a factor of 6 × 1015,
giving a rotation period of well under a second.
The centrifugal force Ω2R exceeds the gravita-
tional force by eight orders of magnitude for so-
lar parameters. A detailed discussion including
a demonstration that binary formation does not
solve this problem can be found in Mouschovias
(1991b).

The observational discovery of bipolar outflows
from young stars (Snell, Loren & Plambeck 1980)
was a surprise that was unanticipated by the clas-
sical model of star formation. It has become clear
that the driving of these outflows is one part of
the solution of the angular momentum problem,
and that magnetic fields transfer the angular mo-
mentum from infalling to outflowing gas (e.g.
Königl & Pudritz 2001).

Finally, mm-wave observations of emission lines
from dense molecular gas revealed a further
puzzle: extremely superthermal linewidths in-
dicating that the gas was moving randomly at
hypersonic velocities. (Zuckerman & Palmer
1974). Such motions in unmagnetized gas gen-
erate shocks that would dissipate the energy of
the motions within a crossing time because of
shock formation (e.g. Field 1978). Attempts
were made using clump models of turbulence to

show that the decay time might be longer (Scalo
& Pumphrey 1982, Elmegreen 1985). In hind-
sight, isolated spherical clumps turn out not to be
a good model for turbulence however, so these
models failed to accurately predict its behavior
(Mac Low et al. 1998).

2.3 Standard Theory of Isolated
Star Formation

The problems outlined in the preceeding sub-
section were addressed in what we will call
the “standard theory” of star formation that has
formed the base of most work in the field for
the past two decades. Mestel & Spitzer (1956)
first noted that the problem of magnetic support
against fragmentation could be resolved if mass
could move across field lines, and proposed that
this could occur in mostly neutral gas through
the process of ion-neutral drift, usually known
as ambipolar diffusion in the astrophysical com-
munity.2 The other problems outlined then ap-
peared solvable by the presence of strong mag-
netic fields, as we now describe.

Ambipolar diffusion can solve the question of
how magnetically supported gas can fragment if
it allows neutral gas to gravitationally condense
across field lines. The local density can then in-
crease without also increasing the magnetic field,
thus decreasing the critical mass for gravitational
collapse Mc given by Equation (2.6). This can
also be interpreted as increasing the local mass-
to-flux ratio, approaching the critical value given
by Equation (2.7).

The timescale τAD on which this occurs can be de-
rived by considering the relative drift velocity of
neutrals and ions ~vD = ~vi −~vn under the influ-
ence of the magnetic field ~B (Spitzer 1968). So
long as the ionization fraction is small and we do
not care about instabilities (e.g. Wardle 1990), the
inertia and pressure of the ions may be neglected.
The ion momentum equation then reduces in the

2In plasma physics, the term ambipolar diffusion is ap-
plied to ions and electrons held together electrostatically
rather than magnetically while drifting together out of neu-
tral gas.
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steady-state to a balance between Lorentz forces
and ion-neutral drag,

1
4π

(∇× ~B) × ~B = αρiρn(~vi −~vn), (2.8)

where the coupling coefficient α = 〈σv〉/(mi +

mn), with mi and mn the mean mass per particle
for the ions and neutrals, and ρi and ρn the ion
and neutral densities. Typical values in molecu-
lar clouds are mi = 10 mH, mn = (7/3)mH , and
α = 9.2 × 1013. This is roughly independent of
the mean velocity, as the cross-section σ scales
linearly with velocity in the regime of interest
(Osterbrock 1961, Draine 1980). To estimate the
typical timescale, consider drift occurring across
a cylindrical region of radius R, with a typical
bend in the field also of order R so the Lorentz
force can be estimated as roughly B2/4πR. Then
the ambipolar diffusion timescale can be derived
by solving for vD in Equation (2.8) to be

τAD =
R
vD

=

(

4παρiρnR
(∇× ~B) × ~B

)

≈

4παρiρnR2

B2 = (25 Myr)
(

B
3 µG

)−2

×
( nn

102 cm−3

)2
(

R
1 pc

)2
( x

10−6

)

,
(2.9)

For ambipolar diffusion to solve the magnetic
flux problem on an astrophysically relevant
timescale, the ionization fraction x must be ex-
tremely small. With the direct observation
of dense molecular gas (Palmer & Zuckerman
1967, Zuckerman & Palmer 1974) more than a
decade after the original proposal by Mestel &
Spitzer (1956), such low ionization fractions came
to seem plausible. Nakano (1976, 1979) and
Elmegreen (1979) computed the detailed ioniza-
tion balance of molecular clouds for reasonable
cosmic ray ionization rates, showing that at den-
sities greater than 104 cm−3, the ionization frac-
tion was roughly

x ' (5 × 10−8)
( n

105 cm−3

)1/2
(2.10)

(Elmegreen 1979), becoming constant at densities
higher than 107 cm−3 or so. Below densities of

104 cm−3, the ionization is controlled by the ex-
ternal UV radiation field, and the gas is tightly
coupled to the magnetic field.

With typical molecular cloud parameters τAD is
of order 107 yr (Equation 2.9). The ambipolar
diffusion timescale τAD is thus about 10 − 20
times longer than the corresponding dynamical
timescale τff of the system (e.g. McKee et al.
1993). The delay induced by waiting for am-
bipolar diffusion to occur has the not inciden-
tal benefit of explaining why star formation is
not occurring in a free-fall time, i.e. at rates far
higher than observed in normal galaxies. On
the other hand, the timescale is short enough to
apparently explain why magnetic fields in the
standard model do not completely shut off any
star formation at all by fully preventing the col-
lapse and fragmentation of molecular clouds. Al-
together the ambipolar diffusion timescale ap-
peared to be consistent with molecular cloud life-
times, which in the 1980’s were thought to be
about 30-100 Myr (Solomon et al. 1987, Blitz &
Shu 1980; see however Ballesteros-Paredes et al.
1999, and Elmegreen 2000, who argue for much
shorter cloud lifetimes).

These considerations lead scientists to investi-
gate star formation models that are based on
magnetic diffusion as dominant physical process
rather than rely on simple hydrodynamical col-
lapse. In particular Shu (1977) proposed the self-
similar collapse of initially quasi-static singular
isothermal spheres as the most likely description
of the star formation process. He assumed that
ambipolar diffusion in a magnetically subcritical
isothermal cloud core would lead to the build-
up of a quasi-static 1/r2-density structure which
contracts on timescales of order of τAD. This evo-
lutionary phase is denoted quasi-static because
τAD � τff. Ambipolar diffusion is supposed
to eventually lead to the formation of a singu-
larity in central density, at that stage the system
becomes unstable and undergoes inside-out col-
lapse. During collapse the model assumes that
magnetic fields are no longer dynamically im-
portant and they are subsequently ignored in the
original formulation of the theory. A rarefaction
wave moves outward with the speed of sound
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Table 2.2: Properties of the Shu solution of isothermal col-
lapse.

before core for-
mation

after core forma-
tion

(t < 0) (t > 0)

density ρ ∝ r−2, ∀ r ρ ∝ r−3/2,
profile sing. isothermal ∀r ≤ cst

sphere ρ ∝ r−2,
∀r > cst

velocity v ≡ 0, ∀ r v ∝ r−1/2,
profile ∀r ≤ cst

v ≡ 0, ∀r > cst
accretion Ṁ = 0.975 c3

s /G
rate (const.)

with the cloud material behind the wave free-
falling onto the core and matter ahead still be-
ing at rest. The Shu (1977) model predicts con-
stant mass accretion onto the central protostar at
a rate Ṁ = 0.975 c3

s /G. This is significantly be-
low the values derived for Larson-Penston col-
lapse. In the latter case the entire system is col-
lapsing dynamically and delivers mass to the
center very efficiently, in the former case inward
mass transport is comparatively inefficient as the
cloud envelope remains at rest until reached by
the rarefaction wave. The density structure of
the inside-out collapse, however, is essentially in-
distinguishable from the predictions of dynami-
cal collapse. To observationally differentiate be-
tween the two models one needs to obtain kine-
matical data and determine magnitude and spa-
tial extent of infall motions with high accuracy.
The basic predictions of inside-out collapse are
summarized in Table 2.2. As singular isother-
mal spheres per definition carry infinite mass, the
growth of the central protostar is thought to come
to a halt when feedback processes (like bipolar
outflows, stellar winds, etc.) become important
and terminate further infall.

The overall picture of magnetic mediation and
collapse of the singular isothermal sphere has be-
come known as the so called ‘standard theory’ of
star formation (as best summarized in the review
by Shu et al. 1987). The process of stellar birth

can be subdivided into four stages: as visualized
in Figure 2.3: (a) The prestellar phase describes the
evolution of molecular cloud cores before the for-
mation of a central protostar. Subcritical clumps
contract slowly due to leakage of magnetic sup-
port by ambipolar diffusion, those cores form sin-
gle stars. Supercritical cores evolve rapidly and
may fragment to form multiple stellar systems.
(b) Once the central density has reached a singu-
lar state, i.e. the protostar has formed, the system
goes into inside-out collapse and feeds the pro-
tostar at constant rate Ṁ = 0.975c3

s /G. In this
evolutionary phase the central protostar and its
disk are deeply embedded in the protostellar en-
velope of dust and gas. The mass of the enve-
lope Menv largely exceeds the combined mass M?

of star and disk. The main contribution to the
total luminosity is accretion, and the system is
best observable at sub-mm and infra-red wave-
lengths. In the astronomical classification scheme
it is called ‘class 0’ object. (c) At later times, pow-
erful protostellar outflows develop which clear
out the envelope along the rotational axis. This
is the ‘class I’ stage at which the system is ob-
servable in infra-red and optical wavebands and
for which Menv � M?. The central protostar
is directly visible when looking along the out-
flow direction. (d) During the ‘class II’ phase, the
outflow eventually removes the envelope com-
pletely. This terminates further mass accretion
and the protostar enters the classical pre-main se-
quence contraction phase. It still is surrounded
by a very low-mass disk of gas and dust which
adds infrared ‘excess’ to the spectral energy dis-
tribution of the system (which is already dom-
inated by the stellar Planck spectrum at visible
wavelength, see e.g. Beckwith 1999). This is the
stage during which planets are believed to form
(e.g. Lissauer 1993, Ruden 1999). Protostellar sys-
tems at that stage are commonly called T Tauri
stars (Bertout 1989). As time evolves further the
disk becomes more and more depleted until only
a tenuous dusty debris disk remains that is long-
lived and lasts (i.e. continuously reforms) into
and throughout the stellar main-sequence phase
(Zuckermann 2001).

Largely within the framework of the ‘stan-
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Figure 2.3: The main stages of star formation. (a) Prestellar phase. Protostellar cores form within molecular clouds in areas
where self-gravity overwhelms non-thermal support mechanisms (i.e. magnetic flux loss via ambipolar diffusion in the
‘standard scenario’, or localized decay of supersonic turbulence in the new paradigm). (b) Class 0 phase. A protostellar
object surrounded by an accretion disk has formed and grows in mass at the center of the infalling cloud. The object
is visible in sub-mm and infra-red wavelength only because the central star is deeply embedded and its visible light is
completely obscured by the massive cloud envelope. (c) Class I phase. Stellar winds and radiation break out along the
rotational axis of the system, create a bipolar outflow and dissolve the envelope. The object becomes observable in the
optical. (d) Class II phase. The envelope has become almost fully accreted or has been removed by stellar feedback processes
and infall terminates. The young star and its (proto) planetary disk is fully revealed. This picture is still valid when star
formation is controlled by supersonic turbulence. — Adopted from Shu et al. (1987).

dard theory’, numerous (analytical) extensions to
the simplistic original inside-out collapse model
have been proposed. The stability of isother-
mal gas clouds with rotation for example has
been investigated by Schmitz (1983, 1984, 1986),
Tereby, Shu, & Cassen (1984), Schmitz & Ebert
(1986, 1987), Inutsuka & Miyama (1992), Naka-
mura, Hanawa, & Nakano (1995), and Tsuribe &
Inutsuka (1999b). The effects of magnetic fields
on the equilibrium structure of clouds and later
during the collapse phase (where they have been
neglected in the original inside-out scenario) are
considered by Schmitz (1987), Baureis, Ebert, &
Schmitz (1989), Tomisaka, Ikeuchi, & Nakamura
(1988a,b, 1989a,b, 1990), Tomisaka (1991, 1995,
1996a,b), Galli & Shu (1993a,b), Li & Shu (1996,
1997), Galli et al. (1999, 2001), and Shu et al. (2000).
The proposed picture is that ambipolar diffusion

of initially subcritical protostellar cores that are
threaded by uniform magnetic fields will lead to
the build-up of disk-like structures with constant
mass-to-flux ratio. These disks are called ‘iso-
pedic’. The mass-to-flux ratio increases steadily
with time. As it exceeds the maximum value
consistent with magnetostatic equilibrium the en-
tire core becomes supercritical and begins to col-
lapse from the inside out with the mass-to-flux
ratio assumed to remain approximately constant.
It can be shown (Shu & Li 1997), that for iso-
pedic disks the forces due to magnetic tension
are just a scaled version of the disks self-gravity
with opposite sign (i.e. obstructing gravitational
collapse), and that the magnetic pressure scales
as the gas pressure (although the proportional-
ity factor in general is spatially varying except
in special cases). These findings allow to apply
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many results derived for unmagnetized disks to
the magnetized regime with only little modifica-
tion to the equations. One application of this re-
sult is that for isopedic disks the derived mass ac-
cretion rate is just a scaled version of the original
Shu (1977) rate, i.e. Ṁ ≈ (1 + H0) c3

s/G, with the
dimensionless parameter H0 depending on the
effective mass-to-flux ratio. Note, however, that
the basic assumption of constant mass-to-flux ra-
tio during the collapse phase appears inconsis-
tent with detailed numerical calculations of am-
bipolar diffusion processes (see Section 2.4.1). In
these computations the mass-to-flux ratio in the
central region increases more rapidly than in the
outer parts of the cloud. This leads to a sepa-
ration into a dynamically collapsing inner core
with (M/Φ)n > 1, and an outer envelope with
(M/Φ)n < 1 that is still held up by the magnetic
field. The parameter (M/Φ)n is the dimension-
less mass-to-flux ratio normalized to the critical
value as given in Equation (2.7). The isopedic de-
scription may therefore only be valid in the cen-
tral region with (M/Φ)n > 1.

Note also that the ‘standard theory’ introduces
a somehow artificial dichotomy to the star for-
mation process, in the sense that low-mass stars
are thought to form from low-mass magnetically
subcritical cores, whereas high-mass stars (or en-
tire stellar clusters) form from magnetically su-
percritical cloud cores (e.g. Lizano & Shu 1989).
This distinction became necessary as it became
clear that the formation of very massive stars or
stellar clusters cannot be regulated by magnetic
fields and ambipolar diffusion processes (see Sec-
tion 2.4.3). We will argue in the next section that
this probably is true for low-mass stars also, and
therefore that star formation is not regulated by
magnetic mediation on any scale, but instead is
mediated by interstellar turbulence (Section 2.6).
The new theory constitutes a unifying scheme
for both low-mass and high-mass star formation,
thus removing the undesired artificial dichotomy
introduced by the ‘standard theory’.

Finally let us remark, that the presence of strong
magnetic fields was suggested as a way to ex-
plain the universally observed (Zuckerman &
Palmer 1974) presence of hypersonic random mo-

tions in molecular clouds by Arons & Max (1975).
They noted that linear Alfvén waves have no
dissipation associated with them, as they are
purely transverse. In a cloud with Alfvén speed
vA = B/(4πρ)1/2 much greater than the sound
speed cs, such Alfvén waves could produce the
observed motions without necessarily forming
strong shocks. This was generally, though in-
correctly, interpreted to mean that these waves
could therefore survive from the formation of the
cloud, explaining the observations without refer-
ence to further energy input into the cloud. The
actual work acknowledged that ambipolar diffu-
sion would still dissipate these waves (Kulsrud &
Pearce 1969, Zweibel & Josafatsson 1983) at a rate
substantial enough to require energy input from a
driving source to maintain the observed motions.

Strong magnetic fields furthermore provided a
mechanism to reduce the angular momentum in
collapsing molecular clouds through magnetic
braking. Initially this was treated assuming that
clouds were rigid rotating spheres (Ebert, von
Hoerner, & Temesváry 1960), but was accurately
calculated by Mouschovias & Paleologou (1979,
1980) for both perpendicular and parallel cases.
They showed that the criterion for braking to be
effective was essentially that the outgoing heli-
cal Alfvén waves from the rotating cloud had to
couple to a mass of gas equal to the mass in the
cloud. Mouschovias & Paleologou (1980) show
that this leads to a characteristic deceleration time
for a parallel rotator of density ρ and thickness H
embedded in a medium of density ρ0 and Alfvén
velocity vA = B/(4πρ0)

1/2 of

τ‖ = (ρ/ρ0)(H/2vA), (2.11)

and a characteristic time for a perpendicular ro-
tator with radius R,

τ⊥ =
1
2

[

(

1 +
ρ

ρ0

)1/2

− 1

]

R
vA

. (2.12)

For typical molecular cloud parameters, these
times can be less than the free-fall time, lead-
ing to efficient transfer of angular momentum
away from collapsing cores. This may help to
resolve the so called angular momentum prob-
lem in star formation (e.g. Bodenheimer 1995)
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which describes the puzzle that single stars have
considerably smaller specific angular momenta j
compared to the observed molecular cloud cores
they supposedly form from. The angular mo-
mentum problem occurs essentially on all scales,
as values of j in molecular cloud cores again are
smaller than in the average molecular cloud ma-
terial which they condense out of, and on the
largest scales molecular cloud complexes as a
whole seem again to have smaller specific angu-
lar momenta than the global interstellar medium
in differentially rotating galactic disks.

2.4 Problems with Standard The-
ory

During the 1980’s the theory of magnetically me-
diated star formation discussed in the previous
section was widely advocated and generally ac-
cepted as the standard theory of low-mass star
formation, almost completely replacing the ear-
lier dynamical models. However, despite its suc-
cess and intellectual beauty, the picture of mag-
netically mediated star formation suffers from a
series of severe shortcomings. It may not actually
bear much relevance for the astrophysical prob-
lem of how stars form and grow in mass – al-
though for its simplicity and elegance it clearly
is a pedagogically important model of the star
formation process. The prediction that low-mass
stars, and hence the vast majority of all stars,
form from molecular cloud cores that closely re-
semble quasi-static, singular, isothermal spheres
which built up via ambipolar diffusion processes
from magnetically supported gas on timescales
of several tens of the free-fall timescale deserves
criticism from several sides – for theoretical as
well as for observational reasons. This became
obvious in the 1990’s with improved numerical
simulations and the advent of powerful new ob-
servational techniques, especially in the sub-mm
and infrared wavelength regime. Critical sum-
maries are given by Whitworth et al. (1996) and
Nakano (1998). Note also that the theory tradi-
tionally was applied to the formation of low-mass
stars, it was never seriously held accountable for
describing the birth of very high-mass stars and

stellar clusters (Shu et al. 1987). This lead to spec-
ulations about two distinct modes of star forma-
tion, low-mass stars forming from magnetically
supported cloud cores and high-mass stars form-
ing from magnetically supercritical cloud mate-
rial. We shall discuss in Sections 2.5 and 2.6 that
replacing magnetic fields as the pivotal physical
mechanism of the theory and introducing instead
interstellar turbulence as the central mediating
agent of star formation naturally leads to a uni-
fied scheme for all mass and length scales and re-
moves this disturbing dichotomy.

Before we introduce the new dynamical theory of
star formation based on interstellar turbulence,
we need to analyze in detail the properties and
shortcomings of the theory we seek to replace.
The following therefore is a list of critical remarks
and summarizes the inconsistencies of models of
magnetically mediated star formation. We begin
with the theoretical considerations that make the
inside-out collapse of quasistatic singular isother-
mal spheres a very unlikely description of stellar
birth, which constitutes the essence of the ‘stan-
dard theory’. We then discuss the observational
inconsistencies of the theory.

2.4.1 Singular Isothermal Spheres

The collapse of singular isothermal spheres is the
astrophysically most unlikely and unstable mem-
ber of a large family of self-similar solutions to
the 1-dimensional collapse problem. Ever since
the seminal studies by Bonnor (1956) and Ebert
(1957) and by Larson (1969) and Penston (1969a)
much attention in the star formation commu-
nity has been focused on finding astrophysically
relevant analytic asymptotic solutions to the 1-
dimensional collapse problem. The standard so-
lution was derived by Shu (1977) considering the
evolution of initially singular isothermal spheres
as they leave equilibrium. His findings subse-
quently were extended by Hunter (1977, 1986),
and Whitworth & Summers (1985) demonstrated
that all solutions to the isothermal collapse prob-
lem are members of a two-parameter family with
the Larson-Penston-type solutions (collapse of
spheres with uniform central density) and the
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Shu-type solutions (expansion-wave collapse of
singular spheres) populating extreme ends of pa-
rameter space. The problem set has been ex-
tended to include a polytropic equation of state
(Suto & Silk 1988), shocks (Tsai and Hsu 1995),
and/or cylinder and disk-like geometries (Inut-
suka and Miyama 1992; Nakamura, Hanawa, &
Nakano 1995). In addition, mathematical gen-
eralization using a Lagrangian formulation has
been proposed by Hendriksen (1989, see also
Hendriksen, André, and Bontemps 1997).

Of all proposed initial configurations for proto-
stellar collapse, quasi-static, singular, isothermal
spheres seem to be the most difficult to realize
in nature. Stable equilibria for self-gravitating
spherical isothermal gas clouds embedded in an
external medium of given pressure are only pos-
sible up to a density contrast of ρc/ρs ≈ 14 be-
tween the cloud center and surface. Clouds that
are more centrally concentrated than that critical
value can only find unstable equilibrium states.
Hence, all evolutionary paths that could yield a
central singularity lead through instability, and
collapse is likely to set in long before a 1/r2 den-
sity profile is established at small radii r (Whit-
worth et al. 1996; also Silk & Suto 1988, and
Hanawa & Nakayama 1997). External perturba-
tions tend to break spherical symmetry in the in-
nermost region and degrade the overall density
profile at small radii. It will become less strongly
peaked. The resulting behavior in the central
region then more closely resembles the Larson-
Penston description of collapse. Similar behavior
is found if outward propagating shocks are con-
sidered (Tsai and Hsu 1995). As a consequence,
the existence of physical processes that are able to
produce singular isothermal equilibrium spheres
in nature is highly questionable. Furthermore,
the original proposal of ambipolar diffusion pro-
cesses in magnetostatically supported gas does
not yield the desired result either.

Ambipolar diffusion in initially magnetically
supported gas clouds results in dynamical
Larson-Penston-type collapse of the central re-
gion where magnetic support is lost, while the
outer part is still hold up primarily by the field
(and develops a 1/r2 density profile). Mass is

fed to the center not due to an outward mov-
ing expansion wave, but due to ambipolar diffu-
sion in the outer envelope. The proposal that sin-
gular isothermal spheres may form through am-
bipolar diffusion processes in magnetically sub-
critical cores has been extensively studied by
Mouschovias and collaborators in a series of nu-
merical simulations with ever increasing accu-
racy and astrophysical detail (Mouschovias 1991,
Mouschovias & Morton 1991, 1992a,b, Fiedler
& Mouschovias 1992, 1993, Morton et al. 1994,
Ciolek & Mouschovias 1993, 1994, 1995, 1996,
1998, Basu and Mouschovias 1994, 1995a,b, De-
sch & Mouschovias 2001; see however also
Nakano 1979, 1982, 1983, Lizano & Shu 1989, or
Safier et al. 1997). The numerical results indicate
that the decoupling between matter and mag-
netic fields occurs over several orders of magni-
tude in density becoming important at densities
n(H2) > 1010 cm−3 (i.e. there is no single critical
density below which matter is fully coupled to
the field and above which it is not), and that am-
bipolar diffusion indeed is the dominant physical
decoupling process (e.g. Desch & Mouschovias
2001). As a consequence of ambipolar diffusion,
initially subcritical protostellar gas clumps sepa-
rate into a central nucleus, which becomes both
thermally and magnetically supercritical, and an
extended envelope that is still held up by static
magnetic fields. The central region goes into
rapid collapse sweeping up much of its residual
magnetic flux with it. The dynamical behavior
of this core more closely resembles the Larson-
Penston description of collapse than the Shu solu-
tion (Basu 1997). The low-density envelope con-
tains most of the mass, roughly has a 1/r2 density
profile, and contracts only slowly. It feeds matter
into the central collapse region on the ambipolar
diffusion timescale.

Star formation from singular isothermal spheres
is biased against binary formation. The col-
lapse of rotating singular isothermal spheres very
likely will result in the formation of single stars,
as the central protostellar object forms very early
and rapidly increases in mass with respect to a si-
multaneously forming and growing rotationally
supported protostellar disk (e.g. Tsuribe & Inut-
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suka 1999a,b). By contrast, the collapse of cloud
cores with flat inner density profiles will deliver
a much smaller fraction of mass directly into the
central protostar within a free-fall time. More
matter will go first into a rotationally supported
disk-like structure. These disks tend to be more
massive with respect to the central protostar in a
Larson-Penston-type collapse scenario compared
to collapsing singular isothermal spheres, and
they are more likely become unstable against sub-
fragmentation resulting in the formation of bi-
nary or higher-order stellar systems (see the re-
view by Bodenheimer et al. 2000). Since the ma-
jority of stars seems to form as part of binary or
higher-order system (e.g. Mathieu et al. 2000), star
formation in nature appears incompatible with
collapse from strongly centrally peaked initial
conditions (Whitworth et al. 1996).

2.4.2 Observations of Clouds and Cores

Before we consider the observational evidence
against the ‘standard theory’ of magnetically me-
diated star formation, let us recapitulate its ba-
sic predictions as introduced in Section 2.3. The
theory predicts (a) constant accretion rates and
(b) infall motions that are confined to regions
that have been passed by a rarefaction wave that
moves outwards with the speed of sound, while
the parts of a core that lie further out are assumed
to remain static. The theory furthermore (c) relies
on the presence of magnetic field strong enough
to hold up the protostellar gas from collapsing,
i.e. it predicts that protostellar cores should be
magnetically subcritical during the largest frac-
tion of their lifetime. In the following we demon-
strate all these predictions are contradicted by ob-
servations.

Magnetic Support

Most (if not all) protostellar cores with mag-
netic field measurements are supercritical. When
the theory was promoted in the late 1970’s and
1980’s accurate measurements of magnetic field
strength in molecular clouds and cloud cores
did not exist or were highly uncertain. Conse-
quently, magnetic fields in molecular cloud were

essentially assumed to have the desired proper-
ties necessary for the theory to work and to
circumvent the observational problems associ-
ated with the classical dynamical theory (Sec-
tion 2.2). In particular the field was thought
to have a strong fluctuating component asso-
ciated with magnetohydrodynamic waves that
give rise to the super-thermal linewidths ubiqui-
tously observed in molecular cloud material and
non-thermal support against self-gravity. Even
today, accurate determinations of magnetic field
strengths in molecular cloud cores are rare. Most
field estimates rely on measuring the Zeeman
splitting in molecular lines, typically OH, which
is very difficult and observationally challenging
(e.g. Heiles 1993). Hence, the number of clouds in
which the Zeeman effect has been detected above
the 3σ significance level at present is less than 20,
whereas the number of non-detections or upper
limits is considerably larger. For a compilation
of field strengths in low-mass cores see Crutcher
(1999), or more recent work by Bourke et al.
(2001). Results from studying masers around
high-mass stars are excluded in these analyses as
in that environment the gas density and velocity
dispersion are very uncertain, and the presence
of the high-mass star is likely to significantly al-
ter the local density and magnetic field structure
with respect to the initial cloud properties at the
onset of star formation.

In his critical review of the ‘standard theory’ of
star formation Nakano (1998) pointed out that
no convincingly magnetically subcritical core had
been found up to that time. Similar conclu-
sions still hold today, all magnetic field measure-
ments are consistent with protostellar cores typ-
ically being magnetically supercritical or at most
marginally critical. This is indicated in Figure 2.4,
which plots the observed line-of-sight magnetic
field Blos against the column density N(H2) de-
termined from CO measurements. In particular
when including non-detections and upper limits
into the analysis, the general conclusion is that
magnetic fields are too weak to prevent or con-
siderably postpone the gravitational collapse of
protostellar cores. The basic assumption of the
‘standard theory’ of magnetically mediated star
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Figure 2.4: Line-of-sight magnetic field strength Blos ver-
sus column density N(Hs for various molecular cloud cores.
Squares indicated values determined by Bourke et al. (2001)
and circles denote observations summarized by Crutcher
(1990), Sarma et al. (2000), and Crutcher & Troland (2000).
The large symbols represent clear detections of the Zeeman
effect, whereas the small denote 3σ upper limits to the field
strength. The lines drawn for the upper limits illustrate the
shift from the 3σ to the 1σ level of detection. To guide your
eye, lines of constant flux-to-mass ratio (Φ/M)n are indi-
cated normalized to the critical value, i.e. to the inverse of
equation (2.7). The observed line-of-sight component Blos
of the field is being (statistically) deprojected to obtain the
absolute value of the field B. The upper panel (a) hereby
assumes spherical core geometry, while the flux-to-mass ra-
tios in the lower panel (b) are computed for sheetlike struc-
tures. Values (Φ/M)n < 1 indicate magnetic field strengths
insufficient of supporting against gravitational contraction,
i.e. cores are magnetically supercritical. On the other hand,
(Φ/M)n > 1 indicates magnetic support as required by the
‘standard theory’. Note that almost all cores are magneti-
cally supercritical. This is evident when assuming spherical
symmetry, but also in the case of sheetlike protostellar cores
the average ratio is 〈(Φ/M)n〉 ≈ 0.4 when considering the
1σ upper limits. This is significantly lower than the critical
value. (From Bourke et al. 2001.)

formation therefore seems in contradiction to the
observational facts. Partial reconciliation, how-
ever, between the theory and the observations
may be achieved when taking the extreme ge-

ometrical assumption that all protostellar cores
are highly flattened, i.e. essentially sheetlike ob-
jects (Shu et al. 1999). Only then, flux-to-mass ra-
tios can be derived that come close to the criti-
cal value of equilibrium between magnetic pres-
sure and gravity, but even for sheetlike ‘cores’
the average flux-to-mass ratio lies by a factor of
2 to 3 below the critical value when taking all
measurements into account including the upper
limits at the 1σ level (Bourke et al. 2001). In ad-
dition, highly flattened morphologies appears to
be inconsistent with the observed density struc-
ture of protostellar cores. They typically appear
as ‘roundish’ objects (like the dark globule B68
which almost perfectly resembles a Bonnor-Ebert
sphere, see Alves et al. 2001) and more likely are
moderately prolate (with axis ratios of about 2:1)
than highly oblate (with axis ratios ∼ 6:1) when
statistically deprojected (Myers et al. 1991, Ryden
1996; however, some authors prefer the oblate in-
terpretation, see Li & Shu 1996, Jones, Basu, &
Dubinski 2001). Altogether the observational evi-
dence suggests that stars form from magnetically
supercritical cloud core rather than from magnet-
ically supported structures.

Molecular clouds as a whole are magnetically
highly supercritical and therefore subject to dy-
namical collapse. It is generally believed that
molecular clouds and giant molecular cloud com-
plexes as a whole are dynamical objects that
are magnetically supercritical and bound by self-
gravity, rather than being magnetically subcrit-
ical and prevented from expansion by external
pressure or large-scale galactic magnetic fields.
This follows from a careful analysis of the virial
balance equations (McKee 1989, McKee et al.
1993, Williams et al. 2000). This analysis can be
extended to the substructure within molecular
clouds, to clumps and protostellar cores. Bertoldi
& McKee (1992) already argued that very massive
clumps that form stellar clusters need to be mag-
netically supercritical.

This conclusion was extended to low-mass cloud
cores by Nakano (1998) on the basis of the fol-
lowing argument: Clumps and cores in molec-
ular clouds are generally observed as regions of
significantly larger column density compared to
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the cloud as a whole (e.g. Benson and Myers 1989,
Tatematsu et al. 1993). If a protostellar core were
magnetically subcritical it needs to be confined
by the mean cloud pressure or mean magnetic
field in the cloud, otherwise it would quickly
expand and disappear. Calculations of the col-
lapse of strongly subcritical cores such as those
by Ciolek & Mouschovias (1994) fix the magnetic
field at the outer boundaries, artificially confin-
ing the cloud. Under the assumption of virial
equilibrium, typical values for the mean pressure
and mean magnetic field in molecular clouds de-
mand column densities in cores that are compa-
rable to those in the ambient molecular cloud ma-
terial. This contradicts the observed large column
density enhancements in cloud cores, and is addi-
tional evidence that also low-mass cores are mag-
netically supercritical and collapsing.

Infall Motions

Protostellar infall motions are detected on scales
larger and with velocities greater than predicted
by the ‘standard theory’. One of the basic as-
sumptions of the standard theory is the existence
of a long-lasting quasi-static phase in protostel-
lar evolution. Before the formation of the central
young stellar object (YSO), molecular cloud cores
are held up by strong magnetic fields and evolve
slowly as matter filters through the field lines by
ambipolar diffusion on timescales exceeding the
free-fall time by a factor of ten or more. Once the
central singularity is established, the system un-
dergoes collapse from the inside out, set in mo-
tion by an expansion wave that moves outwards
with the speed of sound. Gas inside the expan-
sion wave approaches free-fall and feeds the cen-
tral protostar at a constant accretion rate, while
gas further out remains at rest. Therefore the the-
ory predicts that prestellar cores (i.e. cloud cores
without central YSO, see e.g. André et al. 2000 for
a discussion) should show no signatures of in-
fall motions, and that protostellar cores at later
stages of the evolution should exhibit collapse
motions confined to their central regions. This
can be tested by mapping molecular cloud cores
at the same time in optically thick as well as thin
lines. Inward motions can in principle be inferred

from the asymmetry of optically thick lines, how-
ever the signal is convolved with signatures of
rotation and possible outflows (when looking at
protostellar cores that already contain embedded
YSO’s). The optically thin line is needed to deter-
mine the zero point of the velocity frame (see e.g.
Myers et al. 1996).

One of the best studied examples is the ‘star-
less’ core L1544 which exhibits infall asymme-
tries (implying velocities up to 0.1 km s−1) that
are too extended (∼ 0.1 pc) to be consistent with
inside-out collapse (Tafalla et al. 1998, Williams
et al. 1999). Similar conclusions can be derived
for a variety of other sources (see the review of
Myers, Evans, & Ohashi 2000; or the extended
survey for infall motions in prestellar cores by
Lee, Myers, and Tafalla 1999, 2001). Typical
contraction velocities in the prestellar phase are
between 0.05 and 0.1 km s−1, corresponding to
mass infall rates ranging from a few 10−6 to a
few 10−5 M�yr−1. The sizes of the infalling re-
gions (e.g. as measured in CS) typically exceed
the sizes of the corresponding cores as measured
in high-density tracers like N2H+ by a factor of 2–
3. Even the dark globule B335, which was consid-
ered “a theorists dream” (Myers et al. 2000) and
which was thought to match ‘standard theory’
very well (Zhou et al. 1993) is also consistent with
Larson-Penston collapse (e.g. Masunaga and In-
utsuka 2001) when using improved radiation
transfer techniques but relying on single dish
data only. The core however exhibits consider-
able sub-structure and complexity (clumps, out-
flows, etc.) when observed with high spatial and
spectral resolution using interferometry (Wilner
et al. 2001). This raises questions about the ap-
plicability of any 1D isothermal collapse model to
objects where high resolution data are available.

Extended inward motions are a common feature
in prestellar cores, and appear a necessary ingre-
dient for the formation of stars as predicted dy-
namical theories (Sections 2.1 and 2.6).

Density Profiles

Prestellar cores have flat inner density profiles.
The basis of the Shu (1977) model is the singu-
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Figure 2.6: Optical extinction map (left image) and resulting azimuthally averaged radial surface density profile (right
image) of the dark globule B68 (from Alves et al. 2001). The resolution of the map is 24′′ and the contour levels indicate
steps of two magnitudes of extinction. The density profile is remarkably well fitted by a marginally supercritical Bonnor-
Ebert sphere with concentration parameter ξmax ≈ 6.9 (where the critical value is ξmax = 6.5). Filled red symbols give
the observed radial profile and corresponding errors when the elongated tail at the lower left is dismissed, open symbols
denote the result from the complete map. Spherical symmetry is an excellent approximation for the inner parts of B68,
noticeable deviations occur at the surface layers at the 10%-level of the central density. Data are from Alves et al. (2001).

lar isothermal sphere, i.e. the theory assumes ra-
dial density profiles ρ ∝ 1/r2 at all radii r as
starting conditions of protostellar collapse. The
advent of a new generation of infrared detec-
tors and powerful receivers in the radio and sub-
mm waveband in the late 1990’s made it possi-
ble to directly test this hypothesis and determine
the radial (column) density profile of prestellar
cores with high sensitivity and resolution (e.g.
Ward-Thompson et al. 1994, André et al. 1996,
Motte, André, and Neri 1998, Ward-Thompson
et al. 1999, Bacmann et al. 2001, Motte and An-
dré 2001). These studies show that starless cores
typically have flat inner density profiles out to
radii of a few 10−2 pc followed by a radial de-
cline of roughly ρ ∝ 1/r2 and possibly a sharp
outer edge at radii 0.05 – 0.3 pc (see the review
of André et al. 2000). This is illustrated in Figure
2.5 which shows the observed column density of
the starless core L1689B derived from combin-
ing mid-infrared absorption maps with 1.3 mm
dust continuum emission maps (Bacmann et al.
2001). The density structure in the prestellar

phase appears consistent with pressure-bounded
Bonnor-Ebert spheres (Bonnor 1956, Ebert 1955)
with sufficient density contrast to imply instabil-
ity against gravitational collapse. This impres-
sion is strengthened further by recent findings
from multi-wavelength stellar extinction studies
of dark globules. For example, the density dis-
tribution of the dark globule B68 is in nearly per-
fect agreement with being a marginally supercrit-
ical Bonnor-Ebert sphere, as illustrated in Figure
2.6 (Alves, Lada, & Lada 2001). Altogether high-
resolution mapping of prestellar cores provides
the most direct evidence against singular isother-
mal spheres as initial conditions of protostellar
collapse.

Chemical Ages

The chemical age of substructure in molecular
cloud is much smaller than the ambipolar dif-
fusion time. This poses a timescale argument
against magnetically regulated star formation,
and comes from the investigation of the chem-
ical status of density fluctuations in molecular
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Figure 2.5: Radial column density profile of the prestel-
lar core L1689B derived from combined infrared absorption
and 1.3 mm continuum emission maps. Crosses show the
observed values with the corresponding statistical errors,
while the total uncertainties in the method are indicated by
the dashed lines. For comparison, the solid line denotes the
best-fitting Bonnor-Ebert sphere and the dotted line the col-
umn density profile of an singular isothermal sphere. The
observed profile is well reproduced by an unstable Bonnor-
Ebert sphere with a density contrast of ∼ 50, see Bacmann
et al. 2000 for a further details.

clouds. The comparison of multi-molecule ob-
servations of cloud cores with time-dependent
chemical models indicates typical ages of about
105 years (e.g. Bergin & Langer 1997, Pratap et al.
1997, Aikawa et al. 2001; or see the reviews by
van Dishoeck et al. 1993, van Dishoeck & Black
1998, and Langer et al. 2000). This is significantly
shorter than the timescale required for ambipo-
lar diffusion to become important as required in
the standard model. The inferred chemical ages
of molecular cloud cores appear only compatible
with supersonic, and super-Alvénic turbulence
as being the main agent that determines molec-
ular cloud structure and regulates the star forma-
tion process (see Sections 2.5 and 2.6).

2.4.3 Observations of Protostars and
Young Stars

Accretion Rates

Protostellar accretion rates decline with time. As
an immediate consequence of the assumed sin-

gular 1/r2 initial density profile, the Shu (1977)
model predicts constant protostellar accretion
rates Ṁ? = 0.975c3

s /G, with sound speed cs and
gravitational constant G. As matter falls onto the
central protostar it goes through a shock and re-
leases energy that is radiated away giving rise to
a luminosity Lacc ≈ GM?Ṁ?/R? (Shu et al. 1987,
1993). The fact that most of the matter first falls
onto a protostellar disk, where it gets transported
inwards on a viscous timescale before it is able to
accrete onto the star does not alter the expected
overall luminosity by much (see e.g. Hartmann
1998).

During the early phases of protostellar collapse,
i.e. as long as the mass Menv of the infalling enve-
lope exceed the mass M? of the central protostar,
the accretion luminosity Lacc by far exceeds the
intrinsic luminosity L? of the young star. Hence
the observed bolometric luminosity Lbol of the
object is a direct measure of the accretion rate as
long as reasonable estimates of M? and R? can be
obtained. Determinations of bolometric temper-
ature Tbol and luminosity Lbol therefore should
provide a fair estimate of the evolutionary stage
of a protostellar core (e.g. Chen et al. 1995, My-
ers et al. 1998). Scenarios in which the accretion
rate decreases with time and increases with to-
tal mass of the collapsing cloud fragment yield
qualitatively better agreement with the observa-
tions than do models with constant accretion rate
(André et al. 2000, see however Jayawardhana,
Hartmann, & Calvet 2001, for an alternative in-
terpretation based on environmental conditions).
A comparison of observational data with theo-
retical models where Ṁ? decreases exponentially
with time is shown in Figure 2.7.

A closely related method to estimate the accre-
tion rate Ṁ? is by determining protostellar out-
flow strengths (Bontemps et al. 1996). It is known
that most embedded young protostars are asso-
ciated with powerful molecular outflows (Richer
et al. 2000) and that the outflow activity decreases
towards later evolutionary stages. For protostars
at the end of their main accretion phase there ex-
ists a clear correlation between the outflow mo-
mentum flux FCO and the bolometric luminosity
Lbol (e.g. Cabrit & Bertout 1992). Furthermore,
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Figure 2.7: Menv − Lbol diagram for a sample of protostel-
lar cores in the main accretion phase from André & Mont-
merle (1994) and Saraceno et al. (1996). Open circles indi-
cate objects for which the envelope mass exceeds the mass of
the central protostar (Menv > M?) and filled circles denote
the later evolutionary stage where Menv < M?. Overlayed
are evolutionary tracks that assume bound initial configura-
tion of finite mass and that have Lbol = GM?Ṁ?/R? + L?

with L? from Stahler (1988) and with both, Menv and Ṁ? =
Menv/τ (τ ≈ 105 yr), declining exponentially with time
(Bontemps et al. 1996, also Myers et al. 1998). Exponentially
declining Ṁ? show better agreement with the data than do
constant accretion rates. Small arrows are plotted on the
tracks every 104 yr, and large arrows when 50% and 90% of
the total mass is accreted onto the central YSO. The dashed
and dotted lines indicate the transition from Menv > M? to
Menv < M? using two different relations, M? ∝ Lbol and
M? ∝ L0.6

bol, respectively, indicating the range proposed in
the literature (e.g. André & Montmerle 1994, or Bontemps
et al. 1996). The latter relation is suggested by the accretion
scenario adopted in the tracks. The figure is adapted from
André et al. (2000).

FCO is well correlated with Menv for all proto-
stellar cloud cores (Bontemps et al. 1996, Hoher-
heijde et al. 1998, Henning and Launhardt 1998).
This result is independent of the FCO − Lbol re-
lation and most likely results from a progressive
decrease of outflow power with time during the
main accretion phase. With the linear correlation
between outflow mass loss and protostellar ac-
cretion rate (Hartigan et al. 1995) these observa-
tions therefore suggest stellar accretion rates Ṁ?

that decrease with time. This is illustrated in Fig-
ure 2.8 which compares the observed values of
the normalized outflow flux and the normalized
envelope mass for a sample of ∼ 40 protostellar
cores with a simplified dynamical collapse model

with decreasing accretion rate Ṁ? (Hendriksen et
al. 1997). The model describes the data relatively
well, as opposed to models of constant Ṁ?.

Figure 2.8: Outflow momentum flux FCO plotted against en-
velope mass Menv normalized to the bolometric luminosity
Lbol using the relations Menv ∝ L0.6

bol and FCOc ∝ Lbol. Pro-
tostellar cores with Menv > M? are indicated by open cir-
cles, and Menv > M? by filled circles (data from Bontemps
et al. 1996). FCOc/Lbol is an empirical tracer for the accretion
rate, and the speed of light c is invoked in order to obtain a
dimensionless quantity. Menv/L0.6

bol is an evolutionary indi-
cator that decreases with time. The abscissa therefore corre-
sponds to a time axis with early times at the right and late
evolutionary stages at the left. Overlayed on the data is a
evolutionary model that assumes a flat inner density profile
(for details see Hendriksen et al. 1997, where the figure was
published originally).

Embedded Objects

The fraction of protostellar cores with embed-
ded protostellar objects is very high. Further in-
dication that the standard theory may need to
be modified comes from estimates of the time
spent by protostellar cores during various stages
of their evolution. For a sample of protostars,
the relative numbers of objects in distinct evo-
lutionary phases roughly correspond to the rel-
ative time spent in each phase. Beichman et
al. (1986) used the ratio of numbers of starless
cores to the numbers of cores with embedded ob-
jects detected with the Infrared Astronomical Satel-
lite (IRAS) and estimated that the duration of
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the prestellar phase is about equal to the time
needed for a young stellar object to completely
accrete the protostellar envelope it is embedded
in. As the standard model assumes cloud cores
in the prestellar phase evolve on ambipolar dif-
fusion timescales, which are an order of magni-
tude longer than the dynamical timescales of the
later accretion phase, one would expect a signifi-
cantly larger number of starless cores than cores
with embedded protostars. Millimeter contin-
uum mapping of pre-stellar cores gives similar
results (Ward-Thompson et al. 1994, 1999), lead-
ing André et al. (2000) to argue that the timespan
of cores to increase their central density n(H2)

from ∼ 104 to ∼ 105 cm−3 is about the same as
to go from nH2) ≈ 105 cm−3 to the formation of
the central protostar. This clearly disagrees with
standard ambipolar diffusion models (e.g. Ciolek
& Mouschovias 1994) which predict a six times
longer duration. Ciolek & Basu (2000) were in-
deed able to accurately model infall in L1544 us-
ing an ambipolar diffusion model, but they did
so by using initial conditions that were already
almost supercritical, so that very little ambipo-
lar diffusion had to occur before dynamical col-
lapse would set in. Ciolek & Basu (2001) quantify
the central density required to match the obser-
vations, and conclude that observed pre-stellar
cores are either already supercritical or just about
to be. Altogether these considerations suggest
that already in the prestellar phase the timescales
of core contraction are determined by fast dy-
namical processes rather than by slow ambipolar
diffusion.

Stellar Ages

Stellar age spreads in young clusters are small.
If the contraction time of individual cloud cores
in the prestellar phase is determined by ambipo-
lar diffusion rather than by dynamical collapse
(or turbulent dissipation, see Sections 2.5 and
2.6), then the age spread in a stellar population
(say in a young cluster) should considerably ex-
ceed the relevant dynamical timescales. Within
a star-forming region high-density protostellar
cores will evolve and form a central YSO faster
than their low-density counterparts, and the age

distribution is roughly determined by the evo-
lution time of the lowest-density condensation.
Note, that ambipolar diffusion time τAD and free-
fall time τff both are inversely proportional to
square root of the density, τAD ∝ τff ∝ ρ−1/2, and
that τAD ≈ 10τff under typical conditions (e.g.
McKee et al. 1993).

However, the age spread in star clusters is very
short. For example in the Orion Trapezium
cluster it is less than 106 years (Prosser et al. 1994,
Hillenbrand 1997, Hillenbrand & Hartmann
1998), and the same holds for L1641 (Hodapp
& Deane 1993). The age spread is comparable
to the dynamical time in these clusters. Similar
conclusions can be obtained for Taurus (Hart-
mann 2001), NGC 1333 (Bally et al. 1996, Lada et
al. 1996), NGC 6531 (Forbes 1996), and a variety
of other clusters (see Elmegreen et al. 2000 for
a review, also Palla & Stahler 1999, Hartmann
2001). There is a relation between the duration
of star formation and the size of the star forming
region. Larger regions form stars for a longer
timespan. This correlation is comparable to the
linewidth-size relation, or the crossing time-size
relation, respectively, found for molecular gas,
and suggests that typical star formation times
correspond to about 2 to 3 turbulent crossing
times in that region (Efremov & Elmegreen 1998).
This is very fast compared to the ambipolar
diffusion timescale, which is about 10 crossing
times in a uniform medium with cosmic ray
ionization (Shu et al. 1987) and is even longer if
stellar UV sources contribute to the ionization
(Myers & Khersonsky 1995) or if the cloud is very
clumpy (Elmegreen & Combes 1992). Magnetic
fields, therefore, cannot regulate star formation
on scales of stellar clusters.

2.5 Beyond the Standard Theory

New understanding of the behavior of turbu-
lence has suggested that it may be more impor-
tant than previously thought in the support of
molecular clouds against gravitational collapse.
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Figure 2.9: Three-dimensional resolution studies of the decay of supersonic turbulence for initial Mach number M = 5,
isothermal models. ZEUS models have 323 (dotted), 643 (short dashed), 1283 (long dashed), or 2563 (solid) zones, while the
SPH models have 7000 (dotted), 50,000 (short dashed), or 350,000 (solid) particles. Panels show a) hydro runs with ZEUS, b)
hydro runs with SPH, c) A = 5 MHD runs with ZEUS, and d) A = 1 MHD runs with ZEUS (From Mac Low et al. (1998)).

Indeed, it may take many of the roles tradition-
ally assigned to magnetic fields in the standard
model.

2.5.1 Maintenance of Supersonic Mo-
tions

We first consider the question of how to maintain
the observed supersonic motions. As described
above, magnetohydrodynamic waves were gen-
erally thought to provide the means to prevent
the dissipation of interstellar turbulence. How-
ever, numerical models have now shown that
they probably do not. One-dimensional simula-
tions of decaying, compressible, isothermal, mag-
netized turbulence by Gammie & Ostriker (1996)
showed quick decay of kinetic energy K in the
absence of driving, but found that the quanti-
tative decay rate depended strongly on initial

and boundary conditions because of the low di-
mensionality. Mac Low et al. (1998), Stone, Os-
triker & Gammie (1998), and Padoan & Nordlund
(1999) measured the decay rate in direct numeri-
cal simulations in three dimensions, using a num-
ber of different numerical methods. They uni-
formly found rather faster decay, with Mac Low
et al. (1998) characterizing it as Ekin ∝ t−η, with
0.85 < η < 1.1. A resolution and algorithm
study is shown in Figure 2.9. Magnetic fields
with strengths ranging up to equipartition with
the turbulent motions (ratio of thermal to mag-
netic pressures as low as β = 0.025) do indeed
reduce η to the lower end of this range, but not
below that, while unmagnetized supersonic tur-
bulence shows values of η ' 1–1.1.

Stone et al. (1998) and Mac Low (1999) showed
that supersonic turbulence decays in less than a
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free-fall time under molecular cloud conditions,
regardless of whether it is magnetized or unmag-
netized. The hydrodynamical result agrees with
the high-resolution, transsonic, decaying models
of Porter & Woodward (1992, 1994). Mac Low
(1999) showed that the formal dissipation time
τd = K/K̇ scaled in units of the free fall time tff is

τd/τff =
1

4πξ

(

32
3

)1/2
κ

Mrms
' 3.9

κ

Mrms
,

(2.13)
where ξ = 0.21/π is the energy-dissipation coef-
ficient, Mrms = vrms/cs is the rms Mach number
of the turbulence, and κ is the ratio of the driving
wavelength to the Jeans wavelength λJ. In molec-
ular clouds, Mrms is typically observed to be of
order 10 or higher. If the ratio κ < 1, as is prob-
ably required to maintain gravitational support
(Léorat et al. 1990), then even strongly magne-
tized turbulence will decay long before the cloud
collapses and not markedly retard the collapse.

Either observed supersonic motions must be con-
tinually driven, or molecular clouds must be less
than a single free-fall time old. As we discuss in
Section 5.2, the observational evidence does sug-
gest that clouds are a few free-fall times old, on
average, though perhaps not more than two or
three, so there is likely some continuing energy
input into the clouds.

2.5.2 Turbulence in Self-Gravitating Gas

This leads to the question of what effects su-
personic turbulence will have on self-gravitating
clouds. Can turbulence alone delay gravitational
collapse beyond a free-fall time? In Section 1 and
Section 2.1, we summarized analytic approaches
to this question, and pointed out that they were
all based on the assumption that the turbulent
flow is close to incompressible. Analytic attempts
to statistically characterize highly compressible
turbulence such as that we actually see in molec-
ular clouds have usually been based on heuristic
models (Elmegreen 1993), although recently they
have been able to start making some progress in
recovering the velocity structure (Boldyrev 2002,
Boldyrev, Nordlund, & Padoan 2002).

Numerical models of highly compressible, self-
gravitating turbulence have shown the impor-
tance of density fluctuations generated by the tur-
bulence to understanding support against grav-
ity. Early models were done by Bonazzola
et al. (1987), who used low resolution (32 ×
32 collocation points) calculations with a two-
dimensional spectral code to support their an-
alytical results. The hydrodynamical studies
by Passot et al. (1988), Léorat, Passot & Pou-
quet (1990), Vázquez-Semadeni, Passot, & Pou-
quet (1995) and Ballesteros-Paredes, Vázquez-
Semadeni & Scalo (1999), were also restricted
to two dimensions, and were focused on the
interstellar medium at kiloparsec scales rather
than molecular clouds, although they were per-
formed with far higher resolution (up to 800 ×
800 points). Magnetic fields were introduced in
these models by Passot, Vázquez-Semadeni, &
Pouquet (1995), and extended to three dimen-
sions with self-gravity (though at only 643 res-
olution) by Vázquez-Semadeni, Passot, & Pou-
quet (1996). One-dimensional computations fo-
cused on molecular clouds, including both MHD
and self-gravity, were presented by Gammie &
Ostriker (1996) and Balsara, Crutcher & Pouquet
(1999). Ostriker, Gammie, & Stone (1999) ex-
tended their work to 2.5 dimensions more re-
cently.

These early models at low resolution, low dimen-
sion, or both, suggested several important con-
clusions. First, gravitational collapse, even in the
presence of magnetic fields, does not generate
sufficient turbulence to markedly slow continu-
ing collapse. Second, turbulent support against
gravitational collapse may act at some scales, but
not others. More recent three-dimensional, high-
resolution computations by Klessen et al. (1998,
2000) Klessen (2000), Klessen & Burkert (2000,
2001), and Heitsch et al. (2001a) have now con-
firmed both of these results. In the following sub-
sections, we give a brief description of the numer-
ical methods used, give more details on these re-
sults, and draw consequences for the theory of
star formation.
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2.5.3 A Numerical Approach

Klessen et al. (2000) and Heitsch et al. (2001a)
used two different numerical methods: ZEUS-3D
(Stone & Norman 1992ab, Hawley & Stone 1995),
an Eulerian MHD code; and an implementation
of smoothed particle hydrodynamics (SPH; Benz
1990, Monaghan 1992), a Lagrangian hydrody-
namics method using particles as an unstruc-
tured grid, while Klessen et al. (1998), Klessen
(2000), and Klessen & Burkert (2000, 2001) used
only SPH computations. Both codes were used
to examine the gravitational stability of three-
dimensional hydrodynamical turbulence at high
resolution. The use of both Lagrangian and Eu-
lerian methods to solve the equations of self-
gravitating hydrodynamics in three dimensions
(3D) allowed them to attempt to bracket reality
by taking advantage of the strengths of each ap-
proach. This also gave them some protection
against interpreting numerical artifacts as phys-
ical effects.

SPH can resolve very high density contrasts be-
cause it increases the particle concentration, and
thus the effective spatial resolution, in regions of
high density, making it well suited for computing
collapse problems. By the same token, though, it
resolves low-density regions poorly. Shock struc-
tures tend to be broadened by the averaging ker-
nel in the absence of adaptive techniques. The
correct numerical treatment of gravitational col-
lapse requires the resolution of the local Jeans
mass at every stage of the collapse (Bate & Burk-
ert 1997). In the current code, once an object
with density beyond the resolution limit of the
code has formed in the center of a collapsing gas
clump it is replaced by a ‘sink’ particle (Bate, Bon-
nell, & Price 1995). Adequately replacing high-
density cores and keeping track of their further
evolution in a consistent way prevents the time
step from becoming prohibitively small. This al-
lows modeling of the collapse of a large number
of cores until the overall gas reservoir becomes
exhausted.

ZEUS-3D, conversely, gives equal resolution in
all regions, and allows good resolution shocks
everywhere, as well as allowing the inclusion of

magnetic fields (see Section 2.5.6). On the other
hand, collapsing regions cannot be followed to
scales less than one or two grid zones. The
numerical resolution required to follow gravita-
tional collapse must be considered. For a grid-
based simulation, the criterion given by Truelove
et al. (1997) holds. Equivalent to the SPH resolu-
tion criterion, the mass contained across two or
three grid zones has to be rather smaller than the
local Jeans mass throughout the computation.

The computations presented here are done on pe-
riodic cubes, with an isothermal equation of state,
using up to 2563 zones (with one model at 5123

zones) or 803 SPH particles. To generate turbu-
lent flows Gaussian velocity fluctuations are in-
troduced with power only in a narrow interval
k − 1 ≤ |~k| ≤ k, where k = L/λd counts the num-
ber of driving wavelengths λd in the box (Mac
Low et al. 1998). This offers a simple approxi-
mation to driving by mechanisms that act on that
scale. To drive the turbulence, this fixed pattern
is normalized to maintain constant kinetic energy
input rate Ėin = ∆E/∆t (Mac Low 1999). Self-
gravity is turned on only after a state of dynam-
ical equilibrium has been reached. In Table 2.3
we summarize the numerical models used in the
subsequent analysis and give a list of their basic
properties.

2.5.4 Global Collapse

First we examine the question of whether gravita-
tional collapse can generate enough turbulence to
prevent further collapse. Hydrodynamical SPH
models initialized at rest with Gaussian density
perturbations show fast collapse, with the first
collapsed objects forming in a single free-fall time
(Klessen, Burkert, & Bate 1998; Klessen & Burk-
ert 2000, 2001). Models set up with a freely de-
caying turbulent velocity field behaved similarly
(Klessen 2000). Further accretion of gas onto
collapsed objects then occurs over the next free-
fall time, defining the predicted spread of stel-
lar ages in a freely-collapsing system. The turbu-
lence generated by the collapse (or virialization)
does not prevent further collapse as suggested by
many people (e.g. Elmegreen 1993). Such a mech-
anism only works for thermal pressure support in



2.5. BEYOND THE STANDARD THEORY 31

Name Method Resolution kdrv Ėin Eeq
kin 〈MJ〉turb t5%

A1 SPH 200 000 1 − 2 0.1 0.15 0.6 0.5
A2 SPH 200 000 3 − 4 0.2 0.15 0.6 0.7
A3 SPH 200 000 7 − 8 0.4 0.15 0.6 2.2
B1 SPH 50 000 1 − 2 0.5 0.5 3.2 0.5
B1h SPH 200 000 1 − 2 0.5 0.5 3.2 0.4
B2 SPH 50 000 3 − 4 1.0 0.5 3.2 1.5
B2h SPH 200 000 3 − 4 1.0 0.5 3.2 1.4
B3 SPH 50 000 7 − 8 2.4 0.5 3.2 6.0
B4 SPH 50 000 15 − 16 5.0 0.5 3.2 8.0
B5 SPH 50 000 [39 − 40] [5.9] [0.3] [1.7] —
C2 SPH 50 000 3 − 4 7.5 2.0 18.2 6.0
D1 ZEUS 1283 1 − 2 0.4 0.5 3.2 0.4
D2 ZEUS 1283 3 − 4 0.8 0.5 3.2 1.2
D3 ZEUS 1283 7 − 8 1.6 0.5 3.2 2.4
D1h ZEUS 2563 1 − 2 0.4 0.5 3.2 0.4
D2h ZEUS 2563 3 − 4 0.8 0.5 3.2 1.2
D3h ZEUS 2563 7 − 8 1.6 0.5 3.2 3.1

Table 2.3: Overview of the models. The columns give model name, numerical method, resolution, driving wave lengths k,
energy input rate Ėin, equilibrium value of kinetic energy without self-gravity Eeq

kin, turbulent Jeans mass 〈MJ〉turb, and the
time required to reach a core mass fraction M∗ = 5%. The resolution is given for SPH as particle number and for ZEUS as
number of grid cells. Dashes in the last column indicate that no sign of local collapse was observed within 20τff , while stars
indicate that the numerical resolution was insufficient for unambiguous identification of collapsed cores. The total mass in
the system is M = 1. Model B5 focuses on a subvolume with mass M = 0.25 and decreased sound speed cs = 0.05. When
scaled up to the standard cube this corresponds to the effective values given in square brackets. Adapted from Klessen et al.
(2000).

systems such as galaxy cluster halos when dissi-
pation is ineffective, while the dissipation for tur-
bulence is quite effective (Equation 2.13).

Models of freely collapsing, magnetized gas re-
main to be done, but models of self-gravitating,
decaying, magnetized turbulence by Balsara,
Ward-Thompson, & Crutcher (2001) using an
MHD code incorporating a Riemann solver sug-
gest that the presence of magnetic fields is un-
likely to markedly extend collapse timescales.
They further show that accretion down filaments
aligned with magnetic field lines onto cores oc-
curs readily. This allows high mass-to-flux ratios
to be maintained even at small scales, which is
necessary for supercritical collapse to continue af-
ter fragmentation occurs.

2.5.5 Local Collapse in Globally Stable
Regions

Second, we examine whether continuously
driven turbulence can support against gravita-
tional collapse. The models of driven, self-
gravitating turbulence by Klessen et al. (2000)
and Heitsch et al. (2001a) described above (Sec-
tion 2.5.3) show that local collapse occurs even
when the turbulent velocity field carries enough
energy to counterbalance gravitational contrac-
tion on global scales. This confirms the re-
sults of two-dimensional (2D) and low-resolution
(643) 3D computations with and without mag-
netic fields by Vázquez-Semadeni et al. (1996). An
example of local collapse in a globally supported
cloud is given in Figure 2.10. A hallmark of global
turbulent support is isolated, inefficient, local col-
lapse.

Local collapse in a globally stabilized cloud is
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Figure 2.10: Density cubes for model B2h from Klessen et al. (2000), which is driven in the at intermediate wavelength,
shown (a) at the time when gravity is turned on, (b) when the first collapsed cores are formed and have accreted M∗ = 5%
of the mass, (c) when the mass in dense cores is M∗ = 25%, and (d) when M∗ = 50%. Time is measured in units of the
global system free-fall time scale τff , dark dots indicate the location of the collapsed cores.

not predicted by any of the analytic models (as
discussed in Klessen et al. 2000). The resolu-
tion to this apparent paradox lies in the require-
ment that any substantial turbulent support must
come from supersonic flows, as otherwise pres-
sure support would be at least equally important.
Supersonic flows compress the gas in shocks; in
isothermal gas with density ρ the postshock gas
has density ρ′ = M2ρ, where M is the Mach
number of the shock. The turbulent Jeans length
λJ ∝ ρ′−1/2 in these density enhancements, so it
drops by a factor of M in isothermal shocks.

Klessen et al. (2000) demonstrated that turbulent

support can completely prevent collapse only
when it can support not just the average den-
sity, but also these high-density shocked regions,
as shown in Figure 2.11. (This basic point was
appreciated by Elmegreen [1993] and Vázquez-
Semadeni et al. [1995].) Two criteria must be ful-
filled: the rms velocity must be sufficiently high
for the turbulent Jeans criterion to be met in these
regions, and the driving wavelength λd < λJ(ρ

′).
If these two criteria are not fulfilled, the high-
density regions collapse, although the surround-
ing flow remains turbulently supported. The effi-
ciency of collapse depends on the properties of
the supporting turbulence. Sufficiently strong
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driving on short enough scales can prevent lo-
cal collapse for arbitrarily long periods of time,
but such strong driving may be rather difficult
to arrange in a real molecular cloud. If we as-
sume that stellar driving sources have an effec-
tive wavelength close to their separation, then the
condition that driving acts on scales smaller then
the Jeans wavelength in ‘typical’ shock generated
gas clumps requires the presence of an extraor-
dinarily large number of stars evenly distributed
throughout the cloud, with typical separation 0.1
pc in Taurus, or only 350 AU in Orion. This is not
observed. Very small driving scales seem to be at
odds with the observed large-scale velocity fields
at least in some molecular clouds (e.g. Ossenkopf
& Mac Low 2002).

Figure 2.11: Fraction M∗ of mass accreted in dense cores as
function of time for different models of self-gravitating su-
personic turbulence. The models differ by driving strength
and driving wavenumber, as indicated in the figure. The
mass in the box is initially unity, so the solid curves are
formally unsupported, while the others are formally sup-
ported. The figure shows how the efficiency of local col-
lapse depends on the scale and strength of turbulent driv-
ing. Time is measured in units of the global system free-fall
time scale τff . Only a model driven strongly at scales smaller
than the Jeans wavelength λ J in shock-compressed regions
shows no collapse at all. (From Klessen et al. 2000.)

The first collapsed cores form in small groups
randomly dispersed throughout the volume.
Their velocities directly reflect the turbulent ve-
locity field of the gas from which they formed
and continue to accrete. However, as more and
more mass accumulates in protostars, their mu-
tual gravitational interaction becomes increas-

ingly important, beginning to determine the dy-
namical state of the system. It behaves more
and more like a collisional N-body system,
where close encounters occur frequently (see Sec-
tion 4.4).
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Figure 2.12: Two dimensional slice through a cube of mag-
netostatically supported large-scale driven, self-gravitating
turbulence from Heitsch et al. (2001a). The upper panel
shows the velocity field vectors and the lower panel the
magnetic field vectors. The initial magnetic field is along
the z-direction, i.e. vertically oriented in all plots presented.
The field is strong enough in this case not only to prevent
the cloud from collapsing perpendicular to the field lines,
but even suppress the turbulent motions in the cloud. The
turbulence only scarcely affects the mean field. The picture
is taken at t = 5.5tff. (From Heitsch et al. 2001a.)
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2.5.6 Effects of Magnetic Fields

So far, we have concentrated on the effects of
purely hydrodynamic turbulence. How does
the picture discussed here change if we con-
sider the presence of magnetic fields? Magnetic
fields have been suggested to support molecu-
lar clouds well enough to prevent gravitationally
unstable regions from collapsing (McKee 1999),
either magnetostatically or dynamically through
MHD waves.

Assuming ideal MHD, a self-gravitating cloud
of mass M permeated by a uniform flux Φ is
stable unless the mass-to-flux ratio exceeds the
value given by equation (2.7). Without any other
mechanism of support, such as turbulence act-
ing along the field lines, a magnetostatically sup-
ported cloud collapses to a sheet which is then
supported against further collapse. Fiege & Pu-
dritz (1999) found an equilibrium configuration
of helical field that could support a filament,
rather than a sheet, from fragmenting and col-
lapsing, but realizing this configuration in highly
turbulent molecular clouds appears difficult.

Investigation of support by MHD waves concen-
trates mostly on the effect of Alfvén waves, as
they (1) are not as subject to damping as mag-
netosonic waves and (2) can exert a force along
the mean field, as shown by Dewar (1970) and
Shu et al. (1987). This is because Alfvén waves
are transverse waves, so they cause perturbations
δ~B perpendicular to the mean magnetic field ~B.
McKee & Zweibel (1994) argue that Alfvén waves
can even lead to an isotropic pressure, assuming
that the waves are neither damped nor driven.
However, in order to support a region against
self-gravity, the waves would have to propagate
outwardly, because inwardly propagating waves
would only further compress the cloud. Thus,
this mechanism requires a negative radial gradi-
ent in wave sources in the cloud (Shu et al. 1987).

It can be demonstrated (e.g. Heitsch et al. 2001a)
that supersonic turbulence does not cause a mag-
netostatically supported region to collapse, and
vice versa, that in the absence of magnetostatic
support, MHD waves cannot completely prevent
collapse, although they can retard it to some

degree. The case of a subcritical region with
M < Mcr is illustrated in Figure 2.12. Indeed,
sheets form, though always perpendicular to the
field lines. This is because the turbulent driv-
ing can shift the sheets along the field lines with-
out changing the mass-to-flux ratio. The sheets
do not collapse further, because the shock waves
cannot sweep gas across field lines and the entire
region is initially supported magnetostatically.

A supercritical cloud with M > Mcr could only
be stabilized by MHD wave pressure. This is in-
sufficient to completely prevent gravitational col-
lapse, as shown in Figure 2.13. Collapse occurs
in all models of unmagnetized and magnetized
turbulence regardless of the numerical resolution
and magnetic field strength as long as the sys-
tem is magnetically supercritical. This is shown
quantitatively in Figure 2.14. Increasing the res-
olution makes itself felt in different ways in hy-
drodynamical and MHD models. In the hydro-
dynamical case, higher resolution results in thin-
ner shocks and thus higher peak densities. These
higher density peaks form cores with deeper po-
tential wells that accrete more mass and are more
stable against disruption. Higher resolution in
the MHD models, on the other hand, better re-
solves short-wavelength MHD waves, which ap-
parently can delay collapse, but not prevent it.
This result extends to models with 5123 zones
(Heitsch et al. 2001b, Li et al. 2001).

The delay of local collapse seen in our magne-
tized simulations is caused mainly by weakly
magnetized turbulence acting to decrease den-
sity enhancements due to shock interactions. Al-
though a simple additional pressure term will
model this effect for small field strength, this ap-
proximation cannot be used to follow the subse-
quent collapse of the cores, as done by Boss (2000,
2002), as it entirely neglects the effects of mag-
netic tension on angular momentum. As a result,
magnetic braking of rotating cores (Section 2.3) is
neglected, allowing binary formation to proceed
where it would otherwise not occur.



2.5. BEYOND THE STANDARD THEORY 35

���������	��
��
�������� ���������	��
��
��������	� � ������������
��
��������� �

���������	��
��
�������� ��������	��
��
��������	� � ��������	� 
���
!���"����� �

Figure 2.13: Two-dimensional slices of 2563 models from Heitsch et al. (2001a) driven at large scales with wavenumbers
k = 1 − 2 hard enough that the mass in the box represents only 1/15 〈MJ〉turb, and with initially vertical magnetic fields
strong enough to give critical mass fractions as shown. The slices are taken at the location of the zone with the highest
density at the time when 10% of the total mass has been accreted onto dense cores. The plot is centered on this zone.
Arrows denote velocities in the plane. The length of the largest arrows corresponds to a velocity of v ∼ 20cs. The density
greyscale is given in the colorbar. As fields become stronger, they influence the flow more, producing anisotropic structure.
(From Heitsch et al. 2001b.)

2.5.7 Promotion and Prevention of Local
Collapse

Highly compressible turbulence both promotes
and prevents collapse. Its net effect is to inhibit
collapse globally, while perhaps promoting it lo-
cally. This can be seen by examining the depen-
dence of the Jeans mass MJ ∝ ρ−1/2c3

s , Equa-
tion (2.3), on the rms turbulent velocity vrms. If
we follow the classical picture that treats turbu-
lence as an additional pressure, then we define
c2

s,eff = c2
s + v2

rms/3. However, compressible tur-
bulence in an isothermal medium causes local
density enhancements that increase the density
by M2 ∝ v2

rms. Combining these two effects, we
find that

MJ ∝ v2
rms (2.14)

for vrms � cs, so that ultimately turbulence
does inhibit collapse. However, there is a broad
intermediate region, especially for long wave-
length driving, where local collapse occurs de-
spite global support.

The total mass and lifetime of a fluctuation deter-
mine whether it will actually collapse. Roughly
speaking, the lifetime of a clump is determined
by the interval between two successive passing
shocks: the first creates it, while the second one,
if strong enough, may disrupt the clump again
(Klein, McKee & Colella 1994, Mac Low et al.
1994). If the timeinterval between two shocks
is sufficiently long, however, a Jeans unstable
clump can contract to high densities to effectively
decouple from the ambient gas flow and becomes
able to survive the encounter with further shock
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Figure 2.15: Density cubes for (a) a model of large-scale driven turbulence (B1h) and (b) a model of small-scale driven
turbulence (B3) at dynamical stages where the core mass fraction is M∗ = 5%. Compare with Figure 2.10b. Together
they show the influence of different driving wavelengths for otherwise identical physical parameters. Larger-scale driving
results in collapsed cores in more organized structure, while smaller-scale driving results in more randomly distributed
cores. Note the different times at which M∗ = 5% is reached. (From Klessen et al. 2000.)

fronts (e.g. Krebs & Hillebrandt 1983). Then it
continues to accrete from the surrounding gas,
forming a dense core. The weaker the passing
shocks, and the greater the separation between
them, the more likely that collapse will occur.
Therefore, weak driving and long driving wave-
lengths enhance collapse. The influence of the
driving wavelength is enhanced because individ-
ual shocks sweep up more mass when the typical
wavelength is longer, so density enhancements
resulting from the interaction of shocked layers
have larger masses, and so are more likely to ex-
ceed their local Jeans limit. Turbulent driving
mechanisms that act on large scales produce large
coherent structures (filaments of compressed gas
with embedded dense cores) on relatively short
timescales compared to small-scale driving even
if the total kinetic energy in the system is the
same (Figure 2.15, can be directly compared with
Figure 2.10b).

A more detailed understanding of how local col-
lapse proceeds comes from examining the full
time history of accretion for different models
(Figure 2.11). The cessation of strong accretion
onto cores occurs long before all gas has been ac-

creted, with the mass fraction at which this oc-
curs depending on the properties of the turbu-
lence. This is because the time that dense cores
spend in shock-compressed, high-density regions
decreases with increasing driving wave number
and increasing driving strength. In the case of
long wavelength driving, cores form coherently
in high-density regions associated with one or
two large shock fronts that can accumulate a con-
siderable fraction of the total mass of the system,
while in the case of short wavelength driving, the
network of shocks is tightly knit, and cores form
in smaller clumps and remain in them for shorter
times.

2.5.8 The Timescales of Star Formation

Turbulent control of star formation predicts that
stellar clusters form predominantly in regions
that are insufficiently supported by turbulence or
where only large-scale driving is active. In the ab-
sence of driving, molecular cloud turbulence de-
cays more quickly than the free-fall timescale τff
(Equation 2.13), so dense stellar clusters will form
on the free-fall time scale. Even in the presence
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Figure 2.14: Upper panel: Core-mass accretion rates for 10
different low-resolution models (N = 643 cells) of purely
hydrodynamic turbulence with equal parameter set but dif-
ferent realizations of the turbulent velocity field. The thick
line shows a “mean accretion rate”, calculated from averag-
ing over the sample. For comparison, higher-resolution runs
with identical parameters but N = 1283 and N = 2563 are
shown as well. The latter one can be regarded as an enve-
lope for the low resolution models. Lower panel: Mass accre-
tion rates for various models with different magnetic field
strength and resolution. Common to all models is the occur-
rence of local collapse and star formation regardless of the
detailed choice of parameters, as long as the system is mag-
netostatically supercritically. (For further details see Heitsch
et al. 2001a.)

of support from large-scale driving, substantial
collapse still occurs within a few free-fall times
(Figures 2.11 and 2.16a). If the dense cores fol-
lowed in these models continue to collapse on a
short timescale to build up stellar objects in their
centers, then this directly implies the star forma-
tion time. Therefore the age distribution will be
roughly τff for stellar clusters that form coher-
ently with high star formation efficiency. When
scaled to low densities, say n(H2) ≈ 102 cm−3

and T ≈ 10 K, the global free-fall timescale in
the models is τff = 3.3 × 106 years. If star form-
ing clouds such as Taurus indeed have ages of
order τff, as suggested by Ballesteros-Paredes et
al. (1999), then the long star formation timescale
computed here is quite consistent with the very
low star formation efficiencies seen in Taurus (e.g.
Leisawitz et al. 1989, Palla & Stahler 2000, Hart-

mann 2001), as the cloud simply has not had time
to form many stars. In the case of high-density
regions, n(H2) ≈ 105 cm−3 and T ≈ 10 K, the dy-
namical evolution proceeds much faster and the
corresponding free-fall timescale drops to τff =

105 years. These values are indeed supported by
observational data such as the formation time of
the Orion Trapezium cluster. It is inferred to stem
from gas of density n(H2) <

∼ 105 cm−3, and is es-
timated to be less than 106 years old (Hillenbrand
& Hartmann 1998). The age spread in the models
increases with increasing driving wave number k
and increasing 〈MJ〉turb, as shown in Figure 2.16.
Long periods of core formation for globally sup-
ported clouds appear consistent with the low ef-
ficiencies of star-formation in regions of isolated
star formation, such as Taurus, even if they are
rather young objects with ages of order τff.

2.5.9 Scales of Interstellar Turbulence

Turbulence only has self-similar properties on
scales between the driving and dissipation scales.
What are these scales for interstellar turbulence?
In a purely hydrodynamic system the dissipa-
tion scale is the scale where molecular viscos-
ity becomes important. In interstellar clouds the
situation may be different. Zweibel & Josafats-
son (1983) showed that ambipolar diffusion (ion-
neutral drift) is the most important dissipation
mechanism in typical molecular clouds with very
low ionization fractions x = ρi/ρn, where ρi is the
density of ions, ρn is the density of neutrals, and
the total density ρ = ρi + ρn. An ambipolar dif-
fusion strength can be defined as

λAD = v2
A/νni , (2.15)

where v2
A = B2/4πρn approximates the effective

Alfvén speed for the coupled neutrals and ions if
ρn � ρi, and νni = γρi is the rate at which each
neutral is hit by ions. The coupling constant de-
pends on the cross-section for ion-neutral interac-
tion, and for typical molecular cloud conditions
has a value of γ ≈ 9.2 × 1013 cm3 s−1g−1 (e.g.
Smith & Mac Low 1997). Zweibel & Brandenburg
(1997) define an ambipolar diffusion Reynolds
number as

RAD = L̃Ṽ/λAD = MA L̃νni/vA, (2.16)
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Figure 2.16: Masses of individual protostars as function of time in SPH models (a) B1 driven at large scales with k = 1 − 2
driving, (b) B2 with k = 3 − 4 driving, i.e. at intermediate scales, and (c) B3 with k = 7 − 8 small-scale driving. The
curves represent the formation and accretion histories of individual protostars. For the sake of clarity, only every other
core is shown in (a) and (b), whereas in (c) the evolution of every single core is plotted. Time is given in units of the global
free-fall time τff . Note the different time scale in each plot. In the depicted time interval models B1 and B2 reach a core
mass fraction M∗ = 70%, and both form roughly 50 cores. Model B3 reaches M∗ = 35% and forms only 25 cores. Figure
(d) compares the distributions of formation times. The age spread increases with decreasing driving scale showing that
clustered core formation should lead to a coeval stellar population, whereas a distributed stellar population should exhibit
considerable age spread. (From Klessen et al. 2000.)

which must fall below unity for ambipolar dif-
fusion to be important (also see Balsara 1996),
where L̃ and Ṽ are the characteristic length and
velocity scales, and MA = Ṽ/vA is the charac-
teristic Alfvén Mach number. In our situation we
again can take the rms velocity as typical value
for Ṽ. By setting RAD = 1, we can derive a criti-
cal lengthscale below which ambipolar diffusion
is important

L̃cr =
vA

MAνni
≈ (0.041 pc)

(

B
10 µG

)

MA
−1

×
( x

10−6

)−1 ( nn

103 cm−3

)−3/2
, (2.17)

with the magnetic field strength B, the ioniza-
tion fraction x, the neutral number density nn,
and where we have taken ρn = µnn, with
µ = 2.36 mH . This is consistent with typical

sizes of protostellar cores (e.g. Bacmann et al.
2000), if we assume that ionization and mag-
netic field both depend on the density of the re-
gion and follow the empirical laws ni = 3 ×
10−3 cm−3 (nn/105 cm−3)1/2 (e.g. Mouschovias
1991b) and B ≈ 30 µG (nn/103 cm−3)1/2 (e.g.
Crutcher 1999). Balsara (1996) notes that there
are wave families that can survive below Lcr that
resemble hydrodynamical sound waves. This
means that this scale may determine where the
magnetic field becomes uniform, but not neces-
sarily where the hydrodynamical turbulent cas-
cade cuts off.

On large scales, a maximum upper limit to the
turbulent cascade in the Milky Way is given by
the extent and thickness of the Galactic disk. If in-
deed molecular clouds are created at least in part
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by converging large-scale flows generated by the
collective influence of recurring supernovae ex-
plosions in the gaseous disk of our Galaxy, as we
argue in Section 5.3, then the extent of the Galac-
tic disk is indeed the true upper scale of turbu-
lence in the Milky Way. For individual molecular
clouds this means that turbulent energy is fed in
at scales well above the size of the cloud itself.

The initial compression that assembles the cloud
may generate the bulk of a clouds turbulent en-
ergy content (see Section 5.2). If the surrounding
flow is not strong enough to continue to drive the
cloud, the turbulence will quickly dissipate, re-
sulting in collapse and active star formation. If
the same compressional motions that created the
cloud in the first place can also act as a continu-
ing source of kinetic energy, they may be strong
enough to again destroy the cloud after several
crossing times (e.g. Hartmann et al. 2001). Ei-
ther way, the result is short cloud life times, as
argued by Ballesteros-Paredes et al. (1999) and
Elmegreen (2000). This picture of molecular
cloud turbulence being driven by large-scale, ex-
ternal sources is supported by the observation
that density and velocity structure shows power-
law scaling extending up to the largest scales ob-
served in all clouds that have been analyzed (Os-
senkopf & Mac Low 2002).

2.5.10 Efficiency of Star Formation

The global star formation efficiency in normal
molecular clouds is usually estimated to be of the
order of a few per cent. Their life times may be
on the order of a few crossing times, i.e. a few 106

years (e.g. Ballesteros-Paredes et al. 1999, Fukui et
al. 1999, Elmegreen 2000). In this case nearly all
models of interstellar turbulence discussed below
are consistent with the observed overall efficien-
cies. If molecular clouds survive for several tens
of their free-fall time τff (i.e. a few 107 years as
proposed by Blitz & Shu 1980), turbulence mod-
els are more strongly constrained. However, even
in this case models with parameters reasonable
for Galactic molecular clouds can maintain global
efficiencies below M∗ = 5% for 10 τff (Klessen
et al. 2000). Furthermore, it needs to be noted

that the local star formation efficiency in molecu-
lar clouds can reach very high values. For exam-
ple, the Trapezium star cluster in Orion is likely
to have formed with an efficiency of about 50%
(Hillenbrand & Hartmann 1998).

2.5.11 Termination of Local Star Forma-
tion

It remains quite unclear what terminates stellar
birth on scales of individual star forming regions,
and even whether these processes are the pri-
mary factor determining the overall efficiency of
star formation in a molecular cloud. Three main
possibilities exist. First, feedback from the stars
themselves in the form of ionizing radiation and
stellar outflows may heat and stir surrounding
gas up sufficiently to prevent further collapse and
accretion. Second, accretion might peter out ei-
ther when all the high density, gravitationally un-
stable gas in the region has been accreted in in-
dividual stars, or after a more dynamical period
of competitive accretion, leaving any remaining
gas to be dispersed by the background turbu-
lent flow. Third, background flows may sweep
through, destroying the cloud, perhaps in the
same way that it was created. Most likely the as-
trophysical truth lies in some combination of all
three possibilities.

If a stellar cluster formed in a molecular cloud
contains OB stars, then the radiation field and
stellar wind from these high-mass stars strongly
influence the surrounding cloud material. The
UV flux ionizes gas out beyond the local star
forming region. Ionization heats the gas, rais-
ing its Jeans mass, and possibly preventing fur-
ther protostellar mass growth or new star forma-
tion. The termination of accretion by stellar feed-
back has been suggested at least since the cal-
culations of ionization by Oort & Spitzer (1955).
Whitworth (1979) and Yorke et al. (1989) com-
puted the destructive effects of individual blister
HII regions on molecular clouds, while in series
of papers, Franco et al. (1994), Rodriguez-Gaspar
et al. (1995), and Diaz-Miller et al. (1998) con-
cluded that indeed the ionization from massive
stars may limit the overall star forming capacity
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of molecular clouds to about 5%. Matzner (2002)
analytically modeled the effects of ionization on
molecular clouds, concluding as well that turbu-
lence driven by HII regions could support and
eventually destroy molecular clouds. The key
question facing these models is whether HII re-
gion expansion couples efficiently to clumpy, in-
homogeneous molecular clouds, a question prob-
ably best addressed with numerical simulations.

Bipolar outflows are a different manifestation
of protostellar feedback, and may also strongly
modify the properties of star forming regions
(Norman & Silk 1980, Lada & Gautier 1982,
Adams & Fatuzzo 1996). Recently Matzner &
McKee (2000) modeled the ability of bipolar out-
flows to terminate low-mass star formation, find-
ing that they can limit star formation efficien-
cies to 30–50%, although they are ineffective in
more massive regions. How important these
processes are compared to simple exhaustion of
available reservoirs of dense gas (Klessen et al.
2000, Vázquez-Semadeni et al. 2003) remains an
important question.

The models relying on exhaustion of the reser-
voir of dense gas argue that only dense gas will
actually collapse, and that only a small frac-
tion of the total available gas reaches sufficiently
high densities, due to cooling (Schaye 2002),
gravitational collapse and turbulent triggering
(Elmegreen 2002), or both (Wada, Meurer, & Nor-
man 2002). This of course pushes the question of
local star formation efficiency up to larger scales,
which may indeed be the correct place to ask it.

Other models focus on competitive accretion in
local star formation, showing that the distribu-
tion of masses in a single group or cluster can
be well explained by assuming that star forma-
tion is fairly efficient in the dense core, but that
stars that randomly start out slightly heavier tend
to fall towards the center of the core and accrete
disproportionately more gas (Bonnell et al. 1997;
2001a). These models have recently been called
into question by the observation that the stars in
lower density young groups in Serpens simply
have not had the time to engage in competitive
accretion, but still have a normal IMF (Olmi &
Testi 2002).

Finally, star formation in dense clouds created by
turbulent flows may be terminated by the same
flows that created them. Ballesteros-Paredes
et al. (1999) suggested that the coordination of
star formation over large molecular clouds, and
the lack of post-T Tauri stars with ages greater
than about 10 Myr tightly associated with those
clouds, could be explained by their formation in a
larger-scale turbulent flow. Hartmann et al. (2001)
make the detailed argument that these flows may
disrupt the clouds after a relatively short time,
limiting their star formation efficiency that way.
Below, in Section 5.3 we will argue that field su-
pernovae are the most likely driver for this back-
ground turbulence, at least in the star-forming re-
gions of galaxies.

2.6 Outline of a New Theory of
Star Formation

The support of star-forming clouds by supersonic
turbulence can explain many of the same obser-
vations successfully explained by the standard
theory, while also addressing the inconsisten-
cies between observation and the standard the-
ory described in the previous section. The key
point that is new in our argument is that super-
sonic turbulence produces strong density fluctu-
ations in the interstellar gas (Padoan & Nordlund
1999), sweeping gas up from large regions into
dense sheets and filaments (Vázquez-Semadeni,
Passot, & Pouquet 1996, Klessen et al. 2000),
even in the presence of magnetic fields (Pas-
sot, Vázquez-Semadeni, & Pouquet 1995, Heitsch
et al. 2001a,b). Supersonic turbulence decays
quickly (Mac Low et al. 1998, Stone et al. 1998,
Mac Low 1999), but so long as it is maintained by
input of energy from some driver (Section 5.3),
it can support regions against gravitational col-
lapse.

Such support comes at a cost, however. The
very turbulent flows that support the region pro-
duce density enhancements in which the Jeans
mass determining gravitational collapse drops as
MJ ∝ ρ−1/2, (Equation 2.3), and the magnetic
critical mass above which magnetic fields can no
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longer support against that collapse drops even
faster, as Mcr ∝ ρ−2 in Equation (2.6). For lo-
cal collapse to actually result in the formation
of stars, Jeans-unstable, shock-generated, den-
sity fluctuations must collapse to sufficiently high
densities on time scales shorter than the typical
time interval between two successive shock pas-
sages. Only then can they decouple from the
ambient flow and survive subsequent shock in-
teractions. The shorter the time between shock
passages, the less likely these fluctuations are
to survive. Hence, the timescale and efficiency
of protostellar core formation depend strongly
on the wavelength and strength of the driving
source (Section 2.5), and the accretion histories
of individual protostars are strongly time vary-
ing (Section 4.5). Global support by supersonic
turbulence thus tends to produce local collapse
and low rate star formation (Klessen et al. 2000,
Heitsch et al. 2001a,b), exactly as seen in low-
mass star formation regions characteristic of the
disks of spiral galaxies. Conversely, lack of tur-
bulent support results in regions that collapse
freely. In hydrodynamic simulations (Wada &
Norman 1999, Klessen & Burkert 2000), freely col-
lapsing gas forms a web of density enhancements
in which star formation can proceed efficiently,
as seen in regions of massive star formation and
starbursts.

The regulation of the star formation rate then
occurs not just at the scale of individual star-
forming cores through ambipolar diffusion bal-
ancing magnetostatic support, but rather at all
scales (Elmegreen 2002), via the dynamical pro-
cesses that determine whether regions of gas be-
come unstable to prompt gravitational collapse.
Efficient star formation occurs in collapsing re-
gions; apparent inefficiency occurs when a region
is turbulently supported and only small subre-
gions get compressed sufficiently to collapse. The
star formation rate is determined by the balance
between turbulent support and local density, and
is a continuous function of the strength of turbu-
lent support for any given region. Fast and effi-
cient star formation is the natural behavior of gas
lacking sufficient turbulent support for its local
density.

Regions that are gravitationally unstable in this
picture collapse quickly, on the free-fall time
scale. They never pass through a quasi-
equilibrium state as envisioned by the standard
model. Large-scale density enhancements such
as molecular clouds could be caused either by
gravitational collapse, or by ram pressure from
turbulence (Ballesteros-Paredes et al. 1999). If col-
lapse does not succeed, the same large-scale tur-
bulence that formed molecular clouds can de-
stroy them again (Section 5.2).
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Chapter 3

SOME FURTHER PROPERTIES OF
SUPERSONIC TURBULENCE

In the current review we argue that it is the sub-
tle interplay between self-gravity and supersonic
turbulence in interstellar gas clouds that deter-
mines where, when, and with which overall effi-
ciency stars will form. We claim that stars form in
shock-generated molecular cloud clumps where
density and mass exceed the threshold for gravi-
tational collapse to set in. In the previous Section
we therefore have concentrated on discussing the
effects of compressibility. However, turbulence is
a highly complex physical phenomenon with fur-
ther statistical properties that are relevant for the
star formation process. We begin this Section by
studying the transport properties of supersonic
turbulence which is important for understanding
element mixing in interstellar gas clouds and the
distribution of stellar chemical abundances (Sec-
tion 3.1). We also investigate of the one-point
probability distribution functions (PDF) of den-
sity and velocity in turbulent compressible flows
(Section 3.2). Then, we analyze the Fourier spec-
trum of turbulent velocity fields (3.3) and use the
∆-variance to quantify the statistical properties
of the density distribution on star-forming clouds
(Section 3.4).

3.1 Transport Properties

3.1.1 Introduction

Laboratory and terrestrial gases and liquids are
usually well described by incompressible flows.
In contrast, the dynamical behavior of typical as-
trophysical gases, are characterized by poorly un-

derstood highly compressible supersonic turbu-
lent motion. For example, the large observed
linewidths in large molecular clouds show di-
rect evidence for the presence of chaotically ori-
ented velocity fields with magnitudes in excess
of the sound speed. This random motion car-
ries enough kinetic energy to counterbalance and
sometimes overcompensate the effects of self-
gravity of these clouds (Section 4.1). The in-
tricate interplay between supersonic turbulence
and self-gravity determines the overall dynami-
cal evolution of these clouds and their observable
features such as their density structure, the star
formation rate within them, and their lifetimes.
Thus, it is importance for the description of many
astrophysical systems to understand in detail the
momentum and heat transfer properties of com-
pressible turbulent gases.

Some important clues on the nature and effi-
ciency of mixing associated with the clouds’ su-
personic turbulence can be constrained by the ob-
served metallicity distribution of the stars formed
within them. In the Pleiades cluster, stars which
emerged from the same molecular cloud have
nearly identical metal abundance (Wilden et al.
2002). This astronomical context therefore im-
poses a strong motivation for a general analysis
of the transport and mixing processes in com-
pressible supersonically turbulent media.

Analytical and numerical studies of diffusion
processes are typically restricted to certain fam-
ilies of statistical processes, like random walk
(Metzler & Klaafter 2000) or remapping models
or certain Hamiltonian systems (Isichenko 1992).
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The direct numerical modeling of turbulent phys-
ical flows mostly concentrates on incompressible
media (Domolevo & Sainsaulieu 1997; Moser et
al. 1999; Ossia & Lesieur 2001), but some studies
have been extended into the weakly compressible
regime (Coleman et al. 1995; Huang et al. 1995;
Porter et al. 1992; Porter et al. 1999). Although
highly compressible supersonic turbulent flows
have been studied in several specific astrophysi-
cal contexts (see Vázquez-Semadeni et al. 2000 for
a review)1, the diffusion properties of such flows
have not been investigated in detail.

It is the goal of this Section to analyze transport
phenomena in supersonic compressible turbulent
flows and to demonstrate that – analogous to the
incompressible case – a simple mixing length de-
scription can be found even for strongly super-
sonic and highly compressible turbulence. We
first briefly recapitulate in Section 3.1.2 the Tay-
lor formalism for describing the efficiency of tur-
bulent diffusion in subsonic flows. In Section
3.1.3 we describe the numerical method which
we use to integrate the Navier-Stokes equation.
In Section 3.1.4 we report the diffusion coefficient
obtained in our numerical models, and in Sec-
tion 3.1.7 we introduce an extension of the well
known mixing length approach to diffusion into
the supersonic compressible regime. Finally, in
Section 3.1.8 we summarize our results.

3.1.2 A Statistical Description of Turbu-
lent Diffusion

Transport properties in fluids and gases can be
characterized by studying the time evolution of
the second central moment of some representa-
tive fluid-elements’ displacement in the medium,

ξ2
~r (t − t′) = 〈[~ri(t) −~ri(t′)]2〉i , (3.1)

1See also Ballesteros-Paredes & Mac Low (2002),
Ballesteros-Paredes et al. (1999b), Balsara & Pouquet (1999),
Balsara et al. (2001), Boldyrev et al. (2002a), Gomez et al.
(2001), Heitsch et al. (2001a,b), Klessen et al. (2000), Klessen
(2001a,b), Mac Low (1999), Mac Low et al. (1998, 2001), Os-
triker et al. (1999, 2001), Padoan & Nordlund (1999), Padoan
et al. (2000), Passot et al. (1995), Passot & Vázquez-Semadeni
(1998), Porter & Woodward (2000), Smith et al. (2000), Stone
et al. (1998), Sytine et al. (2000), or Vázquez-Semadeni et al.
(1995)

where the average 〈·〉i is taken over an en-
semble of passively advected tracer particles i
(e.g. dye in a fluid, or smoke in air) that are
placed in the medium at a time t′ at positions
~ri(t′); or where the average is taken over the
fluid molecules themselves (or equivalently, over
sufficiently small and distinguishable fluid el-
ements). The dispersion in one spatial direc-
tion, say along the x-coordinate, is ξ 2

x (t − t′) =

〈[xi(t) − xi(t′)]2〉i. For isotropic turbulence it fol-
lows that ξ2

x = ξ2
y = ξ2

z = 1/3 ξ2
~r . For fully-

developed stationary turbulence, the initial time
t′ can be chosen at random and for simplicity is
set to zero in what follows.

The quantity ξ~r(t) can be associated with the dif-
fusion coefficient D as derived for the classical
diffusion equation,

∂n
∂t

= D~∇2n , (3.2)

where n(~ri , t) is the probability distribution func-
tion (PDF) for finding a particle i at position~r i(t)
at time t when it initially was at a location~ri(0).
This holds if the particle position is a random
variable with a Gaussian distribution (Batchelor
1949). In the classical sense, n(~r, t) may corre-
spond to the contaminant density in the medium.
Equation (3.2) holds for normal diffusion pro-
cesses and for time scales larger than the typical
particles’ correlation time scale τ .

In general, however, the Lagrangian diffusion co-
efficient is time dependent and can be defined as

D(t) =
dξ2

~r (t)
dt

= 2〈~ri(t) ·~vi(t)〉i , (3.3)

where ~vi(t) = d~ri(t)/dt is the Lagrangian veloc-
ity of the particle. The diffusion coefficient along
one spatial direction, say along the x-coordinate,
follows accordingly as Dx = dξ2

x (t)/dt =
2〈xi(t)vx.i(t)〉i. Equation (3.3) holds for homoge-
neous turbulence with zero mean velocity. From
~ri(t) =~ri(0) +

∫ t
0 ~vi(t′)dt′ it follows that

D(t) = 2
〈[

~ri(0) +
∫ t

0
~vi(t′)dt′

]

·~vi(t)
〉

i

= 2
∫ t

0
〈~vi(t′) ·~vi(t)〉idt′ . (3.4)
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The above expression allows us to related D(t) to
the trace of the Lagrangian velocity autocorrela-
tion tensor tr C(t − t′) = 〈~vi(t′) ·~vi(t)〉i as

D(t) = 2
∫ t

0
tr C(t − t′)dt′ = 2

∫ t

0
tr C(t′)dt′ ,

(3.5)
a result which was already derived by Taylor
(1921). This formulation has the advantage that
it is fully general and that it allows us to study
anomalous diffusion processes. Note, that strictly
speaking any transport process with ξ~r(t) not
growing linearly in time is called anomalous dif-
fusion. This is always the case for time inter-
vals shorter than the correlation time τ , but some-
times anomalous diffusion can also occur for t �
τ . If ξ~r(t) ∝ tα and if α < 1 transport pro-
cesses are called subdiffusive, if α > 1 they are
called superdiffusive (Lesieur 1997; Isichenko 1992;
Castiglione et al. 1999; Lillo & Mantegna 2000).
Studying transport processes directly in terms of
the particle displacement, i.e. Equation (3.1), is
useful when attempting to find simple approxi-
mations to the diffusion coefficient D(t) for ex-
ample in a mixing length approach.

3.1.3 Numerical Method

In order to utilize the above formalism, we carry
out a series of numerical simulation of super-
sonic turbulent flows. A variety of numerical
schemes can be used to describe the time evolu-
tion of gases and fluids. By far the most widely-
used and thoroughly-studied class of methods
is based on the finite difference representations
of the equations of hydrodynamics (e.g. Potter
1977). In the most simple implementation, the
fluid properties are calculated on equidistant spa-
tially fixed grid points in a Cartesian coordinate
system. Finite difference schemes have well de-
fined mathematical convergence properties, and
can be generalized to very complex, time varying,
non-equidistant meshes with arbitrary geometri-
cal properties. However, it is very difficult to ob-
tain a Lagrangian description, which is essential
when dealing with compressible supersonic tur-
bulence with a high degree of vorticity. Methods
that do not rely on any kind of mesh representa-
tion at all are therefore highly desirable.

For the current investigation we use smoothed
particle hydrodynamics (SPH), which is a fully
Lagrangian, particle-based method to solve the
equations of hydrodynamics. The fluid is repre-
sented by an ensemble of particles, where flow
properties and thermodynamic observables are
obtained as local averages from a kernel smooth-
ing procedure (typically based on cubic spline
functions) (Benz 1990; Monaghan 1992). Each
particle i is characterized by mass mi, velocity
~vi and position ~ri and carries in addition den-
sity ρi, internal energy εi or temperature Ti, and
pressure pi. The SPH method is commonly used
in the astrophysics community because it can re-
solve large density contrasts simply by increas-
ing the particle concentration in regions where it
is needed. This versatility is important for han-
dling compressible turbulent flows where den-
sity fluctuations will occur at random places and
random times. The same scheme that allows for
high spatial resolution in high-density regions,
however, delivers only limited spatial resolution
in low-density regions. There, the number den-
sity of SPH particles is small and thus the vol-
ume necessary to obtain a meaningful local aver-
age tends to be large. Furthermore, SPH requires
the introduction of a von Neumann Richtmyer ar-
tificial viscosity to prevent interparticle penetra-
tion, shock fronts are thus smeared out over two
to three local smoothing lengths. Altogether, the
performance and convergence properties of the
method are well understood and tested against
analytic models and other numerical schemes, for
example in the context of turbulent supersonic
astrophysical flows (Mac Low et al. 1998; Klessen
& Burkert 2000, 2001; Klessen et al. 2000), and its
intrinsic diffusivity is sufficiently low to allow for
the current investigation of turbulent diffusion
phenomena (Lombardi et al. 1999).

To simplify the analysis we assume the medium
is infinite and isotropic on large scales, and con-
sider a cubic volume which is subject to periodic
boundary conditions. The medium is described
as an ideal gas with an isothermal equation of
state, i.e. pressure p relates to the density ρ as p =
c2

sρ with cs being the speed of sound. Through-
out this paper we adopt normalized units, where
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Table 3.1: Model properties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
model k M tcross σ̄x σ̄y σ̄z Dx(∞) Dy(∞) Dz(∞) 2σ̄x/k 2σ̄y/k 2σ̄z/k

0` 1..2 0.6 35.3 0.030 0.028 0.027 0.027 0.021 0.019 0.030 – 0.060 0.028 – 0.057 0.027 – 0.054
0i 3..4 0.5 39.1 0.026 0.026 0.025 0.010 0.010 0.009 0.013 – 0.017 0.013 – 0.017 0.013 – 0.017
0s 7..8 0.4 46.2 0.021 0.022 0.022 0.005 0.005 0.005 0.005 – 0.006 0.005 – 0.006 0.005 – 0.006
1` 1..2 1.9 10.4 0.106 0.084 0.098 0.140 0.069 0.111 0.106 – 0.213 0.084 – 0.167 0.098 – 0.196
1i 3..4 1.9 10.6 0.097 0.096 0.092 0.042 0.047 0.038 0.048 – 0.065 0.048 – 0.064 0.046 – 0.061
1s 7..8 1.7 11.5 0.086 0.089 0.087 0.025 0.026 0.024 0.021 – 0.024 0.022 – 0.025 0.022 – 0.025
2` 1..2 3.1 6.5 0.173 0.129 0.158 0.223 0.103 0.169 0.173 – 0.346 0.129 – 0.257 0.158 – 0.315
2i 3..4 3.1 6.4 0.167 0.155 0.151 0.084 0.071 0.063 0.083 – 0.111 0.077 – 0.103 0.075 – 0.100
2s 7..8 3.2 6.3 0.154 0.163 0.157 0.044 0.054 0.047 0.038 – 0.044 0.041 – 0.046 0.039 – 0.045
3` 1..2 5.2 3.8 0.301 0.252 0.227 0.314 0.245 0.169 0.301 – 0.603 0.252 – 0.505 0.227 – 0.454
3i 3..4 5.8 3.5 0.261 0.287 0.316 0.131 0.189 0.233 0.130 – 0.174 0.143 – 0.191 0.158 – 0.211
3s 7..8 5.8 3.4 0.297 0.288 0.289 0.106 0.092 0.091 0.074 – 0.085 0.072 – 0.082 0.072 – 0.083
4` 1..2 8.2 2.4 0.467 0.318 0.444 0.693 0.241 0.558 0.467 – 0.933 0.318 – 0.635 0.444 – 0.887
4i 3..4 9.7 2.1 0.451 0.478 0.520 0.248 0.323 0.349 0.225 – 0.301 0.239 – 0.319 0.260 – 0.347
4s 7..8 10.4 1.9 0.532 0.513 0.519 0.194 0.167 0.170 0.133 – 0.152 0.128 – 0.147 0.130 – 0.148

1. column: Model identifier, with the letters `, i, and s standing for large-scale, intermediate-wavelength, and short-wavelength turbulence,
respectively.
2. column: Driving wavelength interval.
3. column: Mean Mach number, defined as ratio between the time-averaged one-dimensional velocity dispersion σ̄v =
3−1/2(σ̄ 2

x + σ̄ 2
y + σ̄ 2

y )1/2 and the isothermal sound speed cs, M = σ̄v/cs. The values for the different velocity components x, y,
and z may differ considerably, especially for large-wavelength turbulence. Please recall from Section 3.1.3 that the speed of sound is
cs = 0.05, and thus the sound crossing time tsound = 20.
4. column: Average shock crossing time through the computational volume.
5. to 7. column: Time averaged velocity dispersion along the three principal axes x, y, and z, e.g. for the x-component
σ̄ 2

x =
∫ t

0〈(vx.i(t′)− 〈vx.i(t′)〉i)
2〉idt′/t.

8. to 10. column: Mean-motion corrected diffusion coefficients along the three principal axes computed from Equation (3.3) for time
intervals t � τ .
11. to 13. column: Predicted values of the mean motion corrected diffusion coefficients D ′

x, D′
y, and D′

z from extending mixing length
theory into the supersonic regime (Section 3.1.7).

all physical constants (like the gas constant), total
mass M, mean density 〈ρ〉, and the linear size L of
the cube all are set to unity. The speed of sound is
cs = 0.05, hence, the sound crossing time through
the cube follows as tsound = 20. In all models
discussed here, the fluid is represented by an en-
semble of 205 379 SPH particles which gives suf-
ficient resolution for the purpose of the current
analysis.

Supersonic turbulence is known to decay rapidly
(Mac Low et al. 1998; Stone et al. 1998; Padoan &
Nordlund 1999; Biskamp & Müller 2000; Müller
& Biskamp 2000). Stationary turbulence in the
interstellar medium therefore requires a contin-
uous energy input. To generate and maintain the
turbulent flow we introduce random Gaussian
forcing fields in a narrow range of wavenum-
bers such that the total kinetic energy contained
in the system remains approximately constant.
We generate the forcing field for each direction

separately and simply add up the three contribu-
tions. Thus, we excite both, solenoidal as well as
compressible modes at the same time. The typ-
ical ratio between the solenoidal and compress-
ible energy component is between 2:1 and 3:1 in
the resulting turbulent flow (see e.g. Figure 8 in
Klessen et al. 2000). We keep the forcing field
fixed in space, but adjust its amplitude in order
to maintain a constant energy input rate into the
system compensating for the energy loss due to
dissipation (for further details on the method see
Mac Low 1999 or Klessen et al. 2000). This non-
local driving scheme allows us to exactly control
the (spatial) scale which carries the peak of the
turbulent kinetic energy. It is this property that
motivated our choice of random Gaussian fields
as driving source. In reality the forcing of tur-
bulence in the interstellar medium is likely to be
a multi-scale phenomenon with appreciable con-
tributions from differential rotation (i.e. shear)
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in the Galactic disk and energy input from su-
pernovae explosions ending the lives of massive
stars. Comparable to the values observed in in-
terstellar gas, we study flows with Mach num-
bers in the range 0.5 to 10, where we define the
Mach number from the one-dimensional rms ve-
locity dispersion σv as M = σv/cs. For each
value of the Mach number we consider three dif-
ferent cases, one case where turbulence is driven
on large scales only (i.e. with wavenumbers k in
the interval 1 ≤ k ≤ 2), intermediate-wavelength
turbulence (3 ≤ k ≤ 4), and small-scale turbu-
lence (7 ≤ k ≤ 8), as summarized in Table 3.1.
Note that our models are not subject to global
shear because of the adopted periodic boundary
conditions. We call turbulence "large scale" when
the Fourier decomposition of the velocity field is
dominated by the largest scales possible for the
considered volume L3, i.e. the system becomes
isotropic and homogeneous only on scales larger
than L. On scales below L it may exhibit a consid-
erable degree of anisotropy. This is most notice-
able in the case 1 ≤ k ≤ 2, because wavenumber
space is very poorly sampled and variance effects
become significant. The system is dominated by
one or two large shock fronts that cross through
the medium. In the interval 7 ≤ k ≤ 8 the num-
ber of Fourier modes contribution to the veloc-
ity field is large, and the system appears more
isotropic and homogeneous already on distances
smaller than L. This trend is clearly visible in Fig-
ure 3.1.

Similar to any other numerical calculations, the
models discussed here fall short of describing
real gases in comprehensive details as they can-
not include all physical processes that may act
on the medium. In interstellar gas clouds, trans-
port properties and chemical mixing will not only
be determined by the compressible turbulence
alone, but the density and velocity structure is
also influenced by magnetic fields, chemical reac-
tions, and radiation transfer processes. Further-
more, all numerical models are resolution lim-
ited. The turbulent inertial range in our large-
scale turbulence simulations spans over about 1.5
decades in wavenumber. This range is consid-
erably less than what is observed in interstellar

gas clouds. The same limitation holds for the
Reynolds numbers achieved in the models, they
fall short of the values in real gas clouds by sev-
eral orders of magnitude. Nevertheless, despite
these obvious shortcomings, the results derived
here do characterize global transport properties
in interstellar gas clouds and in other supersoni-
cally turbulent compressible flows.

3.1.4 Flow Properties

Supersonic turbulence in compressible media
establishes a complex network of interacting
shocks. Converging shock fronts locally generate
large density enhancements, diverging flows cre-
ate rarefied voids of low gas density. The fluctu-
ations in turbulent velocity fields are highly tran-
sient, as the random flow that creates local den-
sity enhancements can disperse them again. The
life time of individual shock-generated clumps
corresponds to the time interval for two succes-
sive shocks to pass through the same location in
space, which in turn depends on the length scale
of turbulence and on the Mach number of the
flow.

The velocity field of turbulence that is driven
at large wavelengths is found to be dominated
by large-scale shocks which are very efficient in
sweeping up material, thus creating massive co-
herent density structures. The shock passing
time is rather long, and shock-generated clumps
can travel quite some distance before begin dis-
rupted. On the contrary, when energy is inserted
mainly on small scales, the network of interact-
ing shocks is very tightly knit. Clumps have low
masses and the time interval between two shock
fronts passing through the same location is small,
hence, swept-up gas cannot travel far before be-
ing dispersed again.

The density and velocity structure of three
models with large-, intermediate-, and small-
wavelength turbulence is visualized in Figure 3.1.
It shows cuts through the centers of the simulated
volume. As turbulence is stationary, all times are
equivalent, and the snapshot in the upper panel
is taken at some arbitrary time. The lower panel
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Figure 3.1: Density and velocity structure of models 2`, 2i, and 2s (from left to right). The panels show cuts through
the center of the computational volume normal to the three principal axes of the system, after one shock crossing time
tcross = L/σv ≈ 6.5 and 1/4 tcross later. Density is scaled logarithmically as indicated in the greyscale key at the upper
left side. The maximum density is ∼ 100, while the mean density is one in the normalized units used. Vectors indicate
the velocity field in the plane. The rms Mach number is M ≈ 3.1. Large-scale turbulence (2`) is dominated by large
coherent density and velocity gradients leading a large degree of anisotropy, whereas small-scale turbulence (2s) exhibits
noticeable structure only on small scales with the overall density structure being relatively homogeneous and isotropic.
(From Klessen & Lin 2003)

depicts the system some time interval later corre-
sponding to 1/4 shock crossing time through the
cube. One clearly notices markable differences in
the density and velocity field between the three
models.

3.1.5 Transport Properties in an Abso-
lute Reference Frame

In order to drive supersonic turbulence and to
maintain a given rms Mach number in the flow,
we use a random Gaussian velocity field with
zero mean to ‘agitate’ the fluid elements at each
timestep. However, despite the fact that the driv-
ing scheme has zero mean, the system is likely to

experience a net acceleration and develop an ap-
preciable drift velocity, because of the compress-
ibility of the medium. This evolutionary trend
is well illustrated in Figure 3.2 which plots the
time evolution of the three components of the
mean velocity for models 2`, 2i, and 2s, with rms
Mach numbers M ≈ 3.1, where turbulence is
driven on (a) large (i.e. with small wavenumbers
1 ≤ k ≤ 2), (b) intermediate (3 ≤ k ≤ 4), and
(c) small scales (with 7 ≤ k ≤ 8). The net accel-
eration is most pronounced when turbulent en-
ergy is inserted on the global scales, as in this case
larger and more coherent velocity gradients can
build up across the volume compared to small-
scale turbulence.
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Figure 3.2: Time evolution of the mean flow velocity 〈~vi(t)〉i in models 2`, 2i, and 2s. Time t and velocity v are given in
normalized units. (From Klessen & Lin 2003)

The tendency for the zero-mean Gaussian driving
mechanisms to induce significant center-of-mass
drift velocities in highly compressible media can
be understood as follows. Suppose the gas is per-
turbed by one single mode in form of a sine wave.
If the medium is homogeneous and incompress-
ible, equal amounts of mass would be accelerated
in the forward as well as in the backward direc-
tion. But, if the medium is inhomogeneous, there
would be an imbalance between the two direc-
tions and the result would be a net acceleration
of the system. If the density distribution remains
fixed, this acceleration would be compensated by
an equal amount of deceleration after half a pe-
riod, and the center of mass would simply os-
cillate. However, if the system is highly com-
pressible and the driving field is a superposition
of plane waves, the density distribution would
change continuously (and randomly). Any net
acceleration at one instance in time would not
be completely compensated after some finite time
interval later. This will only occur for t → ∞ as-
suming ergodicity of the flow. Subsequently, the
system is expected to develop a net flow velocity
in some random direction for t < ∞. This effect is
most clearly noticeable for long-wavelength tur-
bulence, where density and velocity structure is
dominated by the coherent large-scale structure.
But the effect is small for turbulence that is ex-
cited on small scales, because in this limit, there
is a large number of accelerated ‘cells’ which in
turn compensate for another’s acceleration.

The property that the compressible turbulent
flows are likely to pick up average drift veloci-
ties, even when driven by Gaussian fields with

zero mean, has implications for the transport co-
efficients. Figure 3.3 shows the time evolution of
the absolute (Eulerian) diffusion coefficients Dx,
Dy, and Dz in each spatial direction computed
from Equation (3.1). Note that for stationary tur-
bulence, only time differences are relevant and
one is free to chose the initial time. In order to
improve the statistical significance of the analy-
sis, we obtain D(t) and ξ~r(t) by further averag-
ing over all time intervals t that ‘fit into’ the full
timespan of the simulation.

Due to the (continuous) net acceleration experi-
enced by the system, the quantity ξ 2

~r (t) grows
faster than linearly with time, even for intervals
much larger than the correlation time τ , i.e. for
τ � t < ∞. The system resides in a superdif-
fusive regime, where D(t) does not saturate. In-
stead, D(t) grows continuously with time, which
is most evident in model 2` of large-scale turbu-
lence. The ever increasing drift velocity 〈~v i(t)〉i
causes strong velocity correlations leading con-
tinuous growth of the velocity autocorrelation
tensor

∫ t
0 tr C(t′)dt′. This net motion, however,

can be corrected for, allowing us to study the
dispersion of particles in a reference frame that
moves along with the average flow velocity of the
system.

3.1.6 Transport Properties in Flow Coor-
dinates

In order to gain further insight into the transport
properties of compressible supersonic turbulent
flows, we study the time evolution of the relative
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Figure 3.3: Time evolution of the diffusion coefficient D(t) = d〈[~ri(t) −~ri(0)]2〉i/dt for models 2`, 2i, and 2s computed in
an absolute reference frame. All units are normalized as described in Section3.1.3. (From Klessen & Lin 2003)

(Lagrangian) diffusion coefficient. In this pre-
scription,

D′(t) =
dξ2

~r (t)
dt

(3.6)

is obtained relative to a frame of reference which
comoves with the mean motion of the system
〈~vi(t)〉i on the trajectory 〈~ri(t)〉i =

∫ t
0〈~vi(t′)〉idt′.

Then, ξ2
~r (t − t′) = 〈[(~ri(t) − 〈~ri(t)〉i) − (~ri(t′) −

〈~ri(t′)〉i)]
2〉i (see Equation 3.1).

In Figure 3.4, we show the evolution of D ′(t) for
each coordinate direction for the complete suite
of models. The rms Mach numbers range from
about 0.5 to 10, each considered for three cases
where turbulence is driven on large, interme-
diate, and small scales, respectively. The plots
are rescaled such that the time-averaged one-
dimensional rms velocity dispersion σ̄v is nor-
malized to unity (for each direction separately).
We also rescale the time t with respect to the aver-
age shock crossing time scale through the compu-
tational volume, tcross = L/σ̄v. Recall that L = 1,
and note that σ̄v usually differs between the three
spatial directions because of the variance effects,
especially in models of large-scale turbulence.

In Figure 3.4, we demonstrate that the magnitude
of D′(t) saturates for large time intervals t > τ in
all directions. In a reference frame that follows
the mean motion of the flow, diffusion in com-
pressible supersonically turbulent media indeed
behaves in a normal manner. For small time in-
tervals t < τ , however, the system still exhibits an
anomalous diffusion even with the mean-motion
correction. In this regime D′(t) grows roughly
linearly with time. For t > τ the diffusion co-
efficient D′(t) reaches an asymptotic limit. This

result holds for the entire range of Mach numbers
studied and for turbulence that is maintained by
energy input on very different spatial scales.

From Figure 3.4, we find that diffusion in com-
pressible supersonic turbulent flows follows a
universal law. It can be obtained by using the rms
Mach number (together with the sound speed cs)
as characterizing parameter for rescaling the ve-
locity dispersion σv, and the rms shock crossing
time scale through the volume tcross = L/(Mcs)
for rescaling the time. The normalized diffusion
coefficient D′(t) exhibits a universal slope of two
at times t < τ (i.e. in the superdiffusive regime),
and approaches a constant value that depends
only on the length scale but not on the strength
(i.e. the resulting Mach number) of the mecha-
nism that drives the turbulence. Even for highly
compressible supersonic turbulent flows it is pos-
sible to find simple scaling relations to character-
ize the transport properties — analogous to the
mixing length description of diffusive processes
in incompressible subsonic turbulent flows.

3.1.7 A Mixing Length Description

Incompressible turbulence is often described in
terms of a hierarchy of turbulent eddies, where
each eddy contains multiple eddies of smaller
size on the lower levels of the hierarchy, while it-
self being part of turbulent eddy at larger scales
(Richardson 1922; Kolmogorov 1941; Obukhov
1941). At each level of the hierarchy, an eddy is
characterized by a typical lengthscale ˜̀ and a typ-
ical velocity ṽ. The typical lifetime of an eddy is
its ‘turn-over’ time τ = ˜̀/ṽ. This mixing length
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Figure 3.4: Time evolution of the diffusion coefficient D′(t) = dξ2
i /dt computed in a reference frame that follows the

average flow velocity (thick line, axis scaling on the left ordinate), i.e. is centered on 〈~ri(t)〉i =
∫ t

0 〈~vi(t′)〉idt′. Velocity
dispersions along the three major axes x, y, and z are each normalized to unity using the time-averaged one-dimensional
Mach number M (as indicated in each plot) together with the given value of the sound speed cs (thin lines, axis scaling on
the right ordinate). Times are rescaled to the rms shock crossing time through the simulated cube tcross = L/σv = L/(Mcs).
Details for each model are given in Table 3.1. The horizontal gray shaded area indicates the mixing length prediction for
t → ∞, and the vertical gray and light gray shaded areas show a time interval of τ = L/(kMcs) and 2τ , respectively. For
t � τ diffusion should be anomalous and coherent, with D′(t) growing linearly with time. The expected behavior from
mixing length theory in this regime is indicated by the straight line originating at t = 0. It indeed gives a good fit. Note
that all models driven on large scales (1 ≤ k ≤ 2) exhibit a considerable degree of anisotropy, manifested by different rms
Mach numbers M along the three principal axes and different values D′(t). For the models with intermediate-scale and
small-scale driving anisotropy effects are increasingly less important. (From Klessen & Lin 2003)
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prescription is an attempt to characterize the flow
properties in terms of the typical scales ˜̀ and ṽ.
For example, this classical picture defines an ef-
fective ‘eddy’ viscosity µ = ρ ˜̀ ṽ, where ρ is the
density. The mixing length ˜̀ is interpreted to be
the turbulent analogue of the mean free path of
molecules in the kinetic theory of gases, with ṽ
being the characteristic velocity of the turbulent
fluctuation.

In such a model, the velocities of gas molecules
within an eddy are strongly correlated within a
time interval t < τ . They all follow the eddy ro-
tation; the diffusion process is coherent. How-
ever, for t � τ the velocities of gas molecules
become uncorrelated, as the eddy has long been
destroyed and dispersed. Hence, the velocity au-
tocorrelation function vanishes for large time in-
tervals, C(t) → 0 for t → ∞. Diffusion be-
comes incoherent as in Brownian motion or the
random walk. The diffusion coefficient in the
mixing length approach simply is D(t) ≈ 2ṽ2t
in the regime t < τ , which follows from replac-
ing~r(t) by ṽt and ~v(t) by ṽ in Equation (3.3). As
the largest correlation length is the eddy size,~r(t)
is substituted by ˜̀ = ṽτ for times t � τ , and
the classical mixing length theory yields D(t) ≈
2˜̀ ṽ = 2ṽ2τ = constant.

Compressible, supersonic, turbulent flows
rapidly build up a network of interacting shocks
with highly transient density and velocity
structure. Density fluctuations are generated
by locally converging flows, and their lifetimes
are determined by the time τ between two
successive shock passages. This time interval is
determined by the typical shock velocity, which
is roughly the rms velocity of the flow, i.e. the
Mach number times the sound speed, σv = Mcs.
It also depends on the length scale at which
energy is inserted into the system to maintain
the turbulence, which in our case is L/k with
k being the driving wavenumber and L being
the size of the considered region (recall that in
our models L is unity). This length scale is also
the typical traveling distance before two shocks
interact with each other. As basic ingredients
for a supersonic compressible mixing length

description we can thus identify:

shock travel length : ˜̀ ≈ L/k, (3.7)

rms velocity : ṽ ≈ σv = Mcs. (3.8)

The Lagrangian velocity correlation time scale, τ ,
is analogous to the time interval during which
shock-generated density fluctuation remains un-
perturbed and moves coherently before it is be-
ing dispersed by the interaction with a new shock
front. This time interval is equivalent to the time
scale a shock travels along its ‘mean free path’
˜̀ with an rms velocity ṽ. This crossing time is
τ = ˜̀ ṽ ≈ σv L/k. For t < τ gas molecules can
travel coherently within individual shock gener-
ated density fluctuations, and the diffusion coef-
ficient in the mixing length prescription follows
as

D′(t) ≈ 2ṽ2t ≈ 2σ2
v t . (3.9)

D′(t) grows linearly with time with slope 2σ 2
v .

For large times, t � τ , D′(t) approaches a con-
stant value,

D′(t) ≈ 2ṽ2τ ≈ 2σv L/k . (3.10)

This mixing length approach (Equations 3.9 and
3.10) suggests a unique scaling dependence of the
diffusion coefficients in supersonic compressible
flows on the Mach number M and on the length
scale ˜̀ of the most energy containing modes with
respect to the total size L of the system considered.

We can use M (together with the given value of
the sound speed) to normalize the rms velocity:
σv = Mcs 7→ σ ′

v = 1. And we can also rescale
the time with respect to the rms shock crossing
time scale through the total volume, which is
tcross = L/σv = L/(Mcs) = tsound/M with
tsound = L/cs being the sound crossing time, so
that t 7→ t′ = t/tcross. From this normalization
procedure, we get D′(t) 7→ D′′(t′) = D′(t)Mcs L
and obtain the following universal profile for the
diffusion coefficient,

D′′(t′) = 2t′ for t′ � 1/k (3.11)

D′′(t′) = 2/k for t′ � 1/k . (3.12)

Note that this result holds for each velocity com-
ponent separately, as the results in Figure 3.4
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indicate. In this case σv stands for σx, σy, or
σz in Equations (3.9) and (3.10), and it hold for
the total diffusion coefficient, when using σv =
(σ2

x +σ2
y +σ2

z )1/2 instead.

The validity of the mixing length approximation
is quantified in Figure 3.5 which plots the mixing
length predictions against the values obtained
from the numerical models. For large-scale and
intermediate scale turbulence, the mixing length
approach gives very satisfying results, only for
small-scale turbulence it underestimates the dif-
fusion strength. This disparity probably has to
do with the numerical resolution of the code, in
the sense that driving wavenumbers of k ≈ 8
come close to the dissipation scale of the method
and hence the inertial range of turbulence is lim-
ited (Klessen et al. 2000). That limitation leads to
an effective driving for the turbulent motion on
somewhat larger scales than 1/8. Consequently,
it leads to a stronger diffusion, i.e. somewhat
larger diffusion coefficients than those predicted
by Equations (3.11) and (3.12). The same numer-
ical effects also account for the slightly shallower
slope of D′(t) for t � τ for models 7 ≤ k ≤ 8.

Figures 3.4 and 3.5 indicate that the classical mix-
ing length theory can be extended from incom-
pressible (subsonic) turbulence into the regime
of supersonic turbulence of highly compressible
media. In this case, driving length ˜̀ and rms ve-
locity dispersion σv = Mcs act as characteristic
length and velocity scales in the mixing length
approach. Note, that this only applies to mean-
motion corrected transport. In general (i.e. in an
absolute reference frame), supersonic turbulence
in compressible media leads to superdiffusion as
visualized in Figure 3.3.

3.1.8 Summary

Supersonic turbulence in compressible media
establishes a complex network of interacting
shocks. Converging shock fronts locally gener-
ate large density enhancements, diverging flows
create voids of low gas density. The fluctuations
in turbulent velocity fields are highly transient,
as the random flow that creates local density en-
hancements can disperse them again.

Due to compressibility, supersonically turbulent
flows will usually develop noticeable drift ve-
locities, especially when turbulence is driven
on large scales, even when it is excited with
Gaussian fields with zero mean. This tendency
has consequences for the transport properties in
an absolute reference frame. The flow exhibits
super-diffusive behavior (see also Balk 2001).
However, when the diffusion process is analyzed
in a comoving coordinate system, i.e. when the
induced bulk motion is being corrected, the sys-
tem exhibits normal behavior. The diffusion co-
efficient D(t) saturates for large time intervals,
t → ∞.

By extending classical mixing length theory into
the supersonic regime we propose a simple de-
scription for the diffusion coefficient based on the
rms velocity ṽ of the flow and the typical shock
travel distance ˜̀,

D′(t) = 2ṽ2t for t � ˜̀/ṽ ,

D′(t) = 2ṽ ˜̀ for t � ˜̀/ṽ .

This functional form may be used in those nu-
merical models where knowledge of the mix-
ing properties of turbulent supersonic flows is
required, but where these flows cannot be ad-
equately resolved. This is the case, for exam-
ple, in astrophysical simulations of galaxy forma-
tion and evolution, where the chemical enrich-
ment of the interstellar gas and the distribution
and spreading of heavy elements produced from
massive stars throughout galactic disks needs
to be treated without being able to follow the
turbulent motion of interstellar gas on small
enough scales relevant to star formation (Rana
1991; Bertschinger 1998). Our results furthermore
are directly relevant for understanding the prop-
erties of individual star-forming interstellar gas
clouds within the disk of our Milky Way. These
are dominated by supersonic turbulent motions
which can provide support against gravitational
collapse on global scales, while at the same time
produce localized density enhancements that al-
low for collapse, and thus stellar birth, on small
scales. The efficiency and timescale of star for-
mation in galactic gas clouds depend on the in-
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Figure 3.5: Comparison between mixing length predictions and numerical models. At the left we plot he normalized,
mean-motion corrected diffusion coefficient D′′(t′) for t → ∞, and at the right its slope dD′′(t′)/dt′ for t′ � 1/k. For
each suite of models, large-scale, intermediate-scale, and small-scale turbulence, respectively (as indicated by the forcing
wavenumber k at the top of each plot), we separately show the three velocity components (as indicated at the bottom). The
different Mach numbers in each model suite are denoted by different symbols (as identified at the right-hand side of each
plot). The dotted lines give the corresponding prediction of the mixing-length theory, D ′′(t′) = 2/k and dD′′(t′)/dt′ = 2,
respectively, where we take k to be the maximum wavenumber of the forcing scheme indicated at the top of each plot.
(From Klessen & Lin 2003)

tricate interplay between their internal gravita-
tional attraction and their turbulent energy con-
tent. The same is true for the statistical proper-
ties of the resulting star clusters. For example,
the element abundances in young stellar clus-
ters are found to be very homogeneous (Wilden
et al. 2002), implying that the gas out of which
these stars formed must be have been chemically
well mixed initially. On the basis of the results
discussed here, this observation can be used to
constrain astrophysical models of interstellar tur-
bulence in star-forming regions. Understanding
transport processes and element mixing in su-
personic turbulent flows thus is a prerequisite
for gaining deeper insight into the star formation
phenomenon in our Galaxy.

3.2 One-Point Probability Distri-
bution Function

3.2.1 Introduction

Correlation and distribution functions of dynam-
ical variables are frequently deployed for char-
acterizing the kinematical properties of turbu-
lent molecular clouds. Besides using 2-point

statistics (e.g. Scalo 1984, Kleiner & Dickman
1987, Kitamura et al. 1993, Miesch & Bally 1994,
LaRosa, Shore & Magnani 1999), many stud-
ies have hereby concentrated on 1-point statis-
tics, namely on analyzing the probability distri-
bution function (PDF) of the (column) density
and of dynamical observables, e.g. of the cen-
troid velocities of molecular lines and their incre-
ments. The density PDF has been used to char-
acterize numerical simulations of the interstellar
medium by Vázquez-Semadeni (1994), Padoan,
Nordlund, & Jones (1997), Passot, & Vázquez-
Semadeni (1998) and Scalo et al. (1998). Ve-
locity PDF’s for several star-forming molecular
clouds have been determined by Miesch & Scalo
(1995) and Miesch, Scalo & Bally (1998). Lis et
al. (1996, 1998) analyzed snapshots of a numer-
ical simulation of mildly supersonic, decaying
turbulence (without self-gravity) by Porter et al.
(1994) and applied the method to observations of
the ρ-Ophiuchus cloud. Altogether, the observed
PDF’s exhibit strong non-Gaussian features, they
are often nearly exponential with possible evi-
dence for power-law tails in the outer parts. This
disagrees with the nearly Gaussian behavior typ-
ically found in experimental measurements and
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numerical models of incompressible turbulence.
The observed centroid velocity increment PDF’s
are more strongly peaked and show stronger de-
viations from Gaussianity than numerical mod-
els of incompressible turbulence predict. Further-
more, the spatial distribution of the largest cen-
troid velocity differences (determining the tail of
the distribution) appears ‘spotty’ across the face
of the clouds; there is no convincing evidence
for filamentary structure. Miesch et al. (1998)
conclude that turbulence in molecular clouds in-
volves physical processes that are not adequately
described by incompressible turbulence or mildly
supersonic decay simulations (see also Mac Low
& Ossenkopf 2000).

Based on Klessen (2000), we extend in this Sec-
tion previous determinations of PDF’s from nu-
merical models into a regime more applicable for
interstellar turbulence by (1) by calculating fully
supersonic flows, (2) by including self-gravity,
and (3) by incorporating a (simple analytic) de-
scription of turbulent energy input. To do this,
we use numerical models introduced and dis-
cussed in Section 2.5.3, and compare with exist-
ing molecular cloud observations in the litera-
ture. The PDF’s for the density, for the line cen-
troid velocity and for their increments are de-
rived as function of time and evolutionary state
of the turbulent model.

3.2.2 PDF’s and Their Interpretation

Turbulence and PDF’s

The Kolmogorov (1941) approach to incompress-
ible turbulence is a purely phenomenological one
and assumes the existence of a stationary tur-
bulent cascade. Energy is injected into the sys-
tem at large scales and cascades down in a self-
similar way. At the smallest scales it gets con-
verted into heat by molecular viscosity. The flow
at large scales is essentially inviscid, hence for
small wave numbers the equation of motion is
dominated by the advection term. If the station-
ary state of fully developed turbulence results
from random external forcing then one naïvely
expects the velocity distribution in the fluid to

be Gaussian on time scales larger than the cor-
relation time of the forcing, irrespectively of the
statistics of the forcing term which follows from
the central limit theorem. However, the situa-
tion is more complex (e.g. Frisch 1995, Lesieur
1997). One of the most striking (and least un-
derstood) features of turbulence is its intermittent
spatial and temporal behavior. The structures
that arise in a turbulent flow manifest themselves
as high peaks at random places and at random
times. This is reflected in the PDF’s of dynamical
variables or passively advected scalars. They are
sensitive measures of deviations from Gaussian
statistics. Rare strong fluctuations are responsi-
ble for extended tails, whereas the much larger
regions of low intensity contribute to the peak of
the PDF near zero (for an analytical approach see
e.g. Forster, Nelson & Stephens 1977, Falkovich
& Lebedev 1997, Chertkov, Kolokolov & Ver-
gassola 1997, Balkovsky et al. 1997, Balkovsky
& Falkovich 1998). For incompressible turbu-
lence the theory predicts velocity PDF’s which
are mainly Gaussian with only minor enhance-
ment at the far ends of the tails. The distribu-
tion of velocity differences (between locations in
the system separated by a given shift vector ∆~r) is
expected to deviate considerably from being nor-
mal and is likely to resemble an exponential. This
finding is supported by a variety of experimental
and numerical determinations (e.g. Kida & Mu-
rakami 1989, Vincent & Meneguzzi 1991, Jayesh
& Warhaft 1991, She 1991, She, Jackson & Orszag
1991, Cao, Chen, & She 1996, Vainshtein 1997,
Lamballais, Lesieur, & Métais 1997, Machiels &
Deville 1998). Compressible turbulence has re-
mained to be too complex for a satisfying mathe-
matical analysis.

PDF’s of Observable Quantities

It is not clear how to relate the analytical work on
incompressible turbulence to molecular clouds.
In addition to the fact that interstellar turbu-
lence is highly supersonic and self-gravitating,
there are also observational limitations. Unlike
the analytical approach or numerical simulations,
molecular cloud observations allow access only
to dimensionally reduced information. Velocity
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measurements are possible only along the line-
of-sight, and the spatial structure of a cloud is
only seen in projection onto the plane of the sky,
i.e. as variations of the column density. Although
some methods can yield information about the
3-dimensional spatial structure of the cloud (see
Stutzki & Güsten 1990, Williams, De Geus, & Blitz
1994), the result is always model dependent and
equivocal (see also Ballesteros-Paredes, Vázquez-
Semadeni, & Scalo 1999).

A common way of obtaining knowledge about
the velocity structure of molecular clouds is to
study individual line profiles at a large number
of various positions across the cloud. In the opti-
cal thin case line shapes are in fact histograms of
the radial velocities of gas sampled along the tele-
scope beam. Falgarone & Phillips (1990) and Fal-
garone et al. (1994) showed that line profiles con-
structed from high-sensitivity CO maps exhibit
non-Gaussian wings and attributed this to turbu-
lent intermittency (see also Falgarone et al. 1998
on results from the IRAM-key project). Dubin-
ski, Narayan, & Phillips (1995) demonstrated that
non-Gaussian line profiles can be produced from
any Gaussian random velocity field if variance ef-
fects become important (which is always the case
for very steep or truncated power spectra). They
concluded that non-Gaussian line profiles do not
provide clear evidence for intermittency.

Another method of inferring properties of the ve-
locity distribution in molecular clouds is to ana-
lyze the PDF of line centroid velocities obtained
from a large number of individual measurements
scanning the entire projected surface area of a
cloud (Miesch & Scalo 1995, Lis et al. 1998, Mi-
esch et al. 1998). Each line profile (i.e. the PDF
along the line-of-sight) is collapsed into one single
number, the centroid velocity, and then sampled
perpendicular to the line-of-sight. Hence, the two
functions differ in the direction of the sampling
and in the quantity that is considered. A related
statistical measure is the PDF of centroid velocity
increments, it samples the velocity differences be-
tween the centroids for line measurements which
are offset by a given separation. The observa-
tional advantage of using centroid and increment
PDF’s is, that the line measurements can typi-

cally be taken with lower sensitivity as only the
centroid has to be determined instead of the de-
tailed line shape. These measures are also less de-
pendent on large-scale systematic motions of the
cloud and they are less effected by line broaden-
ing due to the possible presence of warm dilute
gas. However, to allow for a meaningful analysis
of the PDF’s especially in the tails, the number of
measurements needs to be very large and should
not be less than about 1000. In order to sam-
ple the entire volume of interstellar clouds, the
molecular lines used to obtain the PDF’s are opti-
cally thin. We follow this approach in the present
investigation and use a mass-weighted velocity
sampling along the line-of-sight to determine the
line centroid. This zero-opacity approximation
does not require any explicit treatment of the ra-
diation transfer process.

The observed PDF’s are obtained from averaged
quantities (from column densities or line cen-
troids). To relate these observational measures to
quantities relevant for turbulence theory, i.e. to
the full 3-dimensional PDF, numerical simula-
tions are necessary as only they allow unlimited
access to all variables in phase space. A first at-
tempt to do this was presented by Lis et al. (1996,
1998) who analyzed a simulation of mildly su-
personic decaying hydrodynamic turbulence by
Porter et al. (1994). Since their model did nei-
ther include self-gravity nor consider flows at
high Mach number or mechanisms to replen-
ish turbulence, the applicability to the interstel-
lar medium remained limited. This fact prompts
the current investigation which extends the pre-
vious ones by calculating highly supersonic flows,
and by including self-gravity and a turbulent driv-
ing scheme. The current study does not consider
magnetic fields. Their influence on the PDF’s
needs to be addressed separately. However, the
overall importance of magnetic fields and MHD
waves on the dynamical structure of molecular
clouds may not be large. The energy associated
with the observed fields is of the order of the
(turbulent) kinetic energy content of molecular
clouds (Crutcher 1999). Magnetic fields cannot
prevent the decay of turbulence (e.g. Mac Low
et al. 1998) which implies the presence of exter-
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nal driving mechanisms. These energy sources
replenish the turbulent cascade and may excite
MHD waves explaining the inferred equiparti-
tion between turbulent and magnetic energies.

Statistical Definitions

The one-point probability distribution function
f (x) of a variable x is defined such that f (x)dx
measures the probability for the variable to be
found in the interval [x, x + dx]. The density PDF
(ρ-PDF) discussed in this paper is obtained from
the local density associated with each SPH par-
ticle. It is basically the normalized histogram
summed over all particles in the simulation, i.e.
a mass-weighted sampling procedure is applied.
The line-of-sight velocity centroid PDF (v-PDF) is
more complicated to compute. The face of the
simulated cube is divided into 642 equal-sized
cells. For each cell, the line profile is computed
by sampling the normal (line-of-sight) velocity
component of all gas particles that are projected
into that cell. The line centroid is determined as
the abscissa value of the peak of the distribution.
This procedure corresponds to the formation of
optically thin lines in molecular clouds, where all
molecules within a certain column through the
clouds contribute equally to the shape and inten-
sity of the line. To reduce the sampling uncertain-
ties, this procedure is repeated with the location
of the cells shifted by half a cell size in each di-
rection. Altogether about 20 000 lines contribute
to the PDF. This is procedure is repeated for line-
of-sights along all three system axes to identify
projection effects. The line centroid increment PDF
(∆v-PDF) is obtained in a similar fashion. How-
ever, the sampled quantity is now the velocity
difference between line centroids obtained at two
distinct locations separated across the face of the
cloud by a fixed shift vector ∆~r. The ∆v-PDF for
a spatial lag ∆r is obtained as azimuthal average,
i.e. as superposition of all individual PDF’s with
shift vectors of length ∆r.

Also statistical moments of the distribution can
be used to quantify the spread and shape of
PDF’s. For the current analysis we use the first
four moments. Mean value µ and standard devi-
ation σ (the 1. and 2. moments) quantify the lo-

cation and the width of the PDF and are given
in units of the measured quantity. The third
and fourth moments, skewness θ and kurtosis
κ, are dimensionless quantities characterizing the
shape of the distribution. The skewness θ de-
scribes the degree of asymmetry of a distribution
around its mean. The kurtosisκ measures the rel-
ative peakedness or flatness of the distribution.
We use a definition where κ = 3 corresponds to a
normal distribution. Smaller values indicate ex-
istence of a flat peak compared to a Gaussian,
larger values point towards a stronger peak or
equivalently towards the existence of prominent
tails in the distribution. A pure exponential re-
sults in κ = 6. Gaussian random fields are sta-
tistically fully determined by their mean value
and the 2-point correlation function, i.e. by their
first two moments, µ and σ . All higher moments
can be derived from those. The 2-point correla-
tion function is equivalent to the power spectrum
in Fourier space (e.g. Bronstein & Semendjajew
1979).

Besides using moments there are other possibil-
ities of characterizing a distribution. Van den
Marel & Franx (1993) and Dubinski et al. (1995)
applied Gauss-Hermite expansion series to quan-
tify non-normal contributions in line profiles. A
more general approach has been suggested by
Vio et al. (1994), who discuss alternatives to the
histogram representation of PDF’s. However, as
astrophysical data sets typically are histograms
of various types and as histograms are the most
commonly used method to describe PDF’s, this
approach is also adopted here.

3.2.3 PDF’s from Gaussian Velocity Fluc-
tuations

Variance effects in poorly sampled Gaussian ve-
locity fields can lead to considerable non-normal
contributions to the v- and ∆v-PDF’s. If a random
process is the result of sequence of independent
events (or variables), then in the limit of large
numbers, its distribution function will be a Gaus-
sian around some mean value. However, only the
properties of a large ensemble of Gaussian fields
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Figure 3.6: PDF’s of line centroids for a homogeneous gaseous medium with Gaussian velocity field. The power spectrum
is P(k) = const. with wave numbers in the intervals (a) 1 ≤ k ≤ 2, (b) 1 ≤ k ≤ 4, (c) 1 ≤ k ≤ 8, to (d) 1 ≤ k ≤ 32. All other
modes are suppressed. Each figure plots PDF’s of the x-, y-, and z-component of the velocity offset by ∆ log10 N = 1.5
(lowest, middle, and upper distribution, respectively). The length of the error bars is determined by the square root of the
numbers of entries per velocity bin. The Gaussian fit from the first two moments is shown with dotted lines. (From Klessen
2000)

are determined in a statistical sense. Individ-
ual realizations may exhibit considerable devia-
tions from the mean. The effect is strongest when
only few (spatial) modes contribute to the field or,
almost equivalently, when the power spectrum
falls off very steeply. In this case, most kinetic
energy is in large-scale motions.

This is visualized in Figure 3.6, it shows v-PDF’s
for homogeneous gas (sampled by 643 SPH par-
ticles placed on a regular grid) with Gaussian ve-
locity fields with power spectra P(k) = const.
which are truncated at different wave numbers
kmax ranging from (a) kmax = 2 to (d) kmax = 32.

Each realization is scaled such that the rms ve-
locity dispersion is σv = 0.5. The figure dis-
plays the PDF’s for the x-, y-, and z-component
of the velocity. The PDF’s of the strongly trun-
cated spectrum (Figure 3.6a) do not at all resem-
ble normal distributions. The Gaussian statistics
of the field is very badly sampled with only very
few modes. Note that the PDF’s of the same field
may vary considerably for different velocity com-
ponents, i.e. for different projections. With the in-
clusion of larger number of Fourier modes this
situation improves, and in Figure 3.6d the PDF’s
of all projections sample the expected Gaussian
distribution very well.
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Figure 3.7: PDF’s of line centroid increments for the same systems as in Figure 3.6: (a) 1 ≤ k ≤ 2, (b) 1 ≤ k ≤ 4, (c)
1 ≤ k ≤ 8, to (d) 1 ≤ k ≤ 32. Each plot shows the distribution of centroid velocity differences between locations separated
by the distance ∆r — upper curve: ∆r = 1/32, middle curve: ∆r = 10/32, and lower curve: ∆r = 30/32. Only the velocity
component for the line-of-sight parallel to the x-axis is considered. Again, the dotted lines represent the best fit Gaussian,
except for the upper curve in (b) and (c) where the best exponential fit is shown. (From Klessen 2000)

A similar conclusion can be derived for ∆v-PDF.
This measure is even more sensitive to deviations
from Gaussian statistics. Figure 3.7 plots the ∆v-
PDF’s for the same sequence of velocity fields.
For brevity, only the line-of-sight component par-
allel to the x-axis is considered. Furthermore,
from the sequence of possible ∆v-PDF’s (defined
by the spatial lag ∆r) only three are shown,
at small (∆r = 1/32, upper curve), medium
(∆r = 10/32, middle curve), and large spatial
lags (∆r = 30/32, upper curve). Sampling the
Gaussian field with only two modes (Figure 3.7a)
is again insufficient to yield increment PDF’s of
normal shape. The velocity field is very smooth,
and the line centroid velocity difference between

neighboring cells is very small. Hence, for ∆r =
1/32 the PDF is dominated by a distinct central
peak at ∆v = 0. The tails of the distribution are
quite irregularly shaped. The situation becomes
‘better’ when sampling increasing distances, as
regions of the fluid separated by larger ∆r are less
strongly correlated in velocity. For ∆r = 10/32
and ∆r = 30/32 the PDF’s follow the Gaussian
distribution more closely although irregularities
in the shapes are still present. In Figures 3.7b and
c the ∆v-PDF’s for medium to large lags are very
well fit by Gaussians. Deviations occur only at
small ∆r, the PDF’s are exponential (and the dis-
tribution for kmax = 4 is still a bit cuspy). Finally,
Figure 3.7d shows the three ∆v-PDF’s for the case
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where all available spatial modes contribute to
the velocity field (1 ≤ k ≤ 32). The PDF’s fol-
low a Gaussian for all spatial lags.

This behavior is also seen in the variation of the
moments of the distribution as function of the
spatial lag ∆r. Applied to the above sequence of
Gaussian velocity fields, Figure 3.8 displays the
dispersion σ and the kurtosis κ of the distribu-
tion. The corresponding models are indicated at
the right hand side of each plot. The width of
the distribution, as indicated by the dispersion
σ (Figure 3.8a), typically grows with increasing
∆r, reflecting the relative peakedness of the dis-
tribution at small lags. For example, the distribu-
tion (a) yields a slope of 0.3 in the range −0.6 ≤
log10 ∆r ≤ −0.4, and (b) leads to a value of 0.2
in relatively large interval −1.5 ≤ log10 ∆r ≤
−0.5. The effect disappears for the better sam-
pled fields. Typical values for that slope in ob-
served molecular clouds are −0.3 to −0.5 (Mi-
esch et al. 1998).2 A direct measure of the peaked-
ness of the distribution is its fourth moment, the
kurtosis κ (Figure 3.8b). At small lags ∆r, clearly
the PDF’s of model (a) are more strongly peaked
than exponential (κ = 6). Comparing the en-
tire sequence reveals again the tendency of the
PDF’s to become Gaussian at decreasing ∆r with
increasing number of modes considered in the
construction of the velocity field.

Taking all together, it is advisable to consider
conclusions about interstellar turbulence derived
from solely analyzing one-point probability dis-
tribution functions from molecular clouds with
caution. Similar to what has been shown by Du-
binski et al. (1995) for molecular line profiles, de-
viations from the regular Gaussian shape found
in v- and ∆v-PDF’s need not be the signpost of

2Note, that Miesch et al. (1998) are plotting the function
σ2 versus the spatial lag ∆r. For a comparison with the
present study, their numbers have to be divided by a fac-
tor of two. Furthermore, they use a relatively narrow range
of ∆r-values to compute the slope of the function; larger in-
tervals would on average tend to decrease these values (see
their Figure 14). In addition, Miesch et al. (1998) applied spa-
tial filtering to remove large-scale velocity gradients in the
clouds. These would lead to steeper slopes. The fact that in
the present study the functions σ and κ level out for large
spatial lags ∆r is a consequence of the periodic boundary
conditions which do not allow for large-scale gradients.

turbulent intermittency. Gaussian velocity fields
which are dominated by only a small number
of modes (either because the power spectrum
falls off steeply towards larger wave numbers,
or because small wave length distortions are cut
away completely) will lead to very similar dis-
tortions. In addition, the properties of the PDF
may vary considerably between different projec-
tions. The same velocity field may lead to smooth
and Gaussian PDF’s for one velocity component,
whereas another projection may result in strong
non-Gaussian wings (see also Figure 3.13).

3.2.4 Analysis of Decaying Supersonic
Turbulence without Self-Gravity

In this section the PDF’s of freely decaying
initially highly supersonic turbulence without
self-gravity are discussed. They are calculated
from an SPH simulation with 350 000 particles
(Mac Low et al. 1998, model G). Initially the sys-
tem is homogeneous with a Gaussian velocity
distribution with P(k) = const. in the interval
1 ≤ k ≤ 8. The rms Mach number of the flow
is M = 5.

After the onset of the hydrodynamic evolution
the flow quickly becomes fully turbulent result-
ing in rapid dissipation of kinetic energy. The
energy decay is found to follow a power law
t−η with exponent η = 1.1 ± 0.004. The overall
evolution can be subdivided into several phases.
The first phase is very short and is defined by
the transition of the initially Gaussian velocity
field into fully developed supersonic turbulence.
It is determined by the formation of the first
shocks which begin to interact with each other
and build up a complex network of intersect-
ing shock fronts. Energy gets transfered from
large to small scales and the turbulent cascade
builds up. The second phase is given by the
subsequent self-similar evolution of the network
of shocks. Even though individual features are
transient, the overall properties of this network
change only slowly. In this phase of highly super-
sonic turbulence the loss of kinetic energy is dom-
inated by dissipation in shocked regions. In the
transsonic regime, i.e. the transition from highly
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Figure 3.8: (a) The second, dispersion σ , and (b) the fourth moment, kurtosis κ, of the distribution of velocity increments
displayed in Figure 3.7 as function of spatial lag ∆r. The letters on the right-hand sight indicate the corresponding time
with (a) t = 0, (b) t = 0.5, and so forth. Each plot is offset by ∆ log10 σ = 0.5 and ∆ log10 σ = 0.5, and in (b) the horizontal
dotted line indicates the value for a Gaussian κ = 3 (log10 κ = 0.48). (From Klessen 2000)

supersonic to fully subsonic flow, energy dissi-
pation in vortices generated by shock interac-
tions becomes more and more important. Only
the strongest shocks remain in this phase. Sur-
prisingly, the energy decay law does not change
during this transition. It continues to follow a
power law with exponent η ≈ 1. In the subsonic
phase the flow closely resembles incompressible
turbulence. Its properties are similar to those re-
ported from numerous experiments and simula-
tions (e.g. Porter et al. 1994, Lesieur 1997, Boratav
et al. 1997). The simulation is stopped at t = 20.0
when the flow has decayed to a rms Mach num-
ber of M = 0.3. Since the energy loss rate fol-
lows a power law, the duration of each successive
phase grows.

This sequence of evolutionary stages is seen in
the PDF’s of the system. One noticeable effect is
the decreasing width of the distribution functions
as time progresses. As the kinetic energy decays
the available range of velocities shrinks. This not
only leads to ‘smaller’ v- and ∆v-PDF’s, but also
to a smaller ρ-PDF since compressible motions
lose influence and the system becomes more ho-
mogeneous. This is indicated in Figure 3.9, it dis-
plays (a) the ρ-PDF and (b) v-PDF at the follow-
ing stages of the dynamical evolution (from top to
bottom): Shortly after the start, at t = 0.2 when
the first shocks occur, then at t = 0.6 when the

network of interacting shocks is established and
supersonic turbulence is fully developed, during
the transsonic transition at t = 3.5, and finally
at t = 20.0 when the flow has progressed into
the subsonic regime. The rms Mach numbers at
these stages are M = 5.0, M = 2.5, M = 1.0,
and M = 0.3, respectively. The density PDF al-
ways closely follows a log-normal distribution,
i.e. it is Gaussian in the logarithm of the density.
Also the distribution of line centroids at the four
different evolutionary stages of the system is best
described by a Gaussian with only minor devia-
tions at the far ends of the velocity spectrum.

For the same points in time, Figure 3.10 shows the
∆v-PDF’s for x-component of the velocity. The
displayed spatial lags are selected in analogy to
Figure 3.7. Note the different velocity scaling in
each plot reflecting the decay of turbulent energy
as the system evolves in time. Throughout the en-
tire sequence, spatial lags larger than about 10%
of the system size always lead to ∆v-PDF’s very
close to Gaussian shape (the middle and lower
curves). Considerable deviations occur only at
small spatial lags (the upper curves). For those,
the increment PDF’s exhibit exponential wings
during all stages of the evolution. When scal-
ing the PDF’s to the same width, the distribution
in the subsonic regime (d) appears to be more
strongly peaked than during the supersonic or
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Figure 3.9: PDF’s of (a) density and of (b) centroid velocities for the line-of-sight being parallel to the x-axis of the system.
The PDF’s are obtained at four different phases of the dynamical evolution of the system (see the main text), at t = 0.2
(upper curves), at t = 0.6 (second curve from the top), at t = 3.5 (third curve), and at t = 20.0 (lowest curve). These times
correspond to Mach numbers M = 5.0, M = 2.5, M = 1.0, and M = 0.3, respectively. For each distribution, the best-fit
Gaussian is indicated using dotted lines. (From Klessen 2000)

transsonic phase (a – c). There, the central parts
of the PDF’s are still reasonably well described
by the Gaussian obtained from the first two mo-
ments, whereas in (d) the peak is considerably
narrower, or vice versa, the tails of the distribu-
tion are more pronounced.

These results can be compared with the findings
by Lis et al. (1998). They report increment PDF’s
for three snapshots of a high-resolution hydrody-
namic simulation of decaying mildly super-sonic
turbulence performed by Porter et al. (1994). They
analyze the system at three different times corre-
sponding to rms Mach numbers of M ≈ 0.96,
M ≈ 0.88, and M ≈ 0.52. Their first two data
sets thus trace the transition from supersonic to
subsonic flow and are comparable to phase (c)
of the current model; their last data set corre-
sponds to to phase (d). In the transsonic regime
both studies agree: Lis et al. (1998) report en-
hanced tails in the increment PDF’s for the small-
est spatial lags which they considered and near
Gaussian distributions for larger lags (however,
the largest separation they study is about 6% of
the linear extent of the system). In the subsonic
regime, Lis et al. (1998) find near Gaussian PDF’s
for very small spatial lags (< 1%), but extended
wings in the PDF’s for lags of 3% and 6% of the
system size. They associate this with the ‘disap-
pearance’ of large-scale structure. Indeed, their

Figure 7 exhibits a high degree of fluctuations on
small scales which they argue become averaged
away when considering small spatial lags in the
∆v-PDF. Comparing the PDF with spatial lags of
3% (upper curves in Figure 3.10, compared to the
PDF’s labeled with ∆ = 15 in Lis et al. 1998) both
studies come to the same result. At these scales
the ∆v-PDF’s tend to exhibit more pronounced
wings in the subsonic regime as in the supersonic
regime. The SPH calculations reported here do
not allow for a meaningful construction of δv-
PDF’s for ∆r < 3%. The Gaussian behavior of
PDF’s for very small spatial lags reported by Lis
et al. (1998) therefore cannot be examined. How-
ever, neither of the purely hydrodynamic simu-
lations lead to PDF’s that are in good agreement
with the observations. Observed PDF’s typically
are much more centrally peaked at small spatial
separation (see e.g. Figure 4 in Lis et al. 1998 and
Miesch et al. 1998).

Figure 3.11 shows the spatial distribution of cen-
troid velocity differences between cells separated
by a vector lag of ∆~r = (1/32, 1/32) (i.e. between
neighboring cells along the diagonal). Data are
obtained at the same times as above. Each fig-
ure displays the array of the absolute values of
the velocity increments ∆vx in linear scaling as
indicated at the top. Note the decreasing veloc-
ity range reflecting the decay of turbulent energy.
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Figure 3.10: PDF’s of the x-component of the centroid velocity increments for three spatial lags: upper curve – ∆r = 1/32,
middle curve – ∆r = 10/32, and lower curve – ∆r = 30/32. As in Figure 3.9, the PDF’s are obtained at (a) t = 0.2 , (b)
t = 0.6, (c) t = 3.5, and (d) t = 20.0. The Gaussian fits are again indicated by dotted lines. (From Klessen 2000)

The distribution of ∆vx appears random, there is
no clear indication for coherent structures. This
is corresponds to most observations. Miesch et al.
(1998) find for their sample of molecular clouds
that high-amplitude velocity differences for very
small spatial lags typically are well distributed re-
sulting in a ‘spotty’ appearance. Note, however,
that using azimuthal averaging Lis et al. 1998
report the finding of filamentary structures for
the ρ-Ophiuchus cloud. Altogether, filamentary
structure is difficult to define and a mathemati-
cal thorough analysis is seldomly performed (for
an astrophysical approach see Adams & Wise-
man 1994, for a discussion of the filamentary vor-
tex structure in incompressible turbulence con-
sult Frisch 1995 or Lesieur 1997). The visual in-
spection of maps is often misleading and influ-
enced by the parameters used to display the im-

age. Larger velocity bins for instance tend to pro-
duce a more ‘filamentary’ structure than very fine
sampling of the velocity structure. Further uncer-
tainty may be introduced by the fact that molec-
ular clouds are only seen in one projection as the
signatures of the dynamical state of the system
can strongly depend on the viewing angle.

3.2.5 Analysis of Decaying Turbulence
with Self-Gravity

In this section, we concentrate on the properties
of decaying, initially supersonic turbulence in a
self-gravitating medium. We analyze an SPH
simulation with 205 379 particles which is ini-
tially homogeneous and its velocity field is gen-
erated with P(k) = const. using modes with
wave numbers 1 ≤ k ≤ 8. From the choice
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Figure 3.11: 2-dimensional distribution (in the yz-plane) of centroid increments for velocity profiles along the x-axis of
the system between locations separated by a vector lag ∆~r = (1/32, 1/32). Analog to the previous figures, the data are
displayed for times (a) t = 0.2, (b) t = 0.6, (c) t = 3.5, and (d) t = 20.0. The magnitude of the velocity increment ∆vx is
indicated at the top of each plot; note the different scaling. (From Klessen 2000)

α = 0.01 it follows that the system contains
120 thermal Jeans masses. The initial rms veloc-
ity dispersion is σv = 0.5 and with the sound
speed cs = 0.082 the rms Mach number follows
as M = 6. These values imply that the initial
turbulent velocity field contains sufficient energy
to globally stabilize the system against gravita-
tional collapse. Scaled to physical units using a
density n(H2) = 105 cm−3, which is typical for
massively star-forming regions (e.g. Williams et
al. 2000), the system corresponds to a volume of
[0.32 pc]3 and contains a gas mass of 200 M�. As

the simulation starts, the system quickly becomes
fully turbulent and loses kinetic energy. Like in
the case without self-gravity a network of inter-
secting shocks develops leading to density fluc-
tuations on all scales. During the early evolu-
tion, there is enough kinetic energy to prevent
global collapse and the properties of the system
are similar to those of pure hydrodynamic turbu-
lence discussed in the previous section. However,
as time progresses and turbulent energy decays
the effective Jeans mass decreases, and after suf-
ficient time also large-scale collapse becomes pos-
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sible. Gas clumps follow the global flow pattern
towards a common center of gravity where they
may merge or sub-fragment. Gradually a cluster
of dense cores is built up. In the isothermal model
this process continues until all available gas is ac-
creted onto the ‘protostellar’ cluster (see the dis-
cussion in Section 2).

The PDF’s of (a) the density and of (b) the x-
component of the line centroid velocities for the
above six model snapshots are displayed in Fig-
ure 3.12. The corresponding time is indicated by
the letters at the right side of each panel. Dur-
ing the dynamical evolution of the system the
density distribution develops a high density tail.
This is the imprint of local collapse. The densi-
ties of compact cores are indicated by solid dots
(at t = 2.0 and t = 2.5). Virtually all particles in
the high density tails at earlier times (at t = 1.0
and more so at t = 1.5) are accreted onto these
cores. The bulk of matter roughly follows a log-
normal density distribution as indicated by the
dotted parabola. The v-PDF’s are nearly Gaus-
sian as long as the dynamical state of the system
is dominated by turbulence. Also the width of the
PDF remains roughly constant during this phase.
This implies that the decay of turbulent kinetic
energy is in balance with the gain of kinetic en-
ergy due to gravitational (‘quasi-static’) contrac-
tion on large scales. The time scale for this pro-
cess is determined by the energy dissipation in
shocks and turbulent eddies. However, once lo-
calized collapse is able to set in, accelerations on
small scales increase dramatically and the evolu-
tion ‘speeds up’. For times t > 2.0 the centroid
PDF’s become wider and exhibit significant de-
viations from the original Gaussian shape. The
properties of the PDF’s are similar to those ob-
served in star-forming regions (Miesch & Scalo
1995, Lis et al. 1998, Miesch et al. 1998). This is ex-
pected since gravitational collapse is a necessary
ingredient for forming stars.

Gravity creates non-isotropic density and veloc-
ity structure structures. When analyzing v- and
∆v-PDF’s, their appearance and properties will
strongly depend on the viewing angle. This is a
serious point of caution when interpreting obser-
vational data, as molecular cloud are seen only in

one projection. As illustration, Figure 3.13 plots
the centroid PDF at the time t = 2.0 for the
line-of-sight projection along all three axes of the
system. Whereas the PDF’s for the x- and the
y-component of the velocity centroid are highly
structured (upper and middle curve – the latter
one is even double peaked), the distribution of
the z-component (lowest curve) is smooth and
much smaller in width, comparable to the ‘aver-
age’ PDF at earlier stages of the evolution. As the
variations between different viewing angles or
equivalently different velocity components can
be very large, statements about the 3-dimensional
velocity structure from only observing one pro-
jection can be misleading.

Figure 3.13: Centroid velocity PDF’s for the simulation of
initially supersonic, decaying turbulence in self-gravitating
gas at t = 2.0 for the line-of-sight being along the x-axis
(upper curve – it is identical to the fifth PDF in Figure 3.12b),
along the y-axis (middle), and along the z-axis of the system
(bottom). Each distribution is offset by ∆ log10 N = 2.0 with
the horizontal lines indicating the base log10 N = 0.0. The
PDF’s of various projections and velocity components can
differ considerably. (From Klessen 2000)

Gravity effects the ∆v-PDF. Figure 3.14 displays
the increment PDF’s at small, intermediate and
large spatial lags, analog to Figures 3.7 and 3.10.
Time ranges from (a) t = 1.0 to (d) t = 2.5. The
PDF’s for t = 0.0 and t = 0.5 are not shown since
at these stages supersonic turbulence dominates
the dynamic of the system and the PDF’s are com-
parable to the ones without gravity (Figure 3.10).
This still holds for t = 1.0. The increment PDF’s
for medium to large spatial lags appear Gaussian,
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Figure 3.12: PDF’s of (a) the density and (b) the x-component of line centroids for the simulation of initially supersonic,
decaying turbulence in self-gravitating gas. The time sequence again is (a) t = 0.0, (b) t = 0.5, and so forth. In the
left panel, the initial density is indicated by the vertical line at ρ = 1/8. The density contributions from collapsed cores
forming in the late stages of the evolution are indicated by solid dots. The core density corresponds to a mean value
computed from the core mass divided by its accretion volume. In both figures, each PDF is offset by ∆ log10 N = 2.0 with
the base log10 N = 0.0 indicated by horizontal dashed lines. The best-fit Gaussian curves are shown as dotted lines. (From
Klessen 2000)

however, the PDF for the smallest lag follows a
perfect exponential all the way inwards to ∆v =
0. Unlike in the case without gravity, the peak of
the distribution is not ‘round’, i.e. is not Gaussian
in the innermost parts (when scaled to the same
width). It is a sign of self-gravitating systems that
the increment PDF at smallest lags is very strongly
peaked and remains exponential over the entire range
of measured velocity increments. This behavior is
also seen Figures 3.14b–d. At these later stages of
the evolution in addition non-Gaussian behavior
is also found at medium lags. This results from
the existence of large-scale filaments and stream-
ing motions. The same behavior is found for the
increment PDF’s from observed molecular clouds
(for ρ-Ophiuchus see Lis et al 1998; for Orion,
Mon R2, L1228, L1551, and HH83 see Miesch et al.
1998). In each case, the distribution for the small-
est lag (one pixel size) is very strongly peaked at
∆v = 0, in some cases even more than exponen-
tial. The deviations from the Gaussian shape re-

main for larger lags but are not so pronounced.
The inclusion of self-gravity into models of inter-
stellar turbulence leads to good agreement with
the observed increment PDF’s. However, this re-
sult may not be unique as in molecular clouds
additional processes are likely to be present that
could also lead to strong deviations from Gaus-
sianity.

The time evolution of the statistical moments of
the ∆v-PDF for various spatial lags is presented
in Figure 3.15. It plots (a) the dispersionσ , and (b)
the kurtosis κ. At t = 0.0 the width σ of the PDF
is approximately constant for all ∆r and the kur-
tosis κ is close to normal value of three. Both in-
dicate that Gaussian statistics very well describes
the initial velocity field. As turbulent energy de-
cays, gravitational collapse sets in. Because of
the gravitational acceleration, the amplitudes of
centroid velocity differences between separate re-
gions in the cloud grow larger, the width σ of
the ∆v-PDF’s increases. This becomes more im-
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Figure 3.14: PDF’s of the x-component of the centroid velocity increments for three spatial lags: upper curve – ∆r = 1/32,
middle curve – ∆r = 10/32, and lower curve – ∆r = 30/32. The functions are computed from the simulation of initially
supersonic, decaying turbulence in self-gravitating gas at (a) t = 1.0, (b) t = 1.5, (c) t = 2.0, and (d) t = 2.5. Where
appropriate, the Gaussian curves obtained from the first two moments of the distribution are indicated by dotted lines.
During the early phases of the evolution, the flow is similar to pure hydrodynamic turbulence (the PDF’s are close to
the ones in Figure 3.10). As turbulent energy decays self-gravity gains influence and the late stages of the evolution are
dominated by gravitational contraction. Consequently the PDF’s in the sequence (a) to (d) become more and more non-
Gaussian with the progression of time. This concerns the PDF’s for small to intermediate lags ∆r. (From Klessen 2000)

portant when sampling velocity differences on
larger spatial scales, hence σ also increases with
∆r. The slope is d log10 σ/d log10 ∆r <

∼ 0.2. For
log10 ∆r > −0.4 it levels out, which is a re-
sult of the adopted periodic boundary conditions.
They do not allow for large-scale velocity gradi-
ents. The increasing ‘peakedness’ of ∆v-PDF is
reflected in the large values of the kurtosis κ at
the later stages of the evolution. For small spatial
lags the PDF’s are more centrally concentrated
than exponential (i.e. κ > 6), and even at large
spatial separations they are still more strongly
peaked than Gaussian (κ > 3). The slope at

t = 2.5 is d log10 κ/d log10 ∆r ≈ −0.4 which is
indeed comparable to what is found in observed
star-forming regions (Miesch et al. 1998).

For the above simulation of self-gravitating, de-
caying, supersonic turbulence, Figure 3.16 plots
the 2-dimensional distribution of centroid incre-
ments for a vector lag ∆~r = (1/32, 1/32). The
velocity profiles are sampled along the x-axis of
the system. The magnitude of the velocity incre-
ment ∆vx is indicated at the top of each plot. The
spatial distribution of velocity increments dur-
ing the initial phases appears random. Later on,
gravity gains influence over the flow and creates
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Figure 3.15: (a) The second, dispersion σ , and (b) the fourth moment, kurtosis κ, as function of spatial lag ∆r for the
distribution of velocity increments in the simulation of self-gravitating, decaying, supersonic turbulence. The letters on
the right-hand side indicate the time at which the increment PDF’s are computed ranging from t = 0.0 at the top down
to t = 2.5 at the bottom (see Figure 3.12). Each PDF is offset by ∆ log10 σ = 0.5 and ∆ log10 κ = 0.5, respectively. (From
Klessen 2000)

a network of intersecting filaments where gas
streams onto and flows along towards local po-
tential minima. At that stage, the velocity incre-
ments with the highest amplitudes tend to trace
the large-scale filamentary structure. This is the
sign of the anisotropic nature of gravitational col-
lapse motions.

3.2.6 Analysis of Driven Turbulence with
Self-Gravity

For the analysis of continuously driven turbu-
lence in self-gravitating gaseous media, we take
model 2Bh discussed in Section 2.5 (Table 2.3; for
full details consult Klessen et al. 2000).

The PDF’s of (a) the density and (b) the x-
component of the line centroid velocities corre-
sponding to the above four snapshots are dis-
played in Figure 3.17. As in the previous model,
the bulk of gas particles that are not accreted onto
cores build up an approximately log-normal ρ-
PDF (indicated by the dotted lines). Also the v-
PDF remains close to the Gaussian value. This
is different from the case of purely decaying
self-gravitating turbulence, where at some stage
global collapse motions set in and lead to very

wide and distorted centroid PDF’s. This is not
possible in the simulation of driven turbulence,
as it is stabilized on the largest scales by turbu-
lence. Collapse occurs only locally which leaves
the width of the PDF’s relatively unaffected and
only mildly alters their shape.

Also the ∆v-PDF’s show no obvious sign of evo-
lution. For the x-component of the velocity these
functions are displayed in Figure 3.18, again for
three different spatial lags. The chosen times
correspond (a) to the equilibrium state at t =

0.0, and (b) to t = 4.8 which is the final state
of the simulation. The PDF’s only marginally
grow in width. At every evolutionary stage, the
PDF for the smallest spatial lag is exponential,
whereas the PDF’s for medium and large shift
vectors closely follow the Gaussian curve defined
by the first two moments of the distribution (dot-
ted lines). The functions are similar to the ones
in the previous model before the large scale col-
lapse motions set in (Figure 3.14a, b). Only over-
all contraction will affect ∆v-PDF at medium to
large lags. This behavior also follows from com-
paring the statistical moments. Figure 3.19 plots
(a) the dispersion σ and (b) the kurtosis κ as
function of the spatial lag ∆r. Figures 3.15a and
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Figure 3.16: 2-dimensional distribution (in the yz-plane) of centroid increments for velocity profiles along the x-axis of
the system between locations separated by a vector lag ∆~r = (1/32, 1/32) for the simulation of self-gravitating, decaying,
supersonic turbulence. Analog to Figure 3.14, the data are displayed for times (a) t = 1.0, (b) t = 1.5, (c) t = 2.0, and (d)
t = 2.5. The magnitude of the velocity increment ∆vx is indicated at the top of each plot. (From Klessen 2000)

3.19a are very similar, as soon as turbulence is es-
tablished the width σ of the PDF increases with
∆r with a slope of d log10 σ/d log10 ∆r <

∼ 0.2 for
small to medium lags and levels out for larger
ones. However, when comparing the ‘peaked-
ness’ of the PDF as indicated by κ (Figures 3.15b
and 3.19b) the model of decaying self-gravitating
turbulence yields much higher values since the
PDF’s are more strongly peaked due to the pres-
ence of large-scale collapse motions.

Figure 3.20 finally shows the spatial distribu-

tion of the x-component of the line centroid in-
crements for a vector lag ∆~r = (1/32, 1/31).
Since the increment maps at different evolution-
ary times are statistically indistinguishable, only
times (a) t = 0.0 and (b) t = 4.8 are displayed
in the figure. As in the case of supersonic, purely
hydrodynamic turbulence the spatial distribution
of velocity increments appears random and un-
correlated.

The adopted driving mechanism prevents global
collapse. The bulk properties of the sys-
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Figure 3.17: PDF’s of (a) the density and (b) the x-component of line centroids for the simulation of driven turbulence in
self-gravitating gas. The time sequence is the same as in the previous figures as indicated by the letters to the right. Each
PDF is offset by ∆ log10 N = 2.0 with the base log10 N = 0.0 indicated by horizontal dashed lines. The best-fit Gaussian
curves are shown as dotted lines. The density contributions in (a) coming from collapsed cores are indicated by solid dots.
(From Klessen 2000)
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Figure 3.18: PDF’s of the x-component of the centroid velocity increments for three spatial lags: upper curve – ∆r = 1/32,
middle curve – ∆r = 10/32, and lower curve – ∆r = 30/32. The functions are computed form the simulation of driven,
self-gravitating, supersonic turbulence at (a) t = 0.0 and (b) t = 4.8. As in the previous models the increment PDF’s
for small spatial lags are approximately exponential, however, the PDF’s for larger separations remain close to Gaussian
throughout the evolution. (From Klessen 2000)

tem therefore resemble hydrodynamic, non-self-
gravitating turbulence. However, local collapse
motions do exist and are responsible for notice-
able distortions away from the Gaussian statis-
tics. As the non-local driving scheme adopted
here introduces a bias towards Gaussian velocity
fields, these distortions are not very large. There
is a need to introduce other, more realistic driv-
ing agents into this analysis. These could lead
to much stronger non-Gaussian signatures in the

PDF’s.

3.2.7 Summary

Klessen (2000) analyzed SPH simulations of
driven and decaying, supersonic, turbulent flows
with and without self-gravity, thus extending
previous investigations of mildly supersonic, de-
caying, non-self-gravitating turbulence (Lis et al.
1996, 1998) into a regime more relevant molec-
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Figure 3.19: (a) The second, dispersion σ , and (b) the fourth moment, kurtosis κ, as function of spatial lag ∆r for the
distribution of velocity increments in the simulation of driven, self-gravitating, supersonic turbulence. The letters on
the right-hand side indicate again the corresponding times. Each PDF is offset by ∆ log10 σ = 0.5 and ∆ log10 κ = 0.5,
respectively. (From Klessen 2000)

ular clouds. The flow properties are character-
ized by using the probability distribution func-
tions of the density, of the line-of-sight velocity
centroids, and of their increments. Furthermore
the dispersion and the kurtosis of the increment
PDF’s are discussed, as well as the spatial distri-
bution of the velocity increments for the smallest
spatial lags.

(1) To asses the influence of variance effects, sim-
ple Gaussian velocity fluctuations are studied.
The insufficient sampling of random Gaussian
ensembles leads to distorted PDF’s similar to the
observed ones. For line profiles this has been
shown by Dubinski et al. (1995).

(2) Decaying, initially highly supersonic turbu-
lence without self-gravity leads to PDF’s which
also exhibit deviations from Gaussianity. For the
trans- and subsonic regime this has been reported
by Lis et al. (1996, 1998). However, neglecting
gravity and thus not allowing for the occurrence
of collapse motions, these distortions are not very
pronounced and cannot account well for the ob-
servational data (Lis et al. 1998, Miesch et al. 1998).

(3) When including gravity into the models of de-
caying initially supersonic turbulence, the PDF’s
get into better agreement with the observations.
During the early dynamical evolution of the sys-
tem turbulence carries enough kinetic energy to

prevent collapse on all scales. In this phase
the properties of the system are similar to those
of non-gravitating hydrodynamic supersonic tur-
bulence. However, as turbulent energy decays
gravitational collapse sets in. First localized and
on small scales, but as the turbulent support con-
tinues to diminish collapse motions include in-
creasingly larger spatial scales. The evolution
leads to the formation of an embedded cluster of
dense protostellar cores (see also Klessen & Burk-
ert 2000). As the collapse scale grows, the ρ-,
v-, and ∆v-PDF’s get increasingly distorted. In
particular, the ∆v-PDF’s for small spatial lags are
strongly peaked and exponential over the entire
range of measured velocities. This is very similar
to what is observed in molecular clouds (for ρ-
Ophiuchus see Lis et al. 1998; for Orion, Mon R2,
L1228, L1551, and HH83 see Miesch et al. 1998).

(4) The most realistic model for interstellar tur-
bulence considered here includes a simple (non-
local) driving scheme. It is used to stabilize the
system against collapse on large scales. Again
non-Gaussian PDF’s are observed. Despite global
stability, local collapse is possible and the system
again evolves towards the formation of an em-
bedded cluster of accreting protostellar cores. As
the adopted driving scheme introduces a bias to-
wards maintaining a Gaussian velocity distribu-
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Figure 3.20: 2-dimensional distribution (in the yz-plane) of the absolute value of the x-component of centroid velocity
increments between locations separated by a vector lag ∆~r = (1/32, 1/32) for the simulation of driven self-gravitating
supersonic turbulence. The data are displayed at times (a) t = 0.0, and (b) t = 4.8. The scaling is indicated at the top of
each figure. (From Klessen 2000)

tion, the properties of the PDF’s fall in between
the ones of pure hydrodynamic supersonic tur-
bulence and the ones observed in systems where
self-gravity dominates after sufficient turbulent
decay. This situation may change when consid-
ering more realistic driving schemes.

(5) A point of caution: The use of v- and ∆v-
PDF’s to unambiguously characterize interstel-
lar turbulence and to identify possible physical
driving mechanisms may be limited. All mod-
els considered in the current analysis lead to non-
Gaussian signatures in the PDF’s, differences are
only gradual. In molecular clouds the number
of physical processes that are expected to give
rise to deviations from Gaussian statistics is large.
Simple statistical sampling effects (Sec. 3.2.3) and
turbulent intermittency caused by vortex motion
(Lis et al. 1996, 1998), as well as the effect self-
gravity (Sec. 3.2.5) and of shock interaction in
highly supersonic flows (Mac Low & Ossenkopf
2000), all will lead to non-Gaussian signatures in
the observed PDF’s. Also stellar feedback pro-
cesses, galactic shear and the presence of mag-
netic fields will influence the interstellar medium
and create distortions in the velocity field. This
needs to be studied in further detail. In addition,

the full 3-dimensional spatial and kinematical in-
formation is not accessible in molecular clouds,
measured quantities are always projections along
the line-of-sight. As the structure of molecular
clouds is extremely complex, the properties of
the PDF’s may vary considerably with the view-
ing angle. Attempts to disentangle the different
physical processes influencing interstellar turbu-
lence therefore should no rely on analyzing veloc-
ity PDF’s alone, they require additional statistical
information.

3.3 Fourier Analysis

In this section we discuss the energy distribution
on different spatial scales during various stages
of the dynamical evolution of supersonically tur-
bulent self-gravitating gaseous systems. We per-
form a Fourier analysis of the energy, comput-
ing the power spectra of kinetic and potential en-
ergies from the numerical models introduced in
Section 2.5 (Table 2.3; for full details see Klessen
et al. 2000). To allow for a direct comparison,
all models are analyzed on a Cartesian grid with
1283 cells. For the SPH models this is done using
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the kernel smoothing algorithm, while the 2563-
ZEUS models are simply degraded in resolution.
For each cell the potential and kinetic energy con-
tent is calculated, and the kinetic energy is further
decomposed into its solenoidal (rotational) and
compressional parts. These quantities are then all
transformed into Fourier space, to find the contri-
bution of different dimensionless wave numbers
k, or equivalently, to find the distribution of en-
ergy over different spatial scales λk = L/k.

3.3.1 Fourier Spectra as Function of
Driving Wavelength

The energy spectrum of fully developed turbu-
lence for small-, medium- and large-scale driving
is shown in figure 3.21. It shows the SPH models
(a) A1, (b) A2 and (c) A3 just at the time t = 0.0
when gravity is turned on. In each plot the thick
solid lines describe the potential energy as a func-
tion of wave number k, and the thick long-dashed
lines represent the kinetic energy, which can be
decomposed into its solenoidal (rotational) and
compressional components. They are defined via
the velocities by ~∇ ·~vsol = 0 and ~∇×~vcom = 0,
respectively.

The models A1 and A2, which are driven at
long and intermediate wave lengths (k = 1 −
2 and k = 3 − 4), appear to exhibit an iner-
tial range below the driving scale, i.e. between
0.5 <

∼ log10 k <
∼ 1.5. Note that, in real clouds, the

dissipation scale may lie near the upper end of
this wave number range as discussed in Section
4.1. In this interval the energy distribution ap-
proximately follows a power law very similar to
that predicted by the Kolmogorov (1941) theory
(Ekin ∝ k−5/3). This is understandable given that,
in our models, once turbulence is fully estab-
lished, the solenoidal component of the kinetic
energy always dominates over the compressible
one, Esol > Ecom. For a pure shock dominated
flow (Ecom � Esol) one would expect a power
spectrum with slope −2 (Passot et al. 1988). To
guide the eye, both slopes are indicated as thin
dotted lines in plots (a) to (c). For model A3
the smaller number of available modes between
the driving scale k = 7 − 8 and the Nyquist

frequency does not allow for an unambiguous
identification of a turbulent inertial range. The
permanent energy input necessary to sustain an
equilibrium state of turbulence produces a sig-
nature in the energy distribution at the driving
wave length. This is most clearly visible in fig-
ure 3.21c.

The system is globally stable against gravitational
collapse, as indicated by the fact that for ev-
ery wave number k the kinetic energy exceeds
the potential energy. For comparison we plot in
figure 3.21d the energy distribution of a system
without turbulent support. The data are taken
from Klessen et al. (1998) and stem from an SPH
simulation with 500 000 particles containing 220
thermal Jeans masses and no turbulent velocity
field, but otherwise identical physical parame-
ters. The snapshot is taken at t = 0.2τff after
the start of the simulation. This system contracts
on all scales and forms stars at very high rate
within a few free-fall times τff. Contrary to the
case of hydrodynamic turbulence, the kinetic en-
ergy distribution is dominated by compressional
modes, especially at small wave numbers. The
overall energy budget is determined by the po-
tential energy Epot, which outweighs the kinetic
energy Ekin on all spatial scales k by about an or-
der of magnitude.

3.3.2 Fourier Spectra During Collapse

Figure 3.22 concentrates on model B2h with
〈MJ〉turb = 3.2 and k = 3 − 4. It describes the
time evolution of the energy distribution. Fig-
ure 3.22a shows the state of fully established tur-
bulence for this model just when gravity is turned
on (t = 0.0). In the subsequent evolution, lo-
cal collapse occurs in shock-generated density
enhancements where the potential energy dom-
inates over the kinetic energy. This affects the
small scales first, as seen in the plotted time se-
quence. As collapse progresses to higher and
higher densities, the scale where the potential en-
ergy dominates rapidly grows. Once the mass
fraction in dense cores has reached about ∼ 3%,
the potential energy outweighs the kinetic energy
on all scales. However, this should not be con-
fused with the signature of global collapse. The
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Figure 3.21: Energy as function of wave number k for models with different driving scale: (a) A1 with k = 1 − 2, (b) A2
with k = 3 − 4 and (c) A3 with k = 7 − 8. The simulations are studied at t = 0.0, when the hydrodynamic turbulence
is fully developed, immediately after gravity is included. The plots show potential energy Epot (thick solid lines), kinetic
energy Ekin (thick long-dashed lines), its solenoidal component Esol (short-dashed lines) and its compressional component
Ecom (dotted lines). The thin dotted lines indicate the slope −5/3 expected from the Kolmogorov (1941) theory and the
slope −2 expected for velocity discontinuities associated with shocks. For comparison, plot (d) shows a strongly self-
gravitating model that completely lacks turbulent support and therefore contracts on all scales (data from Klessen et al.
1998). The energy spectra are computed on a 1283 grid onto which the SPH particle distribution has been assigned using
the kernel smoothing procedure. (From Klessen et al. 2000)

power spectrum of the potential energy is con-
stant for all k. It is the Fourier transform of a delta
function. Local collapse has produced point-like
high-density cores. The overall filling factor of
collapsing clumps and cores is very low, so most
of the volume is dominated by essentially pure
hydrodynamic turbulence. As a consequence,
the velocity field on large scales is not modified
much (besides a shift to higher energies). On
small scales, however, the flow is strongly influ-
enced by the presence of collapsed cores which
is noticeable as a flattening of the power spectra
at large wave numbers. Despite their small vol-
ume filling factor, the cores dominate the overall
power spectrum. The solenoidal part of the ki-
netic energy always dominates over the compres-
sional modes and also the signature of the driv-

ing source in the energy spectrum remains, visi-
ble as a ‘bump’ in the kinetic energy spectrum at
k ≈ 8.

3.3.3 Summary

In turbulent flows, it is impossible to predict from
the start when and where individual cores form
and how they evolve. In all models except the
ones driven below the fluctuation Jeans scale,
gravity eventually begins to dominate over ki-
netic energy. The Fourier spectra show that this
first occurs on small scales. This indicates the
presence of local collapse. As dense collapsed
cores form, the power spectrum of the gravita-
tional energy becomes essentially flat. The kinetic
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Figure 3.22: Fourier analysis of the high-resolution model B2h (〈MJ〉turb = 3.2 and k = 3 − 4) at different stages of its
dynamical evolution indicated on each plot. Notation and scaling are the same as in figure 3.21. (From Klessen et al. 2000)
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energy, on the other hand, appears to follow at in-
termediate wave numbers a Kolmogorov power
spectrum with slope −5/3, less steep than the
spectrum expected for pure shock flows. The
slope remains almost unaltered during the course
of the evolution, indicating that a large volume
fraction of the system is always well described
by pure hydrodynamic turbulence. The spatial
extent of collapsing regions (where infall mo-
tions dominate over the turbulent flow) is rela-
tively small. This also explains the fact that the
solenoidal component of the flow always domi-
nates over the compressional part.

3.4 ∆-Variance

3.4.1 Introduction

In the previous two Sections we have focused
on PDF’s and Fourier transforms to quantify
molecular cloud structure – other statistical mea-
sures are summarized in the reviews by Vázquez-
Semadeni (2000) and Ossenkopf et al. (2000). One
further technique especially sensitive to the dis-
crimination of the relative structural variation on
different spatial scales is the ∆-variance intro-
duced by Stutzki et al. (1998). It provides a good
separation of noise and observational artifacts
from the real cloud structure and for isotropic
systems its slope is directly related to the spec-
tral index of the corresponding power spectrum.
Bensch et al. (2001) and Mac Low & Ossenkopf
(2000) have shown that it can be applied in an
equivalent way both to observational data and
hydrodynamic and magneto-hydrodynamic tur-
bulence simulations allowing a direct compari-
son.

Their investigations, however, neglect the influ-
ence of gravitational collapse on the structure for-
mation so that their conclusions may be limited
when applied to star-forming regions. It is es-
sential to include the effects of self-gravity for
the analysis of star-forming regions. It was the
aim of an investigation by Ossenkopf, Klessen,
& Heitsch (2001) to close this gap and investi-
gate the interaction between turbulence and self-
gravity. We follow their line of reasoning and ap-
ply the ∆-variance to characterize the structure

in numerical models of driven and decaying self-
gravitating supersonic (magneto-)hydrodynamic
turbulence and compare the results to observed
regions of star formation.

3.4.2 Turbulence Models

The large observed linewidths in molecular
clouds imply the presence of supersonic veloc-
ity fields that carry enough energy to counterbal-
ance gravity on global scales (Section 4.1). As
turbulent energy dissipates rapidly, i.e. roughly
on the free-fall time scale (Section 2.5), either
interstellar turbulence is continuously replen-
ished in order to prevent or considerably post-
pone global collapse, or alternatively, molec-
ular clouds evolve rapidly and never reach
dynamical equilibrium between kinetic energy
and self-gravity (Ballesteros-Paredes et al. 1999a,
Elmegreen 2000b).

We select a set of numerical models mostly from
preexisting studies that spans a large range of the
parameter space relevant for Galactic molecular
clouds. We analyze the time evolution of their
density and velocity structure as gravitational
collapse progresses. Altogether, we include eight
models summarized in Table 3.2. They differ in
the scale on which turbulent driving occurs, the
persistence of this driving, the inclusion of mag-
netic fields, and the numerical algorithm used
to solve the hydrodynamic or magnetohydrody-
namic equations. The models are calculated us-
ing the particle-based SPH method and the grid-
based ZEUS code as introduced in Section 2.5.3
(for full details see Ossenkopf et al. 2001).

In the present analysis we neglect feedback ef-
fects from the produced young stellar objects
(like bipolar outflows, stellar winds, or ionizing
radiation from new-born O or B stars). Thus
our results will hold only for early stages of star-
forming systems.

To test the influence of magnetic fields we con-
sider the driven turbulence model which carries
most energy on large scales and add magnetic
fields to the ZEUS simulations. By comparing
the resulting model M01 with the hydrodynamic
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Table 3.2: Properties of the considered turbulence models together with the resulting time scales

model description kd
a numerical method further referenceb τ c

5% f d
τff

S01 driven HD turbulence 1 . . . 2 SPH B1h in KHM 0.6 28%
Sd1 decaying HD turbulence 1 . . . 2 SPH — 0.6 60%
S02 driven HD turbulence 7 . . . 8 SPH — > 5.5 0.6%
Sd2 decaying HD turbulence 7 . . . 8 SPH — 2.0 0.0%
G Gaussian density — SPH I in KB 1.3 9%
H01 driven HD turbulence 1 . . . 2 ZEUS D1h in KHM 0.6 24%
H02 driven HD turbulence 7 . . . 8 ZEUS D3h in KHM 4.7 0.5%
M01 driven MHD turbulence 1 . . . 2 ZEUS Eh1i in HMK 1.2 6%

aWavenumber of the original driving
bModel names in the original papers: KB – Klessen & Burkert (2000), KHM – Klessen et al. (2000), HMK – Heitsch et al.
(2001)
cTime at which 5% of the total mass is accreted onto cores in internal units where τff = 1.5.
dMass fraction that is accreted onto cores after one global free-fall time. — Adopted from Ossenkopf et al. (2001).

model H01 we get a direct measure for the signif-
icance of magnetic fields for the interplay of tur-
bulence and self-gravity in structure formation.

The magnetic field in this model is selected to
be a major factor where the ratio between ther-
mal and magnetic pressure β = pth/pmag =

8πc2
sρ/B2 = 0.04. With a turbulent Mach num-

ber of Mrms = 10 we find that the turbulent ve-
locity dispersion exceeds the Alfvén speed by a
factor of 1.4 so that the structure is still essen-
tially determined by supersonic turbulence and
only modified by the magnetic field. The mass in
the cloud still exceeds the critical mass for a mag-
netostatically stable cloud by a factor 2 (Heitsch et
al.2001) so that the field should not prevent grav-
itational collapse. Cases of sub-Alfvénic non-self-
gravitating turbulence where the whole structure
is dominated by the magnetic field have been dis-
cussed by Ossenkopf & Mac Low (2001).

The models presented here are computed in nor-
malized units. Throughout this analisys we give
all size values relative to the total cube size, all
density values relative to the the average den-
sity in the cube, and all velocities relative to the
sound speed. Model G contains 220 thermal
Jeans masses, wherease all other models have 120
thermal Jeans masses3. If scaled to mean densi-

3We use the spherical definition of the Jeans mass,
MJ ≡ 4/3 πρλ3

J , with density ρ and Jeans length λJ ≡

ties n(H2) = 105 cm−3, a value typical for star-
forming molecular cloud regions and a tempera-
ture of 11.4 K (i.e. a sound speed cs = 0.2 km s−1),
the mean Jeans mass is one solar mass, 〈MJ〉 =

1 M�, and the size of cube G is 0.34 pc whereas
all other models have a size of 0.29 pc. The
global free-fall time scale, as defined by τff =
(3π/32G)1/2 〈ρ〉−1/2 with 〈ρ〉 being the average
density, is about 105 yr. In normalized time units
it follows τff = 1.5. The simulations cover a den-
sity range from n(H2) ≈ 100 cm−3 in the lowest
density regions to n(H2) ≈ 109 cm−3 where col-
lapsing protostellar cores are identified and con-
verted into “sink” particles in the SPH code.

In this density regime gas cools very efficiently
and it is possible to use an effective polytropic
equation-of-state in the simulations instead of
solving the detailed equations of radiative trans-
fer. The effective polytropic index is typically
close to unity, γeff

<
∼ 1, except for densities

105 cm−3 < n(H2) < 107 cm−3, where some-
what smaller values of γeff are expected (Spaans
& Silk 2000). For simplicity, we adopt a value of
γeff = 1, i.e. an isothermal equation of state for
all densities in the simulations. As the choice of

(πRT/Gρ)1/2, where G and R are the gravitational and the
gas constant. The mean Jeans mass 〈MJ〉 is determined from
average density in the system 〈ρ〉. An alternative cubic def-
inition, MJ ≡ ρ(2λJ)

3, would yield a value roughly twice as
large.
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γeff influences the density contrast in shock com-
pressed gas, this idealisation may introduce some
small modifications to the dynamical behavior
compared to real cloud systems (see Scalo et al.
1998 or Ballesteros-Paredes et al. 1999b for further
discussion).

3.4.3 Density Structure

∆-Variance Analysis

The ∆-variance analysis was introduced by
Stutzki et al. (1998) as an averaged wavelet trans-
form (Zielinsky & Stutzki 1999) to measure the
amount of structure present at different scales in
an E-dimensional data set. The value of the ∆-
variance at a certain scale is computed by con-
volving the E-dimensional structure with a nor-
malized spherically symmetric down-up-down
function of the considered size, and measuring
the remaining variance. For two-dimensional
structures, like astrophysical maps, the filter
function is easily visualized as a “French hat”
wavelet with a positive centre surrounded by a
negative ring and equal diameters of the centre
and the annulus. The analysis can be applied
in the same way in arbitrary dimensions by ex-
tending the filter function to higher dimensions
retaining its radial symmetry and adapting the
value in the negative part to preserve normaliza-
tion (Appendix B of Stutzki et al.1998). The re-
sulting ∆-variance as a function of the filter size
measures the amount of structural variation on
that scale.

As the convolution with the filter function corre-
sponds to a multiplication in Fourier space, we
can relate the ∆-variance to the power spectrum
of the data set. If the structure is characterized by
a power law power spectrum

P(|~k|) ∝ |~k|−β (3.13)

the slope α of the ∆-variance as a function of lag
(filter size) is related to the spectral index β of the
power spectrum by β = α + E for 0 ≤ β < E + 4.
Due to the smooth circular filter function the ∆-
variance measures the spectral index in a way
which is more robust with respect to edge and

gridding effects than the Fourier transform. The
∆-variance provides a clear spatial separation of
different effects influencing observed structures
like noise or a finite observational resolution.

Mac Low & Ossenkopf (2000) have shown that
we can translate the ∆-variance of a three-
dimensional isotropic structure into the ∆-
variance of the maps obtained from the projec-
tions of this structure by rescaling with a factor
proportional to the lag and an additional small
shift. This guarantees the preservation of the
power spectral index β in projection (Stutzki et
al. 1998). As we want to compare the simulations
to observational data we will always use the two-
dimensional representation of the ∆-variance re-
sults also when applying the analysis directly to
the three-dimensional data cubes of the simula-
tions. To compute the ∆-variance for our models
the SPH density distribution is assigned onto a
Cartesian grid with 1283 cells. The ZEUS cubes
have been analyzed in full resolution at 2563 as
well as degraded to 1283 for a one-to-one com-
parison with the SPH models. Higher resolu-
tion helps to extend the dynamic scale range lim-
ited by the periodic boundary conditions at the
large scale end and the numerical resolution of
the simulations on the small scale end, but does
not change the general behavior of the resulting
∆-variance.

Collapse of a Gaussian Density Field

Before we investigate the interplay between su-
personic turbulence and self-gravity, let us con-
sider a system where the density and velocity
structure is dominated by gravity on all scales
and at all times. Model G describes the col-
lapse of Gaussian density fluctuations with ini-
tial power spectrum P(k) ∝ k−2 and maximum
density contrast δρ/ρ ≈ 50. The system is un-
stable against gravitational collapse on all scales
and forms a cluster of protostellar cores within
about two free-fall time scales (Klessen & Burk-
ert 2000, 2001). The velocity structure is coupled
to the density distribution via Poisson’s equation
and there is no contribution from interstellar tur-
bulence.
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Figure 3.23: Time evolution of the strength of density fluc-
tuations as function of their spatial scale measured with the
∆-variance for model G. The density ρ is given in units of the
average density in the cube, the lag ∆s in units of the cube
size, and the time t in internal time units where the free-fall
time τff = 1.5. (From Ossenkopf et al. 2001)

The time evolution of the density structure is il-
lustrated in Figure 3.23. Initially, the ∆-variance
σ2

∆(n) is more or less constant (α = 0) on scales
∆s >

∼ 0.02, in agreement with the initial power
spectrum P(k) ∝ k−2. The steepening below
∆s ≈ 0.02 is produced by the finite resolution of
the SPH simulations resulting in the blurring of
structures at the smallest scales.

The first changes of the variance σ 2
∆(n) are con-

fined to small scales. Initial fluctuations with
masses below the local Jeans limit will quickly
smear out by thermal pressure as the system
evolves from purely Gaussian fluctuations into
a hydrodynamically self-consistent state (see Ap-
pendix B in Klessen & Burkert 2000). As these
fluctuations are by far more numerous than Jean-
unstable contracting ones, the ∆-variance σ 2

∆(n)
begins to decrease on small scales. However,
as the central regions of massive Jeans-unstable
fluctuations contract to sufficiently high densi-
ties, σ2

∆(n) increases again. This mainly affects
the small scales as local collapse modifies the
density structure on time scales of the local free-
fall time. At t = 0.7τff the first collapsed core
is identified and is soon followed by others. Al-
together 56 dense protostellar cores build up.
As time advances larger and larger scales ex-
hibit noticeable signs of contraction. After about

one global free-fall time collapse starts to involve
all spatial modes in the system and the abso-
lute magnitude of the density fluctuations finally
grows on all scales. As the small scale structure
dominates the density structure we obtain a neg-
ative slope in the ∆-variance spectrum. In the
final step of the simulation roughly 30 % of the
mass is accumulated in dense cores and the slope
is about –1.7 indicating that a small but signifi-
cant contribution of large scale structure is still
present, because an uncorrelated N-body system
of gravitationally collapsed points would corre-
spond to a slope of –2 equivalent to a flat power
spectrum P(k) = const.

The flattening at ∆s > 0.2 is due to periodic-
ity. The system is not allowed to collapse freely,
it is held up against global collapse by periodic
boundaries which strongly affect the evolution of
the large-scale modes. The graphs of ∆-variance
are not extended beyond effective lags of about
0.4 as the largest filter that we use is half the cube
size and we have to apply an average length re-
duction factor of π/4 on projection to two dimen-
sions.

Interaction Between Gravity and Turbulence

To study the interplay between supersonic turbu-
lence and self-gravity, we consider four models
of interstellar turbulence which probe very dis-
parate regions of the relevant parameter space. In
models S01 and Sd1 most of the turbulent kinetic
energy is carried on large scales, whereas models
S02 and Sd2 involve mainly small-scale turbulent
modes. In S01 and S02, turbulence is continu-
ously driven such that at any moment the over-
all kinetic energy compensates the global gravi-
tational energy. In Sd1 and Sd2, the turbulent en-
ergy is allowed to decay freely.

Figure 3.24 shows σ 2
∆(n) for all four models as

function of time. In the initial plots one can
clearly see the dominance of the driving scale as
discussed by Mac Low & Ossenkopf (2000). The
introduction of a velocity field with a certain scale
induces a pronounced peak in the density struc-
ture at a somewhat smaller scale. Thus the curves
at t = 0 show for the large scale-driven models
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a) b)

c) d)

Figure 3.24: Time evolution of the size distribution of density variations as measured with the ∆-variance for the four
models of (a) S01, (b) S02, (c) Sd1, and (d) Sd2. The different depicted times are indicated at the left side of each plot. (From
Ossenkopf et al. 2001)

a power law ∆-variance from about a third of the
cube size down to the numerical dissipation scale
whereas in the small-scale driven model the driv-
ing feature at about 0.07 dominates the structure.

Star formation is a joint feature of all considered
models. Like in the evolution of the Gaussian
density field the gravitational collapse first mod-
ifies only the smallest scales, hardly changing the
global behavior. As soon as local collapse oc-
curs and the first dense protostellar cores form
and grow in mass by accretion, they represent the
main density fluctuations. Their power is con-
centrated on small scales and the ∆-variance ex-
hibits a negative slope. The structure resulting
from the collapse is very similar in the various
models when we compare evolutionary stages
with about the same mass fraction collapsed onto
cores.

In the initially large-scale driven models a turbu-
lent cascade covering all scales is already present
from the beginning shown by the highest σ 2

∆(n)-
values at long scales. Within this cascade the
number of small-scale fluctuations is small com-
pared to models S02, Sd2, and G, and they are
typically part of a larger structure so that they
are only weakly dispersed in time. This leads
to a monotonous growth of the ∆-variance on all
scales. As larger and larger regions become grav-
itationally unstable the contraction comprises in-
creasingly larger scales, and finally σ 2

∆(n) shifts
“upward” on all scales while maintaining a fixed
slope. This situation is similar in all models with
allow for large-scale collapse, i.e. it is only pre-
vented in the small scale-driven model S02.

A different temporal behavior is visible in Sd2,
the decaying turbulence which was originally
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driven at small scales. Like in the collapse of the
Gaussian density field we find in the first steps
of the gravitational evolution a relative reduction
of small-scale structure. This decrease is due to
the termination of the initial small-scale driving
resulting in a quick dissipation of the existing
fluctuations by thermal pressure if they are not
Jeans supercritical, analogously to the Gaussian
collapse case. In the next steps we notice the pro-
duction of structure on larger scales. The smooth-
ing of small-scale turbulence combined with the
onset of self-gravity leads to global streaming
motions which produce density structures corre-
lated on a larger scale. Large-scale structures had
been initially suppressed by the non-local turbu-
lent driving mechanism. After less than one free-
fall time a kind of self-sustaining inertial cascade
with a ∆-variance slope α of about 0.5 is build
up like in all other decaying models and in the
large scale driven model. After these initial ad-
justments the first protostellar cores form and we
find the same dynamical behavior.

The time scale to reach a comparable collapse
state and the final structure that we reach in the
simulations differs between the models, mainly
determined by the strength of the turbulent driv-
ing. The exponent α of the ∆-variance in the
collapsed state is –1.3 in the models containing
continuous driving, –1.5 in the models where the
turbulence decays during the gravitational col-
lapse, and –1.7 for the pure collapse of the Gaus-
sian density field. This is understandable, as de-
creasing turbulent support leads to enhanced col-
lapse forming stars in denser clusters. The fi-
nal deviation from the uncorrelated field of pro-
tostars which has α = −2 is thus a measur-
able indicator of the turbulent processes in the
cloud during gravitational collapse. The local
collapse produces “point-like” high-density cores
with small overall filling factor whereas most of
the volume is supported by hydrodynamic tur-
bulence. In the large-scale driven model 30 % of
the mass and in the decaying models 60 % of the
total mass has turned into cores within the con-
sidered time interval. In the model continuously
driven at small scales only 3 % of the mass is in
stable cores despite a considerably longer sim-

a)

b)

Figure 3.25: Comparison of the ∆-variance measured from
the particle-based and the grid-based simulations at the be-
ginning and at about the same timestep of the gravitation-
ally collapsed state. Plot (a) shows the large-scale driven
model, plot (b) the small scale-driven situation. (From Os-
senkopf et al. 2001)

ulation time. The small-scale driven turbulence
leads to the least efficient star formation in an iso-
lated mode, whereas the other cases result in the
formation of stellar aggregates and clusters (see
also Klessen et al. 2000, Klessen 2001).

Beside the deceleration of collapse the continua-
tion of the initial driving has almost no influence
on the resulting density structure as soon as the
first stable cores have formed. It only maintains a
constant level of velocity fluctuations in the main
volume of the cloud which is dominated by low
density gas, compared to a homogeneous reduc-
tion of these fluctuations in the purely decaying
case.
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Influence of the Numerical Model

Comparing the results of the particle-based SPH
and the grid-based ZEUS code we can distin-
guish between numerical artifacts and physi-
cal results, as these two approaches practically
bracket the real dynamical behavior of interstel-
lar turbulence. In Figure 3.25 we compare the ∆-
variance plots of the density structure obtained
for the driven cases using either SPH or ZEUS, at
the beginning of the gravitational collapse and in
a step where the structure is already dominated
by protostellar cores.

The scaling behavior of the density structure does
not differ between both types of simulations but
the absolute magnitude of the density fluctua-
tions as seen in the total value of the ∆-variance is
somewhat larger for all ZEUS models. In the first
steps of the large-scale driven models both nu-
merical approaches still agree approximately but
during the evolution the scale dependent density
variations become about a factor five higher in
the ZEUS model than in the SPH approach. In the
small scale driven models we can notice a clear
difference already at the beginning of the simula-
tions. This is consistent with the different effec-
tive resolution of the methods. Whereas the SPH
code can provide a very good spatial resolution
around the collapsing dense regions the general
spatial resolution obtained with 2 105 particles is
lower than in the ZEUS simulations on a 2563

grid. Thus, the damping of structures at small
scales due to the finite resolution of the code is
slightly stronger in the SPH simulations than in
the corresponding ZEUS models. One can for
instance see that there is a virtual reduction of
structure below 0.01 which is approximately the
radius of the sink particles in the SPH code.

As the SPH resolution is explicitly density de-
pendent it is also reduced on all larger scales
in low density regions. This virtually smears
out part of the structure on all scales. Conse-
quently, the ∆-variance shows lower values on
all scales than in the grid-based approach because
it is not biased towards high-density regions like
SPH and the observations. The effect is larger in
the small-scale driven models as the same num-

ber of SPH particles has to represent more shocks
than in large-scale dominated cases further re-
ducing the effective resolution. Moreover, the
resolution worsens during the collapse evolution
as SPH particles “vanish” in the sink particles.
Thus, the ZEUS simulations are preferential due
to their higher resolution if one is interested in
the absolute value of the ∆-variance whereas they
provide no essential advantage for the study of
the scaling behavior.

Magnetic Fields

As discussed by Mac Low & Ossenkopf (2000)
magnetic fields hardly change the general scal-
ing behavior in interstellar turbulence but cre-
ate anisotropies in the velocity field and there-
fore aligned density structures. Since the ∆-
variance cannot measure anisotropies in the den-
sity structure we do not expect to detect the in-
fluence of the magnetic field on the turbulence
by the present analysis. Figure 3.26 shows the ∆-
variance for the initial step and an collapsed stage
in a large-scale driven hydrodynamic model and
the equivalent MHD model with a strong mag-
netic field. The initial steps are almost identi-
cal but we find that during collapse the mag-
netic field effectively helps to transfer structure
from larger to smaller scales. Thus we con-
firm the more qualitative conclusion of Heitsch
et al. (2001) that the magnetic field slightly de-
lays collapse by transferring part of the turbu-
lent kinetic energy to smaller scales. The general
slope of the ∆-variance is not changed but we
obtain somewhat denser and smaller cores and
somewhat less large-scale correlation at equiva-
lent timesteps.

Computing the ∆-variance for maps projected ei-
ther in the direction of the initial magnetic field
or perpendicular to it does not show any signifi-
cant difference in the density scaling behavior as
mainly the shape of the collapsed regions is influ-
enced, towards spiral-shaped structures, which is
not measurable with the isotropic ∆-variance fil-
ter.

We have also tested models with a smaller mag-
netic field where the magnetic pressure in the or-
der of the thermal pressure or lower. Here, we
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Figure 3.26: Comparison of the ∆-variance for the large-
scale driven model in the hydrodynamic case or the situa-
tion with strong magnetic fields, both computed with the
ZEUS code. (From Ossenkopf et al. 2001)

find that the field acts like an additional contri-
bution to the overall isotropic pressure so that the
collapse is somewhat delayed relative to the hy-
drodynamic case but the general structure does
not deviate from the hydrodynamic simulations.
Thus there is no need to discuss the weak-field
situation here separately.

Figure 3.27: Evolution of the ∆-variance of the z-velocity in
the collapse of the Gaussian density distribution (model G).
The velocity vz is given here in units of the thermal sound
speed cs. (From Ossenkopf et al. 2001)

3.4.4 Velocity Structure

We can apply the ∆-variance analysis in the same
way to the velocity structure in the simulations
(Ossenkopf & Mac Low 2001). Figure 3.27 shows

the evolution of one velocity component in the
collapse of the Gaussian density fluctuations. In
the first steps where we observe a relative re-
duction of small scale density fluctuations we
find a bimodal velocity distribution with either
very small or very large flows. The surplus of
small-scale flows just reflects the dissipation of
the initial small-scale variations by thermal pres-
sure. When the first stable cores have formed the
picture changes towards that of a typical shock-
dominated medium with a slope α = 2 (Os-
senkopf & Mac Low 2001) as the result of su-
personic accretion onto dense cores along the
emerging filamentary structure (Klessen & Burk-
ert 2000, 2001).

Figure 3.28: Evolution of the ∆-variance of the z-velocity
component of the decaying model Sd1. (From Ossenkopf et
al. 2001)

In all driven models we see no significant
changes in the velocity structure during collapse.
This is because the ∆-variance is not focused to-
wards the dense cores where collapse motions
occur, as these have only a small spatial filling
factor. Instead, most of the volume is occupied
by tenuous intercore gas with velocity structure
that is determined by turbulent driving. The ∆-
variance therefore exhibits the power-law behav-
ior of shock dominated gas.

The same hold for decaying turbulence as well.
To illustrate that point, Figure 3.28 presents the
evolution of the velocity structure for model Sd1,
where we drive the turbulence initially at large
scales and switch off the driving during the grav-
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itational collapse. The changes in the velocity
structure are only minute. The ∆-variance fol-
lows the power law of shock-dominated flows
throughout the entire evolution. Only the to-
tal magnitude of the velocity fluctuations de-
creases slightly during the initial decay of turbu-
lence. However, after the onset of collapse, when
the majority of mass is already accumulated in
dense cores, the magnitude of σ∆ increases again.
The ∆-variance becomes dominated by the shock
structure arising from the supersonic accretion
flows onto individual cores (similar to the late
stages of model G). The evolution of the small-
scale decaying turbulence is not plotted sepa-
rately, as we observe the same behavior. Except
during the initial phase of turbulent decay where
the velocity structure still peaks on small scales
reflecting the smaller driving wavelength used to
set up the model (see Figure 3.25d for the den-
sity structure), again after t ≈ 1.5 when the ini-
tial turbulence is sufficiently decayed away the
∆-variance arrives at the power-law behavior of
shocked gas.

Figure 3.29: ∆-variance of all three velocity components for
model the large-scale driven MHD model at the initial step
and after one free-falling time. (From Ossenkopf et al. 2001)

In Figure 3.29 we show the three velocity com-
ponents of the MHD model M01 at the same
two timesteps like in the density plot in Figure
3.26. In contrast to the findings of Ossenkopf
& Mac Low (2002) for sub-Alfvénic turbulence,
we see no strong anisotropy of the velocity field.
The velocity structure along the mean magnetic
field (z-direction) is very similar to the perpendic-

ular directions throughout the dynamical evolu-
tion of the system and well within the statistical
fluctuations expected for large-scale turbulence.
The velocity structure is still determined by su-
personic turbulence rather than by the magnetic
field structure because the turbulent rms veloc-
ity dispersion exceeds the Alfvén speed in this
model. The local collapse and the formation of
a cluster of collapsed cores tends to make the in-
fluence of the magnetic field on the velocity struc-
ture even weaker. The magnetic field merely de-
celerates the gravitational collapse and changes
the geometry of the collapsing regions as seen in
Figure 3.26, but hardly changes the global veloc-
ity structure in this model situation.

Altogether we find that all models that are al-
lowed to evolve freely or are driven at large scales
exhibit a similar velocity scaling behavior, char-
acteristic of shock-dominated media. This is the
effect of the undisturbed turbulence evolution
and the appearance of accretion shocks. Both
effects lead to remarkably similar properties of
the velocity ∆-variance. Any observed devia-
tion from this large-range “Larson” behavior in-
dicative of shock-dominated media will hint the
presence of additional physical phenomena and
could provide constraints on the initial condi-
tions and the dynamical state of star-forming re-
gions.

3.4.5 Comparison with Observations

Dust Observations

To compare the simulations of gravitational col-
lapse with observational data of collapsed re-
gions we have selected the observation of a star-
forming cluster in Serpens by Testi & Sargent
(1998) as this region represents a state of star for-
mation that may be similar to the outcome of our
simulations.

In Figure 3.30 we show the ∆-variance for the
3 mm dust continuum map of Testi & Sargent
(1998). It reveals an increase of the relative
amount of structure from small scales towards
a peak at 7′′, an intermediate range which can
be fitted by a power-law exponent α = −1.2,
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Figure 3.30: ∆-variance of the dust continuum map in Ser-
pens taken by Testi & Sargent (1998). The two vertical lines
represent the limits of the significant range as indicated with
the observational data. (From Ossenkopf et al. 2001)

and a decay with α = −2 indicating the com-
plete lack of large-scale structure at lags above
40′′. The behavior at largest and smallest scales
can be understood when looking at the observa-
tional base of the map. Testi & Sargent (1998) give
a resolution for their interferometric observations
of 5.5′′ × 4.3′′. Consequently we cannot see any
structure below that size. The fact that our peak
falls with 7′′ somewhat above the 5.5′′ resolu-
tion limit might indicate that the CLEAN beam
used in the reduction of the interferometric data
is not exactly Gaussian or slightly wider than
computed. The whole map is taken with an in-
terferometric mosaicing technique (see for details
Testi & Sargent 2000) without a zero-spacing by
complementary single dish observations. Thus
the map cannot contain any structure on scales
above the single pointing areas determined ap-
proximately by the size of the primary beam of
the OVRO antennas of 73′′. This is in agreement
with the lack of structure indicated by the ∆-
variance slope of –2 at these scales. The two lim-
iting sizes are indicated by vertical lines in Fig-
ure 3.30. Thus we may only discuss the range
in between disregarding other information that
is plotted in the interferometric map but that can
eventually not be obtained from the observations.

The steepening of the ∆-variance in the interme-
diate size range from α = −1.2 to α = −2 does
qualitatively agree with the behavior observed

in most collapse simulations at small scales but
does not match any of them quantitatively. For
a detailed comparison the dynamic scale range
covered in the simulations is still insufficient due
to the periodic boundary conditions constraining
the large scale behavior. Hence, we can only con-
clude that the collapse models show the same
general structure as the dust observations, in-
dicating that they represent a realistic scenario
but we cannot yet discriminate between different
models using the observational data.

Molecular Line Observations

Bensch et al. (2001) provided a detailed ∆-
variance analysis of the density structure traced
by observations in different CO isotopes for sev-
eral molecular clouds with different states of star
formation including quiescent clouds like the Po-
laris Flare and clouds with violent star forma-
tion like Orion A. They found for all molecular
clouds a density structure approximately charac-
terized by a power law ∆-variance, with an ex-
ponent in the range 0.5 ≤ α ≤ 1.3. In the
best studied cloud one smooth curve connects
scales larger than 10 pc (where turbulence pre-
sumably is driven) with the dissipation scale at
0.05 pc (where ambipolar diffusion processes be-
come important). The positive slopes indicate
that the density structure seen in the CO isotopes
is dominated by large-scale modes. This result
is consistent with purely supersonic turbulence
and appears independent of the dynamical state
of the molecular cloud regions studied, i.e. re-
gardless whether the cloud forms stars or not.

This is somewhat surprising, since we expect that
the density distribution in star-forming regions
is dominated by the collapsing protostellar cores
on small spatial scales. The ∆-variance spectrum
therefore should exhibit a negative slope. The
molecular line results are also in obvious con-
tradiction to the Serpens dust observations dis-
cussed above.

The explanation for the difference is hidden in
the radiative transfer problem. A discussion of
all major aspects of molecular line transfer in tur-
bulent media is provided by Ossenkopf (2002).
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Here, it is sufficient to concentrate on one ef-
fect – saturation at large optical depths. Molec-
ular lines like the lower transitions of 13CO, fre-
quently used to map the density profile of molec-
ular clouds, become typically optically thick in
the cores of clouds at densities in the order of
105 cm−3. The exact value depends on the transi-
tion, the spatial configuration, temperatures, and
the geometry of the radiation field but one can
always assign a typical density range to the tran-
sition from the optically thin to the optically thick
regime. This leads to a saturation of the line in-
tensities in dense clumps so that the lines do not
trace their internal structure but rather see clump
surfaces. Moreover, the molecules tend to freeze
out in dense dark regions (Kramer et al. 1999) am-
plifying the effect that the line brightness reflects
only part of the column density in dense clumps.

As we do not want to treat the full radiative trans-
fer problem here, we give only an estimate for the
influence of optical depth effects by including a
saturation limit into our computations. Because
the simulations are scale-free and the typical sat-
uration density varies for different molecules and
transitions there is no particular density value to
be used for this limit so that we have to play with
different values.

Figure 3.31 illustrates the evolution of the large-
scale driven model shown in Figure 3.24a assum-
ing now that all densities above a certain thresh-
old are invisible so that they are equal to the value
of the saturation density. In the upper plot we
have chosen this limit to be the maximum density
occurring in the original turbulent density distri-
bution before gravitational collapse starts. This
is 240 times the average density, i.e. a relatively
large value compared to the dynamic range of
molecular line observations. In the lower graph
the saturation limit is reduced by a factor 10.

Although only a relatively small fraction of the
material appears at densities above the limit the
influence on the ∆-variance is dramatic. As the
collapsing cores produce the relative enhance-
ment of small scale structure their virtual re-
moval by the saturation results in an almost
constant ∆-variance behavior during the gravi-
tational collapse. Even in the very conservative

a)

b)

Figure 3.31: Time evolution of the ∆-variance for the large-
scale driven model S01 when the density structure is as-
sumed to saturate at densities of 240.0 (a) and 24.0 (b). (From
Ossenkopf et al. 2001)

upper plot where we assume that all structures
occurring in normal interstellar turbulence are
still optically thin and only the collapsing cores
become optically thick the ∆-variance stays at a
positive slope during the entire evolution. In
the other case where optical depth effects are as-
sumed to be more important the ∆-variance re-
mains at a fixed slope of 0.5 consistent with the
molecular line observations of interstellar clouds.

Hence, optical depth effects can easily prevent
the detection of gravitational collapse in molecu-
lar line observations, since they reproduce the ∆-
variance spectrum of a turbulent molecular cloud
even if collapse has lead already to the forma-
tion of protostellar cores. Even in massively star-
forming clouds most molecules used for map-
ping trace the diffuse density structure between
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Jeans-unstable collapsing protostellar cores. This
gas is still dominated by interstellar turbulence.
The density contrast in star-forming molecular
cloud regions simply exceeds the density range
traceable by molecular transitions. Protostellar
core densities are so high that 13CO at best traces
the outer envelope. Therefore both, star-forming
and quiescent molecular clouds, exhibit very sim-
ilar molecular line maps.

It is essential to resolve large density contrasts
measuring the full density structure to study the
influence of self-gravity and local collapse in star-
forming clouds. This can be achieved using dust
continuum emission. Indeed, the 3mm contin-
uum map of the Serpens cluster by Testi & Sar-
gent (1998) shows a density structure that is dom-
inated by small scales as predicted by our col-
lapse simulations. The drawback of dust emis-
sion observations is the inherent convolution of
the density structure with the unknown temper-
ature profile. Large dust extinction maps could
circumvent this problem but require long inte-
gration times at NIR wavelengths to obtain a
dense sampling with background stars (Lada et
al. 1999).

3.4.6 Summary

Contrary to what is observed for purely hydro-
dynamic turbulence, self-gravitating supersonic
turbulence yields a density structure that con-
tains most power on the smallest scales (i.e. in the
collapsed objects) as soon as local collapse has set
in. This happens in all self-gravitating turbulence
models regardless of the presence or absence of
magnetic fields. The ∆-variance σ 2

∆(n) exhibits a
negative slope and peaks at small scales as soon
as local collapse produces dense cores. This is in
contrast to the case of non-self-gravitating hydro-
dynamic turbulence where σ 2

∆(n) has a positive
slope and the maximum at the largest scales. Our
results can therefore be used to differentiate be-
tween different stages of protostellar collapse in
star-forming molecular clouds and to determine
scaling properties of the underlying turbulent ve-
locity field.

The effect of protostellar collapse, however, is
not visible in molecular line maps of star-forming

clouds, as all molecules trace only a limited dy-
namic range of densities. The density contrast in
star-forming regions is much larger. 12CO and
13CO observations, for example, trace only the
inter-core gas distribution and at best the outer
parts of individual protostellar cores. Hence,
the density structure seen in these molecules is
indistinguishable for star-forming and non-star-
forming regions.

As resolving high density contrasts is the key for
detecting the effect of star formation in the ∆-
variance, we propose observations of dust con-
tinuum or of the dust extinction instead. These
techniques do not have the same limitations of
the dynamic range and are therefore better suited
to quantitatively study the full density evolution
during the star-formation process. This is con-
firmed by a first comparison of our models with
the 3mm dust continuum map taken by Testi &
Sargent (1998) in Serpens.
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Chapter 4

LOCAL STAR FORMATION

All present day star formation takes place in
molecular clouds (e.g. Blitz 1993, Williams, Blitz,
& McKee 2000), so we must understand the dy-
namical evolution and fragmentation of molec-
ular clouds to understand star formation. This
section therefore begins with a brief introduc-
tion to molecular clouds properties (Section 4.1).
We then show how the efficiency and time and
length scales of star formation can depend on the
properties of turbulence (Section 4.2), followed
by a discussion of the properties of protostel-
lar cores (Section 4.3), the immediate progeni-
tors of individual stars. We stress the importance
of the dynamical interaction between protostel-
lar cores and their competition for mass growth
in dense, deeply embedded clusters (Section 4.4).
This implies strongly time-varying protostellar
mass accretion rates (Section 4.5). Finally, we dis-
cuss the consequences of these probabilistic pro-
cesses (turbulence and stochastic mass accretion)
for the resulting stellar initial mass function (Sec-
tion 4.7).

4.1 Molecular Clouds

4.1.1 Composition of Molecular Clouds

Molecular clouds are density enhancements in
the interstellar gas dominated by molecular H2

rather than the atomic H typical of the rest of
the ISM, mainly because they are opaque to
the UV radiation that elsewhere dissociates the
molecules. In the plane of the Milky Way, in-
terstellar gas has been extensively reprocessed

by stars, so the metallicity1 Z ≈ Z�, the solar
value, while in other galaxies with lower star for-
mation rates, the metallicity can be as little as
10−3Z�. This has important consequences for
the radiation transport properties and the opti-
cal depth of the clouds. The presence of heav-
ier elements such as carbon, nitrogen, and oxy-
gen determines the heating and cooling processes
in molecular clouds (e.g. Genzel 1991). Also im-
portant, molecules formed from these elements
emit the radiation that traces the extent of molec-
ular clouds. Radio and submillimeter telescopes
mostly concentrate on the rotational transition
lines of carbon, oxygen and nitrogen molecules
(e.g. CO, NH3, or H20). By now, several hun-
dred different molecules have been identified in
the interstellar gas. An overview of the applica-
tion of different molecules as tracers for different
physical conditions can be found in the reviews
by van Dishoeck et al. (1993), Langer et al. (2000),
van Dishoeck & Hogerheijde (2000).

4.1.2 Density and Velocity Structure of
Molecular Clouds

Emission line observations of molecular clouds
reveal clumps and filaments on all scales accessi-
ble by present day telescopes. Typical parameters
of different regions in molecular clouds are listed
in Table 4.1, adopted from Cernicharo (1991). The
mass spectrum of clumps in molecular clouds ap-
pears to be well described by a power law, in-
dicating self-similarity: there is no natural mass

1Metallicity is usually defined as the fraction of heavy
elements relative to hydrogen. It averages over local varia-
tions in the abundance of the different elements caused by
varying chemical enrichment histories.

89
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or size scale between the lower and upper limits
of the observations. The largest molecular struc-
tures considered to be single objects are giant
molecular clouds (GMCs), which have masses of
105 to 106 M�, and extend over a few tens of par-
secs. The smallest observed structures are proto-
stellar cores with masses of a few solar masses
or less and sizes of <

∼ 10−2 pc, and less-dense
clumps of similar size. The volume filling fac-
tor of dense clumps, even denser subclumps and
so on, is of the order of 10% or less. Star forma-
tion always occurs in the densest regions within a
cloud, so only a small fraction of molecular cloud
matter is actually involved in building up stars,
while the bulk of the material remains at lower
densities.

The density structure of molecular clouds is best
seen in the column density of dust, which can be
observed via its thermal emission at millimeter
wavelengths in dense regions (e.g. Testi & Sar-
gent 1998, Motte, André, & Neri 1998), or via its
extinction of background stars in the infrared, if
a uniform screen of background stars is present
(Lada et al. 1994, Alves, Lada, & Lada 2001). The
latter method relies on the near-IR color excess
to measure column densities, which ensures a
much greater dynamic range than optical extinc-
tion. This method has been further developed
by Cambrésy et al. (2002) who use an adaptive
grid to extract maximum information from non-
uniform background star fields. It turns out that
the higher the column density in a region, the
higher the variation in extinction among stars be-
hind that region (Lada et al. 1994). Padoan &
Nordlund (1999) demonstrated this to be consis-
tent with a super-Alfvénic turbulent flow, while
Alves et al. (2001) modeled it with a single cylin-
drical filament with density ρ ∝ r−2. Because
turbulence forms many filaments, it is not clear
that these two descriptions are actually contradic-
tory (P. Padoan, 2001, private communication),
although the identification of a single filament
would then suggest that a minimum scale for the
turbulence has been identified.

A more general technique is optically thin spec-
tral lines. The best candidates are 13CO and
C18O, though CO freezes out in the very densest

regions with visual extinctions above AV ' 10
magnitudes (Alves, Lada, & Lada, 1999). Molec-
ular line observations are therefore only sensitive
to gas at relatively low densities and are limited
in dynamic range to at most two decades of col-
umn density. Nevertheless, the development of
sensitive radio receivers in the 1980’s first made
it feasible to map an entire molecular cloud re-
gion with high spatial and spectral resolution to
obtain quantitative information about the overall
density structure.

The hierarchy of clumps and filaments spans all
observable scales (e.g. Falgarone, Puget, & Per-
ault 1992, Falgarone & Phillips 1996, Wiesemeyer
et al. 1997) extending down to individual proto-
stars studied with mm-wavelength interferom-
etry (Ward-Thompson et al. 1994, Langer et al.
1995, Gueth et al. 1997, Motte et al. 1998, Testi
& Sargent 1998, Ward-Thompson, Motte, & An-
dré 1999, Bacmann et al. 2000, Motte et al. 2001).
This is illustrated by Figure 4.1, which shows
13CO, 12CO and C18O maps of a region in the
Cygnus OB7 complex at three levels of succes-
sively higher resolution (from Falgarone et al.
1992). At each level, the molecular cloud ap-
pears clumpy and highly structured. When ob-
served with higher resolution, each clump breaks
up into a filamentary network of smaller clumps.
Unresolved features exist even at the highest res-
olution. The ensemble of clumps identified in
this survey covers a mass range from about 1 M�

up to a few 100 M� and densities 50 cm−3 <
n(H2) < 104 cm−3. These values are typical for
all studies of cloud clump structure, with higher
densities being reached primarily in protostellar
cores.

The distribution of clump masses is consistent
with a power law of the form

dN
dm

∝ mα , (4.1)

with −1.3 < α < −1.9 in molecular line stud-
ies (Carr 1987, Stutzki & Güsten 1990, Lada,
Bally, & Stark 1991, Williams, de Geus, & Blitz
1994, Onishi et al. 1996, Kramer 1998, Heithausen
et al. 1998). Dust continuum studies, which
pick out the densest regions, find steeper val-
ues of −1.9 < α < −2.5 (Testi & Sargent 1998,
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Figure 4.1: Maps of the molecular gas in the Cygnus OB7 complex. (a) Large scale map of the 13CO (J = 1 − 0) emission.
The first level and the contour spacing are 0.25 K. (b) Map of the same transition line of a sub-region with higher resolution
(first contour level and spacing are 0.3 K). Both maps are obtained using the Bordaux telescope. (c) 12CO (J = 1 − 0) and
(d) 13CO (J = 1 − 0) emission from the most transparent part of the field. (e) 13CO (J = 1 − 0) and (f) C18O (J = 1 − 0)
emission from the most opaque field. (g) 13CO (J = 1 − 0) and (h) C18O (J = 1 − 0) emission from a filamentary region
with medium density. The indicated linear sizes are given for a distance to Cygnus OB7 of 750 pc. (The figure is from
Falgarone et al. 1992).
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Table 4.1: Physical properties of interstellar clouds

GIANT MOLE-
CULAR CLOUD
COMPLEX

MOLECULAR
CLOUD

STAR-
FORMING
CLUMP

PROTO-
STELLAR
COREa

Size (pc) 10 − 60 2 − 20 0.1 − 2 <
∼ 0.1

Density (n(H2)/cm3) 100 − 500 102 − 104 103 − 105 > 105

Mass (M�) 104 − 106 102 − 104 10 − 103 0.1 − 10
Line width (km s−1) 5 − 15 1 − 10 0.3 − 3 0.1 − 0.7
Temperature (K) 7 − 15 10 − 30 10 − 30 7 − 15
Examples W51, W3, M17,

Orion-Monoceros,
Taurus-Auriga-
Perseus complex

L1641, L1630,
W33, W3A,
B227, L1495,
L1529

see
Section 4.3

a Protostellar cores in the "prestellar" phase, i.e. before the formation of the protostar in its interior.

Motte et al. 1998, see also the discussion in Os-
senkopf et al. 2001) similar to the stellar mass
spectrum. The power-law mass spectrum is of-
ten interpreted as a manifestation of fractal den-
sity structure (e.g. Elmegreen & Falgarone 1996).
However, the full physical meaning remains un-
clear. In most studies molecular cloud clumps
are determined either by a Gaussian decompo-
sition scheme (Stutzki & Güsten 1990) or by the
attempt to define (and separate) clumps follow-
ing density peaks (Williams et al. 1994). There is
no one-to-one correspondence between the iden-
tified clumps in either method, however. Fur-
thermore, molecular clouds are only seen in pro-
jection, so one only measures surface density
instead of volume density. Even when veloc-
ity information is taken into account, the real
three-dimensional structure of the cloud remains
elusive. In particular, it can be demonstrated
in models of interstellar turbulence that single
clumps identified in a position-position-velocity
space tend to separate into several clumps in real
three-dimensional space (Ballesteros-Paredes &
Mac Low 2002). This projection effect in particu-
lar may render clump mass spectra improper sta-
tistical tools for characterizing molecular cloud
structure.

Other means to quantify the structural and dy-
namical properties of molecular clouds involve

correlations and probability distribution func-
tions (PDF’s) of dynamical variables. Two-point
correlation functions have been studied by many
authors, including Scalo (1984), Kleiner & Dick-
man (1987), Kitamura et al. (1993), Miesch &
Bally (1994), LaRosa, Shore & Magnani (1999),
and Ballesteros-Paredes, Vázquez-Semadeni, &
Goodman (2002), while other studies have con-
centrated on analyzing the PDFs of the column
density in observations, both physical and col-
umn density in computational models, and of dy-
namical observables such as the centroid veloci-
ties of molecular lines and their differences. The
density PDF has been used to characterize nu-
merical simulations of the interstellar medium by
Vázquez-Semadeni (1994), Padoan, Nordlund, &
Jones (1997), Passot, & Vázquez-Semadeni (1998),
Scalo et al. (1998), and Klessen (2000). Velocity
PDFs for several star-forming molecular clouds
have been determined by Miesch & Scalo (1995)
and Miesch, Scalo & Bally (1999). Lis et al.(̃1996,
1998) analyzed snapshots of a numerical sim-
ulation of mildly supersonic, decaying turbu-
lence (without self-gravity) by Porter, Pouquet,
& Woodward (1994) and applied the method to
observations of the ρ-Ophiuchus cloud. Alto-
gether, the observed PDFs exhibit strong non-
Gaussian features, often being nearly exponen-
tial with possible evidence for power-law tails
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in the outer parts. Further methods to quantify
molecular cloud structure involve spectral corre-
lation methods (Rosolowsky et al. 1999), princi-
pal component analysis (Heyer & Schloerb 1997),
or pseudometric methods used to describe and
rank cloud complexity (Wiseman & Adams 1994,
Adams & Wiseman 1994).

A technique especially sensitive to the amount
of structure on different spatial scales is wavelet
analysis (e.g. Gill & Henriksen 1990; Langer, Wil-
son, & Anderson 1993). In particular, the ∆-
variance, introduced by Stutzki et al. (1998), pro-
vides a good separation of noise and observa-
tional artifacts from the real cloud structure. For
isotropic systems its slope is directly related to
the spectral index of the corresponding Fourier
power spectrum. It can be applied in an equiv-
alent way both to observational data and hy-
drodynamic and MHD turbulence simulations,
allowing a direct comparison, as discussed by
Mac Low & Ossenkopf (2000), Bensch, Stutzki,
& Ossenkopf (2001), and Ossenkopf & Mac Low
(2002). They find that the structure of low-density
gas in molecular clouds is dominated by large-
scale modes and, equivalently, the velocity field
by large-scale motions. This means that molecu-
lar cloud turbulence is likely to be driven from
the outside, by sources acting external to the
cloud on scales of at least several tens of par-
sec (Ossenkopf & Mac Low 2002). The observa-
tional findings are different, however, when fo-
cusing on high-density gas in star forming re-
gions. In this case, the ∆-variance clearly shows
that the density structure is dominated by indi-
vidual protostellar cores at the smallest resolved
scales (Ossenkopf, Klessen, & Heitsch 2001). This
effect is best seen in dust emission maps as these
are able to trace large density contrasts. Alterna-
tively, dust extinction maps may also prove to be
useful in giving high resolution and tracing large
density contrasts (see e.g. Alves et al. 2000 for the
Bok globule B68; or Padoan, Cambrésy, & Langer
2002 for the Taurus molecular cloud). Molecular
line observations are only sensitive to gas at rela-
tively low densities, so they mainly trace the gas
between protostellar cores: no signs of collapse
appear in ∆-variance analyses of line maps (Os-

senkopf et al. 2001).

4.1.3 Support of Molecular Clouds

Molecular clouds are cold (e.g. Cernicharo 1991).
The kinetic temperature inferred from molecular
line ratios is typically about 10 K for dark, quies-
cent clouds and dense cores in GMCs which are
shielded from UV radiation by high column den-
sities of dust, while it can reach 50 − 100 K in
regions heated by UV radiation from high-mass
stars. For example, the temperature of gas and
dust behind the Trapezium cluster in Orion is
about 50 K. In cold regions, the only heat source
is cosmic rays, while cooling comes from emis-
sion from dust and the most abundant molecular
species. The thermal structure of the gas is re-
lated to its density pattern and its chemical abun-
dance, so it is remarkable that over a wide range
of gas densities and metallicities the equilibrium
temperature remains almost constant in a small
range around T ≈ 10 K (Goldsmith & Langer
1978, Goldsmith 2001). The approximation of
isothermality only breaks down when the cloud
becomes opaque to cooling radiation so that heat
can no longer be radiated away efficiently, which
occurs when the gas density n(H2) > 1010cm−3.
The equation of state then moves from isothermal
with polytropic exponent γ = 1 to adiabatic, with
γ ∼ 7/5 being appropriate for molecular hydro-
gen (see e.g. Tohline 1982 and references therein).

Because of their low temperatures, GMCs were
traditionally claimed to be gravitationally bound
(Kutner et al. 1977; Elmegreen , Lada, & Dickin-
son 1979; Blitz 1993; Williams et al. 2000). Their
masses are orders of magnitude larger than the
critical mass for gravitational stability M J defined
by Equation (2.3), computed from the average
density and temperature. However, if only ther-
mal pressure opposed gravitational attraction,
they should be collapsing and very efficiently
forming stars on a free-fall timescale, which is
roughly τff ≈ 106 years, Equation (1.1). That is
not the case. Within molecular clouds low-mass
gas clumps appear highly transient and pressure
confined rather then being bound by self-gravity.
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This is the case only for the most massive individ-
ual cores. These are the sites where star forma-
tion actually is observed (Williams, Blitz, & Stark
1995; Yonekura et al. 1997; Kawamura et al. 1998;
Simon et al. 2001).

Molecular cloud lifetimes are estimated to lie
between several 106 up to a few 107 years
(see Section 5.2 for detailed discussion). With
such short lifetimes, molecular clouds are likely
never to reach a state of dynamical equilibrium
(Ballesteros-Paredes et al. 1999; Elmegreen 2000).
This is in contrast to the classical picture which
sees molecular clouds as long-lived equilibrium
structures (Blitz & Shu 1980). The overall star for-
mation efficiency on scales of molecular clouds as
a whole is low in our Galaxy, of order of 10% or
smaller.

Except maybe on scales of isolated protostellar
cores, the observed line widths are always wider
than implied by the excitation temperature of the
molecules. This is interpreted as the result of bulk
motion associated with turbulence. We argue in
this review that it is the interstellar turbulence
that determines the lifetime and fate of molecular
clouds, and that regulates their ability to collapse
and form stars.

Magnetic fields have long been discussed as a
stabilizing agent in molecular clouds. However,
magnetic fields with average field strength of
10µG (Verschuur 1995a,b; Troland et al. 1996) are
not sufficient to stabilize molecular clouds as a
whole. This is in particular true on scales of in-
dividual protostars where magnetic fields appear
too weak to hold gravitational collapse in essen-
tially all cases observed (see Section 2.4). Fur-
thermore, magnetic fields are not capable of pre-
venting turbulent velocity fields from decaying
quickly (see e.g. Figure 2.9 and its discussion). It
appears that the role of magnetic fields in stabi-
lizing giant molecular clouds as a whole is less
important than assumed in the standard theory
(Section 2.3). The conclusion is, that molecular
cloud turbulence must at least be partially driven
by some energy source to have molecular clouds
survive over several dynamical timescales and to
explain the observed low star formation efficien-

cies on scales of molecular clouds as a whole2.
For a further discussion of possible driving mech-
anisms for interstellar turbulence see Section 5.1.

4.1.4 Scaling Relations for Molecular
Clouds

Observations of molecular clouds exhibit correla-
tions between various properties, such as clump
size, velocity dispersion, density and mass. Lar-
son (1981) first noted, using data from several dif-
ferent molecular cloud surveys, that the density ρ

and the velocity dispersionσ appear to scale with
the cloud size R as

ρ ∝ Rα (4.2)

σ ∝ Rβ , (4.3)

with α and β being constant scaling exponents.
Many studies have been done of the scaling prop-
erties of molecular clouds. The most commonly
quoted values of the exponents are α ≈ −1.15 ±
0.15 and β ≈ 0.4 ± 0.1 (e.g. Dame et al. 1986, My-
ers & Goodman 1988, Falgarone et al. 1992, Fuller
& Myers 1992, Wood, Myers, & Daugherty 1994,
Caselli & Myers 1995). However, the validity of
these scaling relations is the subject of strong con-
troversy and significantly discrepant values have
been reported by Carr (1987) and Loren (1989),
for example.

The above standard values are often interpreted
in terms of the virial theorem (Larson 1981,
Caselli & Myers 1995). If one assumes virial equi-
librium, Larson’s relations (Equations 4.2 and 4.3)
are not independent. For α = −1, which implies
constant column density, a value of β = 0.5 sug-
gests equipartition between self-gravity and the
turbulent velocity dispersion, that is that the ratio
between kinetic and potential energy is constant
with K/|W| = σ2R/(2GM) ≈ 1/2. Note, that for

2Note that on scales of individual star forming regions
the efficiency to convert molecular cloud material into stars
can be very high and reach values up to 50%. Only a small
fraction of molecular cloud material associated with high-
density regions is involved in the star formation process.
The bulk of molecular cloud matter is in ‘inactive’ tenous
state between individual star forming regions.
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any arbitrarily chosen value of the density scal-
ing exponentα, a corresponding value of β obey-
ing equipartition can always be found (Vázquez-
Semadeni & Gazol 1995). Equipartition is usually
interpreted as indicating virial equilibrium in a
static object. However, Ballesteros-Paredes et al.
(1999b) pointed out that in a dynamic, turbulent
environment, the other terms of the virial equa-
tion (McKee & Zweibel 1992) can have values as
large as or larger than the internal kinetic and po-
tential energy. In particular, the changing shape
of the cloud will change its moment of inertia,
and turbulent flows will produce large fluxes of
kinetic energy through the surface of the cloud.
As a result, rough equipartition between internal
kinetic and potential energy does not necessarily
imply virial equilibrium.

Furthermore, Kegel (1989) and Scalo (1990) pro-
posed that the density-size relation may be a
mere artifact of the limited dynamic range in the
observations, rather than reflecting a real prop-
erty of interstellar clouds. In particular, in the
case of molecular line data, the observations are
restricted to column densities large enough that
the tracer molecule is shielded against photodis-
sociating UV radiation. Also, with limited in-
tegration times, most CO surveys tend to se-
lect objects of roughly constant column density,
which automatically implies ρ ∝ R. Surveys that
use larger integration times and therefore have
larger dynamic range seem to exhibit an increas-
ingly larger scatter in density-size plots, e.g. as
seen in the data of Falgarone et al. (1992). Re-
sults from numerical simulations, which are free
from observational bias, indicate the same trend
(Vázquez-Semadeni, Ballesteros-Paredes, & Ro-
driguez 1997). Three-dimensional simulations of
supersonic turbulence (Mac Low 1999) were used
by Ballesteros-Paredes & Mac Low (2002) to per-
form a comparison of clumps measured as den-
sity enhancements in physical space to clumps
measured column density enhancements in sim-
ulated observational space (position-velocity).
They found no relation between density and size
in physical space, but a clear trend of ρ ∝ R in
the simulated observations, caused simply by the
tendency of clump-finding algorithms to pick out

clumps with column densities close to the local
peak values.

There are two other concerns. The proportion-
ality between line integrated CO intensity and
molecular mass surface density has been reli-
ably established only for extragalactic observa-
tions (Dickman, Snell, & Schloerb 1986). This re-
lationship is only valid for scales larger than a
few parsec, at which calibration has been possi-
ble. Also it depends on the assumption of viri-
alization of the gas (e.g. Genzel 1991), and local
thermodynamic equilibrium. Padoan et al. (2000)
demonstrated that the assumption of local ther-
modynamic equilibrium can lead to underesti-
mates of the actual column density in turbulent
molecular clouds by factors of up to 7. Addi-
tionally, for clumps within molecular clouds, the
structures identified in CO often do not corre-
spond to those derived from higher-density trac-
ers (see e.g. Langer et al. 1995, Bergin et al. 1997,
Motte et al. 1998 for observational discussion, and
Ballesteros-Paredes & Mac Low 2002 for theoret-
ical discussion). Altogether, the existence of a
unique density-size relation and its astrophysical
meaning is not well established.

The velocity-size relation does not appear to be so
prone to observational artifacts. However, many
measurements of molecular clouds do not exhibit
this correlation (e.g. Loren 1989, or Plume et al.
1997). If it is detected in a molecular cloud, it
probably is a real property of the cloud that may
be explained by a number of physical mecha-
nisms, ranging from the standard (though incom-
plete) argument of virial equilibrium to the action
of interstellar turbulence. In supersonic turbu-
lent flows, however, the scaling relation is a natu-
ral consequence of the characteristic energy spec-
trum in an ensemble of shocks, even in the com-
plete absence of self-gravity (Ossenkopf & Mac
Low 2002, Ballesteros-Paredes & Mac Low 2002,
Boldyrev, Nordlund, & Padoan 2002).

4.2 Star Formation in Molecular
Clouds

All giant molecular clouds surveyed within dis-
tances less than 3 kpc form stars (Blitz 1993,
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Williams et al. 2000), except possibly the Mad-
dalena & Thaddeus (1985) cloud (Lee, Snell, &
Dickman 1996; Williams & Blitz 1998). However
this cloud may have formed just recently. The star
formation process in molecular clouds appears to
be fast. Once the collapse of a cloud region sets in,
it rapidly forms an entire cluster of stars within
106 years or less. This is indicated by the young
stars associated with star forming regions, typi-
cally T Tauri stars with ages less than 106 years
(e.g. Gomez et al. 1992, Green & Meyer 1996, Car-
penter et al. 1997, Hartmann 2001), and by the
small age spread in more evolved stellar clusters
(e.g. Hillenbrand, Palla & Stahler 1999, 2001).

Star-forming molecular cloud regions in our
Galaxy can vary enormously in size and mass. In
small, low-density, regions stars form with low
efficiency, more or less in isolation or scattered
around in small groups of up to a few dozen
members. Denser and more massive regions may
build up stars in association and clusters of a
few hundred members. This appears to be the
most common mode of star formation in the solar
neighborhood (Adams & Myers 2001). Examples
of star formation in small groups and associations
are found in the Taurus-Aurigae molecular cloud
(e.g. Hartmann 2002). Young stellar groups with
a few hundred members form in the Chamaeleon
I dark cloud (e.g. Persi et al. 2000) or ρ-Ophiuchi
(Bontemps et al. 2001). Each of these clouds is at
a distance of about 130 to 160 pc from the Sun.
Many nearby star forming regions have been as-
sociated with a ring-like structure in the Galactic
disk called Gould’s belt (Pöppel 1997), although
its reality remains somewhat uncertain.

The formation of dense rich clusters with thou-
sands of stars is rare. The closest molecular cloud
region where this happens is the Orion Nebula
Cluster in L1641 (Hillenbrand 1997; Hillenbrand
& Hartmann 1998), which lies at a distance of
∼ 450 pc. A rich cluster somewhat further away
is associated with the Monoceros R2 cloud (Car-
penter et al. 1997) at a distance of ∼ 830 pc. The
cluster NGC 3603 is roughly ten times more mas-
sive than the Orion Nebula Cluster. It lies in the
Carina region, at about 7 kpc distance. It con-
tains about a dozen O stars, and is the nearest

object analogous to a starburst knot (Brandl et
al. 1999, Moffat et al. 2002). To find star-forming
regions that capable of forming hundreds of O
stars one has to look towards giant extragalactic
HII-regions, the nearest of which is 30 Doradus
in the Large Magellanic Cloud, a satellite galaxy
of our Milky Way at a distance at 55 kpc (for an
overview see the book by Chu et al. 1999). The gi-
ant star forming region 30 Doradus is thought to
contain up to a hundred thousand young stars,
including more than 400 O stars (Hunter et al.
1995; Walborn et al. 1999). Even more massive
star forming regions are associated with tidal
knots in interacting galaxies, as observed in the
Antennae (NGC 4038/8, see e.g. Zhang, Fall, &
Whitmore 2001) or as inferred for starburst galax-
ies at high redshift (Sanders & Mirabel 1996).

This sequence demonstrates that the star for-
mation process spans many orders of magni-
tude in scale, ranging from isolated single stars
(M ≈ 1 M�) to ultra-luminous starburst galax-
ies with masses of several 1011M� and star for-
mation rates of 102–103 M� yr−1; for compar-
ison the present-day rate in the Milky Way is
about 1 M� yr−1. This enormous variety of star
forming regions appears to be controlled by the
competition between self-gravity and the turbu-
lent velocity field in interstellar gas. When tur-
bulence dominates, or at least carries sufficient
energy on small scales to prevent collapse, the
star formation process is inefficient and slow, and
stars build up in small groups only. If turbulent
gas motions are weak, or dominated by large-
scale modes, stars can form in clusters with lo-
cally high efficiency, since gravity can overwhelm
turbulence locally. The larger the volume where
gravity dominates over turbulent kinetic energy,
the larger and more massive the stellar cluster
that will form. In starburst galaxies, self-gravity
may overwhelm kinetic energy on scales of sev-
eral kpc.

Numerical simulations of self-gravitating, turbu-
lent clouds demonstrate that the length scale and
strength of energy injection into the system de-
termine the structure of the turbulent flow, and
therefore the locations at which stars are most
likely to form. Large-scale driving leads to large
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coherent shock structures (e.g. figure 2.15a). Lo-
cal collapse occurs predominantly in filaments
and layers of shocked gas and is very efficient
in converting gas into stars (Klessen et al. 2000).
Even more so, this applies to regions of molecu-
lar gas that have become decoupled from energy
input. As turbulence decays, these regions begin
to contract and form dense clusters or associa-
tions of stars with very high efficiency on about a
free-fall time scale (Klessen et al.1̃998, Klessen &
Burkert 2000, 2001). The same holds for insuffi-
cient support, i.e. for regions where energy input
is not strong enough to completely balance grav-
ity. They too will contract to form dense stellar
clusters.

On the other hand, a more isolated mode of star
formation occurs in regions that are supported by
driving sources that act on small scales, and in
an incoherent or stochastic manner. In this case,
individual, shock-induced, density fluctuations
form at random locations and evolve more or less
independently of each other. The resulting stellar
population is widely dispersed throughout the
cloud and, since collapsing clumps are frequently
destroyed by shock interaction, the overall star
formation rate is low.

These points are illustrated in Figure 4.2,. which
shows the distribution of collapsed cores in sev-
eral models with strong enough turbulence to
formally support against collapse. Coherent, ef-
ficient local collapse occurs in model B1, where
the turbulence is driven strongly at long wave
lengths (compare with Figure 2.15). Incoher-
ent, inefficient collapse occurs in model B3, on
the other hand, where turbulence is driven at
small scales. Individual cores form indepen-
dently of each other at random locations and ran-
dom times, are widely distributed throughout
the entire volume, and exhibit considerable age
spread. In the decaying turbulence model, once
the kinetic energy level has decreased sufficiently,
all spatial modes of the system contract gravita-
tionally, including the global ones (Klessen 2000).
As in the case of large-scale shock compression,
stars form more or less coevally in a limited vol-
ume with high efficiency.

Despite the fact that both turbulence driven on

large scales and freely decaying turbulence lead
to star formation in aggregates and clusters, Fig-
ure 4.3 suggests a possible way to distinguish be-
tween them. Decaying turbulence typically leads
to the formation of a bound stellar cluster, while
aggregates associated with large-scale, coherent,
shock fronts often have higher velocity disper-
sions that result in their complete dispersal. Note,
however, that at the late stages of dynamical
evolution shown in Figure 4.3, our model be-
comes less appropriate, as feedback from newly
formed stars is not included. Ionization and out-
flows from the stars formed first will likely retard
or even prevent the accretion of the remaining
gas onto protostars, possibly preventing a bound
cluster from forming even in the case of freely de-
caying turbulence.

The control of star formation by supersonic tur-
bulence gives rise to a continuous but articulated
picture. There may not be physically distinct
modes of star formation, but qualitatively differ-
ent behaviors do appear over the range of pos-
sible turbulent flows. The apparent dichotomy
between a clustered mode of star formation and
an isolated, as discussed by Lada (1992) for L1630
and Strom, Strom, & Merrill (1993) for L1941, dis-
appears, if a different balance between turbulent
strength and gravity holds at the relevant length
scales in these different clouds.

Turbulent flows tend to have hierarchical struc-
ture (e.g. She & Leveque 1994) which may ex-
plain the hierarchical distribution of stars in star
forming regions shown by statistical studies of
the distribution of neighboring stars in young
stellar clusters (e.g. Larson 1995; Simon 1997;
Bate, Clarke, & McCaughrean 1998, Nakajima et
al. 1998; Gladwin et al. 1999; Klessen & Kroupa
2001). Hierarchical clustering seems to be a com-
mon feature of all star forming regions (e.g. Efre-
mov & Elmegreen 1998). It may be a natural out-
come of turbulent fragmentation.

4.3 Properties of Protostellar
Cores

Protostellar cores are the direct precursors of
stars. The properties of young stars are thus inti-
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Figure 4.2: Comparison of collapsed core locations between two globally stable models with different driving wavelength
projected into (a) the xy-plane and into (b) the xz-plane. B1 with k = 1− 2 is driven at large scales, and B3 with k = 7− 8 is
driven at small ones. Plots (c) and (d) show the core locations for model B1 now contrasted with a simulation of decaying
turbulence from Klessen (2000). The snapshots are selected such that the mass accumulated in dense cores is M∗

<
∼ 20%.

Note the different times needed for the different models to reach this point. For model B1 data are taken at t = 1.1, for
B3 at t = 12.3. The simulation of freely decaying turbulence is shown at t = 1.1. All times are normalized to the global
free-fall time scale of the system. (From Klessen et al. 2000.)

mately related to the properties of their parental
clumps and it is therefore important to obser-
vationally determine the characteristics of con-
densed cores in molecular clouds. A number
of such small, dense molecular cores have been
identified by low angular resolution, molecular
line surveys of nearby dark clouds (e.g. Benson
& Myers 1989). These cores are thought to be
the sites of low-mass star formation. About half
of them are associated with low-luminosity IRAS
sources and CO outflows, the other half is des-
ignated as ‘starless’ or ’prestellar’ (e.g. Beichman
et al. 1986, André et al. 2000). Those may be in
a evolutionary state shortly before forming stel-
lar objects in their interior, thus they often are
referred to as pre-stellar cores. One of the most

notable properties of the sampled cores are their
very narrow line widths. These are very close
to the line widths expected for thermal broad-
ening alone and, as a result, many of the cores
appear approximately gravitationally virialized
(e.g. Myers 1983). They are thought either to be
in the very early stage of gravitational collapse or
have subsonic turbulence supporting the clump.
A comparison of the line widths of cores with em-
bedded protostellar objects (i.e. with associated
IRAS sources) and the ‘starless’ cores reveals a
substantial difference. Typically, cores with in-
frared sources exhibit broader lines, which sug-
gests the presence of a considerable turbulent
component not present in ‘starless’ cores. This
may be caused by the central protostar feeding
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Figure 4.3: Core positions for model B1 (k = 1 − 2) and the decay model when the core mass fraction is M∗ ≈ 65%,
projected into (a) the xy-plane and (b) the xz-plane (compare with Figure 4.2c & d). For B1 the time is t = 8.7 and for
decay model t = 2.1. Whereas the cluster in B1 is completely dissolved and the stars are widely dispersed throughout the
computational volume, the cluster in the decay simulation remains bound. (From Klessen et al. 2000.)

back energy and momentum into its surrounding
envelope. Molecular outflows associated with
many of the sources may be direct indication for
this process. The first submillimeter continuum
maps of dense pre-stellar cores were made by
Ward-Thompson et al. (1994). By now many dif-
ferent star forming clouds have been surveyed
(e.g. ρ-Ophiuchi: Motte et al. 1998, Johnstone
et al. 2000; NGC 2068/2071: Motte et al. 2001;
Orion: Johnstone & Bally 1999, Mitchell et al.
2001). The authors of this high-resolution stud-
ies found that ‘starless’ cores are larger and less
centrally condensed than the cores with embed-
ded sources. But both groups appear to have
similar masses. Altogether, the ‘starless’ cores
are probable the precursors of class 0 protostel-
lar clumps and may reflect the very early stages
of protostellar collapse: a gravitationally bound
fragment has formed in a molecular cloud which
evolves towards progressively higher degree of
central condensation, but has not yet formed a
hydrostatic protostar in the center (i.e. a class 0
object). The ‘starless’ cores are observed in the
mass range from about 0.1 M� to 10 M�. Typical
line widths are 0.4 km s−1 in NH3 and 0.6 km s−1

in C18O for cores with embedded sources and
0.3 kms−1 in NH3 and 0.5 kms−1 in C18O for pre-
stellar cores with embedded sources (e.g. Butner,
Lada, & Loren 1995). For comparison, a gas tem-
perature of 10 K corresponds to a thermal line

width of 0.16 kms−1 for NH3 and 0.12 kms−1 for
C18O. High-resolution maps suggest that the ra-
dial density profiles of the pre-stellar cores on av-
erage follow a 1/r2-law but are relatively steep
towards their edges and flatten out near their
centers (see e.g. Figure 2.5). Furthermore, their
2-dimensional shapes deviate quite considerably
from spherical symmetry, as illustrated in Figure
4.4. The cores are elongated with ratios between
semi-major and semi-minor axis of about 2 – 3;
some even appear completely irregular.

The observed core properties can be compared
with cores identified in numerical models of in-
terstellar cloud turbulence. Like their astronom-
ical counterparts, model clumps are generally
highly distorted and triaxial. Depending on the
projection angle, they often appear extremely
elongated, being part of a filamentary structure
which may appear as a chain of connecting, elon-
gated individual clumps. Figure 4.5 plots a se-
lection of model clumps from Klessen & Burkert
(2000). Cores that already formed a protostellar
object in their interior are plotted on the left, on
the right “starless” core without central protostar
are shown. Note the similarity to the appearance
of observed protostellar cores (Figure 4.4). It is
clearly visible that the clumps are very elongated.
The ratios between the semi-major and the semi-
minor axis measured at the second contour level
are typically between 2:1 and 4:1. However, there
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Figure 4.4: Intensity contours at half maximum of 16 dense cores in dark clouds, in the 1.3 cm (J, k) = (1, 1) lines of NH3,
in the 3.0 mm J = 2 → 1 line of CS, and the 2.7 mm J = 1 → 0 line of C18O. A linear scale of 0.2 pc is indicated in each
individual map and associated protostars are specified by a cross. The figure is from Myers et al. 1991.

may be significant deviations from simple triax-
ial shapes, see e.g. clump #4 which is located at
the intersection of two filaments. This clump is
distorted by infalling material along the filaments
and appears ‘y’-shaped when projected into the
xz-plane. As a general trend, high density con-
tour levels typically are regular and smooth, be-
cause there the gas is mostly influenced by pres-
sure and gravitational forces. On the other hand,
the lowest level samples gas that is strongly in-
fluenced by environmental effects. Hence, it ap-
pears patchy and irregular. The location of the
condensed core within a clump is not necessarily
identical with the center-of-mass of the clump, es-
pecially in irregularly shaped clumps.

Typically, the overall density distribution of iden-
tified clumps in our simulations follows a power
law and the density increases from the outer re-
gions inwards to the central part as ρ(r) ∝ 1/r2 .
For clumps that contain collapsed cores, this dis-

tribution continues all the way to the central pro-
tostellar object. However, for clumps that have
not yet formed a collapsed core in their center, the
central density distribution flattens out. This is a
generic property and is illustrated in Figure 4.6,
which has to be compared with radial profiles of
observed cores (see Figure 2.5). The agreement
is remarkable. It is a natural prediction of tur-
bulent fragmentation that stars form from cores
with initially flat inner density profile, follow by
a power-law decline with moderate slope (∼ −2)
at intermediate radii, and which is finally trun-
cated at some maximum radius (i.e. may be ap-
proximated by a power-law slope � −2 beyond
that radius).

The surface density profiles of many observed
protostellar cores are often claimed to be
matched by fitting quasi-equilibrium Bonnor-
Ebert spheres (Ebert 1955, Bonnor 1956). The
best example is the Bok globule B68 (Alves et al.
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Figure 4.5: Protostellar cores from a model of clustered star formation. The left side depicts protostellar cores with col-
lapsed central object (indicated by a black dot), the right side “starless” cores without protostar. Cores are numbered
according to their peak density. Surface density contours are spaced logarithmically with two contour levels spanning one
decade, log10 ∆ρ = 0.5. The lowest contour is a factor of 100.5 above the mean density. (From Klessen & Burkert 2000.)

2001). Ballesteros-Paredes, Klessen, & Vázquez-
Semadeni (2002) argue that turbulent fragmen-
tation produces cores that are in ∼3/5 of all
cases well fit by Bonnor-Ebert profiles, of which
most (∼4/5) again imply stable equilibrium con-
ditions. However, none of the cores analyzed by
Ballesteros-Paredes et al. (2002) are actually equi-
librium configurations, but instead are dynam-
ically evolving, because supersonic turbulence
cannot create hydrostatic equilibrium structures
(Vázquez-Semadeni et al. 2002). The method of
fitting BE profiles to observed cores to derive
their physical properties therefore appears unre-
liable (see also Boss & Hartmann 2002).

The density profile predicted by supersonic tur-
bulence describes the properties of observed
prestellar cores very well. However, it could in
principle also be reproduced by models where
molecular gas clumps are confined by helical
magnetic fields (Fiege & Pudritz 2000a,b). But
helical field structures would tend to unwind, as
magnetic fields have the tendency to “straighten”

themselves out. Therefore these models re-
quire external forces to continuously exert strong
torques. These forces need to be strong to be able
to twist the field lines, thus they would necessar-
ily induce considerable gas motions and make it
impossible to achieve the static equilibrium con-
figurations required for the model to work. The
hypothesis of static helical magnetic fields being
responsible for the observed properties of prestel-
lar cores therefore appears not viable. Other
models that have been proposed to describe the
properties of protostellar cores are based quasi-
static equilibrium conditions (e.g. with compos-
ite polytropic equation of state, as discussed by
Curry & McKee 2000), or invoke thermal insta-
bility (e.g. Yoshii & Sabano 1980, Gilden 1984b,
Graziani & Black 1987, Burkert & Lin 2000),
gravitational instability through ambipolar diffu-
sion (e.g. Basu & Mouschovias 1994, Nakamura,
Hanawa, & Nakano 1995, Indebetouw & Zweibel
2000, Ciolek & Basu 2000), or nonlinear Alfvén
waves (e.g. Carlberg & Pudritz 1990, Elmegreen
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1990, 1997a, 1999b), or rely on clump collisions
(e.g., Gilden 1984a, Murray & Lin 1996, Kimura
& Tosa 1996). Altogether models based on super-
sonic turbulence as discussed here appear to be
the ones most consistent with observational data.

Figure 4.6: Radial surface density profiles for the xz-
projection of cores 4 and 12 in Figure 4.5. For the “starless”
core 12 the density profile flattens out at small radii, whereas
for core 4 it continues as 1/r2 all the way towards the cen-
ter. The density profile of a singular isothermal sphere (with
ρ ∝ 1/r2) is indicated by the dotted line for comparison.
(From Klessen & Burkert 2000.)

Besides the direct comparison of projected sur-
face density maps as discussed in this section,
there is ample additional evidence supporting
the idea of the turbulent origin of the struc-
ture and kinematics of molecular cloud cores
and clouds as a whole. It comes for example
from comparing numerical models of supersonic
turbulence with (1) stellar extinction measure-
ments (Padoan et al. 1997), (2) Zeeman splitting
measurements (e.g. Padoan & Nordlund 1999),
(3) polarization maps (e.g. Padoan et al.2001a),
(4) Faraday rotation measurements (e.g. Heitsch
et al. 2001b, Ostriker, Stone, & Gammie 2001),
(5) determination of the velocity structure of
dense cores and their immediate environment
(e.g. Padoan et al. 2001b), or (6) various other sta-
tistical measures of structure and dynamics of ob-
served clouds as mentioned in Section 4.1).

4.4 Dynamical Interactions in
Clusters

Star forming regions can differ enormously in
scale and density as a consequence of supersonic
turbulence (as discussed in Section 4.2). Stars
almost never form in isolation, but instead in
groups and clusters. The number density of
protostars and protostellar cores in rich compact
clusters the can be high enough for mutual dy-
namical interaction to become important. This
has important consequences for the mass growth
history of individual stars and the subsequent
dynamical evolution of the nascent stellar clus-
ter, because this introduces a further degree of
stochasticity to the star formation process in ad-
dition to the statistical chaos associated with tur-
bulence and turbulent fragmentation in the first
place.

When a molecular cloud region of a few hundred
solar masses or more coherently become gravita-
tionally unstable, it will contract and build up a
dense cluster of embedded protostars within one
or two free-fall timescales. While contracting in-
dividually to build up a protostar in their inte-
rior, individual protostellar gas clumps still fol-
low the global flow patterns. They stream to-
wards a common center of attraction, may un-
dergo further fragmentation or more likely merge
together. The timescales for clump mergers or
clump collapse are comparable. Merged clumps
therefore may contain multiple protostars now
compete with each other for further accretion.
They are now embedded in the same limited and
rapidly changing reservoir of contracting gas. As
the cores are dragged along with the global gas
flow, quickly a dense cluster of accreting pro-
tostellar cores builds up. Analogous to dense
stellar clusters, the dynamical evolution is sub-
ject to the complex gravitational interaction be-
tween the cluster members, close encounters or
even collisions may occur and drastically alter
the orbital parameters of protostars. Triple or
higher-order systems are likely to form. They
are generally unstable and consequently a con-
siderable fraction of protostellar cores becomes
expelled from the parental cloud. The expected
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complexity of protostellar dynamics already in
the deeply embedded phase of evolution is illus-
trated in Figure 4.7, which shows trajectories of
five accreting protostars in a calculation of molec-
ular cloud fragmentation and clustered star for-
mation by Klessen & Burkert (2000).

The effects of mutual dynamical interaction of
protostellar cores in the embedded phase of star
cluster formation have been investigated by a va-
riety of authors. Here, we list some basic results.

(a) Close encounters in nascent star clusters will
influence the accretion disk expected to surround
every protostar. These disks may be tidally trun-
cated or even be disrupted. This influences mass
accretion through the disk, modify the ability
to subfragment and form a binary star, and/or
the probability of planet formation (e.g. Clarke
& Pringle 1991; Murray & Clarke 1993 ; Mc-
Donald & Clarke 1995; Hall et al. 1996; Scally &
Clarke 2001; Kroupa & Burkert 2001; Smith &
Bonnell 2001; Bonnell et al. 2001c). In particu-
lar, Ida, Larwood, & Burkert (2000) note that an
early stellar encounter may explain features of
our own solar system, namely the high eccentric-
ities and inclinations observed in the outer part
of the Edgeworth-Kuiper Belt at distances larger
than 42 AU.

(b) Stellar systems with more than two members
are in general are unstable. In a triple system, for
example, the lowest-mass member has the high-
est probability to be expelled. If this happens in
the embedded phase, the protostar leaves a re-
gion of high-density gas. This terminates fur-
ther mass growth and sets its final mass. Thus,
the dynamical processes have important conse-
quences for the resulting stellar mass spectrum
in dense stellar clusters. This will be discussed in
Section 4.7. Ejected objects can travel quite far,
and indeed this has been suggested to account
the so called “run away” T-Tauri stars found in
X-ray observation in the vicinities of star-forming
molecular clouds (e.g. Sterzik & Durison 1995,
1998, Smith et al. 1997; Klessen & Burkert 2000;
or for observations e.g. Neuhäuser et al. 1995; or
Wichmann et al. 1997). However, it is not clear
whether the observed extended stellar popula-

tion is associated with any currently star form-
ing cloud. These stars may be as old as 100 Myr
and may have formed in clouds that long have
been dispersed by now. Also, many of these stars
could not have traveled to their observed posi-
tions if associated with the currently star-forming
cloud unless it were extremely long lived.

(c) Dynamical interaction leads to mass segre-
gation. Star clusters evolve towards equipar-
tition. For massive stars this means that they
have on average smaller velocities than low-mass
stars (in order keep the kinetic energy K =
1/2 mv2 ≈constant). Thus, massive stars “sink”
towards the cluster center, while low-mass stars
will predominantly populate large cluster radii.
(e.g. Kroupa 1995,a,b,c). This holds already for
nascent star clusters in the embedded phase (e.g.
Bonnell & Davis 1998).

(d) Dynamical interaction and competition for
mass accretion lead to highly time-variable proto-
stellar mass growth rates. This will be discussed
in more detail in Section 4.5.

(e) The radii of stars in the pre-main sequence
contraction phase are several times larger than
stellar radii on the main sequence (for a review
on pre-main sequence evolution see, e.g., Palla
2000, 2002). Stellar collisions are therefore more
likely to occur during in very early evolution
of star clusters. During the embedded phase
the encounter probability is further increased by
gas drag and dynamical friction. Collisions in
dense protostellar clusters have therefore been
proposed as mechanism to produce massive stars
(Bonnell, Bate, & Zinnecker 1998; Stahler, Palla,
& Ho 2000). The formation of massive stars has
long been considered a puzzle in theoretical as-
trophysics, because one-dimensional calculations
predict for stars above ∼ 10 M� the radiation
pressure acting on the infalling dust grains to be
strong enough to halt or even revert further mass
accretion (e.g. Yorke & Krügel 1977; Wolfire &
Cassinelli 1987; or Palla 2000, 2001). However,
detailed two-dimensional calculations by Yorke
& Sonnhalter (2002) demonstrate that in the more
realistic scenario of mass growth via an accretion
disk the radiation barrier may be overcome. Mass
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a) b) c)

Figure 4.7: Example of protostellar interactions in an embedded nascent star cluster. Figure (a) shows the projected trajec-
tories of five accreting cores in a numerical model of star cluster formation by Klessen & Burkert (2000). For illustration
purpose neither the trajectories of other cores in the cluster nor the distribution of gas is depicted. We highlight two events
in the evolutionary sequence, (b) the formation of an unstable triple system at the beginning of cluster formation with the
lowest mass member being expelled from the cluster, and (c) binary hardening in a close encounter together with subse-
quent acceleration of the resulting close binary due to another distant encounter during late evolution. The corresponding
parts of the orbital paths are enlarged by a factor of six. Numbers next to the trajectory identify the protostellar core. For
further detail see Klessen & Burkert (2000).

can accrete from the disk onto the star along the
equator while radiation is able to escape along
the polar direction. Massive stars, thus, may
form via the same processes as ordinary low-
mass stars. Collisional processes need not to be
invoked.

4.5 Accretion Rates

When a gravitationally unstable gas clump col-
lapses to build up the central star, it follows an
observationally well determined sequence. Prior
to the formation of a hydrostatic nucleus, an ob-
served pre-stellar condensation exhibits a density
structure which has a flat inner part, then de-
creases outward roughly as ρ ∝ r−2, and is trun-
cated at some finite radius (e.g. Bacmann et al.
2000). Once the central YSO builds up, the class 0
phase is reached and the density follows ρ ∝ r−2

down to the observational resolution limit. As
larger and larger portions of the infalling enve-
lope get accreted the protostar is identified as
a class I object, and when accretion fades away
it enters the T Tauri phase (e.g. André, Ward-
Thompson, & Barsony 2000). In the main ac-
cretion phase, the energy budget is dominated

by the release of gravitational energy in the ac-
cretion process. Hence, protostars exhibit large
IR and sub-mm luminosities and drive powerful
outflows. Both phenomena can be used to esti-
mate the protostellar mass accretion rate Ṁ; and
observations suggest that Ṁ varies strongly and
declines with time. Accretion is largest in the
class 0 phase and drops significantly in the sub-
sequent evolution (e.g. André & Montmerle 1994,
Bontemps et al. 1996, Henriksen, André, & Bon-
temps 1997). The estimated lifetimes are a few
104 years for the class 0 and a few 105 years for
the class I phase.

These observational findings favor a dynamical
description of the star formation process (e.g. Lar-
son 1969, Penston 1969a, Hunter 1977, Henrik-
sen et al. 1997, Basu 1997), but raise doubts about
the "inside-out" scenario of the collapse of quasi-
static isothermal spheres (Shu 1977) which pre-
dicts a constant accretion rate (Section 2.3; see
Section 2.4 for a critical discussion). As the an-
alytical studies, most numerical work of proto-
stellar core collapse (e.g. Foster & Chevalier 1993,
Tomisaka 1996, Ogino, Tomisaka, & Nakamura
1999, Wuchterl & Tscharnuter 2002) concentrates
on isolated objects. However, stars predomi-
nantly form in groups and clusters. Numerical
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studies that investigate the effect of the cluster
environment on protostellar mass accretion rates
are reported for example by Bonnell et al. (1990,
2001a,b), Klessen & Burkert (2000, 2001), Klessen
et al. (2001), Heitsch et al. (2001), Klessen (2001a).

Klessen (2001a) considers the dynamical evolu-
tion of a molecular cloud regions with 200 M�

in a volume (0.32 pc)3 where turbulence is as-
sumed to have decayed and left behind random
Gaussian fluctuations in the density structure. As
the system contracts gravitationally, a cluster of
56 protostellar cores builds up on a timescale of
about two to three free-fall times. These types of
numerical models allow for the following predic-
tions on protostellar accretion rates in dense clus-
ters:

(a) Protostellar accretion rates in a dense cluster
environment are strongly time variable. This is
illustrated in Figure 4.8 for 49 randomly selected
cores.

(b) The typical density profiles of gas clumps
that give birth to protostars exhibit a flat inner
core, followed by a density fall-off ρ ∝ r−2, and
are truncated at some finite radius, which in the
dense centers of clusters often is due to tidal in-
teraction with neighboring cores (see Section 4.3
and Section 4.4). As result, a short-lived initial
phase of strong accretion occurs when the flat in-
ner part of the pre-stellar clump collapses. This
corresponds to the class 0 phase of protostellar
evolution. If these cores were to remain isolated
and unperturbed, the mass growth rate would
gradually decline in time as the outer envelope
accretes onto the center. This is the class I phase.
Once the truncation radius is reached, accretion
fades and the object enters the class II phase.
This behavior is expected from analytical mod-
els (e.g. Henriksen et al. 1997) and agrees with
other numerical studies (e.g. Foster & Chevalier
1993). However, collapse does not start from rest
for the density fluctuations considered here, and
the accretion rates exceed the theoretically pre-
dicted values even for the most isolated objects
in the simulation.

(c) The mass accretion rates of cores in a dense
cluster deviate strongly from the rates of isolated

cores. This is a direct result of the mutual dynam-
ical interaction and competition between proto-
stellar cores. While gas clumps collapse to build
up protostars, they may merge as they follow the
flow pattern towards the cluster potential mini-
mum. The timescales for both processes are com-
parable. The density and velocity structure of
merged gas clumps generally differs significantly
from their progenitor clumps, and the predictions
for isolated cores are no longer valid. More im-
portantly, these new larger clumps contain multi-
ple protostars, which subsequently compete with
each other for the accretion from a common gas
reservoir. The most massive protostar in a clump
is hereby able to accrete more matter than its com-
petitors (also Bonnell et al. 1997, Klessen & Burk-
ert 2000, Bonnell et al. 2001a,b). Its accretion rate
is enhanced through the clump merger, whereas
the accretion rate of low-mass cores typically de-
creases. Temporary accretion peaks in the wake
of clump mergers are visible in abundance in Fig-
ure 4.8. Furthermore, the small aggregates of
cores that build up are dynamically unstable and
low-mass cores may be ejected. As they leave the
high-density environment, accretion terminates
and their final mass is reached.

(d) The most massive protostars begin to form
first and continue to accrete at high rate through-
out the entire cluster evolution. As the most mas-
sive gas clumps tend to have the largest density
contrast, they are the first to collapse and consti-
tute the center of the nascent cluster. These pro-
tostars are fed at high rate and gain mass very
quickly. As their parental clumps merge with
others, more gas is fed into their ‘sphere of influ-
ence’. They are able to maintain or even increase
the accretion rate when competing with lower-
mass objects (e.g. core 1 and 8 in Figure 4.8). Low-
mass stars, on average, tend to form somewhat
later in the dynamical evolution of the system (as
indicated by the absolute formation times in Fig-
ure 4.8; also Figure 8 in Klessen & Burkert 2000),
and typically have only short periods of high ac-
cretion.

(e) As high-mass stars are associated with large
core masses, while low-mass stars come from
low-mass cores, the stellar population in clusters
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Figure 4.8: Examples of time varying mass accretion rates for protostellar cores forming in a dense cluster environment.
The left panel shows accretion rate Ṁ versus time after formation t − tform for 49 randomly selected protostellar cores in
a numerical model of molecular cloud fragmentation from Klessen & Burkert (2000). Formation time tform is defined by
the first occurrence of a hydrostatic protostellar object deeply embedded in the interior of a collapsing gas clump. To link
individual accretion histories to the overall cluster evolution, tform is indicated in the upper right corner of each plot and
measures the elapsed time since the start of the simulation. The free-fall timescale of the considered molecular region is
τff ≈ 105 years. High-mass stars tend to form early in the dynamical evolution and are able to maintain high accretion
rates throughout the entire simulation. On the contrary, low-mass stars tend to form later in the cluster evolution and Ṁ
declines strongly after the short initial peak accretion phase. Altogether, the accretion histories of cores (even of those with
similar masses) differ dramatically from each other due to the stochastic influence of the cluster environment, as clumps
merge and protostellar cores compete for accretion from a common gaseous environment. The right panel plots for the
same cores Ṁ as function of the accreted mass M with respect to the final mass Mend, which is indicated in the center of
each plot. Note that the mass range spans two orders of magnitude. (From Klessen 2001a.)

is predicted to be mass segregated right from the
beginning. High-mass stars form in the center,
lower-mass stars tend to form towards the clus-
ter outskirts. This is in agreement with recent
observational findings for the cluster NGC330 in
the Small Magellanic Cloud (Sirianni et al. 2002).
Dynamical effects during the embedded phase of
star cluster evolution will enhance this initial seg-
regation even further (see Section 4.4.c).

(f) Individual cores in a cluster environment form
and evolve through a sequence of highly prob-
abilistic events, therefore, their accretion histo-
ries differ even if they accumulate the same fi-
nal mass. Accretion rates for protostars of certain
mass can only be determined in a statistical sense.

The model predicts that an exponentially declin-
ing rate with a peak value of a few 105 M�yr−1, a
time constant in the range 0.5 to 2.5 × 105 yr, and
a cut-off related to gas dispersal from the clus-
ter offers a reasonable fit to the typical protostel-
lar mass growth in dense embedded clusters with
uncertainties, however, that remain high (see Fig-
ure 4.9).

4.6 Protostellar Evolutionary
Tracks

In this review, we argue that stars are born in
interstellar clouds of molecular hydrogen with
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Figure 4.9: Averaged mass accretion rate 〈Ṁ〉 (thick line) as function of time relative to core formation t − tform for four
different mass bins (ranging from high to low masses as denoted in the top section of each plot) overlaid on the con-
tributing individual accretion histories. The mean absolute deviation from 〈Ṁ〉 is indicated by thin lines. An exponential
approximation to 〈Ṁ〉 is indicated by the dashed line. (From Klessen 2001a.)

the mass growth rates intimately coupled to the
dynamical cloud environment. Once a prestel-
lar core becomes gravitationally unstable, it be-
gins to collapse giving birth to a protostar. While
the structure of molecular clouds is well studied
observationally (see Section 4.1), our knowledge
about intrinsic properties of these youngest stars
relies almost entirely on theoretical stellar mod-
els. These models give ages, masses and radii
when brightness, distance and effective tempera-
ture are known (e.g. Palla 2000, 2002). The so de-
termined ages constitute the only practical ‘clock’
for tracing the history of star-formation regions
and for studying the evolution of circumstellar
disks and planet formation. They constitute the
basis of our empirical understanding of the evo-
lution of the young Sun and the origin of solar
systems.

Until recently (Wuchterl & Tscharnuter 2003) it
was necessary to assume a set of initial conditions
for the stars at very young ages (typically at a few
105 years) in order to calculate the properties at

larger ages. Usually the internal thermal struc-
ture of the star is estimated at a moment when
the dynamical infall motions from the cloud are
thought to have faded and the stellar contrac-
tion is sufficiently slow, so that pressure forces
balance gravity. Then hydrostatic equilibrium
is a good approximation. Young star properties
are therefore usually calculated without consid-
ering gravitational cloud collapse and protostel-
lar accretion in detail. See, however, Winkler &
Newman (1980a,b), but also Hartmann, Cassen
& Kenyon (1997) for a discussion of the possible
effects of accretion. Altogether, classical PMS cal-
culations typically assume fully convective initial
conditions as argued for by Hayashi (1961).

However, it can be shown that the assumption
of fully convective stellar structure does not result
from the collapse of isolated, marginally gravita-
tionally unstable, isothermal, hydrostatic equilib-
rium, so called ’Bonnor-Ebert’ spheres (Wuchterl
& Tscharnuter 2003). Hence, early stellar evo-
lution theory has to be reconsidered. This has
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been done by Wuchterl & Klessen (2001), who
presented the first calculation of the properties of
the new born star as being a member of a cluster
of protostars forming from the fragmentation of a
highly-structured molecular cloud, and followed
in detail the collapse of a one solar mass frag-
ment until it becomes observable in the visible
light. These calculations demonstrated that the
newly born star shows the trace of the fragmen-
tation and collapse process during its main accre-
tion phase and the early hydrostatic pre-main se-
quence (PMS) contraction. At an age of a million
years, however, its properties are almost identical
for quiet and turbulent cloud conditions.

4.6.1 Dynamical PMS Calculations

Wuchterl & Klessen (2001) considered a molec-
ular cloud region where turbulence is decayed
and has left behind density fluctuations charac-
terized by a Gaussian random field which follows
a power spectrum P(k) ∝ 1/k2 (as discussed in
Klessen & Burkert 2000). To describe molecu-
lar cloud fragmentation, they solved the equa-
tions of hydrodynamics using a particle based
method (SPH — smoothed particle hydrodynam-
ics, see Benz 1990, or Monaghan 1992) in com-
bination with the special-purpose hardware de-
vice GRAPE (GRavity Pipe, see Sugimoto et al.
1990, Ebisuzaki et al. 1993), focusing on a sub-
region of the cloud with mass 196 M� and size
(0.32 pc)3 and adopting periodic boundary con-
ditions (Klessen 1997). With a mean density
of n(H2) = 105 cm−3 and temperature T =

10 K, the simulated volume contained 222 ther-
mal Jeans masses. To be able to continue the cal-
culation beyond the formation of the first collaps-
ing object, compact cores had been replaced by
‘sink’ particles (Bate et al. 1995) once they exceed
a density of n(H2) = 109 cm−3, where we keep
track of the mass accretion, and the linear and an-
gular momenta. The ‘sink’ particle size defined
the volume of a detailed collapse calculation. The
system is gravitationally unstable and begins to
form a cluster of 56 protostellar cores (as illus-
tration see Figure 1), corresponding to the ‘clus-
tered’ mode of star formation (Sections 2.5.4 and
4.2).

Besides that specific choice of the initial molec-
ular cloud conditions, the only free parame-
ters that remain in this dynamical star forma-
tion model are introduced by the time-dependent
convection-model, needed to describe stellar
structure in a ‘realistic’ way. These parameters
are determined as usual in stellar structure theory
by demanding agreement between the model-
solution and the actual solar convection zone as
measured by helioseismology.

Aiming to describe the birth and the first million
years of the Sun, Wuchterl & Klessen (2001) se-
lected from the 3D cloud simulation that proto-
stellar core with final mass closest to 1 M� and
use its mass accretion history (see Section 4.5) to
determine the mass flow into a spherical control
volume centered on the star. For the stellar mass
range considered here feedback effects are not
strong enough to halt or delay accretion into this
protostellar ‘feeding zone’. Thus, the core accre-
tion rates are good estimates for the actual stel-
lar accretion rates. Deviations may be expected
only if the protostellar cores form a binary star,
where the infalling mass must be distributed be-
tween two stars, or if very high-angular momen-
tum material is accreted, where a certain mass
fraction may end up in a circumbinary disk and
not accrete onto a star at all. For single stars mat-
ter accreting onto a protostellar disk may be tem-
porarily ‘stored’ in the disk before getting trans-
ported onto the star. The flow within the control
volume is calculated by solving the equations of
radiation hydrodynamics (RHD) in the grey Ed-
dington approximation and with spherical sym-
metry (Castor 1972, Mihalas & Mihalas 1984), in
their integral form (Winkler & Norman 1986). At
any time it is required that the total mass in the
volume agrees with the 3D fragmentation cal-
culation. Convective energy transfer and mix-
ing is treated by using a time-dependent convec-
tion scheme (Wuchterl & Feuchtinger 1998) de-
rived from the model of Kuhfuß (1987) and in-
cluding detailed equations of state and opacities.
Deuterium burning processes are computed with
with standard reaction rates (Caughlan & Fowler
1988) including convective mixing. The 1D-RHD
calculation covers a spherical volume of radius
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Figure 4.10: The 3D density distribution of the dynamical molecular cloud fragmentation calculation at two different
times (model I of KB00, KB01). As we cannot treat the whole cloud, we focus on a sub-volume of mass 196 M� and size
(0.32 pc)3. The left image depicts the initial random Gaussian fluctuation field, and the central image shows the system
when the young proto-Sun reaches stellar zero age (i.e. when the cloud core for the first time becomes optically thick).
During this 1.5 × 105 year period local collapse occurs and a cluster of deeply embedded and heavily accreting pre- and
protostellar condensations begins to build up (i.e. objects without and with central hydrostatic core). The region where
the proto-solar condensation forms is shown enlarged on the right-hand side. The volume considered in the 1D-RHD
simulation is indicated by the circle. — Adopted from Wuchterl & Klessen (2001).

R = 160 AU = 2.46 × 1015 cm and contains a
mass 0.028 M� at t = 0. The calculation started
1.5 × 105 years before the moment of stellar zero
age, with a mass 2 × 10−5 M�. The final mass of
the star is 0.971 M� .

4.6.2 Formation of a 1 M�-Star

The fragment we have chosen is highlighted in
the 3D cloud structure in Figure 4.10 at the mo-
ment when it becomes optically thick and de-
parts from isothermality, as determined by the
1D solution. This defines the stellar zero age
(Wuchterl & Tscharnuter 2003). The mass ac-
cretion rates obtained for the selected fragment
are strongly time varying and peak around 1.5 ×
10−5 M� yr−1 (Section 4.5).

Before reaching zero age, the temperature is close
to the initial cloud value of 10 K and densities are
still low enough so that the heat produced by the
collapse is easily radiated away from the trans-
parent cloud. Once the envelope becomes opti-
cally thick, the temperature increases rapidly as
the accretion luminosity rises. We determine the
effective temperature at the radius where the op-
tical depth τRoss = 2/3 (see Baschek, Scholz, &
Wehrse 1991 for a careful discussion). Luminos-
ity and temperature for the non-isothermal phase
obtained from the 1D-RHD calculation are shown
in Figure 4.11. The zero age is marked by a di-
amond, close to the beginning of the thick line
in the lower right of Figure 4.11. For compari-
son the results of a Bonnor-Ebert-collapse and a
classical hydrostatic stellar evolution calculation
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Figure 4.11: Early stellar evolution in the Hertzsprung-Russell diagram. Three evolutionary effective-temperature-
luminosity relations (tracks) relevant to the young Sun are compared. The dotted line is a classical stellar structure,
hydrostatic-equilibrium PMS track for 1 M�, for an initially fully convective gas sphere (‘MLT Alexander’ model of
D’Antona & Mazzitelli 1994). The two other lines are obtained by describing the formation of the star as a result of
the collapse of an interstellar cloud. The thin line is for a cloud fragment in initial equilibrium (a so called ‘Bonnor-Ebert’
sphere of a solar mass, see Wuchterl & Tscharnuter 2003 for details). The (thick line) is for a cloud fragment that results
from the dynamical fragmentation of a molecular cloud (KB00, KB01). The two diamonds, in the lower right, indicate
zero age for the two collapse-results. Triangles (Bonnor-Ebert from Wuchterl & Tscharnuter 2003), squares (cluster model
from Wuchterl & Klessen 2001) and crosses (D’Antona & Mazzitelli 1994) along the respective evolutionary tracks mark
ages of 1, 10, 100, 350 kyr, 0.5 and 1 Myr. The cross at the end of the hydrostatic track denotes the moment when energy
generation by nuclear reactions in the stellar interior, for the first time in stellar live fully compensates the energy losses
due to radiation from the stellar photosphere, i.e. the zero age main sequence (ZAMS). Corresponding age-marks for 0.1,
0.35, 0.5 and 1 Myr are connected by dashed lines in the insert. — Adopted from Wuchterl & Klessen (2001).

(D’Antona & Mazzitelli 1994) are shown as well.
The equations used in the latter study correspond
to the hydrostatic limit of the current dynami-
cal model, all physical parameters (opacities, etc.)
are identical or match closely (see Wuchterl &
Tscharnuter 2003).

The non-isothermal phase can be divided into
three parts: (1) There is a first luminosity increase
up to 20 L� with the temperature staying below
about 100 K. The central density of the fragment
rises until a hydrostatic core forms and the ac-
cretion flow onto that core is accelerated until
quasi-steady state is established. (2) The subse-
quent main accretion phase leads to an increase
in temperature to 2000 K while the luminosity
shows a broad maximum at ∼ 100 L�. Com-

pared to the isolated ‘Bonnor-Ebert case’ the vi-
olent accretion in the cluster-environment pro-
duces a considerably higher luminosity, and the
oscillations around maximum reflect the variable
rates at which mass is supplied to the accreting
protostar as it travels through the dynamical en-
vironment of the proto-cluster. (3) Once accre-
tion fades, the star approaches its final mass. The
stellar photosphere becomes visible and the lu-
minosity decreases at roughly constant temper-
ature. This is the classical pre-main sequence
(PMS) contraction phase, shown as a blow up in
Figure 4.11. The luminosity decreases at almost
constant temperature and the evolutionary tracks
are nearly vertical being approximately parallel
to the classical ‘hydrostatic’ track.
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4.6.3 Implications

The dynamical model allows us to address the
question of whether a trace of the initial fragmen-
tation and collapse process can be found once the
young star arrives at its final mass and becomes
optically visible. Indeed, the star that forms in a
dynamical cloud environment is brighter when it
reaches the PMS phase compared to the isolated
Bonnor-Ebert case. This is due to the higher ac-
cretion in the dynamically evolving cluster envi-
ronment.

As the mass accretion rates of evolving proto-
stars in dense clusters are influenced by mutual
stochastic interactions and differ significantly
from isolated ones, the positions of stars in the
main accretion phase in the HR diagram are not
functions of mass and age alone, but also de-
pend on the statistical properties of the proto-
stellar environment. This affects attempts to in-
fer age and mass at this very early phase using
bolometric temperatures and luminosities of pro-
tostellar cores (see e.g. Myers & Ladd 1993, My-
ers et al. 1998). It is only possible as the statistical
average over many different theoretical accretion
histories for different cluster environments or for
an observational sample of protostars with simi-
lar cloud conditions.

As the accretion flow fades away, however, the
evolutionary tracks of protostars converge, and
the memory of environmental and initial condi-
tions is largely lost in the sense that one (final)
mass corresponds to one track. For given mass
and elemental composition the stellar properties
then depend on age only. For our one solar mass
stars this happens at 0.95 × 106 years where the
effective temperatures become equal and remain
within 20 K until the end of the 1D-RHD cal-
culation at 2 × 106 years. However, substantial
differences remain compared to the classical hy-
drostatic calculations. The temperature obtained
from collapse models is consistently higher by
about 500 K compared to classical hydrostatic
computations at corresponding luminosities.3

3To indicate the consequences for stellar mass determi-
nations, we point out that during the second million years
the temperature of our one solar mass star corresponds to

This deviation is the result of a qualitatively dif-
ferent stellar structure (Wuchterl & Tscharnuter
2003). Most notable, the solar mass stars result-
ing from collapse are not fully convective as is
assumed in the hydrostatic calculations, instead
they do have a radiative core of similar relative
size as the present Sun. Convection is confined
to a shell in the outer third of the stellar radius.
The star builds up from material with increasing
entropy as it passes through the accretion shock.
Stellar structure along the new dynamical evolu-
tionary tracks can be viewed as homologous to
the present Sun rather than to a fully convective
structure. Consequently, the proto-Sun does not
evolve along the classical Hayashi track for a so-
lar mass star, but roughly parallel to that. It has
a higher effective temperature corresponding to
the smaller radius of a partially radiative object
of the same luminosity as a fully convective one.

As the dynamical PMS tracks converge for the
two most extreme assumptions about the stel-
lar environment (dense stellar clusters vs. iso-
lated stars) we predict that a solar mass star at
an age of 106 years will have a luminosity of
4± 0.4 L� and an effective temperature of 4950±
20 K. The uncertainties reflect the fading traces
of the adopted two highly disparate initial and
environmental cloud conditions. For identical
assumptions made about convection theory and
stellar opacities (D’Antona & Mazzitelli 1994), the
classical values are 2.0 L� and 4440 K, respec-
tively.

These prediction are highly controversial and
rely on the correctness of the following assump-
tions: (1) The structure of young stars can be cal-
culated in spherical symmetry, (2) the prescrip-
tion of convection used is sufficiently accurate
outside the regime where it has been tested, i.e.
the present-day Sun, and (3) the radiative trans-
fer treatment and especially the present sources

stars with 2 M� on the classical hydrostatic tracks. The
differences in temperature and luminosity equivalently im-
ply corrections for the inferred ages: the ‘classical’ lumi-
nosity at 106 years is 6.2 L�, while the corresponding ‘col-
lapse’ values are smaller, 3.8 L� and 4.2 L�, respectively.
At 2 × 106 years, the new calculations give luminosities of
twice the solar value. The ‘classical’ age for equivalent lu-
minosities is 0.8 × 106 years.
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of stellar opacity are sufficiently complete. How-
ever, it needs to be pointed out that all those
assumptions are also made for the classical cal-
culations that we have used for reference (e.g.
D’Antona & Mazzitelli 1994, or Palla 2000, 2002).

4.7 Initial Mass Function

The distribution of stellar masses at birth, de-
scribed by the initial mass function (IMF), is a
necessary ingredient for the understanding of
many astrophysical phenomena, but no analytic
derivation of the observed IMF has yet stood
the test of time. In fact, it appears likely that
a fully deterministic formula for the IMF does
not exist. Rather, any viable theory must take
into account the probabilistic nature of the turbu-
lent process of star formation, which is inevitably
highly stochastic and indeterministic. We here
give a brief overview of the observational con-
straints on the IMF, followed by a review of mod-
els for it.

4.7.1 The Observed IMF

Hydrogen-burning stars can only exist in a finite
mass range

0.08 <
∼ m <

∼ 100 , (4.4)

where the dimensionless mass m ≡ M/(1 M�) is
normalized to solar masses. Objects with masses
less than about 0.08 M� do not have central tem-
peratures hot enough for hydrogen fusion to oc-
cur. If they are larger than about ten times the
mass of Jupiter, MJ = 0.001 M�, they are called
brown dwarfs, or more generally substellar ob-
jects (e.g. Burrows et al. 1993, Laughlin & Boden-
heimer 1993; or for a review Burrows et al. 2001).
Stars with masses greater than about 100 M�, on
the other hand, blow themselves apart by radia-
tion pressure (e.g. Phillips 1994).

It is complicated and laborious to estimate
the IMF in our Galaxy empirically. The first
such determination from the solar neighborhood
(Salpeter 1955) showed that the number ξ(m)dm

of stars with masses in the range m to m + dm can
be approximated by a power-law relation

ξ(m)dm ∝ m−αdm , (4.5)

with the index α ≈ 2.35 for stars in the mass
range 0.4 ≤ m ≤ 10. However, approximation
of the IMF with a single power-law is too simple.
Miller & Scalo (1979) introduced a log-normal
functional form, again to describe the IMF for
Galactic field stars in the vicinity of the Sun,

log10 ξ(log10 m) =

A −
1

2(log10 σ)2

[

log10

(

m
m0

)]2

. (4.6)

This analysis has been repeated and improved by
Kroupa, Tout, & Gilmore (1990), who derive val-
ues

m0 = 0.23

σ = 0.42 (4.7)

A = 0.1

The IMF can also be estimated, probably more
directly, by studying individual young star clus-
ters. Typical examples are given in Figure 4.12
(taken from Kroupa 2002), which plots the mass
function derived from star counts in the Trapez-
ium Cluster in Orion (Hillenbrand & Carpenter
2000), in the Pleiades (Hambly et al. 1999) and in
the cluster M35 (Barrado y Navascués et al. 2001).

The most popular approach to approximating the
IMF empirically is to use a multiple-component
power-law of the form (4.5) with the following
parameters (Scalo 1998, Kroupa 2002):

ξ(m) =







0.26 m−0.3 for 0.01 ≤ m < 0.08,
0.035 m−1.3 for 0.08 ≤ m < 0.5,
0.019 m−2.3 for 0.5 ≤ m < ∞ .

(4.8)

This representation of the IMF is statistically cor-
rected for unresolved binaries and multiple stel-
lar systems. Binary and higher multiple stars can
only be identified as such if their angular sepa-
ration exceeds the angular resolution of the tele-
scope used to survey the sky, or if they are close
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Figure 4.12: The measured stellar mass function ξ as func-
tion of logarithmic mass log10 m in the Orion nebular clus-
ter (solid black circles), the Pleiades (green triangles), and
the cluster M35 (blue circles). None of the mass functions is
corrected for unresolved multiple stellar systems. The aver-
age initial stellar mass function derived from Galactic field
stars in the solar neighborhood is shown as red line with the
associated uncertainty range indicated by the hatched area.
(From Kroupa 2002.)

enough for radial velocity measurements to de-
tect them as spectroscopic binaries. Stars in the
middle are falsely counted as single stars. Ne-
glecting this effect overestimates the masses of
stars, as well as reducing inferred stellar densi-
ties. These mass overestimates influence the de-
rived stellar mass distribution, underestimating
the number of low-mass stars. The IMF may
steepen further towards high stellar masses and a
fourth component could be defined with ξ(m) =

0.019 m−2.7 for m > 1.0 thus arriving at the IMF
proposed by Kroupa, Tout, & Gilmore (1993). In
equation (4.8), the exponents for masses m < 0.5
are very uncertain due to the difficulty of detect-
ing and determining the masses of very young
low-mass stars. The exponent for 0.08 ≤ m < 0.5
could vary between −0.7 and −1.8, and the value
in the substellar regime is even less certain.

Figure 4.13: A plot of power-law exponents determined for
various stellar clusters in the mass range −2 < log10 m < 2,
to illustrate the observed scatter. The solid green and blue
dots and solid triangles are from measurements of Galac-
tic and Large Magellanic Cloud clusters and OB associa-
tions, respectively. Globular cluster data are indicated by
open yellow triangles. None of these measurements is cor-
rected for unresolved binaries. The mean values of the ex-
ponent α derived in the solar neighborhood, equation 4.8,
and the associated uncertainties are indicated by horizon-
tal red dashed lines. Note that for low stellar masses the
values of α determined from observations in young stellar
clusters lie systematically lower due to the inability to re-
solve close binaries and multiple stellar systems. Black lines
indicate alternative functional forms for the IMF, e.g. MS
gives the Miller-Scalo (1979) IMF or Ch the one suggested
by Chabrier (2001, 2002). For a more detailed discussion see
Kroupa (2002), where the figure is adopted from.

There are some indications that the slope of the
mass spectrum obtained from field stars may be
slightly shallower than the one obtained from ob-
serving stellar clusters (Scalo 1998). The reason
for this difference is unknown, and is somehow
surprising given the fact most field stars may
come from dissolved clusters (Adams & Myer
2001). It is possible that the field star IMF is in-
accurate because of incorrect assumptions about
past star formation rates and age dependences
for the stellar scale height. Both issues are either
known or irrelevant for the IMF derived from
cluster surveys. On the other hand, the cluster
surveys could have failed to include low-mass
stars due to extinction or crowding. It has also
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been claimed that the IMF may vary between dif-
ferent stellar clusters (Scalo 1998), as the mea-
sured exponent α in each mass interval exhibits
considerable scatter when comparing different
star forming regions. This is illustrated in Figure
4.13, which is again taken from Kroupa (2002).
This scatter, however, may be entirely due to ef-
fects related to the dynamical evolution of stellar
clusters (Kroupa 2001).

Despite these differences in detail, all IMF deter-
minations share the same basic features, and it
appears reasonable to say that the basic shape of
the IMF is a universal property common to all
star forming regions in the present-day Galaxy,
perhaps with some intrinsic scatter. There still
may be some dependency on the metallicity of
the star forming gas, but changes in the IMF do
not seem to be gross even in that case. There is
no compelling evidence for qualitatively different
behavior such as truncation at the low or high-
mass end.

4.7.2 Models of the IMF

Existing models to explain the IMF can be di-
vided into five major groups. In the first group
feedback from the stars themselves determines
their masses. Silk (1995) suggests that stellar
masses are limited by the feedback from both
ionization and protostellar outflows. Nakano,
Hasegawa, & Norman (1995) describe a model
in which stellar masses are sometimes limited
by the mass scales of the formative medium and
sometimes by stellar feedback. The most de-
tailed model in this category stems from Adams
& Fatuzzo (1996) and provides a transformation
between initial conditions in molecular clouds
and final stellar masses. They apply the cen-
tral limit theorem to the hypothesis that many
independent physical variables contribute to the
stellar masses to derive a log-normal IMF reg-
ulated by protostellar feedback. However, for
the overwhelming majority of stars (with masses
M <

∼ 5 M�) protostellar feedback (i.e. winds, ra-
diation and outflows) are unlikely to be strong
enough to halt mass accretion, as shown by
detailed protostellar collapse calculations (e.g.

Wuchterl & Klessen 2001, Wuchterl & Tschar-
nuter 2002).

In the second group of models, initial and envi-
ronmental conditions determine the IMF. In this
picture, the structural properties of molecular
clouds determine the mass distribution of Jeans-
unstable gas clumps, and the clump properties
determine the mass of the stars that form within.
If one assumes a fixed star formation efficiency
for individual clumps, there is a one-to-one cor-
respondence between the molecular cloud struc-
ture and the final IMF. The idea that fragmen-
tation of clouds leads directly to the IMF dates
back to Hoyle (1953) and later Larson (1973).
More recently, this concept has been extended
to include the observed fractal and hierarchical
structure of molecular clouds Larson (1992, 1995).
Indeed random sampling from a fractal cloud
seems to be able to reproduce the basic features
of the observed IMF (Elmegreen & Mathieu 1983,
Elmegreen 1997, 1999, 2000a,c, 2002). A related
approach is to see the IMF as a domain packing
problem (Richtler 1994).

The hypothesis that stellar masses are deter-
mined by clump masses in molecular clouds is
supported by observations of the dust continuum
emission of protostellar condensations in the Ser-
pens, ρ Ophiuchi, and Orion star forming regions
(Testi & Sargent 1998; Motte et al. 1998, 2001;
Johnstone et al. 2000, 2001). These protostellar
cores are thought to be in a phase immediately
before they build up a star in their interior. Their
mass distribution resembles the stellar IMF rea-
sonably well, suggesting a close correspondence
between protostellar clump masses and stellar
masses, leaving little room for stellar feedback
processes, competitive accretion or collisions to
act to determine the stellar mass spectrum.

A third group of models relies on competitive co-
agulation or accretion processes to determine the
IMF. This has a long tradition and dates back to
investigations by Oort (1954) and Field & Saslaw
(1965), but the interest in this concept continues
to the present day (e.g. Silk & Takahashi 1979;
Lejeune & Bastien 1986; Price & Podsiadlowski
1995; Murray & Lin 1996; Bonnell et al. 2001a,b;
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Durisen, Sterzik, & Pickett 2001). Stellar colli-
sions require very high stellar densities, however,
for which observational evidence and theoretical
mechanisms remain scarce.

Fourth, there are models that connect the su-
personic turbulent motions in molecular clouds
to the IMF. In particular there are a series of
attempts to find an analytical relation between
the stellar mass spectrum and statistical proper-
ties of interstellar turbulence (e.g. Larson 1981,
Fleck 1982, Hunter & Fleck 1982, Elmegreen 1993,
Padoan 1995, Padoan 1995, Padoan et al. 1997,
Myers 2000, Padoan & Nordlund 2002). How-
ever, properties such as the probability distri-
bution of density in supersonic turbulence in
the absence of gravity have never successfully
been shown to have a definite relationship to
the final results of gravitational collapse (Padoan
et al. 1997). Even the more sophisticated at-
tempt by Padoan & Nordlund (2002) neglects to
take into account that it is likely that not single
shock compressions but multiple compressions
and rarefactions that determine the density struc-
ture of supersonic turbulence (Passot & Vázquez-
Semadeni 1998). Furthermore, such models ne-
glect the effects of competitive accretion in dense
cluster environments (Section 4.5), which may
be important for determining the upper end of
the IMF. This makes the attempt to derive stellar
mass spectra from the statistical properties diffi-
cult.

Finally there is a more statistical approach. Lar-
son (1973) and Zinnecker (1984, 1990) argued that
whenever a large set of parameters is involved
in determining the masses of stars, invoking the
central limit theorem of statistics naturally leads
to a log-normal stellar mass spectrum (Adams &
Fatuzzo [1996] made similar arguments).

Regardless of the detailed physical processes in-
volved, the common theme in all of these models
is the probabilistic nature of star formation. It ap-
pears impossible to predict the formation of spe-
cific individual objects. Only the fate of an en-
semble of stars can be described ab initio. The
implication is that the star formation process can
only be understood within the framework of a
probabilistic theory.

4.7.3 Mass Spectra from Turbulent Frag-
mentation

To illustrate some of the issues discussed above,
we examine the mass spectra of gas clumps and
collapsed cores from models of self-gravitating,
isothermal, supersonic turbulence driven with
different wavelengths (Klessen 2001b). In the ab-
sence of magnetic fields and more accurate equa-
tions of state, these models can only be illustra-
tive, not definitive, but nevertheless they offer in-
sight into the processes acting to form the IMF.
Figure 4.14 plots for four different models the
mass distribution of gas clumps, of the subset of
gravitationally unstable clumps, and of collapsed
cores, at four different evolutionary phases. In
the initial phase, before local collapse begins to
occur, the clump mass spectrum is not well de-
scribed by a single power law. During subse-
quent evolution, as clumps merge and grow big-
ger, the mass spectrum extends towards larger
masses, approaching a power law with slopeα ≈
−1.5. Local collapse sets in and results in the for-
mation of dense cores most quickly in the freely
collapsing model. The influence of gravity on
the clump mass distribution weakens when tur-
bulence dominates over gravitational contraction
on the global scale, as in the other three models.
The more the turbulent energy dominates over
gravity, the more the spectrum resembles the ini-
tial case of pure hydrodynamic turbulence. This
suggests that the clump mass spectrum in molec-
ular clouds will be shallower in regions where
gravity dominates over turbulent energy. This
may explain the observed range of slopes for
the clump mass spectrum in different molecular
cloud regions (Section 4.1.2).

Like the distribution of Jeans-unstable clumps,
the mass spectrum of dense protostellar cores
resembles a log-normal in the model without
turbulent support and in the one with long-
wavelength turbulent driving, with a peak at
roughly the average thermal Jeans mass 〈mJ〉
of the system. These models also predict ini-
tial mass segregation (Section 4.5.e). However,
models supported at shorter wavelength have
mass spectra much flatter than observed, sug-
gesting that clump merging and competitive ac-
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Figure 4.14: Mass spectra of dense collapsed cores (hatched thick-lined histograms), of gas clumps (thin lines), and of the
subset of Jeans unstable clumps (thin lines, hatched distribution) for four different models. The decaying model started
with Gaussian density perturbations and no turbulence, while the other three models were nominally supported by tur-
bulence driven at long, intermediate or short scales as indicated by the driving wavenumbers k. Masses are binned log-
arithmically and normalized to the average Jeans mass 〈mJ〉. The left column gives the initial state of the system when
the turbulent flow has reached equilibrium but gravity has not yet been turned on, the second column shows the mass
spectra when m∗ ≈ 5% of the mass is accreted onto dense cores, the third column shows m∗ ≈ 30%, and the last one
m∗ ≈ 60%. For comparison with power-law spectra (dN/dm ∝ mν), a slope α = −1.5 typical for the observed clump mass
distribution, and the Salpeter slope α = −2.33 for the IMF, are indicated by the dotted lines. The vertical line shows the
resolution limit of the numerical model. In columns 3 and 4, the long dashed curve shows the best log-normal fit. (From
Klessen 2001b.)

cretion are important factors leading to a log-
normal mass spectrum. The protostellar clusters
discussed here only contain between 50 and 100
cores. This allows for comparison with the IMF
only around the characteristic mass scale, typi-
cally about 1 M�, since the numbers are too small
to study the very low- and high-mass end of the
distribution. Focusing on low-mass star forma-
tion, however, Bate, Bonnell, & Bromm (2002)
demonstrate that brown dwarfs are a natural and

frequent outcome of turbulent fragmentation. In
this model, brown dwarfs form when dense
molecular gas fragments into unstable multiple
systems that eject their smallest members from
the dense gas before they have been able to ac-
crete to stellar masses. Numerical models with
sufficient dynamic range to treat the full range
of stellar masses (Equation 4.4) remain yet to be
done.



Chapter 5

GALACTIC SCALE STAR FORMATION

How do the mechanisms that control local star
formation determine the global rate and distribu-
tion of star formation in galaxies? In this section
we begin by examining what determines the effi-
ciency of star formation in Section 5.1. We argue
that the balance between the density of available
gas and its turbulent velocity determines where
star formation will occur, and how strongly. Even
if the turbulent velocity in a region is relatively
high, if the density in that region is also high, the
region may still not be supported against gravita-
tional collapse and prompt star formation.

Therefore, any mechanism that increases the local
density without simultaneously increasing the
turbulent velocity sufficiently can lead to star for-
mation, via molecular cloud formation, as we dis-
cuss in Section 5.2. Most mechanisms that in-
crease local density appear to be external to the
star formation process, however. Accretion dur-
ing initial galaxy formation, interactions and col-
lisions between galaxies, spiral gravitational in-
stabilities of galactic disks, and bar formation are
major examples. In this review we cannot do jus-
tice to the vast literature on galactic dynamics
and interactions that determine the density dis-
tribution in galaxies. We do, however, examine
what physical mechanisms control the velocity
dispersion in Section 5.3.

Finally, in Section 5.4 we briefly speculate on
how turbulent control of star formation may help
explain objects with very different star forma-
tion properties, including low surface brightness
galaxies, normal galactic disks, globular clusters,
galactic nuclei, and primordial dwarf galaxies.

5.1 When is Star Formation Effi-
cient?

5.1.1 Overview

Observers have documented a surprisingly
strong connection between the star formation
rate and the local velocity dispersion, column
density and rotational velocity of disk galaxies
(Kennicutt 1998a, Martin & Kennicutt 2001). A
global Schmidt (1959) law relating star formation
rate surface density to gas surface density as

ΣSFR = AΣN
gas, (5.1)

where a value of N = 1.4 ± 0.05 can be derived
from the observations (Kennicutt 1989, 1998b). A
threshold to star formation is also found (Ken-
nicutt 1989, Martin & Kennicutt 2001) in most
galaxies, which also appears related to the gas
surface density. The Schmidt law can be inter-
preted as reflecting star formation on a free-fall
timescale, so that (following Wong & Blitz 2001
for example) the star formation rate per unit vol-
ume of gas with density ρ is

ρSFR = εSFR
ρ

τff
= εSFR

ρ

(Gρ)−1/2
∝ ρ1.5, (5.2)

where εSFR is an efficiency factor observed to be
substantially less than unity.

The connection between magnetically controlled
small-scale star formation and large-scale star
formation is not clear in the standard theory. Shu,
Adams, & Lizano (1987) did indeed suggest that
OB associations were formed by freely collaps-
ing gas that had overwhelmed the local magnetic
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field, but that still implied that the star forma-
tion rate was controlled by the details of the mag-
netic field structure, which in turn is presumably
controlled by the galactic dynamo. If turbulence,
as represented by the velocity dispersion, con-
trols the star formation rate, though, the connec-
tion appears clearer. The same physical mecha-
nism controls star formation at all scales. Regions
that are globally supported by turbulence still en-
gage in inefficient star formation, but the overall
star formation rate will be determined by the fre-
quency of regions of efficient star formation.

The big open question in this area remains the im-
portance of radiative cooling to efficient star for-
mation, either on its own or induced by turbulent
compression. Is cooling, and indeed molecule
formation, necessary for gravitational collapse
to begin, or is it rather a result of already oc-
curring collapse in gravitationally unstable gas?
Certainly there are situations where cooling will
make the difference between gravitational stabil-
ity and instability, but are those just marginal
cases or the primary driver for star formation in
galaxies?

In Figure 5.1 we outline a unified picture that de-
pends on turbulence and cooling to control the
star formation rate. After describing the different
elements of this picture, we will discuss the steps
that we think will be needed to move from this
cartoon to a quantitative theory of the star forma-
tion rate.

Probably the factor that determines the star for-
mation rate more than any other is whether
the gas is sufficiently dense to be gravitation-
ally unstable without additional cooling. Galac-
tic dynamics and interactions with other galaxies
and the surrounding intergalactic gas determine
the average gas densities in different regions of
galaxies. The gravitational instability criterion
here includes both turbulent motions and galac-
tic shear, as well as magnetic fields. If gravita-
tional instability sets in at the large scale, collapse
will continue so long as sufficient cooling mecha-
nisms exist to prevent the temperature of the gas
from rising (effective adiabatic index γeff ≤ 1).
In this situation, molecular clouds can form in

less than 105 yr, as the gas passes through den-
sities of 104 cm−3 or higher, as an incidental ef-
fect of the collapse. A starburst results, with stars
forming efficiently in compact clusters. The size
of the gravitationally unstable region determines
the size of the starburst.

If turbulent support, rather than thermal support,
prevents the gas from immediately collapsing,
compression-induced cooling can become impor-
tant. Supersonic turbulence compresses the gas
strongly, and most cooling mechanisms depend
on the gas density, usually non-linearly. Galac-
tic dynamics will again determine local aver-
age density; this mechanism will be more effi-
cient in regions of higher average density. If
the cooled regions reach high densities (again, of
order 104 cm−3), molecule formation will occur
quickly, whether or not gravitational instability
sets in (see Section 5.2). If the gas cools in com-
pressed regions, they can become gravitationally
unstable even if they were not before. Molecule
formation will, of course, be more efficient in re-
gions that collapse gravitationally, but it can oc-
cur elsewhere as well. The large-scale star for-
mation efficiency will already be much reduced
in this case, as much of the gas will not be com-
pressed sufficiently to cool.

If the turbulence in the cooled regions does sup-
port the gas against general gravitational col-
lapse, isolated, low-rate star formation can still
occur in regions further compressed by the tur-
bulence. This may describe regions of low-mass
star formation like the Taurus clouds. On the
other hand, if the cooled gas does begin to col-
lapse gravitationally, locally efficient star forma-
tion can occur. The size of the gravitationally un-
stable region then really determines whether a
group, OB association, or bound cluster eventu-
ally forms. Star formation in regions like Orion
may result from this branch.

5.1.2 Gravitational Instabilities in Galac-
tic Disks

Now let us consider the conditions under which
gravitational instability will set in. On galac-
tic scales, the Jeans instability criterion for grav-
itational instability must be modified to include
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Figure 5.1: Illustration of physics determining star formation in galaxies.

the additional support offered by the shear com-
ing from differential rotation, as well as the ef-
fects of magnetic fields. The gravitational po-
tential of the stars can also contribute to gravi-
tational instability on large scales. Which factor
determines the onset of gravitational instability
remains unknown. Five that have been proposed
are the temperature of the cold phase, the sur-
face density, the local shear, the presence of mag-
netic fields, and the velocity dispersion, in differ-
ent combinations.

We can heuristically derive the Toomre (1964) cri-
terion for stability of a rotating, thin disk with
uniform velocity dispersion σ and surface den-
sity Σ using time scale arguments (Schaye 2002).
First consider the Jeans criterion for instability in
a thin disk, which requires that the time scale for
collapse of a perturbation of size λ

tcoll =
√

λ/GΣ (5.3)

be shorter than the time required for the gas to
respond to the collapse, the sound crossing time

tsc = λ/cs . (5.4)

This implies that gravitational stability requires
perturbations with size

λ < c2
s/GΣ. (5.5)

Similarly, in a disk rotating differentially, a per-
turbation will rotate around itself, generating
centrifugal motions that can also support against
gravitational collapse. This will be effective if the
collapse time scale tcoll exceeds the rotational pe-
riod trot = 2π/κ, where κ is the epicyclic fre-
quency, so that stable perturbations have

λ > 4π2GΣκ2 . (5.6)

A regime of gravitational instability occurs if
there are wavelengths that lie between the
regimes of pressure and rotational support, with

c2
s

GΣ
< λ <

4π2GΣ

κ2 . (5.7)

This will occur if

csκ/2πGΣ < 1, (5.8)
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which is the Toomre criterion for gravitational in-
stability to within a factor of two. The full cri-
terion from a linear analysis of the equations of
motion of gas in a shearing disk gives a factor of
π in the denominator (Safronov 1960, Goldreich
& Lynden-Bell 1965), while a kinetic theory ap-
proach appropriate for a collisionless stellar sys-
tem gives a factor of 3.36 (Toomre 1964).

Kennicutt (1989) and Martin & Kennicutt (2001)
have demonstrated that the Toomre criterion gen-
erally can explain the location of the edge of the
star-forming disk in galaxies, although they must
introduce a correction factor α = 0.69 ± 0.2 into
the left-hand-side of equation (5.8). Schaye (2002)
notes that this factor should be corrected to α =
0.53 to correct for the use of both the velocity dis-
persion rather than sound velocity, and the ex-
act Toomre criterion for a stellar rather than a gas
disk.

The Toomre criterion given in Equation (5.8) was
derived for a pure gas disk with uniform temper-
ature and velocity dispersion, and no magnetic
field. Relaxation of each of these assumptions
modifies the criterion, and indeed each has been
argued to be the controlling factor in determining
star formation thresholds by different authors.

Stars in a gas disk will respond as a collisionless
fluid to density perturbations large compared to
their mean separation. Jog & Solomon (1984a)
computed the Toomre instability in a disk com-
posed of gas and stars, and found it to always
be more unstable than either component consid-
ered individually. Both components contribute
to the growth of density perturbations, allowing
gravitational collapse to occur more easily. Tak-
ing into account both gas (subscript g) and stars
(subscript r), instability occurs when

2πGk
(

Σr

κ2 + k2csr2 +
Σg

κ2 + k2csg2

)

> 1, (5.9)

where k = 2π/λ is the wavenumber of the per-
turbation considered. Taking into account the ef-
fects of the stars always makes a disk more un-
stable than it is due to its gas content alone. Jog
& Solomon (1984a) and Romeo (1992) extended
this model to include the effect of the finite thick-
ness of the disk. Elmegreen (1995) was able with

some effort to derive an effective Toomre param-
eter that includes the effects of both stars and gas,
but that can only be analytically computed in the
thin disk limit. To compute it, independent mea-
sures of the velocity dispersion of the stars and of
the gas are, of course, needed. Jog (1996) numer-
ically computed the effective stability parameter
for a wide range of values of stellar and gas disk
parameters. The contribution of the stellar disk
may alone be sufficient to explain the correction
factors found by Kennicutt (1989) and Martin &
Kennicutt (2001).

Magnetic fields offer direct support against col-
lapse through their magnetic pressure and ten-
sion. However, Chandrasekhar (1954) and
Lynden-Bell (1966) were the first to note that they
can also have the less expected effect of destabi-
lization of a rotating system. The magnetic field
in this case acts to brake the shear that would
otherwise prevent collapse, redistributing angu-
lar momentum and allowing collapse to occur
down field lines. Elmegreen (1987) performed a
linear analysis of the growth rate of gravitational
instability in a rotating, magnetized disk, which
was extended by Fan & Lou (1997) to follow the
excitation of the different modes.

Kim & Ostriker (2001) were able to identify the
regimes in which the magnetic field acts to either
stabilize against collapse or promote it. When
shear is strong, as it is in the parts of galactic disks
with flat rotation curves, and the field is moder-
ate or weak, with plasma β ≤ 1, swing amplifica-
tion stabilized by magnetic pressure dominates.
Sufficiently unstable disks, with Toomre Q ≤1.0–
1.1 (depending on field strength), collapse due
to nonlinear secondary instabilities despite mag-
netic stabilization. On the other hand, if shear
is weak, and fields are stronger (β > 1), mag-
netic tension forces act against epicyclic motions,
reducing their stabilizing effect, and producing
magneto-Jeans instabilities along the field lines.

Numerical models by Kim & Ostriker (2001)
showed these mechanisms in operation, gener-
ating large regions of gravitational collapse, al-
though in the outer parts of disks, the collapse
rate from swing amplification is so slow that ad-
ditional effects such as spiral arm amplification
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may be important to drive the formation of ob-
served regions of star formation. Kim & Os-
triker (2002) show that the introduction of spi-
ral arms indeed produce feathers similar to those
observed, with masses comparable to the largest
star forming regions. These results suggest that
the presence of magnetic fields may actually en-
hance the star formation rate in disks.

The temperature and the velocity of the coldest
gas in a multi-phase interstellar medium at any
point in the disk may be the determining factor
for gravitational instability, rather than some av-
erage temperature. Schaye (2002) suggests that
the sharp rise in temperature associated with the
lack of molecular gas causes the sharp drop in
the star formation rate at the edges of disk galax-
ies. He derives the disk surface density required
to allow molecule formation in the presence of
the intergalactic ultraviolet background field and
suggests that this is consistent with the observed
threshold column densities. However, Martin &
Kennicutt (2001) show a wide variation in the
atomic gas fraction at the critical radius (see their
Figure 9a), calling this idea into question.

The balance between gravitation and local shear
is argued by Hunter, Elmegreen, & Baker (1998)
to be a better criterion than the Toomre (1964) cri-
terion, which balances gravitation against Cori-
olis forces. Effectively this substitutes the Oort
A constant (Binney & Tremaine 1997) for the
epicyclic frequency κ in Equation (5.8). The dif-
ference is small (of order 10%) in galaxies with
flat rotation curves, but can lower the critical den-
sity substantially in galaxies with rising rotation
curves, such as dwarf galaxies.

5.1.3 Thermal Instability

Thermal instability has been the organizing prin-
ciple behind the most influential models of the
ISM (Pikel’ner 1968; Field, Goldsmith, & Habing
1969; McKee & Ostriker 1977; Wolfire et al. 1995).
Under the assumption of approximate pressure
and thermal equilibrium, thermal instability can
explain the widely varying densities observed in
the ISM. It can not explain the order of mag-
nitude higher pressures observed in molecular

clouds, though, so it was thought that most
molecular clouds must be confined by their own
self-gravity. Turbulent pressure fluctuations in a
medium with effective adiabatic index less than
unity (that is, one that cools when compressed,
like the ISM) can provide an alternative explana-
tion for both pressure and density fluctuations.
Although thermal instability exists, it does not
necessarily act as the primary structuring agent,
nor, therefore, as the determining factor for the
star formation rate.

Thermal instability occurs when small perturba-
tions from thermal equilibrium grow. The de-
pendence on density ρ and temperature T of the
heat-loss function L = Λ − Γ , the sum of energy
losses minus gains per gram per second, deter-
mines whether instability occurs. Parker (1953)
derived the isochoric instability condition, while
Field (1965) pointed out that cooling inevitably
causes density changes, either due to dynamical
flows if the region is not isobaric, or due to pres-
sure changes if it is. He then derived the iso-
baric instability condition. The alternative of dy-
namical compression in a region large enough to
be unable to maintain isobaric conditions has re-
ceived renewed attention as described below.

The isobaric instability condition derived by
Field (1965) is
(

∂L
∂T

)

P
=

(

∂L
∂T

)

ρ

−
ρ0

T0

(

∂L
∂ρ

)

T
< 0, (5.10)

where ρ0 and T0 are the equilibrium values. Op-
tically thin radiative cooling in the interstellar
medium gives a cooling function that can be ex-
pressed as a piecewise power law Λ ∝ ρ2Tβi ,
where βi gives the value for a temperature range
Ti−1 < T < Ti, while photoelectric heating is in-
dependent of temperature. Isobaric instability oc-
curs when βi < 1, while isochoric instability only
occurs with βi < 0 (e.g. Field 1965).

In interstellar gas cooling with equilibrium ion-
ization, there are two temperature ranges subject
to thermal instability. In the standard picture of
the three-phase interstellar medium governed by
thermal instability (McKee & Ostriker 1977), the
higher of these, with temperatures 104.5 K< T <
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107 K (Raymond, Cox, & Smith 1977), separates
hot gas from the warm ionized medium. The
lower range of 101.7 K< T < 103.7 K (Figure 3a
of Wolfire et al. 1995) separates the warm neutral
medium from the cold neutral medium. Cool-
ing of gas out of ionization equilibrium has been
studied in a series of papers by Spaans (1996,
Spaans & Norman 1997, Spaans & Van Dishoeck
1997, Spaans & Carollo 1998) as described by
Spaans & Silk (2000). The effective adiabatic in-
dex depends quite strongly on the details of the
local chemical, dynamical and radiation environ-
ment, in addition to the pressure and tempera-
ture of the gas. Although regions of thermal in-
stability occur, the pressures and temperatures
may depend strongly on the details of the ra-
diative transfer in a turbulent medium, the local
chemical abundances, and other factors.

When thermal instability occurs, it can drive
strong motions that dynamically compress the
gas nonlinearly. Thereafter, neither the isobaric
nor the isochoric instability conditions hold, and
the structure of the gas is determined by the
combination of dynamics and thermodynamics
(Meerson 1996, Burkert & Lin 2000, Lynden-Bell
& Tout 2001, Kritsuk & Norman 2002).

Vázquez-Semadeni, Gazol, & Scalo (2000) exam-
ined the behavior of thermal instability in the
presence of driven turbulence, magnetic fields,
and Coriolis forces and concluded that the struc-
turing effect of the turbulence overwhelmed that
of thermal instability in a realistic environment.
Gazol et al. (2001) found that about half of the
gas in such a turbulent environment will actu-
ally have temperatures falling in the thermally
unstable region, and emphasize that a bimodal
temperature distribution may simply be a reflec-
tion of the gas cooling function, not a signature
of a discontinuous phase transition. Mac Low
et al. (2002) examined supernova-driven turbu-
lence and found a broad distribution of pressures,
which were more important than thermal insta-
bility in producing a broad range of densities in
the interstellar gas.

The discovery of substantial amounts of gas
out of thermal equilibrium by Heiles (1999) has

provided observational support for a picture
in which turbulent flows rather than thermal
instability dominates structure formation prior
to gravitational collapse. Heiles (1999) mea-
sured the temperature of gas along lines of sight
through the warm and cold neutral medium by
comparing absorption and emission profiles of
the HI 21 cm fine structure line. He found that
nearly half of the warm neutral clouds measured
showed temperatures that are unstable according
to the application of the isobaric instability con-
dition, Equation (5.10), to the Wolfire et al. (1995)
equilibrium ionization phase diagram.

Although the heating and cooling of the gas
clearly plays an important role in the star forma-
tion process, the presence or absence of an iso-
baric instability may be less important than the
effective adiabatic index, or similar measures of
the behavior of the gas on compression, in deter-
mining its ultimate ability to form stars. How-
ever, Schaye (2002) has made the argument that
it is exactly the ability of the gas to cool above
some critical column density that determines the
edge of the star-forming region in disks.

5.2 Formation and Lifetime of
Molecular Clouds

How do molecular clouds form? Any explana-
tion must account for the low star-formation effi-
ciencies observed in nearby molecular clouds, as
well as the broad linewidths observed at scales
larger than about 0.1 pc in such clouds. At the
same time, the efficient star formation seen in re-
gions of massive star formation must still be per-
mitted.

Molecular gas forms on dust grains at a rate cal-
culated by Hollenbach, Werner, & Salpeter (1971)
to be

tform = (1.5 × 109 yr)
( n

1 cm−3

)−1
, (5.11)

where n is the number density of gas parti-
cles. Experimental work by Piranello et al. (1997a,
1997b, 1999) on molecular hydrogen formation
on graphite and olivine suggests that rates may
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be strongly temperature dependent and that the
Hollenbach et al. (1971) result may be a lower
limit to the formation time. However, the same
group reports that molecule formation is rather
more efficient on amorphous ices (Manicó et al.
2001) such as would be expected on grain sur-
faces deep within dark clouds, so that the rates
computed by Hollenbach et al. (1971) may be
reached after all. Further experimental investiga-
tion of molecule formation appears necessary.

The linear density dependence of the formation
rate implies that molecular gas either forms very
slowly, over tens of millions of years at the av-
erage densities of order 102 cm−3 in molecular
regions, or else it forms at very high densities,
>
∼ 104 cm−3 in a few hundred thousand years.
The latter idea becomes increasingly attractive.

When molecular clouds were first discovered,
they were thought to have lifetimes of over
100 Myr (e.g. Scoville & Hersh 1979) because of
their apparent predominance in the inner galaxy.
These estimates were shown to depend upon
too high a conversion factor between CO and
H2 masses by Blitz & Shu (1980). They revised
the estimated lifetime down to roughly 30 Myr
based on the association with spiral arms, appar-
ent ages of associated stars, and overall star for-
mation rate in the Galaxy.

Chemical equilibrium models of dense cores in
molecular clouds (as reviewed, for example, by
Irvine, Goldsmith, & Hjalmarson 1986) showed
disagreements with observed abundances in a
number of molecules. These cores would take
as much as 10 Myr to reach equilibrium, which
could still occur in the standard model. However,
Prasad, Heere, & Tarafdar (1991) demonstrated
that the abundances of the different species
agreed much better with the results at times of
less than 1 Myr from time-dependent models of
the chemical evolution of collapsing cores. Bergin
et al. (1997) came to a similar conclusion from a
careful study of several giant cores in comparison
to an extensive chemical model network, while
Saito et al. (2002) studied deuterium fractionation,
also finding short lifetimes.

Ballesteros-Paredes, Hartmann, & Vázquez-

Semadeni (1999) have argued for a lifetime of
less than 10 Myr for molecular clouds as a whole.
They base their argument on the notable lack of
a population of 5 − 20 Myr old stars in molec-
ular clouds. Stars in the clouds typically have
ages under 3 − 5 Myr, judging from their posi-
tion on pre-main-sequence evolutionary tracks
in a Hertzsprung-Russell diagram (D’Antona &
Mazzitelli 1994; Swenson et al. 1994; with discrep-
ancies resolved by Stauffer, Hartmann, & Bar-
rado y Navascues 1995). Older weak-line T Tauri
stars identified by X-ray surveys with Einstein
(Walter et al. 1988) and ROSAT (Neuhäuser et al.
1995) are dispersed over a region as much as 70 pc
away from molecular gas, suggesting that they
were not formed in the currently observed gas
(Feigelson 1996). Leisawitz, Bash, & Thaddeus
(1989), Fukui et al. (1999) and Elmegreen (2000)
have made similar arguments based on the ob-
servation that only stellar clusters with ages un-
der about 10 Myr are associated with substantial
amounts of molecular gas in the Milky Way and
the LMC.

For these short lifetimes to be plausible, either
molecule formation must proceed quickly, and
therefore at high densities, or observed molecular
clouds must be formed from preexisting molecu-
lar gas, as suggested by Pringle, Allen, & Lubow
(2001). A plausible place for fast formation of H2

at high density is the shock compressed layers
naturally produced in a SN-driven ISM, as shown
in Figure 5.2 from Mac Low et al. (2001)1. They
showed that pressures in the ISM are broadly dis-
tributed, with peak pressures in cool gas (T ∼ 103

K) as much as an order of magnitude above the
average because of shock compressions. This gas
is swept up from ionized 104 K gas, so between
cooling and compression its density has already
been raised up to two orders of magnitude from
n ≈ 1 cm−3 to n ≈ 100 cm−3. These simulations
did not include a correct cooling curve below
104 K, so further cooling could not occur even if

1Similar morphologies have been seen in many other
global simulations of the ISM, including Rosen, Bregman,
& Norman (1993), Rosen & Bregman (1995), Rosen, Breg-
man, & Kelson (1996), Korpi et al. (1999), Avillez (2000), and
Wada & Norman (1999, 2001). Mac Low (2000) reviews such
simulations.
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Figure 5.2: Log of number density from a three-dimensional SN-driven model of the ISM with resolution of 1.25 pc,
including radiative cooling and the gravitational field of the stellar disk, as described by Mac Low et al. (2001). High-
density, shock-confined regions are naturally produced by intersecting SN-shocks from field SNe.

physically appropriate, but it would be expected.

We can understand this compression quantita-
tively. The sound speed in the warm gas is
(8.1 km s−1)(T/104 K)1/2, taking into account the
mean mass per particle µ = 2.11 × 10−24 g for
gas 90% H and 10% He by number. The typical
velocity dispersion for this gas is 10 − 12 km s−1

(e.g. Dickey & Lockman 1990, Dickey, Hanson, &
Helou 1990), so that shocks with Mach numbers
M = 2–3 are moderately frequent. Temperatures
in these shocks reach values T ≤ 105 K, which is
close to the peak of the interstellar cooling curve
(e.g. Dalgarno & McCray 1972; Raymond, Cox,
& Smith 1976), so the gas cools quickly back to
104 K. The density behind an isothermal shock
is ρ1 = M2ρ0, where ρ0 is the pre-shock den-
sity, so order of magnitude density enhancements
occur easily. The optically-thin radiative cool-

ing rate Λ(T) drops off at 104 K as H atoms no
longer radiate efficiently (Dalgarno & McCray
1972; Spaans & Norman 1997), but the radia-
tive cooling L ∼ n2Λ(T). The quadratic sen-
sitivity to density means that density enhance-
ments strongly enhance cooling. Hennebelle &
Pérault (1999) show that such shock compres-
sions can trigger the isobaric thermal instability
(Field, Goldsmith, & Habing 1969; Wolfire et al.
1995), reducing temperatures to of order 100 K or
less. Heiles (2000) observes a broad range of tem-
peratures for neutral hydrogen from below 100 K
to a few thousand K. The reduction in tempera-
ture by two orders of magnitude from 104 K to
100 K raises the density correspondingly, for a to-
tal of as much as three orders of magnitude of
compression. Gas that started at densities some-
what higher than average of say 10 cm−3 can
be compressed to densities of 104 cm−3, enough
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to reduce H2 formation times to a few hundred
thousand years.

Figure 5.3: Shock velocities Vd and pre-shock number den-
sities n at which the cold post-shock layer is more than
8% molecular, taken from one-dimensional simulations by
Koyama & Inutsuka (2000) that include H2 formation and
dissociation, and realistic heating and cooling functions
from Wolfire et al. (1995).

Koyama & Inutsuka (2000) have demonstrated
numerically that shock-confined layers do in-
deed quickly develop high enough densities to
form H2 in under a million years, using one-
dimensional computations including heating and
cooling rates from Wolfire et al. (1995) and H2

formation and dissociation. In Figure 5.3 we
show the parameter space in which they find
H2 formation is efficient. Hartmann, Ballesteros-
Paredes, and Bergin (2001) make a more gen-
eral argument for rapid H2 formation, based in
part on lower-resolution, two-dimensional simu-
lations described by Passot, Vázquez-Semadeni,
& Pouquet (1995) that could not fully resolve
realistic densities like those of Koyama & Inut-
suka (2000), but do include larger-scale flows
showing that the initial conditions for the one-
dimensional models are not unreasonable. Hart-
mann et al. (2001) further argue that the self-
shielding against the background UV field also
required for H2 formation will become important
at approximately the same column densities re-
quired to become gravitationally unstable.

As was already noted by Ballesteros-Paredes et al.
(1999b), shock-confined layers were shown nu-
merically to be unstable by Hunter et al. (1986)
in the context of colliding spherical density en-

hancements, and by Stevens, Blondin, & Pollack
(1992) in the context of colliding stellar winds.
Vishniac (1994) demonstrated analytically that
isothermal, shock-confined layers are subject to a
nonlinear thin shell instability (NTSI). The phys-
ical mechanism can be seen by considering a
shocked layer perturbed sinusoidally. The ram
pressure on either side of the layer acts paral-
lel to the incoming flow, and thus at an an-
gle to the surface of the perturbed layer. Mo-
mentum is deposited in the layer with a com-
ponent parallel to the surface, which drives ma-
terial towards extrema in the layer, causing the
perturbation to grow. A careful numerical study
by Blondin & Mark (1996) in two dimensions
demonstrated that the NTSI saturates in a thick
layer of transsonic turbulence when the flows
become sufficiently chaotic that the surface no
longer rests at a substantial angle to the normal
of the incoming flow.

Thermal instability will act in conjunction with
shock confinement (see Section 5.1.3). Burkert
& Lin (2000) computed the nonlinear develop-
ment of the thermal instability, demonstrating
that shock waves form during the dynamical col-
lapse of nonlinear regions. Hennebelle & Pérault
(1999) demonstrated that shock compression can
trigger thermal instability in otherwise stable re-
gions in the diffuse ISM, even in the presence of
magnetic fields (Hennebelle & Pérault 2000), so
that compressions much greater than the isother-
mal factor of M2 can occur.

These cold, dense layers are themselves subject
to dynamical instabilities, as has been shown
in two-dimensional computations by Koyama &
Inutsuka (2002). The instabilities they found
are caused by some combination of thermal in-
stability and mechanisms very similar to the
NTSI studied by Vishniac (1994) for the isother-
mal case. Figure 5.4 shows another example
of these instabilities from a numerical study
by Walder & Folini (2000). These dynamical
instabilities can drive strongly supersonic mo-
tions in the cold, dense layer. If that layer is
dense enough for molecule formation to proceed
quickly, those molecules will show strongly su-
personic linewidths on all but the very small-
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Figure 5.4: Instability of cooled layer confined by strong ra-
diative shocks (from above and below, Mach number M ∼
20), computed in two dimensions with an adaptive mesh
refinement technique by Walder & Folini (2000). Darkest re-
gions have densities of 14 cm−3, while white represents a
density of 2 × 104 cm−3.

est scales, as seen in the models of Koyama &
Inutsuka (2002), in agreement with the observa-
tions of molecular clouds. It remains to be shown
whether this scenario can quantitatively explain
the full ensemble of molecular clouds observed in
the solar neighborhood, or elsewhere in our own
and external galaxies.

5.3 Driving Mechanisms

Both support against gravity and maintenance
of observed motions appear to depend on con-
tinued driving of the turbulence, which has ki-
netic energy density e = (1/2)ρv2

rms . Mac Low
(1999, 2002) estimates that the dissipation rate for
isothermal, supersonic turbulence is

ė ' −(1/2)ρv3
rms/Ld (5.12)

= −(3 × 10−27 erg cm−3 s−1)

×
( n

1 cm−3

) ( vrms

10 km s−1

)3
(

Ld

100 pc

)−1

,

where Ld is the driving scale, which we have
somewhat arbitrarily taken to be 100 pc (though
it could well be smaller), and we have assumed a
mean mass per particle µ = 2.11 × 10−24 g. The
dissipation time for turbulent kinetic energy

τd = e/ė ' L/vrms = (5.13)

= (9.8 Myr)
(

Ld

100 pc

)

( vrms

10 km s−1

)−1
,

which is just the crossing time for the turbulent
flow across the driving scale (Elmegreen 2000b).
What then is the energy source for this driving?
We here review the energy input rates for a num-
ber of possible mechanisms.

5.3.1 Magnetorotational Instabilities

One energy source for interstellar turbulence that
has long been considered is shear from galac-
tic rotation (Fleck 1981). However, the ques-
tion of how to couple from the large scales of
galactic rotation to smaller scales remained open.
Work by Sellwood & Balbus (1999) has shown
that the magnetorotational instability (Balbus &
Hawley 1991, 1998) could couple the large-scale
motions to small scales efficiently. The instabil-
ity generates Maxwell stresses (a positive corre-
lation between radial BR and azimuthal BΦ mag-
netic field components) that transfer energy from
shear into turbulent motions at a rate ė = TRΦΩ

(Sellwood & Balbus 1999). Numerical models
suggest that the Maxwell stress tensor TRΦ '
0.6B2/(8π) (Hawley, Gammie & Balbus 1995).
For the Milky Way, the value of the rotation rate
recommended by the IAU is Ω = (220 Myr)−1 =

1.4 × 10−16 rad s−1, though this may be as much
as 15% below the true value (Olling & Merri-
field 1998, 2000). The magnetorotational instabil-
ity may thus contribute energy at a rate

ė = (3 × 10−29 erg cm−3 s−1)

×

(

B
3µG

)2 (
Ω

(220 Myr)−1

)

. (5.14)

For parameters appropriate to the HI disk of a
sample small galaxy, NGC 1058, including ρ =
10−24 g cm−3, Sellwood & Balbus (1999) find that
the magnetic field required to produce the ob-
served velocity dispersion of 6 km s−1 is roughly
3 µG, a reasonable value for such a galaxy. Sim-
ilar arguments would hold for the outer disk
of the Milky Way. This instability may provide
a base value for the velocity dispersion below
which no galaxy will fall. If that is sufficient to
prevent collapse, little or no star formation will
occur, producing something like a low surface
brightness galaxy with large amounts of HI and
few stars. This may also apply to the outer disk
of our own Galaxy.
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5.3.2 Gravitational Instabilities

Motions coming from gravitational collapse have
often been suggested as a local driving mech-
anism in molecular clouds, but fail due to the
quick decay of the turbulence (Section 2.5.4). If
the turbulence decays in less than a free-fall time,
as suggested by Equation (2.13), then it cannot
delay collapse for substantially longer than a free-
fall time.

On the galactic scale, spiral structure can drive
turbulence in gas disks. Roberts (1969) first
demonstrated that shocks would form in gas
flowing through spiral arms formed by gravita-
tional instabilities in the stellar disk (Lin & Shu
1964, Lin, Yuan, & Shu 1969). These shocks were
studied in thin disks by Tubbs (1980) and Souk-
oup & Yuan (1981), who found few vertical mo-
tions. It has been realized that in a more realis-
tic thick disk, the spiral shock will take on some
properties of a hydraulic bore, with gas passing
through a sudden vertical jump at the position
of the shock (Martos & Cox 1998, Gómez & Cox
2002). Behind the shock, downward flows of as
much as 20 km s−1 appear (Gómez & Cox 2002).
Some portion of this flow will contribute to inter-
stellar turbulence. However, the observed pres-
ence of interstellar turbulence in irregular galax-
ies without spiral arms, as well as in the outer re-
gions of spiral galaxies beyond the regions where
the arms extend suggest that this cannot be the
only mechanism driving turbulence. A more
quantitative estimate of the energy density con-
tributed by spiral arm driving has not yet been
done.

The interaction between rotational shear and
gravitation can, at least briefly, drive turbulence
in a galactic disk, even in the absence of spiral
arms. This process has been numerically mod-
eled at high resolution (sub-parsec zones) in two
dimensions in a series of papers by Wada & Nor-
man (1999, 2001), Wada, Spaans, & Kim (2000),
and Wada, Meurer & Norman (2002). However,
these models all share two limitations: they do
not include the dominant stellar component, and
gravitational collapse cannot occur beneath the
grid scale. The computed filaments of dense gas

are thus artificially supported, and would actu-
ally continue to collapse to form stars, rather than
driving turbulence in dense disks, see Sánchez-
Salcedo (2001) for a detailed critique. In very low
density disks, where even the dense filaments re-
mained Toomre stable, this mechanism might op-
erate, however.

Wada et al. (2002) estimated the energy input
from this mechanism following the lead of Sell-
wood & Balbus (1999), but substituting New-
ton stresses (Lynden-Bell & Kalnajs 1972) for
Maxwell stresses. The Newton stresses will only
add energy if a positive correlation between ra-
dial and azimuthal gravitational forces exists,
however, which is not demonstrated by Wada et
al. (2002). Nevertheless, they estimate the order
of magnitude of the energy input from Newton
stresses as

ė ' G(Σg/H)λ2Ω (5.15)

' (4 × 10−29 erg cm−3 s−1
)

×

(

Σg

10 M� pc−2

)2
(

H
100 pc

)−2

×

(

λ

100 pc

)2 (
Ω

(220 Myr)−1

)

,

where G is the gravitational constant, Σg the den-
sity of gas, H, the scale height of the gas, λ a
length scale of turbulence, and Ω the angular ve-
locity of the disk. Values chosen are appropriate
for the Milky Way. This is two orders of magni-
tude below the value required to maintain inter-
stellar turbulence, see Equation (5.12).

5.3.3 Protostellar Outflows

Protostellar jets and outflows are a popular sus-
pect for the energy source of the observed turbu-
lence. We can estimate their average energy input
rate, following McKee (1989), by assuming that
some fraction fw of the mass accreted onto a star
during its formation is expelled in a wind travel-
ing at roughly the escape velocity. Shu et al. (1988)
argue that fw ≈ 0.4, and that most of the mass is
ejected from close to the stellar surface, where the
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escape velocity

vesc =

(

2GM
R

)1/2

= (200 km s−1)

×

(

M
1 M�

)1/2 ( R
10 R�

)−1/2

,
(5.16)

where the scaling is appropriate for a solar-type
protostar with radius R = 10 R�. Observations
of neutral atomic winds from protostars suggest
outflow velocities of roughly this value (Lizano et
al. 1988, Giovanardi et al. 2000).

The total energy input from protostellar winds
will substantially exceed the amount that can
be transferred to the turbulence due to radiative
cooling at the wind termination shock. We repre-
sent the fraction of energy lost there by ηw. A
reasonable upper limit to the energy loss is of-
fered by assuming fully effective radiation and
momentum conservation, so that

ηw <
vrms

vw
= 0.05

( vrms

10 km s−1

)

(

200 km s−1

vw

)

(5.17)
where vrms is the rms velocity of the turbulence,
and we have assumed that the flow is coupled to
the turbulence at typical velocities for the diffuse
ISM. If we assumed that most of the energy went
into driving dense gas, the efficiency would be
lower, as typical rms velocities for CO outflows
are 1–2 km s−1. The energy injection rate

ė =
1
2

fwηw
Σ̇∗

H
v2

w (5.18)

' (2 × 10−28 erg cm−3 s−1)

(

H
200 pc

)−1

×

(

fw

0.4

)

×
( vw

200 km s−1

) ( vrms

10 km s−1

)

×

(

Σ̇∗

4.5 × 10−9 M� pc−2 yr−1

)

,

where Σ̇∗ is the surface density of star formation,
and H is the scale height of the star-forming disk.
The scaling value used for Σ̇∗ is the solar neigh-
borhood value (McKee 1989).

Although protostellar jets and winds are indeed
quite energetic, they deposit most of their en-
ergy into low density gas (Henning 1989), as is

shown by the observation of multi-parsec long
jets extending completely out of molecular clouds
(Bally & Devine 1994). Furthermore, observed
motions of molecular gas show increasing power
on scales all the way up to and perhaps beyond
the largest scale of molecular cloud complexes
(Ossenkopf & Mac Low 2002). It is hard to see
how such large scales could be driven by proto-
stars embedded in the clouds.

5.3.4 Massive Stars

In active star-forming galaxies, however, mas-
sive stars appear likely to dominate the driving.
They do so through ionizing radiation and stellar
winds from O stars, and clustered and field su-
pernova explosions, predominantly from B stars
no longer associated with their parent gas. The
supernovae appear likely to dominate, as we now
show.

Stellar Winds

First, we consider stellar winds. The total en-
ergy input from a line-driven stellar wind over
the main-sequence lifetime of an early O star can
equal the energy from its supernova explosion,
and the Wolf-Rayet wind can be even more pow-
erful. However, the mass-loss rate from stellar
winds drops as roughly the sixth power of the
star’s luminosity if we take into account that stel-
lar luminosity varies as the fourth power of stel-
lar mass (Vink, de Koter & Lamers 2000), and
the powerful Wolf-Rayet winds (Nugis & Lamers
2000) last only 105 years or so, so only the very
most massive stars contribute substantial energy
from stellar winds. The energy from supernova
explosions, on the other hand, remains nearly
constant down to the least massive star that can
explode. As there are far more lower-mass stars
than massive stars, with a Salpeter IMF giving
a power-law in mass of α = −2.35 (Equation
4.5), supernova explosions will inevitably dom-
inate over stellar winds after the first few million
years of the lifetime of an OB association.
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HII Region Expansion

Next, we consider ionizing radiation from OB
stars. The total amount of energy contained in
ionizing radiation is vast. Abbott (1982) estimates
the total luminosity of ionizing radiation in the
disk to be

ė = 1.5 × 10−24 erg s−1 cm−3. (5.19)

However, only a very small fraction of this total
energy goes to driving interstellar motions.

Ionizing radiation primarily contributes to inter-
stellar turbulence by ionizing HII regions, heat-
ing them to 7000–10,000 K, and raising their pres-
sures above that of surrounding neutral gas, so
that they expand supersonically. Matzner (2002)
computes the momentum input from the expan-
sion of an individual HII region into a surround-
ing molecular cloud, as a function of the cloud
mass and the ionizing luminosity of the central
OB association. By integrating over the HII re-
gion luminosity function derived by McKee &
Williams (1997), he finds that the average mo-
mentum input from a Galactic region is

〈δp〉 ' (260 km s−1)

(

NH

1.5 × 1022 cm−2

)−3/14

×

(

Mcl

106 M�

)1/14

〈M∗〉. (5.20)

The column density NH is scaled to the mean
value for Galactic molecular clouds (Solomon et
al. 1987), which varies little as cloud mass Mcl
varies. The mean stellar mass per cluster in the
Galaxy 〈M∗〉 = 440 M� (Matzner 2002).

The number of OB associations contributing sub-
stantial amounts of energy can be drawn from the
McKee & Williams (1997) cluster luminosity func-
tion

N (> S49) = 6.1
(

108
S49

− 1
)

, (5.21)

where N is the number of associations with
ionizing photon luminosity exceeding S49 =

S/(1049 s−1). The luminosity function is rather
flat below S49 = 2.4, the luminosity of a single
star of 120 M�, which was the highest mass star

considered, so taking its value at S49 = 1 is about
right, giving N (> 1) = 650 clusters.

To derive an energy input rate per unit volume
ė from the mean momentum input per cluster
〈δp〉, we need to estimate the average velocity of
momentum input vi, the time over which it oc-
curs ti, and the volume V under consideration.
Typically expansion will not occur supersonically
with respect to the interior, so vi < cs,i, where
cs,i ' 10 km s−1 is the sound speed of the ion-
ized gas. McKee & Williams (1997) argue that
clusters typically last for about five generations
of massive star formation, where each generation
lasts 〈t∗〉 = 3.7 Myr. The scale height for mas-
sive clusters is Hc ∼ 100 pc (e.g. Bronfman et al.
2000), and the radius of the star-forming disk is
roughly Rs f ∼ 15 kpc, so the relevant volume
V = 2πR2

s f Hc. The energy input rate from HII

regions is then

ė =
〈δp〉N (> 1)vi

Vti
(5.22)

= (3 × 10−30 erg s−1 cm−3
)

×

(

NH

1.5 × 1022 cm−2

)−3/14( Mcl

106 M�

)1/14

×

(

〈M∗〉

440 M�

)(

N (> 1)

650

)(

vi

10 km s−1

)

×

(

Hc

100 pc

)−1( Rs f

15 kpc

)−2( ti

18.5 Myr

)−1

,

where all the scalings are appropriate for the
Milky Way as discussed above. Nearly all of
the energy in ionizing radiation goes towards
maintaining the ionization degree of the diffuse
medium, and hardly any towards driving tur-
bulence. Flows of ionized gas may be impor-
tant very close to young clusters and may termi-
nate star formation locally (Section 2.5.11), but do
not appear to contribute significantly on a global
scale.

Supernovae

The largest contribution from massive stars to in-
terstellar turbulence comes from supernova ex-
plosions. To estimate their energy input rate,
we begin by finding the supernova rate in the
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Galaxy σSN. Cappellaro et al. (1999) estimate
the total supernova rate in supernova units to be
0.72 ± 0.21 SNu for galaxies of type S0a-b and
1.21 ± 0.37 SNu for galaxies of type Sbc-d, where
1 SNu = 1 SN (100 yr)−1(1010LB/L�)−1, and LB

is the blue luminosity of the galaxy. Taking the
Milky Way as lying between Sb and Sbc, we esti-
mate σSN = 1 SNu. Using a Galactic luminos-
ity of LB = 2 × 1010 L�, we find a supernova
rate of (50 yr)−1, which agrees well with the es-
timate in equation (A4) of McKee (1989). If we
use the same scale height Hc and star-forming ra-
dius Rs f as above, we can compute the energy in-
put rate from supernova explosions with energy
ESN = 1051 erg to be

ė =
σSNηSNESN

πR2
s f Hc

(5.23)

= (3 × 10−26 erg s−1 cm−3
)

×
(ηSN

0.1

) ( σSN

1 SNu

)

(

Hc

100 pc

)−1

×

(

Rs f

15 kpc

)−2 ( ESN

1051 erg

)

.

The efficiency of energy transfer from supernova
blast waves to the interstellar gas ηSN depends
on the strength of radiative cooling in the initial
shock, which will be much stronger in the ab-
sence of a surrounding superbubble (e.g. Heiles
1990). Substantial amounts of energy can escape
in the vertical direction in superbubbles as well,
however. Norman & Ferrara (1996) make an an-
alytic estimate of the effectiveness of driving by
SN remnants and superbubbles. The scaling fac-
tor ηSN ' 0.1 used here was derived by Thornton
et al. (1998) from one-dimensional numerical sim-
ulations of SNe expanding in a uniform ISM, or
can alternatively be drawn from momentum con-
servation arguments comparing a typical expan-
sion velocity of 100 km s−1 to typical interstellar
turbulence velocity of 10 km s−1. Detailed multi-
dimensional modeling of the interactions of mul-
tiple SN remnants (e.g. Avillez 2000) will be re-
quired to better determine it.

Supernova driving appears to be powerful
enough to maintain the turbulence even with the
dissipation rates estimated in equation (5.12). It

provides a large-scale self-regulation mechanism
for star formation in disks with sufficient gas
density to collapse despite the velocity disper-
sion produced by the magnetorotational instabil-
ity. As star formation increases in such galaxies,
the number of OB stars increases, ultimately in-
creasing the supernova rate and thus the veloc-
ity dispersion, which restrains further star forma-
tion.

Supernova driving not only determines the ve-
locity dispersion, but may actually form molecu-
lar clouds by sweeping gas up in a turbulent flow.
Clouds that are turbulently supported will expe-
rience inefficient, low-rate star formation, while
clouds that are too massive to be supported will
collapse (e.g. Kim & Ostriker 2001), undergoing
efficient star formation to form OB associations or
even starburst knots.

5.4 Applications

Different types of objects with different star for-
mation properties can be qualitatively explained
by the combination of density determined by
galactic dynamics and turbulence driven by dif-
ferent mechanisms. We here present illustrative
scenarios for different objects, moving from low
to high star formation efficiency.

5.4.1 Low Surface Brightness Galaxies

Low surface brightness galaxies have large frac-
tions of their baryonic mass in gas, whether they
have masses typical of massive (Schombert et al.
1992, McGaugh & de Blok 1997) or dwarf galax-
ies (Schombert, McGaugh, & Eder 2001). Never-
theless, their star formation rates lie well below
typical values for high surface brightness galax-
ies (van der Hulst et al. 1993; McGaugh & de Blok
1997). Their rotation curves have been derived
from both HI measurements (van der Hulst et al.
1993, de Blok, McGaugh, & van der Hulst, 1996),
and higher resolution Hα measurements (Swa-
ters, Madore, & Trewhalla, 2000; McGaugh, Ru-
bin, & de Blok, 2001, Matthews & Gallagher 2002)
which may sometimes disagree with the HI in the
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innermost regions (Swaters et al. 2000), but are in
generally good agreement (McGaugh et al. 2001).
They have lower gas and stellar surface densities
than high surface brightness galaxies (van der
Hulst et al. 1987; de Blok & McGaugh 1996).

The question of whether their disks have surface
densities lying below the Kennicutt (1989) thresh-
old for star formation has been studied using ro-
tation curves derived from HI measurements for
both massive (van der Hulst et al. 1993) and dwarf
(van Zee et al. 1997) galaxies. In the case of mas-
sive galaxies, surface densities beneath the Ken-
nicutt (1989) threshold do indeed appear to ex-
plain the lack of star formation (van der Hulst
1993). The moderate levels of turbulence re-
quired to maintain the observed velocity disper-
sions may be produced by magnetorotational in-
stabilities (Sellwood & Balbus 1999). Other ex-
planations for the lack of star formation, such as
an inability to form molecular hydrogen (Gerrit-
sen & de Blok 1999) or to cool it (Mihos, Spaans,
& McGaugh 1999), were derived from numerical
models that did not include magnetic effects, and
thus had no source of support other than thermal
pressure to counteract gravitational collapse and
star formation. If magnetorotational instability is
the dominant support mechanism, then star for-
mation will not be suppressed in the center where
the rotational shear drops. This is in fact where
star formation is found in low surface brightness
galaxies.

In the case of dwarf galaxies (Hunter 1997), the
situation appears to be slightly more complex.
Van Zee et al. (1997) demonstrate that the sur-
face density in a sample of low surface bright-
ness dwarf galaxies falls systematically below
the Kennicutt threshold, with star formation ob-
served in regions that approach the threshold,
while van Zee, Skillman, & Salzer (1998) show
that blue compact dwarf galaxies have surface
densities exceeding the threshold in their centers.
Hunter, Elmegreen, & Baker (1998), on the other
hand, argue that a criterion based on local shear
correlates better with the observations, especially
in galaxies with rising rotation curves. Another
factor that may be contributing to the star for-
mation histories of dwarf galaxies is that star-

bursts in the smaller ones (under 108 M�) can ac-
tually push all the gas well out into the halo, from
where it will take some hundreds of millions of
years to collect back in the center (Mac Low &
Ferrara 1999). This scenario may be consistent
with observations in some galaxies, as summa-
rized by Simpson & Gottesman (2000).

5.4.2 Galactic Disks

In normal galactic disks, where SNe appear to
dominate the driving of the turbulence, most re-
gions will have a star formation rate just suffi-
cient to produce turbulence that can balance the
local surface density in a self-regulating fashion.
However, as spiral arms or other dynamical fea-
tures increase the local density, this balance fails,
leading to higher local star formation rates. Be-
cause the increase in star formation rate as tur-
bulence is overwhelmed is continuous, the en-
hanced star formation in spiral arms and similar
structures does not globally approach starburst
rates except when the densities are greatly en-
hanced. Locally, however, even relatively small
regions can reach starburst-like star formation ef-
ficiencies if they exceed the local threshold for
turbulent support and begin to collapse freely. A
classic example of this is the massive star forma-
tion region NGC 3603, which locally resembles a
starburst knot, even though the Milky Way glob-
ally does not have a large star formation rate.
Also the Trapezium cluster in Orion is thought to
be formed with efficiency of <

∼ 50% (Hillenbrand
& Hartmann 1998).

5.4.3 Globular Clusters

Globular clusters may simply be the upper end
of range of normal cluster formation. Whitmore
(2000) reviews evidence showing that young
clusters have a power-law distribution reaching
up to globular cluster mass ranges. The luminos-
ity function for old globular clusters is log nor-
mal, which Fall & Zhang (2001) attribute to the
evaporation of the smaller clusters by two-body
relaxation, and the destruction of largest clusters
by dynamical interactions with the background
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galaxy. They suggest that the power-law distri-
bution of young clusters is related to the power-
law distribution of molecular cloud masses found
by Harris & Pudritz (1995). However, numeri-
cal models of gravitational collapse tend to pro-
duce mass distributions that appear more log-
normal, and are not closely related in shape to the
underlying mass distributions of density peaks
(Klessen 2001, Klessen et al. 2000). It remains un-
known whether cluster masses are determined by
the same processes as the masses of individual
collapsing objects, but the simulations do not in-
clude any physics that would limit them to one
scale and not the other. Further investigation of
this question will be interesting.

5.4.4 Galactic Nuclei

In galaxies with low star formation rates, the
galactic nucleus is often the only region with
substantial star formation occurring. As rota-
tion curves approach solid body in the centers of
galaxies, magnetorotational instabilities will die
away, leaving less turbulent support and perhaps
greater opportunity for star formation. In more
massive galaxies, gas is often funneled towards
the center by bars and other disk instabilities,
again increasing the local density sufficiently to
overwhelm local turbulence and drive star for-
mation.

Hunter et al. (1998) and Schaye (2002) note that
central regions of galaxies appear to have nor-
mal star formation despite having surface den-
sities that appear to be stable according to the
Toomre criterion. This could be due to reduced
turbulence in these regions reducing the surface
density required. This has classically been dif-
ficult to measure because H I observations with
sufficient velocity resolution to measure typical
turbulent linewidths of 6–12 km s−1 have gener-
ally had rather low spatial resolution, with just a
few beams across the galaxy. Most calculations of
the critical surface density just assume a constant
value of the turbulent velocity dispersion, which
may well be incorrect (Wong & Blitz 2002).

As an alternative, or perhaps additional expla-
nation, Kim & Ostriker (2001) point out that

the magneto-Jeans instability acts strongly in the
centers of galaxies. The magnetic tension from
strong magnetic fields can reduce or eliminate
the stabilizing effects from Coriolis forces in these
low shear regions, effectively reducing the prob-
lem to a two-dimensional Jeans stability problem
along the field lines.

5.4.5 Primordial Dwarfs

In the complete absence of metals, cooling be-
comes much more difficult. Thermal pressure
supports gas that accumulates in dark matter
haloes until the local Jeans mass is exceeded. The
first objects that can collapse are the ones that can
cool from H2 formation through gas phase reac-
tions. Abel, Bryan, & Norman (2000, 2002) and
Bromm, Coppi, & Larson (1999) have computed
models of the collapse of these first objects. Abel
et al. (2000, 2002) used realistic cosmological ini-
tial conditions, and found that inevitably a sin-
gle star formed at the highest density peak be-
fore substantial collapse had occurred elsewhere
in the galaxy. Bromm et al. (1999) used a flat-top
density perturbation that was able to fragment in
many places simultaneously, due to its artificial
symmetry.

Work by Li, Klessen, & Mac Low (2003) suggests
that the lack of fragmentation seen by Abel et
al. (2000, 2002) may be due to the relatively stiff
equation of state of metal-free gas. Li et al. found
that fragmentation of gravitationally collapsing
gas is strongly influenced by the polytropic index
γ of the gas, with fragmentation continuously de-
creasing from γ ∼ 0.2 to γ ∼ 1.3. The lim-
ited cooling available to primordial gas even with
significant molecular fraction may raise its poly-
tropic index sufficiently to suppress fragmenta-
tion. Abel and coworkers argue that the resulting
stars are likely to have masses exceeding 100 M�,
leading to prompt supernova explosions with ac-
companying metal pollution and radiative disso-
ciation of H2.

5.4.6 Starburst Galaxies

Star burst galaxies convert gas into stars at such
enormous rates, that the timescale to exhaust the
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available material becomes short compared to the
age of the universe (see the review by Sanders
& Mirabel 1996). Starbursts are therefore short-
lived phenomena typically lasting for a few tens
of Myr, however, may occur several times dur-
ing the lifespan of a galaxy. The star forma-
tion rates in starburst galaxies can be as high
as 1000 M� yr−1 (Kennicutt 1998) which is three
orders of magnitude above the current rate of
the Milky Way. Starbursting galaxies are rare
in the local universe, but rapidly increase in fre-
quency at larger lookback times suggesting that
the starburst phenomenon was a dominant phase
of early galaxy evolution at high redshifts. The
strongest star bursts are observed towards galac-
tic nuclei or in circumnuclear regions. However,
in interacting galaxies, star formation is also trig-
gered far away from the nucleus in the overlap-
ping regions or in spiral arms or sometimes even
in tidal tales. In such an interaction a significant
number of super-star clusters are formed, which
may be the progenitors of present-day globular
clusters. The Antennae galaxy, the product of
a major merger of to spiral galaxies (NGC 4038
and 4039), is a famous example where star for-
mation is most intense in the overlap region be-
tween the two galaxies (Whitmore & Schweizer
1995). Merging events seem always associated
with the most massive and most luminous star-
burst galaxies, the ‘ultraluminous IR galaxies’ –
ULIRG’s – (Sanders & Mirabel 1996). However,
the starburst phenomenon can also be triggered
in a more gentle, minor merger. Such an event
disturbs but does not disrupt the primary galaxy.
It will recover from the interaction without dra-
matic changes in its overall morphology. In par-
ticular, this may apply to the lower-mass ‘lumi-
nous blue compact galaxies’ which often show
very little or no sign of interaction (e.g. van Zee,
Salzer, & Skillman 2001). Alternative triggers of
the starburst phenomenon that have have been
suggested for these galaxies including bar insta-
bilities in the galactic disk (Shlosman, Begelman,
& Frank 1990), or also the compressional effects
of multiple supernovae and winds from massive
stars (e.g. Heckman, Armus, & Miley 1990) which
then would lead to very localized burst of star
formation. Regardless of the specific nature of the

triggering mechanism, the relevant property is a
fast and efficient flow of gas into a concentrated
region on timescales short enough to beat stellar
feedback processes. This can only be provided
by gravitational torques (Combes 2001). We con-
clude that starburst galaxies are extreme exam-
ples of a continuum of star formation phenom-
ena, with gravity overwhelming any resistive ef-
fects of turbulent gas motions on kpc scales.



134 CHAPTER 5. GALACTIC SCALE STAR FORMATION



Chapter 6

CONCLUSIONS

6.1 Summary

The formation of stars represents the triumph of
gravity over a succession of opponents. These
include thermal pressure, turbulent flows, mag-
netic flux, and angular momentum. For sev-
eral decades, magnetic fields were thought to
dominate the resistance against gravity, with star
formation occurring quasistatically. A grow-
ing body of observational evidence suggests that
when star formation actually occurs it does so
quickly and dynamically, with a rate controlled
by driven supersonic turbulence. Such turbu-
lence is required to explain the broad linewidths
observed in star-forming clouds, as magnetic
fields cannot explain them. The varying balance
between turbulence and gravity then provides a
natural explanation for the widely varying star
formation rates seen both locally and globally.
Scattered, inefficient star formation is a signpost
of turbulent support, while clustered, efficient
star formation occur in regions lacking support.
In this picture, gravity has already won in all or
nearly all observed dense protostellar cores: dy-
namical collapse seems to explain their observed
properties better than the alternatives. The mass
distribution of stars then depends at least partly
on the density and velocity structure resulting
from the turbulence, perhaps explaining the ap-
parent local variations of the stellar initial mass
function (IMF) despite its broad universality.

In Section 2 we summarize and critically dis-
cuss the physical phenomena that regulate stel-
lar birth. We begin with a historical overview
of the classical dynamical theory of star forma-
tion (Section 2.1), which already included turbu-

lent flows, but only in the microturbulent approx-
imation, treating them as an addition to the ther-
mal pressure. We then turn to the development of
the standard theory of star formation (Section 2.3)
which was motivated by growing understand-
ing of the importance of the interstellar magnetic
field in the 1960’s and 1970’s.

The standard theory relies on ion-neutral drift,
also known as ambipolar diffusion, to solve
the magnetic flux problem for protostellar cores,
which were thought to be initially magnetohy-
drostatically supported. At the same time mag-
netic tension resulted in braking of rotating pro-
tostellar cores, thus solving the angular momen-
tum problem as well. The timescale for ambipo-
lar diffusion to remove enough magnetic flux
from the cores for gravitational collapse to set in
can exceed the free-fall time by as much as an or-
der of magnitude, suggesting that magnetic sup-
port could also explain low observed star forma-
tion rates. Finally, magnetic fields were also in-
voked to explain observed supersonic motions.

However, both observational and theoretical re-
sults have begun to cast doubt on the standard
theory. In Section 2.4 we summarize theoreti-
cal limitations of the standard isothermal sphere
model that forms the basis for many of the prac-
tical applications of the standard theory. We
discuss several observational findings that put
the fundamental assumptions of that theory into
question. The observed magnetic field strengths
in molecular cloud cores appear too weak to sup-
port against gravitational collapse. At the same
time, the infall motions measured around star
forming cores extend too broadly, while the cen-
tral density profiles of cores are flatter than ex-
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pected for isothermal spheres. Furthermore, the
chemically derived ages of cloud cores are com-
parable to the free-fall time instead of the much
longer ambipolar diffusion timescale. Observa-
tions of young stellar objects also appear discor-
dant. Accretion rates appear to decrease rather
than remaining constant, far more embedded ob-
jects have been detected in cloud cores than pre-
dicted, and the spread of stellar ages in young
clusters does not approach the ambipolar diffu-
sion time.

New theoretical and numerical studies of tur-
bulence that point beyond the standard theory
while looking back to the classical dynamical the-
ory for inspiration have now emerged (Section
2.5). Numerical studies demonstrated that su-
personic turbulence decays rapidly, in roughly
a crossing time of the region under considera-
tion, regardless of magnetic field strength. Under
molecular cloud conditions, it decays in less than
a free-fall time. This implies that the turbulence
in star-forming clouds needs to be continuously
driven in order to maintain the observed mo-
tions. Driven turbulence has long been thought
capable of supporting gas against gravitational
collapse. Numerical models were used to test
this, showing that turbulence indeed can offer
global support, while at the same time leading to
local collapse on small scales. In strongly com-
pressible turbulence, gravitational collapse oc-
curs localized in the density enhancements pro-
duced by shocks. The rate of local collapse de-
pends strongly on the strength and driving scale
of the turbulence. This gives a natural expla-
nation for widely varying star formation rates.
Magnetic fields not strong enough to provide
static support make a quantitative but not a quali-
tative difference, reducing the collapse rate some-
what, but not preventing local collapse. They
may still act to transfer angular momentum so
long as they are coupled to the gas, however.

We outline the shape of the new theory in Sec-
tion 2.6. Rather than relying on quasistatic evo-
lution of magnetostatically supported objects, it
suggests that supersonic turbulent support con-
trols star formation. Inefficient, isolated star for-
mation is a hallmark of turbulent support, while

efficient, clustered star formation occurs in its ab-
sence. When stars form, they do so dynamically,
collapsing on the local free-fall time. The initial
conditions of clusters appear largely determined
by the properties of the turbulent gas, as is the
rate of mass accretion onto these objects. The bal-
ance between turbulent support and local den-
sity then determines the star formation rate. Tur-
bulent support is provided by some combination
of supernovae and galactic rotation, along with
possible contributions from other processes. Lo-
cal density is determined by galactic dynamics
and interactions, along with the balance between
heating and cooling in a region. The initial mass
function is at least partly determined by the ini-
tial distribution of density resulting from turbu-
lent flows, although a contribution from stellar
feedback and interactions with nearby stars can-
not be ruled out. The initial conditions for stel-
lar clusters in this theory come from the turbulent
flow from which they formed.

We explore the implications of the control of star
formation by supersonic turbulence at the scale of
individual stars and stellar clusters in Section 4.
We begin by looking more closely at the structure
of turbulent molecular clouds (Section 4.1), not-
ing that some well known descriptions like Lar-
son’s (1981) laws may be natural consequences
of a turbulent flow observed in projection. Ob-
servations indicate that interstellar turbulence is
driven on large scales, quite likely on scales sub-
stantially larger than the clouds themselves (see
also Section 5.3). We examine how turbulent frag-
mentation determines the star forming properties
of molecular clouds (Section 4.2), and then turn to
discuss protostellar cores (Section 4.3) and stel-
lar clusters (Section 4.4) in particular. Strongly
time-varying protostellar mass growth rates may
result as a natural consequence of competitive
accretion in nascent embedded clusters (Section
4.5). Turbulent models predict protostellar mass
distributions that appear roughly consistent with
the observed stellar mass spectrum (Section 4.7),
although more work needs to be done to arrive
at a full understanding of the origin of stellar
masses.

The same balance between turbulence and grav-
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ity that seems to determine the efficiency of star
formation in molecular clouds may also work at
galactic scales, as we discuss in Section 5. We be-
gin by describing the effects of differential rota-
tion and thermal instability competing and coop-
erating with turbulence to determine the overall
star formation efficiency in Section 5.1. The tran-
sient nature of molecular clouds suggests that
they form from gas compressed by large-scale
turbulent flows in galactic disks. This very same
flow may also drive the turbulent motions ob-
served within the clouds, and furthermore, may
also be responsible for their destruction on a short
timescale (Section 5.2). We then examine the
physical mechanisms that could drive the inter-
stellar turbulence, focusing our discussion on the
energy available from each mechanism in Sec-
tion 5.3. In star-forming regions of disks, super-
novae appear to overwhelm all other possibili-
ties. In outer disks and low surface brightness
galaxies, on the other hand, the situation is not so
clear: magnetorotational or gravitational instabil-
ities look most likely to drive the observed flows.
Finally, in Section 5.4, we give examples of how
this picture may apply to different types of ob-
jects, including low surface brightness, normal,
and starburst galaxies, as well as galactic nuclei
and globular clusters.

6.2 Future Research Problems

Although the outline of a new theory of star for-
mation has emerged, it is by no means complete.
The ultimate goal of a predictive, quantitative
theory of the star formation rate and initial mass
function remains elusive. It may be that the prob-
lem is intrinsically so complex, like terrestrial cli-
mate, that no single solution exists, but only a se-
ries of temporary, quasi-steady states. Certainly
our understanding of the details of the star for-
mation process can be improved, though. Ulti-
mately, coupled models capturing different scales
are likely necessary to capture the interaction of
the turbulent cascade with the varying thermo-
dynamics, chemistry, and opacity of gas at differ-
ent densities. We can identify several major ques-
tions that capture the outstanding problems. As

we merely want to summarize these open issues
in star formation, we refrain from giving an in-
depth discussion and the associated references,
which may largely be found in the body of the
review.

How can we describe turbulence driven by astrophysi-
cal processes? It is not uniform at the driving scale,
both because of its magnetization, and because
of the non-uniformity of explosions and other
drivers. The scalefree nature of the turbulent cas-
cade is further perturbed by the drastic changes
in the equation of state that occur as densities in-
crease, leading to stronger radiative cooling and
the reduction of heating by the exclusion of cos-
mic rays. At small scales, diffusion and dissi-
pation mechanisms determine the structure. Al-
though ambipolar diffusion probably limits the
production of small-scale magnetic field struc-
tures, there is increasing theoretical support for
additional density and velocity structure at scales
below the ambipolar diffusion cutoff, whose in-
teraction with self-gravity needs to be investi-
gated. Ultimately, the dense regions produced by
this imperfect cascade play one of the major roles
in determining the initial mass function of stars.

What determines the masses of individual stars? The
size of the initial reservoir of collapsing gas, de-
termined by turbulent flow, must be one element.
Subsequent accretion from the turbulent gas, per-
haps in competition with other stars, or even
by collisions between either protostellar cores or
stars, could also be important, but must be shown
to occur, in particular in a magnetized medium.
The properties of protostellar objects depend on
the time history of this accretion. Feedback from
the newly formed star itself, or from its neigh-
bors, in the form of radiation pressure, ionizing
radiation, or stellar winds and jets, may yet prove
to be another bounding term on stellar mass.

At what scales does the conservation of angular mo-
mentum and magnetic flux fail? That they must
fail is clear from the vast discrepancy between
galactic and stellar values. Protostellar jets al-
most certainly form when magnetic fields redis-
tribute angular momentum away from accreting
gas. This demonstrates that the conservation of



138 CHAPTER 6. CONCLUSIONS

flux and angular momentum must be coupled at
least at small scales. However, the observational
hint that molecular cloud cores may be lacking
substantial magnetic flux from the galactic value
suggests that magnetic flux may already be lost at
rather large scales. Sweeping gas along field lines
during the formation of molecular clouds, mag-
netic reconnection processes, and ambipolar dif-
fusion in combination with turbulent transport
offer possible solutions that require further in-
vestigation. These processes allow for the neces-
sary compression of gas to higher densities while
at the same time increase the mass-to-flux ra-
tio. However, on scales of individual stellar sys-
tems, the observed high fraction of binary stars
suggests that magnetic braking cannot be com-
pletely efficient at draining angular momentum
from collapsing protostars, and indicates that am-
bipolar diffusion may limit the effectiveness of
braking.

What determines the initial conditions of stellar clus-
ters? The spatial distribution of stars of differ-
ent masses in a stellar cluster or association, the
initial velocity dispersion of its stars, and its bi-
nary distribution probably all depend largely on
the properties of the turbulent flow from which it
formed. How much depends on the details of the
turbulence, and how much depends on the prop-
erties of dynamically collapsing gas must still be
determined. The influence of magnetic fields on
these properties remains an almost unexplored
field, although their ability to redistribute angu-
lar momentum suggests that they must play at
least some role.

What controls the distribution and metallicity of gas
in star-forming galaxies? At the largest scale, gas
follows the potential of a galaxy just as do all its
other constituents. The dissipative nature of gas
can allow it to quickly shed angular momentum
in disturbed potentials and fall to the centers of
galaxies, triggering starbursts. Even in normal
galaxies, gravitational instability may determine
the location of the largest concentrations of gas
available for star formation. How important is
turbulence in determining the location and prop-
erties of molecular clouds formed from that gas?
Are the molecular clouds destroyed again by the

same turbulent flow that created them, or do they
decouple from the flow, only to be destroyed by
star formation within them? How slowly do tur-
bulent flows mix chemical inhomogeneities, and
can the scatter of metallicities apparent in stars
of apparently equal age be explained by the pro-
cess?

Where and how fast do stars form in galaxies? The
existence of the empirical Schmidt Law relat-
ing gas column density to star formation rate,
probably with a threshold at low column den-
sity, still needs to be definitively explained. Can
the threshold be caused by a universal minimum
level of turbulence, or by a minimum column
density below which it is difficult for gas to cool?
In either case, examination of low-metallicity and
dwarf galaxies may well provide examples of
objects sufficiently different from massive disk
galaxies in both cooling and rotation to demon-
strate one or the other of these possibilities.

What determines the star formation efficiency of galax-
ies? The relative importance of turbulence, rota-
tion, gravitational instability, and thermal insta-
bility remains unresolved. At this scale, turbu-
lence can only play an instrumental role, trans-
mitting the influence of whatever drives it to the
interstellar gas. One possibility is that galaxies
are essentially self-regulated, with Type II super-
novae from recent star formation determining the
level of turbulence, and thus the ongoing star for-
mation rate. Another possibility is that a ther-
mal or rotational bottleneck to star formation ex-
ists, and that galaxies actually form stars just as
fast as they are able, more or less regardless of
the strength of the turbulence in most reasonable
regimes. Finding observational and theoretical
means to distinguish these scenarios represents
the great challenge of understanding the large-
scale behavior of star formation in galaxies.
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