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Kurzfassung
Die Antwortmengenprogrammierung entwickelte sich in den späten 90er Jahren als neues Paradigma

der logischen Programmierung und ist in den Gebieten des nicht-monotonen Schließens und der deduk-
tiven Datenbanken verwurzelt. Dabei wird eine Problemstellung als logisches Programm repräsentiert,
dessen Lösungen, die so genannten Antwortmengen, genau den Lösungen des ursprünglichen Problems
entsprechen. Die Antwortmengenprogrammierung bildet ein geeignetes Fundament zur Repräsentation und
zum Lösen von Entscheidungs- und Suchproblemen in der Komplexitätsklasse NP. Anwendungen finden
wir unter anderem in der Produktkonfiguration, Diagnose und bei graphen-theoretischen Problemen, z.B.
der Suche nach Hamiltonschen Kreisen.

In den letzten Jahren wurden viele Erweiterungen der Antwortmengenprogrammierung betrachtet. Die
am meisten untersuchte Erweiterung ist die Modellierung von Präferenzen. Diese bilden eine natürliche
und effektive Möglichkeit, unter einer Vielzahl von Lösungen eines Problems bevorzugte Lösungen zu
selektieren. Präferenzen finden beispielsweise in der Stundenplanung, bei Auktionen und bei Produkt-
konfigurationen ihre Anwendung.

Der Schwerpunkt dieser Arbeit liegt in der Modellierung, Implementierung und Anwendung von Präfe-
renzen in der Antwortmengenprogrammierung. Da es verschiedene Ansätze gibt, um Präferenzen darzu-
stellen, konzentrieren wir uns auf geordnete logische Programme, wobei Präferenzen als partielle Ordnung
der Regeln eines logischen Programms ausgedrückt werden. Dabei betrachten wir drei verschiedene Se-
mantiken zur Interpretation dieser Präferenzen. Im Vorfeld wurden für diese Semantiken die bevorzugten
Antwortmengen durch einen Compiler oder durch Meta-Interpretation berechnet. Da Präferenzen Lösungen
selektieren, stellt sich die Frage, ob es möglich ist, diese direkt in den Berechnungsprozeß von präferenziert-
en Antwortmengen zu integrieren, so dass die bevorzugten Antwortmengen ohne Zwischenschritte berech-
net werden können. Dazu entwickeln wir zuerst ein auf Graphen basierendes Gerüst zur Berechnung von
Antwortmengen. Anschließend werden wir darin Präferenzen integrieren, so dass bevorzugte Antwortmen-
gen ohne Compiler oder Meta-Interpretation berechnet werden. Es stellt sich heraus, dass die integrative
Methode auf den meisten betrachteten Problemklassen wesentlich leistungsfähiger ist als der Compiler oder
Meta-Interpretation.

Ein weiterer Schwerpunkt dieser Arbeit liegt in der Frage, inwieweit sich geordnete logische Pro-
gramme vereinfachen lassen. Dazu steht die Methodik der strengen Äquivalenz von logischen Programmen
zur Verfügung. Wenn ein logisches Programm streng äquivalent zu einem seiner Teilprogramme ist, so
kann man dieses durch das entsprechende Teilprogramm ersetzen, ohne dass sich die zugrunde liegende
Semantik ändert. Bisher wurden strenge Äquivalenzen nicht für logische Programme mit Präferenzen un-
tersucht. In dieser Arbeit definieren wir erstmalig strenge Äquivalenzen für geordnete logische Programme.
Wir geben notwendige und hinreichende Bedingungen für die strenge Äquivalenz zweier geordneter logis-
cher Programme an. Des Weiteren werden wir auch die Frage beantworten, inwieweit geordnete logische
Programme und deren Präferenzstrukturen vereinfacht werden können.

Abschließend präsentieren wir zwei neue Anwendungsbereiche von Präferenzen in der Antwortmen-
genprogrammierung. Zuerst definieren wir neue Prozeduren zur Entscheidungsfindung innerhalb von Grup-
penprozessen. Diese integrieren wir anschließend in das Problem der Planung eines Treffens für eine
Gruppe. Als zweite neue Anwendung rekonstruieren wir mit Hilfe der Antwortmengenprogrammierung
eine linguistische Problemstellung, die in deutschen Dialekten auftritt. Momentan wird im Bereich der Lin-
guistik darüber diskutiert, ob Regelsysteme von (menschlichen) Sprachen einzigartig sind oder nicht. Die
Rekonstruktion von grammatikalischen Regularitäten mit Werkzeugen aus der Informatik erlaubt die Un-
terstützung der These, dass linguistische Regelsysteme Gemeinsamkeiten zu anderen nicht-linguistischen
Regelsystemen besitzen.





Abstract
Answer Set Programming (ASP) emerged in the late 1990s as a new logic programming paradigm,

having its roots in nonmonotonic reasoning, deductive databases, and logic programming with negation as
failure. The basic idea of ASP is to represent a computational problem as a logic program whose answer
sets correspond to solutions, and then to use an answer set solver for finding answer sets of the program.
ASP is particularly suited for solving NP-complete search problems. Among these, we find applications to
product configuration, diagnosis, and graph-theoretical problems, e.g. finding Hamiltonian cycles.

On different lines of ASP research, many extensions of the basic formalism have been proposed. The
most intensively studied one is the modelling of preferences in ASP. They constitute a natural and effective
way of selecting preferred solutions among a plethora of solutions for a problem. For example, preferences
have been successfully used for timetabling, auctioning, and product configuration.

In this thesis, we concentrate on preferences within answer set programming. Among several for-
malisms and semantics for preference handling in ASP, we concentrate on ordered logic programs with
the underlying D-, W -, and B-semantics. In this setting, preferences are defined among rules of a logic
program. They select preferred answer sets among (standard) answer sets of the underlying logic pro-
gram. Up to now, those preferred answer sets have been computed either via a compilation method or by
meta-interpretation. Hence, the question comes up, whether and how preferences can be integrated into an
existing ASP solver. To solve this question, we develop an operational graph-based framework for the com-
putation of answer sets of logic programs. Then, we integrate preferences into this operational approach.
We empirically observe that our integrative approach performs in most cases better than the compilation
method or meta-interpretation.

Another research issue in ASP are optimization methods that remove redundancies, as also found in
database query optimizers. For these purposes, the rather recently suggested notion of strong equivalence
for ASP can be used. If a program is strongly equivalent to a subprogram of itself, then one can always
use the subprogram instead of the original program, a technique which serves as an effective optimization
method. Up to now, strong equivalence has not been considered for logic programs with preferences. In
this thesis, we tackle this issue and generalize the notion of strong equivalence to ordered logic programs.
We give necessary and sufficient conditions for the strong equivalence of two ordered logic programs. Fur-
thermore, we provide program transformations for ordered logic programs and show in how far preferences
can be simplified.

Finally, we present two new applications for preferences within answer set programming. First, we
define new procedures for group decision making, which we apply to the problem of scheduling a group
meeting. As a second new application, we reconstruct a linguistic problem appearing in German dialects
within ASP. Regarding linguistic studies, there is an ongoing debate about how unique the rule systems of
language are in human cognition. The reconstruction of grammatical regularities with tools from computer
science has consequences for this debate: if grammars can be modelled this way, then they share core
properties with other non-linguistic rule systems.
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Chapter 1

Introduction

Answer Set Programming (ASP) emerged in the late 1990s as a new logic programming paradigm [100,
147, 149, 132], having its roots in nonmonotonic reasoning, deductive databases, and logic programming
with negation as failure. Since its beginning, it has been regarded as the computational embodiment of
nonmonotonic reasoning and a primary candidate for an effective knowledge representation tool. This view
has been increased by the emergence of highly efficient solvers for ASP [181, 73, 152]. It now seems hard
to dispute that ASP brought new life to logic programming and nonmonotonic reasoning research and has
become a major driving force for these two fields.

The basic idea of ASP is to represent a computational problem as a logic program whose answer sets
correspond to solutions, and then use an answer set solver for finding answer sets of the program. This
approach is closely related to the one pursued in propositional satisfiability checking (SAT), where problems
are encoded as propositional theories whose models represent solutions. Even though, syntactically, ASP
programs look like Prolog programs, they are treated by rather different computational mechanisms. Indeed,
the usage of model generation instead of query evaluation can be seen as a recent trend in the encompassing
field of knowledge representation and reasoning. From a more formal point of view, ASP is particularly
suited for solving combinatorial search problems lying in NP or NPNP. Among these, we find applications
to plan generation, product configuration, diagnosis, and graph-theoretical problems.

On different lines of ASP research, many extensions of the basic formalism have been proposed. Per-
haps the most intensively studied one is the modeling of preferences in ASP, cf. [65]. Strongly rooted in the
research of nonmonotonic formalisms, the ability to specify preferences is acknowledged to be particularly
beneficial to ASP, since they constitute a natural and effective way of resolving indeterminate solutions.
For example, preferences have been successfully used for timetabling [91], auctioning [12], and configura-
tion [35]. A sophisticated application for information site selection is described in [79].

In this thesis, we concentrate on preferences within answer set programming. Among the numerous
formalisms and semantics for preference handling in ASP, we limited ourselves to ordered logic programs
with the underlying D-, W -, and B-semantics [62, 194, 34]. There, preferences are defined among rules of a
logic program and select preferred answer sets from (standard) answer sets of the underlying logic program.
Up to now, those preferred answer sets have been computed either by compilation methods or by meta-
interpretation. Hence, the question comes up, whether and how those preferences can be integrated into an
existing ASP solver. To respond to this question, we develop first an operational graph-based framework
for the computation of answer sets of a logic programs. Then, we integrate preferences into this operational
approach. As a result, we obtain that preferred answer sets can directly be computed by this graph-based
approach, without the need of any compilation method or meta-interpretation. One major subject is the
question whether an integrative approach is better than a compilation or meta-interpretation method for the
computation of preferred answer sets for ordered logic programs. We show that our integrative approach
performs in most cases better than the compilation method or meta-interpretation.

1
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Another research issue in ASP are optimization methods which remove redundancies, as also found in
database query optimizers. This is motivated by the fact that ASP code is often generated automatically,
since the availability of efficient solvers has stimulated the use of ASP in increasingly large practical ap-
plications. Those applications require features for modular programming. For these purposes the rather
recently suggested notion of strong equivalence for ASP [133, 188] can be used. Indeed, if two ASP pro-
grams are strongly equivalent, they can be used interchangeably in any context. This gives a handle on
showing the equivalence of ASP modules. Moreover, if a program is strongly equivalent to a subprogram
of itself, then one can always use the subprogram instead of the original program, a technique which serves
as an effective optimization method. Up to now, strong equivalence has never been considered for logic pro-
grams with preferences. In this thesis, we tackle this issue and generalize the notion of strong equivalence
to ordered logic programs with the underlying D-, W -, and B-semantics [62, 194, 34].

To summarize our contributions, we answer three main questions within this thesis:

1. How can preferences be integrated into an existing ASP solver?

2. Which method for the computation of preferred answer sets of ordered logic programs is better; the
integration of preferences into an ASP solver or a compilation or meta-interpretation method for
preferences?

3. How should ordered logic programs be handled by optimization methods? Under which conditions
can we simplify ordered logic programs and their underlying preferences?

Beside these questions regarding ordered logic programs, we present two new applications for prefer-
ences within answer set programming. First, we define new procedures for group decision making, which
we apply to the problem of scheduling a meeting for a group. As a second new application, we reconstruct
a linguistic problem appearing in German dialects within ASP.

This thesis is organized as follows: Chapter 2 provides a brief overview over background of this work.
We summarize the syntax and semantics of answer set programming, which is used throughout this the-
sis [5]. We briefly introduce the method of abduction, mainly used in Chapter 6, the notion of orders as
basic concept for the modeling of preferences and ordered logic programs, used in Chapter 4 and 5. Finally,
we consider program equivalences and program transformations, which are extended to logic programs with
preferences in Chapter 5, and provide some background on computational complexity.

In Chapter 3, we investigate the usage of rule dependency graphs and their colorings for characterizing
and computing standard answer sets of logic programs. This approach provides us with insights into the
interplay between rules when inducing answer sets. We start with different characterizations of answer sets
in terms of totally colored dependency graphs. We then develop operational characterizations of answer
sets in terms of operators on partial colorings. In analogy to the notion of a derivation in proof theory, our
operational characterizations are expressed as (non-deterministically formed) sequences of colorings, turn-
ing an uncolored graph into a totally colored one. In this way, we obtain an operational framework in which
different combinations of operators result in different formal properties. Among others, we identify the ba-
sic strategy employed by the noMoRe system [141, 153] and justify its algorithmic approach. Furthermore,
we distinguish operations corresponding to Fitting’s operator as well as to well-founded semantics. These
contributions have been published in [124, 123] and abridged reports in [121, 122]. A Prolog implemen-
tation of the operational characterization can be found at [97]. This contribution also provides the basic
techniques for the ASP solvernomore++ [152, 3, 2].

For the integration of preferences into answer set programming, we extend in Chapter 4 the operational
characterization presented in Chapter 3 by preferences. We elaborate upon rule dependency graphs and
their colorings for characterizing different preference handling strategies found in the literature. We start
with characterizing (three types of) preferred answer sets in terms of totally colored dependency graphs.
In particular, we demonstrate that this approach allows us to capture all three preference semantics in a
uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational
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characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy.
In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a
(non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally
colored one. Finally, we describe the C++ implementation of this approach, referred to as nomore<

system, as a branch of the nomore++ system [152]. Furthermore, we compare this integrative approach
for handling preferences with a meta-interpretation and a compilation method. For these purposes, we
develop benchmarks for logic programs with preferences. These contributions have been published in [125,
126, 103, 98].

Chapter 5 concentrates on notions of equivalence for logic programs with preferences. Since logic
programs are often generated automatically by so-called frontends, optimization methods are important to
remove redundancies. Such optimization methods are also found in database query optimizers. For our
purposes the recently suggested notion of strong equivalence for ASP [133, 188] can be used. Indeed, if
two ASP programs are strongly equivalent, they can be used interchangeably in any context. This gives
a handle on showing the equivalence of ASP modules. Moreover, if a program is strongly equivalent to a
subprogram of itself, then one can use the subprogram instead of the original program, a technique which
serves as an effective optimization method. In Chapter 5 we tackle this issue and generalize the notion of
strong equivalence to ASP with preferences. In detail, we consider ordered programs with three underlying
semantics for preference handling. We define several notions of equivalence for ordered programs and their
characterizations as well as program simplifications. Furthermore, we study computational complexity
issues. These contributions have been published in [89, 90, 119].

In Chapter 6 we present two new applications of preferences within answer set programming coming
from other fields of artificial intelligence and linguistics. First, we define new procedures for group decision
making problems. We apply these new voting procedures to the problem of scheduling a meeting for
a group. Furthermore, we include diagnostic reasoning into the scheduling problem. As a second new
application, we associate linguistic optimality theory with abduction and preference handling within ASP.
We present linguistic problems that appear in the study of dialects as new application of abduction and
preference handling. We consider differences in German dialects, which originate from different rankings of
linguistic constraints which determine the well-formedness of expressions within a language. We introduce
a framework for analyzing differences in German dialects by abduction of preferences. More precisely, we
will take the perspective of a linguist and reconstruct dialectal variation as an abduction problem: Given an
observation that a sentence is found as grammatically correct, abduce the underlying constraint ranking. For
this, we give a new definition for the determination of optimal candidates for total orders with indifferences.
These contributions have been published in [118, 120, 127, 128].

We conclude with Chapter 7. For a better readability, we provide all proofs in the appendix, which also
includes the bibliography and the index.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In this chapter, we provide the basics of answer set programming and preferences. In Section 2.1, we
give the basic syntax and semantics for answer sets. Furthermore, we consider related semantics, e.g.
well-founded semantics, and language extensions, e.g. disjunction, aggregate functions. In Section 2.2, we
briefly consider abduction, which is used later in Chapter 6. One semantics for preference handling, which
we consider in Chapter 4 and 5, is described in Section 2.4, after briefly recalling preference relations in
Section 2.3. An overview about other preference semantics within answer set programming follows in
Section 4.4. In Section 2.5, we consider basic concepts of program equivalences and simplifications, which
are extended to preferences in Chapter 5. Lastly, we briefly recall some complexity classes in Section 2.6.

2.1 Answer Set Programming
In this section, we provide the formal definition of syntax and semantics of answer sets for logic programs.
Furthermore, we consider the well-founded semantics and language extensions. For this, we assume a
familiarity of the reader with logic programming, which has been intensively studied in [131, 144, 10].

2.1.1 Syntax
A language L for a logic program consists of variables, constants, function symbols of arity n, predicate
symbols of arity m, and of the symbols “←”, ”not”, “(“, “)”, “,”, and “.”. A term is inductively defined
as follows: First, variables and constants are terms. Second, if f is a function of arity n and t1, . . . , tn
are terms, then f(t1, . . . , tn) is a term. A term is called variable-free (or ground) whenever it contains no
variables. An atom is an expression p(t1, . . . , tm) for the predicate p with arity m and the terms t1, . . . , tm.
Also, an atom is variable-free if it contains no variables. The Herbrand Universe of L, denoted with HUL,
is the set of all variable-free terms in language L. The Herbrand Base of the language L, denoted by HBL,
is the set of all variable-free atoms in language L. In this work, we consider only finite Herbrand Universes.
Regarding infinite Herbrand Universes we refer the reader to [16].

Given a language L, we can define the notion of a rule.

Definition 2.1.1 A (normal) rule r is an expression of the form

p0 ← p1, . . . , pm, not pm+1, . . . , not pn

where n ≥ m ≥ 0 and each pi, 0 ≤ i ≤ n is an atom.

Given a normal rule r, we denote with body(r) the body, {p1, . . . pm, not pm+1, . . . , not pn}, of r, and
with head(r) the head, p0, of r. To distinguish between the positive and the negative part of the body, we

5
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define body+(r) = {p1, . . . , pm} for the positive body and body−(r) = {pm+1, . . . , pn} for the negative
body. The intuitive reading of such a rule is as follows: If all atoms in body+(r) are derived and no atom in
body−(r) is derivable, then head(r) can be derived. Here, the negative information (indicated by the symbol
not) is implicitly provided through the closed world assumption, also called negation-as-failure, [165].

Rules with an empty body, i.e. head(r)← are referred to as facts. We define a (normal) logic program
Π as a set of normal rules. A logic program is called basic if body−(r) = ∅ for all its rules. Furthermore, we
denote with Atm, or sometimes Atm(Π), the set of all atoms appearing in a logic program Π. Whenever
a rule r contains variables, we can obtain the ground instantiation by applying all possible substitutions σ
from the variables in r to elements of the Herbrand Universe HUL.

Example 1 Let L be the language with constants {a, b, c}, variables X and Y , and the predicate symbols
p and q both having arity 2. Furthermore, let Π be the following logic program:

p(a, b)← p(c, a)← q(X, Y )← p(Y, X)

Then, the ground instantiation is as follows:

p(a, b)← p(c, a)← q(a, a)← p(a, a) q(a, b)← p(b, a)
q(a, c)← p(c, a) q(b, a)← p(a, b) q(b, b)← p(b, b) q(b, c)← p(c, b)
q(c, a)← p(a, c) q(c, b)← p(b, c) q(c, c)← p(c, c)

2.1.2 Semantics

In the following, we consider semantics for logic programs. First, we have a closer look at the answer set
semantics and then we examine the well-founded semantics.

2.1.2.1 Answer Sets

In this section, we describe the semantics of answer sets, which was originally defined in [99, 100].
Answer sets as such are defined via a reduction to negation-as-failure-free programs: A logic program

is called basic if body−(r) = ∅ for all its rules. A set of atoms X is closed under a basic program Π if for
any r ∈ Π, we have head(r) ∈ X whenever body+(r) ⊆ X . The smallest set of atoms which is closed
under a basic program Π is denoted by Cn(Π). The Gelfond-Lifschitz reduct of a normal logic program Π
relative to a set X of atoms:

(2.1) ΠX = {head(r)← body+(r) | r ∈ Π, body−(r) ∩X = ∅}.

With these formalities at hand, we can define answer set semantics for logic programs.

Definition 2.1.2 A set X of atoms is an answer set of a normal logic program Π if Cn(ΠX) = X .

Furthermore, we use AS(Π) for denoting the set of all answer sets of a program Π. This definition is due
to [100], where the term stable model is used; the idea traces back to [166]. In fact, one may regard an
answer set as a model of a program Π that is somehow “stable” under Π. In other words, an answer set
is closed under the rules of Π, and it is “supported by Π”, that is, each of its atoms has a derivation using
“applicable” rules from Π.

An alternative inductive characterization for operator Cn can be obtained by appeal to an immediate
consequence operator [144]. Let Π be a basic program and X a set of atoms. The operator TΠ is defined
as follows:

(2.2) TΠ(X) = {head(r) | r ∈ Π, body(r) ⊆ X} .



2.1. ANSWER SET PROGRAMMING 7

Iterated applications of TΠ are written as T j
Π for j ≥ 0, where T 0

Π(X) = X and T i
Π(X) = TΠ(T i−1

Π (X))
for i ≥ 1. It is well-known that Cn(Π) =

⋃
i≥0 T i

Π(∅) for any basic program Π. Also, for any answer set
X of program Π, it holds that X =

⋃
i≥0 T i

ΠX (∅).
Another important concept is that of the generating rules of an answer set. The set RΠ(X) of generating

rules of a set X of atoms from program Π is defined as

(2.3) RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅} .

In fact, one can show that a set of atoms X is an answer set of a program Π iff X = Cn((RΠ(X))∅)
(see Theorem A.1.2 on page 141; note that Π∅ = {head(r)← body+(r) | r ∈ Π} for any program Π).

Example 2 For illustration of answer sets, consider the program

Π1 = {p← p, q ← not p} .

Among the four candidate sets, we find a single answer set, {q}, as can be verified by means of the following
table:

X ΠX
1 Cn(ΠX

1 )
∅ p ← p

q ←
{q}

{p} p ← p ∅
{q} p ← p

q ←
{q}

{p, q} p ← p ∅

A noteworthy fact is that posing the query p or q to Π1 in a Prolog system leads to a non-terminating
situation due to its top-down approach.

Analogously, we may check that the program

(2.4) Π2 = {p← not q, q ← not p}

has the two answer sets {p} and {q}.

X ΠX
2 Cn(ΠX

2 )
∅ p ←

q ←
{p, q}

{p} p ← {p}
{q} q ← {q}
{p, q} ∅

The two rules in Π2 are mutually exclusive and capture an indefinite situation: p can be added unless q has
been added and vice versa.

Unlike the previous examples,

(2.5) Π3 = {p← not p}

admits no answer set, which can be verified by the following table:

X ΠX
3 Cn(ΠX

3 )
∅ p ← {p}
{p} ∅ ∅
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Interestingly, Π3 offers a straightforward way to model integrity constraints, which are rules with a head
atom. This can be done by introducing a new atom f , which is inserted into the negative part of the body
and into the head of the rule, i.e. the integrity constraint ← p1, . . . , pm, not pm+1, . . . , not pn can be
replaced by the rule

f ← p1, . . . , pm, not pm+1, . . . , not pn, not f

Whenever an integrity constraint is violated by a candidate set, this set is eliminated by the effect observed
on Program Π3 in Equation (2.5). The usefulness of integrity constraints can be observed by adding← p to
Program Π2 in Equation (2.4). In fact, the integrity constraints← p eliminates the original answer set {p}
of Π2, so that Π2 ∪ {← p} yields a single answer set {q}.

Regarding complexity 1, we have the following results: Given a normal logic program Π and an atom
p, deciding whether p is true in some answer set of Π is NP-complete. Given a normal logic program Π
and an atom p, deciding whether p is true in all answer sets of Π is co-NP-complete. Given a normal logic
program Π and a set X of atoms, deciding whether X is an answer set of Π is in P.

2.1.2.2 Fitting’s and Well-founded semantics

Unlike answer sets semantics, other approaches rely on 3-valued models (or partial models). Such a model
consists of a set of true atoms, a set of false atoms, and a set of atoms, where there truth value is unknown.
Given that the union of these three sets is the set of all atoms Atm appearing in a normal logic program, it is
sufficient to specify two of the three sets for determining a 3-valued interpretation. Accordingly, a 3-valued
interpretation I is presented by a pair (X, Y ) where X and Y are sets of atoms with X ∩ Y = ∅. For an
atom a ∈ Atm, a ∈ X means that a is true in I , while a ∈ Y means that a is false in I . Otherwise, a is
considered to be unknown in I .

The most prominent semantics are due to Fitting [95, 167] and Van Gelder [190]. In contrast to answer
sets semantics, both aim at characterizing conclusions comprised in a single 3-valued model of the under-
lying program. Interestingly, such 3-valued models provide an approximation of answer sets semantics in
the sense that all atoms true in such a 3-valued model belong to all answer sets of a given program, and no
false atom is contained in any answer sets.

Among both 3-valued semantics, less conclusions are obtained in Fitting’s semantics. It can be defined
by means of the following operator.

Definition 2.1.3 Let Π be a logic program and let X, Y be sets of atoms.
We define

Φ+
Π(X, Y ) = {head(r) | r ∈ Π, body+(r) ⊆ X, body−(r) ⊆ Y }

Φ−Π(X, Y ) = {q | for all r ∈ Π, if head(r) = q,

then (body+(r) ∩ Y 6= ∅ or body−(r) ∩X 6= ∅)} .

The pair mapping ΦΠ(X, Y ) = (Φ+
Π(X, Y ),Φ−Π(X, Y )) is often referred to as Fitting’s operator [94].

Furthermore, ΦΠ is monotonic. Iterated applications of ΦΠ are written as Φi
Π for i ≥ 0, where Φ0

Π(X, Y ) =
(X, Y ) and Φi+1

Π (X, Y ) = ΦΠΦi
Π(X, Y ) for i ≥ 0. We denote the least fixpoint by lfp(ΦΠ) =

⋃
i≥0 Φi

Π

and refer to it as Fitting semantics for the program Π. We have lfp(ΦΠ) = Φn+1
Π (∅, ∅) = Φn

Π(∅, ∅) for
some finite n since Π is finite.

For capturing other semantics, the construction Cn(ΠX) is sometimes regarded as an operator CΠ(X).
The anti-monotonicity of CΠ implies that C2

Π is monotonic. As shown in [189], different semantics are
obtained by distinguishing different groups of (alternating) fixpoints of C2

Π(X). For instance, given a
program Π, the least fixed point of C2

Π is known to amount to its well-founded model. Answer sets of Π are
simply fixed points of C2

Π that are also fixed points of CΠ. The well-founded model can be characterized in

1Complexity Classes are described in Section 2.6.
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terms of the least fixpoint of operator C2
Π. That is, the well-founded model of a program Π is given by the

3-valued interpretation (lfp(C2
Π), Atm \ CΠlfp(C2

Π)). Hence, it is sufficient to consider the least fixpoint
of C2

Π, since it determines the well-founded model. We therefore refer to the least fixpoint of C2
Π as the

well-founded set of Π. The set Atm \ CΠlfp(C2
Π) is usually referred to as the unfounded set of Π.

Concerning 3-valued interpretations, we obtain the following definition of unfounded sets [190].

Definition 2.1.4 Let Π be a logic program and let Z be a set of atoms.
Furthermore, let (X, Y ) be a 3-valued interpretation.
Then, Z is an unfounded set of Π w.r.t. (X, Y ) if each q ∈ Z satisfies the following condition: For each

r ∈ Π with head(r) = q, one of the following conditions hold:

1. body+(r) ∩ Y 6= ∅ or body−(r) ∩X 6= ∅;

2. there exists a p ∈ body+(r) such that p ∈ Z.

The greatest unfounded set of Π w.r.t. (X, Y ), denoted UΠ(X, Y ), is an unfounded set, which is the union
of all sets that are unfounded w.r.t. (X, Y ).

Alternatively, the well-founded model can then be obtained by iteratively applying Fitting’s operator and
computing greatest unfounded sets. Iterated applications of ΦΠ and UΠ are written asWi+1

Π = ΦΠ(Wi
Π)∪

UΠ(Wi
Π), where W0

Π = (∅, ∅), for i ≥ 0. The least fixpoint is then the well-founded model of Π and
defined as Wω

Π = ∪i≥0Wi
Π. There always exists a well-founded model of Π. If the well-founded model

is total, then the set of true atoms is the unique answer set of Π. Furthermore, the well-founded model
is a subset of every answer set, i.e. all true atoms are true in all answer sets and no false atoms of the
well-founded model is contained in any answer sets of Π.

Example 3 Let us consider the following logic program:

Π =



a ←
b ← a
c ← a, not d
d ← not c
e ← f
f ← e


The answer sets of Π are {a, b, c} and {a, b, d}. Applying Fitting’s operator applied to (∅, ∅) yields {a, b}
as true and none atom as false. Furthermore, we obtain that {e, f} is the greatest unfounded set w.r.t. (∅, ∅).
Hence, we get the 3-valued model ({a, b}, {e, f}). Repeated applications of ΦΠ and UΠ result again in
({a, b}, {e, f}). Hence, Π has the well-founded model ({a, b}, {e, f}).

Regarding program Π = {p← not p}, we get (∅, ∅) as well-founded model, whereas Π has no answer
set. Hence, the well-founded semantics leaves every atom as undefined in this conflicting situation, where
no answer set exists.

Considering complexity, the Fitting semantics can be computed in linear time in size of Π and the
well-founded model in quadratic time in size of Π.

2.1.3 Language Extensions

In this section, we consider language extensions of normal logic programs. First, we show how easily
normal logic programs can be extended by classical negation and other Boolean expressions. Second, we
consider language extensions of logic programs by weight and aggregate functions, e.g. counting elements
in a set, finding maximal or minimal elements.
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2.1.3.1 Classical negation

Normal logic programs provide negative information implicitly through the closed world assumption [165].
Let us consider the following rule: cross← not train. If train is not derivable, the atom cross becomes
true. But this may lead to a disaster because we have no explicit information that there in fact is no train.
An alternative would be to use an explicit negation operator ¬. Then we can express the previous rule as
follows: cross← ¬train.

An atom p or a (classical) negated atom ¬p is called a literal. Logic programs with literals are called
extended logic programs [100]. An extended logic program is contradictory [10] if complementary literals,
e.g. train and ¬train, are enforced to be in an answer set. In that case, one obtains exactly one answer set,
viz the set of all literals. If a program is not contradictory, the definition of answer sets of extended logic
programs carries over from normal ones.

Classical negation can be eliminated by a polynomial transformation, replacing each negated atom ¬p
by a new atom p′ and adding the rules,

q ← p, p′ and q′ ← p, p′ ,(2.6)

for each atom p and q. The rules in (2.6) generate the set of all literals in case of contradictory programs. For
preserving only consistent answer sets, we may add integrity constraints← p, p′ for each atom p, instead
of the rules in (2.6).

2.1.3.2 Disjunction

Disjunctive logic programs extend normal or extended logic programs by disjunctive information in the
head of a rule [100]. More precisely, the head of a rule is a disjunction q0; . . . ; qk of atoms or literals
qi respectively, where 0 ≤ i ≤ k. E.g. p; q expresses that “p is true or q is true”. Letting head(r) =
{q0, . . . , qk}, a set of atoms X is closed under a basic program Π if for any r ∈ Π, head(r) ∩ X 6= ∅
whenever body+(r) ⊆ X . The definition of ΠX carries over from normal programs. An answer set X of a
disjunctive logic program is a⊆- minimal set of atoms being closed under ΠX . For example, the disjunctive
logic program Π = {p; q ←} has the answer sets {p} and {q}. The set {p, q} is closed under Π{p,q}, but it
is not an answer set of Π since it is not ⊆-minimal. Observe that adding the rules p← and q ← to Π makes
{p, q} the only answer set of Π ∪ {p←, q ←}.

The usage of disjunction raises the complexity of the underlying decision problems, e.g. deciding
whether there exists an answer set X for a given atom p such that p ∈ X is ΣP

2 -complete [83]. Answer sets
of disjunctive logic programs can be computed by using the DLV system [73, 130].

2.1.3.3 Weight Constraints

A weight constraint [180] is of the form

l ≤ {a1 = wa1 , . . . , an = wan
, not b1 = wb1 , . . . , not bn = wbn

} ≤ u

where each ai, bj is an atom. Each atom or negated atom has an associated weight, e.g. wb1 is the weight
of not b1. The numbers l and u give lower and upper bounds, respectively, of the constraint. The weights
can be real numbers, where also negative weights are allowed. Intuitively, a weight constraint is satisfied
by a set of atoms S if the sum of weights of those atoms of {a1, . . . , an} that are in S and those atoms of
{b1, . . . , bm} that are not in S is between the bounds l and u. Weight constraints may appear in the head or
in the positive body of rules.

Special cases of weights constraint are cardinality constraints and choice rules. Cardinality constraints
are of the form l {a1, . . . , an, not b1, . . . , not bm} u, where each atom ai and each negated atom not bj has
weight 1. For the special case, where we do not have negated atoms, i.e. l {a1, . . . , an} u, the cardinality
constraint “selects” subsets of {a1, . . . , an} of size between l and u.
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Either of the bounds l and u can also be omitted in which case a missing lower bound is taken to be
−∞ and a missing upper bound is taken to be∞. As a special case, we get so called choice rules, which
are of the form

{h1, . . . , hk} ← a1, . . . , an, not b1, . . . not bn.

That is, whenever the body of a choice rule is satisfied, we can derive an arbitrary subset of {h1, . . . , hk}.
Interestingly, one can also model integrity constraints ← C1, . . . , Cn with weight rules by taking an

unsatisfiable constraint, e.g. 1 ≤ {}, as head of such a rule.
Another important feature of weight constraints is the modeling of optimization statements, which allow

to select subsets with a minimal or maximal weight, respectively. A minimization statement M is of the
form

minimize{a1 = wa1 , . . . , an = wan
, not b1 = wb1 , . . . , not bn = wbn

}

declaring that we want to find a stable model S with the smallest weight

w(M,S) =
∑
ai∈S

wai
+

∑
bj 6∈S

wbj
.

Analogously, we have maximize statements of the form

maximize{a1 = wa1 , . . . , an = wan , not b1 = wb1 , . . . , not bn = wbn}.

Regarding complexity, we have the following for extended logic programs with weight constraints,
where we assume that all weights and bounds are integers: Let Π be a finite set of weight rules without
optimization statements and S be a set of atoms. Then it can be decided in polynomial time whether S
is an answer set of Π. Deciding whether a set of weight rules without optimization statements has an
answer set is NP-complete. Computing an answer set of a set of weight rules without optimize statements
is FNP-complete. 2 However, adding optimization statements raises the complexity, since we are looking
for optimal models. Deciding whether a set of weight rules has an optimal model containing a given atom is
∆P

2 -hard. Let Π be a set of weight rules with optimization statements. Then computing an optimal answer
set of Π is FPNP-complete. 3

Weight constraints as language extensions are supported by the smodels system [181, 150].

2.1.3.4 Aggregate functions and Templates

The DLV system supports, besides disjunctive programs, arithmetic operators (like sum, times, count) [66,
67, 93, 42, 73, 88] and templates [107, 44].

Aggregate predicates allow to express properties over a set of elements. They can occur in the bodies
of rules and constraints, possibly negated using negation-as-failure. Aggregates often allow to describe
problems in a more natural way.

Since aggregate functions are defined over sets, we first present the notion of a symbolic set [66]. A
symbolic set is a pair {V ars : Conj}, where V ars is a list of variables, and Conj is a conjunction of
standard literals. A ground set is a set of pairs of the form 〈t : Conj〉, where t is a list of constants and
Conj is a variable-free conjunction of literals. For example, assume that p(a, 1), p(c, 1) and p(c, 2) holds.
Then, the symbolic set {X : p(X, 1)} is interpreted as {〈a : p(a, 1)〉, 〈c : p(c, 1)〉}. That is, the symbolic
set is the ground instantiation for variable X such that p(X, 1) holds.

The DLV system provides the following aggregate functions [67, 73]:

• #count, which counts the number of elements in a set:

2FNP is the class of all function problems associated with languages in NP .
3FPNP is the class of all functions from strings to strings that can be computed by a polynomial-time Turing machine with a NP

oracle.
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• #sum, which sums up a set of numbers;

• #times, which calculates the product of a set of number; and

• #min and #max, which select the minimum/maximum element in a set, where the lexicographic
ordering is considered when the set contains strings.

Example 4 Let Π be the following logic program. Π = {p(1, 1) ←, p(2, 1) ←, p(5, 1) ←, p(2, 2) ←
, p(4, 2) ←, p(7, 3) ←} ∪ {i(N) ←| N = 1, 2, . . . , 7}, where the predicate i(.) provides the range of
p(., .) ensuring safety of aggregate functions [67]. Then, the aggregate function

#sum{X : p(X, 1)}

is instantiated by #sum{〈1 : p(1, 1)〉, 〈2 : p(2, 1)〉, 〈5 : p(5, 1)〉} and returns the value 8 = 1 + 2 + 5,
which can be obtained by writing N = #sum{X : p(X, 1)}. Analogously, N = #count{X : p(X, 1)}
gives N = 3. N = #times{X : p(X, 1)} gives N = 10. The maximal element w.r.t. the first component
of predicate p can be obtained by N = #max{X : p(X, Y ), i(Y )}, which returns N = 7. Note that
in the expression #max{X : p(X, Y ), i(Y )} the variable Y is instantiated by using the predicate i(.).
Analogously, the minimal element of the set, where the second component of predicate p(., .) is 2 is obtained
by N = #min{X : p(X, 2)} which yields N = 2.

The well-founded semantics for aggregate functions has been defined in [42].
Furthermore, DLV supports a language extension with “template” predicates, which are somehow simi-

lar to Object Oriented Logic Programming [59, 107]. For example, the template

#template
subset[p(1)](1){subset(X) ∨ ¬subset(X)← p(X)}

defines subsets of the domain of a given predicate p(.). For more details about templates, see [107, 44].

2.2 Abduction
Consider a situation in which a boat can be used to cross a river if it is not leaking or, if it is leaking, there
is a bucket to scoop the water out of the boat [136]. This situation can be formalized by the following rules:

canCross ← boat, not leaking

canCross ← boat, leaking, hasBucket

Now, you observe somebody who crosses the river with a boat. But, how can you explain that? One
explanation for canCross is {boat}, meaning that you have a boat and that is it not leaking. Other expla-
nations are {boat, leaking, hasBucket} as well as {boat, hasBucket}. Problems, where we search for
explanations for an observation, are called abductive problems.

An abductive framework [96, 68, 84, 116] is a triple 〈Π,H, O〉, where Π is a logic program, H is a set
of facts, referred to as hypotheses, and O is a set of atoms, referred to as observations. A set ∆ ⊆ H is an
explanation of O w.r.t. Π if there is an answer sets of Π∪∆ which contains O (brave reasoning). Note that
in the literature some definitions of abduction are based on cautious reasoning, i.e. O must be contained in
all answer sets of Π∪∆. An explanation ∆1 is minimal, if for every other explanation ∆2 of O, ∆2 6⊂ ∆1

holds. We call ∆ a single explanation if |∆| = 1. In the canCross example, {boat}, is the minimal (and
single) explanation.

Hence, abduction offers a very natural inference process of forming a hypothesis that explains observed
phenomena. The diagnosis front-end of the DLV system [73, 76] offers a comfortable way for computing
explanations within answer set programming.
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The usefulness of abduction [68, 114] has been demonstrated in a variety of applications, e.g. in diag-
nosis of electrical circuitry [76], air crew-assignment [68], and database updates [115].

Complexity results for abduction are provided in [84].

2.3 Orders

Next, we give some terminology and notations about preference relations.
A (partial) order R on a set X is a reflexive, transitive and antisymmetric relation on X (recall that R is

antisymmetric iff for all x, y ∈ X , R(x, y) and R(y, x) implies x = y.) R(x, y) is also denoted by x �R y.
�R denotes the strict relation induced from R, defined by x �R x′ iff x �R x′ and not (x′ �R x)4. An
order R is total (or complete, linear) iff R(x, x′) or R(x′, x) holds for all x, x′ ∈ X . Let R, R′ be two
orders on X . R′ extends R iff R ⊆ R′, that is, R(x, x′) implies R′(x, x′) for all x, x′ ∈ X . Let R be an
order. Then, a total order T is an complete extension of R iff T extends R. Ext(R) denotes the set of all
complete extensions of R.

2.4 Ordered Logic Programs

In this section, we consider preferences among rules of a logic program and the underlying semantics.
A logic program Π is said to be ordered if we have a set N of terms serving as names for rules and a
preference relation <⊆ N × N as a strict partial order among rules, where we write s < t for the names
s, t ∈ N of rules in Π. 5 Furthermore, we assume a bijective function n(.) assigning to each rule r ∈ Π a
name n(r) ∈ N . To simplify our notation, we usually write ri instead of n(ri) for some ri ∈ Π. Given
ri, rj ∈ Π, ri < rj states that rj has higher priority than ri. Formally, an ordered (logic) program can be
understood as a quadruple (Π,N , n,<), where Π is a logic program, n is a bijective function between Π
and the set of namesN , and < is a set of preference relations over Π. Whenever possible, we leaveN and n
implicit and just write (Π, <) for ordered programs. Moreover, we write <= ∅ if the partial order is empty,
that is, (Π, ∅) denotes a logic program. The interpretation that one rule has higher priority than another rule
can be made precise in different ways. In what follows, we consider three such interpretations: D– [62],
B– [34], and W– preference [194]. Given (Π, <), all of them use < for selecting (different) preferred
answer sets among the standard answer sets of Π. We now recall the definitions of these semantics. 6

Definition 2.4.1 Let (Π, <) be an ordered logic program and let X be an answer set of Π.
Then, X is called <D–preferred, if an enumeration 〈ri〉i∈I of Π exists such that for every i, j ∈ I we

have

1. if ri < rj , then j < i, and

2. if ri ∈ RΠ(X) then body+(ri) ⊆ {head(rj) | rj ∈ RΠ(X), j < i}, and

3. if ri ∈ Π \RΠ(X) then

(a) body+(ri) 6⊆ X or

(b) body−(ri) ∩ {head(rj) | rj ∈ RΠ(X), j < i} 6= ∅.

4Or equivalently, since R is antisymmetric: x �R x′ iff x �R x′ and x′ 6= x).
5Within this notation we don’t allow rules with an empty head. Such integrity constraints ← body have to be written as f ←

body, not f for f being a new atom.
6In the following, I is an index set I = {1, . . . , n} for |Π| = n.
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Condition 1 stipulates that the enumeration of Π is compatible with <. Condition 2 makes the property
of supportedness explicit. Although any answer set is generated by a supported sequence of rules, in
D–preferences, rules cannot be supported by lower-ranked ones. Condition 3a separates the handling of
unsupported rules from preference handling. Condition 3b guarantees that rules can never be blocked by
lower-ranked ones. 7 Let us consider the following examples.

Example 5 The ordered program

(Π1, <1) =
{

r1 : a←
r2 : b← a

r1 <1 r2

}
has no <D-preferred answer set, since before applying r2 we have to apply r1 (Condition 2 in Defini-
tion 2.4.1), which is contradictory to the given preference relation r1 <1 r2, where the more preferred rule
r2 has to be derived before the lower ranked rule r1 (Condition 1 in Definition 2.4.1).

Example 6 The ordered program

(Π2, <2) =

 r1 : b← a, not c
r2 : c← not b
r3 : a←

r3 <2 r2

r2 <2 r1


has the standard answer sets {a, b} and {a, c}, where both are not <D- preferred. For answer set {a, b},
the rule r1 is applicable only after having applied the lower ranked rule r3, which is not allowed in this
semantics. For answer set {a, c}, the rule r1 is blocked by the lower ranked rule r2, i.e. c ∈ body−(r1) is
derived by using lower ranked rule r2 (Condition 3b in Definition 2.4.1).

Next, we consider the W -semantics which weakens the concept of order preservation in Condition 2
and 3 of the D-semantics.

Definition 2.4.2 Let (Π, <) be an ordered logic program and let X be an answer set of Π.
Then, X is called <W –preferred, if an enumeration 〈ri〉i∈I of Π exists such that for every i, j ∈ I we

have

1. if ri < rj , then j < i, and

2. if ri ∈ RΠ(X) then

(a) body+(ri) ⊆ {head(rj) | rj ∈ RΠ(X), j < i} or

(b) head(ri) ∈ {head(rj) | rj ∈ RΠ(X), j < i}, and

3. if ri ∈ Π \RΠ(X) then

(a) body+(ri) 6⊆ X or

(b) body−(ri) ∩ {head(rj) | rj ∈ RΠ(X), j < i} 6= ∅ or

(c) head(ri) ∈ {head(rj) | rj ∈ RΠ(X), j < i}.

For W–preference, the concept of order preservation of D–preference is weakened in Condition 2 and 3 for
suspending both conditions, whenever the head of a preferred rule is derivable in an alternative way. 8

7Note that in Definition 2.4.1 we do not necessarily have to require that X has to be an answer set, since conditions 2 and 3 capture
the conditions for X being an answer set.

8As in Definition 2.4.1, the condition that X has to be an answer set is not necessarily required.
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Example 7 Let us reconsider the examples given above. For the program (Π1, <1) given in Example 5 we
have that {a, b} is not a <W - preferred answer set. But adding the rule b← yields {a, b} as <W - preferred
answer set of (Π1 ∪ {b ←}, <1) since the head of r2 is derivable in an alternative way, namely by the
non-preferred rule b←.

For the ordered program (Π2, <2) given in Example 6, we also have that no answer set is <W -preferred
since the heads are not derivable in an alternative way.

Finally, we consider the B-semantics.

Definition 2.4.3 Let (Π, <) be an ordered logic program and let X be an answer set of Π.
Then, X is called <B–preferred, if an enumeration 〈ri〉i∈I of Π exists such that for every i, j ∈ I we

have

1. if ri < rj , then j < i, and

2. if ri ∈ Π \RΠ(X) then

(a) body+(ri) 6⊆ X or

(b) body−(ri) ∩ {head(rj) | rj ∈ RΠ(X), j < i} 6= ∅ or

(c) head(ri) ∈ X .

B–preference drops Condition 2; thus decoupling preference handling from the order induced by consecu-
tive rule applications. 9

Example 8 For the ordered program (Π1, <1) given in Example 5, we can see that {a, b} is a <B-preferred
answer set since preference handling is decoupled from rule application.

Furthermore, for program (Π2, <2) given in Example 6, we get {a, b} as <B-preferred answer set.
Like with the other semantics, answer set {a, c} is non-preferred also in the B-semantics, since rule r1 is
blocked by the less preferred rule r1 and head(r1) is not in the corresponding answer set.

For σ ∈ {D,W,B}, we define ASσ((Π, <)) as the set of all <σ-preferred answer sets of ordered logic
program (Π, <). As shown in [177], the three strategies yield an increasing number of preferred answer
sets. That is, D–preference is stronger than W–preference, which is stronger than B–preference, which is
stronger than no preference. More precisely, we have

ASD((Π, <)) ⊆ ASW ((Π, <)) ⊆ ASB((Π, <)) ⊆ AS(Π).

Whenever no preferences are specified, the preferred answer sets are exactly the standard answer sets, i.e.
ASσ((Π, ∅)) = AS(Π) for σ ∈ {D,W,B}. In the following, we sometimes just write preferred answer
sets whenever we mean <σ- preferred, or <σ-preserving answer set, where σ holds for D,W , and B.

As seen in Example 5, neither of the three semantics guarantee the existence of a preferred answer set.
For this reason, the notion of weakly preferred answer sets has been defined in [34].

The given approaches preserve all anti-monotonicity. That is, increasing the preference relations imply
a decreasing number of preferred answer sets [177].

Theorem 2.4.1 Let (Π, <1) and (Π, <2) be ordered logic programs and σ ∈ {D,W,B}.
If <1⊆<2 then ASσ((Π, <2)) ⊆ ASσ((Π, <1)).

An important property of these preference approaches is that they fulfill Brewka’s and Eiter’s Principles
for priorities [34]:

9For this Definition, we have to require that X is an answer set, since B- preferences pay no attention to supportness of rules.
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Principle I. Let (Π, <) be an ordered logic program and let X1 and X2 be two standard answer sets of Π
generated by RΠ(X1) = R ∪ {r1} and RΠ(X2) = R ∪ {r2}, respectively, where r1, r2 6∈ R. If
r2 < r1, then X2 is not a preferred answer set of Π.

Principle II. Let (Π, <) be an ordered logic program and let X be a preferred answer set of Π. Further-
more, let r 6∈ Π be a rule such that body+(r) 6⊆ X . Then, X is a preferred answer set of (Π∪{r}, <).

The first principle states the main intuition of preferences among rules. Intuitively, whenever two rules r1

and r2, where r1 is preferred over r2, are “responsible” for generating two different answer sets, the answer
set generated by r2 should not be preferred. The second principle expresses that adding non-applicable
rules, where the positive body is not derivable, should not change the preferredness of answer sets.

The presented preference relations have also been extended to the dynamic case in [62]. More precisely,
a dynamic preference is of the form n(ri) < n(rj)← body expressing that the preference relation n(ri) <
n(rj) becomes active whenever the body of the rule is true. In what follows, we consider only the static
case n(ri) < n(rj)←, which is interpreted as order among rules.

The different three semantics have been implemented by meta-interpretation [77, 74] and by the plp
system, a pre-compilation front-end [62, 161] for existing answer set programming solvers. An integration
into an answer set programming solver is be presented in Chapter 4. There, we provide an operational char-
acterization for the computation of preferred answer sets together with a C++ implementation, including
benchmarks for ordered programs and a comparison to the plp system and the meta-interpreter. Computa-
tional complexity issues for the D-, W -, and B-semantics are given in Chapter 5.

The plp system associated with the D-semantics [61] has successfully been used for information-site
selection [79]. A prototypical environment of a movie domain has been developed, which comprises (i)
basic domain knowledge, (ii) XML sources containing movie data wrapped from the Internet Movie Data-
base [108] and other movie related data sources, and (iii) suitable site descriptions. Queries are formulated
in XML-QL [70], and can be executed after site selection on the respective source. Rule-based preferences
are then used to select sites such that the utility of the answer (in terms of quality of the result and other
criteria) is as large as possible for the user.

As another example, the D-semantics can be used within the problem of searching Hamiltonian cycles
in graphs. There, preferences are used to “guide” the search for a cycle, e.g. vertex v should be visited
before vertex v′. Also, for the coloring problem of a graph, preferences can be used to prefer special colors
for certain vertices. For more details about including preferences in benchmarks see Section 4.2.

The D-semantics builds upon previous work presented in [60] has been used to link default logic with
autoepistemic logic in [85]. There, classical default theories have been treated as ordered theories and it is
given a simple translation of classical default logic into an autoepistemic system with language constructs
representing different degrees of confidence.

2.5 Program Equivalences

Since answer set programming code is often generated automatically by so-called front-ends, one needs op-
timization methods removing redundancies, as also found in database query optimizers. For these purposes
the recently suggested notion of strong equivalence for answer set programming [133, 188] can be used.
Indeed, if two ASP programs are strongly equivalent, they can be used interchangeably in any context.
This gives a handle on showing the equivalence of ASP modules. If a program is strongly equivalent to a
subprogram of itself, then one can always use the subprogram instead of the original program, a technique
which serves as an effective optimization method.
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2.5.1 Strong and Uniform Equivalence
In the following, we will consider some notions of program equivalences under answer set semantics, which
have been intensively studied in [154, 133, 80, 78, 188, 196, 157]. For the sake of completeness, we give
first the notion of equivalence.

Definition 2.5.1 Let Π1 and Π2 be logic programs.
Then, Π1 and Π2 are equivalent, denoted by Π1 ≡ Π2, if AS(Π1) = AS(Π2).

Inspired by database techniques, we give next the definition of uniform equivalence.

Definition 2.5.2 Let Π1 and Π2 be logic programs.
Then, Π1 and Π2 are uniformly equivalent, denoted by Π1 ≡u Π2, if for any set of facts F we have

AS(Π1 ∪ F ) = AS(Π2 ∪ F ).

More precisely, two programs are uniformly equivalent if no matter which facts we add to a program, we
get the same results. More precisely, if a program Π is uniformly equivalent to one of its subprograms
Π′ ⊆ Π, then we can replace Π by Π′ and we will still get the same answer sets when adding arbitrary facts
to Π′ and Π, respectively.

Instead of adding facts, of course, one can consider the addition of arbitrary programs.

Definition 2.5.3 Let Π1 and Π2 be logic programs.
Then, Π1 and Π2 are strongly equivalent, denoted by Π1 ≡s Π2, if for any set of rules R we have

AS(Π1 ∪R) = AS(Π2 ∪R).

That is, no matter which program R is added to Π1 or Π2, Π1 ∪ R and Π2 ∪ R yield the same answer
sets if they are strongly equivalent. Obviously, whenever two programs are strongly equivalent, they are
uniformly equivalent but not vice versa. As shown in [133], strong equivalence is closely related to the
non-classical logic of here-and-there, which was adapted to logic-programming terms in [133, 188]: Let Π
be a logic program, and let X, Y ⊆ A such that X ⊆ Y . The pair (X, Y ) is an SE-model of Π, if Y |= Π
and X |= ΠY . By SE(Π) we denote the set of all SE-models of Π. Usually the set A is left implicit and
one just writes SE(Π). Then, for any logic programs Π1 and Π2, Π1 and Π2 are strongly equivalent iff they
coincide on their set of SE-models [188]. Deciding whether two normal programs are strongly or uniformly
equivalent is co-NP-complete [134, 158, 82].

As discussed in [159], uniform and strong equivalence are essentially the only concepts of equivalence
obtained by varying the logical form of the program extension. Current research concentrates on relativized
notions of strong and uniform equivalence. Instead of considering all possible program extensions, one
considers only programs built from a restricted alphabet or, orthogonally, compare answer sets only on a
subset of the alphabet [196, 82], which seems to be very natural from the practical point of view. Other
works focus on the extension of notions of equivalence for the non-ground case [81, 134].

2.5.2 Program Simplifications
Using notions of program equivalences, one can define program simplifications removing redundancies as
done in [25, 193, 157, 154, 80]. In the following, we will concentrate on program simplifications under
strong equivalence as defined in [80, 154], restricted to the case of (normal) logic programs.

Theorem 2.5.1 [80] Let Π be a logic program.

TAUT: Let r ∈ Π such that head(r) ∈ body+(r). Then, Π ≡s Π \ {r}.

RED−: Let r1, r2 ∈ Π such that head(r2) ∈ body−(r1), body(r2) = ∅. Then, Π ≡s Π \ {r1}.
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NONMIN: Let r1, r2 ∈ Π such that head(r1) = head(r2) and body(r2) ⊆ body(r1). Then, Π ≡s

Π \ {r1}.

WGPPE: Let r1 ∈ Π, a ∈ body+(r1), Ga = {r2 ∈ Π | head(r2) = a} and Ga 6= ∅. Then, Π ≡s Π ∪G′
a

for G′
a = {head(r1)← (body+(r1) \ {a}) ∪ not body−(r1) ∪ body(r2) | r2 ∈ Ga}.

CONTRA: Let r ∈ Π such that body+(r) ∩ body−(r) = ∅. Then, Π ≡s Π \ {r}.

S-IMP∗: Let r, r′ ∈ Π such that there exists an A ⊆ body−(r′) such that head(r) ∈ A, body−(r) ⊆
body−(r′) \A and body+(r) ⊆ body+(r′). Then, Π ≡s Π \ {r′}.

Note that, WGPPE adds rules to a program to enable other transformations like TAUT,RED−, NONMIN,
CONTRA, or S-IMP∗. Hence, the simplifications given above remove redundancies, and one can replace a
program by one of its a subprogram described above without changing semantics.

In Chapter 5, we consider program equivalences and simplification of ordered programs (defined in
Section 2.4 on page 13), which have never been studied before.

2.6 Complexity Classes
In this section, we briefly introduce relevant complexity classes [156]. P is the class of decision problems
deterministically solvable in polynomial time. NP is the class of decision problems solvable by a nondeter-
ministic polynomial-time Turing machine. A decision problem A is in coNP if the complement of A is in
NP. The classes ΣP

k ,ΠP
k , and ∆P

k of the Polynomial Hierarchy are defined as follows

∆P
0 = ΣP

0 = ΠP
0 = P and

for all k ≥ 1,∆P
k = PΣP

k−1 ,ΣP
k = NPΣP

k−1 ,ΠP
k = co-ΣP

k ,

where NPC denotes the class of decision problems that are solvable in polynomial time by a nondetermin-
istic Turing machine with an oracle for any decision problem π in the class C, and PC the class of decision
problems that are solvable in polynomial time with an oracle for any decision problem π in the class C.
In particular, we have NP= ΣP

1 , co-NP = ΠP
1 , and ∆P

2 = PNP. Let C be a complexity class and L be a
decision problem in C. Then, L is C-complete if any problem L′ ∈ C can be reduced to L.



Chapter 3

Graphs and Colorings in ASP

Graphs constitute a fundamental tool within computing science, in particular, in programming languages,
where graphs are often used for analyzing a program’s behavior. Clearly, this also applies to logic pro-
gramming. For instance, Prolog’s procedural semantics is intimately connected to the concept of SLD-
trees [144]. For further analysis, like profiling, other types of graphs, such as call graphs, play an important
role during program development. Similarly, in alternative semantics of logic programming, like answer
set programming [99, 100], graphs have been used for deciding whether answer sets exist [94, 11].

We take the application of graphs even further and elaborate in this chapter upon an approach to using
graphs as the underlying computational model for computing answer sets. To this end, we build upon and
largely extend the theoretical foundations introduced in [139, 4]. Our approach has its roots in default
logic [166], where extensions are often characterized through their (unique) set of generating default rules.
Accordingly, we are interested in characterizing answer sets by means of their set of generating rules. For
determining whether a rule belongs to this set, we must verify that each positive body atom is derivable and
that no negative body atom is derivable. In fact, an atom is derivable if the set of generating rules includes
a rule having the atom as its head; or conversely, an atom is not derivable if there is no rule among the
generating rules that has the atom as its head. Consequently, the formation of the set of generating rules
amounts to resolving positive and negative dependencies among rules. For capturing these dependencies,
we take advantage of the concept of a rule dependency graph, wherein each node represents a rule of
the underlying program and two types of edges stand for the aforementioned positive and negative rule
dependencies, respectively. 1 For expressing the applicability status of rules, that is, whether a rule belongs
to a set of generating rules or not, we label, or as we say color, the respective nodes in the graph. In this
way, an answer set can be expressed by a total coloring of the rule dependency graph. Of course, in what
follows, we are mainly interested in the inverse, that is, when does a graph coloring correspond to an answer
set of the underlying program; and, in particular, how can we compute such a total coloring.

Generally speaking, graphs provide a formal device for making structural properties of an underlying
problem explicit. In this guise, we start by identifying graph structures that capture structural properties
of logic programs and their answer sets. As a result, we obtain several characterizations of answer sets in
terms of totally colored dependency graphs that differ in graph-theoretical aspects. To a turn, we build upon
these characterizations in order to develop an operational framework for answer set formation. The idea
is to start from an uncolored rule dependency graph and to employ specific operators that turn a partially
colored graph gradually into a totally colored one that represents an answer set. This approach is strongly
inspired by the concept of a derivation, in particular, by that of an SLD-derivation [144]. Accordingly, a
program has a certain answer set iff there is a sequence of operations turning the uncolored graph into a
totally colored one that provably corresponds to the answer set.

1This type of graph was called “block graph” in [139].
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This chapter is organized as follows. Section 3.1 lays the formal foundations of our approach by intro-
ducing its basic graph-theoretical instruments. While the following Section 3.2 addresses characterizations
of answer sets through totally colored graphs, Section 3.3 deals with operational characterizations of answer
sets. Section 3.4 identifies relationships with Fitting’s and well-founded semantics. Section 3.5 discusses
the approach, in particular in the light of related work. We conclude with Section 3.6.

3.1 Graphs and colorings
A graph is a pair (V,E) where V is a set of vertices and E ⊆ V × V a set of (directed) edges. A path
from x to y in (V,E) for x, y ∈ V is a sequence x1, . . . , xn such that x = x1, y = xn, (xi, xi+1) ∈ E
for 1 ≤ i < n, and the elements xi are pairwise disjoint. A set of edges E contains a cycle if there is
a nonempty set {xi | i ∈ {0, . . . , n}} of vertices such that (xi, xi+1) ∈ E for i ∈ {0, . . . , n − 1} and
(xn, x0) ∈ E. A graph (V,E) is acyclic if E contains no cycles. For W ⊆ V , we denote E ∩ (W ×W )
by E|W . Also, we abbreviate the induced subgraph G = (V ∩W,E|W ) of (V,E) by G|W . A labeled
graph is a graph with an associated labeling function ` : E → L for some set of labels L. In view of our
small label set L = {0, 1} (see below), we leave ` and L implicit and denote such labeled graphs by triples
(V,E0, E1), where Ei = {e ∈ E | `(e) = i} for i = 0, 1. An i-subgraph of (V,E0, E1) is a graph (W,F )
such that W ⊆ V and F ⊆ Ei|W for i = 0, 1. 2 An i-path from x to y in (V,E0, E1) is a path from x to y
in (V,Ei) for x, y ∈ V and i = 0, 1.

In the context of logic programming, we are interested in graphs reflecting dependencies among rules.

Definition 3.1.1 Let Π be a logic program.
The rule dependency graph (RDG) ΓΠ = (Π, E0, E1) of Π is a labeled graph with

E0 =
{
(r, r′) | r, r′ ∈ Π, head(r) ∈ body+(r′)

}
;

E1 =
{
(r, r′) | r, r′ ∈ Π, head(r) ∈ body−(r′)

}
.

We omit the subscript Π from ΓΠ whenever the underlying program is clear from the context. We fol-
low [155] in distinguishing between 0- and 1-edges. Observe that several programs may have isomorphic
RDGs. For example, Π = {a← b, c← a} and Π′ = {a←, c← a} have isomorphic RDGs.

Example 9 Consider the logic program Π9 = {r1, . . . , r6}, comprising the following rules:

r1 : p ←
r2 : b ← p
r3 : f ← b, not f ′

r4 : f ′ ← p, not f
r5 : b ← m
r6 : x ← f, f ′, not x

The RDG of Π9 is given as follows:

ΓΠ9 = ( Π9, {(r1, r2), (r1, r4), (r2, r3), (r3, r6), (r4, r6), (r5, r3)}, {(r3, r4), (r4, r3), (r6, r6)} )

It is depicted graphically in Figure 3.1a. For instance, ({r1, r2, r3, r4}, {(r1, r2)}) is a 0-subgraph of ΓΠ9

and ({r5, r6}, {(r6, r6)}) is a 1-subgraph of ΓΠ9 .

We call C a (partial) coloring of ΓΠ if C is a partial mapping C : Π → {⊕,	}. We call C a total
coloring, if C is a total mapping. Intuitively, the colors ⊕ and 	 indicate whether a rule is supposedly

2Note that an i-subgraph is not an induced graph.
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Figure 3.1: (a) RDG of logic program Π9 (b) (partially) colored RDG (ΓΠ9 , C3.1).

applied or blocked, respectively. We sometimes denote the set of all vertices colored with ⊕ or 	 by C⊕ or
C	, respectively. That is, C⊕ = {r | C(r) = ⊕} and C	 = {r | C(r) = 	}. If C is total, (C⊕, C	) is a
binary partition of Π. That is, Π = C⊕ ∪C	 and C⊕ ∩C	 = ∅. Accordingly, we often identify a coloring
C with the pair (C⊕, C	). A partial coloring C induces a pair (C⊕, C	) of sets such that C⊕ ∪ C	 ⊆ Π
and C⊕ ∩ C	 = ∅. For comparing partial colorings, C and C ′, we define C v C ′, if C⊕ ⊆ C ′

⊕ and
C	 ⊆ C ′

	. The “empty” coloring (∅, ∅) is the v-smallest coloring. Accordingly, we define C t C ′ as
(C⊕ ∪C ′

⊕, C	 ∪C ′
	).3 We denote the set of all partial colorings of a RDG ΓΠ by CΓΠ . For readability, we

often omit the index ΓΠ and simply write C, whenever this is clear from the context.
If C is a coloring of ΓΠ, we call the pair (ΓΠ, C) a colored RDG . For example, “coloring” the RDG of

Π9 from Example 9 with 4

(3.1) C3.1 = ({r1, r2}, {r6})

yields the colored graph given in Figure 3.1b. For simplicity, when coloring, we replace the label of a
node by the respective color. Observe that our conception of coloring is nonstandard insofar that adjacent
vertices may be colored with the same color. We are sometimes interested in the subgraph ΓΠ|C⊕∪C	

induced by the colored nodes. Restricting ΓΠ9 to the nodes colored in Figure 3.1b, yields the RDG
({r1, r2, r6}, {(r1, r2)}, {(r6, r6)}).

The central question addressed in this chapter is how to characterize and compute the total colorings of
RDGs that correspond to the answer sets of an underlying program. In fact, the colorings of interest can be
distinguished in a straightforward way. Let Π be a logic program along with its RDG Γ. Then, for every
answer set X of Π, define an admissible coloring5 C of Γ as

(3.2) C = (RΠ(X),Π \RΠ(X)) .

By way of the respective generating rules, we associate with any program a set of admissible colorings
whose members are in one-to-one correspondence with its answer sets. Any admissible coloring is total;
furthermore, we have X = head(C⊕). We use AC (Π) for denoting the set of all admissible colorings of a
RDG ΓΠ.

For a partial coloring C, we define ACΠ(C) as the set of all admissible colorings of ΓΠ compatible
with C. Formally, given the RDG Γ of a logic program Π and a partial coloring C of Γ, define

(3.3) ACΠ(C) = {C ′ ∈ AC (Π) | C v C ′} .

3We use “squared” relation symbols, like v or t when dealing with partial colorings.
4For the sake of uniqueness, we label the coloring with the equation number.
5The term “admissible coloring” was coined in [39]; they were referred to as “application colorings” in [139]. Note that both col-

orings concepts are originally defined in purely graph-theoretical terms. Here, we simply adopt this term for distinguishing colorings
corresponding to answer sets of an underlying program (cf. Section 3.5).
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Clearly, C1 v C2 implies ACΠ(C1) ⊇ ACΠ(C2). Observe also that a partial coloring C is extensible
to an admissible one C ′, that is, C v C ′, iff ACΠ(C) is non-empty. For a total coloring C, ACΠ(C) is
either empty or singleton. Regarding program Π9 and coloring C3.1, we get ACΠ9(C3.1) = AC (Π9) =
{({r1, r2, r3}, {r4, r5, r6}), ({r1, r2, r4}, {r3, r5, r6})} (see also Figure 3.3 below).

Accordingly, we define ASΠ(C) as the set of all answer sets X of Π compatible with partial coloring
C.

(3.4) ASΠ(C) = {X ∈ AS (Π) | C⊕ ⊆ RΠ(X) and C	 ∩RΠ(X) = ∅}.

Note that head(C⊕) ⊆ X for any answer set X ∈ ASΠ(C) (see Theorem A.1.4 on page 142). Otherwise,
similar considerations apply to ASΠ(C) as made above for ACΠ(C). As regards program Π9 and coloring
C3.1, we get ASΠ9(C3.1) = AS (Π9) = {{b, p, f}, {b, p, f ′}}. It is noteworthy that due to the one-to-one
correspondence between ASΠ(C) and ACΠ(C) (see Theorem A.1.1 on page 141), one can replace one by
the other in most subsequent results. Often it is simply a matter of simplicity which formulation is used.

We need the following concepts for describing a rule’s status of applicability in a colored RDG .

Definition 3.1.2 Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial coloring of Γ.
For r ∈ Π, we define:

1. r is supported in (Γ, C), if body+(r) ⊆ {head(r′) | (r′, r) ∈ E0, r
′ ∈ C⊕};

2. r is unsupported in (Γ, C), if {r′ | (r′, r) ∈ E0, head(r′) = q} ⊆ C	 for some q ∈ body+(r);

3. r is blocked in (Γ, C), if r′ ∈ C⊕ for some (r′, r) ∈ E1;

4. r is unblocked in (Γ, C), if r′ ∈ C	 for all (r′, r) ∈ E1.

Conditions 1–4 express standard concepts of logic programming. Condition 1 and 2 tell us whether the
atoms in body+(r) are established within C or not; Condition 3 and 4 do the same for body−(r). Since C is
partial, there are usually rules whose status of support and blockage is (yet) undecided. Note that support-
and unsupportedness are only complementary if C is total; likewise with blockage. For r and r′ as given
in Condition 3, we say that r is blocked by r′. Whenever C is total, a rule is unsupported or unblocked
iff it is not supported or not blocked, respectively. Note that the qualification (r′, r) ∈ E0 could be safely
removed from Condition 1 and 2; we left it in for stressing the symmetry among the first two and the last
two conditions. Observe that all four properties are decidable by looking at the immediate predecessors in
the graph. With a slightly extended graph structure, they can be expressed in purely graph-theoretical terms,
without any reference to the heads and bodies of the underlying rules.6

We use S(Γ, C), S(Γ, C), B(Γ, C), and B(Γ, C) for denoting the sets of all supported, unsupported,
blocked, and unblocked rules in (Γ, C). For a total coloring C, we have S(Γ, C) = Π \ S(Γ, C) and
B(Γ, C) = Π\B(Γ, C). Furthermore, S(Γ, C) and S(Γ, C) as well as B(Γ, C) and B(Γ, C), respectively,
are disjoint.

For illustration, consider the sets obtained regarding the colored RDG (ΓΠ9 , C3.1), given in Figure 3.1b.

(3.5)
S(ΓΠ9 , C3.1) = {r1, r2, r3, r4} S(ΓΠ9 , C3.1) = {r5}
B(ΓΠ9 , C3.1) = ∅ B(ΓΠ9 , C3.1) = {r1, r2, r5, r6}

The following theorem shows the correspondence between properties of rules in a logic program and
properties of vertices of a RDG , in the presence of an existing answer set.

Theorem 3.1.1 Let Γ be the RDG of logic program Π, C be a partial coloring of Γ and X ∈ ASΠ(C).
For r ∈ Π, we have

6For details on these pure graph-theoretical characterization, we refer the reader to a companion paper [141], dealing with the
system noMoRe.
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1. body+(r) ⊆ X , if r ∈ S(Γ, C);

2. body+(r) 6⊆ X , if r ∈ S(Γ, C);

3. body−(r) ∩X 6= ∅, if r ∈ B(Γ, C);

4. body−(r) ∩X = ∅, if r ∈ B(Γ, C).

For admissible colorings, we may turn the above “if” statements into “iff”.

Corollary 3.1.2 Let Γ be the RDG of logic program Π, C be an admissible coloring of Γ and {X} =
ASΠ(C).

For r ∈ Π, we have

1. body+(r) ⊆ X iff r ∈ S(Γ, C);

2. body+(r) 6⊆ X iff r ∈ S(Γ, C);

3. body−(r) ∩X 6= ∅ iff r ∈ B(Γ, C);

4. body−(r) ∩X = ∅ iff r ∈ B(Γ, C).

The next results are important for understanding the idea of our approach.

Theorem 3.1.3 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Then, for every X ∈ ASΠ(C) we have that

1. S(Γ, C) ∩B(Γ, C) ⊆ RΠ(X);

2. S(Γ, C) ∪B(Γ, C) ⊆ Π \RΠ(X).

If C is admissible, we have for {X} = ASΠ(C) that

3. S(Γ, C) ∩B(Γ, C) = RΠ(X);

4. S(Γ, C) ∪B(Γ, C) = Π \RΠ(X).

In fact, the last two equations are equivalent since C is total. Each of them can be understood as a necessary
yet insufficient condition for characterizing answer sets. We elaborate upon sufficient graph-theoretical
conditions in the next section.

Let us reconsider the partially colored RDG (ΓΠ9 , C3.1) in Figure 3.1b. For every X ∈ ASΠ9(C3.1) =
{{b, p, f}, {b, p, f ′}}, we have

S(ΓΠ9 , C3.1) ∩B(ΓΠ9 , C3.1) = {r1, r2, r3, r4} ∩ {r1, r2, r5, r6}
= {r1, r2}
⊆ RΠ9(X);

S(ΓΠ9 , C3.1) ∪B(ΓΠ9 , C3.1) = {r5} ∪ ∅
= {r5}
⊆ Π \RΠ9(X).

Regarding Π = {a ← not a}, it is instructive to observe the instance of Condition 3 in Theorem 3.1.3
for total coloring C = ({a← not a}, ∅) and set X = {a}:

S(ΓΠ, C) ∩B(ΓΠ, C) = {a← not a} ∩ ∅ = RΠ(X) .

This demonstrates that Condition 3 is insufficient for characterizing answer sets. In fact, observe that
C⊕ 6= S(ΓΠ, C) ∩B(ΓΠ, C).
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3.2 Deciding answersetship from colored graphs
The result given in Theorem 3.1.3 started from an existing answer set induced from a given coloring. We
now develop concepts that allow us to decide whether a (total) coloring represents an answer set by purely
graph-theoretical means.

3.2.1 Graph-based characterization
To begin with, we define a graph structure accounting for the notion of recursive support.

Definition 3.2.1 Let Γ be the RDG of logic program Π.
We define a support graph of Γ as an acyclic 0-subgraph (V,E) of Γ such that body+(r) ⊆ {head(r′) |

(r′, r) ∈ E} for all r ∈ V .

Intuitively, support graphs constitute the graph-theoretical counterpart of operator Cn. That is, a support
graph comprises dependencies among heads and positive bodies on which potential applications of the TΠ

operator rely.

Example 10 Consider program Π10 consisting of rules

r1 : a ←
r2 : b ← not a
r3 : c ← b
r4 : b ← c .

Among others, the RDG of Π10 has support graphs
(∅, ∅), ({r1, r2}, ∅), ({r2, r3}, {(r2, r3)}), and (Π10, {(r2, r3), (r3, r4)}).

Observe that the empty graph (∅, ∅) is a support graph of any (uncolored) graph. Self-supportedness is
avoided due to the acyclicity of support graphs. (Π10, {(r4, r3), (r3, r4)}) is cyclic and hence no support
graph.

Every RDG has a unique support graph possessing a largest set of vertices.

Theorem 3.2.1 Let Γ be the RDG of logic program Π.
Then, there exists a support graph (V,E) of Γ such that V ′ ⊆ V for all support graphs (V ′, E′) of Γ.

For simplicity, we refer to such support graphs as maximal support graphs; all of them share the same set
of vertices. This set of vertices corresponds to the generating rules of Cn(Π∅). Different maximal support
graphs comprise different sets of edges, reflecting the intuition that atoms may be derivable in different
ways. Given that the empty graph is a support graph of any (uncolored) graph, there is always a maximal
support graph.

For example, the maximal support graph of the RDG of logic program Π9, given in Figure 3.1a, is
depicted in Figure 3.2a. The latter contains except for (r5, r3) all 0-edges of the former, viz (ΓΠ9 , C3.1);
also r5 is excluded since it cannot be supported (recursively). The only maximal support graph of ΓΠ10

is (Π10, {(r2, r3), (r3, r4)}) (cf. Example 10). Extending Π10 by r5 : b ← yields three maximal support
graphs

(Π10 ∪ {r5}, {(r2, r3), (r3, r4)}),
(Π10 ∪ {r5}, {(r5, r3), (r3, r4)}), and
(Π10 ∪ {r5}, {(r2, r3), (r5, r3), (r3, r4)}).

All of them share the same set of vertices but differ in the set of edges.
The concept of a support graph is extended to colored graphs in the following way.
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Figure 3.2: The maximal support graph of (a) ΓΠ9 (b) (ΓΠ9 , C3.1).

Definition 3.2.2 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
We define a support graph of (Γ, C) as a support graph (V,E) of Γ such that C⊕ ⊆ V and C	∩V = ∅

for some E ⊆ (Π×Π).

Recall that E consists of 0-arcs only. Also, note that Definition 3.2.1 and 3.2.2 coincide whenever C is
the empty coloring. In general, the support graphs of (Γ, C) are exactly those support graphs of Γ whose
vertex set includes C⊕ and excludes C	. Intuitively, a support graph of a colored RDG (Γ, C) takes the
applicability status of the rules expressed by C into account. That is, it contains all rules whose positive
body is derivable, given that all rules in C⊕ are applicable and all rules in C	 are inapplicable.

For example, the maximal support graph of the colored RDG (ΓΠ9 , C3.1), given in Figure 3.1b, is
depicted in Figure 3.2b. The latter must include all positively colored and exclude all negatively colored
nodes of the former. Given program Π10 from Example 10, a “bad” coloring, like C = ({b ← c}, {b ←
not a}), may deny the existence of a support graph of (Γ, C).

Given an arbitrary coloring C, there is a priori no relationship among the set of rules supported by a
colored graph, viz S(Γ, C), and its support graphs. To see this, consider the support graph ΓΠ10 of program
Π10 along with coloring C = ({r1, r3, r4}, {r2}). While we have S(ΓΠ10 , C) = Π10, there is no support
graph of (ΓΠ10 , C). For one thing, a support graph is denied since r3 and r4 form a circular support. For
another thing, r2 is always supported, no matter which coloring is considered, whereas it cannot belong to
a support graph once it is blocked (i.e. colored with 	). This illustrates two things. First, support graphs
provide a global, recursive structure tracing the support of a rule over 0-paths back to rules with empty
positive bodies. Unlike this, S(Γ, C) relies only on 0-edges, capturing thus a rather local notion of support.
Second, support graphs take the complete applicability status expressed by a coloring into account. Unlike
this, S(Γ, C) may contain putatively blocked rules from C	.

As above, we distinguish maximal support graphs of colored graphs through their maximal set of ver-
tices.

For colored graphs, we have the following conditions guaranteeing the existence of (maximal) support
graphs.

Theorem 3.2.2 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Then, there is a (maximal) support graph of (Γ, C), if one of the following conditions holds.

1. ACΠ(C) 6= ∅;

2. (C⊕, E) is a support graph of Γ|C⊕∪C	 for some E ⊆ (Π×Π).

The existence of a support graph implies the existence of a maximal one. This is why we put maximal in
parentheses in the preamble of Theorem 3.2.2.
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As with Property 3 or 4 in Theorem 3.1.3, respectively, the existence of a support graph can be under-
stood as a necessary condition for characterizing answer sets:

Corollary 3.2.3 Let Γ be the RDG of logic program Π and C be an admissible coloring of Γ.
Then, (C⊕, E) is a support graph of (Γ, C) for some E ⊆ (Π×Π).

In fact, taken the last result together with Property 3 or 4 in Theorem 3.1.3, respectively, we obtain a
sufficient characterization of admissible colorings (along with their underlying answer sets).

Theorem 3.2.4 (Answer set characterization, I) Let Γ be the RDG of logic program Π and let C be a
total coloring of Γ.

Then, the following statements are equivalent.

1. C is an admissible coloring of Γ;

2. C⊕ = S(Γ, C) ∩B(Γ, C) and there is a support graph of (Γ, C);

3. C	 = S(Γ, C) ∪B(Γ, C) and there is a support graph of (Γ, C).

Interestingly, this characterization shows that once we have established a support graph, it doesn’t matter
whether we focus exclusively on the applicable (as in Statement 2.) or on the inapplicable rules (as in 3.)
for characterizing admissible colorings. In both cases, C⊕ provides the vertices of the maximal support
graphs.

For illustration, let us consider the two admissible colorings of RDG ΓΠ9 , corresponding to the two
answer sets of program Π9 (given in Example 9):

C3.6 = ({r1, r2, r3}, {r4, r5, r6}) ;(3.6)
C3.7 = ({r1, r2, r4}, {r3, r5, r6}).(3.7)

The resulting colored RDGs are depicted in Figure 3.3. (Cf. Figure 3.1a for the underlying uncolored graph.)
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Figure 3.3: The totally colored RDGs (ΓΠ9 , C3.6) and (ΓΠ9 , C3.7).

Let us detail the case of C3.6. We get:

S(ΓΠ9 , C3.6) ∩B(ΓΠ9 , C3.6) = {r1, r2, r3, r4} ∩ {r1, r2, r3, r5, r6}
= {r1, r2, r3}
= (C3.6)⊕;

S(ΓΠ9 , C3.6) ∪B(ΓΠ9 , C3.6) = {r5, r6} ∪ {r4}
= {r4, r5, r6}
= (C3.6)	.

The maximal support graph of (ΓΠ9 , C3.6) is given by ((C3.6)⊕, {(r1, r2), (r2, r3)}); it is depicted below
in Figure 3.4.
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3.2.2 Capturing original concepts
It is interesting to see how the original definition of an answer set X , that is, X = Cn(ΠX), along with
its underling constructions, viz reduction ΠX and the Cn operator, can be captured within our graph-based
setting.

Clearly, ΠX amounts to the set of unblocked rules.

Theorem 3.2.5 Let Γ be the RDG of logic program Π.
Furthermore, let C be a total coloring of Γ and X be a set of atoms such that X = head(C⊕).
Then, head(r)← body+(r) ∈ ΠX iff r ∈ B(Γ, C) for r ∈ Π.

The next result fixes the relationship of maximal support graphs to the consequence operator of basic
programs.

Theorem 3.2.6 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
If (V,E) is a maximal support graph of (Γ, C), then head(V ) = Cn((Π \ C	)∅).

Hence, the vertices of the maximal support graph correspond directly to the consequences w.r.t. the given
partial coloring. For the “empty” coloring C = (∅, ∅), we have head(V ) = Cn(Π∅).

Taking the graph-theoretical counterparts of the reduct ΠX and the Cn operator yields the following
graph-theoretical characterization of answer sets:

Theorem 3.2.7 (Answer set characterization, II) Let Γ be the RDG of logic program Π and let C be a
total coloring of Γ.

Then, C is an admissible coloring of Γ iff (C⊕, E) is a maximal support graph of Γ|B(Γ,C) for some
E ⊆ (Π×Π).

Recall that Γ|B(Γ,C) is the restriction of Γ to the set of unblocked rules in (Γ, C).7 In view of Theorem 3.2.5,
the graph Γ|B(Γ,C) amounts to a reduced (basic) program ΠX whose closure Cn(ΠX) is characterized by
means of a maximal support graph (cf. Theorem 3.2.6).

3.2.3 Subgraph-based characterization
Using “unblocked” rules as done in the previous characterization, refers only implicitly to the blockage
relations expressed by 1-edges. In analogy to Definition 3.2.1, this structure can be made explicit by the
notion of a blockage graph. For this, we use π2 for projecting the second argument of a relation. 8

Definition 3.2.3 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
We define a blockage graph of (Γ, C) as a 1-subgraph (V,E) of Γ such that

1. E ∩ (C⊕ × C⊕) = ∅;

2. π2(E ∩ (C⊕ × C	)) = C	 ∩ V .

In other words, the first condition says that there is no (r, r′) ∈ E such that r, r′ ∈ C⊕, while the second
one stipulates that for all r ∈ C	 ∩ V there exists an r′ ∈ C⊕ such that (r′, r) ∈ E.

Let us briefly compare the definitions of support and blockage graphs. Support graphs capture a recur-
sive concept, stipulating that 0-edges are contained in 0-paths, tracing the support of rules back to rules with
empty positive body. Unlike this, blockage graphs aim at characterizing rather local dependencies, based
on 1-edge-wise constraints. That is, while the acyclicity of a support graph cannot be checked locally, we
may verify whether a graph is a blockage graph by inspecting one of its 1-edges after the other.

Together, both concepts provide the following characterization of answer sets.
7In fact, Γ|B(Γ,C) could be replaced in Theorem 3.2.7 by Γ|S(Γ,C)∩B(Γ,C) without changing its validity.
8That is, π2(R) = {r2 | (r1, r2) ∈ R} for a binary relation R.
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Theorem 3.2.8 (Answer set characterization, III) Let Γ = (Π, E0, E1) be the RDG of logic program Π
and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff

1. there is some support graph of (Γ, C) and

2. (S(Γ, C), E1|S(Γ,C)) is a blockage graph of (Γ, C).

Observe that (C⊕, E) is a support graph of (Γ, C) for some E ⊆ Π×Π. Condition 2 stipulates, among other
things, that all supported yet inapplicable rules are properly blocked (cf. Condition 2 in Definition 3.2.3).
The restriction to supported rules is necessary in order to eliminate rules that are inapplicable since they
are unsupported. Note that the blockage graph in Condition 2 can also be written as (C,E1)|S(Γ,C). For
example, the support and the blockage graph of the colored RDG (ΓΠ9 , C3.6), given on the left hand side
in Figure 3.3, are depicted in Figure 3.4. This figure nicely illustrates the subset relationship between the

r1m r2m
r3m?

-

0

0
r1m r2m
r4m r3m-� 1

Figure 3.4: Support and blockage graph of (ΓΠ9 , C3.6).

vertices of the support and the blockage graph.
Without explicit mention of the blockage graph, a similar characterization can be given in the following

way.

Corollary 3.2.9 (Answer set characterization, III′) Let Γ = (Π, E0, E1) be the RDG of logic program Π
and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff the following conditions hold.

1. (C⊕, E) is a support graph of (Γ, C) for some E ⊆ Π×Π;

2. for all r ∈ (C	 ∩ S(Γ, C)) there exists an r′ ∈ C⊕ such that (r′, r) ∈ E1;

3. for all r, r′ ∈ C⊕ we have (r, r′) 6∈ E1.

3.3 Operational characterizations
The goal of this section is to provide an operational characterization of answer sets, based on the concepts
introduced in the last section. The idea is to start with the “empty” coloring (∅, ∅) and to successively apply
operators that turn a partial coloring C into another one C ′ such that C v C ′. This is done until finally an
admissible coloring, yielding an answer set, is obtained.

3.3.1 Deterministic operators

We concentrate first on operations extending partial colorings in a deterministic way.

Definition 3.3.1 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Then, define PΓ : C→ C as PΓ(C) = C t (S(Γ, C) ∩B(Γ, C), S(Γ, C) ∪B(Γ, C)) .
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A partial coloring C is closed under PΓ , if C = PΓ(C). Note that PΓ(C) does not always exist. To see
this, observe that PΓ(({a ← not a}, ∅)) would be ({a ← not a}, {a ← not a}), which is no mapping
and thus no partial coloring. Interestingly, PΓ exists on colorings expressing answer sets.

Theorem 3.3.1 Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
If ACΠ(C) 6= ∅, then PΓ(C) exists.

Note that PΓ(C) may exist although ACΠ(C) = ∅. 9 To see this, consider the program Π = {a ←, c ←
a, not c}. Clearly, AS (Π) = ∅. However, PΓ((∅, ∅)) = ({a←}, ∅) exists.

Now, we can define our principal propagation operator in the following way.

Definition 3.3.2 Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
Then, define P∗Γ : C → C where P∗Γ(C) is the v-smallest partial coloring containing C and being

closed under PΓ .

Essentially, P∗Γ(C) amounts to computing the “immediate consequences” from a given partial coloring
C. 10

Also, like PΓ(C), P∗Γ(C) is not necessarily defined. This situation is made precise next.

Theorem 3.3.2 Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
If ACΠ(C) 6= ∅, then P∗Γ(C) exists.

Under the previous conditions, we may actually characterize P∗Γ in terms of iterated applications of PΓ ; this
is detailed in Section A.2 and used in the proofs. In fact, the non-existence of P∗Γ is an important feature
since an undefined application of P∗Γ amounts to a backtracking situation at the implementation level. Note
that P∗Γ((∅, ∅)) always exists, even though we may have ACΠ((∅, ∅)) = ∅ (because of AS (Π) = ∅).

We have the following result.

Corollary 3.3.3 Let Γ be the RDG of logic program Π. Then, P∗Γ((∅, ∅)) exists.

For illustration, consider program Π9 in Example 9. We get:

PΓ((∅, ∅)) = (∅, ∅) t ({r1} ∩ {r1, r2, r5}, {r5} ∪ ∅)
= ({r1}, {r5})

PΓ(({r1}, {r5})) = ({r1}, {r5}) t ({r1, r2, r4} ∩ {r1, r2, r5}, {r5} ∪ ∅)
= ({r1, r2}, {r5})

PΓ(({r1, r2}, {r5})) = ({r1, r2}, {r5}) t ({r1, r2, r3, r4} ∩ {r1, r2, r5}, {r5} ∪ ∅)
= ({r1, r2}, {r5})

Hence, we obtain

P∗Γ((∅, ∅)) = ({r1, r2}, {r5}) .

Let us now elaborate more upon the formal properties of PΓ and P∗Γ . First, we observe that both are
reflexive, that is, C v PΓ(C) and C v P∗Γ(C) (provided that PΓ(C) and P∗Γ(C) exists). Furthermore,
both operators are monotonic in the following sense.

Theorem 3.3.4 Let Γ be the RDG of logic program Π and let C and C ′ be partial colorings of Γ such that
ACΠ(C ′) 6= ∅.

9Since our goal is to compute members of ACΓ (C), the precondition ACΠ(C) 6= ∅ is sufficient for our purposes. It remains
future work to identify a necessary and sufficient condition guaranteeing the existence of PΓ (C).

10In Section 3.4, this is related to Fitting’s semantics.
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1. If C v C ′, then PΓ(C) v PΓ(C ′);

2. If C v C ′, then P∗Γ(C) v P∗Γ(C ′).

Given that PΓ is reflexive, the last result implies that C v PΓ(C) v PΓ(PΓ(C)) whenever ACΠ(C) 6= ∅.
In addition, P∗Γ clearly enjoys a restricted idempotency property, that is, P∗Γ(C) = P∗Γ(P∗Γ(C)) provided
that ACΠ(C) 6= ∅.

Our next result shows that PΓ and P∗Γ are answer set preserving.

Theorem 3.3.5 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Then, we have

1. ACΠ(C) = ACΠ(PΓ(C));

2. ACΠ(C) = ACΠ(P∗Γ(C)).

That is, X ∈ ASΠ(C) iff X ∈ ASΠ(PΓ(C)) iff X ∈ ASΠ(P∗Γ(C)).
A similar result holds for the underlying support and blockage graphs.

Theorem 3.3.6 Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial coloring of Γ.
For C ′ = P∗Γ(C), we have

1. if (C⊕, E) is a support graph of (Γ,C), then (C ′
⊕, E′) is a support graph of (Γ,C

′)
for some E,E′ ⊆ E0;

2. if (C⊕ ∪ C	, E1)|S(Γ,C) is a blockage graph of (Γ, C) and C⊕ ⊆ S(Γ, C),
then (C ′

⊕ ∪ C ′
	, E1)|S(Γ,C′) is a blockage graph of (Γ, C ′).

A similar result can be shown for PΓ .
Finally, PΓ can be used for deciding answersetship in the following way.

Corollary 3.3.7 (Answer set characterization, I′) Let Γ be the RDG of logic program Π and let C be a
total coloring of Γ.

Then, C is an admissible coloring of Γ iff PΓ(C) = C and there is a support graph of (Γ, C).

This result directly follows from Theorem 3.2.4. Clearly, the result is also valid when replacing PΓ by P∗Γ .
The following operation draws upon the maximal support graph of colored RDGs.

Definition 3.3.3 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Furthermore, let (V,E) be a maximal support graph of (Γ, C) for some E ⊆ (Π×Π).
Then, define UΓ : C→ C as UΓ(C) = (C⊕,Π \ V ).

This operator allows for coloring rules with 	 whenever it is clear from the given partial coloring that they
will remain unsupported.11 Observe that Π \ V = C	 ∪ (Π \ V ). As with P∗Γ , operator UΓ(C) is an
extension of C. To be more precise, we have C⊕ = (UΓ(C))⊕ and C	 ∪ S(Γ, C) ⊆ (UΓ(C))	. Unlike
P∗Γ , however, operator UΓ allows for coloring nodes unconnected with the already colored part of the graph.

As regards program Π9 in Example 9, for instance, we obtain UΓ((∅, ∅)) = (∅, {r5}). While this
information on r5 can also be supplied by PΓ , it is not obtainable for “self-supporting 0-loops”, as in
Π = {p ← q, q ← p}. In this case, we obtain UΓ((∅, ∅)) = (∅, {p ← q, q ← p}), which is not obtainable
through PΓ (and P∗Γ , respectively).

Although UΓ cannot be defined in general, it is defined on colorings satisfying the conditions of Theo-
rem 3.2.2, guaranteeing the existence of support graphs.

11The relation to unfounded sets is described in Corollary 3.4.3.
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Corollary 3.3.8 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
If (Γ, C) has a support graph, then UΓ(C) exists.

We may actually characterize UΓ(C) in terms of iterated applications of an operator, similar to TΠ; this is
detailed in Section 3.3.4.2 as well as in Section A.2.

As with P∗Γ , operator UΓ is reflexive, idempotent, monotonic, and answer set preserving.

Theorem 3.3.9 Let Γ be the RDG of logic program Π and let C and C ′ be partial colorings of Γ such that
ACΠ(C) 6= ∅ and ACΠ(C ′) 6= ∅.

Then, we have the following properties.

1. C v UΓ(C);

2. UΓ(C) = UΓ(UΓ(C));

3. if C v C ′, then UΓ(C) v UΓ(C ′).

Theorem 3.3.10 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
Then, we have ACΠ(C) = ACΠ(UΓ(C)).

Note that unlike PΓ , operator UΓ leaves the support graph of (Γ, C) unaffected. Since, according to Theo-
rem 3.2.8, the essential blockage graph is composed of supported rules only, the same applies to this graph
as well.

Theorem 3.3.11 Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial coloring of Γ.
For C ′ = UΓ(C), we have

1. if (C⊕, E) is a support graph of (Γ,C), then (C⊕, E) is a support graph of (Γ,C
′)

for some E ⊆ E0;

2. if (C⊕ ∪ C	, E1)|S(Γ,C) is a blockage graph of (Γ, C),
then (C⊕ ∪ C	, E1)|S(Γ,C) is a blockage graph of (Γ, C ′).

In fact, we have in the latter case that (C⊕ ∪ C	, E1)|S(Γ,C) = (C ′
⊕ ∪ C ′

	, E1)|S(Γ,C′).
Because UΓ implicitly enforces the existence of a support graph, our operators furnish yet another

characterization of answer sets.

Corollary 3.3.12 (Answer set characterization, I′′) Let Γ be the RDG of logic program Π and let C be a
total coloring of Γ.

Then, C is an admissible coloring of Γ iff C = PΓ(C) and C = UΓ(C).

Clearly, this result is also valid when replacing PΓ by P∗Γ .
Note that the last result is obtained from Corollary 3.3.7 by replacing the requirement of the exis-

tence of a support graph by C = UΓ(C). However, the last condition cannot guarantee that all sup-
ported unblocked rules belong to C⊕. For instance, (∅, {a ←}) has an empty support graph; hence
(∅, {a ←}) = UΓ((∅, {a←})). That is, the trivially supported fact a ← remains in C	. In our set-
ting, such a miscoloring is detected by operator PΓ . That is, PΓ((∅, {a←})) does not exist, since it would
yield ({a←}, {a←}), which is no partial coloring.
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3.3.2 Basic operational characterization
We start by providing a very general operational characterization that possesses a maximum degree of
freedom.

To this end, we observe that Corollary 3.3.7 and 3.3.12, respectively, can serve as a straightforward
check for deciding whether a given total coloring constitutes an answer set. A corresponding guess can be
provided through an operator capturing a non-deterministic (don’t know) choice.

Definition 3.3.4 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
For ◦ ∈ {⊕,	}, define C◦Γ : C→ C as

1. C⊕Γ (C) = (C⊕ ∪ {r}, C	) for some r ∈ Π \ (C⊕ ∪ C	);

2. C	Γ (C) = (C⊕, C	 ∪ {r}) for some r ∈ Π \ (C⊕ ∪ C	).

We use C◦Γ whenever the distinction between C⊕Γ (C) and C	Γ (C) is of no importance. Strictly speaking, C◦Γ
is also parametrized with r; we leave this implicit to abstract from the actual choice. In fact, whenever both
operators C⊕Γ (C) and C	Γ (C) are available, the choice of r is only a “don’t care” choice, while that among
⊕ and	 is the crucial “don’t know” choice. Intuitively, this is because all rules must be colored either way;
it is the attributed color that is of prime importance for the existence of an answer set.

Combining the previous guess and check operators yields our first operational characterization of ad-
missible colorings (along with its underlying answer sets).

Theorem 3.3.13 (Operational answer set characterization, I) Let Γ be the RDG of logic program Π and
let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following proper-
ties:

1. C0 = (∅, ∅);

2. Ci+1 = C◦Γ(Ci) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;

3. Cn = PΓ(Cn);

4. Cn = UΓ(Cn);

5. Cn = C.

In what follows, we refer to such sequences also as coloring sequences. Note that all sequences satisfying
conditions 1-5 of Theorem 3.3.13 are successful in the sense that their last element corresponds to an
existing answer set. If a program has no answer set, then no such sequence exists.

Although this straightforward guess and check approach may not be of great implementation value, it
supplies us with an initial skeleton for the coloring process that we refine in the sequel. In particular, this
characterization stresses the basic fact that we possess complete freedom in forming a coloring sequence as
long as we can guarantee that the resulting coloring is a fixed point of PΓ and UΓ . It is worth mentioning
that this simple approach is inapplicable when fixing ◦ to either ⊕ or 	 (cf. Section 3.3.3 below).

We observe the following properties.

Theorem 3.3.14 Given the same prerequisites as in Theorem 3.3.13, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-5 in Theorem 3.3.13.

Then, we have the following properties for 0 ≤ i ≤ n.

1. Ci is a partial coloring;

2. Ci v Ci+1;
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3. ACΠ(Ci) ⊇ ACΠ(Ci+1);

4. ACΠ(Ci) 6= ∅;

5. (Γ, Ci) has a (maximal) support graph.

All these properties represent invariants of the consecutive colorings. While the first three properties are
provided by operator C◦Γ in choosing among uncolored rules only, the last two properties are actually en-
forced by the final coloring Cn, that is, the “check” expressed by conditions 3–5 in Theorem 3.3.13. In fact,
sequences only enjoying conditions 1 and 2 in Theorem 3.3.13, fail to satisfy Property 4 and 5 in general.
In practical terms, this means that computations of successful sequences may be led numerous times on the
“garden path” before termination.

As it is well-known, the number of choices can be significantly reduced by applying deterministic
operators. To this end, given a partial coloring C, define (PU)∗Γ(C) as the v-smallest partial coloring
containing C and being closed under PΓ and UΓ . 12

Theorem 3.3.15 (Operational answer set characterization, II) Let Γ be the RDG of logic program Π and
let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following proper-
ties:

1. C0 = (PU)∗Γ((∅, ∅));

2. Ci+1 = (PU)∗Γ(C◦Γ(Ci)) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;

3. Cn = C.

On the one hand, the continuous applications of PΓ and UΓ extend colorings after each choice. On the other
hand, this proceeding guarantees that each partial coloring Ci is closed under PΓ and UΓ .

Regarding correctness and completeness, however, it is clear in view of Theorem 3.3.13 that any number
of iterations of PΓ and UΓ can be executed after C◦Γ as long as (PU)∗Γ is the final operation leading to Cn

in Theorem 3.3.15.
For illustration, consider the coloring sequence (C0, C1) obtained for answer set {b, p, f ′} of program

Π9 in Example 9:

C0 = (PU)∗Γ((∅, ∅)) = ({p←, b← p}, {b← m})
C1 = (PU)∗Γ(C⊕Γ (C0)) = ({p←, b← p, f ′ ← p, not f},

{b← m, f ← b, not f ′, x← f, f ′, not x})

The decisive operation in this sequence is the application of C⊕Γ leading to C({f ← b, not f ′}) = ⊕.
Note that in this simple example all propagation is accomplished by operator PΓ . We have illustrated the
formation of the sequence in Figure 3.5. The same final result is obtained when choosing C	Γ such that
C({f ′ ← p, not f}) = 	. This illustrates that several coloring sequences may lead to the same answer set.

As with Corollary 3.3.3, we have the following result.

Corollary 3.3.16 Let Γ be the RDG of logic program Π. Then, (PU)∗Γ((∅, ∅)) exists.

As we will see in Section 3.4, this operator sequence directly corresponds to the well-founded model of a
program.

The usage of continuous propagations leads to further invariant properties.

12An iterative characterization of (PU)∗Γ (C) is given in Section A.2
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Figure 3.5: A coloring sequence for program Π9.

Theorem 3.3.17 Given the same prerequisites as in Theorem 3.3.15, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-3 in Theorem 3.3.15.

Then, we have the following:

1.–5. as given in Theorem 3.3.14;

6. Ci+1
⊕ ⊇ S(Γ, Ci) ∩B(Γ, Ci);

7. Ci+1
	 ⊇ S(Γ, Ci) ∪B(Γ, Ci).

Taking the last two properties together with Condition 5 from Theorem 3.3.14, we see that propagation
gradually enforces exactly the attributes on partial colorings, expressed in Theorem 3.2.4 for admissible
colorings.

Given that we obtain only two additional properties, one may wonder whether exhaustive propagation
truly pays off. In fact, its great value becomes apparent when looking at the properties of prefix sequences,
not necessarily leading to a successful end.

Theorem 3.3.18 Given the same prerequisites as in Theorem 3.3.15, let (Cj)0≤j≤m be a sequence satisfy-
ing Condition 1 and 2 in Theorem 3.3.15.

Then, we have the following.

1.–3., 5. as given in Theorem 3.3.14;

6.–7. as given in Theorem 3.3.17.

Using exhaustive propagations, we observe that except for Property 4 all properties possessed by successful
sequences, are shared by (possibly unsuccessful) prefix sequences.

The next results make the aforementioned claim on the effect of deterministic operators on admissible
prefix sequences more precise:

Theorem 3.3.19 Let Γ be the RDG of logic program Π.
Let m be the number of sequences over C satisfying conditions 1-4 in Theorem 3.3.13 and let n be the

number of sequences over C satisfying conditions 1 and 2 in Theorem 3.3.15.
Then, we have n ≤ m.

Moreover, successful sequences are usually shorter when using propagation.

Theorem 3.3.20 Let Γ be the RDG of logic program Π and C be an admissible coloring of Γ.
Let (Ci)0≤i≤m and (Cj)0≤j≤n be the shortest sequences obtained for C according to Theorem 3.3.13

and Theorem 3.3.15, respectively.
Then, we have n ≤ m.

The same result can be shown for the longest sequences.
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3.3.3 Unicoloring operational characterization
As mentioned above, the use of two coloring operators is essential for our initial operational characteri-
zation given in Theorem 3.3.13. In fact, this is obsolete when using continuous propagation, as done in
Theorem 3.3.15. That is, rather than using two coloring operators, we may actually use only one of them,
and leave the attribution of the complementary color to propagation operators. To be more precise, this
amounts to replacing Condition 2 in Theorem 3.3.15 either by

2.+ Ci+1 = (PU)∗Γ(C⊕Γ (Ci)) or 2.− Ci+1 = (PU)∗Γ(C	Γ (Ci)) for 0 ≤ i < n.

Then, we have the following result.

Corollary 3.3.21 (Operational answer set characterization, II+/II−) Theorem 3.3.15 still holds, when
replacing Condition 2 either by 2.+ or 2.−.

Note that the possible set of (prefix) sequences is smaller than that obtained from the “bi-coloring” in
Theorem 3.3.15, simply, because choices are restricted to a single color. On the other hand, we see no
advantage of either approach regarding the length of successful sequences. Also, since the choice of the
color is fixed, the choice of the rule to be colored becomes a “don’t know” choice.

The last type of characterization is based on exhaustive propagation. Hence, we are interested in the
question how much propagation is sufficient for compensating the possibility of choosing among two colors.
The next result gives an answer for the case of unicoloring with C⊕Γ .

Theorem 3.3.22 (Operational answer set characterization, III+) Let Γ be the RDG of logic program Π
and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following proper-
ties:

1. C0 = (∅, ∅);

2. Ci+1 = C⊕Γ (Ci) for 0 ≤ i < n− 1;

3. Cn = UΓ(P∗Γ(Cn−1));

4. Cn = C.

The actual propagation is done in Condition 3. That is, the consecutive application of UΓ and P∗Γ allows for
coloring all remaining rules in Cn−1 with 	.

Note that the application order of P∗Γ and UΓ in Condition 3 cannot be reversed. To see this, reconsider
program Π10 in Example 10 on page 24, consisting of rules

r1 : a ←
r2 : b ← not a
r3 : c ← b
r4 : b ← c .

and observe that its only answer set {a} corresponds to coloring ({r1}, {r2, r3, r4}). In order to obtain this
according to Theorem 3.3.22, we must color rule r1 with ⊕. We then get P∗Γ(({r1}, ∅)) = ({r1}, {r2})
and finally UΓ(({r1}, {r2})) = ({r1}, {r2, r3, r4}). Switching the last operators yields UΓ(({r1}, ∅)) =
({r1}, ∅) and P∗Γ(({r1}, ∅)) = ({r1}, {r2}) and we fail to obtain the desired result.

Interestingly, the usage of the operator P∗Γ is sufficient when coloring with 	 only.

Theorem 3.3.23 (Operational answer set characterization, III−) Let Γ be the RDG of logic program Π
and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following proper-
ties:
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1. C0 = (∅, ∅);

2. Ci+1 = C	Γ (Ci) for 0 ≤ i < n− 1;

3. Cn = P∗Γ(Cn−1);

4. Cn = C.

Unicoloring offers another perspective on strategies employing bicoloring: The coloration with the
second color may be regarded as some sort of “lemmatization” avoiding duplicate solutions rather than a
genuine choice.

3.3.4 Support-driven operational characterization
The number of possible choices encountered during a computation is of crucial importance. We have
already seen above that propagation has great computational advantages. What else may cut down the
number of choices?

Looking at the graph structures underlying an admissible coloring (cf. Theorem 3.2.8), we observe that
support graphs capture a global — since recursive — structure, while blockage graphs aim at a rather local
structure, based on arc-wise constraints. Consequently, it seems advisable to prefer choices maintaining
support structures over those maintaining blockage relations, since the former have more global repercus-
sions than the latter.

To this end, we develop in this section a strategy that is based on a choice operation restricted to sup-
ported rules.

Definition 3.3.5 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
For ◦ ∈ {⊕,	}, define D◦Γ : C→ C as

1. D⊕Γ (C) = (C⊕ ∪ {r}, C	) for some r ∈ S(Γ, C) \ (C⊕ ∪ C	);

2. D	Γ (C) = (C⊕, C	 ∪ {r}) for some r ∈ S(Γ, C) \ (C⊕ ∪ C	).

Compared to operators C◦Γ , the latter restrict their choice to supported rules. Verifying whether a rule is
supported can then be done in a local fashion by looking at the immediate predecessors in the RDG . With
this little additional effort, the number of colorable rules is smaller than that encountered when applying
C◦Γ . The benefit of support-driven characterizations is that the length of coloring sequences is bound by the
number of supported rules. Depending on how the non-determinism of D◦Γ is dealt with algorithmically,
this may either lead to a reduced depth of the search tree or a reduced branching factor.

In fact, in a successful coloring sequence (Ci)0≤i≤n, all rules in (Cn)⊕ must belong to an encompassing
support graph and thus be supported. Hence, by means of D⊕Γ (C) (along with P∗Γ ) the supportedness of
each set Ci

⊕ can be made invariant. Consequently, such a proceeding allows for establishing the existence
of support graphs, as stipulated in Theorem 3.2.4, so to speak “on the fly”. To a turn, this allows for
a much simpler approach to the task(s) previously accomplished by operator UΓ . We discuss two such
simplifications in what follows.

3.3.4.1 Support-driven operational characterization I

Given that the existence of support graphs is guaranteed, one may actually completely dispose of operator
UΓ and color in a final step all uncolored rules with 	.

Definition 3.3.6 Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
Then, define NΓ : C→ C as NΓ(C) = (C⊕,Π \ C⊕).
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Roughly speaking, the idea is then to “actively” color only supported rules and rules blocked by sup-
ported rules; all remaining rules are then unsupported and “thrown” into C	 in a final step. This is made
precise in the following characterization.

Theorem 3.3.24 (Operational answer set characterization, IV) Let Γ be the RDG of logic program Π
and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following proper-
ties:

1. C0 = (∅, ∅);

2. Ci+1 = D◦Γ(Ci) where ◦ ∈ {⊕,	} and 0 ≤ i < n− 1;

3. Cn = NΓ(Cn−1);

4. Cn = PΓ(Cn);

5. Cn = C.

We note that there is a little price to pay for turning UΓ into NΓ , expressed by the test on the final total
coloring in Condition 4. Without it, one could useNΓ to obtain a total coloring by coloring rules with 	 in
an arbitrary way.

We obtain the following properties for the previous type of coloring sequences.

Theorem 3.3.25 Given the same prerequisites as in Theorem 3.3.24, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-5 in Theorem 3.3.24.

Then, we have the following.

1.–5. as given in Theorem 3.3.14;

8. (Ci
⊕, E) is a support graph of (Γ, Ci) for some E ⊆ Π×Π.

Condition 8 makes the aforementioned claim on the supportedness of each rule in Ci
⊕ explicit. In contrast

to the coloring sequences enjoying Condition 5 only, the sequences formed by means of D◦Γ guarantee that
each Ci

⊕ forms a support graph.
In fact, there is some overlap among operator D	Γ and NΓ . To see this, consider Π = {a ← , b ←

not a}. We must initially apply D⊕Γ to obtain ({a ←}, ∅) from the empty coloring. Then, however, there
are two possibilities for obtaining total coloring ({a}, {b← not a}), either by applying D	Γ or by applying
NΓ . In fact, in view of this, NΓ allows us to dispose of D	Γ :

Corollary 3.3.26 (Operational answer set characterization, IV+) Theorem 3.3.24 still holds, when re-
placing Condition 2 by

2.+ Ci+1 = D⊕Γ (Ci) where 0 ≤ i < n− 1.

Observe that there is no characterization using D	Γ and NΓ because this leaves no possibility for coloring
rules with ⊕.

Theorem 3.3.27 Given the same prerequisites as in Corollary 3.3.26, let (Ci)0≤i≤n be a sequence satisfy-
ing conditions 1-5 in Corollary 3.3.26.

Then, we have the following.

1.–5. as given in Theorem 3.3.14;

8. as given in Theorem 3.3.25;
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9. (Ci
⊕ ∪ Ci

	, E)|S(Γ,Ci) is a blockage graph of (Γ, Ci).

Interestingly, only support-driven unicoloring by means of D⊕Γ can guarantee the consecutive existence of
blockage graphs. This is because D⊕Γ warrants, first, that Ci

⊕ ⊆ S(Γ, Ci) and thus all blocking rules are
taken into account and, second, that rules are not arbitrarily colored with 	 but rather guarded by operator
PΓ . 13

As discussed above, there is some overlap in the characterization expressed in Theorem 3.3.24. Inter-
estingly, this can be eliminated by adding propagation operator P∗Γ to the previous characterization. This
results in coloring sequences corresponding to the basic strategy used in the noMoRe system [4].

Theorem 3.3.28 (Operational answer set characterization, V) Let Γ be the RDG of logic program Π and
let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following proper-
ties:

1. C0 = P∗Γ((∅, ∅));

2. Ci+1 = P∗Γ(D◦Γ(Ci)) where ◦ ∈ {⊕,	} and 0 ≤ i < n− 1;

3. Cn = NΓ(Cn−1);

4. Cn = PΓ(Cn);

5. Cn = C.

For illustration, consider the coloring sequence (C0, C1, C2) obtained for answer set {b, p, f ′} of pro-
gram Π9 in Example 9:

C0 = P∗Γ((∅, ∅)) = ({p←, b← p}, {b← m})
C1 = P∗Γ(D⊕Γ (C0)) = ({p←, b← p, f ′ ← p, not f},

{b← m, f ← b, not f ′, x← f, f ′, not x})
C2 = NΓ(C1) = C1

This sequence is similar to the one obtained for Π9 with the characterization given in Theorem 3.3.15. All
propagation is accomplished by operator P. However, operator D⊕Γ is faced with less choices than C⊕Γ (in
Theorem 3.3.15) because only two among the three uncolored rules are supported.

For another example, consider program Π10 in Example 10 on page 24. We get a coloring sequence
(C0, C1), where

C0 = P∗Γ((∅, ∅)) = ({a←}, {b← not a})
C1 = NΓ(({a←}, {b← not a})) = ({a←}, {b← not a, c← b, b← c}) .

Note that operator D◦Γ is inapplicable to C0, since S(Γ, C0) \ (C0
⊕ ∪ C0

	) is empty. In this situation, C◦Γ
would be applicable to color either of the two uncolored rules in Π \ (C0

⊕ ∪ C0
	). In the final step, the two

unfounded rules are directly colored by operator NΓ without any further efforts.
Indeed, the strategy of noMoRe applies P∗Γ ◦ D◦Γ as long as there are supported rules. Once no more

uncolored supported rules exist, operatorNΓ is called. Finally, PΓ is applied but only to those rules colored
previously by NΓ . At first sight, this approach may seem to correspond to a subclass of the coloring
sequences described above, in the sense that noMoRe enforces a maximum number of transitions described
in Condition 2. To see that this is not the case, we observe the following property.

13This is more apparent in Corollary 3.3.31 below, when using P∗Γ for propagation as well.



3.3. OPERATIONAL CHARACTERIZATIONS 39

Theorem 3.3.29 Given the same prerequisites as in Theorem 3.3.28, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-5 in Theorem 3.3.28.

Then, we have (NΓ(Cn−1)	 \ Cn−1
	 ) ⊆ S(Γ, C).

That is, no matter which (supported) rules are colored 	 by D	Γ , operator NΓ only applies to unsupported
ones. It is thus no restriction to enforce the consecutive application of P∗Γ and D◦Γ until no more supported
rules are available. In fact, it is the interplay of the two last operators that guarantees this property. For
instance, looking at Π = {a, b ← not a}, we see that we directly obtain the final total coloring because
({a}, {b ← not a}) = P∗Γ(D⊕Γ ((∅, ∅))), without any appeal to NΓ . Rather it is P∗Γ that detects that b ←
not a belongs to the set of blocked rules. Generally speaking, D⊕Γ consecutively chooses the generating
rules of an answer set, finally gathered in C⊕ = S(Γ, C) ∩ B(Γ, C). Every rule in B(Γ, C) is blocked
by some rule in C⊕. So whenever a rule r is added by D⊕Γ to C⊕, operator P∗Γ adds all rules blocked by
r to C	. In this way, P∗Γ and D⊕Γ gradually color all rules in S(Γ, C) ∩ B(Γ, C) and B(Γ, C), so that all
remaining uncolored rules, subsequently treated by NΓ , must belong to S(Γ, C). 14

Furthermore, we obtain the following properties.

Theorem 3.3.30 Given the same prerequisites as in Theorem 3.3.28, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-5 in Theorem 3.3.28.

Then, we have the following.

1.–5. as given in Theorem 3.3.14;

6.–7. as given in Theorem 3.3.17;

8. as given in Theorem 3.3.25.

Finally, for the sake of completeness, we give the unicoloring variant along with its properties.

Corollary 3.3.31 (Operational answer set characterization, V+) Theorem 3.3.28 still holds, when re-
placing Condition 2 by

2.+ Ci+1 = P∗Γ(D⊕Γ (Ci)) where 0 ≤ i < n− 1.

Theorem 3.3.32 Given the same prerequisites as in Corollary 3.3.31, let (Ci)0≤i≤n be a sequence satisfy-
ing conditions 1-5 in Corollary 3.3.31.

Then, we have the following.

1.–5. as given in Theorem 3.3.14;

6.–7. as given in Theorem 3.3.17;

8.–9. as given in Theorem 3.3.25 and 3.3.27.

The previous characterization also satisfies Theorem 3.3.29.

3.3.4.2 Support-driven operational characterization II

Although the previous approach has turned out to be of practical value as the core inference strategy of the
noMoRe system, it is still improvable. This is because the early detection of unsupported rules may allow

14Some rules of S(Γ, C) are already detected and added to C	 by P∗Γ .
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for better propagation results and thus fewer choices. To see this, consider program Π3.8 = {r1, r2, r3},
where 15

(3.8)
r1 : p ← not q
r2 : q ← r, not p
r3 : r ← q.

This program has the answer set {p} represented by the admissible coloring ({r1}, {r2, r3}). Without an
operator like UΓ one would need a choice operation for detecting the unfounded rules r2 and r3. Following
Theorem 3.3.28, we get the coloring sequence:

C0 = P∗Γ((∅, ∅)) = (∅, ∅)
C1 = P∗Γ(D⊕Γ (C0)) = ({r1}, ∅)
C2 = NΓ(C1) = ({r1}, {r2, r3})

Although the support-driven choice operator D◦Γ is only faced with a single alternative, as opposed to the
three alternatives encountered by operator C◦Γ , it would be clearly advantageous to solve this example by
propagation only. This motivates a variant of operator UΓ that takes advantage of the support-driven strategy
pursued by D◦Γ .

Given the RDG Γ of a logic program Π and a partial coloring C of Γ, define TΓ : C→ C as

TΓ(C) = (C⊕ ∪ (S(Γ, C) \ C	), C	)

and define T ∗Γ (C) as the v-smallest partial coloring containing C and being closed under TΓ .
The next result shows that T ∗Γ extends a given support graph to a maximal one.

Theorem 3.3.33 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
If (C⊕, E) is a support graph of (Γ,C), then ((T ∗Γ (C))⊕, E′) is a maximal support graph of (Γ, C) for

some E,E′ ⊆ (Π×Π).

Recall that by definition C v T ∗Γ (C).
With this, we can define the following incremental (and constructive) variant of UΓ :

Definition 3.3.7 Let Γ be the RDG of logic program Π and C a partial coloring of Γ.
Then, define VΓ : C→ C as VΓ(C) = (C⊕,Π \ V ) where V = T ∗Γ (C)⊕.

Observe that Π \ V = C	 ∪ (Π \ V ). It is instructive to compare the latter definition with that of UΓ ,
given in Definition 3.3.3. In fact, UΓ can be obtained by means of T ∗Γ by defining V in Definition 3.3.3 as
V = T ∗Γ ((∅, ∅))⊕ subject to the condition C⊕ ⊆ V and C	 ∩ V = ∅.

The next result tells us when both operators coincide.

Corollary 3.3.34 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
If (C⊕, E) is a support graph of (Γ, C) for some E ⊆ (Π×Π), then UΓ(C) = VΓ(C).

Given that D◦Γ adds only supported rules to a coloring C, it gradually extends the underlying support graph
around C⊕. Hence, we may replace operator UΓ by VΓ whenever using choice operator D◦Γ . This is
impossible when using operator C◦Γ , since its choice may not be supported and thus destroy the invariant
support property expressed in Property 8 in Theorem 3.3.25. Unlike UΓ , operator VΓ takes the support
status of all rules in C⊕ for granted. This allows VΓ to focus on uncolored rules, viz Π \ (C⊕ ∪C	). Such
an assumption is not made by UΓ , which (possibly) reestablishes the support status of rules in C⊕; it is thus
proned to consider all rules in Π \ C	. Technically, this is reflected by the fact that the computation of VΓ

by means of TΓ may start from C, while the one of UΓ by TΓ must start out with the empty coloring. In all,

15For the sake of uniqueness, we label the program with the equation number.
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VΓ does not lead to fewer choices than UΓ , it has rather the computational advantage of avoiding redundant
computations.

Now, we are ready to give support-oriented counterparts of the operational characterizations given in
the two previous subsections. Most of them are obtainable by simply replacing operators C◦Γ and UΓ by
D◦Γ and VΓ , respectively. The first exception is Theorem 3.3.13 where the replacement of C◦Γ by D◦Γ leaves
no way of coloring unsupported rules with 	. (This provides further evidence for the necessity of NΓ in
Theorem 3.3.24.)

For defining a support-oriented counterpart of Theorem 3.3.15, we first need the following propagation
operator: As with (PU)∗Γ , given a partial coloring C, we define (PV)∗Γ(C) as thev-smallest partial coloring
containing C and being closed under PΓ and VΓ . 16

Theorem 3.3.35 (Operational answer set characterization, VI) Let Γ be the RDG of logic program Π
and let C be a total coloring of Γ.

Then, C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following proper-
ties:

1. C0 = (PV)∗Γ((∅, ∅));

2. Ci+1 = (PV)∗Γ(D◦Γ(Ci)) where ◦ ∈ {⊕,	} and 0 ≤ i < n;

3. Cn = C.

For illustration, consider program Π3.8 in (3.8). We get a coloring sequence (C0), where

C0 = (PV)∗Γ((∅, ∅)) = ({p← not q}, {q ← r, not p, r ← q}) .

Or to be more precise,

VΓ((∅, ∅)) = (∅, {q ← r, not p, r ← q})
C0 = PΓ((∅, {q ← r, not p, r ← q})) = ({p← not q}, {q ← r, not p, r ← q}) .

Analogously, we obtain for program Π10 in Example 10 on page 24 a singular coloring sequence (C0),
where

C0 = (PV)∗Γ((∅, ∅)) = ({a←}, {b← not a, c← b, b← c}) .

We note the following invariant properties of the sequence.

Theorem 3.3.36 Given the same prerequisites as in Theorem 3.3.35, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-3 in Theorem 3.3.35.

Then, we have the following.

1.–5. as given in Theorem 3.3.14;

6.–7. as given in Theorem 3.3.17;

8. as given in Theorem 3.3.32.

In analogy to what we have shown in Section 3.3.3, we may replace Condition 2 in Theorem 3.3.35
either by

2.+ Ci+1 = (PV)∗Γ(D⊕Γ (Ci)) or 2.− Ci+1 = (PV)∗Γ(D	Γ (Ci)) for 0 ≤ i < n.

Then, we have the following.

Corollary 3.3.37 (Operational answer set characterization, VI+/VI−) Theorem 3.3.35 still holds, when
replacing Condition 2 either by 2.+ or 2.−.

Also, all results obtained in Section 3.3.4.1 remain true, when replacing NΓ by VΓ .
16A characterization in terms of iterated applications is given in Section A.2 on page 144.
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3.3.5 Summary
In view of the many different operational characterizations, we summarize in Table 3.1 their approach to the
formation of coloring sequences and their major properties. For this, we distinguish between the formation
of coloring sequences (Ci)0≤i≤n and the test on their final element Cn. For describing the formation
process in a compact way, we confine ourselves to operators and denote their composition by ◦. To be
precise, given operators O1 and O2, we write (O1 ◦ O2) instead of (λx.O1(O2(x))). Furthermore, we use
Ok to denote k consecutive applications of O for some arbitrary positive integer k.

For instance, Theorem 3.3.13 captures sequences that are obtained by k = n applications of C◦Γ ; this
is indicated in Table 3.1 by [C◦Γ ]k. The two final tests on Cn, viz Cn = PΓ(Cn) and Cn = UΓ(Cn), are
pointed out by PΓ ,UΓ (in column “Check”).

Section Theorem Formation Check Properties Properties

Process Prefix sequences

I 3.3.2 3.3.13 [C◦Γ ]k PΓ ,UΓ 1–5 1–3

II 3.3.15 [(PU)∗Γ ◦ C◦Γ ]k ◦ (PU)∗Γ − 1–7 1–3,5–7

II+ 3.3.3 3.3.21 [(PU)∗Γ ◦ C
⊕
Γ ]k ◦ (PU)∗Γ − 1–7 1–3,5–7

II− 3.3.21 [(PU)∗Γ ◦ C
	
Γ ]k ◦ (PU)∗Γ − 1–7 1–3,5–7

III+ 3.3.22 UΓ ◦ P∗Γ ◦ [C⊕Γ ]k − 1–5 1–3,5

III− 3.3.23 P∗Γ ◦ [C	Γ ]k − 1–5 1–3,5

IV 3.3.4.1 3.3.24 NΓ ◦ [D◦Γ ]k PΓ 1–5,8 1–3,5,8

IV+ 3.3.26 NΓ ◦ [D⊕Γ ]k PΓ 1–5,8–9 1–3,5,8–9

V 3.3.28 NΓ ◦ [P∗Γ ◦ D◦Γ ]k ◦ P∗Γ PΓ 1–8 1–3,5–8

V+ 3.3.31 NΓ ◦ [P∗Γ ◦ D
⊕
Γ ]k ◦ P∗Γ PΓ 1–9 1–3,5–9

VI 3.3.4.2 3.3.35 [(PV)∗Γ ◦ D◦Γ ]k ◦ (PV)∗Γ − 1–8 1–3,5–8

VI+ 3.3.37 [(PV)∗Γ ◦ D
⊕
Γ ]k ◦ (PV)∗Γ − 1–9 1–3,5–9

VI− 3.3.37 [(PV)∗Γ ◦ D
	
Γ ]k ◦ (PV)∗Γ − 1–8 1–3,5–8

Table 3.1: Summary of operational characterizations.

We observe that all successful coloring sequences enjoy properties 1-5. Properties 6 and 7 rely on
exhaustive propagations, at least with operator P∗Γ . While Property 8 is guaranteed in all support-driven
characterizations, Property 9 is only warranted when unicoloring with D⊕Γ . In fact, we see that exhaustive
propagations moreover enforce that the respective properties (except for Property 4 and in one case Prop-
erty 5) are also enjoyed by prefix sequences. That is, sequences satisfying the first two conditions, thus
sharing the format [O2]k ◦O1 for some combination of operators Oi for i = 1, 2. This is interesting from a
computational point of view, since the more properties are enforced on partial colorings, the smaller is the
overall search space. For brevity, we refrain from giving explicit theorems on prefix sequences (in addition
to Theorem 3.3.18), since their proofs are obtained in a straightforward way.

Finally, let us summarize the computational complexity of the various operators.

Theorem 3.3.38 Let Γ be the RDG of logic program Π and let C be a partial coloring of Γ.
If n is the number of rules in Π, then
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1. PΓ(C) is computable in O(n),

2. P∗Γ(C) is computable in O(n),

3. UΓ(C) is computable in O(n),

4. (PU)∗Γ(C) is computable in O(n2),

5. VΓ(C) is computable in O(n),

6. (PV)∗Γ(C) is computable in O(n2),

7. NΓ(C) is computable in O(n).

In view of this result, we can decide in polynomial time whether a coloring sequence is in accord with
a particular characterization. Hence, a successful coloring sequence can be generated in nondeterministic
polynomial time.

3.4 Fitting and Well-founded Semantics
For relating Fitting’s semantics and the well-founded semantics (see Section 2.1.2.2 on page 8) to the
operators on RDGs, we need the following relationship between atom-based models and colorings.

Definition 3.4.1 Let Γ be the RDG of logic program Π and let C be a partial coloring of Γ.
We define

XC = {head(r) | r ∈ C⊕},
YC = {q | for all r ∈ Π, if head(r) = q, then r ∈ C	}.

The pair (XC , YC) is a 3-valued interpretation of Π.
We have the following result.

Theorem 3.4.1 Let Γ be the RDG of logic program Π.
If C = P∗Γ((∅, ∅)), then Φω

Π(∅, ∅) = (XC , YC).

Note that P∗Γ((∅, ∅)) as well as Φω
Π(∅, ∅) always exists (Cf. Corollary 3.3.3).

For the well-founded semantics, we fix the relationship among greatest unfounded sets and maximal
support graphs.

Theorem 3.4.2 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ such that C	 ⊆
S(Γ, C) ∪B(Γ, C).

Furthermore, let (V,E) be a maximal support graph of (Γ, C) for some E ⊆ Π×Π.
Then, (Atm \ head(V )) is the greatest unfounded set of Π w.r.t. (XC , YC).

This result can be expressed in terms of operator UΓ .

Corollary 3.4.3 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ such that C	 ⊆
S(Γ, C) ∪B(Γ, C).

If C ′ = UΓ(C), then (Atm \ head(Π \ C ′
	)) is the greatest unfounded set of Π w.r.t. (XC , YC).

Finally, we can express the well-founded semantics in terms of our operators in the following way.

Theorem 3.4.4 Let Γ be the RDG of logic program Π.
If C = (PU)∗Γ((∅, ∅)), then (XC , YC) is the well-founded model of Π.

Hence, by Theorem 3.3.38, the well-founded model is computable in our approach in quadratic time in size
of Π.
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3.5 Discussion and related work
The approach presented in this chapter has its roots in earlier work [142, 143], proposing block graphs
as a tool for query-answering in default logic [166] and the underlying existence of extensions problem.
Roughly speaking, these graphs are closely related to the blockage graphs introduced in Section 3.2 because
both possess a single type of edges indicating blockage relations. Inspired by the distinction between
supporting and blocking arcs made in [155], this has led to our approach to characterizing and computing
answer sets; it provides the theoretical foundations of the noMoRe answer set programming system [4].

In this chapter, we put forward the simple concept of a rule dependency graph (RDG ) for capturing
the interplay between rules inducing answer sets.17,18 Many other forms of dependency graphs can be
found in the literature. For instance, dependency graphs (DGs) among predicate symbols were proposed
in [6] for defining stratified programs. DGs among atoms can be defined analogously [163]: The nodes of
such graphs are atoms appearing in a program Π; edges are distinguished similar to Definition 3.1.1, viz
E0 = {(head(r), p) | r ∈ Π, p ∈ body+(r)} and E1 = {(head(r), p) | r ∈ Π, p ∈ body−(r)}. Originally,
these edges are referred to as being positive and negative, respectively. Accordingly, a cycle is said to be
negative if it contains some negative edge. With this, a program is stratified if its DG does not contain a
negative cycle. Stratified logic programs have a unique answer set [99]. Many other properties, obtained
from the structure of the DG, were identified for investigating the consistency of Clark’s completion [46].
In fact, it is shown in [94] that most of them also guarantee the existence of answer sets. As discussed
in [52], DGs do not allow for capturing answer set semantics of logic programs. The difficulty is that there
are syntactically and semantically different programs having the same DG.

Among the more recent literature, we find [72], where rule dependency graphs are defined for reduced
negative programs. A program is negative if it includes only rules r where body+(r) = ∅. Informally, a
program is reduced if different rules h1 ← B, . . . , hk ← B with same body B are merged into one rule
h1 ∧ · · · ∧ hk ← B where the head is a conjunction of atoms. When restricting our attention to negative
programs with unique bodies, the graphs of [72] amount to RDGs restricted to 1-edges. The following
interesting results are shown in [72] for reduced programs: Stable models [99], partial stable models [170],
and well-founded semantics [190] of reduced negative programs correspond to kernels, semi-kernels and
the initial acyclic part of the corresponding RDG , respectively. General programs are dealt with by program
transformations, turning general programs to reduced negative ones.

Another interesting and closely related graph-theoretical approach is described in [39, 53, 54]. Although
their primary focus lies on special negative programs, referred to as kernel programs (see below) their
dependency graph can be defined in a general way. This approach relies on extended dependency graphs
(EDG ), whose nodes are given by the multi-set of rule heads together with atoms not appearing as heads.
For a program Π, the set of vertices amounts to the set {(head(r), r) | r ∈ Π} ∪ {(u, u) | u 6∈ head(Π)}.
There is a positive edge (u, v) in the EDG if u ∈ body+(r) and v = head(r) for some rule r ∈ Π; there
is a negative edge (u, v) in the EDG if u ∈ body−(r). Hence EDGs and RDGs are generally different. For
example, take program {ra, rb} = {a ← not b, b ← not a, not c}. Then the EDG of this program has
three nodes a, b and c and three negative edges (b, a), (a, b) and (c, b), whereas the RDG has two nodes ra

and rb and two edges (ra, rb) and (rb, ra). Kernel programs are negative programs subject to the condition
that each head atom must also appear as a body atom in the program and all atoms in the program must
be undefined in its well-founded model. According to [39], every normal program can be transformed into
some equivalent kernel program. In analogy to [72], general programs are then dealt with through program
transformations. Interestingly, it is shown in [53] that EDGs and RDGs are isomorphic for kernel programs.
EDGs are used in [39] to study properties of logic programs, like existence of answer sets. Furthermore,
colorings of EDGs are used in [39] for characterizing answer sets of kernel programs. For kernel programs,

17The definition of the RDG differs from that in [139], whose practically motivated restrictions turn out to be superfluous from a
theoretical perspective.

18Due to the aforementioned historical development, the RDG was in [139, 141] still referred to as “block graph”. We abandon the
latter term in order to give the same status to support and blockage relations.
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these colorings correspond to the ones studied in Section 3.2 (because of the aforecited isomorphism).
Interestingly, [39] defines admissible colorings in terms of their “complements”. That is, informally in our
terminology, a coloring C is non-admissible if for some u, either (i) u ∈ C⊕, and for some (u, v) ∈ E1,
v ∈ C⊕, or (ii) u ∈ C	 and for all (u, v) ∈ E1, v ∈ C	. Then, C is admissible if it is not non-admissible.
This definition is only concerned with blockage and thus applies to negative programs only. On the other
hand, it is closely related to the concept of a blockage graph (cf. Definition 3.2.3). That is, in the case of
negative programs, the blockage graph amounts to an admissibly colored EDG . To see this, compare the
negation of Condition 2 and 3 in Corollary 3.2.9 with Condition (i) and (ii) above (while setting S(Γ, C) to
Π). A blockage graph may thus be regarded as a natural extension of the concept of blockage used in [39]
from negative to general logic programs.

In all, the major difference between the two latter approaches [72, 39] and ours boils down to the
indirect or direct treatment of positive body atoms, respectively. While our techniques are developed for
full-fledged logic programs, [72, 39] advocate an initial transformation to negative programs, on which their
methods are primarily defined. (Note that general logic programs cannot be reduced to negative ones in a
modular way [112].) Rather all our characterizations of answer sets in Section 3.2 stress the duality between
supporting and blocking relations among rules. Finally, it is noteworthy that all three approaches address
several rather different problems. While we are primarily interested in operational characterizations, the
two other approaches address fundamental problems such as the existence of answer sets. In particular,
they elaborate upon the graph-theoretical concept of negative programs. In this way, all approaches are
nicely complementary to each other and therefore do largely benefit from each other. An overview over
different graphs associated with logic programs can be found in [52].

We have introduced support graphs for capturing the inferential dependencies among rule heads and
positive body atoms. In fact, support graphs may be seen as a (rule-oriented) materialization of the notion
of a well-supported interpretation, or more precisely, its underlying well-founded partial order (cf. [94]): An
interpretation X is well-supported if there is a strict well-founded partial order ≺ on X such that for every
p ∈ X there is some r ∈ RΠ(X) with p = head(r) and q ≺ p for every q ∈ body+(r). An edge (r1, r2) in
a support graph of a colored RDG corresponds to the pairs head(r2) ≺ head(r1) for q ∈ body+(r2).

A major goal of this work is to provide operational characterizations of answer sets that allow us to
bridge the gap between formal yet static characterizations of answer sets and algorithms for computing
them. For instance, in the seminal paper [150] describing the approach underlying the smodels system,
the characterization of answer sets is given in terms of so-called full-sets and their computation is directly
expressed in terms of procedural algorithms. Our operational semantics aims at offering an intermediate
stage that facilitates the formal elaboration of computational approaches. Our approach is strongly inspired
by the concept of a derivation, in particular, that of an SLD-derivation [144]. This attributes our coloring
sequences the flavor of a derivation in a family of calculi, whose respective set of inference rules correspond
to the selection of operators. A resolution calculus for skeptical stable model semantics is given in [17].
Interestingly, this calculus is not derived from credulous inference; also, it does not need the given program
to be instantiated before reasoning. Gentzen-style calculi for default logic (and thus implicitly also for logic
programming) can be found in [15, 18].

Regarding our modeling of operations, it is worth mentioning that one could also use total operations
instead of partial ones. For instance, instead of defining C as a set of partial mappings, one could consider
the set of a binary partitions of Π plus (Π,Π) as the representative for inconsistent colorings. For instance,
PΓ could then be defined as a mapping PΓ : C → C ∪ {(Π,Π)}, where (Π,Π) is obtained whenever
PΓ “detects” an inconsistency. Although such an approach seems natural in a logical setting, involving
deductive closure, we put forward partial mappings in our abstract operational setting. In this way, an
answer set exists iff there exists a corresponding coloring sequence. Accordingly, there is no answer set iff
there is no coloring sequence. This nicely corresponds to the concept of a derivation and notably avoids the
distinction between coloring sequences leading to admissible and inconsistent colorings.

We have furthermore shown in Section 3.4 that particular operations correspond to Fitting’s and well-
founded semantics [95, 190, 164, 69]. A stepwise characterization of both semantics was proposed in [26]
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by defining a confluent rewriting system. The rewrite of a program corresponds to a 3-valued interpretation
in which all facts in the rewritten program are true and all atoms not appearing among the heads of the
rewrite are false. All other atoms are undefined. The program transformations 7→P and 7→S delete atoms
from the positive and negative part of the body, if they are true in the associated 3-valued interpretation.
If a rule is transformed into a fact through these transformations, then this corresponds in our approach to
coloring this rule with ⊕ by PΓ . Analogously, the transformations 7→N and 7→F delete rules which have
atoms in their body being false in the 3-valued interpretation. These transformations correspond to coloring
non-applicable rules with 	. In this way, the iterative application of these 4 transformations yields the least
fixpoint of Fitting’s operator. In view of Theorem 3.4.1, these 4 transformations have the same effect as
operator PΓ . Another program transformation, viz 7→L, is introduced in [26] for 0-loop detection; thus
allowing for computing the greatest unfounded set. This transformation is similar to operator UΓ . Taken
together, 7→P , 7→S , 7→N , 7→F , 7→L form a confluent rewriting system, whose final rewrite corresponds to
the well-founded model of the initial logic program.

The operational characterization, presented in this chapter, establishes the basics for the nomore++
system [152, 3, 2], the successor of noMoRe. Instead of rule dependency graphs, the nomore++ system
treats heads and bodies equitably as computational objects. Analogously to colorings or rule dependency
graphs, body-head dependency graphs were defined and partial mappings for heads and bodies reflecting
applicability and non-applicability of heads and bodies. The propagation operators PΓ and UΓ have been
adapted to heads and bodies and extended to backward propagation. Choices are also support-driven, but
restricted on bodies. Furthermore, nomore++ has been extended by a hybrid lookahead strategy, incorpo-
rating heads and bodies of rules.

Although we leave algorithmic and implementation issues to further work, in particular those, dealing
with our system noMoRe, some remarks relating our approach to the ones underlying the answer set pro-
gramming systems DLV [76, 73, 130] and smodels [181, 150, 180] are in order. A principal difference
manifests itself in how choices are performed. While the two latter’s choice is based on atoms occurring
(negatively) in the underlying program, our choices are based on its rules. The former approach is per se
advantageous whenever multiple rules share a common head. This is compensated in the noMoRe system
by additional propagation rules eliminating a rule from the inference process, once its head has been de-
rived in an alternative way. From a general perspective, a rule-based choice can be regarded as a compound
choice on atoms. That is, assigning a rule r a positive applicability status (via ⊕) corresponds to assigning
all atoms in head(r) ∪ body+(r) the value true and all atoms in body−(r) the value false. Conversely,
assigning r a negative status of applicability (viz	) corresponds to assigning at least one atom in body+(r)
the value false or one in body−(r) the value true. Only if all rules with the same head are colored with
	, a rule head can be assigned false. While this type of choice is realized by C◦Γ , the one by D◦Γ is more
restrictive since all atoms in body+(r) are known to be true. An advantage of the approach based on choice
operator D◦Γ is that we can guarantee the support of rules on the fly. The elimination of unsupported rules
can then either be restricted to uncolored rules, as done with operator VΓ , or even done in a final step
without further detection efforts by appeal to operator NΓ . Interestingly, the choice operator of DLV has
also a support-driven flavor: When choosing a (negative) body literal q, one of the qualifying conditions
is the existence of a rule r such that q ∈ body−(r) and body+(r) ⊆ I , where I is the current partial as-
signment.19,20 Unlike this, support checking is a recurring operation in the smodels system, similar to
operator UΓ . On the other hand, this approach ensures that the smodels algorithm runs in linear space
complexity, while a graph-based approach needs quadratic space in the worst case (due to its number of
edges). Interestingly, smodels’ implementation relies on a rule-head dependency graph, in which rules
and atoms are connected via pointers. Such an investment in space pays off once one is able to exploit the
additional structural information offered by a graph. First steps in this direction are made in [140], where

19Formally, I is a four-valued interpretation. Two further conditions qualify the (disjunctive) head and the negative body literals of
the rule r depending on their truth values.

20No support is taken into account by DLV when choosing a (positive) head literal.
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graph compressions are described that allow for conflating entire subgraphs into single nodes. Propaga-
tion is more or less done similarly in all three approaches. That is, all these systems follow the strategy
coined in [184], namely “Answer Sets = Well-founded Semantics + Branch and Bound”. smodels relies
on computing well-founded semantics, whereas DLV uses Fitting’s or well-founded semantics, depending
on whether (in our terminology) the program’s RDG contains 0-cycles or not [43]. Also, both systems use
back-propagation mechanisms. In DLV, this allows to mark atoms as being eventually true. Operators cap-
turing DLV’s propagation operations are given in [87]. Among them, operator TΠ amounts to our Operator
PΠ; others address the aforementioned back-propagation and propagation of “eventually true” atoms. In
addition to the propagation operators discussed in Section 3.3, noMoRe also uses different types of back-
propagation [141], including special treatment of integrity constraints, as well as operations for ignoring
rules once their head has been established. What truly distinguishes noMoRe’s propagation operations is
their support-preserving way in conjunction with choice operator D◦Γ (cf. Property 8 in Theorem 3.3.25,
3.3.27, 3.3.30, 3.3.32, and 3.3.36).

noMoRe smodels
V VI VI+hsm

n chs ass time chs ass time chs ass time chs ass time
3 1 39 0.0 1 39 0.0 1 175 0.0 1 45 0.001
4 13 240 0.0 12 241 0.01 5 710 0.03 5 381 0.0
5 74 1430 0.06 64 1420 0.08 23 3918 0.23 26 2757 0.002
6 468 9935 0.59 385 9687 0.71 119 24046 1.88 305 34202 0.019
7 3370 78803 5.77 2676 75664 6.88 719 0.18M 16.98 4814 0.53M 0.319
8 27480 0.70M 61.84 21259 0.67M 72.99 5039 1.47M 173.81 86364 9.17M 6.29
9 0.25M 6.97M 730 0.19M 6.55M 849 40319 14M 3639 1.86M 197M 159

Table 3.2: Results for computing all answer sets of the Hamiltonian cycle problem on complete graphs with
n nodes.

noMoRe smodels
V VI VI+hsm

n chs ass time chs ass time chs ass time chs ass time
7 15 386 0.03 15 386 0.04 5 1075 0.13 30 4701 0.005
8 21 639 0.06 21 639 0.07 6 1626 0.22 8 2941 0.003
9 28 1000 0.11 28 1000 0.14 7 2368 0.4 48 12555 0.009
10 36 1494 0.19 36 1494 0.24 8 3337 0.75 1107 193287 0.155
11 45 2148 0.31 45 2148 0.57 9 4571 1.45 18118 2.81M 2.613
12 55 2991 0.53 55 2991 1.01 10 6110 2.47 0.39M 56.6M 60
13 66 4054 1.13 66 4054 1.62 11 7996 3.87 5.30M 721M 866
14 78 5370 1.92 78 5370 2.47 12 10273 5.62 — — >2h
15 91 6974 2.83 91 6974 3.47 13 12987 8.06 — — >2h
16 105 8903 4.01 105 8903 4.86 14 16186 11.07 — — >2h
17 120 11196 5.49 120 11196 6.58 15 19920 14.79 — — >2h
18 136 13894 7.15 136 13894 8.62 16 24241 19.74 — — >2h

Table 3.3: Results for computing one answer set of the Hamiltonian cycle problem on complete graphs with
n nodes

Finally, let us underpin the potential of our approach by some indicative empirical results. For this pur-
pose, we have chosen the Hamiltonian cycle problem on two different types of graphs, namely complete and
so-called clumpy graphs, as put forward in [195]. This choice is motivated by the fact that — unlike most
of the other known benchmark examples — Hamiltonian problems naturally lead to non-tight encodings
and thus comprise more complex support structures.21 Each clumpy graph has a given number of clumps

21Tight encodings for Hamiltonian problems were proposed in [137].
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noMoRe smodels
V VI VI+hsm

n chs ass time chs ass time chs ass time chs ass time
4 289 5132 0.22 56 1357 0.09 8 2006 0.16 2 1532 0.001
4 18 395 0.02 14 332 0.02 2 515 0.03 1 735 0.001
4 396 5468 0.29 179 3776 0.28 11 1834 0.18 18 10393 0.007
4 22 366 0.02 21 364 0.02 6 1000 0.08 3 1489 0.002
4 118 2223 0.14 47 1227 0.11 13 2763 0.29 20 13525 0.008
5 3765 54264 3.06 37 733 0.08 14 2721 0.29 6 4291 0.004
5 1113 13535 1.08 93 1779 0.22 32 4929 1.1 2306 1.08M 0.775
5 207 3340 0.17 74 1450 0.14 11 2611 0.29 4 2956 0.003
5 1195 14780 1.14 191 5390 0.79 29 7773 1.64 201 98546 0.069
5 4535 72129 4.91 505 15690 2.12 54 17425 3.66 82 60317 0.038
6 359 6563 0.52 89 2174 0.47 346 76915 25.46 0.17M 95M 76
6 1228 20970 1.64 261 6238 1.38 4419 1.06M 335 0.24M 214M 152
6 1.71M 33M 3278 0.10M 3.18M 935 12608 4.2M 1537 – – >2h
6 233 4937 0.38 158 3908 0.96 1161 0.27M 94 14 11841 0.01
6 3237 41286 2.78 499 8336 1.94 57 9162 2.62 38 38277 0.025

Table 3.4: Results for computing one answer set of the Hamiltonian cycle problem on clumpy graphs with
n clumps and different instances

(sets of nodes) where nodes are connected with more edges than between clumps. That is, edges in clumpy
graphs are distributed less uniform and solving Hamiltonian cycle problems becomes more difficult. All
benchmark examples are included in the distribution of the noMoRe system [153].

All presented experiments have been done under Linux (kernel 2.6) on a Intel Pentium 4 proces-
sor with 2.26GHz and 512MB main memory. We have used noMoRe V1.0 [153] under Eclipse Prolog
with RDGs (flag asp r set) and smodels version 2.27 [181]. Although we do not report it here, we have
run the whole test series with DLV as well. We have not included the results because DLV outperforms
smodels as well as noMoRe on all problem instances as regards time. Furthermore, DLV does not report
assignments and it has a different concept of choices than smodels and noMoRe.

Tables 3.2 and 3.3 summarize the results for computing all and one answer set for Hamiltonian cycle
problems on complete graphs with n nodes, respectively. Each table reports the number of choices (chs),
the number of assignments22 (ass) and the consumed time in seconds (time) for each operational charac-
terization of the noMoRe and smodels systems. M abbreviates millions. Observe that, although the
Hamiltonian cycle problem for complete graphs is easy solvable for humans, it is difficult for ASP solvers.
The computation of all solutions reflects the system behavior on excessive backtracking.23 Table 3.4 gives
results for computing Hamiltonian cycles on clumpy graphs with n clumps; we have tested five different
instances for each n. The first two operational characterizations V and VI correspond to the respective rows
in Table 3.1, whereas VI+hsm indicates a modified version of VI comprising an smodels-like heuristic
including lookahead. Observe that we compare a Prolog and a C++ implementation and thus the resulting
time measurements should not be overrated. Instead the number of needed choices and assignments give
a better indication for the relation of noMoRe and smodels. Concerning choices and assignments, Ta-
ble 3.2 shows that for computing all Hamiltonian cycles of complete graphs the noMoRe strategy VI+hsm

performs better than smodels. Further evidence for this is given in Table 3.3 where we are able to observe
this phenomenon even by looking at time measurements (for n ≤ 11).

The results for clumpy graphs in Table 3.4 demonstrate that noMoRe behaves more uniform on those
examples than smodels. For examples in the first three instances with six clumps noMoRe needs at

22For each change of the truth value of a atom and for each change of the color of a node in a RDG one assignment is counted in
smodels and noMoRe, respectively.

23We also ran test series on non-answer-set instances, namely, Hamiltonian cycle problems on bipartite graphs; the overall result
was the same as obtained with the series reported here.
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most 4419 choices whereas smodels needs at least 170000 choices. Furthermore, on the third instance
smodels did not even get an answer set after more than two hours. On the other hand, even if there are
examples where smodels needs less choices than noMoRe we did not recognize such extreme outliers for
noMoRe as we did for smodels during our tests.

Comparing the three noMoRe strategies among each other, we observe that the extension of strategy
VI by an smodels-like heuristics including lookahead usually decreases the number of choices (except for
clumpy graphs with n = 6). However, this does not necessarily lead to better performance in time, since the
lookahead increases the number of assignments. Similarly, we observe that strategy VI always makes fewer
choices than strategy V. Again, this advantage does not always pay off as regards time, since the verification
of support by operator VΓ is more time consuming than applying operator NΓ .

We stress that these experiments have a purely indicative character; a systematic experimental evalu-
ation is left for further work. Nonetheless our experiments show prospects insofar as even a moderately
optimized Prolog implementation of our strategies outperforms a state-of-the-art system on certain bench-
marks. Even though many other benchmark problems are still solved much faster by the state-of-the-art
solvers, a comparison of the number of choices reveals that our approach has no substantial disadvantages.

The fact that DLV deals with disjunctive programs makes many of its special features inapplicable in
our setting of normal logic programs. Alternative approaches can be found in [138, 47], where answer
sets are computed by means of SAT solvers. Algorithms and implementation techniques for computing
well-founded semantics can be found among others in [171, 145].

3.6 Conclusion
We have elaborated upon rule dependency graphs (RDGs) and their colorings for characterizing and com-
puting answer sets of logic programs. While RDGs determine the possible interplay among rules inducing
answer sets, its colorings fix their concrete application status.

We have started by identifying graph structures that capture structural properties of logic programs
and their answer sets. As a result, we obtain several characterizations of answer sets in terms of totally
colored dependency graphs. All characterizations reflect the dichotomy among the notions of support and
blockage. In fact, once a “recursive support” is established, this dichotomy allows for characterizing answer
sets in terms of their generating or their non-generating rules. The notion of “recursive support” is captured
by the graph-theoretical concept of a support graph, whose counterpart is given by the blockage graph.
Unlike the basic set-theoretic concepts, these subgraphs do not reflect the aforementioned dichotomy in
a fully symmetric way. This is because support graphs capture a global — since recursive — structure,
whilst blockage graphs aim at a rather local structure, based on arc-wise constraints. Taken together, both
subgraphs provide another characterization of answer sets. Interestingly, their existence is incrementally
enforced whenever appropriate propagation operations are used during the coloring process.

To a turn, we build upon these basic graph-theoretical characterizations for developing an operational
framework for non-deterministic answer set formation. The goal of this framework is to offer an intermedi-
ate stage between declarative characterizations of answer sets and corresponding algorithmic specifications.
We believe that this greatly facilitates the formal elaboration of computational approaches. The general
idea is to start from an uncolored RDG and to employ specific operators that turn a partially colored graph
gradually in a totally colored one, finally representing an answer set. To this end, we have developed a
variety of deterministic and non-deterministic operators. Different coloring sequences (enjoying different
formal properties) are obtained by selecting different combinations of operators. Among others, we dis-
tinguish unicoloring and support-driven operational characterizations. In particular, we have identified the
basic strategies employed by the noMoRe system as well as operations yielding Fitting’s and well-founded
semantics. Taken together, the last results show that noMoRe’s principal propagation operation amount
to applying Fitting’s operator, when using strategy IV in Table 3.1 or computing well-founded seman-
tics, when applying strategy VI. Notably, the explicit detection of 0-loops can be avoided by employing
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a support-driven choice operation. More recent developments within noMoRe, such as back-propagation,
heuristics, and implementation details are left for further work. Generally speaking, noMoRe is conceived
as a parametric system that allows for choosing different strategies. The noMoRe system is available at
http://www.cs.uni-potsdam.de/∼linke/nomore.

In fact, our operational framework can be seen as a “theoretical toolbox” that allows for assembling
specific strategies for answer set formation. The algorithmic realization of our coloring sequences in terms
of backtracking algorithms is rather straightforward. The interesting step is of course the implementa-
tion of choice operators. In principle, a choice is made from a set of rules, each of which may be at-
tributed a (different) color. This leaves room for different implementations, inducing differently shaped
search trees. A prototypical platform offering the described spectrum of operations can be downloaded at
http://www.cs.uni-potsdam.de/∼konczak/system/gcasp. In all, our elaboration has laid
the basic formal foundation for computing answer sets by means of RDGs and their colorings. Current and
future work mainly deals with further exploitation of the structural information offered by a graph-based ap-
proach. In Chapter 4, we show how preferences among rules are easily incorporated as a third type of edges.
Other work includes graph compressions allowing for collapsing entire subgraphs into single nodes [140].
Last but not least, our approach seems to be well-suited for debugging and profiling purposes. First, given
that it relies on rules, the objects of computation are the same as the descriptive objects within the problem
specification. Second, the underlying graph allows for a very natural visualization of computations. This
has already led to a noMoRe-specific profiler, described in [19].



Chapter 4

Ordered Programs in Answer Set
Programming

On different lines of ASP research, many extensions of the basic formalism have been proposed. Perhaps
the most intensively studied one is the modeling of preferences in ASP, cf. [65], Section 2.4 on page 13, and
Section 4.4 on page 70. Strongly rooted in the research of nonmonotonic formalisms, the ability to specify
preferences is acknowledged to be particularly beneficial to ASP, since they constitute a very natural and ef-
fective way of resolving indeterminate solutions. Up to now, these preference semantics where incorporated
into answer set solvers either by meta-interpretation [77] or by compilation methods [62, 161]; therefore,
preferences were never integrated into the solvers themselves. This is where our contribution comes in. In
Section 4.1, we extend the graph-based approach presented in Chapter 3 by preference information. We
provide an operational characterization, where preferences are directly integrated in the computation of
preferred answer sets.

In Section 4.2, we provide new benchmarks for logic programs with preferences, which are used for ex-
periments in the following Section 4.3. There, we present the new nomore< (pronunciation: nomorepref)
system, a C++ implementation of the graph-based approach described in Section 4.1. One of the main
motivations for integration preferences into ASP solver is the question whether an integrative approach is
better than a compilation method. Therefore, we compare the nomore< system with a meta-interpreter
and the plp system. More precisely, we compare the integration of preference information into an ASP
solver with compilation methods for preferences acting as front-ends for ASP solvers.

Section 4.4 contains an overview of currently existing semantics for preferences in answer set program-
ming. We conclude this chapter in Section 4.5.

4.1 Graphs and Colorings with Preferences
Up to now, the rule preferences described in Section 2.4 on page 13 where incorporated into answer set
solvers either by meta-interpretation [77] or by pre-compilation front-ends [62]; therefore, preferences were
never integrated into the solvers themselves. This is where our contribution comes in. We argue that the
graph-based approaches presented in Chapter 3 provide an appropriate model for integrating preferences
into answer set programming and the corresponding solvers. We underpin this claim, first, by showing how
three among the most prominent preference handling approaches presented in Section 2.4 on page 13 can
be characterized by graph-oriented methods in a uniform way and, second, by showing how this can be
realized by means of an operational semantics. This is usable for extending graph-based answer set solvers,
such as noMoRe [4]. Following Chapter 3, our idea is to start from an uncolored rule dependency graph
and to employ specific operators that turn a partially colored graph gradually into a totally colored one that
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represents a preferred answer set. Accordingly, a program has a certain preferred answer set iff there is a
sequence of operations turning the uncolored graph into a totally colored one, expressing the answer set.

4.1.1 Graphs and colorings with preferences
On page 20 in Section 3.1, we have defined rule dependency graphs for normal logic program. Next, we
extend this definition to ordered programs by adding a third type of edges reflecting dependencies among
rules.

Definition 4.1.1 Let (Π, <) be an ordered logic program. The ordered rule dependency graph (RDG)
Ψ(Π,<) = (Π, E0, E1, E2) of (Π, <) is a labeled directed graph with

E0 =
{
(r, r′) | r, r′ ∈ Π, head(r) ∈ body+(r′)

}
;

E1 =
{
(r, r′) | r, r′ ∈ Π, head(r) ∈ body−(r′)

}
;

E2 = {(r, r′) | r, r′ ∈ Π, r′ < r} .

For illustration, consider the ordered program (Π4.1, <) = ({r1, . . . , r4}, <), where:

(4.1)
r1 : p ←
r2 : b ← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f
r3 < r4

Among the two standard answer sets of Π4.1, {p, b, f}, and {p, b, f ′}, the preference r3 < r4 selects the
latter. That is, ASD((Π4.1, <)) = {{p, b, f ′}}.1 The RDG of (Π4.1, <) is depicted in Figure 4.1a.
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Figure 4.1: (a): The RDG of ordered program (Π4.1, <); (b): The (partially) colored RDG
(Ψ(Π4.1,<), C4.2); (c) The totally colored RDG (Ψ(Π4.1,<), C4.4).

The definition of colorings on rule dependency graphs for ordered programs does directly carry over
from standard programs (see on page 20, Section 3.1). For example, “coloring” the RDG of (Π4.1, <) with

(4.2) C4.2 = ({r1, r2}, {r3})

yields the colored graph given in Figure 4.1b. The central question addressed in this chapter is how to
compute the total colorings of RDGs that correspond to the preferred answer sets of an underlying program.
In fact, the colorings of interest can be distinguished in a straightforward way. Following the approach
presented in Chapter 3, we associate with each answer set an admissible coloring via the set of generating
rules. Let (Π, <) be an ordered logic program along with its RDG Ψ. Analogously, for every <σ–preserving
answer set X of Π, where σ ∈ {D,B,W}, we define an <σ–preserving admissible coloring C of Ψ as

C = (RΠ(X),Π \RΠ(X)).

1Note that actually ASσ((Π4.1, <)) = {{p, b, f ′}} for every σ ∈ {D, B, W}.
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In this way, we associate with any program a set of <σ–preserving admissible colorings whose members are
in one-to-one correspondence with its <σ–preserving answer sets. Clearly, any <σ–preserving admissible
coloring is total; also, we have X = head(C⊕). We use ACσ((Π, <)) for denoting the set of all <σ–
preserving admissible colorings of a RDG Ψ(Π,<). For a partial coloring C, we define

(4.3) ACσ
(Π,<)(C) = {C ′ ∈ ACσ((Π, <)) | C v C ′}

as the set of all <σ–preserving admissible colorings of Ψ(Π,<) compatible with C. 2 Clearly, C1 v C2

implies ACσ
(Π,<)(C1) ⊇ ACσ

(Π,<)(C2). Observe that a partial coloring C is extensible to a <σ–preserving
admissible one C ′ (that is C v C ′) iff ACσ

(Π,<)(C) is non-empty. For a total coloring C, ACσ
(Π,<)(C) is

either empty or singleton. Regarding program (Π4.1, <) and coloring C4.2, we get

(4.4) ACσ
(Π4.1,<)(C4.2) = ACσ((Π4.1, <)) = {({r1, r2, r4}, {r3})},

for σ ∈ {D,B,W}. Accordingly, we define ASσ
(Π,<)(C) as the set of all <σ–preserving answer sets X of

(Π, <) compatible with partial coloring C:

(4.5) ASσ
(Π,<)(C) = {X ∈ ASσ((Π, <)) | C⊕ ⊆ RΠ(X) and C	 ∩RΠ(X) = ∅}.

Note that head(C⊕) ⊆ X for any <σ–preserving answer set X ∈ ASΠ(C). As regards program (Π4.1, <)
and coloring C4.2, we get ASσ

(Π4.1,<)(C4.2) = {{b, p, f ′}}. We call a coloring simply admissible, if X is
an answer set of Π. Also, if X is an answer set of Π, we omit the superscript σ in the above defined sets.
Furthermore, we use AC(Π,<)(C) for denoting the set of all admissible colorings of Ψ(Π,<) compatible
with C.

Analogously to Definition 3.1.2 on page 22, we need the following concepts for describing a rule’s
status of applicability.

Definition 4.1.2 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered program (Π, <) and C be a partial
coloring of Ψ. For r ∈ Π, we define:

1. r is supported in (Ψ, C), if body+(r) ⊆ {head(r′) | (r′, r) ∈ E0, r
′ ∈ C⊕};

2. r is unsupported in (Ψ, C), if {r′ | (r′, r) ∈ E0, head(r′) = q} ⊆ C	 for some q ∈ body+(r);

3. r is blocked in (Ψ, C), if r′ ∈ C⊕ for some (r′, r) ∈ E1;

4. r is unblocked in (Ψ, C), if r′ ∈ C	 for all (r′, r) ∈ E1;

5. r is maximal in (Ψ, C) if {r′ | (r′, r) ∈ E2} ⊆ (C⊕ ∪ C	).

Condition 1–4 are analogous to those in Definition 3.1.2 on page 22. The concept expressed in Condition 5
allows for distinguishing rules, all of which more preferred rules have either been found to be applicable
or blocked. Such rules are maximal insofar as they are not dominated by any preferred rules having an
undecided status of applicability.

In what follows, we use S(Ψ, C), S(Ψ, C), B(Ψ, C), B(Ψ, C), and M(Ψ, C) for denoting the sets of
all supported, unsupported, blocked, unblocked, and maximal rules in (Ψ, C), respectively. For illustration,
consider the sets obtained regarding (Ψ(Π4.1,<), C4.2), given in Figure 4.1b.

(4.6)
S(Ψ(Π4.1,<), C4.2) = {r1, r2, r3, r4} S(Ψ(Π4.1,<), C4.2) = ∅
B(Ψ(Π4.1 , <), C4.2) = ∅ B(Ψ(Π4.1 , <), C4.2) = {r1, r2, r4}
M(Ψ(Π4.1,<), C4.2) = {r1, r2, r4}

Rule r3 is not maximal in (Ψ(Π4.1,<), C4.2) because the higher preferred rule r4 is uncolored and thus not
known to be blocked or applied.

2Regarding notation, observe that ACσ((Π, <)) stands for the admissible colorings associated with program (Π, <), while
ACσ

(Π,<)
(C) stands for admissible colorings associated with partial coloring C.
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4.1.2 Deciding preferred answersetship
We now develop concepts that allow us to decide whether a (total) coloring represents an order preserving
admissible coloring by purely graph-theoretical means. For this purpose, we use the definition of support
graphs and admissible colorings from Section 3.2 (Definition 3.2.2 and Theorem 3.2.4), which are trans-
ferred to rule dependency graphs for ordered programs.

For capturing preferences, we propose the concept of a height function. To begin with, we develop this
concept for the D–semantics.

Definition 4.1.3 Let Ψ be the RDG of ordered logic program (Π, <), C be a total coloring of Ψ and let
(V,E0, E1, E2) be a subgraph of Ψ.

We define a D–height function of (V,E0, E1, E2) as a function h : V → IN such that for all r ∈ V , we
have

1. if (r′, r) ∈ E2, then h(r′) < h(r),

2. if (r′, r) ∈ E0 and r, r′ ∈ C⊕, then h(r′) < h(r), and

3. if r ∈ C	 ∩ V , then there exists an r′ ∈ C⊕ and (r′, r) ∈ E1 such that h(r′) < h(r).

The values attributed by a height function reflect a possible order of rule consideration (not necessarily
application). Rules with a lower h-value must be considered before rules with a higher h-value. In this
respect, Condition 1 stipulates that higher ranked rules must be considered before lower ranked rules; in
this way, h respects the preferences from <. 3 If (V,E0) forms a support graph of (Ψ, C), then Condition 2
ensures that rules are never supported by rules having a greater h-value. Condition 3 expresses that rules
colored with 	, must be blocked by rules with a smaller h-value (that is, intuitively, already applied rules).
It is instructive to observe that every height function induces a partial order on Π, extending the given partial
order <. Furthermore, this induced order is always extensible to a total order of Π (cf. Definition 2.4.1 on
page 13).

Taking the concept of a D–height function together with Theorem 3.2.4 on page 26 for admissible
colorings, we obtain a characterization of <D–preserving admissible colorings.

Theorem 4.1.1 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered logic program (Π, <) and C be a total
coloring of Ψ.

Then, C is a <D–preserving admissible coloring iff

1. C⊕ = S(Ψ, C) ∩B(Ψ, C) and

2. for some E′
0 ⊆ E0, we have

(a) (C⊕, E′
0) is a support graph of (Ψ, C) and

(b) there exists a D–height function of (S(Ψ, C), E′
0, E1|S(Ψ,C), E2|S(Ψ,C)).

Conditions 1 and 2a are the ones found on page 26 in Theorem 3.2.4 for standard admissible colorings, while
Condition 2b selects the <D–preserving ones by means of a D–height function. For this, only supported
rules are taken into account; unsupported rules are inapplicable anyway. Now, the height function ties the
arcs in E′

0 of the support graph to the ones reflecting blockage E1|S(Ψ,C) and preference E2|S(Ψ,C). This
guarantees that the underlying answer set can be formed in an order preserving way.

For illustration, consider (Π4.1, <). For the admissible coloring ({r1, r2, r4}, {r3}), we have the fol-
lowing D–height function h:

(4.7) h(r1) = 1, h(r2) = 2, h(r3) = 4, h(r4) = 3.

3That is, higher ranked rules have higher values.
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For admissible coloring ({r1, r2, r3}, {r4}), there is no D–height function because r3 < r4 and the block-
age of r4 by r3 lead to a contradiction between Condition 1 and 3 in Definition 4.1.3. Hence, only
({r1, r2, r4}, {r3}) is <D–preserving and {p, b, f ′} is the only <D–preserving answer set.

An alternative D–height function for the admissible coloring ({r1, r2, r4}, {r3}), could be h(r1) =
42, h(r2) = 98, h(r3) = 101, h(r4) = 99. Because of the simplicity of program (Π4.1, <), all resulting
D–height functions induce a total order on the rules of Π4.1. A partial order is possible, if we replace r2 in
Π4.1 by b← .

For B– and W–preferences, we can define height functions in an analogous way.

Definition 4.1.4 Let Ψ be the RDG of ordered logic program (Π, <), C be a total coloring of Ψ and let
(V,E0, E1, E2) be a subgraph of Ψ.

We define a B–height function of (V,E0, E1, E2) as a function h : V → IN such that for all r ∈ V we
have

1. if (r′, r) ∈ E2, then h(r′) < h(r),

3. if r ∈ C	 ∩ V , then one of the following conditions is fulfilled:

(a) there exists r′ ∈ C⊕ and (r′, r) ∈ E1 such that h(r′) < h(r);

(b) rule(head(r)) ∩ C⊕ 6= ∅.

First of all, observe that Condition 2 from Definition 4.1.3 has been dropped. This is because a B–height
function does not take into account 0-edges, since B–preference decouples supportedness from preference
handling [34]. If X = head(C⊕) is a set of atoms, then rule(head(r)) ∩ C⊕ 6= ∅ states that head(r) ∈ X
for some r ∈ Π. Hence, Condition 3b weakens the concept of order preservation given in Condition 3 of
Definition 4.1.3, whenever the head of a blocked rule is derived by another applied rule. By this weakening,
more admissible colorings are <B–preserving than <D–preserving.

The next concept of a height function addresses W–preferences.

Definition 4.1.5 Let Ψ be the RDG of ordered logic program (Π, <), C be a total coloring of Ψ and let
(V,E0, E1, E2) be a subgraph of Ψ.

We define a W–height function of (V,E0, E1, E2) as a function h : V → IN such that for all r ∈ V ,
we have

1. if (r′, r) ∈ E2, then h(r′) < h(r),

2. if r ∈ C⊕, then one of the following conditions is fulfilled:

(a) if (r′, r) ∈ E0 and r′ ∈ C⊕, then h(r′) < h(r);

(b) there exists r′ ∈ rule(head(r)) ∩ C⊕ such that h(r′) < h(r),

3. if r ∈ C	 ∩ V , then one of the following conditions is fulfilled:

(a) there exists r′ ∈ C⊕ and (r′, r) ∈ E1 such that h(r′) < h(r);

(b) there exists r′′ ∈ rule(head(r)) ∩ C⊕ such that h(r′′) < h(r).

W–height functions combine supportedness and preference handling similar to D–height functions. In
contrast to D–height functions, however, Definition 4.1.5 allows for supporting and blocking a rule r by
lower ranked rules, if head(r) is derived by some applied rule with a lower h-value than r. Hence, Con-
dition 2b and 3b weaken the concept of a D–height function given in Definition 4.1.3, but they are not so
generous as the conditions for a B–height function given in Definition 4.1.4. For this reason, the conditions
for the existence of a D–height function are stronger that than for a W–height function, which are stronger
conditions than for a B–height function.
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For illustration, consider ordered program (Π4.1, <). For admissible coloring ({r1, r2, r4}, {r3}), the
D–height function given in (4.7) is also a B– as well as a W–height function. Observe that h(r1) =
2, h(r2) = 1, h(r3) = 4, h(r4) = 3 provides an alternative B–height function, which is neither a W– nor
a D–height function. No σ–height function is obtained for the second admissible coloring, corresponding
to answer set {p, b, f}, for any σ ∈ {D,B,W}.

In analogy to Theorem 4.1.1, B– and W–height functions allow us to characterize <B– and <W –
preserving admissible colorings.

Theorem 4.1.2 Theorem 4.1.1 still holds, when replacing D by either B or W .

Whenever no preferences are given, Theorem 4.1.1 and 4.1.2 fall back to characterizations of standard
admissible colorings:

Corollary 4.1.3 Let Ψ be the RDG of ordered logic program (Π, ∅) and C be a total coloring of Ψ. Then,
C is an admissible coloring iff C is a <σ–preserving admissible coloring for σ ∈ {D,B,W}.

4.1.3 Operational characterization
In this section, we exemplarily provide an operational characterization of <D–preserving answer sets; for
brevity, the corresponding characterizations for B– and W–preferences are omitted. As in Section 3.3, the
idea is to start with the empty coloring and to successively apply operators that turn a partial coloring C
into another one C ′ such that C v C ′. This is done until a total coloring is obtained that corresponds to a
<D–preserving answer set.

When extending a partial coloring C, we encounter below the case that rules have to be unsupported
and thus colored with 	 in the final total coloring, although this cannot be ensured by C. 4 In contrast
to the case of standard logic programs, we have additionally to introduce an intermediate version of 	,
denoted by �, to handle preferences. Whenever a rule is colored � in a partial coloring, it must be colored
	 in any (total) <D–preserving admissible coloring containing C.5 Accordingly, a partial coloring is now
a partial mapping C : Π → {⊕,	,�}. Analogously, we define C� = {r ∈ Π | C(r) = �}. C is a
total coloring if C⊕ ∪ C	 = Π, C⊕ ∩ C	 = ∅, and C� = ∅. Furthermore, we define a conservative
extension of v for partial colorings C and C ′ containing � as follows: C v C ′ if C⊕ ⊆ C ′

⊕, C	 ⊆ C ′
	

and C� ⊆ (C ′
	 ∩ S(Ψ, C ′)) ∪ C ′

�. 6 This reflects the idea that rules in C� cannot be supported in C ′ and
have to be unsupported in all total colorings compatible with C. We define C t C ′ as (C⊕ ∪ C ′

⊕, C	 ∪
C ′
	, (C� ∪C ′

�) \ (C	 ∪C ′
	)). Accordingly, Definition 4.1.2 and that of ASσ

(Π,<)(C) have to be extended
by replacing C	 by C	 ∪ C�. Otherwise, the definition of ACD

(Π,<)(C) for a given partial coloring C and
all concepts introduced in Section 4.1.2 directly carry over. We denote the set of all partial colorings of a
RDG Ψ(Π,<) by CΨ(Π,<) . Whenever clear from the context, we simply write C.

First, we concentrate on operations deterministically extending partial colorings. For unordered logic
programs Π, the corresponding deterministic operator PΨ is defined in Definition 3.3.1 on page 28 through
standard colors C⊕ and C	. For our purpose, we define this operator as follows:

Definition 4.1.6 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.
Then, define PΨ : C→ C as PΨ(C) = C ′ where

1. C ′
⊕ = C⊕ ∪ (S(Ψ, C) ∩B(Ψ, C) ∩M(Ψ, C)),

2. C ′
	 = C	 ∪ S(Ψ, C) ∪ (B(Ψ, C) ∩ S(Ψ, C) ∩M(Ψ, C)) and

3. C ′
� = C� \ S(Ψ, C).

4Note that blocked rules are handled separately from unsupported rules.
5The color � is comparable to DLV’s “must be true” [92].
6Observe that for some admissible C′, C� ⊆ (C′

	 ∩ S(Ψ, C′)) ∪ C′
� is equivalent to C� ⊆ S(Ψ, C′).



4.1. GRAPHS AND COLORINGS WITH PREFERENCES 57

This definition offers a modification of the standard operator in Definition 3.3.1 on page 28 by adding a third
color, restricting propagation to maximal rules only and by separating unsupportness from blockage. In fact,
except for unsupported rules belonging to S(Ψ, C), all propagatable rules must belong to M(Ψ, C).7 That
is, all maximal, supported, and unblocked rules in (Ψ, C) are added to C ′

⊕; all maximal, supported, and
blocked rules in (Ψ, C) are added to C ′

	. Unsupported rules in (Ψ, C) are added to C ′
	 and removed

from C�. The underlying idea is to propagate along a D–height function by only adding maximal rules
that are free to be considered for application. As shown in Theorem 4.1.1, a D–height function takes only
supported rules into account. Hence, unsupported rules are not subject to the order-driven propagation
enforced by M(Ψ, C) and rather directly colored 	 by PΨ . In contrast to the original operator, PΨ colors
rules 	 because they are either unsupported or supported and blocked (and maximal) in (Ψ, C). Hence,
we separate unsupportedness from blockage. That is, no rule is colored 	 just because it is blocked. This
ensures that rules in C� are colored 	 only if they are unsupported.

A partial coloring C is closed under PΨ , if C = PΨ(C). Note that C v PΨ(C). As expressed in
Theorem 3.3.1 for answer sets, PΨ(C) is not guaranteed to be a partial coloring. To see this, observe that
PΨ(({a ← not a}, ∅, ∅)) would be ({a ← not a}, {a ← not a}, ∅), which is no mapping and thus no
partial coloring. Analogously to Theorem 3.3.1 on page 29, PΨ exists on colorings expressing preferred
answer sets.

Theorem 4.1.4 Let Ψ be the RDG of ordered logic program (Π, <) and C a partial coloring of Ψ.
If ACD

(Π,<)(C) 6= ∅, then PΨ(C) exists.

Actually, the precondition can be weakened by only requiring AC(Π,<)(C) 6= ∅.
Now, we can define our principal propagation operator in the following way.

Definition 4.1.7 Let Ψ be the RDG of ordered logic program (Π, <) and C a partial coloring of Ψ.
Then, define P∗Ψ : C→ C as the v-smallest partial coloring closed under PΨ and containing C.

Although P∗Ψ is not always defined, it is on colorings expressing preferred answer sets.

Theorem 4.1.5 Let Ψ be the RDG of ordered logic program (Π, <) and C a partial coloring of Ψ.
If ACD

(Π,<)(C) 6= ∅, then P∗Ψ(C) exists.

Essentially, P∗Ψ(C) amounts to computing deterministic “consequences” from a given partial coloring C.
In fact, P∗Ψ(C) is monotonic and preserves preferred answer sets in the following sense.

Theorem 4.1.6 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.

1. If ACD
(Π,<)(C

′) 6= ∅ and C v C ′ then P∗Ψ(C) v P∗Ψ(C ′);

2. ACD
(Π,<)(C) = ACD

(Π,<)(P
∗
Ψ(C)).

All these properties are analogously to the standard case (cf. Section 3.3.1 on page 28).
The next operation draws upon the maximal support graph of colored RDGs.

Definition 4.1.8 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.
Furthermore, let (V,E) be a maximal support graph of (Ψ, C) for some E ⊆ (Π×Π).

Then, define UΨ : C→ C as UΨ(C) = (C⊕,Π \ V,C� \ (Π \ V )).

Observe that C	 ⊆ Π \ V . A two-digit version of UΨ was proposed in Definition 3.3.3 on page 30 for
standard programs. This operator allows for coloring rules with 	 whenever it is clear from the given
partial coloring that they will remain unsupported. Those rules are deleted from C� since they are known
to be unsupported w.r.t. C. As with P∗Ψ , UΨ(C) gives an extension of C. Unlike P∗Ψ , however, UΨ allows
for coloring nodes unconnected with the already colored part of the graph. Although UΨ is not defined in
general, it is on colorings guaranteeing the existence of support graphs.

7See also Condition 3a in Definition 2.4.1 on page 13.
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Theorem 4.1.7 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.
If (Ψ, C) has a support graph, then UΨ(C) exists.

Furthermore, (Ψ, C) has a support graph whenever AC(Π,<)(C) 6= ∅. As withP∗Ψ , operator UΨ is reflexive,
idempotent, monotonic, and preserves preferred answer sets (cf. on page 28, Section 3.3.1).

Definition 3.3.12 on page 31 states that a total coloring C is admissible iff PΨ(C) = C and UΨ(C) =
C. That is, both operators are sufficient for deciding answersetship. For selecting preferred answer sets
among standard answer sets, we additionally rely on the concept of a height function.

The next operator provides a partial check for the existence of a D–height function.

Definition 4.1.9 Let Ψ be the RDG of ordered logic program (Π, <).
For a total coloring C of Ψ, defineHΨ : C× C→ C asHΨ(C ′, C) = C ′′ where

C ′′
⊕ = C ′

⊕ ∪ (C⊕ ∩ S(Ψ, C ′) ∩M(Ψ, C ′)),

C ′′
	 = C ′

	 ∪ (C	 ∩ S(Ψ, C) ∩B(Ψ, C ′) ∩M(Ψ, C ′)) ∪ (C	 ∩ S(Ψ, C) ∩M(Ψ, C ′)),

C ′′
� = C ′

�.

Operator HΨ extends a partial coloring C ′ to a partial coloring C ′′ relative to a given total coloring C.
That is, the status of applicability of all rules expressed in C guides the transition from C ′ to C ′′. By
construction, we have C ′′ v C, if C ′ v C. Also, only “maximal” rules from C ′ belonging to C are added
to C ′′.

Iterated application of HΨ guarantee the existence of a D–height function in (Γ,C), as given in Theo-
rem 4.1.1. For this, define H∗Ψ((∅, ∅, ∅), C) =

⊔
i<ωHi

Ψ((∅, ∅, ∅), C) where H0
Ψ((∅, ∅, ∅), C) = (∅, ∅, ∅)

andHi+1
Ψ ((∅, ∅, ∅), C) = HΨ(Hi

Ψ((∅, ∅, ∅), C), C) for i < ω. Then, we then have the following result.

Theorem 4.1.8 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered logic program (Π, <). Let C be an
admissible coloring of Ψ and let (C⊕, E′

0) be a support graph of (Ψ, C) for some E′
0 ⊆ E0.

Then, we have H∗Ψ((∅, ∅, ∅), C) = C if and only if there exists a D–height function of the graph
(S(Ψ, C), E′

0, E1|S(Ψ,C), E2|S(Ψ,C)).

This leads us to the following alternative characterization of <D–preserving admissible colorings.

Theorem 4.1.9 Let Ψ be the RDG of ordered logic program (Π, <) and let C be a total coloring of Ψ.
Then, C is a <D–preserving admissible coloring if and only if PΨ(C) = C, UΨ(C) = C, and

H∗Ψ((∅, ∅, ∅), C) = C.

C being closed under PΨ and UΨ ensures that C is admissible. The operator H∗Ψ guarantees the existence
of a D–height function, and hence an enumeration of Π according to Definition 2.4.1 on page 13. In fact,
D–preference stipulates that all generating rules are formed in a supported way, as witnessed by Condition 2
in Definition 2.4.1 on page 13. A similar result is obtained for the resulting operatorsH∗Ψ and UΨ .

Theorem 4.1.10 Let Ψ be the RDG of ordered logic program (Π, <). Let C be an total coloring of Ψ.
IfH∗Ψ((∅, ∅, ∅), C) = C, then UΨ(C) = C.

Closedness under UΨ is enforced by H∗Ψ((∅, ∅, ∅), C) = C. Hi+1
Ψ ((∅, ∅, ∅), C) takes only rules from C⊕

into account which are supported in (Ψ,Hi
Ψ((∅, ∅, ∅), C)). Since H∗Ψ((∅, ∅, ∅), C) = C, all rules in C⊕

are in a support graph in (Ψ, C) and hence, UΨ(C) = C.
Accordingly, we obtain the following simplification of Theorem 4.1.9.

Corollary 4.1.11 Let Ψ be the RDG of ordered logic program (Π, <) and let C be a total coloring of Ψ.
Then, C is a <D–preserving admissible coloring iff PΨ(C) = C andH∗Ψ((∅, ∅, ∅), C) = C.
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Note that a similar result cannot be obtained for B-preference, since it discards supportedness.
Now we develop an elementary strategy for choice operations.

Definition 4.1.10 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.
For r ∈ Π \ (C⊕ ∪ C	 ∪ C�), we define the following operator C◦Ψ : C→ C for ◦ ∈ {⊕,	}:

1. C⊕Ψ (C) = (C⊕ ∪ {r}, C	, C�);

2. C	Ψ (C) = (C⊕, C	 ∪ {r}, C�).

As done in Section 3.3.2, we use C◦Ψ whenever the distinction between C⊕Ψ (C) and C	Ψ (C) is of no impor-
tance. Strictly speaking, C◦Ψ is also parametrized with r; we leave this implicit to abstract from the actual
choice. In fact, whenever both operators C⊕Ψ (C) and C	Ψ (C) are available, the choice of r is only a “don’t
care” choice, while that among ⊕ and 	 is the crucial “don’t know” choice. Intuitively, this is because all
rules must be colored either way; it is the attributed color that is of prime importance for the existence of a
preferred answer set.

Combining the previous guess and check operators yields our first operational characterization of pre-
ferred admissible colorings (along with its underlying preferred answer sets).

Theorem 4.1.12 Let Ψ be the RDG of ordered logic program (Π, <) and let C be a total coloring of Ψ.
Then, C is a <D–preserving admissible coloring of Ψ iff there exists a sequence (Ci)0≤i≤n with the

following properties:

1. C0 = (∅, ∅, ∅);

2. Ci+1 = C◦Ψ(Ci) for ◦ ∈ {⊕,	} and 0 ≤ i < n;

3. Cn = PΨ(Cn);

4. Cn = H∗Ψ(C0, Cn);

5. Cn = C.

In what follows, we refer to such sequences also as coloring sequences. Note that all sequences satisfying
conditions 1-5 of Theorem 4.1.12 are successful in the sense that their last element corresponds to an
existing preferred answer set. If a program has no preferred answer set, then no such sequence exists.

Although this straightforward guess and check approach may not be of great implementational value, it
supplies us with an initial skeleton for the coloring process that we refine in the sequel. In particular, this
characterization stresses the basic fact that we possess complete freedom in forming a coloring sequence as
long as we can guarantee that the resulting coloring is a fixed point of PΨ andHΨ (and so implicitly of UΨ

as well). This strategy is analogously to the one in Section 3.3, where we have characterized several opera-
tional characterizations for the computation of answer sets. There, we ensure that the resulting coloring is
a fixed point of the propagation and of the unfounded set operator for (standard) answer sets.

We observe the following properties.

Theorem 4.1.13 Given the prerequisites in Theorem 4.1.12, let (Ci)0≤i≤n be a sequence satisfying condi-
tions 1-5 in Theorem 4.1.12.

Then, we have the following properties for 0 ≤ i ≤ n.

1. Ci is a partial coloring;

2. Ci v Ci+1;

3. ACD
(Π,<)(C

i) ⊇ ACD
(Π,<)(C

i+1);
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4. ACD
(Π,<)(C

i) 6= ∅;

5. (Ψ, Ci) has a (maximal) support graph.

As expressed in Theorem 3.3.14 for answer sets, all these properties represent invariants of the consecu-
tive colorings. While the first three properties are provided by operator C◦Ψ in choosing among uncolored
rules only, the last two properties are actually enforced by of the final coloring Cn, that is, the “check”
expressed by conditions 3–5 in Theorem 4.1.12. In fact, sequences only enjoying conditions 1 and 2 in
Theorem 4.1.12, fail to satisfy Property 4 and 5 in Theorem 4.1.13 in general. In practical terms, this
means that computations of successful sequences may be led numerous times on the “garden path” before
termination.

As it is well-known and demonstrated in Section 3.3.2, the number of choices can be significantly
reduced by applying deterministic operators.

Theorem 4.1.14 Let Ψ be the RDG of ordered logic program (Π, <) and let C be a total coloring of Ψ.
Then, C is a <D–preserving admissible coloring of Ψ iff there exists a sequence (Ci)0≤i≤n with the

following properties:

1. C0 = P∗Ψ((∅, ∅, ∅));

2. Ci+1 = P∗Ψ(C◦Ψ(Ci)) for ◦ ∈ {⊕,	} and 0 ≤ i < n;

3. Cn = H∗Ψ((∅, ∅, ∅), Cn);

4. Cn = C.

On the one hand, the continuous application of P∗Ψ extends partial colorings after each choice. On the other
hand, this proceeding guarantees that each partial coloring (including Cn) is closed under PΨ .

Although the last characterization allows for deterministic propagation its choices are still arbitrary. In
particular, preference information is not taken into account. We address this shortcoming by developing a
strategy for choice operations based on maximality and support.

Definition 4.1.11 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.
For r ∈ (Π ∩M(Ψ, C)) \ (C⊕ ∪ C	 ∪ C�), we define the following operators D◦Ψ : C → C for

◦ ∈ {⊕,�}:

1. D⊕Ψ(C) = (C⊕ ∪ {r}, C	, C�), if r ∈ S(Ψ, C);

2. D�Ψ(C) = (C⊕, C	, C� ∪ {r}), if r 6∈ S(Ψ, C).

The D⊕Ψ operator colors a maximal, supported rule r with ⊕, that is, r is taken to be applied. This avoids
supporting higher ranked rules by lower ranked ones (w.r.t. <). D�Ψ colors a maximal, not supported rule
with �. In fact, a rule r colored by D�Ψ must be unsupported in the final total coloring. Observe that
rules being blocked (and supported) in the final coloring are never colored by D�Ψ in order to guarantee
Condition 3 in Definition 4.1.3; they must be colored by propagation. Similarly, unsupported rules are
taken care of by propagation. The above operator takes preference into account in two ways. First, it
restricts the choice of r to uncolored rules belonging to M(Ψ, C). Second, through coloring with� instead
of 	 it delegates the coloration with 	 to the deterministic operator PΨ (see Definition 4.1.6). Similarly,
unsupported rules are colored 	 by propagation.

Combining our deterministic operators with choice operator D◦Ψ yields an operational characterization
of order preserving admissible colorings that avoids a belated check for a D–height function. For this, for
a partial coloring C we define (PU)∗Ψ(C) as the v-smallest partial coloring containing C and being closed
under PΨ and UΨ .
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Theorem 4.1.15 Let Ψ be the RDG of ordered logic program (Π, <) and let C be a total coloring of Ψ.
Then, C is a <D–preserving admissible coloring of Ψ iff there exists a sequence (Ci)0≤i≤n with the

following properties:

1. C0 = (PU)∗Ψ((∅, ∅, ∅));

2. Ci+1 = (PU)∗Ψ(D◦Ψ(Ci)) for some ◦ ∈ {⊕,�} and 0 ≤ i < n;

3. Cn = C.

Note that this characterization does not rely on operator HΨ and thus avoids the respective conditions
in Theorem 4.1.12 and 4.1.14. In fact, one can show that Cn = H∗Ψ((∅, ∅, ∅), Cn) for every successful
coloring sequence. The formation of such sequences is driven by the coloration of maximal rules. Operators
PΨ , UΨ , and D◦Ψ color along a D–height function, where lower valued rules are colored first. That is, the
sequence starts by coloring most preferred rules and ends with the lowest ones. All rules being colored �
in some intermediate step i (0 < i < n, see Theorem 4.1.15) must be found unsupported by PΨ and UΨ in
order to guarantee Cn

� = C� = ∅.
For illustration, consider the coloring sequence in Figure 4.2, obtained for <D–preserving answer set

{b, p, f ′} of program (Π4.1, <). First, maximal rules r1 and r2 are colored by (PU)∗Ψ . From the remain-
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Figure 4.2: A coloring sequence obtained for <D–preserving answer set {b, p, f ′} of (Π4.1, <).

ing uncolored rules, only r4 is maximal and (since being supported) taken to be ⊕ by D⊕Ψ . This leads
to coloring r3 with 	 by (PU)∗Ψ since it is maximal, supported, and blocked. The resulting admissible
coloring ({r1, r2, r4}, {r3}) is <D–preserving and reflects the <D–preserving answer set {p, b, f ′}. Note
that coloring a maximal, supported and blocked rule r in the absence of a blocker of r would lead to illegal
situations. Unlike this, coloring r4 with� byD�Ψ is impossible since r4 ∈ S(Ψ, (PU)∗Ψ((∅, ∅, ∅))). In fact,
there is no way to obtain the second admissible (not <D–preferred) coloring. We can neither color r4 with
	, since r4 ∈ S(Ψ, (PU)∗Ψ((∅, ∅, ∅))), nor r3 with ⊕, since r3 is not maximal in (Ψ, (PU)∗Ψ((∅, ∅, ∅))).

To illustrate the usage of �, consider the following program (Π4.8, <), where

(4.8)
r1 : a ← c
r2 : b ← not c
r3 : c ← not b

r2 < r1

r3 < r2

At first, operator (PU)∗Ψ cannot color any rule. Only r1 is maximal and available for our choice opera-
tor. By r1 6∈ S(Ψ(Π4.8,<), (∅, ∅, ∅)), we color r1 by D�Ψ , which leads to partial coloring (∅, ∅, {r1}) =
(PU)∗Ψ((∅, ∅, {r1})). Applying D⊕Ψ to maximal, supported rule r2 and applying (PU)∗Ψ lead to total col-
oring ({r2}, {r1, r3}, ∅), which is <D–preserving and corresponds to the only existing <D–preserving
answer set {b}. The successful coloring sequence is given in Figure 4.3. 8

In analogy to Theorem 4.1.13, we observe the following properties.

8Note that the RDG contains the 2-edge (r1, r3) since by definition < is a strict partial order and thus transitive.
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Figure 4.3: A (successful) coloring sequence.

Theorem 4.1.16 Given the prerequisites in Theorem 4.1.15, let (Ci)0≤i≤n be a sequence satisfying condi-
tions 1-3 in Theorem 4.1.15 for RDG Ψ = (Π, E0, E1, E2).

Then, we have the following properties for 0 ≤ i ≤ n.

1.–5. as given in Theorem 4.1.13;

6. Ci+1
⊕ ⊇ S(Ψ, Ci) ∩B(Ψ, Ci) ∩M(Ψ, Ci);

7. Ci+1
	 ⊇ S(Ψ, Ci) ∪ (B(Ψ, Ci) ∩ S(Ψ, Ci) ∩M(Ψ, Ci));

8. Ci+1
� ⊇ Ci

� \ S(Ψ, Ci)

9. (Ci
⊕, E) is a support graph of (Ψ, Ci) for some E ⊆ E0.

10. h(r) < h(r′) for every r, r′ ∈ S(Ψ, Ci) where for some E′
0 ⊆ E0, h is some D–height function of

(S(Ψ, Ci), E′
0|S(Ψ,Ci), E1|S(Ψ,Ci), E2|S(Ψ,Ci)).

The five additional properties reflect the fact that the characterization in Theorem 4.1.15 yields much more
structured coloring sequences than its predecessors in Theorem 4.1.12 and 4.1.14.

Although the application of the deterministic operator UΨ is beneficial insofar as every deterministically
colored rule reduces the search space, it is not strictly necessarily. Rather unsupported rules can be guessed
by D�Ψ .

Theorem 4.1.17 Let Ψ be the RDG of ordered logic program (Π, <) and let C be a total coloring of Ψ.
Then, C is a <D–preserving admissible coloring of Ψ iff there exists a sequence (Ci)0≤i≤n with the

following properties:

1. C0 = P∗Ψ((∅, ∅, ∅));

2. Ci+1 = P∗Ψ(D◦Ψ(Ci)) for some ◦ ∈ {⊕,�} and 0 ≤ i < n;

3. Cn = C.

In this way, the coloration of unsupported rules is initiated by D�Ψ and accomplished by PΨ . That is, D�Ψ
only marks a rule as unsupported by attributing color �, while PΨ confirms this choice by turning � into
	. Although this avoids using (deterministic) operator UΨ , it delegates the treatment of unsupported rules
to a non-deterministic operator, which seems not advisable from a computational point of view.

4.1.4 Discussion, related work, and conclusions
Many approaches to adding preferences to answer set programming can be found in the literature [173,
27, 101, 198, 104, 34, 62, 177, 194] (cf. Section 4.4 for a detailed discussion). Among them, we have
considered the three approaches, interpreting preferences as inducing a selection function among the answer
sets of the underlying program [34, 62, 194]. Up to now, the latter approaches have either been implemented
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by meta-interpretation [77] or by pre-compilation front-ends [62]. The advantage of both approaches is that
one can harness existing answer sets solvers without any need for modification. On the other hand, it
remains unclear whether the “selection of answer sets” cannot be realized more efficiently within a solver
by restricting its search space. For instance, “weight-based” approaches, as pursed in the DLV [130] and
smodels [180] systems, can be implemented rather efficiently through branch-and-bound techniques.
Such a quantitative approach is unfortunately inapplicable in our setting.

For addressing this problem, we have put forward the usage of graphs and colorings as an appropri-
ate computational model. Preferences are simply taken as a third type of edges in a graph, reflecting an
additional dependency among rules. In particular, we have demonstrated that this approach allows us to
capture all three “selection function” approaches to preferences in a uniform setting by means of the con-
cept of a height function. To a turn, we have exemplarily developed an operational characterization for
one of these strategies. For this purpose, we have extended a recently proposed operational framework for
graph-based computation of answer sets (cf. Chapter 3). Apart from the extension of colorings by a third
“transitory” coloring � (comparable to DLV’s “must be true”), we have extended the deterministic and
non-deterministic operations by preference handling. This is done through the restriction of propagation
and choice operations to those rules that are not dominated by any preferred rules whose application status
is indeterminate (viz M(Ψ, C)). We have prototypically implemented different operational variants, using
different operators; the resulting Prolog implementation is available at

http://www.cs.uni-potsdam.de/∼konczak/system/GCplp.
The description of the C++ implementation follows in Section 4.3, as well as benchmark tests and a detailed
comparison of the approach presented in this section with the compilation front-end from the plp system
and the meta-interpreter from DLV.

A preliminary study of this approach has been done in [117]. There, we have considered programs,
where all rules have at most one positive body element. In this work, we have extended this approach to
ordered programs without any restriction of positive body elements of rules.

4.2 Experimental Evaluation
In this section, we present new benchmarks for ordered logic programs. These benchmarks will be used in
Section 4.3 for the comparison of the integrative method for computing preferred answer sets described in
Section 4.1 with a compilation method of preferences. We extend well-known graph problems by prefer-
ences, which filter out unwanted situations. First, we consider some graph types we are dealing with, and
second, we consider well-known benchmark problems which are extended by preference information.

Graph types. Complete graphs with n vertices are defined as undirected graphs (V,E) where V =
{v1, . . . , vn} and E = {(vi, vj) | vi, vj ∈ V, i 6= j}. Ladder graphs with 2 ∗ n vertices (cf. Figure 4.4) are
undirected graphs (V,E) where V = {v1, . . . , v2∗n} and

E = {(vi, vi+1) | i ∈ {1, . . . , n− 1}} ∪
{(vi, vi+1) | i ∈ {n + 1, . . . , 2 ∗ n− 1}} ∪
{(vi, vj) | i ∈ {1, . . . , n}, j = 2 ∗ n− i + 1}

A (directed) circle graph with n vertices is a directed graph (V,E) where V = {v1, . . . , vn} and E =
{(vi, vi+1) | i ∈ {1, . . . , n− 1}} ∪ {(v1, vn)}. All these graphs can be represented as rules:

vtx(vi) ← for each vertex i ∈ {1, . . . n}
edge(vi, vj) ← for every directed edge (vi, vj) ∈ E

Note that whenever (vi, vj) is an undirected edge in the graph, we have to add the rules edge(vi, vj)← as
well as edge(vj , vi)← to the program.
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Figure 4.4: Ladder Graph with 2 ∗ n vertices.

In the following, we consider well-known graph problems extended by rule preferences.

Hamiltonian Cycle problem. Hamiltonian cycles are cycles in a graph passing each vertex exactly once.
Since there are usually many possibilities for such cycles, we use preferences for guiding the search within
a graph. More precisely, with rule preferences we can express statements like “visit node v42 before node
v7”. Such expressions are given by a set of preference relations at the form

before(vi, vj)←

as rules in a program, denoting that a vertex vi has to be visited before vertex vj in the Hamiltonian cycle.
The logic program for Hamiltonian cycles, where an ordering among the visited vertices is respected, is as
follows:

r1 : hc(V,U) ← edge(V,U), not otherroute(V,U)
r2 : otherroute(V,U) ← edge(V,U), edge(V,W ), hc(V,W ), U 6= W
r3 : otherroute(V,U) ← edge(V,U), edge(W,U), hc(W,U), V 6= W
r4 : reached(U) ← edge(V,U), hc(V,U), reached(V ), not initialnode(V )
r5 : reached(U) ← edge(V,U), hc(V,U), initialnode(V )
r6 : ← vtx(V ), not reached(V )
r7 : hctrans(X, Y ) ← hc(X, Y ), not initialnode(Y ), vtx(X), vtx(Y ), X 6= Y
r8 : hctrans(X, Y ) ← hc(X, Z), not initialnode(Z), hctrans(Z, Y ),

vtx(X), vtx(Y ), vtx(Z), X 6= Y, Y 6= Z,X 6= Z
rg(X,Y ) : goto(X, Y ) ← name(g(X, Y )), not ngoto(X, Y ),

hctrans(Y, X), vtx(X), vtx(Y ), X 6= Y
rng(Y,X) : ngoto(X, Y ) ← name(ng(Y,X)), vtx(X), vtx(Y ), X 6= Y

The preference relation < is defined as

rng(Y,X) < rg(X,Y ) whenever before(X, Y )← is given.

Rules r1–r6 are taken from [149] and encode the standard problem of finding Hamiltonian cycles in a graph.
Rules r7 and r8 are for computing transitivity of edges being in a Hamiltonian cycle, where hctrans(X, Y )
denotes the existence of a path from X to Y in the Hamiltonian cycle. Rules rg(X,Y ) and rng(Y,X) together
with the preference relation < encode that whenever we prefer X over Y (before(X, Y )), a Hamiltonian
way from Y to X (hctrans(Y, X)) is excluded as preferred solution.

Coloring Problem. In the coloring problem, we want to color a graph with k colors c1, . . . , ck such that
no two adjacent vertices have the same color. This can be encoded by the following set of rules:

rvi,cj
: color(vi, cj)← not color(vi, c1), . . . , not color(vi, cj−1),

not color(vi, cj+1), . . . , not color(ck)
← color(vi, cl), color(vj , cl) for all 1 ≤ l ≤ k and all edges (vi, vj)
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The first rule ensures that one vertex has exactly one color and the second rule, the integrity constraint,
ensures that no two adjacent vertices have the same color. We can integrate preference information for
preferring a special color for a vertex. As an example, we have two colors, red and green, and we want to
prefer that every odd vertex is colored with red. In this case we can add the preference relation

rvi,green < rvi,red whenever i is odd.

Kernel Problem. A kernel of a graph is a subset S of all vertices V such that between two vertices in S
there are no edges and from every vertex outside S, there exists an edge to a vertex of S. For the kernel
problem [45], we have the following encoding

rin(V ) : in(V ) ← vtx(V ), not out(V )
rout(V ) : out(V ) ← vtx(V ), not in(V )

← not out(X), not out(Y ), edge(X, Y )
← out(X), {out(yi) | edge(x, yi)}

where the set {out(yi) | edge(x, yi)} is the shortening for all predicates out(yi), where yi is a successor
of x in the graph, e.g. if v4 has the successors v7 and v9 then we add the rule← out(v4), out(v7), out(v9).
Rules rin(V ) and rout(V ) generate that vertex V is either in the kernel or not. The first integrity constraint
ensures that no two adjacent vertices are both in the kernel. The second integrity constraint makes sure that
every vertex, which is not in the kernel, has an edge to a vertex in the kernel.

We can include preferences for enforcing that special subsets have to be in a kernel. For example,
expressing that we prefer every odd vertex to be in a kernel, we add the following rule preferences:

rout(v) < rin(v) for every odd vertex v.

Independent Set Problem. An independent set [45] of a graph is a subset S of the vertices V such that
between two vertices of S no edge exists. Here, we use again rule preferences to prefer certain subsets of
the vertices being in an independent set or not. For example, we have an undirected circle graph with n
vertices. The independent set problem is then defined as follows, for i = 1, . . . , n:

rin(vi) : in(vi) ← not in(vj), not in(vk)

where vj and vk are the two adjacent vertices of vi. Then, the preference relation

rin(vj) < rin(vi)

for i is even and vj is adjacent to vi, expresses that every even vertex is preferred to be in an independent
set.

Artificial Examples. Beside known graph problems, we can construct artificial examples, as follows:
Given a set of nodes v1, . . . vn, we have the following program:

r1 : a(v1) ← not a(v2)
ri : a(vi) ← not a(vi−1), not a(vi+1) for i ∈ {2, . . . , n− 1}
rn : a(vn) ← not a(vn−1)

For the preferences we have several possibilities:

1. ri < ri+1 for i = 1, . . . , n− 1

2. ri < ri+1 for i ∈ {1, . . . , n} and i is odd.

The program without preferences has exponentially many answer sets. The preferences are used to select
preferred ones. In both encodings, we get exactly one preferred answer set whenever n is even, since every
a(vi) with an even i has to be in a preferred answer set to guarantee that rules are blocked in an order
preserving way.
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Within the given graph problems, preferences are used to exclude unwanted solutions. In Section 4.3
we use these benchmark instances to compare the integration of preference information into an ASP solver
with compilation methods.

4.3 The nomore< System
The nomore< (pronounced: nomorepref) system is a C++ implementation of the approach presented in
Section 4.1 and an improvement of the GCplp [98] system. The current version 1.0 can be downloaded
from http://www.cs.uni-potsdam.de/wv/nomorepref/. Since the nomore< system has no
own parser for handling preference relations, it uses lparse [146] as parser, where preference statements
are encoded as:

name(r) ← for all rules r involved in <

preferred(r1, r2) ← for every preference relation r2 < r1,

where the name predicates name are needed for rule labeling and the preferred predicates make the pref-
erences explicit. The name predicates appear in the positive body of the corresponding rules. For example,
the ordered program {r1 : a← not b, r2 : b← not a, r2 < r1} is represented as program

a← name(r1), not b
b← name(r2), not a
name(r1)←
name(r2)←
preferred(r1, r2)←

which has standard answer sets {a} and {b}, but only {a} as preferred one.
For our experiments, we have considered the following examples:

• indset 〈N〉 encodes the independent set problem for an undirected circle graph with N vertices,
where even numbered vertices are preferred to be in an independent set.

• art2 〈N〉 and art 〈N〉 are artificial ordered programs, where all N rules of the underlying logic
program have only negative body atoms (except for name predicates used for rule labeling). That is,
we have the following program:

r1 : a(v1) ← not a(v2)
ri : a(vi) ← not a(vi−1), not a(vi+1) for i ∈ {2, . . . , N − 1}
rn : a(vN ) ← not a(vN−1)

where art 〈N〉 contains additionally the preference relations ri < ri+1 for i = 1, . . . , N − 1 and
art2 〈N〉 the preferences ri < ri+1 for i ∈ {1, . . . , N} and i is odd.

• kercomp 〈N〉 encodes the kernel problem for a complete graph with N vertices, where one special
vertex is preferred to be in a kernel, but no other ones.

• collad 〈N〉 encodes the coloring problem of a ladder graph with two colors, where a particular color
is preferred for every odd vertex.

• k〈N〉 test1 encodes the Hamiltonian cycle problem with N vertices v0, v1, . . . , vN−1, where we
have given the preference relations

before(vi, vj)← for i < j and i = 1, ..., N -3, j = 2, ..., N -2

http://www.cs.uni-potsdam.de/wv/nomorepref/
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expressing that v1 has to be visited before v2, v2 before v3, ..., and vN−3 has to be visited before
vN−2, where v0 is the initial node. There are exactly N−1 preferred answer sets, representing N−1
possibilities for Hamiltonian cycles with the given preference that v1 is visited before v2, v2 is visited
before v3, ..., and vN−3 is visited before vN−2. Note that for N ≤ 3 no preferences are specified.

• k〈N〉 test2 encodes the Hamiltonian cycle problem with N vertices v0, v1, . . . , vN−1, where we
have given the preference relations

before(v1, vN−2)←

with v0 as initial node. Thus, the preferred answer sets represent all Hamiltonian cycles, where node
v1 is visited before node vN−2.

A detailed description of the used examples including downloads can be found at http://www.cs.
uni-potsdam.de/˜konczak/benchmarks/BenchPref/.

Table 4.1 and 4.2 show the time measurements and the number of choice points on an AMD processor
with 2.2 Ghz and 2 GB memory. We have tested the above described problem classes for finding one
preferred answer set (Table 4.1) and finding all preferred answer sets (Table 4.2). In both tables, DH
denotes a coloring strategy, where the propagation operators are preference-based (i.e. we propagate from
higher preferred rules to lower preferred rule) and where the choice operator is a conventional one. There,
generated solutions have to be checked by the operator H, which verifies the existence of a height function
(see Definition 4.1.3 on page 54) ensuring that an answer set is preferred. D< denotes a coloring strategy,
where the propagation operators and the choice operators are fully preference-based. More precisely, it
denotes the coloring sequence [(PU)∗ ◦D]n ◦(PU)∗ (see Theorem 4.1.15 on page 61). That is, propagating
and choosing goes along the given preferences from higher preferred rules to lower preferred ones. In short,
DH offers a partial integration of preference information into an ASP solver, where a check is still needed,
whereas D< fully integrates preference information into an ASP solver. The symbol “-” in tables 4.1 and 4.2
means that the examples need more than 1 hour running time or the ASP solvers have memory problems
because the examples become too large.

In contrast to the integration of preferences into an ASP solver, the plp system [161] compiles an or-
dered program into a logic program such that the preferred answer sets correspond to the standard answer
set of the compiled program. We have used plp to compare our integrative approach with the compilation
method provided by plp. In tables 4.1 and 4.2, plp + n denotes the time for computing preferred answer
sets via the plp compilation while using the nomore< system as a standard ASP solver. Additionally,
we have run the compilation in connection with smodels [181] (see plp + s in both tables) for showing
differences in the current development status of the nomore< system, when computing standard answer
sets. Additionally, we have inserted time measurements for the meta-interpreter [77, 74] (see also Sec-
tion 2.4), where the test have been run under smodels (see meta + s in both tables) and under nomore<

as standard ASP solver (see meta + n).
We have considered several problem classes, as described in Section 4.2. The independent set and kernel

problems as well as the artificial examples have exponentially many answer sets (w.r.t. N ), where only one
of them is a preferred answer set. The coloring problem has two answer sets, where only one is preferred,
and the problem for finding Hamiltonian cycles has exponentially many answer sets, where several ones
are preferred. We have chosen the problems, where there exists only one preferred answer set, to show how
the integrative approach, the meta-interpreter, and the compilation method can handle the remaining search
space w.r.t. non-preferred solutions. In contrast to that, we have additionally concentrated on the Hamilton
problem to show, how these three approaches can handle complexer real problems.

Table 4.1 shows the results for finding one preferred answer set. The D< strategy solves almost all
examples, except for the Hamilton problem, in increasing linear time and number of choice points w.r.t. N .
In contrast to that, the DH strategy is able to solve the Hamilton examples, whereas the time and the number
of choice points increase exponentially. Considering the compilation method, we have chosen smodels
(plp+s in both tables) and the nomore< system, with the computing standard answer set option (plp+n in

http://www.cs.uni-potsdam.de/~konczak/benchmarks/BenchPref/
http://www.cs.uni-potsdam.de/~konczak/benchmarks/BenchPref/
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DH D< plp+n plp+s meta+n meta+s
file Time CP Time CP Time CP Time CP Time CP Time CP
indset 5 0 10 0 2 0 2 0.002 0 0.03 0 0.02 0
indset 10 0 217 0 5 0.02 4 0.006 0 0.3 0 0.14 0
indset 15 0.22 9563 0 7 0.07 7 0.013 0 0.99 0 0.45 0
indset 20 6.907 218462 0.014 10 0.202 9 0.02 0 2.43 0 1.01 0
indset 25 409.019 9786720 0.04 12 0.752 12 0.035 0 5.02 0 1.84 0
indset 30 - - 0.107 15 2.768 14 0.049 0 9.09 0 3.06 0
indset 35 - - 0.222 17 6.071 17 0.068 0 15.21 0 5.48 0
indset 40 - - 0.896 20 10.843 19 0.092 0 23.85 0 7.11 0
art2 10 0 29 0 5 0.002 4 0.004 0 0.25 0 0.14 0
art2 20 0.018 395 0 10 0.03 9 0.012 0 1.83 0 0.8 0
art2 30 0.448 6333 0 15 0.099 14 0.024 0 5.9 0 2.58 0
art2 40 10.388 105004 0 20 0.413 19 0.042 0 14.37 0 6.18 0
art2 50 - - 0.367 25 01.01 24 0.062 0 27.06 0 11.19 0
art2 60 - - 0.008 30 1.863 29 0.091 0 - - 20.03 0
art2 70 - - 0.01 35 3.037 34 0.126 0 - - 32.68 0
art2 80 - - 0.01 40 4.862 39 0.17 0 - - 49.58 0
art2 90 - - 0.014 45 6.855 44 0.216 0 - - - -
art2 100 - - 0.02 50 9.598 49 0.267 0 - - - -
kercomp 10 0.01 55 0.001 10 0.04 10 0.015 0 - - 33.77 0
kercomp 20 0.076 210 0.02 20 0.496 20 0.052 0 - - - -
kercomp 30 0.314 465 0.063 30 2.089 30 0.126 0 - - - -
kercomp 40 0.973 820 0.142 40 5.095 40 0.231 0 - - - -
kercomp 50 4.03 1275 0.339 50 10.162 50 0.37 0 - - - -
kercomp 60 5.631 1830 0.88 60 18.065 60 0.529 0 - - - -
kercomp 70 19.87 2485 1.229 70 31.531 70 0.726 0 - - - -
kercomp 80 73.329 3240 2.466 80 44.066 80 0.973 0 - - - -
kercomp 90 89.192 4095 3.37 90 62.641 90 - - - - - -
kercomp 100 136.808 5050 4.943 100 92.842 100 - - - - - -
collad 2 0 4 0 6 0 8 0.001 0 0.25 0 0.13 0
collad 4 0 8 0 12 0.082 37 0.003 0 2.28 0 1.04 0
collad 8 0 16 0 24 16.298 599 0.01 0 22.49 0 8.73 0
collad 10 0.044 20 0.004 30 153.73 2392 0.013 0 - - 17.06 0
collad 20 0.02 40 0.02 60 - - 0.045 0 - - - -
collad 30 0.05 60 0.05 90 - - 0.106 0 - - - -
collad 40 0.091 80 1.295 120 - - 0.191 0 - - - -
art 10 0.005 345 0 5 0.02 5 0.006 0 0.29 0 0.14 0
art 20 11.137 349534 0.02 10 0.231 10 0.021 0 2.42 0 0.93 0
art 30 - - 0.134 15 3.072 15 0.049 0 9.16 0 2.94 0
art 40 - - 1.813 20 11.669 20 0.091 0 24.32 0 6.86 0
art 50 - - 6.629 25 28.741 25 0.148 0 - - 14.45 0
art 60 - - 5.975 30 63.395 30 0.228 0 - - 25.28 0
art 70 - - 9.224 35 120.936 35 0.327 0 - - 38.83 0
art 80 - - 22.058 40 215.709 40 0.446 0 - - 63.02 0
art 90 - - 33.051 45 346.068 45 0.59 0 - - - -
art 100 - - 56.004 50 521.591 50 0.757 0 - - - -
k3 test 1 0 7 - - 0.183 5 0.044 1 10.74 0 5.43 0
k4 test 1 0.04 74 - - 4.062 11 0.367 1 - - - -
k5 test 1 1.008 1068 - - 37.573 33 1.796 1 - - - -
k6 test 1 46.727 26594 - - - - 6.387 4 - - - -
k7 test 1 - - - - - - 17.448 5 - - - -
k8 test 1 - - - - - - 41.507 6 - - - -
k3 test 2 0 7 - - 0.189 5 0.046 1 10.66 0 5.24 0
k4 test 2 0.04 69 - - 4.051 11 0.362 1 - - - -
k5 test 2 0.43 456 - - 30.23 14 1.798 3 - - - -
k6 test 2 5.588 3501 - - - - 6.226 4 - - - -
k7 test 2 82.01 30789 - - - - 17.691 5 - - - -
k8 test 2 1778.888 305762 - - - - 42.251 6 - - - -

Table 4.1: Measurements - one preferred answer set.
DH, D< = integrative approach

meta = metainterpretation
plp+n = compilation method with nomore<

plp+s = compilation method with smodels

Time = Time in seconds
CP = number of choice points
− = indeterminable value
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DH D< plp+n plp+s meta+n meta+s
file Time CP Time CP Time CP Time CP Time CP Time CP
indset 5 0 11 0 2 0 2 0.002 0 0.03 0 0.02 0
indset 10 0.004 383 0 5 0.02 4 0.006 0 0.3 0 0.14 0
indset 15 17.495 12287 0 7 0.083 7 0.013 0 1.03 0 0.43 0
indset 20 12.374 393215 0.013 10 0.23 9 0.02 0 2.48 0 0.94 0
indset 25 525.581 12582900 0.041 12 0.893 12 0.032 0 5.21 0 2.09 0
indset 30 - - 0.108 15 3.45 14 0.049 0 9.39 0 3.16 0
indset 35 - - 0.22 17 7.388 17 0.069 0 15.85 0 5.47 0
indset 40 - - 0.425 20 12.804 19 0.098 0 24.48 0 7.65 0
art2 10 0 37 0 31 0.02 14 0.004 0 0.25 0 0.13 0
art2 20 0.03 662 0.04 1023 0.254 54 0.012 0 1.82 0 0.8 0
art2 30 0.794 11065 2.025 32767 1.64 119 0.022 0 5.99 0 2.6 0
art2 40 18.322 184203 88.871 1048580 14.992 209 0.041 0 14.53 0 6.36 0
art2 50 - - - - 57.102 324 0.062 0 27.57 0 12.23 0
art2 60 - - - - 150.419 464 0.097 0 - - 21.18 0
art2 70 - - - - 352.189 629 0.127 0 - - 33.86 0
art2 80 - - - - 698.799 819 0.169 0 - - 44.83 0
art2 90 - - - - 1158.669 1034 0.222 0 - - - -
art2 100 - - - - 1957.975 1274 0.263 0 - - - -
kercomp 10 0.01 55 0.08 1023 0.04 10 0.014 0 - - 32.75 0
kercomp 20 0.077 210 262.254 1048580 0.507 20 0.054 0 - - - -
kercomp 30 0.31 465 - - 2.128 30 0.126 0 - - - -
kercomp 40 0.979 820 - - 5.435 40 0.229 0 - - - -
kercomp 50 3.737 1275 - - 10.055 50 0.359 0 - - - -
kercomp 60 6.145 1830 - - 17.965 60 0.541 0 - - - -
kercomp 70 20.039 2485 - - 29.303 70 0.73 0 - - - -
kercomp 80 71.2 3240 - - 43.596 80 0.942 0 - - - -
kercomp 90 93.259 4095 - - 64.528 90 - - - - - -
kercomp 100 145.146 5050 - - 84.731 100 - - - - - -
collad 2 0 7 0 28 0.001 8 0.001 0 0.25 0 0.12 0
collad 4 0 15 0.01 568 0.088 37 0.003 0 2.33 0 1.07 0
collad 8 0 31 8.373 200736 16.101 599 0.009 0 22.04 0 9.65 0
collad 10 0.008 39 194.735 3753640 157.658 2392 0.013 0 - - 19.16 0
collad 20 0.385 79 - - - - 0.048 0 - - - -
collad 30 0.063 119 - - - - 0.105 0 - - - -
collad 40 0.119 159 - - - - 0.189 0 - - - -
art 10 0.009 511 0 5 0.02 5 0.006 0 0.3 0 0.13 0
art 20 16.665 524287 0.02 10 0.271 10 0.021 0 2.48 0 0.99 0
art 30 - - 0.133 15 3.715 15 0.05 0 9.56 0 3.54 0
art 40 - - 0.554 20 15.07 20 0.093 0 26.5 0 7.9 0
art 50 - - 1.679 25 35.823 25 0.155 0 - - 14.25 0
art 60 - - 4.157 30 78.776 30 0.224 0 - - 26.62 0
art 70 - - 9.193 35 149.36 35 0.334 0 - - 38.58 0
art 80 - - 18.421 40 265.117 40 0.436 0 - - 61.22 0
art 90 - - 33.09 45 414.595 45 0.594 0 - - - -
art 100 - - 55.994 50 642.926 50 0.756 0 - - - -
k3 test 1 0 7 - - 0.222 10 0.044 1 11.04 0 5.14 0
k4 test 1 0.04 74 - - 8.4 55 0.372 2 - - - -
k5 test 1 1.009 1068 - - 163.59 359 1.783 3 - - - -
k6 test 1 45.997 26594 - - - - 7.471 119 - - - -
k7 test 1 - - - - - - 31.961 719 - - - -
k8 test 1 - - - - - - 227.254 5050 - - - -
k3 test 2 0 7 - - 0.221 10 0.044 1 11.06 0 4.94 0
k4 test 2 0.04 69 - - 8.205 55 0.371 2 - - - -
k5 test 2 0.43 456 - - 161.446 351 1.865 11 - - - -
k6 test 2 5.589 3501 - - - - 7.49 119 - - - -
k7 test 2 83.004 30789 - - - - 32.201 719 - - - -
k8 test 2 1781.329 305762 - - - - 230.804 5050 - - - -

Table 4.2: Measurements - all preferred answer set.
DH, D< = integrative approach

meta = metainterpretation
plp+n = compilation method with nomore<

plp+s = compilation method with smodels

Time = Time in seconds
CP = number of choice points
− = indeterminable value
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both tables). plp+n needs more choice points and much more time to solve the problem than plp+ s does.
The reason for that is that smodels is a highly optimized system with heuristics, lookahead, as well as
forward and backward propagation, whereas the nomore< system has only forward propagation. Hence,
nomore< has a lower base speed than optimized systems. For this reason, we compare the DH and D<

strategy only with plp + n, since the measurements rely on the same system. Furthermore, the number
of choice points could not be compared directly, since the problem encodings for plp + n have another
structure and they use additional symbols. Surprisingly, the DH strategy behaves better than plp + n. For
example, for Hamiltonian problems the integrative approach provided by the DH strategy is better than
the compilation method. Also, the D< strategy performs in the other examples better than the compilation
method. Moreover, the meta-interpretation method is worse than the compilation method and worse than
any integrative method provided by the DH and D< strategy.

Table 4.2 shows the time measurements and number of choice points for finding all preferred answer
sets. Comparing the DH and D< strategy, we obtain that DH performs in most examples and in the
Hamilton examples better than D<. D< is only better for the independent set and for the artificial examples.
If we compare the results for both strategies with the results for finding one preferred answer set, then
we obtain that D< has much more difficulties with discovering the search space than DH . Hence, DH
performs better while checking whether the answer sets are not preferred. It remains to be further work, to
study why D< has problems with discovering non-preferred solutions. Concerning the compilation method,
plp+s is again much better than plp+n since nomore< has a low base speed due to missing optimizations
of the system. plp+n behaves better than the integrative approach for the art2 examples and for the kernel
problems. The DH strategy performs better for the coloring and for the Hamiltonian problems and the
D< strategy performs better than plp + n for the independent set and for the art examples. Whereas the
compilation method and the integrative approach need more time and number of choice points for finding
all preferred answer sets instead of finding one, the meta-interpreter shows no differences at that point.
Again, the meta-interpretation method is worse than the compilation method and worse than the DH or
D< strategy.

To summarize the results, for finding one preferred answer set, the integrative approach provided by
the DH and D< strategy performs better than the compilation method (plp + n) or the meta-interpretation
(meta + n). Furthermore, the D< strategy performs on most problem classes better than the DH strat-
egy. Concerning finding all preferred answer sets, the integrative approach behaves better than meta-
interpretation and the compilation method, whereas DH and D< seem to be both adequate.

The integrative approach for the computation of preferred answer sets concentrates on one semantics
for preference handling. Further research issues should concentrate on other preference semantics and their
integration into an ASP solver.

4.4 Related Work

In this section, we give a brief overview of preference semantics within answer set programming and their
application areas.

In this chapter, we have considered the D-, W -, and B− preferences, which are rule-based preferences.
Another rule-based semantics is due to Zhang and Foo, which is discussed in Section 4.4.1. Beside rule-
based preferences, we discuss in Section 4.4.2 weak constraints, which allow to assign weights to rules.
In Section 4.4.3 we discuss the literal-based semantics due to Sakama and Inoue and in Section 4.4.4 the
more flexible literal-based approach of ordered disjunction. We continue in Section 4.4.5 with CR-Prolog,
where preferences are used to restore consistency of answer sets, and in Section 4.4.6, we discuss answer set
optimization, which is a combination of answer set programming and qualitative optimization techniques.
At last, we take a look at ceteris paribus preferences in Section 4.4.7.
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4.4.1 Prioritized Logic Programming (Zhang and Foo)
Another semantics for logic preferences with preferences among rules (cf. on page 13, Section 2.4) is the
approach of Zhang and Foo [199, 200, 198].

The idea of a preference r′ < r (stating that r is more preferred than r′) is that “r is preferred to apply
first and then defeat rule r′ after applying rule r” [199]. The computation of preferred answer sets is based
on an iterative reduction of a logic program with preferences to a logic program without preferences. There,
preference relations are iteratively used to remove rules as follows: If r′ < r and Π\{r′} “defeats” r′, then
rule r′ is eliminated from Π if no less preferred rule can be eliminated. The procedure is continued until a
fixed point is reached. The answer sets of the resulting program are the preferred answer sets of the original
program.

The presented semantics is most related to the B-semantics [34] (cf. on page 13, Section 2.4 ), but it
may lead to unintuitive results. For example, consider the following program with rule preferences [198]:

Π :

r1 : a←
r2 : b← not c
r3 : c← not b
r2 < r1

Π has two standard answer sets, namely {a, b} and {a, c}, which are both <σ- preferred, for σ ∈ D,W,B
(see on page 13, Section 2.4 for more details). But in the semantics of Zhang and Foo, only {a, c} is
preferred. The reason for this lies in the concept of their “defeatness”. Rule r2 has a lower priority than
r1 to be taken into account in the evaluation of the whole program, while other rules should be retained in
the evaluation process if no preference is specified between r2 and them. Although there exists no conflict
between r1 and r2 and no preference is specified between r2 and r3, in the above given example, r2 indeed
has a lower priority than r1 to be applied in the evaluation of the reduct of Π, which causes r2 to be defeated.
Hence, r2 will be eliminated from Π. Thus, only {a, c} is the preferred answer set.

An advantage of the semantics from Zhang and Foo is that there always exists a preferred answer set
if and only if there exists a standard answer sets of the underlying logic program. In contrast to this, the
semantics given on page 13 in Section 2.4 are sometimes so restrictive such that no preferred answer set of
an ordered program exists. Furthermore, Zang and Foo’s preference semantics fulfills Brewka’s and Eiter’s
Principles I and II [34] (see Section 2.4 on page 13), it is defined for extended logic programs, and it can
handle static and dynamic preferences, where the dynamic case is reduced to the static one. An application
for their semantics lies in updating logic programs, as presented in [197].

4.4.2 Weak Constraints in DLV
Priorities within the DLV system are modeled by weak constraints [130, 41, 40]. A weak constraint is an
expression of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm [w : l]

where each bi is a literal, while l (the priority level or layer) and w (the weight among the level) are positive
integer constants or variables. The preferred answer sets are those answer sets which minimise the sum of
weights of the violated constraints in the greatest priority layer, and among them those which minimise the
sum of weights of the violated constraints in the previous layer, etc.

Example 11 Let us consider the following example [91]

Π =


a ∨ b←
c←
:∼ a, c [2 : 1]
:∼ b[1 : 10]


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Clearly, {a, c} and {b, c} are all answer sets. But only {b, c} is a preferred one, since {a, c} violates the
more important weak constraint :∼ a, c [2 : 1].

Weak constraints have been successfully applied in time tabling problems [91]. Regarding complexity, we
obtain the following results for an disjunction logic program Π with weak constraints:

• Deciding whether an atom a is true in some answer set of Π is ∆P
3 -complete.

• Deciding whether an atom a is true in all answer sets of Π is ∆P
3 -complete.

• Deciding whether a set of literals X is an answer set of Π is Π2
P -complete.

Hence, introducing weak constraints increase the complexity of the underlying decision problems.

4.4.3 Literal-based Preferences (Sakama and Inoue)
Instead of preferences among rules one can define preferences among literals, as presented in [172, 173,
191, 192]. There, the authors consider extended logic programs with a disjunction of literals and default
negated literals in the head of a rule, so-called general extended disjunctive programs (GEDP). A prioritized
logic program is then a pair (Π,Φ), where Π is a general extended logic program and Φ is a set of priorities.
Priorities are expression of the form e1 ≤ e2 stating that literal e2 has higher priority than e1. e1 < e2 holds
whenever e1 ≤ e2 and e2 6≤ e1. These priorities form a reflexive and transitive order relation over the set
of all literals Lit and default negated literals, i.e. over Lit∪{not L | L ∈ Lit}. The semantics of (Π,Φ) is
given by preferred answer sets defined as follows. Let S1 and S2 be answer sets of Π. Then, S2 is preferred
over S1 if for some e2 ∈ S2 \ S1 we have

(i) there is an e1 ∈ S1 \ S2 such that e1 ≤ e2 holds in Φ; and

(ii) there is no e3 ∈ S1 \ S2 such that e2 < e3 holds in Φ.

Thus, S is a preferred answer set of (Π,Φ) if for any other answer set S′ we have: if S′ is preferred over
S then S is preferred over S′. Intuitively, the preferred answer sets are the answer sets including elements
with the highest priority wrt Φ.

Example 12 Let us consider the following program [173].

Π =
{

p; q ←
q; r ←

}
and Φ : p ≤ q, q ≤ r

Program Π has the answer sets {p, r} and {q}. We have that {p, r} is preferred over {q}, since q ≤ r
and there is no higher preferred literal than r. But, {q} is not preferred over {p, r} since q ≤ r. Hence,
{p, r} is the preferred answer set.

The advantage of this approach is that there always exists a preferred answer set if there exists at least
a standard answer set. If a program has a unique standard answer set, then it is the unique preferred one.
Unfortunately, increasing priorities in a prioritized logic program does not always decrease the number
of preferred answer sets. This is a disadvantage compared to the semantics of ordered logic programs
presented in Section 2.4 on page 13. We also want to point out that priorities over literals can be modeled
with rule-based approaches. More precisely, whenever we prefer a literal a over a literal b, the preference
relation includes that all rules with a as head are higher preferred than all rules with b as head. Of course,
one has to find an adequate semantics for handling such rule-based preferences modeling priorities over
literals.

To present an application, priorities over literals can be used for finding minimal explanations within an
abduction problem [173] (see also on page 12 in Section 2.2 ) by using expressions of the form l;not l ←
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and priorities l ≤ not l for literals l from the hypothesis of the abduction problem. A similar approach to
abduction of programs with priorities is presented in Section 4.4.4 on page 73, where ordered disjunction
offers a similar way for computing explanations of abduction problems within answer set programming.
Also, these priorities were used for finding preference information to derive desired conclusions in non-
monotonic reasoning [109]. There, the notion of preference abduction was introduced, in which priorities
were abducted to explain given observations within an abduction problem.

Regarding complexity, we have the following results for prioritized logic programs [173] (Π,Φ), where
Π is an extended logic program: (i) Deciding the existence of a preferred answer set of (Π,Φ) is NP-
complete. (ii) Deciding whether a literal is true in some preferred answer set of (Π,Φ) is ΣP

2 -complete.
(iii) Deciding whether a literal is true in all preferred answer sets of (Π,Φ) is Π2

P -complete. Hence, for
the problems (ii) and (iii), introducing priorities to a program causes an increase in complexity by one level
of the polynomial hierarchy. More complexity results for general extended disjunctive programs are given
in [173].

4.4.4 Ordered Disjunction
Logic programs with ordered disjunction combine ideas underlying qualitative choice logic [33] and answer
set programming.

Qualitative choice logic is a propositional logic for representing alternative, ranked options for problem
solutions. The logic adds to classical propositional logic a new connective called ordered disjunction. An
ordered disjunction is, e.g., A×B, which means intuitively that if possible A, but if A is not possible then
at least B. This logic is combined with answer set programming in [28, 29, 35, 36].

Logic programs with ordered disjunction (LPODs) are an extension of extended logic programs. The
new connective ×, representing ordered disjunction, is allowed to appear in the head of rules only and
induces a preference relation among answer sets. A (propositional) LPOD thus consists of rules of the form

(4.9) C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

where n ≥ 0,m ≥ 0, k ≥ 0 and each Ci, Aj and Bl is a ground literal. The intuitive reading of the rule
head is as follows: if possible C1, if C1 is not possible then C2, . . . , if all of C1, . . . , Cn−1 are not possible
then Cn.

The set of answer sets of an LPOD Π is defined via the answer sets of the split programs of Π, which
represent every option of the ordered disjunction. For each rule r : C1 × . . . Cn ← body, the k-th option of
r is defined as

rk : Ck ← body, not C1, . . . not Ck−1

Then, a split program of an LPOD is obtained by replacing each rule containing ordered disjunction in the
head, by one of its options.

Example 13 Let be Π the following LPOD:

r1 : A×B ← not C
r2 : B × C ← not D

Then, we obtain 4 split programs:

Π1 =
{

A← not C
B ← not D

}
Π2 =

{
A← not C
C ← not D, not B

}

Π3 =
{

B ← not C, not A
B ← not D

}
Π4 =

{
B ← not C, not A
C ← not D, not B

}
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These programs have three answer sets, {A,B}, {C}, and {B}. The answer set {A,B} gives us the best
option for both rules from Π, whereas {C} gives us only the second best option for rule r2 and {B} the
second best option for rule r1. Intuitively, {A,B} should be the preferred answer set, since it gives the best
option for every rule containing ordered disjunction.

Following the intuition from Example 13, degrees for satisfaction of a rule where defined in [28], which
are used to determine preferred answer sets. Given an answer set S, whenever the body of a preference rule
r is satisfied by S, the satisfaction degree degS(r) is the smallest index i such that Ci ∈ S. If the body
is not satisfied w.r.t. answer set S, then the rule is irrelevant and gets the satisfaction degree 1. Based on
this satisfaction degree of single rules, a global preference ordering on answer sets is defined, which can be
done through a number of different combination strategies. For this, we define Si(Π) as the set of rules of
Π, which are satisfied by S to the degree i.

We have the following conditions for defining that one answer set S1 is strictly preferred to another one
S2 [36, 30]:

1. Pareto: there is a rule r ∈ Π such that degS1(r) < degS2(r) and for no r′ ∈ Π we have degS1(r
′) >

degS2(r
′);

2. Inclusion: at the smallest degree j where Sj
1(Π) 6= Sj

2(Π), we have Sj
1(Π) ⊃ Sj

2(Π);

3. Cardinality: at the smallest degree j, where |Sj
1(Π)| 6= |Sj

2(Π)|, we have |Sj
1(Π)| > |Sj

2(Π)|;

4. Penalty sum: the sum of the satisfaction degrees of all rules is smaller in S1 than in S2.

S1 is inclusion preferred to S2 whenever it is Pareto preferred to S2, and S1 is cardinality preferred to S2

whenever it is inclusion preferred to S2.
We define an answer set S of LPOD Π as preferred if there exists no other answer set S′ of Π such that

S′ is preferred to S (w.r.t. to the underlying strategy).

Example 14 Reconsidering the LPOD from Example 13,

A×B ← not C
B × C ← not D,

we get {A,B} as single preferred answer set w.r.t. Pareto, Inclusion, Cardinality, and Penalty sum.

A nice property of this approach is that there always exists a preferred answer set as long as there
exists an answer set [36]. Hence, the semantics of ordered disjunction guarantees that at least one option
is accepted, which is useful in many applications. E.g. ordered disjunctions can be used in design and
configuration, since they serve as a basis for qualitative decision making [36]. Regarding configuration,
ordered disjunction allows to model user’s preferences for different versions of a product in the Linux
configuration domain [182], e.g. whenever we install emacs, we can express preferences among different
versions as follows:

emacs-21.2× emacs-20.7.2× emacs-19.34← emacs

Example 15 Ordered disjunction offers a very natural way for the configuration of a menu [29]. For
example, you are in an Asian restaurant and you want to order a menu consisting of a starter, a main
course, and a dessert. For a starter you prefer Jiaozi (Chinese dumplings) over miso soup. For the main
course, you can choose between sushi, Teriyaki salmon, and tandoori chicken, where your preferences are
in this order. For a better composition of the menu, you can only combine sushi with miso soup and Jiaozi
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with chicken or salmon as main course. Whenever you take sushi as main course, you prefer to have green-
tea-icecream over deep-fried bananas, whereas and in all other cases you prefer to have bananas over
ice-cream. This menu can be modeled with ordered disjunction as follows:

r1 : starter ←
r2 : main ←
r3 : dessert ←
r4 : jiaozi× soup ← starter
r5 : sushi× salmon× chicken ← main
r6 : ← soup, chicken
r7 : ← soup, salmon
r8 : ← jiaozi, sushi
r9 : icecream× bananas ← sushi
r10 : bananas× icecream ← not sushi, main

We get the following answer sets of Π:

S1 = {starter, main, dessert, jiaozi, salmon, icecream}
S2 = {starter, main, dessert, jiaozi, salmon, bananas}
S3 = {starter, main, dessert, jiaozi, chicken, icecream}
S4 = {starter, main, dessert, jiaozi, chicken, bananas}
S5 = {starter, main, dessert, soup, sushi, icecream}
S6 = {starter, main, dessert, soup, sushi, bananas}

Furthermore, we get the following set of rules Sk
i (Π) for answer set Si which are satisfied by Si to the

degree k. Note that rules r1, r2, r3 as well as r6, r7, r8 are all satisfied to the degree 1 and are not given in
the table for better clarity.:

AnswerSet degree 1 degree 2 degree 3
S1 {r4} {r5, r10} ∅
S2 {r4, r10} {r5, } ∅
S3 {r4} {r10} {r5}
S4 {r4, r10} ∅ {r5}
S5 {r5, r9} {r4} ∅
S6 {r5} {r4, r9} ∅

For Inclusion preferences, we get S5 > S6 and S2 > S4 > S1 > S3. Analogously, we get for Pareto,
Cardinality, and Penalty sum that S2 and S5 are preferred over the other answer sets. Thus, our preferred
menus are (i) Jiaozi, Teriyaki salmon, and deep-fried bananas, as well as (ii) miso soup, sushi, and green-
tea icecream.

Ordered disjunction can also be used for abduction and diagnoses [30] (see also on page 12, Section 2.2
). Given an abduction problem 〈Π,H, O〉, where Π is a logic program, H is a set of hypotheses, and O is a
set of observations, we can formulate the abduction problem as program with ordered disjunction:

Πabd = Π ∪ {← not o | o ∈ O}∪
{¬ass(h)× ass(h) | h ∈ H} ∪ {h← ass(h) | h ∈ H}, l

where ass(h) means that h is assumed. Then, ∆ ∈ H is an explanation for O iff there exists a consistent
answer set S of Πabd such that ∆ = {h ∈ H | ass(h) ∈ S}.

Another important feature of LOPD’s is that a restricted version of DLV’s weak constraints (for more
details see on page 71, Section 4.4.2) can be formulated in terms of an ordered disjunction. More precisely,
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weak constraints of the form← body with weight n can be represented as ⊥× ...×⊥×> ← body, where
the ordered disjunction has n disjuncts.

Regarding complexity results, we have for an LPOD Π the following [36]: Deciding whether Π has a
preferred answer set is NP-complete. Let S be an answer set of Π. Then, deciding whether S is preferred is
co-NP-complete. Let l be a literal appearing in Π. Then, deciding whether there exists an preferred answer
set S such that l ∈ S is ΣP

2 -complete.

4.4.5 Consistency-Restoring Rules

In the following, we want to consider an extension of answer set programming by consistency restoring
rules with given preference relations [8, 9, 55].

A consistency-restoring rule (CR-rule) is a statement of the form:

(4.10) r : h1 or . . . or hk
+← l1, . . . , lm, not lm+1, . . . , not ln

where r is the name of the rule, and each hi and lj is a literal. This rules express that if l1, . . . , lm belong to
a set of agent’s belief and none of the lm+1, . . . , ln belong to it, then the agent “may possibly” believe one
of the h1, . . . , hk. This possibility is used only if the agent has no way to obtain a consistent set of beliefs
using regular rules only. For example, the program Π = {a← not b} has answer set {a}, but adding ¬a←
to Π leads to an inconsistence of Π′ = Π ∪ {¬a ←}. Consistency of Π′ is restored by adding the CR-rule
r1 : b

+← to Π′, which allow the reasoner to believe in b, leading to the answer set {¬a, b}.
The agent’s selection of CR-rules to restore consistency can be guided by the preference relation

prefer(r1 , r2 )

which says that sets of beliefs obtained by applying CR-rule r1 are preferred over those obtained by applying
CR-rule r2.

A CR-Prolog program consists of CR-rules of the form (4.10) and of rules of the form

(4.11) r : h1 or . . . or hk ← l1, . . . , lm, not lm+1, . . . , not ln

Furthermore, preferences between CR-rules are expressed by atoms of the form prefer(r1 , r2 ) (including
the transitive closure of this preference relation).

Programs of CR-Prolog are closely related to abductive logic programs [116, 114] (see also on page 12,
Section 2.2). The semantics of CR-Prolog is based on a transformation into abductive programs, where the
set of abducibles is a set of atoms, such that each atom refers to the application of one CR-rule. Hence,
minimal explanations indicate which CR-rules have to be considered to restore consistency for obtaining
candidate answer sets. The use of minimal explanations is founded in the fact that only a minimal number
of CR-rules have to be applied to restore consistency.

Among the candidate answer sets, the preference statements select the preferred ones. Verbally spoken,
a candidate answer set X is a preferred one if there exists no other candidate answer set Y such that there
exists an applied CR-rule w.r.t. X and an applied rule r2 w.r.t. Y such that r2 is preferred over r1.

Example 16 You want to buy a car. Either you can buy a Smart or a Porsche. Of course, the Smart doesn’t
look good if it is a cabriolet and the Porsche doesn’t look good if it has a sunroof or if it is a hardtop without
a sunroof. This can be modeled by the following program:

Π =

 r1 : smart ← not cabriolet
r2 : porsche ← not sunroof , not hardtop
r3 : ← smart, porsche


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Clearly, this program has no consistent answer sets. To restore consistency, we can use the following
CR-rules:

r4 : cabriolet
+←

r5 : sunroof +←
r6 : hardtop

+←

Furthermore, we want to prefer a cabriolet over a sunroof and a hardtop, which can be modeled by the
following preference statements:

r7 : prefer(r4, r5) ←
r8 : prefer(r4, r6) ←

To carry over the program into an abduction problem (for more details see on page 12, Section 2.2), we
use the set of abducibles {appl(r4), appl(r5), appl(r6)}, where appl(ri) denotes that CR-rule ri is applied.
Furthermore, we have to replace rules r4, r5, r6 by

r′4 : cabriolet ← appl(r4)
r′5 : sunroof ← appl(r5)
r′6 : hardtop ← appl(r6)

Hence, the minimal explanations of our abduction problem are {appl(r4)}, {appl(r5)}, and {appl(r6)}.
as a result, we get the following candidate answer sets:

C1 = {prefer(r4, r5), prefer(r4, r6), appl(r4), cabriolet, porsche}
C2 = {prefer(r4, r5), prefer(r4, r6), appl(r5), sunroof , smart}
C3 = {prefer(r4, r5), prefer(r4, r6), appl(r6), hardtop, smart}

Since we want to prefer rule r4 over r5 and r6, we get the preferred answer set:

Ĉ1 = {prefer(r4, r5), prefer(r4, r6), cabriolet, porsche}

CR-rules can be used to encode types of common-sense knowledge, where there is no natural formal-
ization within answer set programming. E.g. CR-Prolog is applied in diagnostic reasoning [8] and within
planning problems for the decision support system of the Space Shuttle [7, 151], where it is used by flight
controllers to find plans for the operation of the Reactive Control System, as well as checking correctness
of existing plans.

CR-Prolog has been extended with ordered disjunction in [9]. (For further information about ordered
disjunction see also on page 73, Section 4.4.4 ). There, ordered disjunction is allowed to appear in heads
of rules, representing preferences among literals guaranteeing consistent solutions. Furthermore, their ap-
proach yields intuitive conclusions in cases for which the semantics of ordered disjunction seems to yield
unintuitive results.

Example 17 [9] “ A television show conducts a game where the first winner is offered a prize of $200000
and the second winner is offered a prize of $100000. John wants to play, if possible. Otherwise he will give
up. If he plays he wants to gain $200000 if possible; otherwise, $100000. He is told that he cannot win the
first prize.” This is modeled as the following logic program with ordered disjunction:

r1 : play × give up←
r2 : gain(200000)× gain(100000)← play
r3 : ← gain(200000)

Intuitively, John should play and gain $100000. Under the LPOD semantics, this program has the two
answer sets {play, gain(100000)} and {give up} with the following satisfaction degrees for rules r1, r2

and r3:
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Answer Set degree 1 degree 2
{play, gain(100000)} r1, r3 r2

{give up} r2, r3 r1

We get that both answer sets are preferred since neither answer set {play, gain(100000)} is strictly better
than answer set {give up} nor {give up} is strictly better than {play, gain(100000)} w.r.t. Pareto, Inclu-
sion, Cardinality, and Penality sum. This is caused by the fact that the satisfaction degree 1 is assigned to
rules whose body is not satisfied.

The same program under the CR-Prolog semantics gives only {play, gain(100000)}, the intuitive one,
as preferred answer set, since the preference relations are kept during the process of computing preferred
answer sets. (For more details, see [9].)

4.4.6 Answer Set Optimization

In [37], the combination of answer set programming and qualitative optimization techniques have been in-
vestigated. Such a combination, called an answer set optimization (ASO) program consists of two parts.
First, a generating program Πgen, which produces answer sets representing possible (acceptable) solutions,
and, second, a preference program Πpref in which user’s preferences for optimization methods are formu-
lated. These preferences are used to compare answer sets of Πgen such that a form of preference ordering
under these acceptable solutions can be made.

In the following we will assume that we have generated with Πgen answer sets representing possible,
acceptable solutions. Next, we will concentrate on the preference program, which selects the optimal
answer sets. In ASO programs, we can define preferences among boolean expressions, e.g. a > b means
that we prefer a over b and (fish ∨ vegetarian) > meat expresses that we prefer fish or a vegetarian
meal over meat. A boolean combination over a set of atoms A is a formula built of atoms in A by means of
disjunction, conjunction, classical (¬) and default negation (not), with the restriction that classical negation
is allowed to appear only in front of atoms and default negation only in front of literals.

Then, a preference program Πpref over a set of atoms A is a finite set of rules of the form

C1 > . . . > Ck ← a1, . . . , an, not b1, . . . , not bm

where each ai and bj are literals, and each Ci is a boolean combination over A.
Given an answer set S of Πgen, we say that a rule r in the preference program Πpref is irrelevant if

either the body of r is not satisfied in S, or the body of r is satisfied in S, but none of the Ci’s in the head
are satisfied in S.

Next, we can define the satisfaction degree vS(r) of a rule r in an answer set S:

vS(r) =

{
I if r is irrelevant in S

min{i : S |= Ci} otherwise

where the values 1 and I are regarded as equally good (1 ≥ I and I ≥ 1) and better than all others. Given
two answer sets S1 and S2, we say that S1 is better than S2, written as S1 ≥ S2, if for every r ∈ Πpref we
have that vS1(r) ≥ vS2(r). Additionally, S1 is strictly better than S2, written as S1 > S2, if S1 ≥ S2 and
for at least one r ∈ Πpref we have vS1(r) > vS2(r). Thus, an answer set S is an optimal model of an ASO
program (Πgen,Πpref ) if S is an answer set of Πgen and there is no answer set S′ of Πgen such that S′ > S

Example 18 Assume you are moving into a new flat and you have to furnish your living room. On the floor
you can put either a carpet or modern laminate. You have to buy a table, where you can choose between
a simple wood table or a modern glass table. Regarding seating, you can choose between a standard sofa
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or a leather sofa. To put your stuff somewhere, you can either buy a wall unit, a commode, or a shelf. All
these possibilities and combinations can be generated by the following program Πgen:

1 {glassTable, woodTable} 1 ←
1 {carpet, laminate} 1 ←
1 {leatherSofa, sofa} 1 ←
1 {wall unit, shelf, commode} 1 ←

We have 24 answer sets, that is, 24 possible combinations of furniture for our living room. Of course,
everybody has his preferences. If you choose to have a modern laminate floor, you prefer the leather sofa,
the glass table, and the shelf. Otherwise, if you want a carpet, you prefer a normal sofa, the wood table,
and not the modern shelf. These preferences can be expressed by the following preference program Πpref :

leatherSofa > sofa ← laminate
shelf > commode > wall unit ← laminate
glassTable > woodTable ← laminate
sofa > leatherSofa ← carpet
woodTable > glassTable ← carpet
wall unit ∨ commode > shelf ← carpet

As preferred answer sets we get:

S1 = {laminate, leatherSofa, shelf, glassTable}
S2 = {carpet, sofa, woodTable, wall unit}
S3 = {carpet, sofa, woodTable, commode}

An extension of answer set optimization is presented in [31], where each Ci in the head of a preference
rule gets a special “weight”, so called penalty. That is, the preference program consists of rules of the form:

C1 : p1 > C2 : p2 > . . . > Ck : pk ← a1, . . . , an, not b1, . . . , not bm

where each ai and each bj are literals, each Ci is a boolean expression, and each pi is an integer such
that pi < pj for i < j. The preference rules C1 > C2 > . . . > Ck ← body are a shorthand for
C1 : 0 > C2 : 1 > . . . > Ck : k-1 ← body. With these penalties we can find a preorder (a reflexive
and transitive relation) on answer sets depending on different criteria. For example, one can find a Pareto
ordering or a lexicographic ordering on the set of answer sets.

An advantage of ASO programs is that answer set generation and answer set comparison are decou-
pled. Hence, preferences can be defined independently from the type of the generating program. That
is, the generating program may contain classical negation, weight constraints, or other constructs as pre-
sented in Example 18. Furthermore, every user can describe independently from the generating program
his preferences, which is an advantage in the sense of usability.

Answer set optimization can be used to schedule meetings. For this, let Π be a program describing
meetings, required participants, time restrictions of participants, etc., and S be the set describing the sched-
uled meetings. When now new time restrictions for a participant arise then S may no longer be a valid
solution of the meeting scheduling problem. To ensure that the new solution is as close as possible to the
original one, we can use answer set optimization techniques as given in [30]. Also, answer set optimization
can be used for inconsistency handling [30].

The complexity of AS0 programs depends on the class of generating programs we are considering. In
the following we will assume that we consider only generating programs where deciding existence of an
answer set is NP-complete [31].

• Let S be an answer set of Πgen. Then, deciding whether S is optimal is co-NP-complete.
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• Given an ASO program Π and a literal l, deciding whether there is an optimal answer set S such that
l ∈ S is ΣP

2 -complete.

Hence, allowing preferences raises the complexity.
Ordered disjunction × (for more details see Section 4.4.4 on page 73) and preference statements based

on > as in optimization programs have their merits. The latter can express preferences based on formulas
satisfied in answer sets, even if corresponding generating programs are not available. The former are highly
convenient whenever preferences are expressed among options which have to be generated anyway, as it is
the case in abduction and diagnosis.

ASO programs have also been combined with CP-nets in [38], where techniques from CP-nets are used
to compute most preferred outcomes, hence preferred answer sets. (For more details about CP-nets see
on page 80, Section 4.4.7.) Furthermore, the ranked based description language introduced in [32] shares
some motivations with answer set optimization, where it allows to express nested combinations of ranked
knowledge bases together with preference strategies using various connectives.

4.4.7 Ceteris Paribus Preferences
In [105] and later in [22, 23, 21], preference relations where introduced, where preferences are expresses
under the assumption that everything else is being equal. For example, when buying a car you express
something like “I prefer the silver car over the yellow car”. But this does not mean that you prefer the silver
small car from Fiat over the yellow Audi A4. Rather, you mean that you prefer the silver Audi A4 over the
yellow Audi A4. Such kinds of preferences are called ceteris paribus preference.

First, we will present some formal background and then, we will consider a graphical representation of
ceteris paribus preferences.

We assume a set of variables V = {X1, . . . , Xn} over which the decision maker has preferences, e.g.
variables are the color of a car and the name of the car manufacturer. Each variable Xi is associated with
a domain Dom(Xi) = {x1

i , . . . , x
ni
i } of values it can take, e.g. “yellow” and “silver” are the values of the

variable color. An assignment x of values X ⊆ V is a function that maps each variable in X to an element
of its domain. We denote the set of all assignments to X ⊆ V by Asst(X). An outcome is a state where all
variables are instantiated by one of its values. The set of all outcomes is denoted by O. Then, a preference
relation is a total preorder� over the set of outcomesO. o1 � o2 means that outcome o1 is equally or more
preferred than outcome o2 and o1 � o2 denotes than o1 is strictly preferred over o2. Furthermore, o1 ∼ o2

denotes indifference of o1 and o2, i.e. o1 � o2 and o2 � o1 hold. The aim of the decision maker is to get
the most preferred outcome.

A set of variables X is preferentially independent [23] of its complement Y = V \X if for all x1, x2 ∈
Asst(X) and y1, y2 ∈ Asst(Y ) we have

x1y1 � x2y1 iff x1y2 � x2y2

In other words, the structure of the preference relation over assignments to X , when all other variables are
held fixed, is the same no matter what values these other variables take. If the relation above holds, we say
x1 is preferred to x2 ceteris paribus. Thus, one can assess the relative preferences over assignments to X
once, knowing these preferences do not change as other attributes vary.

Let X, Y, Z be nonempty sets that partition V . X is conditionally preferentially independent of Y given
an assignment z to Z if for all x1, x2 ∈ Asst(X) and y1, y2 ∈ Asst(Y ) we have

x1y1z � x2y1z iff x1y2z � x2y2z

In other words, X is preferentially independent of Y when Z is assigned z.
Now, we consider the graphical representation of ceteris paribus preferences presented in [22, 23, 21]

which reflects conditional dependence and independence of such kinds of preference statements.
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Given a variable Xi, we identify a set of parent variables Pa(Xi) that can affect the users preferences
over various values of Xi. The user should be able to determine a preference order for the values of Xi, all
other things being equal. The node Xi is annotated with a conditional preference table (CPT) describing the
user’s preferences over the values of Xi given every combination of parent values. A CP-net over variables
V = {X1, . . . Xn} is a directed graph G over X1, . . . Xn whose nodes are annotated with conditional
preference tables CPT (Xi) for each Xi ∈ V . Each CPT (Xi) associates a total order �i

u with each
instantiation u of Xi’s parents Pa(Xi) = U

Example 19 Imagine it is Saturday evening and you have to buy something for dinner on Sunday, when
your mother-in-law will be visiting you. Since it is Saturday evening, the supermarket does not have much
offers. For the main course M , you can buy fish Mf or pork cutlets Mp, where your mother-in-law prefers
to have fish. As side dish V , you can only buy carrots Vc or leek Vl. Your choice of vegetables depends on
whether you want to cook fish or meat. Whenever you cook fish, you prefer leek over carrots and whenever
you cook meat, you prefer carrots over leek. For a dessert D you can choose between yogurt Dy and mousse
au chocolate Dc, where you prefer to have mousse au chocolate, which is independently from your choice
of the prepared meal.

In Figure 4.5 we have given the corresponding CP-net. As we can see, the vegetables depend condi-

D����

V����

M����

?

Mf �Mp

Mf : Vl � Vc

Mp : Vc � Vl

Dc � Dy

Figure 4.5: CP-net for the supermarket

tionally on the main course and the dessert is preferentially independent from the main course and from the
choosen vegetables.

Another graphical representation of a CP-net is the induced preference graph of a CP-net, which is a
directed graph, where the set of all nodes is the set of all outcomes and an arc from outcome o1 to outcome
o2 indicates that o2 is preferred over o1, which can directly be determined from the preference tables. The
top elements of the preference graph are the worst outcomes, and the bottom elements are the best outcomes.

Example 20 Let us reconsider Example 19. The corresponding preference graph is given in Figure 4.6. As
we can see, buying fish, leek, and mousse au chocolate is the most preferred outcome.

A CP-net N is satisfied by� iff� satisfies each of the conditional preferences expresses in the CPT’s of
N under the ceteris paribus interpretation. Every acyclic CP-net is satisfiable. N entails o � o′ (outcome o
is preferred over outcome o′), written N |= o � o′, iff o � o′ holds in every preference ordering that satisfies
N . Preferential entailment is transitive. That is, if N |= o � o′ and N |= o′ � o′′ then N |= o � o′′.

Example 21 Coming back to the CP-net N of our Example 19, we get N |= Mf ∧Vl∧Dc �Mf ∧Vc∧Dc,
N |= Mf ∧Vl ∧Dc �Mf ∧Vc ∧Dy , etc. However, e.g., we can neither entail that outcome Mp ∧Vc ∧Dc

is preferred of Mf ∧ Vc ∧Dy , or vice versa.
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Mf ∧ Vc ∧Dy

Mf ∧ Vl ∧Dy

Mf ∧ Vc ∧Dc

Mf ∧ Vl ∧Dc

Mp ∧ Vc ∧Dy

Mp ∧ Vl ∧Dy

Mp ∧ Vc ∧Dc

Mp ∧ Vl ∧Dy
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Figure 4.6: Induced Preference Graph for the CP-net of the supermarket

Please not that in general, most preferred outcomes are searched by so called flipping sequences. There,
a sequence of increasingly preferred outcomes is constructed, which correspond to paths in the induced
preference graph. A “flip” from one outcome to another is possible, whenever there is a ceteris paribus
preference among both outcomes. That is, these both outcomes differ only in one value of a variable for
which a preference is expressed in the conditional preference table. For more details see [22, 23].

4.4.8 Summary

In this section, we have presented several approaches for handling preferences. In general, preferences
are used to resolve indeterminate solutions. Current existing approaches offer a variety for modeling pref-
erences. We have considered rule-based and literal-based approaches and several semantics for handling
such kinds of preferences. Rule-based approaches are, for example, ordered programs along with the D-,
W -, and B-semantics (cf. Section 2.4) and the semantics from Zhang and Foo (cf. Section 4.4.1). On the
one hand, the D-, W -, and B-semantics do not guarantee that there always exists a preferred answer set,
whereas the semantics from Zhang and Foo guarantees the existence of preferred answer sets as long as
answer sets of the underlying logic program exist. On the other hand, given the set of all answer sets, pre-
ferred answer sets according to the D-, W -, and B-semantics are computable in polynomial time, whereas
it is not polynomial for the semantics due to Zhang and Foo [197, 65]. One approach for literal-based
preferences is described in Section 4.4.3. An advantage of this approach is the guarantee of the existence
of a preferred answer set as long as there exists an answer set of the underlying logic program. But unfor-
tunately, the complexity is increased by one level of the polynomial hierarchy. We also want to point out
that priorities over literals can be modeled with rule-based approaches. More precisely, whenever we prefer
a literal a over a literal b, the preference relation includes that all rules with a as head are higher preferred
than all rules with b as head. Of course, one has to find an adequate semantics for handling such rule-based
preferences modeling priorities over literals.

In contrast to rule-based or literal-based preferences, we have studied other strategies for modeling
preferences. Weak constraints assign values to integrity constraints, which eliminate solutions. Preferred
answer sets are those answer sets, which minimise the weights of the violated constraints. Ordered disjunc-
tion is in the broadest sense a literal-based semantics, where preferences among literals appear in the head
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of rules. Those kind of preferences are adequate for configuration problems, where you have to choose one
item from a set of possibilities. Furthermore, within this semantics there always exists a preferred answer
set of the program as long as there exists an answer set. Answer set optimization is in the broadest sense
an extension of ordered disjunction. There, it is possible to express preferences about Boolean formulas,
which is very useful for configuration problems. Moreover, we have presented Ceteris Paribus preferences
for the sake of completeness. In Section 6.1 we refer to it as related work. Ceteris Paribus preferences
are more or less a property, which preference relations can have. Last, but not least, we have considered
consistency restoring rules. They are designed to restore consistency of answer sets, e.g. if a program has
no answer set, consistency restoring rules are used to “repair” a problem such that there exists an answer
set. They are very helpful in configuration problems to guarantee that a configuration exists.

Also, preferences have been used for updating logic programs [1, 197], for revision [160], within
planning [63, 183], and preference semantics have been considered under the well-founded semantics,
e.g. [27, 176]. Other approaches of preference handling within logic programming are, for example, [104,
101, 71, 162]. A brief overview about preference semantics is given in [64].

4.5 Summary
In this chapter, we have concentrated on different methods for computing preferred answer sets. In Sec-
tion 4.1, we have presented a graph-theoretical characterization for computing preferred answer sets, con-
cerning the D-, W -, and B-strategy (cf. Section 2.4), respectively. Preferences are simply taken as an
additional type of edges in the rule dependency graph, reflecting an additional dependency among rules. In
particular, we have demonstrated that this approach allows us to capture all three approaches for preference
handling in a uniform setting by means of the concept of a height function. To a turn, we have exemplarily
developed an operational characterization for one of these strategies. For this purpose, we have extended
the proposed operational framework for graph-based computation of answer sets from Chapter 3. This
operational framework allows us to integrate preference information fully or partially into a solver.

This integrative approach for computing preferred answer sets has been implemented in the nomore<

system, presented in Section 4.3. Additionally, we have compared our integrative approach with the com-
pilation method of preference handling provided by the plp system and the meta-interpretation method.
For the experiments we have defined new benchmarks for logic programs with preference handling in Sec-
tion 4.2. It turned out that the integrative approach performs better on the considered problem classes than
the compilation or meta-interpretation method.

In Section 4.4 we have presented related work on preference handling and their application.



84 CHAPTER 4. ORDERED PROGRAMS IN ANSWER SET PROGRAMMING



Chapter 5

Notions of Equivalence for Logic
Programs with Preferences

The availability of efficient solvers has stimulated the use of Answer Set Programming (ASP) in practical
applications in recent years. This development had quite some implications on ASP research. For example,
increasingly large applications require features for modular programming. Another requirement is the fact
that in applications, ASP code is often generated automatically, calling for optimization methods which
remove redundancies, as also found in database query optimizers. For these purposes the rather recently
suggested notion of strong equivalence for ASP [133, 188] can be used. Indeed, if two ASP programs are
strongly equivalent, they can be used interchangeably in any context. This gives a handle on showing the
equivalence of ASP modules. Moreover, if a program is strongly equivalent to a subprogram of itself, then
one can always use the subprogram instead of the original program, a technique which serves as an effective
optimization method.

In this chapter, we tackle this issue and generalize the notion of strong equivalence to ASP with pref-
erences. Since several formalisms and semantics has been introduced for extending ASP by preferences,
we have to limit ourselves in this chapter to ordered logic programs (cf. Section 2.4 on page 13) with the
underlying D-, W -, and B-semantics [62, 194, 34]. The reason for this choice is that these semantics seem
to be widely accepted and their properties and interrelationships are fairly well-understood.

In Section 5.1 we define the novel notion of strong order equivalence for logic programs with prefer-
ences (ordered logic programs). In analogy to standard strong equivalence, we consider for strong order
equivalence extensions by ordered programs. Based on this definition, we present for the first time, for
three semantics for preference handling, necessary and sufficient conditions for programs to be strongly
order equivalent. These results allow us also to associate a novel structure, so-called SOE structure, to each
ordered logic program, such that two ordered logic programs are strongly order equivalent if and only if
their SOE structures coincide. We also present the relationships among the studied semantics with respect
to strong order equivalence, which differs considerably from their relationships with respect to preferred
answer sets. Furthermore, we study the computational complexity of several reasoning tasks associated to
strong order equivalence. Finally, based on the obtained results, we present – for the first time – simplifica-
tion methods for ordered logic programs.

Instead of considering program extensions by ordered programs, we concentrate in Section 5.2 on ex-
tensions by normal programs. Whereas strong order equivalence makes great demands on ordered logic
programs, this weakened notion, called n-strong order equivalence 1, enables additional program transfor-
mations, particularly simplifications of preference relations. Also, we study the relationship among the

1We have called this notion weak order equivalence in [119], but refer to it now as n-strong equivalence according to the extensions
by normal programs.

85



86 CHAPTER 5. NOTIONS OF EQUIVALENCE FOR LOGIC PROGRAMS WITH PREFERENCES

considered preference semantics and computational complexity issues. 2

We conclude with Section 5.3, where we compare both notions of order equivalence, give related work,
and future research issues.

5.1 Strong Order Equivalence
In this section, we define the notion of strong order equivalence, a generalization of strong equivalence to or-
dered logic programs. We declare that two ordered programs are strongly order equivalent, if they have the
same preferred answer sets no matter which ordered program we add to them. It turns out that the definition
for standard ASP cannot be straightforwardly extended for two main reasons: (1) the “union” of ordered
programs needs to be defined properly, and (2) not any “union” of ordered programs yields a valid ordered
program. To overcome these problems, we define the notion of admissible extension, which provides a gen-
eral method for defining strong equivalence for arbitrary structures. We show several properties of strong
order equivalence, providing necessary and sufficient conditions for programs to be strongly order equiva-
lent. We also explore the relationship of strong order equivalence between three semantics for preference
handling, and the relationship to strong equivalence of standard logic programs. These results also allow
for the novel definition of a SOE-structures, which are analogous to SE-models for strong equivalence.
Furthermore, we study the computational complexity of strong order equivalence and associated reasoning
tasks. It turns out that testing strong order equivalence is precisely as difficult as testing strong equivalence
for logic programs without preferences. Based on these results, we study the applicability of program sim-
plification rules, known from standard ASP, in the presence of preferences. We obtain that many of these
simplifications can be applied, provided that the simplified rules do not occur in the preference relation.
Other important consequences of this work are that the relationship between the three preference seman-
tics is different under strong equivalence than under answer sets and that preferences cannot be “compiled
away” under strong equivalence.

This section is organized as follows: In Section 5.1.1 we define strong order equivalence, and we present
properties and characterizations of it, along with the notion of SOE-structures in Section 5.1.2. The com-
plexity of testing strong equivalence and related tasks is analyzed in Section 5.1.3. After assessing the
applicability of program simplifications in Section 5.1.4, we draw conclusions in Section 5.1.5.

5.1.1 Strong Equivalence for Preferred Answer Sets
In this section, we define variants of equivalences for ordered logic programs. Defining “standard” equiva-
lence (two programs permit precisely the same answer sets) is straightforward by considering the respective
preferred answer sets.

However, concerning the notion of strong equivalence, there are some caveats. For standard programs,
strong equivalence for Π1 and Π2 holds if for any program Π, Π1 ∪ Π and Π2 ∪ Π have the same answer
sets. If we now take preferences into account, for any ordered program (Π, <), (Π1, <1) and (Π2, <2)
would be strongly equivalent if (Π1 ∪ Π, <1 ∪ <) and (Π2 ∪ Π, <2 ∪ <) have the same preferred answer
sets. The problem is that (Π1 ∪ Π, <1 ∪ <) is not necessarily an ordered logic program, because of two
issues: 1. Rule label clashes, and 3 2. partial order clashes.

Rule label clashes, i.e. two different rules have the same name or one rule has two different names, can
be resolved by a renaming.

Definition 5.1.1 Let (Π,N , n,<) be an ordered program.
We say that (Π,N ∗, n∗, <∗) is a renaming of (Π,N , n,<) if the following holds:

2Complexity results for n-strong order equivalence have not been presented in [119]. They are presented in this chapter for the first
time.

3Note that rule label clashes are caused by the definition of ordered logic programs presented in [62], where there exists a bijective
function between rules and names for rules.x
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1. N ∗ is a new set of names of rules,

2. n∗(.) is a bijective function assigning each rule of Π an unique name of N ∗, and

3. n∗(r) <∗ n∗(r′) holds iff n(r) < n(r′), for all r, r′ ∈ Π.

As an example, let us consider the following ordered programs:

(5.1) (Π1, ∅) =
{

r1 : a←
r2 : b←

}
and (Π2, <) =

 r2 : a←
r1 : b← a
r1 < r2


For the union of (Π1, ∅) and (Π2, <) we have different rule label clashes. First, the rule a ← has two
different names. Second, the name “r1” is assigned to different rules. A renaming of program (Π2, <)
would resolve these clashes. Our new set of names is N ∗ = {r3, r4}, rule a ← gets the name r3 and rule
b← a gets the name r4. Furthermore, we get r4 <∗ r3 as renamed preference relation. Hence, we get the
resulting program

(Π2, <
∗) =

 r3 : a←
r4 : b← a
r4 <∗ r3


Now, we can define the union of two ordered logic programs.

Definition 5.1.2 Let (Π,N , n,<) and (Π′,N ′, n′, <′) be ordered logic programs whereN ,N ′ are disjoint
sets of rule names.

We define the union of (Π,N , n,<) and (Π′,N ′, n′, <′) as (Π∗,N ∗, n∗, <∗), where

• Π∗ = Π ∪Π′

• N ∗ is a new set of names of rules,

• n∗(r) for r ∈ Π ∪ Π′ is a bijective function assigning each rule of Π ∪ Π′ an unique name of N ∗,
and

• <∗=< ∪ <′, where for r, r′ ∈ Π ∪ Π′, n∗(r) <∗ n∗(r′) holds whenever n(r) < n(r′) or n′(r) <′

n′(r′) holds.

We usually leave N ∗ and n∗ implicit. This is a reasonable assumption, as one can assume that all rules are
labeled by themselves (assuming a standardized ordering of the rule body). Sometimes we write (Π∪Π′, <
∪ <′) for the union of (Π, <) and (Π′, <′).

Coming back to our example programs given in (5.1), we obtain

(Π1, ∅) ∪ (Π2, <
∗) =


r5 : a←
r6 : b←
r7 : b← a
r7 <′ r5


as union of (Π1, ∅) and (Π2, <

∗).
We next observe that the union of ordered logic programs is not necessarily an ordered logic program.

For this, consider

(Π1, <1) =

 r1 : a←
r2 : b← a
r2 <1 r1

 and (Π2, <2) =

 r3 : a←
r4 : b← a
r3 <2 r4


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Then, we have

(Π∗, <∗) =


r5 : a←
r6 : b← a
r5 <∗ r6

r6 <∗ r5


where <∗ is not a strict partial order. Hence, (Π∗, <∗) is not an ordered logic program. To avoid this, we
define the notion of admissible extensions of an ordered logic program.

Definition 5.1.3 Let (Π, <) and (Π′, <′) be ordered logic programs.
Then, (Π′, <′) is an admissible extension of (Π, <) if (Π ∪Π′, < ∪ <′) is an ordered logic program.

We remark that the notion of compatibility for orderings, as defined in [34], is similar in spirit to
admissible extensions, but concerns only the order relation and not the rules in the program.

Analogously to (normal) logic programs, we can define the notion of equivalence of ordered logic
programs.

Definition 5.1.4 (Order equivalence) Let (Π1, <1) and (Π2, <2) be ordered logic programs and σ ∈
{D,B,W}. Then, (Π1, <1) and (Π2, <2) are <σ-equivalent iff ASσ((Π1, <1)) = ASσ((Π2, <2)).

As an abbreviation, in the sequel we write ≡σ for <σ- equivalence.
Since the definition of strong equivalence for logic programs can be interpreted as having the same

answer sets in any extension, we employ the notion of admissible extensions for defining the analogue for
ordered logic programs.

Definition 5.1.5 (Strong order equivalence) Let (Π1, <1) and (Π2, <2) be ordered logic programs and
σ ∈ {D,B,W}.

Then, (Π1, <1) and (Π2, <2) are strongly <σ-equivalent iff for all admissible extensions (Π, <) of
(Π1, <1) and (Π2, <2) it holds that (Π1 ∪Π, <1 ∪ <) and (Π2 ∪Π, <2 ∪ <) are <σ- equivalent.

As an abbreviation, we write ≡σ
s whenever two ordered logic programs are strongly <σ-equivalent.

5.1.2 Properties and Relationships
In this section, we will give characterizations of strong order equivalence. In particular, we present several
necessary conditions for strong order equivalence, which, taken together, can also be shown to be suffi-
cient. These results also allow for establishing the relationship of strong order equivalence under different
semantics.

5.1.2.1 Preference Relation

For finding necessary conditions for strong order equivalence, a promising candidate is comparing the
preference relations of the two ordered logic programs. To get a better idea of the impact of the preference
relation, let us first look at an example.

Example 22 Consider the logic program

Π =
{

r1 : a←
r2 : b← a

}
and the preference relation < in which only r2 < r1 holds. Let us now study the relationships between
(Π, ∅) and (Π, <).

We first observe that (Π, ∅) ≡σ (Π, <) holds for all σ ∈ {D,W,B}. Indeed, for (Π, ∅), rule r1 must be
ordered before rule r2 in D- and W -preference, since the derivation of the positive body of r2 depends on
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r1. Thus, the preference relation r2 < r1 is compatible with this ordering and cannot inhibit any <D- and
<W - preferred answer sets. Furthermore, r2 < r1 has no effect on <B- preferred answer sets, since the
B-semantics fully decouples preference handling from the order induced by consecutive rule application.

But, perhaps surprisingly, these programs are not strongly order equivalent. Consider the following
ordered logic program:

(Π′, <′) =



r1 : a←
r2 : b← a
r3 : z ←
r4 : y ← not z
r5 : a← x
r6 : x←

r3 <′ r2

r1 <′ r4


Note that Π ⊂ Π′. The only answer set of Π′ is {a, b, z, x}.

In B-semantics, we may order the rules of Π′ in any way, provided that r3 is ordered before r4 and that
<′ is respected. This is obviously feasible, one ordering would be 〈r2, r3, r4, r1, r5, r6〉. Note that r5 and
r6 can be ordered arbitrarily for this semantics. Also note that r1 does not have to be ordered before r2 in
the B–semantics. Hence, ASB((Π′, <′)) = {{a, b, z, x}}.

Considering W -semantics, any ordering of the rules must respect <′ and put r3 before r4, put either
r1 or r5 before r2, and put r1 or r6 before r5. It turns out that r1 cannot be put before r2, as r2 must
precede r3 due to <′ and r3 must occur before r4, so r1 would be listed before r4, which is incompatible
with <′. Therefore r5 must be ordered before r2, while r1 must be ordered behind r2, and hence also r5.
So r6 must be put before r5 and so the only admissible ordering is 〈r6, r5, r2, r3, r4, r1〉. Using similar
reasoning, we obtain that the same ordering is the only admissible ordering for the D-semantics. Therefore
ASD((Π′, <′)) = ASW ((Π′, <′)) = {{a, b, z, x}}. Note that rules r5 and r6 are essential to guarantee
this preferred answer set for the W - and D-semantics.

Now we observe that Π ∪ Π′ = Π′, so (Π, ∅) ∪ (Π′, <′) = (Π′, <′), and hence {a, b, z, x} is the
preferred answer set for (Π, ∅) ∪ (Π′, <′) in all three semantics.

For (Π, <) ∪ (Π′, <′) = (Π′, <∗) the situation is different. We first note that <∗ contains r3 <∗ r2,
r2 <∗ r1, r1 <∗ r4, and therefore also r3 <∗ r1, r2 <∗ r4, and, importantly, r3 <∗ r4. So, in order to be
compatible with <∗, each ordering must put r4 before r3. But all of the orderings discussed above require
also that r3 is put before r4. Therefore no compatible ordering exists for any of the three semantics, and
hence ASσ((Π′, <∗)) = ∅ for σ ∈ {D,W,B}.

As a consequence, (Π, ∅) 6≡σ
s (Π, <) for σ ∈ {D,W,B}.

Note that it is possible to construct an ordered logic program like (Π′, <′) in this example for any
pair of ordered logic programs for which the preference relations do not coincide. Even if the ordered
logic programs do not admit preferred answer sets, it is possible to add suitable rules such that one of the
composed programs has a preferred answer set while the other has a transitively induced preference which
is in conflict with a pair of rules like r3 and r4 in Example 22.

Theorem 5.1.1 Let (Π1, <1) and (Π2, <2) be ordered programs and σ ∈ {D,W,B}.
If (Π1, <1) ≡σ

s (Π2, <2) then <1=<2.

This theorem also implies that strongly order equivalent programs must coincide on their rules involved
in the preference relation. We say that a rule r is involved in a preference relation < if there exists an r′

such that r < r′ or r′ < r holds.

Definition 5.1.6 Let (Π, <) be an ordered logic program.
We define PR((Π, <)) = {r, r′ ∈ Π | r < r′}.

We obtain the following corollary.
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Corollary 5.1.2 Let (Π1, <1) and (Π2, <2) be ordered programs and σ ∈ {D,W,B}.
If (Π1, <1) ≡σ

s (Π2, <2) then PR((Π1, <1)) = PR((Π2, <2)).

As a special case of Theorem 5.1.1, we obtain that (Π, ∅) 6≡σ
s (Π, <) holds for any program Π, any non-

empty preference relation < on Π, and any σ ∈ {D,W,B}. Moreover, for every ordered logic program
(Π, <), < 6= ∅, there exists no strongly order equivalent program (Π′, ∅).

Corollary 5.1.3 Let (Π, <) be an ordered logic program such that <6= ∅ and σ ∈ {D,W,B}.
Then, there exists no logic program Π′ such that (Π, <) ≡σ

s (Π′, ∅).

Interestingly, this tells us that no transformation from an ordered logic program with a non-empty preference
relation to a logic program exists such that the transformed program is strongly order equivalent to the
original one. Note that such a transformation may not introduce any new symbols, as then the (preferred)
answer sets are in general no longer comparable. As discussed in Section 5.1.5, the plp system does
introduce new symbols, and in this way the preferences can be “compiled away.” Hence, the compilation
method from the plp system is not feasible under strong order equivalence. Furthermore, it is not feasible
under order equivalence, since the transformation introduces new symbols, which appear in the resulting
answer sets.

5.1.2.2 Traditional Strong Equivalence

Another good candidate for a necessary condition for strong order equivalence would be strong equivalence
of the logic programs (without considering the preference relation). This would be very natural since the
definition of strong order equivalence “covers” strong equivalence of the underlying logic programs.

However, investigating a bit more, it is not immediately evident that this property holds. Even if the
preferred answer sets of the two programs coincide in every extension, one could believe that it could
happen that the preference relation of one program inhibits an answer set, which is not an answer set of the
other program.

But, as suggested in the following examples, in such a situation, one can always find another extension,
for which the preferred answer sets do not coincide.

Example 23 Consider the ordered logic programs

(Π1, <) =

 r1 : a← not b
r2 : b← not a
r2 < r1

 and (Π2, <) =


r1 : a← not b
r2 : b← not a
r3 : a← not a
r2 < r1


They coincide on their preference relations, but the underlying logic programs are not equivalent, hence
also not strongly equivalent.

We observe that AS(Π1) = {{a}, {b}}, while AS(Π2) = {{a}}. However, it holds that ASσ((Π1, <
)) = ASσ((Π2, <)) = {{a}} for σ ∈ {D,W,B}, as for the answer set {b} of (Π1, <), any enumeration
would have to order r1 before r2 because of the preference relation, while it would also have to order r2

before r1 in all three semantics to avoid blockedness by lower ranked rules. Hence, the preference relation
< inhibits {b} as preferred answer set in (Π1, <1), whereas (Π2, <2) misses {b} as answer set.

However, we can construct program Π′ = {b ←}, such that AS(Π1 ∪ Π′) = AS(Π1) and AS(Π2 ∪
Π′) = ∅. We now obtain ASσ((Π1 ∪ {b ←}, <)) = {{b}} but ASσ((Π2 ∪ {b ←}, <)) = ∅ for σ ∈
{D,W,B}, providing a counterexample to (Π1, <1) ≡σ

s (Π2, <2).

The next example shows a similar situation, but this time we try to formulate the counterexample in a
somewhat more systematic way.
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Example 24 For instance, consider the ordered logic programs:

(Π1, ∅) =
{

r1 : a←
}

and (Π2, <2) =

 r2 : a← not b
r3 : b← not a
r3 <2 r2


We get that AS(Π1) = {{a}} and AS(Π2) = {{a}, {b}}, hence Π1 6≡s Π2. But ASσ((Π1, ∅)) = {a}
and also ASσ((Π2, <2)) = {a}. The answer set {b} of Π2 is inhibited by the preference relation, as r2

must be enumerated before r3 because of the preference, yet all semantics also require that r3 should be
enumerated before r2 in order to block r2.

Taking

(Π′, ∅) =

 r4 : x←
r5 : a← x, not b
r6 : b← x, not a


yields AS(Π1 ∪ Π′) = {{a, x}} and AS(Π2 ∪ Π′) = {{a, x}, {b, x}}. The only preferred answer set of
(Π1 ∪Π′, ∅) is again {a, x}, but both {a, x} and {b, x} are preferred answer sets of (Π2 ∪Π′, <2). Indeed
〈r4, r6, r5, r2, r3〉 is a valid enumeration in all semantics. The compensating program (Π′, ∅) “repairs” the
non-preferred answer set {b} in (Π2, <2), whereas it does not introduce {b} as answer set of Π1 ∪Π′.

It turns out that one can always construct a program as in the previous example for any answer set which is
inhibited by the preference relation. We therefore arrive at the following Theorem.

Theorem 5.1.4 Let (Π1, <1) and (Π2, <2) be ordered programs and σ ∈ {D,W,B}.
If (Π1, <1) ≡σ

s (Π2, <2) then Π1 ≡s Π2.

We now already have found two rather strict necessary conditions. As we will see next, there is yet a
third one.

5.1.2.3 Generating and Contributing Rules

Unfortunately, the conditions of Theorems 5.1.1 and 5.1.4 are not yet sufficient to characterize strong order
equivalence. There are programs, which are not strongly order equivalent, while they coincide on the
preference relation and their logic programs are strongly equivalent, as the following example shows.

Example 25 Consider the following ordered logic programs:

(Π1, ∅) =
{

r1 : a←
r3 : b←

}
and (Π2, ∅) =

{
r1 : a←
r2 : b← a

}
We observe that Π1 ≡s Π2 holds and that both ordered programs coincide on their (empty) preference
relation.

But, taking the ordered logic program

(Π∗, <∗) =

 r2 : b← a
r4 : y ← not b
r2 <∗ r4


as admissible extension of (Π1, ∅) and (Π2, ∅) yields ASσ((Π1 ∪ Π∗, <∗)) = {{a, b}} but ASσ((Π2 ∪
Π∗, <∗)) = ∅ for σ ∈ {D,W,B}.

The problem is that r3 does not occur in Π2, and while r2 can take the “role” of r3 for standard answer
sets, it cannot do so for preferred answer sets, when the preference relation is chosen in a conflicting way.
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A more general observation is that the programs are not strongly order equivalent because they do not
coincide on their set of generating rules. (Π1, ∅) contains r3 and (Π2, ∅) rule r2 to derive the atom b.
Adding r4 and the preference that r4 is preferred to r2 entails that (Π2 ∪Π∗, <∗) has no preferred answer
set since r4 is blocked by the lower preferred rule r2, while (Π1 ∪Π∗, <∗) has a preferred answer set since
r3 allows to block r4 in an alternative way.

Since the considered preference semantics are rule-based, this allows us to suppose that strong order
equivalence enforces that the ordered logic programs must coincide on all rules which can become applica-
ble.

Accordingly, we say that a rule r ∈ Π contributes to an answer set X , if there exists an extension Π∗

and an answer set X ∈ AS(Π ∪Π∗) such that r ∈ RΠ∪Π∗(X).

Definition 5.1.7 Let Π be a logic program. We define

Cont(Π) = {r ∈ Π | there exists an Π′ and an X ∈ AS(Π ∪Π′) s.t. r ∈ RΠ∪Π′(X)}

Rules which are not contributing to answer sets, are never applicable, e.g. where body+(r)∩body−(r) 6=
∅ or head(r) ∈ body−(r). We want to stress that with Cont(Π) we denote all rules which can become a
generating rule in some extension of Π.

Example 26 For the program

Π =
{

r1 : a←
r2 : b← a

}
we obtain r1, r2 ∈ Cont(Π) since r1, r2 ∈ RΠ(X) for answer set X = {a, b} of Π.

For the program
Π = {r2 : b← a}

we have r2 6∈ RΠ(X) for answer set X = ∅ of Π. But, for the extension Π′ = {r1 : a←} of Π, we obtain
that r2 becomes a generating rule for the program Π ∪ Π′ and answer set X = {a, b}. Hence, we have
r2 ∈ Cont(Π).

For B-preferences, we can show that two strongly order equivalent programs must coincide on their
rules contributing to answer sets.

Theorem 5.1.5 Let (Π1, <1) and (Π2, <2) be ordered logic programs.
If (Π1, <1) ≡B

s (Π2, <2), then Cont(Π1) = Cont(Π2).

Interestingly, for D– and W–preferences, these conditions have to be weakened.

Theorem 5.1.6 Let (Π1, <1) and (Π2, <2) be ordered logic programs and σ ∈ {D,W}.
If (Π1, <1) ≡σ

s (Π2, <2), then Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r)} = Cont(Π2) \ {r ∈ Π2 |
head(r) ∈ body+(r)}

Since D- and W - preferences couple rule application with preference handling, answer sets can be inhibited
by preferences because applied rules are not enumerable in an order preserving way (see Condition 2 in
Definition 2.4.1 and 2.4.2). But one can always find an extension such that those answer sets are regenerated.
For applied “loop” rules, i.e. head(r) ∈ body+(r), another rule must always exist which derives the head
within an answer set in an order preserving way. Hence, such loop rules are redundant w.r.t. D- and W -
preferences as long as they are not involved in the preference relations (see Section 5.1.4). In contrast,
B- preferences decouple preference handling from rule application and hence, one can always find an
extension, where those loop rules regenerate a non-preferred answer set to a preferred one in one program
but not in the other one.
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Example 27 The ordered logic programs

(Π1, ∅) =
{

r1 : a←
}

and (Π2, ∅) =
{

r1 : a←
r2 : a← a

}
are strongly equivalent on their logic programs, coincide on their preference relation, but they are not
strongly <B- equivalent. Taking

(Π, <) =

 r1 : a←
r3 : y ← not a
r1 < r3


yields ASB((Π1 ∪ Π, <)) = ∅ but ASB((Π2 ∪ Π, <)) = {a}. Here, rule r2 can be used to block r3. For
D- and W -preferences, however, r2 has to be ordered after r1, hence it cannot be used to block r3.

Indeed, for any admissible extension (Π′, <′), for which ASσ((Π1 ∪ Π′, <′)) = ∅, even if AS(Π1 ∪
Π′) = AS(Π2 ∪ Π′) 6= ∅, any enumeration of Π2 ∪ Π′ must put r2 behind r1 or another generating
rule r ∈ Π′ with head(r) = a, so r2 cannot “fix” an answer set inhibited in (Π1 ∪ Π′, <′). If instead
ASσ((Π2 ∪ Π′, <′)) = ∅ holds, it is clear that also ASσ((Π1 ∪ Π′, <′)) = ∅ must hold. Moreover any
<σ-preferred answer set of (Π1 ∪Π′, <′) will also be a <σ-preferred answer set of (Π2 ∪Π′, <′) and vice
versa. Therefore (Π1, ∅) ≡σ

s (Π2, ∅) holds, this reasoning being valid for σ = {D,W}.

Beside “loop” rules, one could wonder whether also non-trivial loops are redundant in the preference
semantics. Indeed, they are not, as shown by the following example.

Example 28 The ordered logic programs

(Π1, ∅) =
{

r1 : a←
r2 : b← a

}
and (Π2, ∅) =

 r1 : a←
r2 : b← a
r3 : a← b


are not strongly <B- equivalent. Taking

(Π, <) =

 r1 : a←
r4 : y ← not a
r1 < r4


yields ASB((Π1 ∪ Π, <)) = ∅ but ASB((Π2 ∪ Π, <)) = {a, b}. Here, rule r3 can be used to block r4, a
possible enumeration being 〈r3, r2, r4, r1〉.

Different from Example 27, (Π1, ∅) and (Π2, ∅) are neither strongly <D, nor strongly <W - equivalent.
For this, consider

(Π′, <) =


r1 : a←
r4 : y ← not a
r5 : b←
r1 < r4


as ASσ((Π1 ∪ Π′, <)) = ∅ (since no enumeration can list rule r1 before r4, and so no earlier rule can
block r4), but ASσ((Π2 ∪Π′, <)) = {a, b} for σ = {D,W}, as r3 can be ordered before r4, thus blocking
r4, provided that r5 is enumerated before r3, which is feasible. An admissible enumeration would be
〈r5, r3, r2, r4, r1〉.

We note that for two logic programs Π1 and Π2, Π1 ≡s Π2 does not imply Cont(Π1) = Cont(Π2)
(as seen in Example 25), and also Cont(Π1) = Cont(Π2) does not imply Π1 ≡s Π2, as the following
example shows.
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Example 29 Considering the logic programs

Π1 =
{

r1 : a←
}

and Π2 =
{

r1 : a←
r2 : b← not b

}
we observe that Cont(Π1) = {r1}, but also Cont(Π2) = {r1}, as r2 is not a generating rule in any
extension Π2 ∪ Π: If there is an answer set X ∈ AS(Π2 ∪ Π) and if b ∈ X , then r2 6∈ RΠ2∪Π(X), while
if b 6∈ X , then X would not be an answer set, as each model of (Π2 ∪ Π)X must contain b, otherwise
r2 ∈ (Π2 ∪Π)X is not satisfied. So Cont(Π1) = Cont(Π2) holds.

Since AS(Π1) = {{a}} and AS(Π2) = ∅, Π1 ≡s Π2 obviously does not hold.

Theorems 5.1.5 and 5.1.6 do therefore not subsume Theorem 5.1.4, nor vice versa.

5.1.2.4 Characterization of Strong Order Equivalence

It turns out that the conditions in Theorems 5.1.1, 5.1.5, 5.1.6, and 5.1.4 are, taken together, sufficient for
strong order equivalence.

Example 30 For example, for

(Π1, ∅) =
{

r1 : a←
r2 : b← not a

}
and (Π2, ∅) =

{
r1 : a←
r3 : c← not a

}
the preference relations are equal, Π1 and Π2 are strongly equivalent, and Cont(Π1) = Cont(Π2) = {r1}.

We can now observe that for any admissible extension (Π, <), if (Π1 ∪ Π, <) admits a <σ-preferred
answer set, then it is also a <σ-preferred answer set of (Π2 ∪ Π, <) and vice versa. The reason is that
the answer sets of the underlying programs must be equal, as they are strongly equivalent, and that any
compatible enumeration of (Π1 ∪Π, <) needs to put a generating rule r with head(r) = a before r2. This
rule is either r1 or a rule in Π, and is therefore also present and generating in Π2 ∪Π. Indeed, we can just
swap rule r2 with rule r3 and arrive at a valid enumeration for (Π2 ∪ Π, <), since the preference relation
is the same. Using a symmetric argument, any admissible enumeration of (Π2 ∪ Π, <) can be modified
to yield an admissible enumeration for (Π1 ∪ Π, <) in any of the three semantics. The two ordered logic
programs are therefore strongly order equivalent in all three semantics.

The only difference among the semantics concerning the necessary conditions was for generating rules.
Generating “loop rules” need not be equal for strong <D- and <W - order equivalence.

Example 31 For the ordered logic programs

(Π1, ∅) = {r1 : a←} and (Π2, ∅) =
{

r1 : a←
r2 : a← a

}
the preference relations are equal, Π1 and Π2 are strongly equivalent, and Cont(Π1) = Cont(Π2) =
{r1, r2}.

We can now observe that for any admissible extension (Π, <), if (Π1 ∪ Π, <) admits a <σ-preferred
answer set for σ ∈ {D,W}, we can modify the enumeration of rules of Π1 ∪ Π to an enumeration of the
rules of Π2 ∪ Π by inserting r2 at the very end. On the other hand, if (Π2 ∪ Π, <) admits a <σ-preferred
answer set, then any enumeration must list a generating rule r with head(r) = a before r2. So for any rule
r′ occurring after r2, which needs a preceding rule r′′ with head(r′′) = a, both r2 and r can serve this
purpose. We can therefore remove r2 from the enumeration safely, arriving at an admissible enumeration
for (Π1 ∪Π, <). These programs are therefore strongly <D- and <W - equivalent.

The picture is different for <B preferred answer sets. While any <B preferred answer set for (Π1 ∪
Π, <) is also a <B preferred answer set for (Π2 ∪ Π, <) (by inserting r2 at an arbitrary position of any
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enumeration for Π1∪Π), a <B preferred answer set for (Π2∪Π, <) is not necessarily one of (Π1∪Π, <):
Different from above, we cannot guarantee that a rule r with head(r) = a precedes r2 in the enumeration
of Π2∪Π (since Definition 2.4.3 lacks an equivalent for Condition 2 of Definitions 2.4.1 and 2.4.2). So some
rule r′ after r2 might need a preceding generating rule r′′ with head(r′′) = a. However, all generating
rules apart from r2 might be constrained to occur after r′′, and so it might not be feasible to delete r2 from
the enumeration. An example for this situation can be found in Example 27. The programs are therefore
not strongly <B - equivalent.

The techniques sketched in this example can indeed be generalized, yielding proofs to the following
results on sufficiency of the three conditions.

Theorem 5.1.7 Let (Π1, <1) and (Π2, <2) be ordered logic programs.
If Π1 ≡s Π2, <1=<2, and Cont(Π1) = Cont(Π2), then (Π1, <1) ≡B

s (Π2, <2).

Theorem 5.1.8 Let (Π1, <1) and (Π2, <2) be ordered logic programs and σ ∈ {D,W}.
If Π1 ≡s Π2, <1=<2, and Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r) = Cont(Π2) \ {r ∈ Π2 |

head(r) ∈ body+(r)}, then (Π1, <1) ≡σ
s (Π2, <2).

Taking together the necessary and sufficient conditions, we can formalize the following characterization
of strong order equivalence.

Corollary 5.1.9 Let (Π1, <1) and (Π2, <2) be ordered logic programs.
Then, (Π1, <1) ≡B

s (Π2, <2) iff

• Π1 ≡s Π2,

• <1=<2, and

• Cont(Π1) = Cont(Π2).

Corollary 5.1.10 Let (Π1, <1) and (Π2, <2) be ordered programs and σ ∈ {D,W}.
Then, (Π1, <1) ≡σ

s (Π2, <2), iff

• Π1 ≡s Π2,

• <1=<2, and

• Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r)} = Cont(Π2) \ {r ∈ Π2 | head(r) ∈ body+(r)}.

5.1.2.5 Strong Order Equivalence Structures

In analogy to SE-models, these results allow us to associate to each ordered logic program a structure
comprised of its SE-models, the preference relation, and the set of contributing rules (without loop rules for
D- and W -semantics). If for a pair of programs these structures are equal, they are strongly equivalent under
the respective semantics. We refrain from calling these structures models, as they contain non-standard
elements like preferences and rules.

Definition 5.1.8 An SOEB-structure of an ordered logic program (Π, <) is the triple

〈SE(Π), <, Cont(Π)〉,

denoted by SOEB((Π, <)).
An SOEσ-structure (for σ ∈ {D,W}) of an ordered logic program (Π, <) is the triple

〈SE(Π), <, Cont(Π) \ {r ∈ Π | head(r) ∈ body+(r)}〉,

denoted by SOEσ((Π, <)).
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The following result follows from Corollaries 5.1.9 and 5.1.10.

Theorem 5.1.11 Let (Π1, <1) and (Π2, <2) be ordered programs and σ ∈ {D,W,B}.
Then, SOEσ((Π1, <1)) = SOEσ((Π2, <2)) holds iff (Π1, <1) ≡σ

s (Π2, <2).

We have thus fully characterized strong order equivalence under the three preference semantics, and we
have also given a structure associated to each ordered logic program, such that two programs are strongly
order equivalent if and only if their structures coincide for the respective semantics.

5.1.2.6 Strong Order Equivalence under Different Semantics

Regarding preferred answer sets, recall that the different strategies for preference handling yield an increas-
ing number of preferred answer sets, in particular

ASD((Π, <)) ⊆ ASW ((Π, <)) ⊆ ASB((Π, <)) ⊆ AS(Π)

as shown in [177].
Interestingly, the above theorems show that there is no difference in the behavior of D– and W–

preferences when considering strong order equivalence. In contrast, fewer programs are strongly order
equivalent in the B–semantics, since preference handling is fully decoupled from the order induced by
consecutive rule application.

Theorem 5.1.12 Let (Π1, <1) and (Π2, <2) be ordered logic programs. Then

(a) if (Π1, <1) ≡B
s (Π2, <2) then (Π1, <1) ≡W

s (Π2, <2),

(b) (Π1, <1) ≡W
s (Π2, <2) iff (Π1, <1) ≡D

s (Π2, <2).

Considering answer sets, each <D-preferred answer set is <W -preferred and each <W -preferred is <B-
preferred. Interestingly, regarding strong order equivalence we obtain that ≡D

s iff ≡W
s , so the differences

between the D- and W - semantics can be compensated by extending the program in a suitable way. More-
over, since ≡B

s implies ≡W
s and ≡B

s implies ≡D
s , the B-semantics imposes a strictly stronger criterion for

programs to be strongly order equivalent. The reason for this is that B-preference fully decouples pref-
erence handling from the order induced by consecutive rule application, and in addition, these differences
cannot be compensated by adding suitable extensions.

5.1.3 Complexity Results
In this section, we discuss the computational complexity of deciding strong order equivalence and related
problems. We first start by examining the complexity of standard equivalence under <D-, <W -, and <B-
preferred answer sets. It turns out that this problem is not more difficult than deciding whether two logic
programs have the same answer sets.

The important point is that checking whether an answer set is preferred (and therefore also whether it is
not preferred) can be done in polynomial time. This can be achieved by a modified topological sorting, as
described in [34].

Lemma 5.1.13 Given an ordered logic program (Π, <) and an interpretation I , checking whether I ∈
ASσ((Π, <)) is feasible in polynomial time for all σ ∈ {D,W,B}.

It is therefore possible to guess an interpretation, and check whether it is an answer set and preferred
for one program and not an answer set or not preferred for the other or vice versa, all in polynomial time.

Theorem 5.1.14 Given two ordered programs (Π1, <1) and (Π2, <2), deciding whether (Π1, <1) ≡σ

(Π2, <2) is co-NP-complete for σ ∈ {D,W,B}.
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Let us now turn to strong order equivalence. A key notion for deciding strong order equivalence is the
set of contributing rules, following from Corollaries 5.1.9 and 5.1.10. We first note that in order to check
whether a rule of a program is contributing to an answer set of an extension, it is not needed to check all
arbitrary program extensions, but just particular ones:

Lemma 5.1.15 Let Π be a logic program and r ∈ Π.
If there exists a program Π′ and an X ∈ AS(Π ∪ Π′) such that r ∈ RΠ∪Π′(X) then there exists a

program Π∗ ∈ facts(Atm(Π)) 4 and an X∗ ∈ AS(Π ∪Π∗) such that r ∈ RΠ∪Π∗(X∗).

Leveraging this lemma, we can show that checking whether a rule is contributing is NP-complete.

Theorem 5.1.16 Let (Π, <) be an ordered program.
Given a rule r, deciding whether r ∈ Cont(Π) is NP-complete.

Next, we show that two strongly equivalent programs differ in their contributing rules if there is a rule,
which occurs in exactly one of the two programs, which is contributing.

Lemma 5.1.17 Let (Π1, <1) and (Π2, <2) be ordered programs and Π1 ≡s Π2.
If Cont(Π1) 6= Cont(Π2), then there exists an r such that either r ∈ Π1, r 6∈ Π2 and a Π′ exists such

that X ∈ AS(Π1∪Π′) and r ∈ RΠ1∪Π′(X), or r ∈ Π2, r 6∈ Π1 and a Π′ exists such that X ∈ AS(Π2∪Π′)
and r ∈ RΠ2∪Π′(X).

We can use this result for showing that deciding whether two strongly equivalent programs differ on
their contributing rules is co-NP-complete.

Theorem 5.1.18 Let (Π1, <1) and (Π2, <2) be ordered programs and Π1 ≡s Π2.
Deciding whether Cont(Π1) = Cont(Π2) is co-NP-complete.

Using a result from [134], Corollaries 5.1.9 and 5.1.10, and Theorem 5.1.18, we can show that checking
whether two ordered logic programs are strongly order equivalent is co-NP-complete.

Theorem 5.1.19 Let (Π1, <1) and (Π2, <2) be ordered programs and σ ∈ {D,W,B}.
Then, deciding whether (Π1, <1) ≡σ

s (Π2, <2) is co-NP-complete.

We have thus shown that strong order equivalence testing is not more complex than strong equivalence
testing.

5.1.4 Program Simplifications
Corollaries 5.1.10 and 5.1.9 show that two ordered logic programs which are strongly order equivalent,
differ only on rules which are not involved in the preference relation and which are not applicable in any
extension. Additionally, for D- and W - semantics, strongly order equivalent logic programs may differ
in loop rules, in which the head is contained in the positive body. These results allow us to formalize the
following results concerning transformations on ordered logic programs.

Corollary 5.1.20 Let (Π, <) be an ordered logic program and r ∈ Π such that r 6∈ Cont(Π), r 6∈
PR((Π, <)) and Π ≡s Π \ {r}. Then, (Π, <) ≡σ

s (Π \ {r}, <) holds for σ ∈ {D,W,B}.

This corollary expresses that a rule, which is never applicable and not involved in <, is redundant regarding
strong order equivalence as long as the simplification is feasible under strong equivalence. The condition
Π1 ≡s Π2 is necessary. To see this, consider the following example.

4For a set A, we denote with facts(A) the set of rules facts(A) = {a← |a ∈ A}.
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Example 32 Let us examine the program

(Π1, ∅) = {c← not c}.

Clearly, we have Π1 6≡s ∅. Rule c ← not c also never contributes to an answer set. Waiving the con-
dition for strong equivalence of the underling logic programs in Corollary 5.1.20 would lead to wrong
simplifications in general. For example,

(Π2, ∅) =
{

a←
c← not c

}
and (Π3, ∅) =

{
a←

}
are not even equivalent.

The next corollary focuses on loop rules.

Corollary 5.1.21 Let (Π, <) be an ordered logic program. Furthermore, let r ∈ Π s.t. head(r) ∈
body+(r) and r 6∈ PR((Π, <)). Then, (Π, <) ≡σ

s (Π \ {r}, <) holds for σ ∈ {D,W}.
In [80, 154], several transformations on logic programs from the literature ([25, 193]) have been exam-

ined whether they can be used for simplifying a program in a modular way (cf. on page 16, Section 2.5). For
those modular transformations a program must be strongly equivalent to the transformed one. Considering
ordered logic programs, we observe that some of them carry over to strong order equivalence uncondi-
tionally (provided that the rule to be deleted is not involved in the preference relation), while others need
additional restrictions in order to be applicable. We now briefly discuss the respective simplification rules
and provide an overview in Table 5.1.

Transformation TAUT expresses that for all logic programs Π and all r ∈ Π where head(r) ∈ body+(r)
we have Π ≡s Π \ {r}. Corollary 5.1.21 implies that the analogue for ordered logic programs only holds
for the D- and W - semantics as long as r is not involved in <.

Transformation RED− expresses that for a logic program Π and for rules r1, r2, where head(r2) ∈
body−(r1) and body(r2) = ∅, we have Π ≡s Π \ {r1}. Since r2 is always a generating rule, regardless
which rules we add to Π, r1 can never contribute to an answer set. Hence, RED− is applicable for ordered
logic programs unless r1 is involved in <.

Transformation CONTRA states that for r ∈ Π, where body+(r) ∩ body−(r) 6= ∅ we have that Π ≡s

Π \ {r}. Since such a rule is never applicable, this result can be carried over to ordered logic programs
whenever r is not involved in <.

Transformation NONMIN states that for r1, r2 ∈ Π, where head(r2) = head(r1) and body(r2) ⊆
body(r1), we have that Π ≡s Π \ {r1} holds. Since there is no information whether r1 can become
applicable or not, this transformation can only be made on ordered logic programs whenever r1 is not
involved in < and never becomes applicable.

Example 33 For example, consider the program:

(Π1, ∅) =


r1 : a←
r2 : b←
r3 : c← a
r4 : c← a, b


Here it holds that head(r3) = head(r4) and body(r3) ⊆ body(r4), hence, Π1 ≡s Π1 \ {r4}. Since r4

is applicable, the simplified program is, however, not strongly order equivalent to the original one. As a
counterexample, consider

(Π∗, <∗) =

 r3 : c← a
r5 : y ← not c
r3 <∗ r5


This program yields {a, b, c} ∈ ASσ((Π1 ∪ Π∗, <∗)) but ASσ(((Π1 \ {r4}) ∪ Π∗, <∗)) = ∅, for σ ∈
{D,W,B}. Thus, (Π1, ∅) 6≡σ

s (Π1 \ {r4}, ∅).
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TAUT RED− CONTRA NONMIN S-IMP∗ WGPPE
≡D

s yes yes yes no yes no
≡W

s yes yes yes no yes no
≡B

s no yes yes no yes no

Table 5.1: Applicability of simplifications if the simplified rules do not occur in <.

Similar considerations apply for the transformation S-IMP, where for all r, r′ ∈ Π such that there exists
an A ⊆ body−(r′) such that head(r) ∈ {head(r′)} ∪ A, body−(r) ⊆ body−(r′) \ A and body+(r) ⊆
body+(r′) we have Π ≡s Π \ {r′}. This transformation has originally been developed for disjunctive logic
programs, and boils down to two cases for programs without disjunctions, as in our setting. Whenever
head(r) = head(r′), we get body−(r) ⊆ body−(r′) \ A, hence body−(r) ⊆ body−(r′), and body+(r) ⊆
body+(r′), so in total body(r) ⊆ body(r′). So this case coincides with the transformation NONMIN,
where r′ is only redundant if it never becomes applicable and is not involved in the preference relation, as
discussed above.

The other case, in which head(r) ∈ A, is more interesting. We will refer to it as S-IMP∗. We obtain
that r′ never contributes to an answer set, which can be seen as follows: Assume, there exists an extension
Π∗ of Π such that X ∈ AS(Π ∪ Π∗). If r ∈ RΠ∪Π∗(X), then r′ 6∈ RΠ∪Π∗(X) by head(r) ∈ A ⊆
body−(r′) and head(r) ∈ X . If r 6∈ RΠ∪Π∗(X), then we obtain two cases: (i) body+(r) 6⊆ X or (ii)
body−(r) ∩ X 6= ∅. In case (i) we observe body+(r′) 6⊆ X by body+(r) ⊆ body+(r′). In case (ii) we
have (body−(r′) \ A) ∩ X 6= ∅ by body−(r) ⊆ body−(r′) \ A. Hence, body−(r′) ∩ X 6= ∅. In both
cases we obtain r′ 6∈ RΠ∪Π∗(X). Hence, r′ never contributes to an answer set and we can carry over this
transformation to strong order equivalence as long as r′ is not involved in the preference relation.

Example 34 For example, taking

Π =
{

r′ : a← b, not c
r : c← b

}
and A = {c} yields Π ≡s {r}. Whenever r is applicable in any extension, r′ will be blocked. Whenever r
is not applicable, neither is r′.

Transformation WGPPE states for a rule r1 ∈ Π, where a ∈ body+(r1), Ga = {r2 ∈ Π | head(r2) =
a} and Ga 6= ∅ that Π ≡s Π∪G′

a holds where G′
a = {head(r1)← (body+(r1) \ {a})∪ not body−(r1)∪

body(r2) | r2 ∈ Ga}. Again, this transformation is transferable to strong order equivalence if the rules
from Ga never become applicable and are not involved in the preference relation.

Example 35 Considering

Π =
{

r1 : b← a,
r2 : a←

}
we obtain that Π ≡s Π ∪ {b←} holds. By taking

(Π∗, <∗) =

 r1 : b← a
ry : y ← not b
r1 <∗ ry


we can see that (Π, ∅) 6≡σ

s (Π ∪ {b ←}, ∅) since (Π ∪ Π∗, <∗) has no <σ- preferred answer set while
(Π ∪ {b←} ∪Π∗, <∗) admits the <σ- preferred answer set {a, b}, for σ ∈ {D,W,B}.
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5.1.5 Conclusions

We have presented the notion of strong order equivalence for ordered logic programs with the underlying
D-, W -, and B- preference semantics. We have provided an extensive analysis of this novel notion, and
studied the relationship between the three preference semantics for it. We have also analyzed the conditions
for certain simplification methods to guarantee strong order equivalence (hence applicability to modules).

We could show in Corollaries 5.1.9 and 5.1.10 that two programs are strongly W - and D-equivalent, if
and only if the preference relation is equal, their standard ASP programs are strongly equivalent, and their
“non-looping” generating rules are identical for all answer sets of any extension of them. For B-preference,
also the “looping” generating rules must be identical in any answer set.

Based on these results, we are able to define SOE structures, which can be thought of as a generalization
of SE models. Each ordered logic program has an associated set of SOE structures. If these SOE structures
are equal for two programs, then these programs are strongly order equivalent. Different from SE models,
these structures contain also information on the preference relation and on the set of contributing rules.

From Theorem 5.1.12 we obtain that exactly the same pairs of programs are strongly <D- and <W -
equivalent, while not all of them are strongly <B- equivalent. That is, while preferred answer sets in general
differ between D- and W - preference, there is no difference between the two semantics when considering
strong order equivalence. On the contrary, for B- semantics the differences to D- and W - preferences are
strengthened under strong order equivalence, since it decouples preference handling from the order induced
by consecutive rule application.

We have studied the computational complexity of the main decision problems, in particular deciding
whether two programs are order equivalent and whether two programs are strongly order equivalent. It
turned out that both tasks are co-NP-complete, and thus are neither harder nor simpler than equivalence
and strong equivalence.

We have furthermore studied possibilities to simplify ordered programs. In Corollaries 5.1.20 and
5.1.21 we have given abstract conditions for simplifications, and have assessed under which circumstances
simplification rules from standard ASP can be applied on ASP modules with preferences.

Corollary 5.1.3 shows that no transformation from an ordered program (Π, <) into a logic program
Π′ exists such that (Π, <) is strongly order equivalent to Π′. Also, Corollaries 5.1.9 and 5.1.10 describe
rigorous conditions on ordered logic programs being strongly order equivalent under the considered prefer-
ence semantics. Hence, we consider in Section 5.2 a weakened notion of strong order equivalence, where
preference simplifications are possible.

5.2 n-Strong Order Equivalence
In Section 5.1, we have found out that strong order equivalent programs must be (i) strongly equivalent
in the standard sense, (ii) have to coincide on their preference relations, and (iii) have to coincide on their
set of rules contributing to answer sets. Since these conditions are very strict, we examine in this section
a weaker notion of strong order equivalence. Whereas for strongly order equivalent programs we require
that they have the same preferred answer sets no matter which ordered program we add, the weaker notion
only stipulates that they have the same preferred answer sets no matter which normal logic program we
add. Based on this idea, we define n-strong order equivalence and show several properties according to
the characterizations for strong order equivalence. Furthermore, we present for the first time new program
simplifications, particularly simplifications for preference relations, which cannot be applied under strong
order equivalence. Additionally, we study computational complexity of n-strong order equivalence. It turns
out that testing n-strong order equivalence is precisely as difficult as testing strong order equivalence or
strong equivalence for logic programs without preferences.

This section is organized as follows: In Section 5.2.1 we define and characterize n-strong order equiv-
alence and give some relations to strong order equivalence. In Section 5.2.2 we present new program
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transformations under n-strong order equivalence, which simplify preference relations and the underlying
logic program. In Section 5.2.3 we study computational complexity and draw conclusions in Section 5.2.4.

5.2.1 n-strong order equivalence
Strong order equivalence considers all admissible extensions of ordered programs by other ordered pro-
grams. For considering a weaker notion of order equivalence, we define n-strong order equivalence, where
we consider extensions of ordered logic programs by normal logic programs. Since the union of an ordered
program and a normal logic program always represents an ordered program, we do not have to restrict the
set of program extensions to admissible ones as for strong order equivalence.

Definition 5.2.1 (n-strong order equivalence) Let (Π1, <1) and (Π2, <2) be ordered logic programs and
σ ∈ {D,B,W}.

Then, (Π1, <1) and (Π2, <2) are n-strongly <σ-equivalent iff for all normal programs Π it holds that
(Π1 ∪Π, <1) and (Π2 ∪Π, <2) are <σ- equivalent.

As an abbreviation, we write ≡σ
n whenever two ordered programs are n-strongly <σ-equivalent.

In the following, we show some simple relationships between strong and n-strong order equivalence.
Whenever the preference relation is empty, n-strong order equivalence corresponds exactly to strong equiv-
alence of the underlying logic programs.

Lemma 5.2.1 Let Π1 and Π2 be logic programs and σ ∈ {D,W,B}.
Then, (Π1, ∅) and (Π2, ∅) are n-strongly <σ-equivalent iff Π1 and Π2 are strongly equivalent.

Also, strong order equivalence implies n-strong order equivalence.

Lemma 5.2.2 Let (Π1, <1) and (Π2, <2) be ordered logic programs and σ ∈ {D,W,B}.
If (Π1, <1) and (Π2, <2) are strongly <σ-equivalent, then (Π1, <1) and (Π2, <2) are n-strongly <σ-

equivalent.

As with strong order equivalence, n-strong order equivalence requires strong equivalence of the underlying
logic programs (cf. Theorem 5.1.4).

Theorem 5.2.3 Let (Π1, <1) and (Π2, <2) be ordered logic programs.
If (Π1, <1) and (Π2, <2) are n-strongly <σ-equivalent, for σ ∈ {D,W,B}, then Π1 ≡s Π2.

In Section 5.1.2.1 we have shown that strong order equivalence requires that the programs must coincide
on their preference relations (cf. Theorem 5.1.9 and 5.1.10). Interestingly, this is not required for n-strong
order equivalence. That is, n-strong order equivalent programs can differ on their preference relations. To
see this, consider the following example:

(Π, <) =

 r1 : a←
r2 : b← a
r2 < r1


We obtain (Π, <) ≡σ

n (Π, ∅) for σ ∈ {D,W,B}, since the preference r2 < r1 never selects answer sets
as non-preferred, no matter which extension by normal programs is considered. Regarding strong order
equivalence, we take

(Π′, <′) =



r3 : y ← not x
r1 : a← r1 <′ r3

r2 : b← a r4 <′ r2

r4 : x←
r5 : a← z
r6 : z ←


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and obtain ASσ((Π ∪ Π′, <′)) = {{a, b, x, z}} but ASσ((Π ∪ Π′, < ∪ <′)) = ∅ since the additional
preference r2 < r1 discards the answer set {a, b, x, z} as non-preferred. Hence, under n-strong order
equivalence preference relations can be removed, which is not allowed under strong order equivalence. In
Section 5.2.2 we will have a closer look on program transformations simplifying preference relations.

In contrast to strong order equivalence, n-strong order equivalent programs can also differ on their sets
of generating rules and hence, on their sets of rules contributing to answer sets. For example, consider the
following ordered programs:

(Π1, <1) =

 r1 : a←
r2 : b←
r2 <1 r1

 and (Π2, <2) =


r1 : a←
r2 : b←
r3 : a← b
r2 <2 r1


We obtain (Π1, <1) ≡σ

n (Π2, <2) for σ ∈ {D,W,B}. By taking

(Π′, <′) =


r4 : y ← not a
r1 : a←
r5 : b← x
r6 : x←
r1 < r4


we obtain ASσ((Π1 ∪ Π′, <1 ∪ <′)) = ∅ but ASσ((Π2 ∪ Π′, <2 ∪ <′)) = {{a, b, x}} since r3 is used
to block rule r4 in an order preserving way. Hence, (Π1, <1) 6≡σ

s (Π2, <2) for all σ ∈ {D,W,B}. In
Section 5.2.2, we will reconsider program simplifications known from (standard) strong equivalence and
analyze them under n-strong order equivalence.

Whenever two ordered programs are n-strongly order equivalent, we have to impose further conditions
for achieving strong order equivalence.

Lemma 5.2.4 Let (Π1, <1) and (Π2, <2) be ordered programs such that (Π1, <1) ≡B
n (Π2, <2).

If <1=<2 and Cont(Π1) = Cont(Π2), then (Π1, <1) ≡B
s (Π2, <2).

Lemma 5.2.5 Let (Π1, <1) and (Π2, <2) be ordered programs such that (Π1, <1) ≡σ
n (Π2, <2) and σ ∈

{D,W}.
If <1=<2 and Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r)} = Cont(Π2) \ {r ∈ Π2 | head(r) ∈

body+(r)}, then (Π1, <1) ≡σ
s (Π2, <2).

The preference semantics yield an increasing number of preferred answer sets, i.e. ASD((Π, <)) ⊆
ASW ((Π, <)) ⊆ ASB((Π, <)) ⊆ AS(Π) for any ordered program (Π, <). In Theorem 5.1.12 we
have shown that strong <B-equivalence of two ordered programs implies strong <W -equivalence and that
strong <W -equivalence holds if and only if strong <D-equivalence holds. Hence, the differences between
the D- and W -semantics disappear under strong order equivalence. Furthermore, the differences between
the B-semantics and the D- and W -semantics are strengthens under strong order equivalence, since the
B-semantics decouples preference handling from rule application. Under n-strong order equivalence, we
observe that any relationship between these three semantics disappears.

Theorem 5.2.6 For any σ, σ′ ∈ {D,W,B} with σ 6= σ′, there exist ordered logic programs (Π1, <1) and
(Π2, <2) such that (Π1, <1) ≡σ

n (Π2, <2) but (Π1, <1) 6≡σ′

n (Π2, <2).

This can be seen by considering the following examples:

(Π5.2, <) =

 r1 : a←
r2 : a← a
r1 < r2

(5.2)
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We have (Π5.2, <) ≡B
n (Π5.2, ∅) but (Π5.2, <) 6≡σ

n (Π5.2, ∅) for σ ∈ {D,W}, since ASσ((Π5.2, <)) = ∅
and {a} ∈ ASσ((Π5.2, ∅)). Hence, n-strong <B- equivalence does not imply n-strong <σ equivalence for
σ ∈ {D,W}. For the ordered program

(Π5.3, <) =


r1 : a←
r2 : b← a
r3 : b←
r1 < r2

(5.3)

we obtain (Π5.3, <) ≡W
n (Π5.3, ∅) but (Π5.3, <) 6≡D

n (Π5.3, ∅), since ASD((Π5.3, ∅)) = {{a, b}} and
(Π5.3, <) has no <D-preferred answer set. Hence, n-strong <W - equivalence does not imply n-strong
<W - equivalence.

For showing that n-strong <W - equivalence does not imply n-strong <B- equivalence, let us consider

(Π5.4a, <) =


r1 : a←
r2 : a← a
r3 : y ← not a
r1 < r3

 and (Π5.4b, <) =

 r1 : a←
r3 : y ← not a
r1 < r3

(5.4)

We have (Π5.4a, <) ≡W
n (Π5.4b, <), but (Π5.4a, <) 6≡B

n (Π5.4b, <) since ASB((Π5.4b, <)) = ∅ and
{a} ∈ ASB((Π5.4a, <)). To see that n-strong <D- equivalence does not imply n-strong <σ- equivalence
for σ ∈ {W,B}, let us consider

(Π5.5a, <) =


r1 : a←
r2 : b←
r3 : a← not b
r2 < r3

 and (Π5.5b, <
′) =


r1 : a←
r2 : b←
r4 : c← not b
r2 <′ r4

(5.5)

We observe (Π5.5a, <) ≡D
n (Π5.5b, <

′), but ASσ((Π5.5b, <
′)) = ∅ and ASσ((Π5.5a, <)) = {{a, b}} for

σ ∈ {W,B}.

5.2.2 Transformations
In this section we provide some simplifications of ordered programs under n-strong order equivalence. Pro-
gram simplifications that can be applied under strong order equivalence are also allowed under n-strong
order equivalence. That is, (Π, <) ≡σ

n (Π \ {r}, <) holds for rules r, where (i) r 6∈ PR((Π, <)),
head(r) ∈ body+(r) and σ ∈ {D,W}, or (ii) r 6∈ PR((Π, <)), r 6∈ Cont(Π), and σ ∈ {D,W,B}
(cf. Corollaries 5.1.20 and 5.1.21). Note that preference relations cannot be simplified under strong order
equivalence (cf. Theorems 5.1.9 and 5.1.10).

5.2.2.1 Simplifications of preference relations

In contrast to strong order equivalence, we now consider program transformations under n-strong order
equivalence simplifying preference relations. Whenever we remove a preference relation r < r′, all other
preference relationships are maintained, e.g. we have r∗ < r < r′ and remove r < r′, we keep the relations
r∗ < r and r∗ < r′.

Preference relations reflecting the order of rule application in enumerations (cf. Definition 2.4.1) are
redundant under n-strong order equivalence and can be removed.

Theorem 5.2.7 Let (Π, <) be an ordered program and r1, r2 ∈ Π such that body(r1) = ∅, head(r1) ∈
body(r2) and r2 < r1.

Then, (Π, <) ≡σ
n (Π, <′) for <′=< \{r2 < r1} and σ ∈ {D,W,B}.
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Since B- preferences decouple preference handling from rule application, we can delete all preferences
between rules r1 and r2 that are applicable w.r.t. any answer set and any extension by a logic program and
where head(r1) ∈ body+(r2). For this, we define similarly to the TΠ operator [144] the following:

A0(Π) = {head(r) | r ∈ Π, body(r) = ∅}
Ai+1(Π) = {head(r) | r ∈ Π, body−(r) = ∅, body+(r) ⊆ Ai(Π)}
A(Π) =

⋃
0≤i Ai(Π)

The set A(Π) covers all monotonic conclusions, i.e. atoms that are true in every answer set. We say that
r ∈ Appl(Π) whenever body−(r) = ∅ and body+(r) ⊆ A(Π). That is, r is a generating rule in all program
extensions Π′ of Π and for all answer sets X of Π ∪Π′.

The following theorem states that we can remove a preference relation between rules in Appl(Π) under
the B-semantics.

Theorem 5.2.8 Let (Π, <) be an ordered logic program and r1, r2 ∈ Appl(Π) such that head(r1) ∈
body+(r2).

Then, (Π, <) ≡B
n (Π, <′) for <′=< \{r2 < r1, r1 < r2}.

The B-semantics allows to block a rule r by a lower ranked one r′ as long as head(r) is in the answer
set (cf. Definition 2.4.3 on page 15). By stipulating head(r) ∈ A(Π), we make sure that head(r) is in any
resulting answer set and hence, we can remove the corresponding preference relation.

Theorem 5.2.9 Let (Π, <) be an ordered program and r1, r2 ∈ Π such that r1 ∈ Appl(Π), head(r1) ∈
body−(r2) and head(r2) ∈ A(Π).

Then, (Π, <) ≡B
n (Π, <′) for <′=< \{r1 < r2}.

E.g., for the program (Π, <) = {r1 : a ←, r2 : b ← not a, r3 : b ←, r1 < r2} we obtain
(Π, <) ≡B

n (Π, ∅). For the W -semantics, this simplifications is not directly transferable. There, rules can
be applied and blocked by lower ranked ones, whenever the head of such a rule is derived earlier in an order
preserving enumeration. But this can only be guaranteed by considering possible enumerations of rules
from Π.

Within all three semantics, the preference relation < is redundant whenever all standard answer sets are
also preferred ones and all rules involved in < are either in Appl(Π) or blocked w.r.t. A(Π).

Theorem 5.2.10 Let (Π, <) be an ordered logic program such that PR(Π) ⊆ {r ∈ Appl(Π)} ∪ {r ∈ Π |
body−(r) ∩A(Π) 6= ∅}, and ASσ((Π, <)) = AS(Π) for some σ ∈ {D,W,B}.

Then, (Π, <) ≡σ
n (Π, ∅).

5.2.2.2 Transformations from standard strong equivalence

In [25, 193, 80, 154], transformations on logic programs are reported, which can be used for simplifying
programs (cf. Section 2.5.2 on page 17). For those modular transformations, programs are strongly equiv-
alent to the transformed one. Such program simplifications were considered for strong order equivalence
in Section 5.1.4. Under strong order equivalence, we can remove rules r 6∈ PR((Π, <)) and where either
head(r) ∈ body+(r) or r 6∈ Cont(Π) holds.

In what follows, we reconsider program simplification from [25, 193, 80, 154] under the notion of n-
strong order equivalence. Since we have presented simplifications for preference relations in the previous
section, we now assume that removable, hence redundant, rules are not involved in preference relations.
That is, we separate preference simplifications from simplifications of the underlying logic programs.

The transformation TAUT, stating that Π ≡s Π \ {r} for all r ∈ Π where head(r) ∈ body+(r), is
allowed under strong order equivalence for the D- and W -semantics, but not for the B-semantics. The
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same applies for n-strong order equivalence. Regarding B-semantics, let us consider

(Π, <) =


r1 : a← a
r2 : a←
r3 : y ← not a
r2 < r3


We observe ASB((Π, <)) = {a}, but ASB(({r2, r3}, <)) = ∅. Hence, rules where head(r) ∈ body+(r)
cannot removed under n-strong <B-equivalence.

The simplifications S-IMP∗ (cf. Section 5.1.4), RED−, and CONTRA are allowed under strong order
equivalence as long as the redundant rules are not involved in the preference relation. Hence, we can apply
them analogously under n-strong order equivalence.

Let be r1, r2 ∈ Π, head(r1) = head(r2), and body(r2) ⊆ body(r1), then the transformation NONMIN
states Π ≡s Π \ {r1}. Let us consider the following example

(Π, <) =


r2 : a←
r1 : a← b
r3 : b←
r4 : y ← not a
r2 < r4

 6≡σ
n (Π \ {r1}, <).

Here, we cannot remove r1 since r2 is involved in < and r1 is used to derive head(r1) = head(r2) in an
alternative way. The following Lemma states that this transformation can be applied under n-strong order
equivalence whenever r1, r2 6∈ PR((Π, <)).

Lemma 5.2.11 (NONMIN∗) Let (Π, <) be an ordered logic program and σ ∈ {D,W,B}. Furthermore,
let be r1, r2 ∈ Π such that head(r1) = head(r2), body(r2) ⊆ body(r1), and r1, r2 6∈ PR((Π, <)).

Then, (Π, <) ≡σ
n (Π \ {r1}, <).

The following transformation creates new rules to make other transformations applicable. Let be r1 ∈
Π, where a ∈ body+(r1), Ga = {r2 ∈ Π | head(r2) = a}, and Ga 6= ∅. Then, transformation WGPPE
states that Π ≡s Π∪G′

a holds where G′
a = {head(r1)← (body+(r1)\{a})∪not body−(r1)∪body(r2) |

r2 ∈ Ga}. Let us consider the following example:

(Π, <) =


r2 : a←
r1 : b← a
r3 : y ← not b
r1 < r3

 and (Π ∪ {rGa}, <) =


r2 : a←
r1 : b← a
rGa : b←
r3 : y ← not b
r1 < r3


for σ ∈ {D,W,B}. We observe (Π, <) 6≡σ

n (Π ∪ {rGa}, <). Analogously to Lemma 5.2.11, we observe
that r1 cannot be involved in < if this transformation should be possible under ≡σ

n, since rules from G′
a are

alternatives to derive rules in an order preserving way.

Lemma 5.2.12 (WGPPE∗) Let (Π, <) be an ordered logic program and σ ∈ {D,W,B}. Furthermore, let
be r1 ∈ Π, r1 6∈ PR((Π, <)) a ∈ body+(r1), Ga = {r2 ∈ Π | head(r2) = a} and Ga 6= ∅.

Then, we have (Π, <) ≡σ
s (Π ∪G′

a, <) for

G′
a = {head(r1)← (body+(r1) \ {a}) ∪ not body−(r1) ∪ body(r2) | r2 ∈ Ga}. 5

An overview of the applicable simplifications in shows in table 5.2

5For a set B of atoms, we denote with not B the set {not b | b ∈ B}.
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TAUT RED− CONTRA NONMIN∗ S-IMP∗ WGPPE∗

≡D
n yes yes yes yes yes yes
≡W

n yes yes yes yes yes yes
≡B

n no yes yes yes yes yes

Table 5.2: Applicability of simplifications under ≡σ
n.

5.2.3 Complexity Results
In this section, we discuss the computational complexity of deciding n-strong order equivalence.

First, we show that whenever two programs are not n-strongly order equivalent, there exists a program
extension Π∗ such that ASσ((Π1 ∪Π∗, <1)) 6= ASσ((Π2 ∪Π∗, <2)), where Π∗ has the form

Π∗ = Π′ ∪ {x←}(5.6)

where x is a new atom not appearing in Π1 ∪ Π2 and Π′ ⊆ Π1 ∪ Π2 ∪ {a ← x | a ∈ Atm(Π1 ∪ Π2)}.
That is, whenever two ordered programs are not n-strongly order equivalent, there exists an extension which
contains only rules from Π1, Π2, the rule x←, and rules of the form a← x, where a is an atom appearing
in Π1 or Π2.

Lemma 5.2.13 Let (Π1, <1) and (Π2, <2) be ordered logic programs and σ ∈ {D,W,B}.
If (Π1, <1) 6≡σ

n (Π2, <2) then there exists a normal program Π of the form (5.6) such that ASσ((Π1 ∪
Π, <1)) 6= ASσ((Π2 ∪Π, <2)).

By that lemma, we can show that deciding whether two ordered programs are n-strongly order equivalent
is co-NP-complete.

Theorem 5.2.14 Let (Π1, <1) and (Π2, <2) be ordered logic programs and σ ∈ {D,W,B}.
Then, deciding whether (Π1, <1) ≡σ

n (Π2, <2) is co-NP-complete.

We have thus shown that n-strong order complexity testing is not more complex than strong equivalence
testing or strong order equivalent testing.

5.2.4 Conclusions
Since strong order equivalence imposes rigorous conditions on ordered programs being strongly order
equivalent (cf. Theorem 5.1.9 and 5.1.10), e.g. programs have to coincide on their preference relations
and on rules contributing to answer sets, we have considered in this section a weaker version of order
equivalence. We have presented the notion of n-strong order equivalence for ordered programs. We have
considered three semantics for handling preferences and have characterized n-strong order equivalence un-
der these semantics. We have pointed out that this weakened notion imposes softer conditions on ordered
programs being n-strongly order equivalent. More precisely, only strong equivalence of the underlying
logic program is required, whereas the identity of preference relations and rules contributing to answer
sets is not supposed. This property allows the simplification of preference relations under n-strong order
equivalence. Hence, we have provided in Section 5.2.2 several program transformations for simplifying
preference relations and the underlying logic programs. We have concentrated on two types of program
transformations: (1) simplifications of preference relations and (2) simplifications of the underlying logic
programs. Theorem 5.2.7- 5.2.9 describe simplifications of preference relations. Theorem 5.2.10 shows one
condition when the given preference relation is totally redundant. Regarding simplifications of the underly-
ing logic programs, we have reconsidered the transformations in [25, 193, 80, 154] w.r.t. strong equivalence
(cf. Section 2.5.2 on page 17). All are considered under the aspect that removable rules are not involved in
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preference relations. The transformation TAUT is possible only for the D- and W -semantics. Reductions
RED−, CONTRA, and S-IMP∗ are possible w.r.t. all preference semantics. Transformation NONMIN and
WGPPE are not possible under strong order equivalence, but they become applicable under n-strong order
equivalence as long as one makes further restrictions to the preference relations.

The considered preference semantics yield an increasing number of preferred answer sets that is for
any ordered program (Π, <) we have ASD((Π, <)) ⊆ ASW ((Π, <)) ⊆ ASB((Π, <)) ⊆ AS(Π). Theo-
rem 5.1.12 shows that under strong equivalence this relationship is changed. Interestingly, Theorem 5.2.6
gives us that in terms of n-strong order equivalence no relationship between the semantics exists.

Additionally, we have investigated computational complexity. It turns out that n-strong order complexity
testing is not more complex than strong equivalence testing or strong order equivalent testing.

5.3 Summary
Strong equivalence for logic programs under the answer set semantics has been studied intensively in the re-
cent years [80, 133, 134, 154, 188]. Since strong equivalence is rather strict (in the sense that not many pro-
grams are strongly equivalent), one can consider the more liberal notion of uniform equivalence [78, 159].
Instead of allowing for arbitrary program extensions, uniform equivalence restricts extensions to sets of
facts. As discussed in [159], uniform and strong equivalence are essentially the only concepts of equiv-
alence obtained by varying the logical form of the program extension. Latest research concentrates on
relativized notions of strong and uniform equivalence. Instead of considering all possible program exten-
sions, one can consider only programs built from a restricted alphabet or, orthogonally, compare answer
sets only on a subset of the alphabet [196, 82], which seems to be very natural from practical point of view.
Other work focuses on the extension of notions of equivalence for the non-ground case [81, 134].

Besides this variety of program equivalences, a notion for strong equivalence under updating logic
programs has been defined in [110]. Two programs Π1 and Π2 are strongly update equivalent if AS((Π1 \
Q) ∪ R) = AS((Π2 \ Q) ∪ R) holds for all programs Q and R [110]. Interestingly, two strong update
equivalent programs can differ only in rules r of the form:

(i) head(r) ∈ body+(r) and

(ii) body+(r) ∩ body−(r) 6= ∅

(restricted to the case of normal logic programs). Strong update equivalence allows only a few program
simplifications since the conditions for strong update equivalence are very strict, actually so strict that
checking whether two programs are strong update equivalent can be done in polynomial time. This is based
on the fact that two strongly update equivalent programs differ only in rules described above.

Another line of considering equivalences was presented in [111], namely equivalence of abductive logic.
Considering equivalences within abduction leads to different observations. First, explainable equivalence
requires that two abductive programs have the same explainability for any observation. Second, explanatory
equivalence guarantees that any observation has exactly the same explanations in each abductive framework.

In this chapter, we have concentrated on notions of equivalence for logic programs with preferences,
which have to the best of our knowledge never been studied before. In analogy to strong equivalence, which
concentrates on extensions of logic programs by logic programs, we have defined strong order equivalence
and n-strong order equivalence. Strong order equivalence refers to ordered programs extended by ordered
programs and n-strong equivalence to ordered programs extended by normal programs. For both notions of
equivalence we have studied characterizations concerning three semantics for preference handling, namely
the D-, W -, and B- semantics. We could show in Corollaries 5.1.9 and 5.1.10 that two programs are
strongly <W - and <D-equivalent, if and only if their preference relations are equal, their standard ASP
programs are strongly equivalent, and their “non-looping” generating rules are identical for all answer sets
of any extension of them. For B-preference, also the “looping” generating rules must be identical in any
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answer set. By Theorem 5.2.3 we could also show that n-strongly equivalent programs must be strongly
equivalent in the standard sense. But, in contrast to strong order equivalence, n-strongly order equivalent
programs can differ on their preference relations and on rules contributing to answer sets. This fact al-
lows for simplifications of preference relations (cf. theorems 5.2.7- 5.2.10), whereas under strong order
equivalence, no simplifications of preference relations are possible. Theorem 5.2.10 gives a condition were
a preference relation can totally be removed under n-strong order equivalence, whereas Corollary 5.1.3
shows that under strong order equivalence no ordered program with a non-empty preference relation can
be replaced by a normal logic program without preferences. Additionally, we have analyzed program sim-
plifications known from normal logic programs (see Section 2.5.2 on page 17). We have considered all
transformations under the aspect that the simplified rules do not occur in the preference relation. This is
necessary since under strong order equivalence we cannot simplify preference relations and under n-strong
order equivalence we have separated transformations simplifying preference relations from simplifications
acting on the underlying logic program. The transformations TAUT is possible under n-strong and strong
order equivalence only for the D- and W - semantics. Transformations RED− and CONTRA are possible
under both notions of order equivalence and under all three preference semantics. The transformations
NONMIN and WGPPE are not possible under strong order equivalence, but with a small restriction under
n-strong order equivalence (Lemma 5.2.11 and 5.2.12). The transformation S-IMP was originally devel-
oped for disjunctive logic programs. Restricted to normal logic programs, S-IMP falls in one case back to
NONMIN and in the other case the simplified rule become never applicable. Hence, the restricted transfor-
mation S-IMP, called S-IMP∗, is possible under both strong and n-strong order equivalence as long as the
simplified rules are not involved in the preference relation.

Program transformations under standard strong equivalence for disjunctive logic programs have also
been studied in [135]. There, the authors have defined k-m-n problems, where m rules are replaced by
simpler n rules in the presence of k rules under strong equivalence. The 0-1-0 problem deletes one rule
and falls back to TAUT and CONTRA for the case of normal logic programs. The 1-1-0 problem deletes
one rule in the presence of another one and falls back to NONMIN in one case. In the other case, we have
for two rules r1 and r2, where body(r1) ⊆ body(r2) and head(r1) ∈ body−(r2) that r2 can be removed,
i.e. {r1, r2} ≡s {r1}. Whenever r1 is applicable, w.r.t. any extension and any answer set of it, we have
that r2 is inapplicable and whenever r1 is not applicable, then body(r2) is also not derivable and hence,
r2 becomes not applicable. Thus, 1-1-0 falls back to Corollary 5.1.20 and can be applied under n-strong
and strong order equivalence as long as the redundant rule is not involved in the preference relation. The
problem 0-1-1 restricted to normal logic programs, where one rule r1 is replaced by another one r2, falls
also back to Corollary 5.1.20, since both rules become never applicable.

We have studied the computational complexity of the main decision problems, in particular decid-
ing whether two programs are order equivalent, whether two programs are strongly order equivalent, and
whether two programs are n-strongly order equivalent. It turned out that all three problems are co-NP-
complete (Theorem 5.1.14, 5.1.19, and 5.2.14), and thus are neither harder nor simpler than equivalence
and strong equivalence.

The considered preference semantics yield an increasing number of preferred answer sets w.r.t. set
inclusion. Theorem 5.1.12 shows us that under strong equivalence this relationship is changed. More pre-
cisely, if two ordered programs are strongly <B-equivalent, then they are strongly <W -equivalent, and they
are strongly <W -equivalent if and only if they are strongly <D-equivalent. Interestingly, Theorem 5.2.6
shows us that under n-strong order equivalence no relationship between the semantics exists. Hence, the
relationship between the three preference semantics is totally changing under different notions of order
equivalence.

In Section 5.2.2, we have given some transformations under n-strong order equivalence. Future work
would include simplifications on ordered programs under n-strong order equivalence, where also the dif-
ference between the preference semantics are appearing. In Section 5.2, we have made a first step into
this direction with Theorems 5.2.8 and 5.2.9 for B-semantics. Also, we have only studied transformations,
where one rule or preference relations are removed separately. Another possibility is to analyze program
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transformations, which (i) remove several rules in one step and (ii) remove rules and preference relations
together. Corollaries 5.1.20 and 5.1.21 indicate a direction, which kind of program simplifications are pos-
sible under strong order equivalence. Further research issues investigate in conditions describing exactly
all possible program simplifications under strong order equivalence as it was done for strong equivalence
in [135].

We also want to point out that integrity constraints are not allowed in ordered programs. For integrity
constraints one uses normally the transformation f ← body, not f for the integrity constraint ← body
and a new atom f . But it can be shown that {a ← not a} ≡s {← not a} but {a ← not a} 6≡s {f ←
not a, not f} [135, 82]. However, such a rewriting is not sensitive under strong equivalence. Since n-strong
and strong order equivalence require strong equivalence of the underlying logic programs, such a rewriting
would also not be sensitive under order equivalence if one allows integrity constraints in the language.

Based on the characterizations for strong order equivalence, we are able to define SOE structures, which
can be thought of as a generalization of SE models (see also on page 16 in Section 2.5). Each ordered logic
program has an associated set of SOE structures. If these SOE structures are equal for two programs,
then these programs are strongly order equivalent. Different from SE models, these structures contain also
information on the preference relation and on the set of contributing rules. Further research studies include
to define similar structures to characterize n-strong order equivalence.

Another way of analyzing strong order equivalence could be offered by a compilation of the programs,
as done e.g. in the plp-System [62, 161]. There, ordered programs are compiled into logic programs such
that their answer sets directly correspond to the preferred answer sets of the original ordered program.
Since the compilation is a logic program, one could suppose that two ordered programs are strongly order
equivalent if the compilation of them possesses the same SE-models. However, the compilation introduces
additional symbols. Hence, the answer sets of two compiled programs, which represent the same preferred
answer set, are in general incomparable because of these additional symbols. One would therefore have to
consider strong equivalence under a projection of the answer sets. This could be handled by the methods
presented in [82].

But in addition one would also have to take into account that compiled programs have a particular, rather
than arbitrary, structure. Therefore, the extensions to the programs to be considered are not arbitrary but
only those that could have resulted from a plp compilation. Notably, this affects the structure, and not only
the alphabet of the extensions. Such a notion of strong equivalence has (to the best of our knowledge) not
been studied so far. Therefore, we leave this kind of analysis for future work.

Furthermore, we have only considered three of the many semantics for logic programs with prefer-
ences. Further work would include investigations on how our results can generalized to other rule-based
approaches, such as prioritized logic programming [199] or CR-Prolog [8]. Instead of expressing pref-
erences among rules, several semantics for preferences among atoms have been studied, e.g. PLP [172],
ordered disjunction [28], answer set optimization [37]. There, it may be possible to define SOE-models,
without having to include any rule or preference data explicitly.

For strong equivalence, it has been shown that two programs are strongly equivalent if and only if
they are equivalent in the Logic of Here and There [133]. We are not aware of any similar logic which
would allow for preferences or related structures, so we do not believe that a similar characterization in a
non-classical logic can be found for strong order equivalence.
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Chapter 6

Applications of Preferences

In this chapter, we present new applications of preferences within answer set programming.
First, we consider new ideas in group decision making. Initially, group decision making often requires

total orders among the set of candidates. But sometimes the voters want to express only partial orders
instead of total orderings. In Section 6.1, we thus focus on the application of a voting procedure when
the voters preferences are incomplete. For this, we define possible (resp. necessary) winners for a given
partial preference profile R with respect to a given voting procedure as the candidates being the winners
in some (resp. all) of the complete extensions of R. We show that, although the computation of possible
and necessary winners may be hard in the general case, it is polynomial for the family of positional scoring
procedures, e.g. Borda, Plurality. We show that the possible and necessary Condorcet winners for a partial
preference profile can be computed in polynomial time as well. Additionally, we point out connections to
vote manipulation and elicitation. In Section 6.2 we present for the first time an encoding of these voting
procedures with partial preference profiles within answer set programming by using aggregate functions
from DLV (cf. Section 2.1.3.4 on page 11). In Section 6.3, we present an application of these new voting
procedures within a scheduling problem. We consider the problem of scheduling a meeting for a research
group, where we describe first the basic problem, then we include diagnostic reasoning whenever no meet-
ing is schedulable and at last, we use the techniques defined in Section 6.1 to determine preferred meetings,
whenever several meetings are schedulable.

As a second new application, we associate optimality theory with abduction and preference handling
for the first time in Section 6.4. We present linguistic problems that appear in the study of dialects as new
application of abduction and preference handling. We consider differences in German dialects, which orig-
inate from different rankings of linguistic constraints which determine the well-formedness of expressions
within a language. We introduce a framework for analyzing differences in German dialects by abduction of
preferences. More precisely, we will take the perspective of a linguist and reconstruct dialectal variation as
an abduction problem: Given an observation that a sentence is found as grammatically correct, abduct the
underlying constraint ranking. For this, we give a new definition for the determination of optimal candidates
for total orders with indifferences. Additionally, we give an encoding for the diagnosis front-end of the DLV
system.

In Section 6.5, we briefly summarize the results and we give further application areas for preferences
within answer set programming.

6.1 Voting procedures with incomplete preferences
Automated group decision making is an important issue in Artificial Intelligence: autonomous agents often
have to agree on a common decision, and may for this reason apply voting procedures, which is one of the
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most common ways of making a collective choice. Voting procedures, studied extensively by social choice
theorists from the normative point of view, have been recently studied from the computational point of
view: (i) While winner determination is easy with most usual voting procedures (at least when the number
of candidates is small), a few of them are hard. Their complexity and their practical computation have been
investigated in [169, 106, 58]. (ii) Some work focuses on sets of candidates with a combinatorial structure
and investigate compact representation issues [129, 168]. (iii) Even when computing the outcome of a
voting procedure is easy, it might be the case that determining whether there is a successful manipulation
for a coalition of voters is hard [49, 48, 51]. (iv) Elicitation issues and partial winner determination for
partial preference profiles have been studied in [50].

In this section, we focus on the last of these issues, which raises the question of the application of
a voting procedure when the voters preferences are incomplete. Let X = {x1, . . . , xm} be a finite set
of candidates and I = {1, . . . , n} be a finite set of voters ; a collective preference profile is a collection
of partial preference relations R = 〈R1, . . . , Rn〉 on X (formal details follow in Section 6.1.2). Winner
determination under incomplete preference consists in applying (in some sense that we make precise later
on) a voting procedure over such a collective preference profile. This is particularly relevant in the following
situations:

• some voters have expressed their preference profile and some others have not yet done it; in that case,
the collective preference profile is a collection consisting of n1 complete preference relations and
n− n1 empty preference relations.

• all voters have expressed their preferences on a given subset of candidates, and now new candidates
are introduced, about which the voters’ preferences are unknown.

• voters are allowed to express their preferences in an incremental way: they left some comparisons
between candidates unspecified, because either they don’t know or they don’t want to compare some
candidates (we comment further on the various possible interpretations of incomplete preferences).

• preferences have been only partially elicited and/or are expressed in a language for compact pref-
erence representation such as CP-nets [21] (cf. Section 4.4.7 on page 80), which induce partial
preference relations in the general case.

In all these cases it may be worth having an idea of the possible outcomes of the vote without waiting
for the preferences to be complete (which sometimes never happens, as in the “refuse to compare” case
mentioned above). In some cases, we may conclude that the preferences known so far, although incomplete,
are informative enough so that the outcome of the vote can be determined; if this is not the case, we may
compute a set of candidates that may win the vote after the preferences have become complete, thus giving
the voters an opportunity to focus on these candidates and forget about the others. Lastly, similarly as
in [50], we may determine from these incomplete preferences which preferences should be elicited from
whom so as to be able to compute the winner.

In this section, we extend the application of a voting procedure (usually defined on complete prefer-
ence relations over candidates) when the voters’ preferences consist of partial orders. For this, we give in
Section 6.1.1 some basic background on voting procedures. In Section 6.1.2, after briefly discussing three
different ways of applying voting procedures (tailored for complete preferences) to incomplete preferences,
we focus on one of these ways, that is more suited to the case where incompleteness corresponds to an
incomplete knowledge of the voters’ preferences. We then introduce the natural notions of necessary and
possible winners for a given partial preference profile and a voting procedure. In Section 6.1.3, we show
that in the case of positional scoring procedures, possible and necessary winners can be computed in polyno-
mial time by a very simple algorithm. In Section 6.1.4, we investigate the notion of possible and necessary
Condorcet winners and show that they can be computed as well in polynomial time. Section 6.1.5 considers
related issues such as vote manipulation and elicitation. An application of these new voting procedures
within scheduling problems follows in Section 6.3.
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6.1.1 Voting Procedures
Let X = {x1, . . . , xm} be a finite set of candidates and I = {1, . . . , n} be a finite set of voters. A
complete preference profile is a collection T = 〈T1, . . . , Tn〉 of linear orders on X , where Ti represents
the preferences of voter i. A voting procedure F maps every complete preference profile T to a nonempty
subset of X , where F (T ) denotes the set of winners of T w.r.t. F . Note, importantly, that the outcome F (T )
of a voting procedure is always nonempty, i.e., the outcome of the procedure is defined for all preference
profiles.

A positional scoring procedure is defined from a scoring vector which is a vector ~s = (s1, . . . , sm) of
integers such that s1 ≥ s2 ≥ . . . ≥ sm and s1 > sm. Some well-known examples of positional scoring
procedures are:

• the Borda procedure, which is the defined from the scoring vector sk = m− k for all k = 1, . . . ,m;

• the plurality procedure, which is defined from the scoring vector s1 = 1, and sk = 0 for all k > 1.

Let T = 〈T1, . . . , Tn〉 be a complete preference profile. For every x ∈ X and every i ∈ I , let r(Ti, x) =
|{y | y >Ti x}|+ 1 be the rank of x in the complete order Ti. Then, we define the scoring function as

S(x, T ) =
∑n

i=1 sr(Ti,x).

The positional scoring rule F~s associated with a scoring vector ~s is defined by its set

F~s(T ) = {x | S(x, T ) is maximal }.

That is, the set of winning candidates for T with respect to F~s is the set of candidates in X maximizing the
scoring function S(., T ).

Example 36 We have three voters I = {v1, v2, v3} and three candidates X = {x1, x2, x3} (hence, m =
3). Voter v1 prefers x1 over x2 and x2 over x3. Hence T1 is the preference relation x1 > x2 > x3. For
voter v2 we have T2 as x2 > x3 > x1 and for voter v3 we have T3 as x2 > x1 > x3. The rank for each
candidate in each complete order Ti is given in the following table:

r(Ti, x) T1 T2 T3

x1 1 3 2
x2 2 1 1
x3 3 2 3

For the Borda procedure, we get the following values sBorda(Ti, x) for the scoring vector, where
sBorda(Ti, x) = m− r(Ti, x):

sBorda(Ti, x) T1 T2 T3

x1 2 0 1
x2 1 2 2
x3 0 1 0

Hence, we get SBorda(x1, T ) = 3, SBorda(x2, T ) = 4, and SBorda(x3, T ) = 1. Thus, x2 is the winning
candidate w.r.t. Borda, since it maximizes the Borda scoring function.

For the Plurality procedure, we get the following scoring vectors:

sPlural(Ti, x) T1 T2 T3

x1 1 0 0
x2 0 1 1
x3 0 0 0
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Hence, we get SPlural(x1, T ) = 1, SPlural(x2, T ) = 2, and SPlural(x3, T ) = 0. Thus, x2 is the winning
candidate w.r.t. Plurality, since it maximizes the Plurality scoring function.

Among the many voting procedures that exist in the literature (for an extensive presentation see for
instance [24]), some require preference profiles to be linear orders and some allow more generally prefer-
ences to be weak orders (where antisymmetry is not required, which implies that a voter can express an
indifference between two candidates). However, for the sake of simplicity, we assume that all preference
relations considered are antisymmetric. This is not a real loss of generality, as most of our definitions and
results would extend to the case where indifference is allowed (see Section 6.1.6).

Even if some voting procedures work on linear orders and some on weak orders, a common point of
all procedures is that they apply to complete preference relations: in other words, they are not tailored for
dealing with incomparability. The question now is how F should be extended when we have only a partial
knowledge of the preferences of the voters – in other terms, how should F be defined when the input is a
collection of orders rather than a collection of linear orders. This issue is investigated in the next section.

6.1.2 Voting procedures with incomplete preferences: definitions

6.1.2.1 Extending voting procedures to incomplete preferences

A voting problem under incomplete preferences is composed of a finite set X = {x1, . . . , xm} of can-
didates, a finite set of voters I = {1, . . . , n}, and for each i, an order Ri on X denoting the individual
preference profile of voter i. The collection of orders R = 〈R1, . . . , Rn〉 is called a (collective) preference
profile. R is said to be complete iff Ri is complete for each 0 ≤ i ≤ n. In the following, Ri is often denoted
as �Ri

or as �i: thus, we write indifferently Ri(x, y), x �Ri
y, or x �i y.

The notion of complete extension is generalized from individual to collective preference profiles in a
natural way (cf. on page 13 in Section 2.3 for extensions of partial preference relations):

Ext(R) = Ext(R1)× . . .× Ext(Rn)

There are at least two interpretations for incomplete preferences: intrinsic incompleteness, where the
voter refuses to compare some alternatives, or epistemic incompleteness, where the voter has a complete
preference but it is only partially known at the time the voting procedure has to be applied. These different
interpretations lead to different ways of extending voting procedures to partial preferences. Here are three
possible ways that can be followed, where F is a given voting procedure defined for complete preference
relations:

1. apply F to all complete extensions of the preference relations and gather the results;

2. select a subset of those complete extensions (ideally a singleton) using some completion process,
apply F to these and gather the results; 1

3. rewrite directly the definition of F so that it applies more generally to partial preference relations
(obviously, this extension of F must coincide with F on complete preference profiles).

In the following, we explore only the first of these three ways, which looks the most natural of all three
ways; furthermore it seems to be more suited to epistemic incompleteness of preference (see Section 6.1.5).

1This completion process may consist in letting candidates gravitate towards preference such as in [20] or towards indifference
such as in [187].
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6.1.2.2 Possible and necessary winners

For applying a voting procedure to all complete extensions of a partial preference profile, we define upper
and lower bounds for winners.

Definition 6.1.1 Let F be a voting procedure on X andR a (possibly incomplete) preference profile.

• x ∈ X is a necessary winner forR (w.r.t. F ) iff for all T ∈ Ext(R) we have x ∈ F (T ).

• x ∈ X is a possible winner forR (w.r.t. F ) iff there exists a T ∈ Ext(R) such that x ∈ F (T ).

A necessary winner forR is thus a candidate which wins in all complete extensions ofR and a possible
winner wins in at least one complete extension of R. Hence, necessary winners constitute an upper bound
and possible winners a lower bound for winners of a partial preference profile. We denote by NWF (X)
(respectively, PWF (X)) the set of necessary (respectively, possible) winners for R w.r.t. F . By Defini-
tion 6.1.1, the following properties hold, for any voting procedure F :

• for allR, NWF (R) ⊆ PWF (R);

• for allR,R′ such thatR ⊆ R′, PWF (R′) ⊆ PWF (R) and NWF (R′) ⊆ NWF (R).

Note also that NWF (X) can be empty, but not PWF (X). WheneverR is a complete preference profile,
possible and necessary winners coincide.

The next sections try to evaluate the difficulty of applying some well-known voting procedures to partial
preference relations, by assessing the computational complexity of the problems and by giving explicit
algorithms for computing possible and necessary winners.

Since there are, in the general case, exponentially many extensions of a partial preference profile, noth-
ing guarantees that computing possible and necessary winners can be done in polynomial time, even if the
voting procedure F is polynomially computable. All we can say is that, by Definition 6.1.1, provided that
F is polynomially computable:

• Determining whether x ∈ PWF (R) is in NP.

• Determining whether x ∈ NWF (R) is in co-NP.

The question is now: are there any voting procedures such that necessary and possible winners can still be
determined in polynomial time? We answer this question positively in the next two sections.

6.1.3 Positional scoring procedures
The question now is, how hard is it to determine whether x is a necessary or a possible winner for R w.r.t.
a scoring procedure F ?

For this, let us define the minimal (respectively, maximal) rank of a candidate x for a (partial) order R
as the lowest2 (respectively, highest) possible rank of x obtained when considering all complete extensions
of R that is,

rankmin
R (x) = minT∈Ext(R) r(T, x)

rankmax
R (x) = maxT∈Ext(R) r(T, x),

where r(T, x) is the rank of x in the complete order T , which is a complete extension of R.
These bounds are actually much easier to compute than what their definition suggests. For some voter,

the minimal rank of x is determined by the number of candidates which are higher ranked in the order and
the maximal rank of x is determined by the number of lower ranked candidates.

2Recall that the lower its rank, the more preferred a candidate.
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Theorem 6.1.1 Let R be a (partial) strict order. Then,

rankmin
R (x) = |{y | y >R x}|+ 1 and

rankmax
R (x) = m− |{y | x >R y}|.

Next, necessary and possible winners can be computed by considering the best and the worst case for
values of scoring functions.

Theorem 6.1.2 LetR be a preference profile, where each Ri is a (partial) order, Fs be a positional voting
procedure, and

Smin
R (x) =

∑n
i=1 srankmax

Ri
(x)

Smax
R (x) =

∑n
i=1 srankmin

Ri
(x).

Then,

1. x is a necessary winner forR w.r.t. Fs iff Smin
R (x) ≥ Smax

R (y) holds for all y 6= x;

2. x is a possible winner forR w.r.t. Fs iff Smax
R (x) ≥ Smin

R (y) holds for all y 6= x.

Smin
R (x) considers the worst case and Smax

R (x) the best case for a scoring value for x. Hence, x is a
necessary winner whenever the worst value is higher than the best value and x is a possible winner whenever
the best value is higher than the worst value for x. Furthermore, we get the following result:

Corollary 6.1.3 Possible and necessary winners for positional scoring procedures can be computed in
polynomial time.

Example 37 Let us consider the following example, where we have candidates X = {x1, x2, x3, x4} and
p + q voters. The first group of p voters have the preferences Ri = {x1 > x2 > x4, x1 > x3 > x4}, for
0 ≤ i ≤ p and the other q voters have the preferences Ri = {x3 > x2 > x1}, for p + 1 ≤ i ≤ p + q. For
the second group of voters, nothing is known about the position of x4 with respect to other candidates (it is
fully incomparable to them all). For the Borda procedure we get:

Smin
R Smax

R
x1 3p 3p + q
x2 p + q 2(p + q)
x3 p + 2q 2p + 3q
x4 0 3q

Candidate x1 is a possible winner whenever 2p ≥ q, x2 is possible if 2q ≥ p, x3 is possible if 3q ≥ p, and
x4 is a possible winner if q ≥ p. Furthermore, candidate x1 is necessary if p ≥ 3q; and x2, x3 as well as
x4 become never a necessary winner.

For the plurality voting procedure we get

Smin
R Smax

R
x1 p p
x2 0 0
x3 0 q
x4 0 q

Hence, candidate x1 is always possible, x2 is never a possible winner, and x3 as well as x4 are possible
winners if q ≥ p. x1 is a necessary winner if p ≥ q, whereas x2, x3 and x4 become never necessary
winners.
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6.1.4 Condorcet winners

A candidate x is a Condorcet winner for a complete profile T = 〈�1, . . . ,�n〉 iff for all y 6= x, |{i | x �i

y}| > n
2 , or equivalently, |{i | x �i y}| > |{i | y �i x}|. In the more general case when indifferences

are allowed, this equivalence no longer holds and the latter expression is chosen as the usual definition of a
Condorcet winner.

Analogously to positional scoring procedures, we define upper and lower bounds for sets of Condorcet
winners in case of partial preference profiles.

Definition 6.1.2 LetR be an (incomplete) preference profile. Then,

• x ∈ X is a necessary Condorcet winner for R iff for all T ∈ Ext(R), x is a Condorcet winner for
T .

• x ∈ X is a possible Condorcet winner forR iff there exists a T ∈ Ext(R) such that x is a Condorcet
winner for T .

Again, let us first focus on the worst and the best cases, this time by defining, for a pair of candidates
(x, y), the number of voters for which x is preferred to y in the worst and in the best cases when considering
all complete extensions of T . If T is a collection of linear orders, let us first define

NT (x, y) = |{i |x >i y}| − |{i |y >i x}|.

Then , we define
Nmin
R (x, y) = minT ∈Ext(R) NT (x, y) and

Nmax
R (x, y) = maxT ∈Ext(R) NT (x, y).

Nmin
R (x, y) (respectively, Nmax

R (x, y)) corresponds to the worst (respectively, best) case for x among
extensions of R. That is, as many as possible candidates are ranked higher than x. On the other hand,
Nmax
R (x, y) considers the best case that is, as many as possible candidates are ranked lower than x. Again,

these bounds can be computed in polynomial time as follows:

Theorem 6.1.4 LetR be a (partial) preference profile and x, y two distinct candidates from X . We define

Nmax
Ri

(x, y) =
{

+1 if not (y ≥i x);
−1 if y >i x

and Nmin
Ri

(x, y) =
{

+1 if x >i y;
−1 if not (x ≥i y)

Then, we have the following

1. Nmin
R (x, y) =

∑n
i=1 Nmin

Ri
(x, y) and Nmax

R (x, y) =
∑n

i=1 Nmax
Ri

(x, y);

2. x is a necessary Condorcet winner forR iff ∀y 6= x, Nmin
R (x, y) > 0;

3. x is a possible Condorcet winner forR iff ∀y 6= x, Nmax
R (x, y) > 0.

If x is strictly preferred to y, then Nmin
R (x, y) and Nmax

R (x, y) assign the value 1 as in the case for
complete preferences. Furthermore, if candidates x and y are incomparable, the function Nmax

Ri
(x, y)

assigns the value 1 and Nmin
Ri

(x, y) the value −1. This follows the intuition that Nmax
R covers the “best”

case and Nmin
R the “worst” case for candidates x and y. Hence, if Nmin

R (x, y) > 0 for all y 6= x, then
in the worst case, strictly more voters prefer x strictly over y than y over x. In this case, x is a necessary
Condorcet winner. Whenever Nmax

R (x, y) > 0, there exists a complete extension T of R such that x is a
Condorcet winner and hence, x is a possible Condorcet winner.
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Example 38 Let us reconsider Example 37.
We get that x1 is a necessary Condorcet winner if p > q. All other candidates become never a necessary

Condorcet winner. Furthermore, x1 is a possible Condorcet winner if p > q and x3 and x4 are possible
Condorcet winners if q > p. Candidate x2 is not a possible Condorcet winner.

As stated in Corollary 6.1.3, we can compute necessary and possible Condorcet winners in polynomial
time.

Corollary 6.1.5 Possible and necessary Condorcet winners can be computed in polynomial time.

One may wonder whether this way of determining possible and necessary winners just by computing
lower and upper bounds of scores, which works for scoring procedures and Condorcet winners, extends
to Condorcet-consistent voting procedures such as the Simpson or the Copeland procedures [24]. Unfor-
tunately, this is not so simple, as the method consisting in computing lower and upper bounds does not
suffice. Consider for instance the Simpson (or maximin) procedure, consisting of choosing the candidates
maximizing the Simpson score ST (x) = miny 6=x NT (x, y). Then, given a partial preference profile R,
we may compute in polynomial time a lower bound Smin

R (x) = minT ∈Ext(R) ST (x) and an upper bound
Smax
R (x) = maxT ∈Ext(R) ST (x). However, even if, for instance, Smin

R (x) > Smin
R (y) for all y implies

that x is a necessary winner, the converse implication is not guaranteed to hold, because it may be the case
that no extension of R simultaneously gives a minimal score to x and a maximal score to y. Furthermore,
computing possible and necessary winners for such procedures might be NP-hard and co-NP-hard. This
issue is left for further research.

6.1.5 Manipulation and Elicitation

We now investigate the links between possible and necessary winners and some issues such as vote elicita-
tion and manipulation.

6.1.5.1 Manipulation

The Gibbard-Satterthwaite theorem [102, 174] states that any vote procedure can be manipulated, or in other
terms, that voters sometimes have an interest to report unsincere preferences. The notion of manipulation
was recently revisited from the computational point of view in [49, 48, 51]. Let J ⊆ I be a coalition of
voters, x ∈ X be a candidate, andRI\J = 〈Rj〉j∈I\J be individual profiles of the voters in I \ J .

• A constructive manipulation for x by J given RI\J (with respect to a given vote procedure F ) is a
way for the voters in J to cast their votes such that x is guaranteed to win the election, that is, a set
of individual profilesRJ such that F (〈RJ\I ,RJ〉) = {x}.

• A destructive manipulation for x by J given RI\J (with respect to a given vote procedure F ) is a
way for the voters in J to cast their votes such that x is guaranteed not to win the election, that is, a
set of individual profilesRJ such that x 6∈ F (〈RJ\I ,RJ〉).

We then have the following easy results, where R∅ = {(x, x) | x ∈ X}.

Theorem 6.1.6 Let F be a voting procedure, J ⊆ I be a coalition of voters, x ∈ X and RI\J =
〈Rj〉j∈I\J . We letR∗ = 〈R∗

i 〉i∈I where R∗
i = Ri if i ∈ I \ J and R∗

i = R∅ if i ∈ J .

1. there is a constructive manipulation for x by J givenRI\J iff PWF (R∗) = {x};

2. there is a destructive manipulation for x by J givenRI\J iff x 6∈ NWF (R∗).
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Thus, deciding whether there is a constructive or a destructive manipulation for a given candidate is
a sub-problem of voting with partial preference relations. As an obvious corollary, whenever computing
necessary and possible winners is polynomial, then deciding whether there is a (constructive/destructive)
manipulation is polynomial as well3 .

6.1.5.2 Elicitation

Given a set of individual profiles RJ = 〈Rj〉j∈J corresponding to a subset of voters J ⊆ I who have
already expressed their votes. Vote elicitation [50] consists in determining, whether (a) the outcome of the
vote can be determined without needing any further information and (b) which information must be asked
to which voter. We generalize these notions to the more general situation where the initial knowledge about
the votes is any partial preference profile: given a partial preference profileR, the elicitation task is over iff
it is useless to learn more about the voter’s preferences that is, the outcome of the vote will be the same in
any complete extension ofR: for any T , T ′ ∈ Ext(R), F (T ) = F (T ′). This condition is easily shown to
be equivalent to the fact that possible and necessary winners coincide:

Theorem 6.1.7 Given a voting procedure F and a partial preference profile R, the elicitation process is
over iff PWF (R) = NWF (R).

6.1.6 Discussion and Further work

In this section, we made first steps towards computing the outcome of voting procedures when the voters’
preferences are incomplete, and we pointed connections to vote manipulation and elicitation.

For the sake of simplicity, we required the voters’ preferences to be antisymmetric. However, definitions
of possible and necessary winners carry over to the more general case where voters’ incomplete preferences
are weak orders (allowing for indifferences), provided that the voting procedure F allows for indifferences
as well. Especially, possible and necessary Condorcet winners can still be defined, and computed in poly-
nomial time.

Further work obviously includes the investigation of other voting rules, as briefly evoked at the end
of Section 6.1.4. Another interesting issue would consist in defining a middle way between possible and
necessary winners by counting the number of extensions in which a candidate is a winner. This probabilistic
criterion will probably be much harder to compute than the extremely optimistic and pessimistic criteria
underlying the notions of possible and necessary winners.

Incompleteness here refers only to preferences. Another place where incompleteness may be relevant
is in the voting procedure itself: this is the way followed by [51], who introduce some uncertainty in the
way the voting procedure will be applied so as to make manipulation more difficult. Although both issues
are significantly different, it is worth considering whether studying both in a unifying framework would be
relevant.

6.2 Voting Theory in Answer Set Programming

In this section, we want to give an encoding of the voting procedures described in Section 6.1. For this, we
use aggregate functions as provided by the DLV system (cf. Section 2.1.3 on page 9).

Let X = {x1, . . . , xm} be a set of candidates and V = {v1, . . . , vn} be a set of voters, where each
voter has a partial preference profile over the set of candidates. For representing the number of candidates,

3Note that the NP-hardness results of [49] do not apply here, since they apply to weighted votes.
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voters and preference relations, we use the following rules:

c(xi) ← for all candidates i = 1, . . . ,m(6.1)
v(vi) ← for all voters i = 1, . . . , n(6.2)

pref(V,X, Y ) ← for all voters V preferring X over Y(6.3)

Additionally, we need the following rules defining some basic concepts.

#maxint = 50 ←(6.4)
nbc(Nb) ← Nb = #count{M : c(M)}(6.5)
nbv(Nb) ← Nb = #count{V : v(V )}(6.6)

vtp(V ) ← for V ∈ {borda, plurality, condorcet}(6.7)
sp(S) ← for S ∈ {borda, plurality}(6.8)

Rule (6.4) is DLV specific. The number of all candidates and voters is computed by rules (6.5) and (6.6).
Furthermore, rules (6.7)-(6.8) initialize the voting, respectively scoring, procedures. Since the computation
of Borda, plurality, and Condorcet winners are done independently from each other, one can initialize vtp(.)
and sp(.) for all voting procedures.

According, to Theorem 6.1.2 on page 116 and 6.1.4 on page 117, we show that candidate x is a possible,
respectively necessary, winner if there exists no candidate who “beats” x. In the case of scoring procedures,
we have to prove whether there exists no candidate such that Smax(y) > Smin(x). For the Condorcet
procedure, it is enough to compare the candidates y related x with the number of all voters.

possible(V P, X)← c(X), vtp(V P ), not no possible(V P, X)(6.9)
no possible(V P, X)← c(X), c(Y ), X 6= Y, vtp(V P ), sp(V P ),(6.10)

s max(V P, X, XS), s min(V P, Y, Y S), XS < Y S

no possible(condorcet, X)← c(X), c(Y ), Y 6= X, nbv(Nbv),(6.11)
Z = #count{V : pref(V, Y, X), v(V )}, Z1 = 2 ∗ Z,Nbv ≤ Z1

necessary(V P, X)← c(X), vtp(V P ), not no necessary(V P, X)(6.12)
no necessary(V P, X)← c(X), c(Y ), X 6= Y, vtp(V P ), sp(V P ),(6.13)

s min(V P, X,XS), s max(V P, Y, Y S), XS < Y S

no necessary(condorcet, X)← c(X), c(Y ), Y 6= X, nbv(Nbv),(6.14)
Z = #count{V : pref(V,X, Y ), v(V )}, Z1 = 2 ∗ Z,Z1 ≤ Nbv

For computing the Borda score, we use rules (6.15)- (6.18).

borda smax(V,X, S)← v(V ), c(X), S=#count{Y : pref(V,X, Y ), c(Y )}(6.15)
borda smin(V,X, S)← v(V ), c(X), nbc(M),(6.16)

Rk = #count{Y : pref(V, Y, X), c(Y )},M = Rk + Rk1, Rk1 = S + 1
s min(borda,X, S)← c(X), S = #sum{Sc, V : borda smax(V,X, Sc)}(6.17)
s max(borda,X, S)← c(X), S = #sum{Sc, V : borda smin(V,X, Sc)}(6.18)
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For the Plurality score, we use rules (6.19)- (6.26).

rmin(V,X,R)← v(V ), c(X), R1 = #count{Y : pref(V, Y, X), c(Y )}, R = R1 + 1(6.19)
rmax(V,X,R)← v(V ), c(X), nbc(M), R1=#count{Y : pref(V,X, Y )},M = R1 + R(6.20)
plural smin(V,X, 1)← v(V ), c(X), rmin(V,X, 1)(6.21)
plural smin(V,X, 0)← v(V ), c(X), rmin(V,X,R), R 6= 1(6.22)
plural smax(V,X, 1)← v(V ), c(X), rmax(V,X, 1)(6.23)
plural smax(V,X, 0)← v(V ), c(X), rmax(V,X,R), R 6= 1(6.24)
s min(plurality,X, S)← c(X), S=#count{V : plural smax(V,X, 1)}(6.25)
s max(plurality,X, S)← c(X), S=#count{V : plural smin(V,X, 1)}(6.26)

Thus, rules (6.1)- (6.26) represent the encoding of our voting problem within answer set programming. The
logic program Π consisting of the rules (6.1)- (6.26) has exactly one answer set, which gives us the set of
all possible and necessary winners.

Theorem 6.2.1 Let X be a set of candidates, V be a set of voters, for each voter let be given partial
preference profiles over the set of candidates, and let V P ∈ {Borda, plurality, Condorcet} be a voting
procedure.

Then, the logic program Π, consisting of the rules (6.1)- (6.26), has exactly one answer set Y , where

1. the set {X : possible(V P, X) ∈ Y } is the set of all possible winners w.r.t. voting procedure V P ,
and

2. the set {X : necessary(V P, X) ∈ Y } is the set of all necessary winner w.r.t. voting procedure V P .

6.3 Scheduling a meeting
In this section, we consider an application of the voting procedures defined in Section 6.1 and implemented
in Section 6.2 within ASP. We consider the problem of scheduling a meeting for a group, where we describe
the basic problem in Section 6.3.1. Then, in Section 6.3.2, we include diagnostic reasoning, where a
diagnostic model gives us the reasons, whenever no meeting was schedulable. Lastly in Section 6.3.3, we
show how efficient and intuitively the voting procedures from Section 6.1 and 6.2 can be used in scheduling
problems for the determination of preferred meetings.

6.3.1 Schedule a meeting for a group
We want to describe a solution for the basic problem of scheduling a meeting for a group. We have given m
possible times d1, . . . , dm for scheduling a meeting. The group consists of n subgroups X1, . . . , Xn. Each
subgroup Xi has ki members, where each member may have unavailabilities for certain possible dates. We
want to schedule one meeting such that from every group at least k persons are available for that meeting.

Definition 6.3.1 Let D be a set of dates, X = X1, . . . , Xn be a set of groups, where Xi has ki members,
and let NA be a set of unavailabilities na(p, d) expressing that person p ∈ Xi is unavailable at time d ∈ D.
Furthermore, let k be the number of required persons from every subgroup, which at least should attend a
meeting.

Then, we callM = 〈D,X, NA, k〉 a meeting scheduling problem.
Furthermore, m ∈ D is called meeting whenever for all Xi, 1 ≤ i ≤ n, we have |{p ∈ Xi : na(p, m) 6∈

NA}| ≥ k.
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Let M = 〈T,X,NA, k〉 be a meeting scheduling problem. Then, this problem is encoded within
answer set programming by the following sets of rules, where k in rule (6.31) presents the number of
required persons from each group.

g(Xi) ← for all subgroups Xi of group X(6.27)
p(P,Xi) ← for all members P of subgroup Xi(6.28)

d(T ) ← for all possible dates T(6.29)
na(P, T ) ← for all P and T , where P is unavailable for time T(6.30)

rnb(k) ←(6.31)

Furthermore, we include the logic program in Figure 6.1. Rule (6.32) expresses the status of availability

a(P,G, D)← not na(P,D), p(P,G), g(G), d(D)(6.32)
present group(G, D)← rnb(R), N = #count{P : a(P,G, D)}, N ≥ R, g(G), d(D)(6.33)
absentgroup(D)← d(D), g(G), not present group(G, D)(6.34)
meeting(M)← d(M), not absentgroup(M)(6.35)
meet← meeting(M), d(M)(6.36)
← not meet(6.37)

Figure 6.1: Meeting Scheduler

of a person P from subgroup G for date D. Rules (6.33) and (6.34) express the status of subgroups. A
subgroup G is present for date D whenever the number of available persons is higher than the number of
required persons. Rule (6.35) generates possible meetings, where rules (6.36)–(6.37) ensure that at least
one meeting is generated. Let ΠM be the logic program consisting of rules (6.27)–(6.37). ΠM has exactly
one answer set if a meeting is schedulable, and ΠM has no answer set if no meeting is schedulable. If there
exists an answer set X of ΠM, then every date in the set {M : meeting(M) ∈ X} represents a solution of
our meeting scheduling problem.

Theorem 6.3.1 Let M = 〈D,X, NA, k〉 be a meeting scheduling problem and ΠM as described in
Rules (6.27)-(6.37).

Then, one of the following holds:

1. ΠM has no answer set iff there exists no m ∈ D such that for all Xi we have |{P ∈ Xi :
P is available for m}| ≥ k; or

2. ΠM has exactly one answer set X , where {m : meeting(m) ∈ X} presents all schedulable meetings
for the scheduling problemM.

Example 39 At a university, we have a group consisting of three subgroups: g1, g2 and g3. Group g1 has
three members (p1

1, p
1
2, p

1
3), group g2 has three members (p2

1, p
2
2, p

2
3), and group g3 has only two members

(p3
1, p

3
2). They want to meet either on Monday or Tuesday, where a meeting in the morning, in the afternoon,

or in the evening is possible. Hence, we have 6 times:

d1 (Monday morning) d4 (Tuesday morning)
d2 (Monday afternoon) d5 (Tuesday afternoon)
d3 (Monday evening) d6 (Tuesday evening)

Furthermore, we have the following unavailabilities:
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Person Unavailabilities Date times
p1
1 Monday d1, d2, d3

p3
2 Tuesday d4, d4, d6

p2
3 in the mornings d1, d4

p2
2 in the evenings d3, d6

We want to schedule a meeting, where at least two persons from every subgroup can attend to it. With the
unavailabilities at hand, we can schedule a meeting at time d1, d2, d3 that is on Monday. If additionally
person p3

1 becomes unavailable on Monday, no meeting is schedulable.

6.3.2 Including diagnostic reasoning
With a huge number of subgroups, it often happens that no meeting is schedulable since there are excessively
different unavailabilities of persons from different subgroups. For this case, we develop a diagnostic model
such that the reasons why no meeting is schedulable is determined by the diagnostic model. Furthermore,
whenever a meeting is schedulable, the diagnostic model should determine all possible meetings. This idea
of including diagnostic reasoning is closely related to the diagnostic model for the configuration of the
Debian GNU/Linux system [186, 185]. There, the configuration problem gives suitable combinations of
software packages which have to be installed in a Linux system. Software packages may interact in different
ways, e.g. they are conflicting with each other or are requiring other software packages. In the case where
no suitable configuration of software packages exists, the diagnostic model in [186, 185] determines an
error set, a problem set, and an explanation set for analyzing why no configuration of the software packages
is possible. The error set expresses why no configuration has been found, e.g. required software packages
are missing or selected packages are conflicting with each other. The problem set contains all software
packages which are involved in a conflict. The explanation set points out why software packages causing
errors are chosen to be in a configuration, e.g. the user has selected them or a package is required by another
one.

In the following, we want to apply the diagnostic model for configuration problems to our problem of
scheduling a meeting. LetM = 〈D,X, NA, k〉 be a meeting scheduling problem. We have the following
reasons, why no meeting is schedulable:

(R1) There are no dates for a meeting available.

(R2) For each date there exists at least one subgroup such that one of the following conditions holds:

(R2a) the number of persons from that group is smaller than the number of required persons (without
consideration of unavailabilities), or

(R2b) there are too many persons unavailable for that date such that not enough persons can attend
that meeting.

Whenever no meeting is schedulable, we want to get the reason. This is made precise in the logic
program given in Figure 6.2. Rules (6.38)–(6.42) are the same as in Figure 6.1 except for Rule (6.37), which
is replaced by the following rules for the diagnostic output. Rule (6.43) and (6.44) handle reason (R1),
whenever no date time is available. Rule (6.45) and (6.46) handle reason (R2a), whenever one subgroup
is smaller than the required number of persons. Rule (6.47)–(6.50) handle reason (R2b) where no meeting
is schedulable since for every date at least one subgroup is not present due to unavailabilities of group
members.

The logic program ΠD
M consisting of rules (6.27)–(6.31) and (6.38)–(6.50) is called diagnostic model

for the problem M of scheduling a meeting. In contrast to [186], we define only the error set and the
explanation set, since the problem set is needed in [186] to detect transitive relationships among conflicting
candidates, which have no longer any effect here.
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meet← d(M), meeting(M)(6.38)

meeting(M)← d(M), not absentgroup(M)(6.39)

absentgroup(D)← d(D), g(G), not present group(G, D)(6.40)

a(P, G, D)← not na(P, D), p(P, G), g(G), d(D)(6.41)

present group(G, D)← rnb(R), N = #count{P : a(P, G, D)}, N ≥ R, g(G), d(D)(6.42)

exists date← d(D)(6.43)

nodate← not exists date(6.44)

smallgroup(G)← g(G), rnb(R), nbgroup(N, G), N < R(6.45)

nbgroup(N, G)← N = #count{P : p(P, G)}, g(G)(6.46)

absent(G, D)← g(G), d(D), not present group(G, D), not meet(6.47)

person unavailable(P, G, D)← absent(G, D), na(P, D), p(P, G), g(G), d(D), not meet(6.48)

incomplete← d(M), not h(M), not meet(6.49)

h(M)← d(M), not absentgroup(M)(6.50)

Figure 6.2: Diagnostic Model of meeting scheduler.

Definition 6.3.2 LetM = 〈D,X, NA, k〉 be a meeting scheduling problem and ΠD
M be the corresponding

diagnostic model.
Then, a diagnosis is a triple D = (X, EX , RX), where

1. X is an answer set of Π,

2. EX is the error set EX = {nodate ∈ X} ∪ {smallgroup(G) ∈ X} ∪ {incomplete ∈ X}

3. RX is the explanation set RX = {person unavailable(P,G, D) ∈ X} ∪ {absent(G, D) ∈ X}

The error set gives the reason why no meeting is schedulable. More precisely, it distinguishes the cases
where no date time exists (nodate ∈ EX ), one subgroup is smaller than the required number of persons
(smallgroup(G) ∈ EX ), or that one subgroup is underrepresented (incomplete ∈ EX ). The explanation
set contains information why no meeting is schedulable. Whenever nodate ∈ EX or smallgroup(G) ∈
EX we need no further explanations since these errors are self-explanatory. Whenever incomplete ∈
EX , all subgroups G, which are not present for each date time D, are added to the explanation set, and
corresponding to that all persons, which are unavailable from these subgroups, are added to the explanation
set. Whenever a meeting is schedulable, there exists an answer set X , where the error set EX and the
explanation set RX are empty. Otherwise, ΠD

M has exactly one answer set, where the error set and the
explanation sets are non-empty and are explaining why no meeting is schedulable

Theorem 6.3.2 LetM = 〈D,X, NA, k〉 be a meeting scheduling problem and ΠD
M be the corresponding

diagnostic model.
Then,

1. m ∈ D is a meeting iff ΠD
M has an answer set X , where EX = ∅, RX = ∅ and meeting(m) ∈ X ,

2. there exists no meeting iff ΠD
M has an answer set X such that EX 6= ∅.

Example 40 Let us reconsider Example 39. In the last case, where person p3
1 became unavailable on

Monday, no meeting is schedulable.
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In this case, our diagnostic model has one answer set X with a nonempty error set EX and a nonempty
explanation set RX . Our error set EX contains the atom incomplete, denoting the case that at least one
subgroup cannot attend the meeting due to unavailabilities. Our explanation set RX contains the atoms
absent(g3,D) for all possible times D ∈ {d1, d2, d3, d4, d5, d6}. That is, no meeting is schedulable since
group g3 is not present for each possible date time. Furthermore, the explanation set RX contains per-
son unavailable(p3

1,g3,D) for D = d1, d2, d3 and person unavailable(p3
2,g3,D) for D = d4, d5, d6. That is,

group g3 cannot attend to a meeting since person p3
1 is unavailable on Monday and person p3

2 is unavailable
on Tuesday.

6.3.3 Selecting preferred meetings
In the case where more than one meeting is schedulable, we have to choose one meeting out of the set of
possible meeting times. In order to do so, every person expresses preferences for meeting times. Often, one
can express his preferences only as a partial order, e.g. one prefers a meeting in the morning over a meeting
in the afternoon, instead of a total order. E.g. one prefers a meeting on Monday morning over Tuesday
morning over Monday afternoon. For this reason, we use the voting procedures defined in Section 6.1 to
determine upper and lower bounds for preferred meetings w.r.t. different voting strategies

Each person of our group provides his preferred dates. That is, each person (voter) pi
k has a partial order

<i
k among the set of dates. Since in general not all dates are schedulable as meetings, we have to restrict

the partial order <i
k to the set of schedulable meetings. Furthermore, we assume that each person expresses

only preference relations on dates, where he is available.
Let M = 〈D,X, NA, k〉 be a meeting scheduling problem. For each person pi

j , 1 ≤ j ≤ ki from
subgroup Xi (i = 1, . . . , n), we have a partial preference relation <i

j⊆ D × D for the set of all dates
D = d1, . . . , dm. Note that each voter expresses only preference relations on the set of dates available by
him. That is, <i

j⊆ Da ×Da where Da = {d ∈ D | na(pi
j , d) 6∈ NA}. We callM< = 〈D,X, NA, k,<〉

an ordered meeting scheduling problem, where < describes the above given preference relations of each
person.

Notice that we have to restrict the partial orders to the set of all schedulable meetings. For this, let
M ⊆ D be the set of all schedulable meetings corresponding to the requirements given in Section 6.3.1.
Then, we let ≺i

j⊆M ×M such that d ≺i
j d′ holds if d <i

j d′ holds.
We combine the logic programs from the basic meeting scheduling problem in Figure 6.1 and encoding

of voting procedures within ASP (Rules (6.1)- (6.26)) from Section 6.2 as follows: We define Π<
M as the

union of the rules (6.27)-(6.37), rules (6.4)-(6.26), and the following rules, which replace rules (6.1)-(6.3):

c(M) ← meeting(M), d(M)(6.51)
v(P ) ← p(P,G), not na(P,M),meeting(M), g(G)(6.52)

pref (P i
j , X, Y ) ← where Y <i

j X holds for X, Y being meetings(6.53)

With this logic program, we can compute possible meetings and necessary meetings. In the case, where
meetings are schedulable, possible meetings give a lower bound and necessary meetings give an upper
bound for meetings.

Theorem 6.3.3 LetM< = 〈D,X, NA, k,<〉 be an ordered meeting scheduling problem, Π<
M the corre-

sponding logic program, and let V P ∈ {Borda, plurality, Condorcet} be a voting procedure.
Then, one of the following holds

1. Π<
M has either no answer set, expressing that no meetings are schedulable, or

2. Π<
M has exactly one answer set Y , where

(a) the set {X : possible(V P, X) ∈ Y } is the set of all possible meetings w.r.t. voting procedure
V P , and
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(b) the set {X : necessary(V P, X) ∈ Y } is the set of all necessary meetings w.r.t. voting proce-
dure V P .

Example 41 Let us reconsider Example 39. Assume that no person of the group has unavailabilities. That
is, all dates are schedulable as meetings. Consider the following preference relations: group g1 prefers
Monday morning over all other dates (d1 > di, i = 2, ..., 6); g2 prefers Monday over Tuesday and the
afternoon and evening over the morning (d2 > d1 > d5 > d4, d3 > d1 > d6 > d4); and g3 prefers Monday
morning over Monday afternoon and Monday evening and Monday over Tuesday (d1 > d2, d1 > d3 and
di > dj for i = 2, 3 and j = 4, 5, 6).

For the Borda voting procedure, we get d1, d2, d3 as possible winners and no necessary winner. For
the plurality and for the Condorcet procedure, we get d1 as possible and as necessary winners. Hence, a
meeting should be scheduled on Monday morning.

6.3.4 Conclusions and Further Work
We have linked voting theory to answer set programming for the first time. We have considered the vot-
ing procedures for incomplete preference profiles defined in Section 6.1 and implemented in Section 6.2.
Furthermore, we have presented the meeting scheduling problem of a group, where we have integrated
these voting procedures for computing preferred meetings. First, we have defined the basic problem (Sec-
tion 6.3.1), then we have included diagnostic reasoning in Section 6.3.2. Whenever no meetings are schedu-
lable, the diagnostic model determines why no solution to a problem exists. In Section 6.3.3, we have inte-
grated voting procedures into our meeting scheduling problem. Voters, members of the group, can express
their preferences among a set of dates, and the voting procedures provide possible and necessary preferred
meetings. Hence, we have shown the usefulness of voting procedures for incomplete preference profiles
within an application. The example presented in Section 6.3.1 is solvable in polynomial time. Although
ASP is able to handle complexer problems (e.g. NP-complete ones), we have taken a polynomial problem
to demonstrate how efficient voting procedures can be integrated into logic programming. In further work,
we want to integrate voting procedures into more complex, NP-complete, timetabling problems. The vot-
ing procedure for incomplete preference relations are used as a “filter” for determining preferred solutions.
Since they are computable in polynomial time, the complexity of the underlying problem does not increase.

6.4 Abduction and Preferences in Linguistics
In this section, we associate Optimality Theory (OT) [113] with abduction and preference handling within
ASP. We want to find preference structures in a linguistic framework as explanations of an abduction prob-
lem. A linguistic grammar is a model of the implicit knowledge that guides linguistic behavior. This
knowledge is usually conceived as a system of rules and/or well-formedness constraints which determine
for a given language which expressions are well-formed and which are not. Language particular knowl-
edge (grammars of individual languages) thereby has to be distinguished from knowledge about languages
in general (universal grammar). In the grammar theoretical framework of Optimality Theory, the set of
well-formedness constraints is universal, while their importance varies from language to language.

OT constraints are violable and ranked relative to each other. The effect of a constraint violation de-
pends on the rank of the constraint. OT models grammar as a competition of candidate expressions on the
constraint hierarchy – relative to a given input which determines what is to be expressed. The candidate that
performs best on the constraint hierarchy is the grammatical expression, all others are losers and therefore
impossible as expressions for the input. Hence, learning a language can be understood as inferring the
underlying constraint ranking from observations.

The linguistic example that we deal with is dialectal variation in the word order possibilities of German
3-verb clusters, as discussed in [178] within the OT framework. An example of a 3-verb cluster is the group
of verbs underlined in the German sentence below:
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Maria glaubt, dass sie das Lied singen müssen wird.
Maria thinks that she the song sing must will.

Standard German and Swiss German variants differ in their default orders for verb clusters of this type (as
well as further non-default ordering possibilities which will briefly be discussed in Section 6.4.3):

Default verb cluster orders
Standard German: singen müssen wird
Swiss German: wird müssen singen

In the following, we take the perspective of a linguist, and reconstruct the dialectal variation in German
as abduction problem: Given the observation of a particular verb order, abduce the underlying constraint
ranking.

In Section 6.4.1, we recall the background for the considered linguistic problems. In Section 6.4.2, we
reconsider optimal candidates and elaborate on the above example, for which we then give an implemen-
tation within ASP in Section 6.4.3. Furthermore, we develop in Section 6.4.3 a new definition for optimal
candidates for orders with indifferences. After presenting the results on our example, we draw conclusions
and discuss further research issues in Section 6.4.4.

6.4.1 Linguistic Problems

Linguists use observations of two kinds to find out the set of well-formed expressions of a given language.
One method is corpus-based, that is, structures which appear more than rarely can be assumed to be well-
formed. The other method is explicit elicitation, speakers of a language are asked to give a well-formedness
judgment on particular constructed examples.

The task of the linguist is similar to the one of the language learner: figure out the underlying system of
constraints for a language, based on observations.

Our example is the verb order in 3-verb clusters of German dialects with the following different ordering
strategies for the verbs:

Default verb cluster orders
Standard German: singen müssen wird
Swiss German: wird müssen singen

The relative order of object noun phrases and their governing verbs does not differ, however: the object
precedes the verb in all German dialects, contrary to, e.g., English:

Default object-verb orders
German: ein Lied singen
English: to sing a song

Syntactic structures are composed recursively by complementation. The object, here: “ein Lied” is the
complement of its governing head, here: the predicative verb “singen”. This verb phrase, “ein Lied singen”,
is the complement of the modal verb “müssen”, and this modal verb phrase, in Standard German: “ein Lied
singen müssen”, is the complement of the temporal auxiliary verb, “werden”. The differences between the
languages and variants can now be described in terms of complement-head order:
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Default complement-head orders
Standard German: All complements precede their heads:

“ein Lied singen müssen wird”
Swiss German: Noun complements precede their heads, ver-

bal complements follow them:
“wird müssen ein Lied singen”

English All complements follow their heads:
“will have to sing a song”

The differences between the three languages can be reconstructed within OT using the following three
constraints:

H-Comp A complement follows its head.
Comp-H A complement precedes its head.
H-VComp A verbal complement follows its head.

Constraint rankings are indicated with “�”, meaning “has higher priority than”. The three rankings that
conform to the observations are the following:

Standard German: Comp-H � H-Comp (H-V Comp)
Swiss German: H-V Comp� Comp-H � H-Comp
English: H-Comp� Comp-H (H-V Comp)

The exact rank of H-V Comp can only be determined in Swiss German. While its effects are com-
pletely subsumed by the high rank of H-Comp in English, in Standard German all that is necessary is
that Comp-H has highest priority, while the relative order of H-Comp and H-V Comp is irrelevant be-
cause of the low rank of these two constraints. Grammars are usually, but not necessarily, strict total orders
of constraints. The rankings given here are only the crucial ones. For those which are left open, any order
is compatible with the observations.

6.4.2 Optimal candidates
A linguistic grammar predicts the well-formedness of expressions. OT grammars do so by establishing a
competition between different candidate expressions which are evaluated on a hierarchy of well-formedness
constraints like H-Comp, Comp-H , and H-V Comp. An OT grammar is an input-output mapping. The
input defines what is to be expressed. We then have a set of candidate output expressions. The candidates
incur different constraint violations. Each candidate is evaluated on the basis of the constraint hierarchy, and
the candidate that performs best in this evaluation is the winner, the optimal, hence, grammatical expression.

In the following, we consider the determination of optimal candidates w.r.t. well-formedness of expres-
sions. For this, let X be a set of candidates (sentences), C be a set of constraints, δ : X × C → IN be a
violation function, where δ(x, c) denotes the degree of violation of x ∈ X w.r.t. c ∈ C, and� be a strict
total order on C. Then, we call L = (X , C, δ,�) a linguistic framework.

In Section 6.4.1, we have taken an example for the dialectal variation in German 3-verb clusters. In
the following we will elaborate this example. For the 3-verb cluster with the verbs {wird, müssen, singen}
(“will, must, sing”), we have the following possible word orders:4

Maria glaubt, dass sie das Lied ...

(321) singen müssen wird. (231) müssen singen wird.
(123) wird müssen singen. (132) wird singen müssen.
(312) singen wird müssen. (213) müssen wird singen.

4The numbers signal the hierarchical position of the verb. Verb 1 is the temporal auxiliary (werden), verb 2 the modal verb
(müssen), and verb 3 the predicative verb (singen).
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Our set of candidates X = {321, 231, 123, 132, 312, 213} is constituted by these possible word orders. 5

C = {H-V Comp,Comp-H,H-Comp} is our set of constraints. The degree of violation denotes how well
a sentence fulfills a constraint. E.g. for constraint H-V Comp the best order is where the auxiliary verb
(“wird”) precedes the modal verb (“müssen”), which precedes the predicative verb (“singen”). Candidate
123 has this order. Candidate 132 violates this constraint once, since “müssen” comes after “singen”, and
candidate 321 violates H-V Comp three times, since the verbs are in the reverse order. The violation degrees
for all constraints and candidates are given in the Figure 6.3, where the degree of violation is represented
by the number of asterisks ∗.

H-V Comp Comp-H H-Comp
321 ∗ ∗ ∗ ∗∗
231 ∗∗ ∗ ∗
123 ∗∗
132 ∗ ∗ ∗
312 ∗∗ ∗ ∗∗
213 ∗ ∗∗ ∗

Figure 6.3: Constraint Violations

Next, we want to clarify when a sentence is a best candidate w.r.t. a given constraint ranking [13].

Definition 6.4.1 Let L = (X , C, δ,�) be a linguistic framework, where� is a strict total order on C.
Then, candidate x ∈ X is a winner if there does not exist a candidate y ∈ X , x 6= y such that there

exists a constraint c ∈ C where

1. for all c′ ∈ C where c� c′ we have that δ(x, c′) ≥ δ(y, c′), 6 and

2. δ(x, c) > δ(y, c).

Candidate x is a winner, also called optimal candidate, if there does not exist another candidate y who is
better than x. That is the case when there exists a constraint, where y has a lower degree of violation than
x (Condition 2) and when y behaves better for all higher constraints (Condition 1).

In our example, for the constraint order H-V Comp� Comp-H � H-Comp (Swiss German), we get
that 123 is a winner. There, for the highest constraint H-V Comp, all other candidates have a higher degree
of violation and are hence worse than 123. For constraint ranking Comp-H � H-V Comp � H-Comp
(observed in Standard German), candidate 321 is a winner, since for the highest constraint Comp-H all
other candidates are worse than 321. Hence, we get the verb cluster singen müssen wird as winner for the
Standard German dialect and wird müssen singen as winner for the Swiss German dialect.

6.4.3 Abduction of constraint rankings
In Optimality theoretic terms, linguists observe that a candidate is determined by a speaker as a winner,
expressing that the sentence is grammatically correct. The problem is that the observer does not know
which underlying constraint ranking the speaker has. Here, abduction comes into play.

Given a linguistic framework L = (X , C, δ) with an unknown constraint ranking� and an observation
that candidate x ∈ X is a winner, we want to abduce the constraint ranking� which explains x. For this,

5Due to OT we have to consider all possibilities.
6For a better understanding we use the condition δ(x, c′) ≥ δ(y, c′) instead of δ(x, c′) = δ(y, c′). Requiring δ(x, c′) = δ(y, c′)

instead of δ(x, c′) ≥ δ(y, c′) would select the crucial constraint c, which is not requested here, and is also sufficient for characterizing
optimal candidates.



130 CHAPTER 6. APPLICATIONS OF PREFERENCES

our set of hypotheses is the set of all possible (pairwise) constraint rankings. Then, the explanations give us
possible strict total orders such that x is optimal. In the following, we give an encoding for this.

The set of candidates is given by rules

cd(x) ← for each x ∈ X(6.54)
cst(c) ← for each constraint c ∈ C(6.55)

viol(x, c, δ) ← where δ is the degree of violation of x w.r.t c.(6.56)

According to Definition 6.4.1, a winner, can be determined by the rules given in Figure 6.4.

winner(X) ← cd(X), not defeated(X)(6.57)
defeated(X) ← cd(X), cd(Y ), Y 6= X, better(Y, X)(6.58)
better(Y, X) ← cd(X), cd(Y ), Y 6= X, cst(C), wins(Y, X,C), hp(X, Y,C)(6.59)
hp(X, Y,C) ← cd(X), cd(Y ), Y 6= X, cst(C), pref (C1, C), wins(X, Y,C1)(6.60)

wins(X, Y,C) ← cd(X), cd(Y ), cst(C), viol(X, C, NX), viol(Y, C, NY ), NX < NY(6.61)
pref (X, Z) ← pref (X, Y ), pref (Y, Z)(6.62)

← pref (C,C), cst(C)(6.63)
← cst(C1), cst(C2), unrkd(C1, C2), C1 6= C2(6.64)

unrkd(C1, C2) ← not pref (C1, C2), not pref (C2, C1), cst(C1), cst(C2)(6.65)

Figure 6.4: Winner determination

Rules (6.57)–(6.61) encode Definition 6.4.1, where winner(x) is derived whenever x is not defeated,
i.e. there exists no candidate y 6= x which is better than x. The relation that y is better than x (Condi-
tion 1 and 2 in Definition 6.4.1) is encoded by Rules (6.59)-(6.60). Rule (6.61) only encodes the expres-
sion δ(x, c) < δ(y, c). Rule (6.62) is inserted for encoding the transitivity relation 7 of preferences and
Rules (6.63)–(6.65) ensure that the preference ordering is strict and total. Our logic program Π consists of
the rules (6.54)–(6.65). An observation is that exactly one candidate is observed as a winner, but the other
candidates are not. Hence, for x ∈ X we have

O(x) =
{

winner(x)← for x ∈ X
defeated(y)← for all y ∈ X , y 6= x

}
This is due by the fact that we want to observe unique optimal winners [13]. Our hypotheses are the set of
all possible pairwise preference relations:

H = {pref (c, c′)←| c, c′ ∈ C, c 6= c′}.

Then, an explanation ∆ ⊆ H for the abduction problem 〈Π,H, O〉 gives us a possible strict total order
among the constraints such that Π ∪∆ explains O. More precisely, ∆ ⊆ H is an explanation if O(x) ⊆ S
for some S ∈ AS(Π ∪∆).

In our linguistic example, we observe that a sentence is a winner and want to abduce possible rankings
among the set of constraints. Additionally, we have the background knowledge that constraint Comp-H
is strictly higher preferred than H-Comp. This is due to the observation that object noun phrases precede
their governing verbs in all German dialects. Hence, we have additionally in Π the fact

pref (comph, hcomp)← .

7Note that this is useful as simplification for formulating the hypotheses.
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Then, our hypotheses are

H =
{

pref (comph, hvcomp)← pref (hvcomp, hcomp)←
pref (hvcomp, comph)← pref (hcomp, hvcomp)←

}
which gives us together with pref (comph, hcomp) ← all possible constraint rankings. For computing
explanations, we use the DLV system [73, 76] with the command -FD for abductive diagnosis.

x Explanations

321
∆1 = {Comp-H � H-Comp� H-V Comp}
∆2 = {Comp-H � H-V Comp� H-Comp}

231 no explanations
123 ∆ = {H-V Comp� Comp-H � H-Comp}
132 no explanations
312 no explanations
213 no explanations

Table 6.1: Explanations for Comp-H � H-Comp under strict total orders

Table 6.1 lists all possible explanations (strict total orders of the set of constraints) for observation
O(x). Whenever a candidate has no explanation, this means that the constraints are not sufficient for ex-
plaining these candidates as a winner. In [178], further, more special cases were considered, e.g. where
one of the verbs is focused, i.e., stressed. This opens additional ordering possibilities. Experiments for
focus-dependent orders follow later in this section. In [178], observations lead to the conclusion that
for Standard German Comp-H is ranked strictly higher than H-V Comp. By additional analysis, the
authors identified candidate 321 as the winner in Standard German with the underlying constraint rank-
ing Comp-H � H-V Comp � H-Comp. This is also found out by the method of abduction, i.e.
by explanation ∆2 for observation O(321). Analogously, candidate 123 is the winner in Swiss Ger-
man with the underlying constraint ranking H-V Comp � Comp-H � H-Comp as stated by ex-
planation ∆ for O(123). Interestingly, O(321) is also explained by another constraint ranking, namely
∆1 = {Comp-H � H-Comp � H-V Comp}. This confirms the fact that the relative ordering of
H-Comp and H-V Comp is irrelevant.

In the example, we have found out that observing candidate 321 yields two explanations, H-Comp �
H-V Comp and H-V Comp � H-Comp. This supposes that H-Comp and H-V Comp can be ranked
equally. For this reason, we want to abduct total orders (not necessarily strict). Since Definition 6.4.1 is
only valid for strict total orders, we have to extend it for total orders.

Definition 6.4.2 Let L = (X , C, δ,�) be a linguistic framework, where � is a total order on C.
Then, candidate x ∈ X is a winner if there exists no y 6= x such that there exists a c ∈ C such that

1. for all c′ 6= c such that c′ ≈ c or c′ � c we have δ(c′, x) ≥ δ(c′, y), and

2. δ(c, y) < δ(c, x).

This definition coincides for strict total orders with Definition 6.4.1. Condition 1 has been extended to
handle equally ranked constraints. Now, a candidate y is better than x if there exists a constraint c such that
for all equally ranked and for all higher ranked constraints, y behaves at least as good as x (Condition 1)
and y is w.r.t. c strictly better than x (Condition 2). Hence, candidate x is a winner if there exists no
other candidate which is better than x. One major motivation for allowing equally ranked constraints in
Optimality Theory is the observation of non-unique winners. Often, more than one expression is possible
for a given input. That two candidates do not differ at a single constraint, is very unlikely. So under strict
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total constraint ranking, one should win over the other. Non-unique winners occur if two candidates differ
with respect to two constraints where one constraint favors one, and the other constraint the other candidate.
These two constraints must be ranked equally.

For example, let x, y, z be candidates, c1, c2 be constraints where c1 ≈ c2 and let be given the following
constellations for violation degrees:

Case 1:
c1 c2

x ∗ ∗∗
y ∗∗ ∗

Case 2:
c1 c2

x ∗ ∗∗
y ∗ ∗

Case 3:
c1 c2

x ∗∗
y ∗ ∗
z ∗∗

In case 1 we get x and y as winners. In case 2 we get only y as a winner, and in case 3 we get x, y, and z
as winners.

In Figure 6.5, we give an encoding of Definition 6.4.2 in ASP.

winner(X) ← cd(X), not defeated(X)(6.66)

defeated(X) ← cd(X), cd(Y ), Y 6= X, better(Y, X)(6.67)

better(Y, X) ← cd(X), cd(Y ), Y 6= X, cst(C), wins(Y, X, C), not hp(X, Y, C)(6.68)

hp(X, Y, C) ← cd(X), cd(Y ), Y 6= X, cst(C), C 6= C1, prefeq(C1, C), wins(X, Y, C1)(6.69)

hp(X, Y, C) ← cd(X), cd(Y ), Y 6= X, cst(C), pref (C1, C), wins(X, Y, C1)(6.70)

wins(X, Y, C) ← cd(X), cd(Y ), cst(C), viol(X, C, NX), viol(Y, C, NY ), NX < NY(6.71)

pref (X, Z) ← pref (X, Y ), pref (Y, Z)(6.72)

pref (X, Z) ← pref (X, Y ), prefeq(Y, Z)(6.73)

pref (X, Z) ← prefeq(X, Y ), pref (Y, Z)(6.74)

prefeq(X, Z) ← prefeq(X, Y ), prefeq(Y, Z)(6.75)

prefeq(X, Y ) ← prefeq(Y, X)(6.76)

← pref (C, C), cst(C)(6.77)

← cst(C1), cst(C2), unrkd(C1, C2), C1 6= C2(6.78)

unrkd(C1, C2) ← cst(C1), cst(C2), not pref (C1, C2), not pref (C2, C1), not prefeq(C1, C2)(6.79)

Figure 6.5: Winner determination (total pre-order)

Rule (6.66)–(6.71) encode Definition 6.4.2. Rule (6.69) has been added compared to the encoding for
Definition 6.4.1, which addresses the handling of equally ranked constraints. Rules (6.72)–(6.79) make,
analogously to Rules (6.62)–(6.65), the preference relation, which is transitive and total explicit, where
prefeq(X, Y ) denotes that the constraints X and Y are ranked equally and pref (X, Y ) expresses that x
is ranked strictly higher than y. Hence, our logic program Π for our abduction problem now consists of
the rules (6.54)–(6.56) and (6.66)–(6.79). Our hypotheses are now the set of all pairwise strict preference
relations and the set of all possible indifferences.

H = {pref (c, c′)←| c, c′ ∈ C, c 6= c′} ∪ {prefeq(c, c′)←| c, c′ ∈ C, c 6= c′}

From this set of hypotheses, all possible total orders 8 are constructable. Coming back to our example,
Table 6.2 shows us all explanations for observation O(x) when abducing total orders (not necessarily strict)
with the given background knowledge pref (comph, hcomp) ←. For candidate 321, we additionally get
the supposed explanation that H-V Comp ≈ H-Comp.

8Note that for total orders indifferences are allowed, whereas for strict total orders no indifferences are allowed.
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x Explanations

321
∆1 = {Comp-H � H-Comp� H-V Comp}
∆2 = {Comp-H � H-V Comp� H-Comp}
∆3 = {Comp-H � H-V Comp ≈ H-Comp}

231 no explanations
123 ∆ = {H-V Comp� Comp-H � H-Comp}
132 no explanations
312 no explanations
213 no explanations

Table 6.2: Explanations for Comp-H � H-Comp under total orders

Next, we want to extend our example to stress dependent non-default orders. While 123 is the default
order in the St. Gallen (Swiss German) dialect, further orders are possible with particular stress patterns.
In particular, order 213 (müssen wird singen, “must will sing”) is possible with main stress on verb 2,
“müssen”, and order 312 is possible with stress on verb 3, “singen”. Along with these stress patterns comes
a meaning change, contrastive focus. These expressions are only usable for particular purposes, e.g., where
one wants to emphasize that she HAD TO sing the song, though she didn’t want to (order 213 with stress
on verb 2), or that she had to SING the song, though she only wanted to sum it (order 312 with stress on
verb 3).

In the following, we concentrate exemplarily on the St. Gallen (Swiss German) dialect. For our 3 verb
cluster, the focus can either be on the modal, on the auxiliary, or on the predicative verb. The word order
effect of focus is that the focused verb may be leftmost in the verb cluster. This is required by the focus
constraints that we use here. Table 6.3 shows the violation degrees for the focus constraints [178], where
Foc(V ) denotes stress on the predicative verb, Foc(Mod) stress on the modal verb, and Foc(Aux) stress on
the auxiliary verb. For focus considerations the constraint H-Comp is irrelevant. Hence, we only have to

Foc(V) Foc(Mod) Foc(Aux)
321 ∗ ∗
231 ∗ ∗
123 ∗ ∗
132 ∗ ∗
312 ∗ ∗
213 ∗ ∗

Table 6.3: Violations of narrow focus for St. Gallen Swiss German

consider the constraints H-V Comp, Comp-H , and a constraint Foc(.) which indicates whether the focus
is leftmost. Additionally, we have the knowledge that H-V Comp � Comp-H holds, since we are in the
Swiss German dialect.

Applying our abduction framework to this case yields the following results: 321, 231, and 132 have no
explanations. They cannot be obtained as winners for any focus considered here. 123 has H-V Comp �
Foc(i) ≈ Comp-H as explanation for all three foci, where i ∈ {V,Mod,Aux}. Additionally, 123 has the
explanation Foc(Aux) ≈ H-V Comp � Comp-H for focus on the auxiliary verb. Candidate 312 has an
explanation only for focus on the predicative verb, i.e. Foc(V ) � H-V Comp � Comp-H . Candidate
213 has an explanation only for focus on the modal verb. That is, Foc(Mod)� H-V Comp� Comp-H .

Instead of abducing preference structures, one can also abduce, which dialect and underlying focus
the speaker has. More precisely, we have knowledge about the constraint ranking for the different foci
within Standard and Swiss German. Then, we observe a sentence as a winner. The question is then, which
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focus and which underlying dialect the native speaker has. The abduction problem 〈Π,H, O〉 is defined as
follows: Our hypotheses are the set of matters

H =

 matter(focVSG)← matter(focVStG)←
matter(focModSG)← matter(focModStG)←
matter(focAuxSG)← matter(focAuxStG)←


where matter(focVSG) denotes that the focus is on the verb in Standard German, matter(focModSG)
denotes focus on modal verb in Standard German, . . ., and matter(focAuxStG) denotes the focus on the
auxiliary verb in St. Gallen Swiss German. Π contains information about preference orderings, which
depend on stress and the dialect. We have taken for St. Gallen Swiss German the ranking Foc(i) �
H-V Comp � Comp-H , where i ∈ {V,Mod,Aux}. Analogously, for Standard German, we have taken
the ranking IF (i) � Comp-H � H-V Comp, where IF (“Ideal Focus”) denotes the focus placement
constraint that is at work in Standard German, cf. [178] – roughly, it requires focused verbs to be “isolated”
from the next higher verb at an edge of the cluster, e.g., 312 is ideal for focus on verb 3, and 132 is ideal
for focus on verb 1 or 2. Furthermore, Π contains the slightly modified rules (1)–(9), where the preference
relations and the constraints depend on the abduct matter. Again, we have used DLV as diagnosis system.
Since we are interested in abducing single explanations 9 for this example, we have used the DLV option
-FDsingle.

As an explanation for O(321), we get that the focus is on the auxiliary verb in Standard German, for
O(123) focus is on auxiliary in St. Gallen dialect, for O(132) focus on modal in Standard German, for
O(312) we get two explanations, one where the focus is on the predicative verb in Standard German, and
the other where it is on the predicative verb in St. Gallen German. O(213) is explained by focus on the
modal in St. Gallen German. O(231) has no explanations. These results are in line with the empirical
findings in [178].

6.4.4 Discussion and Further Work
In this section, we have associated OT with abduction and preference handling. Abduction and preference
handling were studied, e.g., in [109] to derive intended conclusions. But, as far as we know, abduction and
preferences were not yet linked to optimality theory before.

We have shown that abduction within ASP is a useful knowledge reasoning tool for linguistic problems,
here: dialectic studies, where the abduced explanations match the empirical results found out by linguists.
ASP has also successfully been used for research in historical linguistics [86].

We have taken the perspective of a linguist and have reconstructed dialectal variation as abduction
problems: Given an observation that a sentence is found as grammatically correct (well-formed), abduce
the underlying constraint ranking of the dialect. Furthermore, we have provided an encoding (within ASP)
for the diagnosis front-end of the DLV system.

Regarding linguistic studies, there is an ongoing debate within linguistics about how unique the rule
systems of language are in human cognition, as well as in biology in a very broad sense. The reconstruction
of grammatical regularities with abduction and preference handling has consequences for this debate: if
grammars can be modeled this way, then they share core properties with other non-linguistic rule systems.
This supports a position that does not make special assumptions about the nature of linguistic rule systems.

Regarding well-formed expressions, optimal candidates were defined only for strict total orders of the
underlying constraints before [13]. In this work, we have extended the definition for optimal candidates
to total orders, where it is allowed that constraints can be ranked equally. We want to note that there are
several possibilities to model the determination of winners in case of equally ranked constraints. Another
possibility would be to “count” all constraint violations of candidates which are ranked equally and then
apply Definition 6.4.1 where equally ranked constraints are understand as one constraint. But this may lead

9An explanation ∆ is single, if |∆| = 1 holds.
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to unintuitive results. For example, let x, y, z be candidates, c1, c2 be constraints where c1 ≈ c2 and let be
given the following violation degrees:

c1 c2

x ∗ ∗ ∗
y ∗ ∗
z ∗ ∗ ∗

Definition 6.4.2 yields x, y and z as optimal. Counting the violation degrees of all equally ranked constraints
would lead to y as a winner. Then, x and z are not optimal candidates which is not desired.

We have abduced constraint orderings for dialects in German. Furthermore, we have exemplarily studied
abduction for focus dependent orders. The results confirm the empirical findings. OT can thus successfully
be modeled with abduction and preference handling. For the practicing linguist, this tool can be quite
helpful. When considering a linguistic phenomenon, one usually starts with exploring it within a few
languages. A constraint set is hypothesized that is held responsible for the observed patterns. However, as
it is one premise of OT that any constraint ranking is a possible grammar, it is not enough to show that a
set of constraints can be used to explain a particular phenomenon in one language. All possible constraint
rankings and all possible candidates have to be considered. Every OT analysis leads to a proposal about
possible languages. The calculation of these predictions can easily go beyond what one can handle without
computational tools. The abductive framework introduced here can therefore aid the evaluation of linguistic
theories.

An interesting further research topic is to study the outcome of observing non-unique optimal candi-
dates. That is, we have observations like winner(x), where it is possible that other candidates y 6= x can
also be obtained optimal. First experiments have shown that this leads to different results for the focus
contexts. There, it happens that for special rankings among the constraints more than one candidate is ob-
served as a winner. Furthermore, candidate 132 can be explained in dialect considerations, cf. Table 6.2,
when we consider non-unique optimal candidates. We will leave it to further linguistic studies to interpret
these behaviors. Another line would be to observe candidates as non-optimal. That is, the explanations give
possible constraint rankings such that a candidate could not be a winner. Also, one can study the abduction
of partial preference relations, which has not been considered in this paper. Although optimality theory
excludes partial orders, we can ask here whether partial orders (not total) may lead to “optimal” candidates.
More precisely, under which conditions and for which examples, is a partial order among constraints an
explanation, but no total extension of that partial ordering leads to an explanation for observing a candidate
as winner. For example, candidate 132 violates each of our word order constraints once and represents a
kind of “compromise candidate”, which could be obtained by partial orders. Interestingly, this candidate
can be observed in German dialects very frequently, it even appears to be a second default order sometimes.
In [178], this is captured by assuming additional constraints. Introducing new constraints is a delicate issue,
as these require independent substantial justification which is not always easy to find. An explanation of the
occurrence of the 132 order as default with partial constraint ranking would have the advantage of avoiding
this consequence.

6.5 Summary
In this chapter, we have considered two new applications of preference handling within answer set pro-
gramming.

First, we have linked voting theory to ASP. Referring to this, we have made in Section 6.1 first steps
towards computing the outcome of voting procedures when the voter’s preferences are incomplete. We
have introduced natural notions of possible and necessary winners for partial preference profiles w.r.t. dif-
ferent voting procedures. Furthermore, we have shown that for positional scoring procedures and for the
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Condorcet procedure, possible and necessary winners can be computed in polynomial time by very simple
algorithms. Additionally, we pointed connections to vote manipulation and elicitation.

Afterwards in Section 6.2, we have given an encoding of these new voting procedures within answer
set programming. This encoding was integrated in Section 6.3 into the problem of scheduling a meet-
ing, whereas scheduling problems are well-known applications for answer set programming. For example,
in [91] an encoding of school timetabling within answer set programming has been presented, where prefer-
ences are presented as weak constraints which induce a priority level among the set of possible timetables.
In [179], an agent-based meeting scheduling system was developed that can automate the task of scheduling
meetings between groups of users by interacting with the users. They have used techniques from voting the-
ory to arrive at consensus choices for meetings while balancing different preferences, which are presented
as weights. A more complex overview of timetabling algorithms is given in [175].

After we have described the basic problem of scheduling a group meeting in Section 6.3, we have in-
cluded for the first time diagnostic reasoning into the scheduling problem. The introduced diagnostic model
gives us explanations, whenever no meeting was schedulable, e.g. if not enough attendees are available due
to conflicting unavailabilities. Finally, we have integrated the voting procedures to compute preferred meet-
ings, whenever several meetings are schedulable. For this, the voter, attendees of the meeting, can express
partial preferences among the set of schedulable dates, which seems to be very natural, e.g. one prefers a
meeting on Monday over Tuesday without given any time restrictions. Hence, the voting procedures defined
in Section 6.1 seem to be predestinated for this application.

As a second new application of answer set programming, we have associated in Section 6.4 Optimality
Theory with abduction and preference handling. We have shown that abduction within ASP is a useful
knowledge reasoning tool for linguistic problems, namely dialect studies. We have taken the perspective
of a linguist and have reconstructed dialectal variation as abduction problem: Given an observation that a
sentence is found as grammatically correct (well-formed), abduce the underlying constraint ranking of the
dialect. Furthermore, we have provided an encoding (within ASP) for the diagnosis front-end of the DLV
system. Before [13], optimal candidates were defined regarding well-formed expressions only for strict total
orders of the underlying constraints. In this work, we have, additionally, extended the definition for optimal
candidates to total orders with indifferences. Regarding linguistic studies, there is an ongoing debate within
linguistics about how unique the rule systems of language are in human cognition, as well as in biology in
a very broad sense. The reconstruction of grammatical regularities with abduction and preference handling
has consequences for this debate: if grammars can be modeled this way, then they share core properties
with other non-linguistic rule systems. This supports a position that does not make special assumptions
about the nature of linguistic rule systems.

There is a huge number of further applications of preferences within answer set programming, e.g. for
the decision support system of the Space Shuttle (USA-Advisor) [7], in information cite selection [79],
auctioning, configuration, revision programming [160], preference grammars used by US Postal Service to
standardize postal addresses [56].



Chapter 7

Concluding remarks

In this thesis, we have concentrated on preferences within answer set programming. At the beginning we
had the following questions:

• Whether and how can preferences be integrated into an existing ASP solver?

• Which method for the computation of preferred answer sets is better?

• How should logic programs with preferences be handled by optimization methods?

We have answered these questions as follows: First, we have shown that preference information can be
integrated into an answer set solver. Among several formalisms and semantics for preference handling
within ASP, we have chosen ordered logic programs with the underlying D-, W -, and B- semantics. To
provide a base for the integration of preference information , we have developed a graph-based framework
for the computation of answer sets of logic programs. Then, we have extended this framework by pref-
erences, such that preferred answer sets are directly computed by this graph-based approach. Second, we
have compared our new method for computing preferred answer sets with existing approaches. It turned
out that the integrative method performs better on most considered problem classes than the other existing
approaches. Third, we have defined and studied novel notions of equivalences for ordered logic programs,
where we have presented several program transformations for ordered logic programs. Additionally, we
have presented two new applications for preference handling within answer set programming. The detailed
description of our contributions is as follows:

In Chapter 3, we have elaborated upon rule dependency graphs (RDGs) and their colorings for char-
acterizing and computing answer sets of logic programs. The general idea is to start from an uncolored
RDG and to employ specific operators that turn a partially colored graph gradually in a totally colored one,
finally representing an answer set. To this end, we have developed a variety of deterministic and non-
deterministic operators. Different coloring sequences are obtained by selecting different combinations of
operators. In particular, we have identified the basic strategies employed by the noMoRe system. The goal
of this framework is to offer an intermediate stage between declarative characterizations of answer sets and
corresponding algorithmic specifications. We believe that this greatly facilitates the formal elaboration of
computational approaches. In fact, our operational framework can be seen as a “theoretical toolbox” that
allows for assembling specific strategies for answer set formation. This operational framework establishes
the basics for the nomore++ system [152, 3, 2], the successor of the noMoRe system.

In Chapter 4, we have incorporated preferences as a third type of edges of rule dependency graphs.
Among several approaches for adding preference information to answer set programming, we have con-
sidered three semantics, interpreting preferences as inducing a selection function among the answer sets
of the underlying program [34, 62, 194]. We have shown that these selection functions can be character-
ized by graph-oriented methods in a uniform way and how this can be realized by means of an operational
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semantics. Furthermore, we have extended the deterministic and non-deterministic operations from the
operational framework for graph-based computation of answer sets (cf. Chapter 3) by preferences for one
preference semantics. This is done through the restriction of propagation and choice operations to those
rules that are not dominated by any preferred rules whose application status is indeterminate. Hence, we
have answered the first question from the introduction (see on page 2):

“How can preferences be integrated into an existing ASP solver?”

We have shown that it is possible to integrate preference information into an ASP solver and we have
introduced a framework for this integrative approach. Furthermore, we have presented a C++ implemen-
tation of this framework including experimental evaluations for which we have defined novel benchmarks
for logic programs with preferences. Up to now, the considered preference approaches have either been
implemented by meta-interpretation [77] or by pre-compilation front-ends [62]. In contrast to that, our
operational framework characterizes the integration of preference information into an ASP solver. First
experimental evaluations have show that the integrative method for computing preferred answer sets seems
to be better than meta-interpretation or a pre-compilation front-end. Thus, we have answered the second
question from the introduction (see on page 2):

“Which method for the computation of preferred answer sets of ordered logic programs is better; the
integration of preferences into an ASP solver or a compilation or meta-interpretation method for

preferences?”

Our first studies have shown that the integrative approach for preference handling seems to be good method
for computing preferred answer sets.

In Chapter 5 we have concentrated on notions of equivalence for logic programs with preferences,
which have never been studied before. In analogy to strong equivalence for (normal) logic programs,
we have defined strong order and n-strong order equivalence for ordered logic programs. While strong
order equivalence considers all admissible extensions by ordered programs, the more liberal notion of n-
strong order equivalence considers only extensions of ordered programs by normal logic programs. For
both notions of equivalence we have studied characterizations concerning three semantics for preference
handling, namely the D-, W -, and B- semantics. We have shown that two ordered programs are strongly
<W - and <D-equivalent, if and only if their preference relations are equal, their standard ASP programs
are strongly equivalent, and their “non-looping” generating rules are identical for all answer sets of any
extension of them. For B-preference, also the “looping” generating rules must be identical in any answer
set. In contrast to strong order equivalence, whenever two ordered programs are n-strongly order equivalent
their underlying logic programs have to be strong equivalent, but they can differ on their preference relations
and on their generating rules, i.e. rules contributing to answer sets. Hence, we are able to answer the third
question from the introduction (see on page 2):

“How should ordered logic programs be handled by optimization methods? Under which conditions can
we simplify ordered logic programs and their underlying preferences?”.

For strong order equivalence no simplification of preference relations is possible, but under n-strong order
equivalence we can simplify preference relation. Referring to this, we have defined several transformations
under n-strong order equivalence, which remove redundant preference relations. Additionally, we have
analyzed program simplifications known from strong equivalence for normal logic programs. Furthermore,
we have studied the computational complexity of the main decision problems, in particular deciding whether
two programs are order equivalent, whether two programs are strongly order equivalent, and whether two
programs are n-strongly order equivalent. It turned out that all three issues are co-NP-complete and thus
they are neither harder nor simpler than equivalence and strong equivalence for normal logic programs.
Finally, we have studied the relationship among the considered preference semantics under strong order
and n-strong order equivalence. It turned out that the relationship between the three preference semantics
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is totally changing under the considered notions of order equivalence. Further work will focus on other
notions of order equivalence. Instead of considering all possible extension of ordered programs by ordered
ones, we will consider extensions by ordered programs, which do not interfere into the preference relation
of the original program.

In Chapter 6, we have considered two new applications of preference handling within answer set pro-
gramming. First, we have linked voting theory with ASP, which has to the best of our knowledge never
been done before. We have defined new voting procedure to handle partial preference relations within au-
tomated group decision making processes. We have integrated these voting procedures into the problem of
scheduling a group meeting, where we have also included diagnostic reasoning into the problem. As a sec-
ond new application of answer set programming, we have associated optimality theory with abduction and
preference handling. We have shown that abduction within ASP is a useful knowledge reasoning tool for lin-
guistic problems, namely dialect studies. We have taken the perspective of a linguist and have reconstructed
dialectal variation as abduction problem: Given an observation that a sentence is found as grammatically
correct (well-formed), abduct the underlying constraint ranking of the dialect. Regarding linguistic studies,
there is an ongoing debate within linguistics about how unique the rule systems of language are in human
cognition, as well as in biology in a very broad sense. The reconstruction of grammatical regularities with
abduction and preference handling has consequences for this debate: if grammars can be modeled this way,
then they share core properties with other non-linguistic rule systems. This supports a position that does
not make special assumptions about the nature of linguistic rule systems.
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Appendix A

Chapter 3

A.1 Auxiliary results

In this section we want to provide theorems which are needed in the proofs. The first theorem gives an
characterization of answer sets in terms of generating rules which corresponds to C⊕ in our approach.

Theorem A.1.1 Let Γ be the RDG of logic program Π, let X be a set of atoms, and let C be a partial
coloring of Γ. Then, X ∈ ASΠ(C) iff (RΠ(X),Π \RΠ(X)) ∈ ACΠ(C).

Proof A.1.1 This follows directly from the definition of ASΠ(C) and ACΠ(C).

Theorem A.1.2 Let Π be a logic program and X be a set of atoms. Then, X is an answer set of Π iff
X = Cn((RΠ(X))∅).

Proof A.1.2 Let X be an answer set and let Π be a logic program. The definition of answer sets states

(A.1) X is an answer set of Π iff Cn(ΠX) = X.

We know that for positive logic programs ΠX and (RΠ(X))∅ we have:⋃
i≥0

T i
ΠX (∅) = Cn(ΠX) and(A.2)

⋃
i≥0

T i
(RΠ(X))∅(∅) = Cn((RΠ(X))∅).(A.3)

”⇒” Now let X be an answer set. Then we have

(A.4) T i
ΠX (∅) ⊆ X.

for all i ≥ 0 because of (A.1) and (A.2). With (A.1) it is sufficient to show Cn((RΠ(X))∅) = Cn(ΠX).
We want to prove the equation ⋃

i≥0

T i
ΠX (∅) =

⋃
i≥0

T i
(RΠ(X))∅(∅)

141
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by induction over i. With this equation and using (A.2) and (A.3) the statement X = Cn((RΠ(X))∅) is
proven. For i = 0 we have: T 0

ΠX (∅) = ∅ = T 0
(RΠ(X))∅

(∅). Now let i = 1. Then we have:

T 1
ΠX (∅) = TΠX (∅)

= {head(r) : r ∈ ΠX , body(r) ⊆ ∅} (by (2.2))
= {head(r) : r ∈ Π,

body−(r) ∩X = ∅, body+(r) ⊆ ∅} (by (2.1))
= {head(r) : r ∈ (RΠ(X))∅, body(r) = ∅} (by (body+(r) = ∅))
= T 1

(RΠ(X))∅
(∅) (by (2.2))

Assume that we have the induction hypothesis (IH) T i
ΠX (∅) = T i

(RΠ(X))∅
(∅). For i + 1 we have:

T i+1
ΠX (∅) = TΠX (T i

ΠX (∅))
= {head(r) : r ∈ ΠX , body(r) ⊆ T i

ΠX (∅)} (by (2.2))
= {head(r) : r ∈ Π,

body−(r) ∩X = ∅, body+(r) ⊆ T i
ΠX (∅)} (by (2.1))

T i+1
(RΠ(X))∅

(∅) = T(RΠ(X))∅(T i
(RΠ(X))∅

(∅))
= {head(r) : r ∈ (RΠ(X))∅, body(r) ⊆ T i

(RΠ(X))∅
(∅)} (by (2.2))

= {head(r) : r ∈ Π, body−(r) ∩X = ∅,
body+(r) ⊆ X, body+(r) ⊆ T i

(RΠ(X))∅
(∅)}

= {head(r) : r ∈ Π, body−(r) ∩X = ∅,
body+(r) ⊆ X, body+(r) ⊆ T i

ΠX (∅)} (by (IH))
= {head(r) : r ∈ Π, body−(r) ∩X = ∅,

body+(r) ⊆ T i
ΠX (∅)} (by (A.4))

Thus we have proven X = Cn((RΠ(X))∅).

”⇐” Now let X = Cn((RΠ(X))∅). We have to show that X is an answer set. Because of (A.3) we
have T i

(RΠ(X))∅
(∅) ⊆ X for all i ≥ 0. Using this equation we can show analogously that T i

ΠX (∅) =

T i
(RΠ(X))∅

(∅) holds for all i ≥ 0. Therefore, we have Cn(ΠX) = Cn((RΠ(X))∅) because of (A.3) and
(A.2). Finally, (A.1) gives us that X is an answer set.

If we have an answer set, the set of generating rules possesses an enumeration which will provide the
support graph of a (colored) RDG .

Theorem A.1.3 Let Π be a logic program and X an answer set of Π. Then, there exists an enumeration
〈ri〉i∈I of RΠ(X) such that for all i ∈ I we have body+(ri) ⊆ head({rj | j < i}).

Proof A.1.3 Let X be an answer set of logic program Π. We have to show, that there exists an enumeration
〈ri〉i∈I of RΠ(X), such that for all i ∈ I we have body+(ri) ⊆ head({rj | j < i}). Since X is an
answer set, we know from Theorem A.1.2: X = Cn((RΠ(X))∅). Furthermore we have Cn((RΠ(X))∅) =⋃

i≥0 T i
(RΠ(X))∅

(∅). Thus, we have that X =
⋃

i≥0 T i
(RΠ(X))∅

(∅). For this reason, we find an enumeration
〈xj〉j∈J of X such that xi ∈ T k

(RΠ(X))∅
(∅) and xj ∈ T l

(RΠ(X))∅
(∅) hold for i < j and some minimal k and

l such that k < l. This enumeration 〈xj〉j∈J of X gives us an enumeration 〈ri〉i∈I of RΠ(X) such that for
all i ∈ I we have body+(ri) ⊆ head({rj | j < i}).

Given an answer set X ∈ ASΠ(C) of a partial coloring we observe that head(C⊕) ⊆ X . Furthermore, if
C is total, the heads of all rules in C⊕ generates the answer set X .

Theorem A.1.4 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Furthermore let
X ∈ ASΠ(C). Then, head(C⊕) ⊆ X . If C is admissible, then head(C⊕) = X .
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Proof A.1.4 Let Γ be the RDG of logic program Π, C be a partial coloring of Γ and let X ∈ ASΠ(C)
be an answer set of Π. By definition of X we have C⊕ ⊆ RΠ(X), C	 ∩ RΠ(X) = ∅ and X =
Cn((RΠ(X))∅) =

⋃
i<ω T i

(RΠ(X))∅
(∅). By induction we show that for all r ∈ RΠ(X) we have head(r) ∈⋃

i<ω T i
(RΠ(X))∅

(∅). Then, head(C⊕) ⊆ X =
⋃

i<ω T i
(RΠ(X))∅

(∅), by head(C⊕) ⊆ head(RΠ(X)). By

Theorem A.1.3 we have an enumeration 〈ri〉i∈I of RΠ(X) such that for all i ∈ I we have body+(ri) ⊆
head({rj | j < i}). Let be I = {0, . . . ,m} for some m < ω. Clearly, we have body+(r0) = ∅ ⊆⋃

i<ω T i
(RΠ(X))∅

(∅). Let be rk ∈ RΠ(X) for k < m and head({r0, . . . , rk−1}) ⊆
⋃

0≤i≤l T
i
(RΠ(X))∅

(∅)
for some l < ω. We have to show, that head(rk) ⊆

⋃
0≤i≤l+1 T i

(RΠ(X))∅
(∅) holds. Because we have an

enumeration of RΠ(X) satisfying Theorem A.1.3 we have body+(rk) ⊆ head({r0, . . . , rk−1}). By Equa-
tion 2.2 we have head(rk) ⊆

⋃
0≤i≤l+1 T i

(RΠ(X))∅
(∅). Thus, we have head(C⊕) ⊆ head(RΠ(X)) ⊆⋃

i<ω T i
(RΠ(X))∅

(∅) = X . Assume C is admissible, then C⊕ = RΠ(X). It remains to show that

X ⊆ head(C⊕). Let p ∈ X be some atom. By X = Cn((RΠ(X))∅) there must exists an r ∈ RΠ(X)
such that p = head(r). By C⊕ = RΠ(X) we have r ∈ C⊕ and thus we have p ∈ head(C⊕).

An analog is observed with the set C	. If for some atom q all rules with q as head are in the set C	 then q
is not in the answer set X ∈ ASΠ(C).

Theorem A.1.5 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Furthermore, let
X ∈ ASΠ(C) and p ∈ Atm. If {r ∈ Π | head(r) = p} ⊆ C	 then p 6∈ X .

Proof A.1.5 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Furthermore let
X ∈ ASΠ(C). Let C ′ be a total coloring such that C v C ′, C ′

⊕ = RΠ(X), and C ′
	 ∩ RΠ(X) = ∅

hold. Clearly, such C ′ must exists because we have an answer set X such that {X} = ASΠ(C ′). By
Theorem A.1.4 we have head(C ′

⊕) = X . Let be p ∈ Atm such that {r ∈ Π | head(r) = p} ⊆ C	 ⊆ C ′
	.

Then, {r ∈ Π | head(r) = p} ∩ C ′
⊕ = ∅ and thus we have head(r) = p 6∈ X for all such r ∈ Π.

Given an answer set X ∈ ASΠ(C) for a partial coloring where C⊕ = RΠ(X) and C	 = ∅ then all rules
which are blocked are obtained by the operator PΓ .

Theorem A.1.6 Let Γ be the RDG of logic program Π, X be an answer set of Π and C be a partial
coloring of Γ such that C⊕ = RΠ(X) and C	 = ∅. Furthermore, let CX be a total coloring of Γ such that
{X} = ASΠ(CX). Then, PΓ(C) = (C⊕, C ′

	) where B(Γ, CX) ⊆ C ′
	.

Proof A.1.6 Let Γ = (Π, E0, E1) be the RDG of logic program Π, X be an answer set of Π and C be a
partial coloring of Γ such that C⊕ = RΠ(X) and C	 = ∅. Furthermore, let CX be a total coloring of Γ
such that {X} = ASΠ(CX). We have to show that PΓ(C) = (C⊕, C ′

	) holds where B(Γ, CX) ⊆ C ′
	.

We have PΓ(C) = (C⊕ ∪ (S(Γ, C) ∩B(Γ, C)), C	 ∪ S(Γ, C) ∪B(Γ, C)). Thus we have to show:

1. C⊕ = C⊕ ∪ (S(Γ, C) ∩B(Γ, C)) and

2. B(Γ, CX) ⊆ C	 ∪ S(Γ, C) ∪B(Γ, C).

1: By Theorem 3.1.3 we have S(Γ, C) ∩B(Γ, C) ⊆ RΠ(X) = C⊕.
2: It remains to show that B(Γ, CX) ⊆ B(Γ, C). Let be r ∈ B(Γ, CX). Then there exists an r′ ∈ CX

⊕
such that (r′, r) ∈ E1. By CX

⊕ = RΠ(X) = C⊕ we have r ∈ B(Γ, C).

The next Theorem about monotonicity of 3-valued interpretations is used in the proofs of Section 3.4.

Theorem A.1.7 Let Γ be the RDG of logic program Π and C,C ′ be partial colorings of Γ.
If C v C ′ then (XC , YC) ⊆ (XC′ , YC′).

Proof A.1.7 Let Γ be the RDG of logic program Π and C,C ′ be a partial colorings of Γ such that C v C ′.
Let be a ∈ XC , then there exists an r ∈ C⊕ such that head(r) = a. By C⊕ ⊆ C ′

⊕ we have a ∈ XC′ . Let
be a ∈ YC , then for all r ∈ Π such that head(r) = a we have r ∈ C	. By C	 ⊆ C ′

	 we have a ∈ YC′ .
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A.2 Inductive definitions
In this section we want to give the inductive definitions of our operators given in Section 3.3. We write
i < ω for i being a finite natural number greater or equal than 0.

According to P∗Γ , we define P (C) as P (C) =
⊔

i<ω P i(C) where P 0(C) = C and P i+1(C) =
PΓ(P i(C)) for i < ω. Clearly, P i(C) v P i+1(C) for all i < ω. By using PΓ in every iteration step,
we have that P i(C) is always a partial coloring for i < ω. Note that P (C) not always exists. To see this,
observe that P 1({a← not a}, ∅) would be ({a← not a}, {a← not a}) which is not a partial coloring.

Theorem A.2.1 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Then,

1. if ACΠ(C) 6= ∅ then P (C) exists,

2. P (C) is a partial coloring,

3. ACΠ(C) = ACΠ(P (C)) and for all i < ω we have X ∈ ASΠ(C) iff X ∈ ASΠ(P i(C)) iff
X ∈ ASΠ(P (C)),

4. C v P (C),

5. P (C) closed under PΓ ,

6. P (C) is the v-smallest partial coloring closed under PΓ , and

7. P (C) = P∗Γ(C).

Proof A.2.1 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
1: The existence of P (C) =

⊔
i<ω P i(C) follows from Theorem 3.3.1 and from property 3 in this theorem

by induction over i.
2: By definition of P (C) and Definition 3.3.1, P (C) is a partial coloring, because P (C) only operates on
partial colorings.
3: By Theorem A.1.1 it remains to show that ASΠ(C) = ASΠ(P (C)). By C v P i(C) we have, if X ∈
ASΠ(P i(C)) then X ∈ ASΠ(C) for all i < ω. Furthermore, if X ∈ ASΠ(P (C)) then X ∈ ASΠ(P i(C))
by P i(C) v P (C) for all i < w. Let X ∈ ASΠ(C). We prove by induction over i that X ∈ ASΠ(P i(C))
for all i < ω and thus X ∈ ASΠ(P (C)). For i = 0 we have P 0(C) = C and thus by definition of C,
X ∈ ASΠ(P 0(C)). Assume, X ∈ ASΠ(P k(C)) for all 0 ≤ k ≤ i for some i < ω. We have to show
that X ∈ ASΠ(P i+1(C)). Abbreviatory we write C ′ instead of P i(C). We have C ′

⊕ ⊆ RΠ(X) and
C ′
	 ∩RΠ(X) = ∅. By

P i+1(C) = PΓ(C ′) = (C ′
⊕ ∪ (S(Γ, C ′) ∩B(Γ, C ′)), C ′

	 ∪ S(Γ, C ′) ∪B(Γ, C ′)),

it remains to show, that S(Γ, C ′) ∩ B(Γ, C ′) ⊆ RΠ(X) and (S(Γ, C ′) ∪ B(Γ, C ′)) ∩ RΠ(X) = ∅. But
this holds by Theorem 3.1.3. Thus, X ∈ ASΠ(P i+1(C)).
4: C = P 0(C) v P (C) holds by definition of P 0(C) and P i+1(C) for all i < ω.
5: We have to show, thatPΓ(P (C)) = P (C). By finiteness there exists an n < ω such that P (C) = Pn(C)
and Pn(C) = Pn+1(C). Thus, we have to show PΓ(Pn(C)) = P (C). By definition of P (C) we have
PΓ(Pn(C)) = Pn+1(C) v P (C). It remains to show, that P (C) = Pn(C) v PΓ(Pn(C)). But this
holds by definition of PΓ . Thus, PΓ(P (C)) = P (C).
6: We have to show that P (C) is the v-smallest partial coloring closed under PΓ . Assume there exists a
Q(C) 6= P (C) such that Q(C) v P (C) and Q(C) is a partial coloring closed under PΓ . Given Q0(C) =
C = P 0(C), there must exists a (minimal) i < ω such that Qi+1(C) 6= P i+1(C) and Qj(C) = P j(C)
for all j ≤ i. But then Qi+1(C) = PΓ(Qi(C)) 6= PΓ(P i(C)) = P i+1(C). By Qi(C) = P i(C), we have
PΓ(Qi(C)) = PΓ(P i(C)) and thus Qi+1(C) = P i+1(C) by definition of PΓ . This is a contradiction. For
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this reason, P (C) is the v-smallest partial coloring closed under PΓ .
7: This follows directly from conditions 4–6 and by definition of P∗Γ(C).

According to T ∗Γ , we define T (C) as T (C) =
⊔

i<ω T i(C) where T 0(C) = C and T i+1(C) = TΓ(T i(C))
for i < ω. Clearly, T i(C) v T i+1(C) for all i < ω.

Theorem A.2.2 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Then,

1. T (C) is a partial coloring,

2. C v T (C),

3. T (C) closed under TΓ ,

4. T (C) is the v-smallest partial coloring closed under TΓ , and

5. T (C) = T ∗Γ (C).

Proof A.2.2 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
1: We prove by induction over i that T i(C) is a partial coloring for all i < ω. Then, T (C) is a partial
coloring. For i = 0 we have T 0(C) = C is a partial coloring. Assume that T k(C) is a partial coloring for
all 0 ≤ k ≤ i for some i < ω. We have to show that T i+1(C) is a partial coloring. We have

T i+1(C) = TΓ(T i(C)) = (T i(C)⊕ ∪ (S(Γ, T i(C)) \ T i(C)	), T i(C)	).

But this is clearly a partial coloring because T i(C) is a partial coloring.
2-5: Hold analogous to Theorem A.2.1.

According to (PU)∗Γ , we define PU(C) =
⋃

i<ω PU i(C) where PU0(C) = C and PU i+1(C) =
UΓ(PΓ(PU i(C))) for i < ω. Clearly, PU i(C) v PU i+1(C) for all i < ω.

Theorem A.2.3 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Then,

1. If ACΠ(C) 6= ∅ then PU(C) exists,

2. PU(C) is a partial coloring,

3. ACΠ(C) = ACΠ(PU(C)) and for all i < ω we have X ∈ ASΠ(C) iff X ∈ ASΠ(PU i(C)) iff
X ∈ ASΠ(PU(C)),

4. C v PU(C),

5. PU(C) closed under PΓ and UΓ ,

6. PU(C) is the v-smallest partial coloring closed under PΓ and UΓ , and

7. PU(C) = (PU)∗Γ(C).

Proof A.2.3 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
1: The existence of PU(C) =

⋃
i<ω PU i(C) follows inductively by theorems 3.3.1 and 3.2.2 (existence

of maximal support graphs) and by property 3 in this theorem.
2: This could be proven analogous to Theorem A.2.1 by the existence of UΓ in each inductive step for
defining PU(C).
3: By Theorem A.1.1 it remains to show that ASΠ(C) = ASΠ(PU(C)). By PU(C) w PU i(C) w C
for all i < ω we have if X ∈ ASΠ(PU(C)) then X ∈ ASΠ(PU i(C)) and then X ∈ ASΠ(C) for
all i < ω. Let X ∈ ASΠ(C). We prove by induction over i that X ∈ ASΠ(PU i(C)) for all i <
ω. Then, X ∈ ASΠ(PU(C)). For i = 0 we have PU0(C) = C and thus X ∈ ASΠ(PU0(C)).
Assume, X ∈ ASΠ(PUk(C)) for all 0 ≤ k ≤ i for some i < ω. Then, RΠ(X) ⊇ PU i(C)⊕ and
RΠ(X) ∩ PU i(C)	 = ∅. Now, we prove that X ∈ ASΠ(PU i+1(C)). We have to show that
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(a) RΠ(X) ⊆ PU i+1(C)⊕ and

(b) RΠ(X) ∩ PU i+1(C)	 = ∅.

(a): We have PU i+1(C)⊕ = UΓ(PΓ(PU i(C)))⊕. By Thm. A.2.1 we have RΠ(X) ⊆ PΓ(PU i(C))⊕ =
UΓ(PΓ(PU i(C)))⊕.
(b): We have PU i+1(C)	 = UΓ(PΓ(PU i(C)))	. Analogous to Theorem A.2.1 we havePΓ(PU i(C))	∩
RΠ(X) = ∅. Let (V,E) be a maximal support graph of (Γ,PΓ(PU i(C))) for some E ⊆ (Π × Π). To
prove UΓ(PΓ(PU i(C)))	 ∩RΠ(X) = ∅, it is enough to show that (Π \ V ) ∩RΠ(X) = ∅. But this holds
by Π \ V ⊆ {r | body+(r) 6⊆ X} ⊆ {r 6∈ RΠ(X)}.
4: C = PU0(C) v PU(C) holds by definition of PU(C).
5: We have to show PΓ(PU(C)) = PU(C) and UΓ(PU(C)) = PU(C). By finiteness, there exists an
n < ω s.t. PU(C) = PUn(C) and PUn(C) = PUn+1(C). PU(C) v PΓ(PU(C)) holds by definition of
PΓ . And, we have PUn+1(C) = UΓ(PΓ(PUn(C))) = PUn(C). Thus, we have PΓ(PU(C)) = PU(C).
By use of Theorem 3.3.9 we have

PUn(C) = UΓ(PΓ(PUn−1(C))) = UΓ(UΓ(PΓ(PUn−1(C)))) = UΓ(PUn(C)) = UΓ(PU(C)).

6: Assume there exists a Q(C) 6= PU(C) such that Q(C) v PU(C) and Q(C) is a partial coloring
closed under PΓ and UΓ . Given Q0(C) = C = PU0(C), there must exists a (minimal) i < ω s.t.
Qi+1(C) 6= PU i+1(C) and Qj(C) = PU j(C) for all j ≤ i. But then

Qi+1(C) = UΓQi(C) t PΓQi(C) tQi(C)
6= UΓPU i(C) t PΓPU i(C) t PU i(C) = PU i+1(C).

But this is a contradiction since PU i(C) = Qi(C). For this reason, PU(C) is the v-smallest partial
coloring closed under PΓ and UΓ .
7: This follows directly from condition 5 and by definition of (PU)∗Γ .

We define PV (C) as PV (C) =
⋃

i<ω PV i(C) PV 0(C) = C and PV i+1(C) = VΓ(PΓ(PV i(C))) for
i < ω. Clearly, PV i(C) v PV i+1(C) for all i < ω.

Theorem A.2.4 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Then,

1. If ACΠ(C) 6= ∅ then PV (C) exists,

2. PV (C) is a partial coloring,

3. ACΠ(C) = ACΠ(PV (C)) and for all i < ω we have X ∈ ASΠ(C) iff X ∈ ASΠ(PV i(C)) iff
X ∈ ASΠ(PV (C)),

4. C v PV (C),

5. PV (C) closed under PΓ and VΓ ,

6. PV (C) is the v-smallest partial coloring closed under PΓ and VΓ , and

7. PV (C) = (PV)∗Γ(C).

Proof A.2.4 Holds analogous to Theorem A.2.3.
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A.3 Proofs

A.3.1 Section 3.1
Proof 3.1.1 Let Γ be the RDG of logic program Π, C be a partial coloring of Γ and X ∈ ASΠ(C). By
Equation (3.4), we have C⊕ ⊆ RΠ(X) and by Theorem A.1.4 head(C⊕) ⊆ X .
1: Let r ∈ S(Γ, C). By definition, for all p ∈ body+(r) there exists an r′ ∈ Π such that (r′, r) ∈ E0,
p = head(r′) and r′ ∈ C⊕. From head(C⊕) ⊆ X , we can reconclude that for each p ∈ body+(r), we have
p ∈ X , and thus body+(r) ⊆ X .
2-4 follow analogous to Condition 1 by Theorem A.1.4 and A.1.5.

Proof 3.1.2 Let Γ be the RDG of logic program Π, C be an admissible coloring of Γ, and {X} = ASΠ(C).
By Equation (3.4) we have C⊕ = RΠ(X) and head(C⊕) = X (Theorem A.1.4). By Theorem 3.1.1 we
only have to show “⇒”.
1 ”⇒”: Let be body+(r) ⊆ X = head(C⊕) for r ∈ Π. Then, for each p ∈ body+(r) there exists an r′ ∈ Π
such that r′ ∈ C⊕ and p = head(r′). From the definition of the RDG we can conclude that r ∈ S(Γ, C).
2-4 follow analogous.

Proof 3.1.3 This theorem follows by Theorem 3.1.1, Corollary 3.1.2, and Equation (2.3).

A.3.2 Section 3.2
Proof 3.2.1 Let Γ = (Π, E0, E1) be the RDG of logic program Π. Let (V ′′, E) and (V ′, E′) be support
graphs of Γ for some E,E′ ⊆ (Π×Π) such that V ′′ 6= V ′. We show that there exists a support graph (V,E)
of Γ for some E ⊆ (Π×Π) such that V ′′ ⊆ V and V ′ ⊆ V . Since Π is finite and by finiteness of the number
of support graphs, we then conclude that there exists a maximal support graph of Γ. Trivially, according to
Definition 3.2.1, there exists an enumeration 〈ri〉0≤i≤n of V ′′ such that body+(ri) ⊆ {head(rj) | j < i}
and there exists an enumeration 〈r′i〉0≤i≤m of V ′ such that body+(r′i) ⊆ {head(r′j) | j < i}. The idea
of the construction of (V,E) is as follows: we merge the vertices of V ′′ and V ′ to V and additionally
include all vertices into V whose positive body is derivable by the heads of the rules belonging to V . More
precisely, V should be closed under all rules whose positive body is derivable by the heads of rules in V .
Next, we define an enumeration 〈si〉0≤i≤k of rules in Π inductively as follows. Let s0 = r ∈ Π where
body+(r) = ∅ and si = r ∈ Π such that body+(r) ⊆ {head(sl) | l < i} for 0 ≤ i ≤ k and for some
maximal k such that there exists no r′ ∈ Π \ {s0, . . . , sk} where body+(r′) ⊆ {head(sl) | l ≤ k}. Note
that then the enumeration 〈si〉0≤i≤k is maximal w.r.t. vertices. Furthermore, we have n ≤ k, m ≤ k and
n + m− |V ′′ ∩ V ′| ≤ k.

Next, we show that for V = {si | 0 ≤ i ≤ k} the following conditions are fulfilled:
1: V ′′ ⊆ V ,
2: V ′ ⊆ V ,
3: for all r ∈ Π if body+(r) ⊆ {head(r′) | r′ ∈ V } then r ∈ V , and
4: (V,E) is a support graph of Γ for some E ⊆ (Π×Π).
Condition 3 states that all rules whose positive body can be derived by the heads of the rules in V are
included in V . Observe that if there is no r ∈ Π such that body+(r) = ∅ we have that then V ′ = ∅ and
V ′′ = ∅ and hence, V ′′ = V ′ which is a contradiction to the assumption V ′′ 6= V ′.
1+2: Note that for non-empty V ′′ and non-empty V ′ we have body+(r0) = ∅ and body+(r′0) = ∅ by
construction of the enumerations of V ′′ and V ′. Hence, there exist 0 ≤ l, l′ ≤ k such that r0 = sl and
r′0 = sl′ . Thus, we conclude by induction that V ′′ ⊆ {s0, . . . , sk} (Condition 1) and V ′ ⊆ {s0, . . . , sk}
(Condition 2) by construction of V .
3: Condition 3 is fulfilled, since in we include as many rules as possible into 〈si〉0≤i≤k (k being maximal).
4: For 0 < i ≤ k, we define

Ei =
⋃
{(r′, si) | r′ ∈ {s0, . . . , si−1}} ∩ E0
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and E =
⋃

0≤i≤k Ei. Clearly, (V,E) is 0-subgraph of Γ by construction. Furthermore, (V,E) is acyclic
since there are only edges (sj , si) where j < i for j, i ∈ {0, . . . , k}. Also, we obtain r ∈ V whenever
body+(r) ⊆ {head(r′) | (r′, r) ∈ E}. Thus, (V,E) is a support graph of Γ. Hence, there exists a support
graph (V,E) of Γ such that V ′ ⊆ V for all support graphs (V ′, E′) of Γ.

Proof 3.2.2 Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial coloring of Γ. We
abbreviate Γ|C⊕∪C	 with Γ|C .
1: If ACΠ(C) 6= ∅ then we have ASΠ(C) 6= ∅ by Theorem A.1.1. Let be X ∈ ASΠ(C). Then, we have by
definition that C⊕ ⊆ RΠ(X) and C	∩RΠ(X) = ∅ hold. We want to construct a support graph (RΠ(X), E)
of (Γ, C) for some E ⊆ (Π×Π). Then, there exists a maximal support graph of (Γ, C). By Theorem A.1.3
we have an enumeration 〈ri〉i∈I of RΠ(X) such that for all i ∈ I we have body+(ri) ⊆ head({rj | j < i}).
Define V =

⋃
i∈I{ri} and E = {(rj , ri) | j < i} ∩E0. Clearly, V = RΠ(X) by construction and thus we

have C⊕ ⊆ V , C	 ∩ V = ∅, and (V,E) is a support graph of Γ. Furthermore, (V,E) is a support graph of
(Γ, C). The existence of a maximal one follows by Theorem 3.2.1.
2: Let (C⊕, E′) be a support graph of Γ|C for some E′ ⊆ (Π × Π). Then, (C⊕, E′) is a support graph of
(Γ, C). By Theorem 3.2.1, there exists a (maximal) support graph of (Γ, C).

Proof 3.2.3 Let Γ be the RDG of logic program Π and C be an admissible coloring. By {C} = ACΠ(C) 6=
∅ and Theorem 3.2.2, there exists a support graph of (Γ, C). According to Definition 3.2.2, this must be
(C⊕, E) for some E ⊆ Π × Π, since C is a total coloring. Furthermore, (C⊕, E) is a maximal support
graph of (Γ, C).

Proof 3.2.4 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
”1⇒ 2”: Since C is an admissible coloring, there exists an answer set X of Π such that {X} = ASΠ(C).
By Theorem 3.2.2 and {C} = ACΠ(C) there exists a support graph of (Γ, C). C⊕ = S(Γ, C) ∩B(Γ, C)
holds by Theorem 3.1.3 and C⊕ = RΠ(X).
”2 ⇒ 1”: We have to show that C is an admissible coloring that is C⊕ = RΠ(X) holds, where X is an
answer set of Π. Let X be the set of atoms such that X = head(C⊕), then

RΠ(X) = {r | body+(r) ⊆ X, body−(r) ∩X = ∅}
= {r | body+(r) ⊆ head(C⊕), body−(r) ∩ head(C⊕) = ∅}
= {r | r ∈ S(Γ, C), r ∈ B(Γ, C))}
= C⊕.

By Theorem 3.2.6 and (C⊕, E) is a (maximal) support graph of (Γ, C) for some E ⊆ Π × Π (Corol-
lary 3.2.3), we have head(C⊕) = Cn((Π \ C	)∅) = Cn(C∅

⊕) = Cn((RΠ(X))∅). By X = head(C⊕) =
Cn((RΠ(X))∅) we have by Theorem A.1.2 that X is an answer set. Hence, C is an admissible coloring.
”2⇔ 3”: This holds by C is a total coloring and by Theorem 3.1.3.

Proof 3.2.5 Let Γ be the RDG of logic program Π, C be a total coloring of Γ and X be a set of atoms such
that X = head(C⊕). We obtain for r ∈ Π, r ∈ B(Γ, C) iff body−(r)∩head(C⊕) = ∅ iff body−(r)∩X =
∅ iff head(r)← body+(r) ∈ ΠX .

Proof 3.2.6 Let Γ be the RDG of logic program Π, C be a partial coloring and (V,E) be a maximal
support graph of (Γ, C). We have to show that head(V ) = Cn((Π \ C	)∅) holds. More precisely, we
have to show that head(V ) is the smallest set of atoms which is closed under (Π\)∅. First, we show
that head(V ) is closed under (Π\)∅. That is, for any r ∈ (Π \ C	)∅ we have head(r) ∈ head(V )
whenever body+(r) ⊆ head(V ). Let be r ∈ (Π \ C	)∅. If we have body+(r) ⊆ head(V ) then we
have head(r) ∈ head(V ) since the support graph (V,E) is maximal. Thus, head(V ) is closed under
(Π \ C	)∅. Second, we show that head(V ) is the smallest set of atoms which is closed under (Π \ C	)∅.
Assume that head(V ) is not the smallest set of atoms which is closed under (Π\C	)∅. Then, there exists a
q ∈ head(V ) such that head(V )\q is closed under (Π\C	)∅. We have head(V )\q = head(V \Q) where
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Q = {r | head(r) = q, r ∈ V }. Moreover, we have for all r+ ∈ (Π \C	)∅ that head(r+) ∈ head(V \Q)
whenever body+(r+) ⊆ head(V \Q). Let be r′ ∈ Q. By r′ ∈ V we have that r is a vertex in the maximal
support graph of (Γ, C). Hence, by Definition 3.2.2 we have that body+(r′) ⊆ head(V ). Moreover, we
have body+(r′) ⊆ head(V \ Q) since Q = {r | head(r) = q, r ∈ V } and (V,E) is acyclic. Thus,
we have that head(r′) ∈ head(V \ Q) by head(V ) \ q being closed under (Π\)∅. But then we have
q = head(r′) ∈ head(r) \ q which is a contradiction. Hence, head(V ) is the smallest set of atoms which
is closed under (Π \ C	)∅.

Proof 3.2.7 Let Γ be the RDG for logic program Π and C be a total coloring of Γ.
”⇒”: Let C be an admissible coloring of Γ. By Theorem 3.2.4 we have that C⊕ = S(Γ, C)∩B(Γ, C) and
there exists a support graph of (Γ, C). By C is total we have that (C⊕, E) is a support graph of (Γ, C) for
some E ⊆ Π×Π. Hence, (C⊕, E) is a support graph of Γ. Since C⊕ ⊆ B(Γ, C) we have that (C⊕, E) is
a support graph of Γ|B(Γ,C). Next, we want to show the maximality of (C⊕, E). Assume, (C⊕, E) is not
a maximal support graph of Γ|B(Γ,C). Then, there exists an r ∈ C	 such that (C⊕ ∪ {r}, E′) is a support
graph of Γ|B(Γ,C) for some E′ ⊆ Π × Π. But then, r ∈ B(Γ, C) and r ∈ S(Γ, C) by Definition 3.2.1 of
a support graph of Γ|B(Γ,C). Hence, r ∈ S(Γ, C) ∩ B(Γ, C) = C⊕ But this is a contradiction to r ∈ C	.
Thus, (C⊕, E) is a maximal support graph of Γ|B(Γ,C).
”⇐”: Let (C⊕, E) be a maximal support graph of Γ|B(Γ,C) for some E ⊆ (Π×Π). By Theorem 3.2.4 we
have to show that C⊕ = S(Γ, C) ∩ B(Γ, C) and there exists a support graph of (Γ, C). Since (C⊕, E) is
a support graph of Γ|B(Γ,C) we have that (C⊕, E) is a also support graph of Γ. Furthermore, (C⊕, E) is a
support graph of (Γ, C) since C is a total coloring. It remains to show C⊕ = S(Γ, C) ∩B(Γ, C).
“⊆”: Assume that there exists an r ∈ C⊕ such that r 6∈ S(Γ, C)∩B(Γ, C). That is, r ∈ S(Γ, C)∪B(Γ, C)
holds. Since (C⊕, E) is a support graph of Γ|B(Γ,C), r ∈ B(Γ, C) ∩ C⊕ is not possible. Assume that
r ∈ S(Γ, C) ∩ C⊕. But by Definition 3.2.1 and r ∈ C⊕ which is in a support graph of Γ|B(Γ,C), we have
that r ∈ S(Γ, C). But this is a contradiction and hence, we have C⊕ ⊆ S(Γ, C)∩B(Γ, C). “⊇”: Assume
there exists an r ∈ S(Γ, C) ∩ B(Γ, C) such that r 6∈ C⊕ that is r ∈ C	 holds. If r ∈ B(Γ, C) then r is a
vertex of the graph Γ|B(Γ,C). If furthermore r ∈ S(Γ, C) then r is a vertex of the maximal support graph
of Γ|B(Γ,C). Since (C⊕, E) is a maximal support graph of Γ|B(Γ,C), we have r ∈ C⊕.

Proof 3.2.8 Let Γ = (Π, E0, E1) be the RDG of a logic program Π and let C be a total coloring of Γ.
“⇒”: Let C be an admissible coloring of Γ, then by Theorem 3.2.4 there exists a support graph of (Γ, C).
Hence, it remains to show, that (S, E1|S) is a blockage graph of (Γ, C) where S = S(Γ, C). For all r ∈ C⊕
we have r ∈ B(Γ, C) by Theorem 3.2.4. Thus, Condition 1 for a blockage graph in Definition 3.2.3 holds.
Let be r ∈ S ∩ C	. By C	 = S(Γ, C) ∪ B(Γ, C) we have that r ∈ B(Γ, C). Hence, Condition 2 from
Definition 3.2.3 holds. Thus, (S, E1|S) is a blockage graph of (Γ, C).
“⇐”: By Theorem 3.2.4 and the existence of a support graph of (Γ, C) it remains to show that C⊕ =
S(Γ, C) ∩B(Γ, C). Since C is total, the support graph of (Γ, C) must be (C⊕, E) for some E ⊆ Π×Π.
”⊆”: Let be r ∈ C⊕. Then, we have r ∈ S(Γ, C) by (C⊕, E) is a support graph of (Γ, C) for some
E ⊆ (Π × Π) and by Definition 3.2.2. Assume, we have r ∈ B(Γ, C) then there exists an r′ ∈ C⊕ such
that (r′, r) ∈ E1. But this is a contradiction to Condition 1 in Definition 3.2.3 of a blockage graph. Thus,
we have r ∈ B(Γ, C) and hence, we have C⊕ ⊆ S(Γ, C) ∩B(Γ, C).
”⊇”: Let be r ∈ S(Γ, C) ∩ B(Γ, C). We have to show that r ∈ C⊕. Assume that we have r ∈ C	.
Then, by Condition 2 in Definition 3.2.3 there exists an r′ ∈ C⊕ such that r is blocked by r′. That’s a
contradiction and thus we have r ∈ C⊕.

Proof 3.2.9 Let Γ = (Π, E0, E1) be the RDG of a program Π and let C be a total coloring of Γ. To show
this corollary we show the equivalence to the conditions given in Theorem 3.2.8. Clearly, a support graph
of (Γ, C) is (C⊕, E) for some E ⊆ Π × Π by Definition 3.2.2 since C is total. Furthermore, conditions 2
and 3 of this corollary are equivalent to conditions 1 and 2 in Definition 3.2.3 of a blockage graph.
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A.3.3 Section 3.3

Proof 3.3.1 Let Γ be the RDG of logic program Π and C a partial coloring of Γ. If ACΠ(C) 6= ∅ then
ASΠ(C) 6= ∅ by Theorem A.1.1. Let X ∈ ASΠ(C) be an answer set of Π. Then C⊕ ⊆ RΠ(X) and
C	 ∩RΠ(X) = ∅. Let be S = S(Γ, C), B = B(Γ, C), S = S(Γ, C) and B = B(Γ, C). For showing that
PΓ(C) exists, we have to prove that PΓ(C) is a partial coloring. We prove this by Theorem 3.1.3 and by
the fact that C is a partial coloring. We observe

PΓ(C)⊕ ∩ PΓ(C)	 =
(
C⊕ ∪ (S ∩B)

)
∩

(
C	 ∪ S ∪B

)
= (C⊕ ∩ C	) ∪ (C⊕ ∩ S) ∪ (C⊕ ∩B)
∪ (S ∩B ∩ C	) ∪ (S ∩B ∩ S) ∪ (S ∩B ∩B)

= (C⊕ ∩ S) ∪ (C⊕ ∩B) ∪ (S ∩B ∩ C	)
= ∅.

The last equality follows by Theorem 3.1.3. Thus, PΓ(C) is a partial coloring and hence, PΓ(C) exists.

Proof 3.3.2 This follows directly from Theorem A.2.1 by the existence of P (C).

Proof 3.3.3 (Sketch) Let Γ be the RDG of logic program Π. We have to prove that P∗Γ((∅, ∅)) exists. By
Theorem A.2.1 it is enough to show that P ((∅, ∅)) exists. Clearly, P 0((∅, ∅)) = (∅, ∅) exists. Assuming
that P i((∅, ∅)) exists, we have to show PΓ(P i((∅, ∅)))⊕ ∩ PΓ(P i((∅, ∅)))	 = ∅ stating that P i+1((∅, ∅))
exists. But this holds if

P i((∅, ∅))⊕ ∩ S(Γ, P i((∅, ∅))) = ∅(A.5)
P i((∅, ∅))⊕ ∩B(Γ, P i((∅, ∅))) = ∅(A.6)

P i((∅, ∅))	 ∩ S(Γ, P i((∅, ∅))) ∩B(Γ, P i((∅, ∅))) = ∅(A.7)

We obtain S(Γ, C) ⊆ S(Γ, C ′) and B(Γ, C) ⊆ B(Γ, C ′) for all partial colorings C,C ′ such that C v C ′.
Hence, we have P i((∅, ∅))⊕ ⊆ S(Γ, P i((∅, ∅))) ∩ B(Γ, P i((∅, ∅))). Thus, A.5 and analogously A.6
and A.7 hold. For this reason we have that P i+1((∅, ∅)) exists and, by induction, that P∗Γ((∅, ∅)) exists.

Proof 3.3.4 Let Γ be the RDG of logic program Π and let C and C ′ be partial colorings of Γ such that
ACΠ(C ′) 6= ∅. Furthermore, let be C v C ′. Then, we also have ACΠ(C) 6= ∅ by definition.
PΓ(C) v PΓ(C ′): It is easy to see that C v C ′ implies S(Γ, C) ⊆ S(Γ, C ′), S(Γ, C) ⊆ S(Γ, C ′),
B(Γ, C) ⊆ B(Γ, C ′), and B(Γ, C) ⊆ B(Γ, C ′). Thus, PΓ(C) v PΓ(C ′).
P∗Γ(C) v P∗Γ(C ′): Follows by showing P (C) v P (C ′) through an induction proof and by Thm. A.2.1.

Proof 3.3.5 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ.
1: C v PΓ(C) implies ACΠ(C) ⊇ ACΠ(PΓ(C)). Thus, it remains to show ACΠ(C) ⊆ ACΠ(PΓ(C)).
If ACΠ(C) = ∅ then ACΠ(PΓ(C)) = ∅ by C v PΓ(C) and by Equation (3.3). Let be C ′ = (RΠ(X),Π\
RΠ(X)) ∈ ACΠ(C) an admissible coloring of Γ for some answer set X of Π. We have to show that
PΓ(C)⊕ ⊆ RΠ(X) and PΓ(C)	 ∩ RΠ(X) = ∅. But this holds by Theorem 3.1.3 and C⊕ ⊆ RΠ(X) and
C	 ∩RΠ(X) = ∅.
2: Holds by Theorem A.2.1.

Proof 3.3.6 Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial coloring of Γ.
Furthermore, let be C ′ = PΓ(C).
1: Let (C⊕, E) be a support graph of (Γ,C) for some E ⊆ (Π×Π). We have to show that ((P∗Γ(C))⊕, E′)
is a support graph of (Γ,P∗Γ(C)) for some E′ ⊆ (Π×Π). We show this by construction of ((P∗Γ(C))⊕, E′)
and by Theorem A.2.1. Let V 0 = P 0(C)⊕ = C⊕ and E0 = E. Assume that we have constructed the sets
V i ⊆ Π and Ei ⊆ (Π × Π) for some i < ω such that P i(C)⊕ = V i. Now, we want to construct the sets
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V i+1 ⊆ Π and Ei+1 ⊆ (Π×Π). We define

V i+1 = V i ∪ PΓ(P i(C))⊕
= V i ∪ (S(Γ, P i(C)) ∩B(Γ, P i(C))) ∪ P i(C)⊕
= V i ∪ (S(Γ, P i(C)) ∩B(Γ, P i(C))),

Ei+1 = Ei ∪
(
{(r′, r) | r′ ∈ V i, r ∈ V i+1} ∩ E0

)
, V =

⋃
i<ω V i, and E′ =

⋃
i<ω Ei. We have to show

(1a) V = P (C)⊕ and (1b) (V,E′) is a support graph of (Γ, P (C)). Then, by Theorem A.2.1 we can
conclude that ((P∗Γ(C))⊕, E′) is a support graph of (Γ,P∗Γ(C)) for some E′ ⊆ (Π×Π).
(1a): This holds by construction of V .
(1b): Clearly, (V,E′) is acyclic because E is acyclic and we have only edges from V i to V i+1 for all i < ω.
Furthermore, (V,E′) is a 0-subgraph of Γ by construction. Now, we have to show that for all r ∈ V we have
body+(r) ⊆ {head(r′) | (r′, r) ∈ E′}. For r ∈ V 0 this holds by (C⊕, E) is a support graph of (Γ, C). For
r ∈ V i\V i−1 for some i > 0 we have r ∈ S(Γ, P i(C))∩B(Γ, P i(C)). Thus, if we have r ∈ S(Γ, P i(C))
and by Definition 3.1.2 and construction of Ei+1 we have body+(r) ⊆ {head(r′) | (r′, r) ∈ Ei+1}. Thus,
(P∗Γ(C)⊕, E′) is a support graph of Γ.
2: Let (C⊕ ∪ C	, E1)|S(Γ,C) be a blockage graph of (Γ, C) and C⊕ ⊆ S(Γ, C). We have to show that
(C ′

⊕ ∪ C ′
	, E1)|S(Γ,C′) is a blockage graph of (Γ, C ′) where C ′ = P∗Γ(C). That is, we have to show

that (2a) for all r, r′ ∈ C ′
⊕ ∩ S(Γ, C ′) : (r, r′) 6∈ E1 |S(Γ,C′), (2b) for all r ∈ C ′

	 ∩ S(Γ, C ′)∃r′ ∈
C ′
⊕ ∩ S(Γ, C ′) s.t. (r′, r) ∈ E1 |S(Γ,C′). But both conditions hold by C ′ being closed under PΓ(C).

Proof 3.3.7 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
”⇒”: By Theorem 3.2.4 it remains to show that C = PΓ(C). We have PΓ(C) = C t (S(Γ, C) ∩
B(Γ, C), S(Γ, C)∪B(Γ, C)). By Theorem 3.2.4 we have C = (S(Γ, C)∩B(Γ, C), S(Γ, C)∪B(Γ, C))
and thus, C = PΓ(C).
”⇐”: By Theorem 3.2.4 it remains to show, that C⊕ = S(Γ, C) ∩ B(Γ, C). By C = PΓ(C) we have
C⊕ ⊇ S(Γ, C) ∩ B(Γ, C). Now, we show C⊕ ⊆ S(Γ, C) ∩ B(Γ, C). Let r ∈ C⊕. If r ∈ S(Γ, C) or
r ∈ B(Γ, C), then r ∈ C	 by C = PΓ(C), but this is a contradiction. Thus, r ∈ S(Γ, C) ∩B(Γ, C). For
this reason, we have C⊕ = S(Γ, C) ∩B(Γ, C).

Proof 3.3.8 Let Γ be the RDG of program Π and C be a partial coloring of Γ. If there exists a support
graph of (Γ, C), then there exists a maximal support graph of (Γ, C) (Thm. 3.2.1). Thus, UΓ(C) exists.

Proof 3.3.9 Let Γ be the RDG of logic program Π and let C and C ′ be partial colorings of Γ such that
ACΠ(C) 6= ∅, ACΠ(C ′) 6= ∅. Note that for C and C ′, UΓ(C) and UΓ(C ′) exist by Corollary 3.3.8 and
Theorem 3.2.2.
1: C v UΓ(C) holds by definition of UΓ .
2: Let (V,E) be a maximal support graph of (Γ, C) for some E ⊆ Π × Π. Then, we have UΓ(C) =
(C⊕,Π \ V ). We claim that (V,E) is also a maximal support graph of (Γ,UΓ(C)). To see this, observe
that (V,E) is a support graph of Γ, UΓ(C)⊕ ⊆ V , and V ∩ (UΓ(C))	 = V ∩ (Π \ V ) = ∅. Furthermore,
(V,E) is maximal since V ∪ (UΓ(C))	 = V ∪ (Π \ V ) = Π and V ∩ (UΓ(C))	 = ∅. Therefore, we have
UΓ(UΓ(C)) = (UΓ(C)⊕,Π \ V ) = (C⊕,Π \ V ) = UΓ(C).
3: We have to show that UΓ(C)⊕ ⊆ UΓ(C ′)⊕ and UΓ(C)	 ⊆ UΓ(C ′)	. Since C v C ′ we have
UΓ(C)⊕ ⊆ UΓ(C ′)⊕. Because of C v C ′, we must have for a maximal support graph (V ′, E′) of
(Γ, C ′) and for a maximal support graph (V,E) of (Γ, C) that V ′ ⊆ V for some E,E′ ∈ (Π × Π).
Thus, UΓ(C)	 ⊆ UΓ(C ′)	 holds by definition of UΓ .

Proof 3.3.10 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ. Clearly, we have
C v UΓ(C) by Thm. 3.3.9. Thus, we have ACΠ(UΓ(C)) ⊆ ACΠ(C). It remains to show that ACΠ(C) ⊆
ACΠ(UΓ(C)). If ACΠ(C) = ∅ then ACΠ(UΓ(C)) = ∅ since C v UΓ(C) (Theorem 3.3.9). Let be
C ′ ∈ ACΠ(C), where C ′ = (RΠ(X),Π \RΠ(X)) for some answer set X of Π. Let (V,E) be a maximal
support graph of (Γ, C) for some E ⊆ (Π×Π). The existence of (V,E) is ensured by Theorem 3.2.2. We
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have to show, (1) UΓ(C)⊕ ⊆ RΠ(X), and (2) UΓ(C)	 ∩RΠ(X) = ∅.
1: This holds by UΓ(C)⊕ = C⊕ ⊆ RΠ(X).
2: We have UΓ(C)	 = Π \ V . Assume that there exists an r ∈ (Π \ V ) ∩ RΠ(X). By r ∈ RΠ(X) we
have r ∈ S(Γ, C ′) for C ′ ∈ ACΠ(C). But this is a contradiction to r ∈ (Π \ V ) since all rules in Π \ V
can never be supported. Thus, UΓ(C)	 ∩RΠ(X) = ∅ holds.

Proof 3.3.11 Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial coloring of Γ.
Furthermore, let C ′ = UΓ(C). Condition 1 holds trivially since C v C ′ and C ′

	 ∩ C⊕ = ∅. Condition 2
holds by C ′

⊕ = C⊕ and by (C ′
	 \ C	) ∩ S(Γ, C) = ∅.

Proof 3.3.12 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ. To show this theorem
we show the equivalence to Corollary 3.3.7.
”⇒”: It remains to show that C = UΓ(C). By Corollary 3.3.7, there exists a (maximal) support graph
of (Γ, C). That must be (C⊕, E) for some E ⊆ (Π × Π) since C is a total coloring. Thus UΓ(C) =
(C⊕,Π \ C⊕) = C.
”⇐”: It remains to show that there exists a maximal support graph of (Γ, C). But this exists by the existence
of UΓ .

Proof 3.3.13 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
”⇒”: Let C be an admissible coloring of Γ. We have to show that there exists an sequence (Ci)0≤i≤n sat-
isfying the given conditions. Let m = |C⊕| and 〈ri〉0≤i<m be an arbitrary enumeration of C⊕. Analogous
let 〈rj〉m≤j<n be an arbitrary enumeration of Π \ C⊕ = C	. For 0 ≤ i < m take Ci+1 = C⊕Γ (Ci) =
(Ci

⊕∪{ri}, Ci
	) and for m ≤ i < n take Ci+1 = C	Γ (Ci) = (Ci

⊕, Ci
	∪{ri}). Thus, Cn is a total coloring

and conditions 3 and 4 are fulfilled by Corollary 3.3.12.
”⇐”: By conditions 3, 4 and 5 we have C = PΓ(C) and C = UΓ(C). Thus, C is an admissible coloring
of Γ by Corollary 3.3.12.

Proof 3.3.14 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ. Let (Ci)0≤i≤n be a
sequence satisfying conditions 1-5 in Theorem 3.3.13.
1: We have Ci is a partial coloring for 0 ≤ i ≤ n by Definition 3.3.4.
2: By construction of Ci and by Definition 3.3.4 we have Ci v Ci+1.
3: We have Ci v Ci+1 and thus we have ACΠ(Ci) ⊇ ACΠ(Ci+1).
4: Since we have C = Cn w Ci for admissible coloring C, we have C ′ ∈ ACΠ(Ci) 6= ∅.
5: Since ACΠ(Ci) 6= ∅ we have by Thm. 3.2.2 that there exists a (maximal) support graph of (Γ, Ci).

Proof 3.3.15 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
”⇐”: Since (PU)∗Γ is closed under PΓ and UΓ we have C = PΓ(C) and C = UΓ(C) and thus, we have
that C is an admissible coloring of Γ by Corollary 3.3.12.
”⇒”: Let C = (RΠ(X),Π \ RΠ(X)) be an admissible coloring of Γ for answer set X of Π. We have
to show that there exists a sequence (Ci)0≤i≤n satisfying the given conditions. Let C0 = (PU)∗Γ((∅, ∅)).
Assume, Ci is defined for some 0 ≤ i. Let be r ∈ Π \ (Ci

⊕ ∪ Ci
	). If we have r ∈ RΠ(X) then we

take Ci+1 = (PU)∗Γ(Ci
⊕ ∪ {r}, Ci

	). Otherwise, if we have r ∈ Π \ RΠ(X) then we take Ci+1 =
(PU)∗Γ(Ci

⊕, Ci
	 ∪ {r}). By construction there exists an n < ω such that Π = Cn

⊕ ∪ Cn
	. Furthermore,

by Theorem 3.3.5, 3.3.10, and by construction of each Ci+1(for0 ≤ i < n), we have that Cn = C =
(RΠ(X),Π \RΠ(X)).

Proof 3.3.16 Proof by induction over i by using Theorem A.2.3.

Proof 3.3.17 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ. Let (Ci)0≤i≤n be a
sequence satisfying conditions 1-3 in Theorem 3.3.15.
1-5: Hold analogous to Theorem 3.3.14 by Definition 3.3.4 and by Theorem A.2.3.
6+7: These conditions hold by definition of PΓ :
S(Γ, Ci) ∩B(Γ, Ci) ⊆ PΓ(Ci)⊕ ⊆ (PU)∗Γ(C◦Γ(Ci))⊕ = Ci+1

⊕ , and
S(Γ, Ci) ∪B(Γ, Ci) ⊆ PΓ(Ci)	 ⊆ (PU)∗Γ(C◦Γ(Ci))	 = Ci+1

	 .
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Proof 3.3.18 Condition 1–3, 6–7 hold analogous to Theorem 3.3.17. By Ci is closed under UΓ , there exists
a support graph of (Γ, Ci). Hence, Condition 5 holds.

Proof 3.3.19 Let Γ be the RDG of logic program Π. First, we show that every sequence over C satisfy-
ing conditions 1 and 2 in Theorem 3.3.15 induces a sequence over C satisfying conditions 1-4 in Theo-
rem 3.3.13. Let (Ci)i∈J be a sequence satisfying conditions 1 and 2 in Theorem 3.3.15. We obtain an
enumeration 〈ri〉i∈I of Π such that we have: if ri ∈ PUk(Cl), rj ∈ PUe(Cf ) where l < f or l = f and
k ≤ e then i < j. Thus, we obtain a sequence (C

′i)i∈J′ such that C
′0 = (∅, ∅) and

C
′i+1 =

{
(C

′i
⊕ ∪ {ri}, C

′i
	) if ri ∈ RΠ(X)

(C
′i
⊕, C

′i
	 ∪ {ri}) if ri 6∈ RΠ(X).

(C
′i)i∈J′ clearly satisfies conditions 1-4 in Theorem 3.3.13 by Ci is closed underPΓ and UΓ for every i ∈ J

in Theorem 3.3.15. Second, 2 different sequences from Theorem 3.3.15 induces 2 different sequences in
Theorem 3.3.13. Hence, n ≤ m.

Proof 3.3.20 Let Γ be the RDG of logic program Π and let C be an admissible coloring of Γ. Let
(Ci

1)0≤i≤m and (Cj
2)0≤j≤n be the shortest sequences obtained for C according to Theorem 3.3.13 and

Theorem 3.3.15, respectively. Since |Ci+1
1 \ Ci

1| = 1 for all 0 ≤ i < m and |Cj+1
2 \ Cj

2 | ≥ 1 for all
0 ≤ j < n, we have that n ≤ m holds where m = |Π|.
Proof 3.3.21 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ. We have to prove:
Plus: C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following properties:
C0 = (PU)∗Γ((∅, ∅)); Ci+1 = (PU)∗Γ(C⊕Γ (Ci)) for 0 ≤ i < n; Cn = C.
Minus: C is an admissible coloring of Γ iff there exists a sequence (Ci)0≤i≤n with the following properties:
C0 = (PU)∗Γ((∅, ∅)); Ci+1 = (PU)∗Γ(C	Γ (Ci)) for 0 ≤ i < n; Cn = C.
’Plus’:
”⇐”: C is an admissible coloring of Γ holds by Corollary 3.3.12 since C is closed under PΓ and closed
under UΓ .
”⇒”: Let C = (RΠ(X),Π \ RΠ(X)) be an admissible coloring of Γ for answer set X of Π. We have
to show the existence of a sequence (Ci)0≤i≤n with the given properties. Let C0 = (PU)∗Γ((∅, ∅)). For
0 < i < n let Ci+1 = (PU)∗Γ(C⊕Γ (Ci)) where C⊕Γ (Ci) = (Ci

⊕ ∪ {r}, Ci
	) for some r ∈ RΠ(X) ∩ (Π \

(Ci
⊕ ∪ Ci

	)). It remains to show, that Cn is a total coloring and C = Cn for some n ≥ 0. Assume,
Cn is not total, then Π \ (Cn

⊕ ∪ Cn
	) 6⊆ RΠ(X). Otherwise, we could choose an r ∈ RΠ(X) to extend

our sequence of partial colorings. Then, for all r ∈ Π \ (Cn
⊕ ∪ Cn

	) we have either body+(r) 6⊆ X or
body−(r) ∩X 6= ∅. Observe that X = head(Cn

⊕) = head(RΠ(X)) holds by X is an answer set. If there
is an r ∈ Π \ (Cn

⊕ ∪Cn
	) such that body−(r) ∩X 6= ∅, then r is blocked by some r′ ∈ Cn

⊕ and r had to be
colored in Cn by Cn is closed under PΓ . Thus, body+(r) 6⊆ X for all r ∈ Π \ (Cn

⊕ ∪ Cn
	). Furthermore,

all r ∈ Π \ (Cn
⊕ ∪ Cn

	) are in a maximal support graph of (Γ, Cn) by Cn is closed under UΓ . Thus, there
must exists an r ∈ Π \ (Cn

⊕ ∪ Cn
	) such that r ∈ S(Γ, Cn) ∩ B(Γ, Cn). But then, r would be colored in

Cn by Cn is closed under PΓ . That’s a contradiction. Thus, Cn is a total coloring. Furthermore, Cn = C
holds by Cn is closed under PΓ and by Theorem 3.1.3.
’Minus’:
”⇐”: C is an admissible coloring holds by Corollary 3.3.12 because C is closed under PΓ and closed
under UΓ .
”⇒”: Let C = (RΠ(X),Π \ RΠ(X)) be an admissible coloring for answer set X of Π. We have to show
the existence of a sequence (Ci)0≤i≤n satisfying ’Minus’. Let C0 = (PU)∗Γ((∅, ∅)). For 0 < i < n let
Ci+1 = (PU)∗Γ(C	Γ (Ci)) where C	Γ (Ci) = (Ci

⊕, Ci
	∪{r}) for some r ∈ (Π\RΠ(X))∩(Π\(Ci

⊕∪Ci
	)).

It remains to show, that Cn is a total coloring and Cn = C, but this can be shown analogous to ’Plus’.

Proof 3.3.22 Let Γ be the RDG of logic program Π and CX be a total coloring of Γ.
”⇒”: Let CX = (RΠ(X),Π \ RΠ(X)) be an admissible coloring of Γ for answer set X of Π. Clearly,
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CX is a total coloring and head(CX
⊕ ) = X by X is an answer set. Let |RΠ(X)| = n− 2 and 〈ri〉0≤i<n−2

be an enumeration of RΠ(X). Given this, we define the sequence (Ci)0≤i≤n such that

1. C0 = (∅, ∅),

2. Ci+1 = (Ci
⊕ ∪ {ri}, Ci

	) for 0 ≤ i < n− 2,

3. Cn−1 = P∗Γ(Cn−2), and

3.′ Cn = UΓ(Cn−1).

Clearly, this sequence satisfies conditions 1, 2, and 3 in Theorem 3.3.22. Next, we show that Cn is a total
coloring. More precisely, we show that Cn = CX . By definition, we have Cn−2 = (RΠ(X), ∅). By Theo-
rem A.1.6 this impliesP∗Γ(Cn−2) = Cn−1 = (RΠ(X), Cn−1

	 ) where B(Γ, CX) ⊆ Cn−1
	 byPΓ(Cn−2) v

P∗Γ(Cn−2). By definition of CX and Theorem 3.1.3, we have that RΠ(X) = S(Γ, CX) ∩ B(Γ, CX).
That is, we have S(Γ, CX) ∩ B(Γ, CX) = Cn−1

⊕ . Moreover, given that B(Γ, CX) ⊆ Cn−1
	 , we obtain

S(Γ, CX) ∩ B(Γ, CX) ⊆ Cn−1
	 . Since CX is a total coloring, we have CX = B(Γ, CX) ∪B(Γ, CX).

Consequently, S(Γ, CX) ⊆ Cn−1
⊕ ∪ Cn−1

	 and also Π \ (Cn−1
⊕ ∪ Cn−1

	 ) ⊆ S(Γ, CX) holds. That is,
all rules uncolored in Cn−1 are also unsupported in CX . Clearly, (CX

⊕ , E) is a maximal support graph of
(Γ, CX) for some E ⊆ (Π× Π). Given that CX

⊕ = Cn−1
⊕ and CX

	 \ Cn−1
	 ⊆ S(Γ, CX), (CX

⊕ , E) is also
a maximal support graph of (Γ, Cn−1). We get

UΓ(Cn−1) = (Cn−1
⊕ , (Π \ CX

⊕ )) = (CX
⊕ , (Π \ CX

⊕ )) = (CX
⊕ , CX

	 ) = CX

That is, we have Cn = CX . Therefore, we obtain that Cn is a total coloring.
”⇐”: According to Corollary 3.3.12, it is sufficient to show that (1) C = PΓ(C) and (2) C = UΓ(C).
1: We have to show that C = C t (S(Γ, C) ∩ B(Γ, C), S(Γ, C) ∪ B(Γ, C)) . For this, it is enough to
show, that (S(Γ, C)∩B(Γ, C), S(Γ, C)∪B(Γ, C)) v C that is (1a) S(Γ, C)∩B(Γ, C) ⊆ C⊕ and (1b)
S(Γ, C) ∪B(Γ, C) ⊆ C	.
(1a): Assume there exists an r ∈ S(Γ, C) ∩ B(Γ, C) such that r ∈ C	. We have 2 cases where r
had to be colored in the sequence (Ci)0≤i≤n. Case 1: r ∈ P∗Γ(Cn−2)	 and r 6∈ Cn−2

	 or Case 2:
r ∈ UΓ(P∗Γ(Cn−2))	 and r 6∈ P∗Γ(Cn−2)	. In Case 1 we have r ∈ P∗Γ(Cn−2)	 = P (Cn−2)	 by
Theorem A.2.1. Thus, there exists an i < ω such that r ∈ S(Γ, P i(Cn−2)) ∪ B(Γ, P i(Cn−2)). By
P i(C ′) v P (C ′) we have r ∈ S(Γ, C) ∪B(Γ, C), but this is a contradiction. to r ∈ S(Γ, C) ∩B(Γ, C).
In Case 2 we have r ∈ UΓ(P∗Γ(Cn−2))	. Let (V,E) be a maximal support graph of (Γ,P∗Γ(Cn−2)) for
some E ⊆ (Π×Π) Then, we have r ∈ Π\V . By r ∈ S(Γ, C) and C⊕ = UΓ(P∗Γ(Cn−2))⊕ = P∗Γ(Cn−2)⊕,
we have r ∈ S(Γ,P∗Γ(Cn−2)). But then, we have r ∈ V by V being maximal. Also, this is a contradiction
and thus, we have r ∈ C⊕.
(1b): Let be r ∈ B(Γ, C) and r ∈ C⊕. There are 2 cases where r had to be colored with ⊕. Case 1: r ∈
Cn−2
⊕ or Case 2: r ∈ P∗Γ(Cn−2) and r 6∈ Cn−2

⊕ . In both cases we have r ∈ B(Γ,UΓ(P∗Γ(Cn−2))). By
UΓ(P∗Γ(Cn−2))⊕ = P∗Γ(Cn−2)⊕ we have r ∈ B(Γ,P∗Γ(Cn−2)). Hence, we have r ∈ P∗Γ(Cn−2)	 ⊆ C	
by P∗Γ is closed under PΓ . This is a contradiction. Let be r ∈ S(Γ, C) and r ∈ C⊕. Then, we have r ∈
S(Γ,UΓ(P∗Γ(Cn−2))). By Theorem 3.3.9 and r ∈ UΓ(UΓ(P∗Γ(Cn−2)))	 we have r ∈ UΓ(P∗Γ(Cn−2))	.
But, this is a contradiction to r ∈ C⊕.
2: C = UΓ(C) is equivalent to UΓ(C ′) = UΓ(UΓ(C ′)) for C ′ = P∗Γ(Cn−2), which is true by virtue of
Theorem 3.3.9.

Proof 3.3.23 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
”⇒”: Let C = (RΠ(X),Π \ RΠ(X)) be an admissible coloring of Γ for answer set X of Π. We want
to construct a sequence (Ci)0≤i≤n with the given properties. Let 〈ri〉1≤i≤n−1 be an enumeration of Π \
RΠ(X) where n−1 = |Π\RΠ(X)|. Let be C0 = (∅, ∅). For 1 ≤ i ≤ n−1 let be Ci = (Ci−1

⊕ , Ci−1
	 ∪{ri}).

Then, we have Cn−1 = (∅,Π \ RΠ(X)). Note that by Theorem 3.3.2 and by C ∈ ACΠ(Cn−1) we have
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that Cn = P∗Γ(Cn−1) is a partial coloring. It remains to show, that C = Cn where Cn = P∗Γ(Cn−1).
More precisely, we have to show for all r ∈ Π: (1) If r ∈ RΠ(X) then r ∈ Cn

⊕ = P∗Γ(Cn−1)⊕. (2) If
r 6∈ RΠ(X) then r ∈ Cn

	 = P∗Γ(Cn−1)	.
1: Let be r ∈ RΠ(X), then we have body−(r) ∩ X = ∅. By X = head(RΠ(X)) we have body−(r) ∩
head(RΠ(X)) = ∅. Thus, we have r ∈ B(Γ, Cn−1). By Theorem A.1.3, there exists an enumeration
of 〈ri〉i∈I of RΠ(X) such that for all i ∈ I we have body+(ri) ⊆ head({rj | j < i}). Clearly, we
have r0 ∈ S(Γ, Cn−1). Hence, we have r0 ∈ Cn

⊕. By induction over i ∈ I we can show that ri ∈
S(Γ, (Cn−1

⊕ ∪ {rj | j < i}, Cn−1
	 )). Thus, r ∈ Cn

⊕ whenever r ∈ RΠ(X).
2: This follows by Π \RΠ(X) = Cn−1

	 . Hence, we conclude that Cn = C holds.
”⇐”: Let (Ci)0≤i≤n be a sequence with the given properties. By Corollary 3.3.12 we have to show (1)
Cn = PΓ(Cn) and (2) Cn = UΓ(Cn).
1: This condition is fulfilled by Cn = P∗Γ(Cn−1) and by P∗Γ being closed under PΓ .
2: By Cn = P∗Γ(Cn−1) and (∅, ∅) is a support graph of (Γ, (∅,Π \ RΠ(X))) and Theorem 3.3.6 we have
that (Cn

⊕, E) is a support graph of (Γ, C) for some E ⊆ (Π × Π). Then, (Cn
⊕, E) is a maximal support

graph of (Γ, C) and Cn = UΓ(Cn) by Cn is a total coloring and Cn
	 = Π \RΠ(X).

Proof 3.3.24 Let Γ = (Π, E0, E1) be the RDG of logic program Π and let C be a total coloring of Γ.
”⇒”: This follows analogous to the proof ”⇒” of Corollary 3.3.26.
”⇐”: This follows analogous to the proof of Theorem 3.3.26 by verifying the construction of the maximal
support graph of (Γ, C) as follows: Let Ri = Ci+1

⊕ \ Ci
⊕ for 0 ≤ i < n− 1. Let V 0 = {r0} and E0 = ∅.

Assume, V i ⊆ Π and Ei ⊆ Π × Π are defined for some 0 ≤ i < n − 1. Define V i+1 = V i ∪ {Ri} and
Ei+1 = Ei ∪ ERi where

ERi =
{
{(r′, ri+1) | r′ ∈ V i} ∩ E0 if Ri = {ri+1} for some ri+1 ∈ Π
∅ if Ri = ∅.

Proof 3.3.25 These properties follow analogous to Theorem 3.3.27 with the modification given in Theo-
rem 3.3.24 in the construction of the support graph of (Γ, Ci) for 0 ≤ i ≤ n.

Proof 3.3.26 Let Γ = (Π, E0, E1) be the RDG of logic program Π and let C be a total coloring of Γ.
”⇒”: Let C = (RΠ(X),Π \ RΠ(X)) be an admissible coloring of Γ for answer set X of Π. By Theo-
rem A.1.3 there exists an enumeration 〈ri〉0≤i<n−1 of RΠ(X) such that for all i ∈ {0, . . . , n− 2} we have
body+(ri) ⊆ head({rj | j < i}). We define the sequence (Ci)0≤i≤n as follows:

1. C0 = (∅, ∅),

2. Ci+1 = (Ci
⊕ ∪ {ri}, Ci

	) for 0 ≤ i < n− 1,

3. Cn = NΓ(Cn−1).

By construction and by definition of NΓ , we have that Cn is a total coloring, Cn
⊕ = RΠ(X), and Cn

	 =
Π \ RΠ(X). By definition of Ci+1 for 0 ≤ i < n − 1 we have Ci+1 = D⊕Γ (Ci) because ri ∈ S(Γ, Ci)
by Theorem A.1.3. Thus, it remains to show that Cn = PΓ(Cn). Cn v PΓ(Cn) holds by definition of
PΓ . Hence, it is enough to show that S(Γ, Cn) ∩ B(Γ, Cn) ⊆ Cn

⊕ and S(Γ, Cn) ∪ B(Γ, Cn) ⊆ Cn
	. By

Theorem 3.1.3 we have, if r ∈ S(Γ, Cn) ∩ B(Γ, Cn) then r ∈ RΠ(X) = Cn
⊕ and if r ∈ S(Γ, Cn) ∪

B(Γ, Cn) then r ∈ (Π \RΠ(X)) = Cn
	. Thus, Cn = PΓ(Cn) and Cn = C.

”⇐”: By Corollary 3.3.7 we have to show C = PΓ(C) and there is a support graph of (Γ, C). C = PΓ(C)
holds by property 4 and 5 of the defined sequence (Ci)0≤i≤n in Theorem 3.3.24. Now, we want to construct
by induction a support graph (Cn

⊕, E) of (Γ, C) for some E ⊆ Π×Π. Let {ri} = Ci+1
⊕ \ Ci

⊕ for 0 ≤ i <
n−1. Let V 0 = {r0} and E0 = ∅. Assume, V i ⊆ Π and Ei ⊆ Π×Π are defined for some 0 ≤ i < n−1.
Define V i+1 = V i ∪ {ri+1} and Ei+1 = Ei ∪ Eri+1 where Eri+1 = {(r′, ri+1) | r′ ∈ V i} ∩ E0. Let
V =

⋃
i<ω V i and E =

⋃
i<ω Ei, then (V,E) is a support graph of (Γ, C) where V = Cn

⊕. Hence, C is
an admissible coloring of Γ.
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Proof 3.3.27 Given the same prerequisites as in Corollary 3.3.26 with Γ = (Π, E0, E1). Let (Ci)0≤i≤n be
a sequence satisfying conditions 1-5 in Corollary 3.3.26.
1-5: Hold analogous to Theorem 3.3.14.
8: This follows analogous to the construction of a support graph of (Γ, C) in Corollary 3.3.26.
9: We have to prove (9a) for all r, r′ ∈ Ci

⊕ ∩ S(Γ, Ci) we have (r, r′) 6∈ E1|S(Γ,Ci), (9b) for all r ∈
S(Γ, Ci) ∩ Ci

	 exists an r′ ∈ Ci
⊕ ∩ S(Γ, Ci) such that (r′, r) ∈ E1|S(Γ,Ci).

(9a): Let be r, r′ ∈ Ci
⊕ ∩ S(Γ, Ci). Assume that we have (r, r′) ∈ E1|S(Γ,Ci). Then, we have r′ ∈

B(Γ, Ci). By Ci v Cn and by Cn is closed under PΓ we have r′ ∈ B(Γ, Cn) and thus r′ ∈ Cn
	. But this

is a contradiction to r′ ∈ Ci
⊕ ⊆ Cn

⊕.
(9b): For 0 ≤ i ≤ n − 1 we have Ci

	 = ∅ and thus, there is nothing to show. Let be i = n. Cn is closed
underPΓ . Assume, there is an r ∈ Cn

	∩S(Γ, Cn) such that r ∈ B(Γ, Cn). Then we have r ∈ Cn
⊕ by Cn is

closed under PΓ . Thus, for r ∈ Cn
	∩S(Γ, Cn) we have r ∈ B(Γ, Cn). Hence, there must exist an r′ ∈ Cn

⊕
such that (r′, r) ∈ E1. Furthermore, r′ ∈ S(Γ, Cn) holds by Cn

⊕ = PΓ(Cn)⊕ = S(Γ, Cn) ∩ B(Γ, Cn).
Thus, we have (r′, r) ∈ E1|(S(Γ,Cn).

Proof 3.3.28 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
”⇒”: Let C = (RΠ(X),Π \ RΠ(X)) be an admissible coloring of Γ for answer set X and 〈ri〉0≤i≤m be
an enumeration of RΠ(X) such that for all i ∈ {0, . . . ,m} we have body+(ri) ⊆ head({rj | j < i}). Let
be C0 = P∗Γ((∅, ∅)) and for 0 ≤ i < n − 1 let be Ci+1 = P∗Γ(D◦Γ(Ci)) = P∗Γ((Ci

⊕ ∪ {r}, Ci
	)), where

r = rj for some 0 ≤ j ≤ m such that {r0, . . . , rj−1} ⊆ Ci
⊕ ∪ Ci

	 and rj 6∈ Ci
⊕ ∪ Ci

	. Furthermore,
let be Cn = NΓ(Cn−1) where (Π \ (Cn−1

⊕ ∪ Cn−1
	 )) ∩ RΠ(X) = ∅. Clearly, Cn is a total coloring by

definition of NΓ . Next, we show that C⊕ = RΠ(X). Then, we can conclude that Cn = C holds. Let be
r ∈ C⊕. Case 1: r is the “choice rule” selected to obtain Ci+1 from Ci or Case 2: r was colored with
⊕ by PΓ at some iterative step from Ci to Ci+1 for some 0 ≤ i < n − 1. In Case 1 we have r ∈ RΠ(X)
by construction. In Case 2 we have r ∈ S(Γ, C ′) ∩ B(Γ, C ′) for some Ci v C ′ v Ci+1. Then, by
Theorem 3.1.1 we have r ∈ RΠ(X). Let be r ∈ RΠ(X) and assume that we have r ∈ Cn

	. Then, we
have one of the following cases: Case 1: r ∈ Cn

	 \ Cn−1
	 (r is colored by NΓ ) or Case 2: r ∈ C ′

	 for
some Ci < C ′ v Ci+1 for some 0 ≤ i < n − 1 (r is colored by PΓ ). Another case don’t exists since we
only have D⊕Γ as choice. In Case 1 we have then a contradiction to (Π \ (Cn−1

⊕ ∪ Cn−1
	 )) ∩ RΠ(X) = ∅.

In Case 2 we have r ∈ S(Γ, C ′′) ∪ B(Γ, C ′′) where C ′ = PΓ(C ′′) holds for a partial coloring C ′′ such
that Ci v C ′′ v Ci+1 for some 0 ≤ i < n − 1. But then, we get the contradiction r 6∈ RΠ(X) by
Theorem 3.1.1. Thus, we have RΠ(X) = C⊕ and hence we have C = Cn. It remains to show that
C = PΓ(C). But this holds by Corollary 3.3.7.
”⇐”: By Corollary 3.3.7, it remains to show that there exist a support graph of (Γ, C). That must be
(C⊕, E) for some E ⊆ Π × Π since C is total. Each vertex in the sequence (Ci)0≤i≤n, which is added
to some partial coloring C ′, is supported in (Γ, C ′). Thus, we can construct a support graph of (Γ, C)
by inductive adding of vertices according to their occurrence in C ′. This works similar to proof “←” of
Corollary 3.3.26.

Proof 3.3.29 Given the same prerequisites as in Theorem 3.3.28, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-5 in Theorem 3.3.28. We have to prove (NΓ(Cn−1)	 \ Cn−1

	 ) ⊆ S(Γ, C). Assume, there
exists an r ∈ NΓ(Cn−1)	 \ Cn−1

	 such that r ∈ S(Γ, C). By r ∈ C	 and C is closed under PΓ we must
have r ∈ B(Γ, C). Thus, there must exists an r′ ∈ C⊕ such that r is blocked by r′. By NΓ(Cn−1)⊕ =
Cn−1
⊕ we have r′ ∈ Cn−1

⊕ . Thus, we have r ∈ B(Γ, Cn−1). Since Cn−1 is closed under PΓ we must have
r ∈ Cn−1

	 . But this is a contradiction to r 6∈ Cn−1
	 . Hence, we have (NΓ(Cn−1)	 \Cn−1

	 ) ⊆ S(Γ, C).

Proof 3.3.30 Given the same prerequisites as in Theorem 3.3.24, let (Ci)0≤i≤n be a sequence satisfying
conditions 1-5 in Theorem 3.3.24. Properties 1.-5. follow analogous to Theorem 3.3.25 by C v P∗Γ(C) for
a partial coloring C. Property 8 follows analogous to the proof ”⇐” of Theorem 3.3.28. For 0 ≤ i < n the
properties 6 and 7 are fulfilled by Ci being closed under PΓ . For i = n the properties 6 and 7 follow by
Theorem 3.1.3, by Cn is total, and Cn

⊕ = RΠ(X).
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Proof 3.3.31 This could be proven analogous to the proofs of Corollary 3.3.26 and Theorem 3.3.28.

Proof 3.3.32 Proof analogously to theorems 3.3.27 and 3.3.30.

Proof 3.3.33 Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a partial coloring of Γ.
Furthermore, let (C⊕, E) be a support graph of (Γ,C) for some E ⊆ (Π × Π). By Theorem A.2.2 we
have T ∗Γ (C) = T (C). First, we want to construct a graph ((T ∗Γ (C))⊕, E′) for some E′ ⊆ (Π × Π).
Second, we have to show (SG) ((T ∗Γ (C))⊕, E′) is a support graph of (Γ, C) and (M) ((T ∗Γ (C))⊕, E′) is
a maximal one . Let E0 = E and V 0 = T 0(C)⊕ = C⊕. Assume that we have constructed V i ⊆ Π and
Ei ⊆ Π × Π for some i < ω. Now, we want to construct V i+1 ⊆ Π and Ei+1 ⊆ Π × Π. We define
V i+1 = V i ∪ (S(Γ, T i(C)) \ T i(C)	) and Ei+1 = Ei ∪

(
{(r′, r′′) | r′ ∈ V i, r′′ ∈ V i+1 \ V i} ∩ E0

)
.

We define E′ =
⋃

i<ω Ei. Clearly, we have T i+1(C)⊕ = T i(C)⊕ ∪ (S(Γ, T i(C)) \ T i(C)	) = V i+1 by
V i = T i(C)⊕ for all i < ω. Furthermore, we have T ∗Γ (C)⊕ =

⋃
i<ω V i by construction of each V i and

by Theorem A.2.2. It remains to show, that we have constructed a maximal support graph of (Γ, C).
SG: Clearly, E′ is a subset of E0 and acyclic since E is acyclic and there are only edges from V i to V i+1.
Furthermore, by construction and by r ∈ S(Γ, T i(C)) for all r ∈ V i+1 we have for all r ∈ T ∗Γ (C)⊕ that
body+(r) ⊆ {head(r′) | (r′, r) ∈ E′} holds.
M: Assume that there exists an r ∈ Π\T ∗Γ (C)⊕ where r 6∈ C	 such that ((T ∗Γ (C))⊕∪{r}, E′′) is a support
graph of (Γ, C) for some E′′ ⊆ (Π× Π). By definition of a support graph we have r ∈ S(Γ, T ∗Γ (C)) and
thus by Theorem A.2.2 we have r ∈ S(Γ, T (C)). Hence, there exists an i < ω such that r ∈ S(Γ, T i(C)).
Because r 6∈ C	 we must have r ∈ T i+1(C)⊕ and thus r ∈ T ∗Γ (C))⊕ holds. That’s a contradiction to
r ∈ Π \ P∗Γ(C)⊕ and thus, ((T ∗Γ (C))⊕, E′) is a maximal support graph of (Γ, C).

Proof 3.3.34 This follows directly from Theorem 3.3.33 and from Definition 3.3.3 and 3.3.7.

Proof 3.3.35 Let Γ be the RDG of logic program Π and let C be a total coloring of Γ.
”⇐”: By Corollary 3.3.12 we have to show C = PΓ(C) and C = UΓ(C). C = PΓ(C) holds since
C = Cn is closed under PΓ . Analogous to the proof “←” of Theorem 3.3.28 we can construct (C⊕, E) as
a support graph of (Γ, C) for some E ⊆ Π × Π. By Corollary 3.3.34 and C = Cn is closed under VΓ we
conclude C = UΓ(C).
”⇒”: Let C = (RΠ(X),Π\RΠ(X)) be an admissible coloring of Γ for answer set X of Π. Let 〈ri〉0≤i<n

be an enumeration of RΠ(X) such that for all 0 ≤ i ≤ n we have body+(ri) ⊆ head({rj | j < i}). We
define C0 = (PV)∗Γ((∅, ∅)) and Ci+1 = (PV)∗Γ(Ci

⊕ ∪ {r}, C ′
	) where r = rj ∈ Π \ (Ci

⊕ ∪ Ci
	) and

{r0, . . . , rj−1} ⊆ Ci
⊕ ∪ Ci

	 for some 0 ≤ j ≤ n. We have to show C = Cn is a total coloring, and
C⊕ = RΠ(X). But this follows analogous to the proof of Corollary 3.3.21, paragraph ”Plus” ”⇒”.

Proof 3.3.36 Properties 1.–7. follow analogous to proof of Theorem 3.3.17. Property 8 follows from the
construction of the support graph (C⊕, E) of (Γ, C) for some E ⊆ Π×Π (see proof of Thm. 3.3.35).

Proof 3.3.37 Proof is analogous to Corollary 3.3.21.

Proof 3.3.38 Let Γ = (Π, E0, E1) be the RDG of logic program Π. Furthermore, let n =| Π | be the size
of Π and C be a partial coloring of Γ.
1: Note that checking whether r ∈ Π is supported, unsupported, blocked, or unblocked in (Γ, C) is inO(k)
where k = maxr∈Π |{(r′, r) ∈ E0 ∪ E1 : r′ ∈ Π}|. Hence, it is constant w.r.t. n. PΓ(C) is defined as
C t (S(Γ, C) ∩ B(Γ, C), S(Γ, C) ∪ B(Γ, C)). Hence, for every r ∈ Π it has to be computed whether it
belongs to S(Γ, C) ∩B(Γ, C) or S(Γ, C) ∪B(Γ, C). Thus, PΓ is computable in O(n).
2: We define k = maxr∈Π |{(r′, r) ∈ E0 ∪ E1 : r′ ∈ Π}| as the maximal number of predecessors of
a vertex and k′ = maxr∈Π |{(r, r′) ∈ E0 ∪ E1 : r′ ∈ Π}| as the maximal number of successors of a
vertex. Checking whether r ∈ Π is supported, unsupported, blocked, or unblocked in (Γ, C) is in O(k).
Hence, computing whether r ∈ S(Γ, C) ∩ B(Γ, C) or r ∈ S(Γ, C) ∪ B(Γ, C) is in O(k). An algorithm
for the computation of P∗Γ(C) is given in Figure A.1. We call a rule r ∈ Π decided if the question of the
applicability of r is been resolved that is, we have either r ∈ S(Γ, C)∩B(Γ, C) or r ∈ S(Γ, C)∪B(Γ, C).
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(01) function propagation(var C, Γ)
(02) queue := ∅;
(03) for all r ∈ Π do status(r) := false; endfor;
(04) for all r ∈ Π do if r ∈ (S(Γ, C) ∩B(Γ, C)) ∪ S(Γ, C) ∪B(Γ, C)
(05) then push(r,queue);
(06) status(r) := true;
(07) endif;
(08) endfor;
(09) while queue is not empty do
(10) r := pop(queue);
(11) if r ∈ S(Γ, C) ∩B(Γ, C) and r /∈ C⊕
(12) then if r ∈ C	
(13) then return false;
(14) else C⊕ := C⊕ ∪ {r};
(15) for all r′ ∈ Π where status(r′) = false, (r, r′) ∈ E0 ∪ E1 do
(16) if r′ ∈ (S(Γ, C) ∩B(Γ, C)) ∪ S(Γ, C) ∪B(Γ, C)
(17) then push(r′,queue);
(18) status(r′) := true;
(19) endif;
(20) endfor;
(21) endif;
(22) endif;
(23) if r ∈ S(Γ, C) ∪B(Γ, C) and r /∈ C	
(24) then if r ∈ C⊕
(25) then return false;
(26) else C	 := C	 ∪ {r};
(27) for all r′ ∈ Π where status(r′) = false, (r, r′) ∈ E0 ∪ E1 do
(28) if r′ ∈ (S(Γ, C) ∩B(Γ, C)) ∪ S(Γ, C) ∪B(Γ, C)
(29) then push(r′,queue);
(30) status(r′) := true;
(31) endif;
(32) endfor;
(33) endif;
(34) endif;
(35) endwhile;

Figure A.1: Algorithm for computation of P∗Γ(C)
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We call a rule r ∈ Π undecided if r is not decided. We use status(r) = true for denoting that r is decided
and status(r) = false for denoting that r is undecided. The main idea of the algorithm is to start from the
colored vertices and going along the successors of the lastly colored vertices to look for vertices which can
be colored in the next step. In Step (2) the queue, which contains all vertices which can be colored next, is
initialized. Step (3) initializes the status of each vertex r ∈ Π as false. This works in O(n). Step (4–8) are
putting all decided vertices (if condition) into the queue. Their status is becoming true in Step (6). Steps (4–
8) are computable in O(n). The while loop in Step (09)–(35) takes (iterative) a (decided) vertex r from the
queue and considers the cases for coloring this rule. Step (10) takes a rule from the queue. Step (11–22)
are handling the case for ⊕ coloring of decided rules. If r ∈ C	 then Step (13) returns a failure and if r is
already colored with⊕ then r is no longer considered. Else, r is colored with⊕ in Step (14). All successors
of r, which are now decided (Step (16)) but not yet in the queue (their status is false), are taken into the
queue and their status is set to true in Step (18). The for loop in Step (15) works in O(k′ ∗ k), hence
constant w.r.t. n. Thus, Step (11–22) are computable in constant time w.r.t. n. Analogously, Step (23–34)
consider the case for 	 coloring of decided rules. By construction of the queue and by adding only rules
r with status(r) = false, every rule is added at most one time in the queue. Note that after adding rules
into the queue their status becomes true. Hence, the while loop in Step (09–35) is passed through at most
n times. As a conclusion, the function propagation computes P∗Γ(C) in O(n).
3: For computing UΓ(C) we must compute a maximal support graph of (Γ, C). This is done by modifying
the linear time algorithm of Dowling and Gallier [75] as follows. Let V be the vertex set of a maximal
support graph of (Γ, C) where Γ = (Π, E0, E1). Then, V can be computed by the algorithm given in
Figure A.2. This algorithm computes V in linear time in size of Π, since every r ∈ Π is entered at most

function MaxSuppGraph(V ,C,Γ)
V := ∅;
queue := ∅;
for all r ∈ Π \ C	 do counter(r) := |body+(r)| endfor;
for all r ∈ Π \ C	 do if counter(r) = 0 then push(r, queue); endif; endfor;
while queue is not empty do

r := pop(queue);
for all (r, r′) ∈ E0 do

if r′ 6∈ C	
then counter(r′) := counter(r′)− 1;

if counter(r′) = 0 then push(r′, queue); endif;
endif;

endfor;
V := V ∪ {r};

endwhile;

Figure A.2: Algorithm for computing maximal support graphs

once into the queue and the “for loop” in the “while loop” is executed at most m times, where m =
maxr∈Π |{(r, r′) ∈ E0|r′ ∈ Π}|. Hence, UΓ is computable in O(n).
4: By Condition 1 and 3, (PU)Γ is computable in O(n). Hence, (PU)∗Γ is computable in O(n2), since we
have to iterate (PU)Γ at most n times.
5: For computing VΓ(C) we have to compute T ∗Γ (C)⊕. This is done by a modification of the algorithm
given in Condition 3. We start with V = C⊕ instead of V = ∅ and consider C⊕ while initializing the
counter for every rule r ∈ Π. The algorithm is given in Figure A.3. Analogously to Condition 3, VΓ is
computable in O(n).
6: This follows directly from Condition 1 and 5.
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function T⊕(V ,C,Γ)
V := C⊕;
queue := ∅;
for all r ∈ Π \ C	 do counter(r) := |body+(r) \ {head(r′) | r′ ∈ C⊕}|; endfor;
for all r ∈ Π \ C	 do if counter(r) = 0 then push(r, queue); endif endfor;
while queue is not empty do

r := pop(queue);
for all (r, r′) ∈ E0 do

if r′ 6∈ C	
then counter(r′) := counter(r′)− 1;

if counter(r′) = 0 then push(r′, queue); endif;
endif;

endfor;
V := V ∪ {r};

endwhile;

Figure A.3: Algorithm for computing VΓ(C)

7: We have NΓ(C) = (C⊕,Π \ C⊕). Hence, computing NΓ is in O(n).

A.3.4 Section 3.4
Proof 3.4.1 Let Γ be the RDG of logic program Π. We say that (X, Y ) ⊆ (X ′, Y ′) if X ⊆ X ′ and Y ⊆ Y ′

for any X, Y,X ′, Y ′ ⊆ Atm. Let C = P∗Γ((∅, ∅)) be a partial coloring of Γ. Furthermore, let Φω
Π(∅, ∅) =

(Xω, Y ω). We have to prove (Xω, Y ω) = (XC , YC). According to Definition 3.4.1 and by Theorem A.2.1
it can be easily seen that (XC , YC) =

⋃
i<ω(XCi , YCi) where C0 = (∅, ∅) and Ci+1 = PΓ(Ci). By

definition of Fitting’s operator, we obtain (Xω, Y ω) =
⋃

i<ω(Xi, Y i) where (X0, Y 0) = (∅, ∅),

Xi = Xi−1 ∪ {head(r) | r ∈ Π, body+(r) ⊆ Xi−1, body−(r) ⊆ Y i−1}, and
Y i = Y i−1 ∪ {q | for all r ∈ Π, if head(r) = q, then

body+(r) ∩ Y i−1 6= ∅ or body−(r) ∩Xi−1 6= ∅}.

”(Xω, Y ω) ⊆ (XC , YC)”: We prove by induction over i that (Xi, Y i) ⊆ (XC , YC) for all i < ω hold. For
i = 0 we have (X0, Y 0) = (∅, ∅) ⊆ (XC , YC). Assume, (Xk, Y k) ⊆ (XC , YC) holds for all k ≤ i for
some i < ω (IH). We have to prove (Xi+1, Y i+1) ⊆ (XC , YC). By induction hypotheses (IH), we have

Xi+1 = Xi ∪ {head(r) | r ∈ Π, body+(r) ⊆ Xi ⊆ XC , body−(r) ⊆ Y i ⊆ YC} and
Y i+1 = Y i ∪ {q | for all r ∈ Π, if head(r) = q, then

body+(r) ∩ Y i 6= ∅ or body−(r) ∩Xi 6= ∅}.

Let be head(r) = a ∈ Xi+1\Xi, then we have r ∈ S(Γ, C)∩B(Γ, C). Thus, r ∈ C⊕ holds by C is closed
under PΓ and hence, we have a ∈ XC . Let be a ∈ Y i+1 \ Y i and let be r ∈ Π such that head(r) = a. If
body+(r)∩ Y i 6= ∅ then r ∈ S(Γ, C). If body−(r)∩Xi 6= ∅ then r ∈ B(Γ, C). Thus, a ∈ YC holds by C
is closed under PΓ . Hence, we have (Xi+1, Xi+1) ⊆ (XC , YC). Thus, we have (Xω, Y ω) ⊆ (XC , YC).
”(Xω, Y ω) ⊇ (XC , YC)”: We show by induction over i that (XCi , YCi) ⊆ (Xω, Y ω) holds for all i < ω.
Then, we conclude (XC , YC) ⊆ (Xω, Y ω). For i = 0 we have (XC0 , YC0) = (∅, Atm \ head(Π)) ⊆
(X1, Y 1) ⊆ (Xω, Y ω). Assume, (XCk , YCk) ⊆ (Xω, Y ω) holds for all k ≤ i for some i < ω. We have
to show that (XCi+1 , YCi+1) ⊆ (Xω, Y ω) holds where Ci+1 = PΓ(Ci). Let be a ∈ XCi+1 . Then there
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exists an r ∈ Π such that head(r) = a and r ∈ S(Γ, Ci) ∩ B(Γ, Ci). Hence, we have body+(r) ⊆ XCi

and body−(r) ⊆ YCi . Thus, we have a ∈ Xω by (XCi , YCi) ⊆ (Xω, Y ω). Let be a ∈ YCi+1 then for all
r ∈ Π such that head(r) = a we have r ∈ PΓ(Ci)	. Thus, r ∈ Ci

	 ∪ S(Γ, Ci) ∪B(Γ, Ci). By Ck v Ci

we have r ∈ S(Γ, Ci) ∪ B(Γ, Ci). If r ∈ B(Γ, Ci) then body−(r) ∩ XCi 6= ∅. If r ∈ S(Γ, Ci) then
body+(r) ∩ YCi 6= ∅. Hence, we have a ∈ Y ω. Thus, we have proven (Xω, Y ω) ⊇ (XC , YC).

Proof 3.4.2 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ such that C	 ⊆
S(Γ, C) ∪ B(Γ, C). Furthermore, let (V,E) be a maximal support graph of (Γ, C) for some E ⊆ Π× Π.
First, we show that Atm \ head(V ) is an unfounded set of Π w.r.t. (XC , YC). Let be a ∈ Atm \ head(V ).
For all r ∈ Π such that head(r) = a, we have to show that one of the following conditions hold: U1 there
exists a p ∈ body+(r) such that all rules, with p as head, are in C	 or
there exists a q ∈ body−(r) where there exists an r′ ∈ C⊕ such that head(r′) = q (That is, we have r ∈
S(Γ, C)∪B(Γ, C)); U2 there exists a p ∈ body+(r) such that p ∈ Atm\head(V ). If a ∈ Atm\head(V )
then either a 6∈ head(Π) or there are (by Definition 3.2.2) one of the following cases for all rules r ∈ Π
where head(r) = a: Case 1 body+(r) 6⊆ head(V ); Case 2 r ∈ C	. If a 6∈ head(Π) then U1 and U2 are
trivially fulfilled since {r | head(r) = a} = ∅.
Case 1: If body+(r) 6⊆ head(V ) then there exists a p ∈ body+(r) such that p ∈ Atm \ head(V ) and
condition U2 is fulfilled.
Case 2: If r ∈ C	 then either r ∈ S(Γ, C) or r ∈ B(Γ, C). If r ∈ S(Γ, C) then there exists an
p ∈ body+(r) such that all rules with p as head are in C	. If r ∈ B(Γ, C) then there exists an r′ ∈ C⊕
such that head(r′) ∈ body−(r). Thus, condition U1 is fulfilled. Thus, Atm \ head(V ) is an unfounded set
of Π w.r.t. (XC , YC). Second, each unfounded set w.r.t. (XC , YC) is in Atm \ head(V ) by maximality of
(V,E) and by Definition 3.2.2. Thus, Atm \ head(V ) is the greatest unfounded set w.r.t. (XC , YC).

Proof 3.4.3 Let Γ be the RDG of logic program Π and C be a partial coloring of Γ such that C	 ⊆
S(Γ, C) ∪ B(Γ, C). Let UΓ(C) = C ′ and let (V,E) be a maximal support graph of (Γ, C) for some
E ⊆ Π× Π. Observe that Atm \ head(Π \ C ′

	) = Atm \ head(Π \ (Π \ V )) = Atm \ head(V ). Thus,
by Theorem 3.4.2, (Atm \ head(Π \ C ′

	)) is the greatest unfounded set w.r.t. (XC , YC).

Proof 3.4.4 Let Γ be the RDG of logic program Π. Furthermore, let C = (PU)∗Γ((∅, ∅)) be a partial
coloring. We have to show that (XC , YC) is the well-founded model of Π. First, we show the following
Lemma:
[FP]: Let C,C ′ be partial colorings of Γ such that C⊕ ⊆ S(Γ, C)∩B(Γ, C) and C	 ⊆ S(Γ, C)∪B(Γ, C).
Then, if C ′ = PΓ(C) then ΦΠ(XC , YC) = (XC′ , YC′).
Proof of [FP]: Let be C ′ = PΓ(C). Then, C ′ = (C⊕∪ (S(Γ, C)∩B(Γ, C)), C	∪ (S(Γ, C)∪B(Γ, C))).
By the preconditions we have C ′ = (S(Γ, C) ∩B(Γ, C), S(Γ, C) ∪B(Γ, C)). We obtain

Φ+
Π(XC , YC) = {head(r) | r ∈ Π, body+(r) ⊆ XC , body−(r) ⊆ YC}

= {head(r) | r ∈ S(Γ, C) ∩B(Γ, C)}
= {head(r) | r ∈ C ′

⊕}
= XC′ , and

Φ−Π(XC , YC) = {q | if head(r) = q then body+(r) ∩ YC 6= ∅ or body−(r) ∩XC 6= ∅}
= {q | if head(r) = q then r ∈ S(Γ, C) ∪B(Γ, C)}
= {q | if head(r) = q then r ∈ C ′

	}
= YC′ .

Hence, ΦΠ(XC , YC) = (XC′ , YC′).q.e.d.
Second, we show that (XC , YC) is the well-founded model of Π. For this, we give a definition of the

well-founded model [167]. The mapping UΠ, which assigns false to every atom in an unfounded set, is
defined as follows: UΠ〈X, Y 〉 = 〈X ′, Y ′〉 where for all atoms A we have: (i) A ∈ X ′ if A ∈ X , (ii)
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A ∈ Y ′ if A is in the greatest unfounded set (w.r.t. Π and 〈X, Y 〉), (iii) A is undefined otherwise. Then, the
well-founded model of Π,Wω

Π〈∅, ∅〉, is defined as follows:

W0
Π〈∅, ∅〉 = 〈∅, ∅〉

Wi+1
Π 〈∅, ∅〉 = ΦΠ(UΠ(Wi

Π〈∅, ∅〉))
Wω

Π〈∅, ∅〉 = ∪i<ωWi
Π〈∅, ∅〉,

where ΦΠ denotes Fitting’s operator. Since all atoms Atm \ head(Π) are false in the well-founded model,
we have Wω

Π〈∅, ∅〉 = Wω
Π〈∅, Atm \ head(Π)〉. [FP] shows the direct correspondence between greatest

unfounded sets and the UΓ operator. Corollary 3.4.3 shows the direct correspondence between Fitting’s
operator and the propagation operator PΓ . By induction one can show that (XC , YC) is the well-founded
model of Π.



Appendix B

Chapter 4

B.1 Appendix of Section 4.1
The following results are observed in the presence of an answer set obtained from a partial coloring C.
Note that these theorems still hold when replacing X ∈ AS(Π,<)(C) with C ′ ∈ AC(Π,<)(C) where
C ′ = (RΠ(X),Π \RΠ(X), ∅) and X is an answer set.

Theorem B.1.1 Let Ψ be the RDG of ordered logic program (Π, <), C be a partial coloring of Ψ and
X ∈ AS(Π,<)(C). For r ∈ Π, we have

1. body+(r) ⊆ X , if r ∈ S(Ψ, C);

2. body+(r) 6⊆ X , if r ∈ S(Ψ, C);

3. body−(r) ∩X 6= ∅, if r ∈ B(Ψ, C);

4. body−(r) ∩X = ∅, if r ∈ B(Ψ, C).

Proof B.1.1 The proof of the corresponding theorem 3.1.1 for standard logic programs Π can be transferred
to ordered logic programs without loss of validity.

For admissible colorings, we may turn the above “if” statements into “iff”. Note that X ∈ ASσ
(Π,<)(C)

implies X ∈ AS(Π,<)(C) for every σ ∈ {D,B,W}.

Theorem B.1.2 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.
Then, we have for every X ∈ AS(Π,<)(C) that

1. S(Ψ, C) ∩B(Ψ, C) ⊆ RΠ(X);

2. S(Ψ, C) ∪B(Ψ, C) ⊆ Π \RΠ(X).

If C is admissible, we have for {X} = AS(Π,<)(C) that

3. S(Ψ, C) ∩B(Ψ, C) = RΠ(X);

4. S(Ψ, C) ∪B(Ψ, C) = Π \RΠ(X).

Proof B.1.2 The proof of the corresponding theorem for standard logic programs Π (cf. Theorem 3.1.3)
can be transferred to ordered logic programs without loss of validity.

Next, we provide iterative characterizations of our operators PΨ and (PU)∗Ψ . We define P (C) as P (C) =⊔
i<ω P i(C) P 0(C) = C and P i+1(C) = PΨ(P i(C)) for i < ω.

163
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Theorem B.1.3 Let Ψ be the RDG of ordered logic program (Π, <) and C a partial coloring of Ψ. Then,

1. P (C) exists, if ACD
(Π,<)(C) 6= ∅,

2. P (C) is a partial coloring (if P (C) exists),

3. C ′ ∈ ACD
(Π,<)(C) iff C ′ ∈ ACD

(Π,<)(P (C)),

4. C v P (C),

5. P (C) is closed under PΨ ,

6. P (C) is the v- smallest partial coloring closed under PΨ ,

7. P (C) = P∗Ψ(C).

Proof B.1.3 Let Ψ be the RDG of ordered logic program (Π, <) and C a partial coloring of Ψ.
1+3: By C v P (C) we have C ′ ∈ ACD

(Π,<)(C) if C ′ ∈ ACD
(Π,<)(P (C)). Let C ′ ∈ ACD

(Π,<)(C). We
prove by induction over i that P (C) exists and C ′ ∈ ACD

(Π,<)(P (C)).
Base: By P 0(C) = C we have that P 0(C) exists and C ′ ∈ ACD

(Π,<)(P
0(C)).

Step: Assume that P k(C) exists and C ′ ∈ ACD
(Π,<)(P

k(C)) for all k < i. We have to prove that
P i(C) exists and C ′ ∈ ACD

(Π,<)(P
i(C)). The existence of P i(C) is given by Theorem 4.1.4. To prove

C ′ ∈ ACD
(Π,<)(P

i(C)) we have to show (a) P i(C)⊕ ⊆ C ′
⊕, (b) P i(C)	 ⊆ C ′

	, (c) P i(C)� ⊆ S(Ψ, C ′).
Abbreviatory, we write C ′′ for P i−1(C).
(a): By definition we have P i(C)⊕ = C ′′

⊕∪(S(Ψ, C ′′)∪B(Ψ, C ′′)∪M(Ψ, C ′′)). Since C ′ ∈ ACD
(Π,<)(C

′′)
we have that C ′′

⊕ ⊆ C ′
⊕ and S(Ψ, C ′′)∪B(Ψ, C ′′)∪M(Ψ, C ′′) ⊆ S(Ψ, C ′′)∪B(Ψ, C ′′) ⊆ RΠ(X) = C ′

⊕.
Hence, P i(C)⊕ ⊆ C ′

⊕.
(b) holds analogous to (a).
(c) Since C ′ ∈ ACD

(Π,<)(C
′′) we have C

′′

� ⊆ S(Ψ, C ′). Hence, we observe P i(C)� = PΨ(C ′′)� =

C
′′

� ⊆ S(Ψ, C ′). For this reason, P (C) exists and C ′ ∈ ACD
(Π,<)(C) iff C ′ ∈ ACD

(Π,<)(P (C)).
2: Clearly, P (C) is a partial coloring by definition.
4: C v P (C) holds by definition of P (C) and by C ′′ v PΨ(C ′′) for any partial coloring C ′′.
5: The closedness of P (C) under PΨ follows from the definition of P (C).
6: Assume, P (C) and Q(C) are v- smallest partial colorings closed under PΨ and P (C) 6= Q(C). By
P (C) 6= Q(C) and P 0(C) = C = Q0(C), there exists a minimal i < ω such that P i(C) = Qi(C) and
P i+1(C) 6= Qi+1(C). But then, P i+1(C) = PΨ(P i(C)) = PΨ(Qi(C)) = Qi+1(C) leads to a contradic-
tion to P (C) 6= Q(C). Hence, P (C) is the v- smallest partial coloring closed under PΨ .
7: This follows directly from the above given Conditions and Definition 4.1.6.

We define PU(C) as PU(C) =
⊔

i<ω PU i(C) where PU0(C) = C and PU i+1(C) = PΨ(UΨ(PU i(C)))
for i < ω. Analogous to Theorem B.1.3, we have PU(C) = (PU)∗Ψ(C) and (PU)∗Ψ preserves <D–
preserving answer sets.

B.2 Proofs of Section 4.1

B.2.1 Section 4.1.2
Proof 4.1.1 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered program (Π, <) and C be a total coloring of
Ψ.
“⇐”: By Theorem 3.2.4, Condition 1 and 2a imply that C is an admissible coloring. That is, C =
(RΠ(X),Π\RΠ(X)) for an answer set X of Π. We will show, that X is a <D–preserving answer set, then
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C is a <D–preserving admissible coloring. We have to show that there exists an enumeration of Π satisfying
Condition (D1)–(D3) in Definition 2.4.1. Given a D–height function h as in Condition 2b of this theorem,
we find an enumeration 〈sj〉j∈J of S(Ψ, C) such that for all k, l ∈ J we have k < l if h(sk) ≤ h(sl). Fur-
thermore, we obtain an enumeration 〈ri〉i∈I of Π = S(Ψ, C)∪S(Ψ, C) extending the enumeration 〈sj〉j∈J

such that all unsupported rules are inserted into 〈sj〉j∈J according to the given partial order <. That is, if
ri < rj then j < i for all i, j ∈ I and ri, rj ∈ Π. Now, we show that 〈ri〉i∈I fulfills Definition 2.4.1.
(D1): Holds by construction of 〈ri〉i∈I and by Condition 1 of a D–height function in Definition 4.1.3.
(D2): Let ri ∈ RΠ(X) = C⊕. Then, ri is in the support graph given in Condition 2a in Theorem 4.1.1.
By Condition 2 in Definition 4.1.3 and by Definition 3.2.2, we have body+(ri) ⊆ {head(rj) | rj ∈
RΠ(X), j < i}. Thus, (D2) holds.
(D3): Let ri ∈ Π \ RΠ(X) = C	. If ri ∈ S(Ψ, C) ∩ C	, then Condition (D3a) holds by Theorem B.1.1.
If ri ∈ S(Ψ, C) ∩ C	, then analogous to (D2) Condition (D3b) holds by Condition 3 in Definition 4.1.3.
“⇒”: Let C be a <D–preserving admissible coloring. Then, C = (RΠ(X),Π \ RΠ(X)) where X is a
<D–preserving answer set of Π. By X is an answer set, we have that C is an admissible coloring of Ψ and
hence, by Theorem 3.2.4, Condition 1 and 2a hold where (C⊕, E′

0) is a support graph of (Ψ, C). It remains
to show the existence of a D–height function h in Condition 2b of this theorem. Let 〈ri〉i∈I be an enumera-
tion of Π such that Condition (D1)–(D3) in Definition 2.4.1 hold. We define a function h : S(Ψ, C)→ IN
for all ri ∈ S(Ψ, C) as follows:

(B.1) h(ri) = i.

Now, we show that h is a D–height function of (S(Ψ, C), E′
0, E1|S(Ψ,C), E2|S(Ψ,C)) that is, h fulfills

Condition 1–3 in Definition 4.1.3.
1: If (r′, r) ∈ E2 then h(r′) < h(r) by (D1) and (B.1).
2: Let r, r′ ∈ C⊕ such that (r′, r) ∈ E′

0. Then r, r′ ∈ RΠ(X) = C⊕ and head(r′) ∈ body+(r). By
Condition (D2) and (B.1) we have h(r′) < h(r) and thus, Condition 2 holds.
3: Let r ∈ C	 ∩ S(Ψ, C). Then, r 6∈ RΠ(X) and r ∈ B(Ψ, C) by C is an admissible coloring. Thus,
by (D3b), there exists an r′ ∈ C⊕ such that (r′, r) ∈ E1|S(Ψ,C) and h(r′) < h(r). For this reason, h is a
D–height function.

Proof 4.1.2 Proof analogous to proof of Theorem 4.1.1.

Proof 4.1.3 This Corollary follows by Theorem 3.2.4, Theorem 4.1.1, (Theorem 4.1.2,) and the following
theorem proven in [177]: Let Π be a logic program and X a set of atoms. Then, X is a preferred answer set
of (Π, ∅) iff X is an answer set of Π.

B.2.2 Section 4.1.3
Proof 4.1.4 Let Ψ be the RDG of ordered logic program (Π, <) and C a partial coloring of Ψ. Furthermore,
let C ′′ = (RΠ(X),Π \RΠ(X), ∅) ∈ ACD

(Π,<)(C) for <D–preserving answer set X . We have to prove that
C ′ = PΨ(C) is a partial coloring that is (1) C ′

⊕ ∩ C ′
	 = ∅, (2) C ′

	 ∩ C ′
� = ∅, and (3) C ′

⊕ ∩ C ′
� = ∅.

Abbreviatory, we write S, S,B,B, and M for S(Ψ, C), S(Ψ, C), B(Ψ, C), B(Ψ, C), and M(Ψ, C).
1: By C is a partial coloring, we detect

C ′
⊕ ∩ C ′

	 =
[
C⊕ ∪ (S ∩B ∩M)

]
∩

[
C	 ∪ S ∪ (B ∩ S ∩M)

]
= (C⊕ ∩ C	) ∪ (C⊕ ∩ S) ∪ (C⊕ ∩B ∩ S ∩M) ∪

(S ∩B ∩M ∩ C	) ∪ (S ∩B ∩M ∩ S) ∪ (S ∩B ∩M ∩B)
= (C⊕ ∩ S) ∪ (C⊕ ∩B ∩ S ∩M) ∪ (S ∩B ∩M ∩ C	)
⊆ (C⊕ ∩ S) ∪ (C⊕ ∩B ∩ S) ∪ (S ∩B ∩ C	)
⊆ (C⊕ ∩ S) ∪ (C⊕ ∩B) ∪ (S ∩B ∩ C	)
= ∅
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The last equality follows by Theorem B.1.2 and C⊕ ⊆ RΠ(X). Hence, C ′
⊕ ∩ C ′

	 = ∅.
2: By C is a partial coloring, we find out

C ′
	 ∩ C ′

� =
[
C	 ∪ S ∪ (B ∩ S ∩M)

]
∩

[
C� \ S

]
=

[
C	 ∩ (C� \ S)

]
∪

[
S ∩ (C� \ S)

]
∪

[
B ∩ S ∩M ∩ (C� \ S)

]
= B ∩ S ∩ (C� \ S) ∩M

⊆ B ∩ S ∩ (C� \ S)
= ∅.

The last equality we can conclude since ACD
(Π,<)(C) 6= ∅ and C� ⊆ S(Ψ, C ′′), but B ∩ S ⊆ S(Ψ, C ′′).

3: By C is a partial coloring, we observe

C ′
⊕ ∩ C ′

� = C ′
⊕ ∩ (C� \ S)

⊆ C ′
⊕ ∩ C�

= (C⊕ ∪ (S ∩B ∩M)) ∩ C�

= (S ∩B ∩M) ∩ C�

⊆ (S ∩B) ∩ C�

By Theorem B.1.2 we have S∩B ⊆ RΠ(X). By C�∩RΠ(X) = ∅ we can conclude that S∩B∩C� = ∅.
Hence, C ′

⊕ ∩ C ′
� = ∅.

Proof 4.1.5 The existence of P∗Ψ follows directly from Theorem B.1.3.

Proof 4.1.6 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ.
1: Let ACD

(Π,<)(C
′) 6= ∅ and C v C ′. Also, we obtain ACD

(Π,<)(C) 6= ∅. By Theorem B.1.3 we prove by
induction over i that P (C) v P (C ′). Then, we conclude P∗Ψ(C) v P∗Ψ(C ′).
Base: P 0(C) = C v C ′ = P 0(C ′).
Step: Assume, P k(C) v P k(C ′) for all k ≤ i < ω. Abbreviatory, we write C1 instead of P i(C) and C2

instead of P i(C ′). We have to prove that P i+1(C) v P i+1(C ′). That is, PΨ(C1) v PΨ(C2). By C1 v
C2, we have C1

⊕ ⊆ C2
⊕, C1

	 ⊆ C2
	 and C1

� ⊆ (C2
	∩S(Ψ, C2))∪C2

�. We have to show (1.1) PΨ(C1)⊕ ⊆
PΨ(C2)⊕, (1.2)PΨ(C1)	 ⊆ PΨ(C2)	, and (1.3)PΨ(C1)� ⊆

[
PΨ(C2)	 ∩ S(Ψ,PΨ(C2))

]
∪PΨ(C2)�.

(1.1.) and (1.2.) hold by C1 v C2 and by S(Ψ, C1) ⊆ S(Ψ, C2), B(Ψ, C1) ⊆ B(Ψ, C2), B(Ψ, C1) ⊆
B(Ψ, C2), S(Ψ, C1) ⊆ S(Ψ, C2), and M(Ψ, C1) ⊆M(Ψ, C2) as consequences of C1 v C2.
(1.3): Since C1 v C2 we have that C1

� ⊆ (C2
	∩S(Ψ, C2))∪C2

�. We have to show that C1
� \S(Ψ, C1) =

PΨ(C1)� ⊆
[
PΨ(C2)	 ∩ S(Ψ,PΨ(C2))

]
∪ PΨ(C2)�. We obtain[

PΨ(C2)	 ∩ S(Ψ,PΨ(C2))
]
∪ PΨ(C2)�

=
[(

C2
	 ∪ S(Ψ, C2) ∪ (B(Ψ, C2) ∩ S(Ψ, C2) ∩M(Ψ, C2))

)
∩ S(Ψ,PΨ(C2))

]
∪ (C2

� \ S(Ψ, C2))

⊇
[(

C2
	 ∪ S(Ψ, C2)

)
∩ S(Ψ,PΨ(C2))

]
∪

(
C2
� \ S(Ψ, C2)

)
⊇

[(
C2
	 ∪ S(Ψ, C2)

)
∩ S(Ψ, C2)

]
∪

(
C2
� \ S(Ψ, C2)

)
⊇ S(Ψ, C2) ∪ C2

�

⊇ (C2
	 ∩ S(Ψ, C2)) ∪ C2

�

= C1
�

⊇ C1
� \ S(Ψ, C1).

2: This holds by Theorem B.1.3.
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Proof 4.1.7 Let Ψ be the RDG of ordered logic program (Π, <) and C be a partial coloring of Ψ. If (Ψ, C)
has a support graph, then there exists a maximal support graph of (Ψ, C) and thus, UΨ(C) exists.

Proof 4.1.8 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered logic program (Π, <). Let C be an admissible
coloring of Ψ and (C⊕, E′

0) be a support graph of (Ψ, C) for some E′
0 ⊆ E0. Abbreviatory, we write r ∈ C ′

if r ∈ C ′
⊕ ∪ C ′

	 for some partial coloring C ′ of Ψ. Note that C� = ∅ and Hi
Ψ((∅, ∅, ∅), C)� = ∅ for all

i < ω.
”⇒”: First, we want to define a function h : S(Ψ, C)→ IN with the help ofH∗Ψ and second, we will show
that constructed h is a D–height function. For this, we need a specification of the edges E′

0 of our support
graph. H∗Ψ provides us these edges. W.l.o.g. let

E′
0 = {(r′, r) | r′ ∈ Hj

Ψ((∅, ∅, ∅), C)⊕, r ∈ Hi+1
Ψ ((∅, ∅, ∅), C)⊕, r ∈ S(Ψ,Hi

Ψ((∅, ∅, ∅), C)),
j ≤ i < ω} ∩ E0.

We define h : S(Ψ, C)→ IN as

h(r) = 0 if r ∈ S(Ψ, C) ∩H0
Ψ((∅, ∅, ∅), C) and

h(r) = i + 1 if r ∈ S(Ψ, C) ∩ (Hi+1
Ψ ((∅, ∅, ∅), C) \ Hi

Ψ((∅, ∅, ∅), C)) for 0 < i < ω.

By H∗Ψ((∅, ∅, ∅), C) = C we have the existence of an h- value for all r ∈ S(Ψ, C). Next, we have to
show that h is a D–height function of (S(Ψ, C), E′

0, E1|S(Ψ,C), E2|S(Ψ,C)), that is, we have to show Con-
dition 1-3 in Definition 4.1.3. Let r ∈ S(Ψ, C).
1: If (r′, r) ∈ E2 then r′ > r. Furthermore, there exist j, k < ω such that r′ ∈ Hj+1

Ψ ((∅, ∅, ∅), C) \
Hj

Ψ((∅, ∅, ∅), C) and r ∈ Hk+1
Ψ ((∅, ∅, ∅), C) \ Hk

Ψ((∅, ∅, ∅), C). By definition of HΨ , r is maximal in
(Ψ,Hk

Ψ((∅, ∅, ∅), C)) and thus k > j, since r′ must be colored because r is maximal. Hence, h(r) > h(r′)
is fulfilled by construction of h since vertices are included inHk

Ψ (for some k < ω) if they are maximal.
2: Let r′, r ∈ C⊕, then by definition of H∗Ψ((∅, ∅, ∅), C) there exist some minimal j, k < ω such that r′ ∈
Hj+1

Ψ ((∅, ∅, ∅), C)⊕, r′ ∈ S(Ψ,Hj
Ψ((∅, ∅, ∅), C)), r ∈ Hk+1

Ψ ((∅, ∅, ∅), C)⊕, r ∈ S(Ψ,Hk
Ψ((∅, ∅, ∅), C)).

If (r′, r) ∈ E′
0, then by construction of E′

0 and by definition of h we have j + 1 = h(r′) < h(r) = k + 1.
3: Let r ∈ C	 ∩ S(Ψ, C). Then by H∗Ψ((∅, ∅, ∅), C) = C, there exists a k < ω such that r ∈
B(Ψ,Hk

Ψ((∅, ∅, ∅), C)) ∩M(Ψ,Hk
Ψ((∅, ∅, ∅), C)) by r 6∈ S(Ψ,Hk

Ψ((∅, ∅, ∅), C)) ⊆ S(Ψ, C). Hence,
there exists an r′ ∈ Hk

Ψ((∅, ∅, ∅), C)⊕ ⊆ C⊕ such that (r′, r) ∈ E1|S(Ψ,C) and h(r′) ≤ k < k + 1 = h(r)
by definition of h.
”⇐”: Clearly, H∗Ψ((∅, ∅, ∅), C) v C holds by definition of H∗Ψ . Thus, it remains to show that C v
H∗Ψ((∅, ∅, ∅), C) that is for all r ∈ C⊕ ∪ C	 exists an i < ω such that r ∈ Hi

Ψ((∅, ∅, ∅), C). Let h be a
D–height function of (S(Ψ, C), E′

0, E1|S(Ψ,C), E2|S(Ψ,C)). For showing H∗Ψ((∅, ∅, ∅), C) w C, we look
for an extension g of h such that g comprehends Π. Furthermore, g is used to show that every r ∈ Π is
in H∗Ψ((∅, ∅, ∅), C). There exists a function g : Π → IN such that g(r) < g(r′) if h(r) < h(r′) for all
r, r′ ∈ S(Ψ, C) and g(r) < g(r′) if r > r′. That is, unsupported vertices in C are inserted according to
the given partial order <. W.l.o.g. we assume that g is a bijective mapping g : Π → {0, . . . , n} for some
n < ω. Next, we proveH∗Ψ((∅, ∅, ∅), C) w C by induction over the values of g.
Base: Let r ∈ C⊕ ∪ C	 such that g(r) = 0. If r ∈ C⊕, then r ∈ S(Ψ, (∅, ∅, ∅)) ∩ M(Ψ, (∅, ∅, ∅))
since g respects the D–height function h and C is admissible. Thus, r ∈ H1

Ψ((∅, ∅, ∅), C)⊕. Analogous,
if r ∈ C	, then r ∈ S(Ψ, (∅, ∅, ∅)) ∩M(Ψ, (∅, ∅, ∅)). Hence, r ∈ H1

Ψ((∅, ∅, ∅), C)	. For this reason,
r ∈ H∗Ψ((∅, ∅, ∅), C) for all r ∈ Π such that g(r) = 0.
Step: Assume, for all r ∈ C⊕ ∪ C	 such that g(r) ≤ j we have r ∈ Hk

Ψ((∅, ∅, ∅), C) for some k < ω.
We have to show that for r ∈ C⊕ ∪ C	 such that g(r) = j + 1 we have r ∈ Hk+1

Ψ ((∅, ∅, ∅), C). Let
r ∈ C⊕, then we have r ∈ S(Ψ,Hk

Ψ((∅, ∅, ∅), C)) ∩M(Ψ,Hk
Ψ((∅, ∅, ∅), C)) by construction of g and

because g respects the D–height function h (Condition 1-2 in Definition 4.1.3) and C is admissible. Thus,
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r ∈ Hk+1
Ψ ((∅, ∅, ∅), C)⊕. Let r ∈ C	. Then, r ∈M(Ψ,Hk

Ψ((∅, ∅, ∅), C)) by definition of g. Furthermore,
either r ∈ S(Ψ, C) or r ∈ S(Ψ, C) ∩ B(Ψ,Hk

Ψ((∅, ∅, ∅), C)) by Condition 3 of a D–height function in
Definition 4.1.3. In both cases we have r ∈ Hk+1

Ψ ((∅, ∅, ∅), C)	. Thus,H∗Ψ((∅, ∅, ∅), C) = C

Proof 4.1.9 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered logic program (Π, <) and let C be a total
coloring of Ψ. This theorem follows by Theorem 4.1.8, Theorem 4.1.1 and Theorem 3.3.12 on page 31.
Note that in Theorem 3.3.12 we deal with 2-ary colorings and a modified PΨ operator. By C is total and
thus C� = ∅ and by S(Ψ, C) ∪ (B(Ψ, C) ∩ S(Ψ, C)) = S(Ψ, C) ∪ B(Ψ, C), we can transfer the result
from Theorem 3.3.12to our approach. Thus, it remains to show by Theorem 4.1.1 that there exists a D–
height function of (S(Ψ, C), E′

0, E1|S(Ψ,C), E2|S(Ψ,C)) where (C⊕, E′
0) is a support graph of (Ψ, C) for

some E′
0 ⊆ E0 iffH∗Ψ((∅, ∅, ∅), C) = C. But this holds by Theorem 4.1.8.

Proof 4.1.10 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered logic program (Π, <). Let C be a total
coloring of Ψ. Let H∗Ψ((∅, ∅, ∅), C) = C, we have to show that UΨ(C) = C. For this, we show that
(C⊕, E) is a maximal support graph of (Ψ, C) for some E ⊆ Π×Π. Then, we can conclude by C is total
that UΨ(C) = (C⊕,Π \ C⊕, C� \ (Π \ C⊕)) = (C⊕, C	, ∅) = C. At first, we define the set of edges
for the searched support graph. Let be E =

⋃
i<ω Ei ⊆ Π × Π where E0 = ∅ and Ei+1 = {(r′, r) |

r′ ∈ Hj
Ψ((∅, ∅, ∅), C)⊕, r ∈ Hi+1

Ψ ((∅, ∅, ∅), C)⊕, j ≤ i < ω} ∩ E0. Next, we show that (C⊕, E) is a
support graph of (Ψ, C). We observe (i) (C⊕, E) is a 0-subgraph by construction, (ii) (C⊕, E) is acyclic
by construction, (iii) For all r ∈ C⊕ there exists an j < ω such that r ∈ Hj+1

Ψ ((∅, ∅, ∅), C)⊕.
By r ∈ S(Ψ,Hj

Ψ((∅, ∅, ∅), C)) we have body+(r) ⊆ {head(r′) | r′ ∈ Hj
Ψ((∅, ∅, ∅), C)⊕} ⊆ {head(r′) |

(r′, r) ∈ E}. Hence, (C⊕, E) is a maximal support graph of (Ψ, C).

Proof 4.1.11 This corollary follows by Theorem 4.1.9 and 4.1.10.

Proof 4.1.12 This theorem follows directly from Corollary 4.1.11.

Proof 4.1.13 Given the prerequisites in Theorem 4.1.12, let (Ci)0≤i≤n be a sequence satisfying conditions
1-5 in Theorem 4.1.12. Condition 1 holds by definition of C◦Ψ . Condition 2 holds by definition of C◦Ψand
Ci
� = ∅ for all 0 ≤ i ≤ n. Condition 3 holds by Condition 2. Condition 4 holds by ACD

(Π,<)(C
n) 6= ∅

and by Condition 3. We observe that (Ψ, Cn) has a support graph by Cn = H∗Ψ(C0, Cn) and Cn = C.
(For details, see construction in proof of Theorem 4.1.10.) By Ci v Cn and hence, Ci

⊕ ⊆ Cn
⊕ we have that

(Ψ, Ci) has a support graph. Thus, Condition 5 holds.

Proof 4.1.14 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered logic program (Π, <) and let C be a total
coloring of Ψ. Abbreviatory, we write r ∈ C ′ if r ∈ C ′

⊕ ∪ C ′
	 for a partial coloring C ′ of Ψ. Note that

C� = ∅ and for all 0 ≤ i ≤ n we have Ci
� = ∅.

”⇒”: Let C be a <D–preserving admissible coloring of Ψ. Then, H∗Ψ((∅, ∅, ∅), C) = C holds by Corol-
lary 4.1.11. Next, we construct by using H∗Ψ a sequence of partial colorings satisfying Condition 1-3
in Theorem 4.1.14. Then, we will show that Cn is total and Cn = C. Let C0 = P∗Ψ((∅, ∅, ∅)) and
assume, Ck is constructed for all k ≤ i < ω. Let j < ω such that Ci w Hj

Ψ((∅, ∅, ∅), C) and
Ci 6w Hj+1

Ψ ((∅, ∅, ∅), C). That is Hj+1
Ψ ((∅, ∅, ∅), C) contains vertices which are not detected by Ci but

all vertices from Hj
Ψ((∅, ∅, ∅), C) are detected by Ci. For our choice operator we choose a vertex r from

Hj+1
Ψ ((∅, ∅, ∅), C) which is not detected by Ci. If r ∈ Hj+1

Ψ ((∅, ∅, ∅), C)⊕ then r ∈ RΠ(X) and we have
to take C⊕Ψ (Ci). Otherwise, r ∈ Hj+1

Ψ ((∅, ∅, ∅), C)	 then r ∈ Π \ RΠ(X) and we have to take C	Ψ (Ci).
We define

Ci+1 =

{
P∗Ψ((Ci

⊕ ∪ {r}, Ci
	, Ci

�)) if r 6∈ Ci, r ∈ Hj+1
Ψ ((∅, ∅, ∅), C)⊕;

P∗Ψ((Ci
⊕, Ci

	 ∪ {r}, Ci
� \ {r})) if r 6∈ Ci, r ∈ Hj+1

Ψ ((∅, ∅, ∅), C)	.

By construction and by Corollary 4.1.11(H∗Ψ((∅, ∅, ∅), C) = C) we have that there exists a n < ω such that
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Cn is total. Furthermore, Cn = (RΠ(X),Π\RΠ(X), ∅) = C by Thm. B.1.2 and by construction of Ci+1.
”⇐”: By Corollary 4.1.11 it remains to show PΨ(Cn) = Cn, but this holds by Cn is closed under PΨ .

Proof 4.1.15 Let Ψ = (Π, E0, E1, E2) be the RDG of ordered logic program (Π, <) and C be a total
coloring of Ψ.
”⇒”: Let C by a <D–preserving admissible coloring of Ψ. Then H∗Ψ((∅, ∅, ∅), C) = C by Corol-
lary 4.1.11. By using H∗Ψ We construct a sequence (Ci)0≤i≤n such that Condition 1–3 of Theorem 4.1.15
hold. Abbreviatory, we write r ∈ Ci if r ∈ Ci

⊕∪Ci
	∪Ci

�. Let C0 = (PU)∗Ψ((∅, ∅, ∅)). Assume, Ck for all
k ≤ i < ω is constructed. Let j < ω such that Ci w Hj

Ψ((∅, ∅, ∅), C) and Ci 6w Hj+1
Ψ ((∅, ∅, ∅), C). That

isHj+1
Ψ contains vertices which are not detected by Ci but all vertices fromHj

Ψ are detected by Ci. Given
Ci our choice operator chooses an r ∈ Hj+1

Ψ \Ci. If r ∈ Hj+1
Ψ ((∅, ∅, ∅), C)⊕ then we take D⊕Ψ , and if r ∈

Hj+1
Ψ ((∅, ∅, ∅), C)	 ∩ S(Ψ,Hj+1

Ψ ) then we take D�Ψ . Note that all r ∈ Hj+1
Ψ ((∅, ∅, ∅), C)	 \ S(Ψ,Hj+1

Ψ )
must be colored by PΨ . Note that for all r ∈ Hj+1

Ψ ((∅, ∅, ∅), C) we have that r ∈M(Ψ,Hj
Ψ((∅, ∅, ∅), C))

and thus, r ∈M(Ψ, Ci). We define

Ci+1 =


(PU)∗Ψ((Ci

⊕ ∪ {r}, Ci
	, Ci

�))
if r ∈ RΠ(X), r 6∈ Ci, r ∈ Hj+1

Ψ ((∅, ∅, ∅), C)⊕;
(PU)∗Ψ((Ci

⊕, Ci
	, Ci

� ∪ {r}))
if r ∈ (Π \RΠ(X)), r 6∈ Ci, r ∈ S(Ψ,Hj+1

Ψ ), r ∈ Hj+1
Ψ ((∅, ∅, ∅), C)	.

Assume that we could not construct a total Cn. That is, for all r ∈ Π\Cn we have r ∈ Hj+1
Ψ ((∅, ∅, ∅), C)	\

S(Ψ,Hj+1
Ψ ((∅, ∅, ∅), C)) and thus they are blocked. But then, these vertices r had to be colored by PΨ

or by UΨ since C⊕ ⊆ Cn
⊕. Hence, there exists an n < ω such that Cn is total. Thus, we have Cn =

(RΠ(X),Π\RΠ(X), ∅) = C by Cn is closed under PΨ and UΨ , Thm. B.1.2, and by construction of Ci+1.
”⇐”: For proving that C is a <D–preserving admissible coloring we use Theorem 4.1.1. That is, we have
to show Conditions 1-2b in Theorem 4.1.1.
1”⊆”: Let C ′ be a partial coloring (∅, ∅, ∅) v C ′ v C extracted from the sequence (Ci)0≤i≤n. Let
r ∈ C⊕, then r is colored either by D⊕Ψ(C ′) or by PΨ(C ′). If r is colored by D⊕Ψ(C ′), then r ∈ S(Ψ, C ′).
Thus, r ∈ S(Ψ, C) by C ′ v C. Assume, r ∈ B(Ψ, C). Then, r is maximal in (Ψ, C) by r ∈M(Ψ, C ′) ⊆
M(Ψ, C). Since C is closed under PΨ , we must have r ∈ C	. That’s a contradiction to r ∈ C⊕ and
hence, r ∈ S(Ψ, C) ∩ B(Ψ, C). If r is colored by PΨ(C ′), then r ∈ S(Ψ, C ′) ∩ B(Ψ, C ′). Therefore,
r ∈ S(Ψ, C) ∩B(Ψ, C) by C ′ v C.
1”⊇”: Let r ∈ S(Ψ, C) ∩ B(Ψ, C). Since C = Cn is closed under PΨ and r is maximal in C, r must be
colored with ⊕ by PΨ . Hence, r ∈ C⊕.
2a: Next, we want to construct a support graph. For this we use the given sequence (Ci)0≤i≤n of coloring
vertices. It can be easily seen that there exists an enumeration 〈ri〉i∈I of C⊕ such that for all i, j ∈ I
we have j < i whenever rj is colored before ri in the sequence (Ck)0≤k≤n. More precisely, for partial
colorings C ′ v C ′′ v C extracted from the sequence (Ci)0≤i≤n we have rj ∈ C ′

⊕, ri ∈ C ′′
⊕, but ri 6∈ C ′

⊕.
If a set R of vertices is colored at the same time, i.e. byPΨ , then their arranging into the enumeration among
their selves is arbitrary. If ri ∈ C ′′

⊕, then ri ∈ S(Ψ, C ′). Therefore, body+(ri) ⊆ {head(rj) | j < i}.
Furthermore, we define E′

0 = {(ri, rj) | i < j}∩E0. It can be easily seen that (C⊕, E′
0) is a support graph

of (Ψ, C).
2b: With the help of Condition 2a we will show that there exists a D–height function. Assume, E′

0 as
in (2a) constructed and let 〈ri〉i∈I be an enumeration of S(Ψ, C) which is built as the enumeration of
C⊕ in (2a). Define h : S(Ψ, C) → IN as h(ri) = i. We will show that h is a D–height function of
(S(Ψ, C), E′

0, E1|S(Ψ,C), E2|S(Ψ,C)). If (r′, r) ∈ E2 and r′, r ∈ S(Ψ, C) then there exists i, j ∈ I such
that r=̂ri, r′=̂rj and j < i by supported rules are colored within the sequence (Ci)0≤i≤n only if they are
maximal. Thus, h(r′) < h(r). Analogous to ”2a” we have if r ∈ C⊕ then h(r′) < h(r) if (r′, r) ∈ E0 and
r′ ∈ C⊕. Let r ∈ C	 ∩ S(Ψ, C), then r is colored by PΨ . Thus, r ∈ B(Ψ, C) ∩M(Ψ, C) and we have
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that there exists an r′ ∈ C⊕ such that (r′, r) ∈ E1 and h(r′) < h(r). Therefore, h is a D–height function
of (S(Ψ, C), E′

0, E1|S(Ψ,C), E2|S(Ψ,C)).

Proof 4.1.16 Given the prerequisites in Theorem 4.1.15, let (Ci)0≤i≤n be a sequence satisfying condi-
tions 1-3 in Theorem 4.1.15. Condition 1–3 hold by definition of (PU)∗Ψ and D◦Ψ . Condition 4 holds by
ACD

Π (C) = ACD
Π (Cn) 6= ∅ and by Condition 3. By Ci is closed under UΨ we have that there exists a

support graph of (Ψ, Ci) (Condition 5). Condition 6 and 7 hold since Ci+1 is closed underPΨ . Condition 8
holds by Ci+1 is closed under PΨ and UΨ and by definition of D�Ψ . Condition 9+10 follow analogous to
proof (2a) and (2b) in ”⇐” Theorem 4.1.15.

Proof 4.1.17 Proof analogous to Theorem 4.1.15.



Appendix C

Chapter 5: Proofs

C.1 Section 5.1
Proof 5.1.1 Let (Π1, <1) and (Π2, <2) be ordered logic programs. Assume that <1=<2 does not hold.
W.l.o.g., assume that there exist r, r′ ∈ Π1 such that r′ <1 r but r′ 6<2 r. That is, r is preferred over r′ in
Π1 but not in Π2.

We will first create a Π′ such that AS(Π1 ∪Π′) = AS(Π2 ∪Π′) 6= ∅.
Let Π′ = {head(r) ← x | r ∈ Π1 ∪ Π2} ∪ {rx : x ←}, where x does not occur in Π1 and Π2, i.e.

x 6∈ Atm(Π1 ∪ Π2). Now we have AS(Π1 ∪ Π′) = AS(Π2 ∪ Π′) = {X} where X = {head(r) | r ∈
Π1 ∪Π2} ∪ {x}. X obviously satisfies all of (Π1 ∪Π′)X , and (Π2 ∪Π′)X , and no subset of X can satisfy
the reducts. Moreover, any model of Π1 ∪ Π′, and Π2 ∪ Π′ is a superset of X , therefore X is the only
answer set.

Furthermore, also ASσ((Π1∪Π′, <1)) = ASσ((Π2∪Π′, <2)) = {X} holds for σ ∈ {D,W,B}. Note
that Π1 ∩ Π′ = Π2 ∩ Π′ = ∅, and so no rule of Π′ occurs in <1 and <2. We can thus find an rule ordering
for Π1 ∪ Π′ (resp. Π2 ∪ Π′), in which all rules of Π′ are ordered first (starting with x ←), followed by an
ordering of rules in Π1 (resp. Π2) which is compatible with <1 (resp. <2). It is easy to verify that such an
ordering satisfies all of the conditions for the D–, W–, and B–semantics, respectively.

We will now create another small ordered logic program (Π′′, <′′), which will inhibit X being a pre-
ferred answer set if r′ <1 r holds, and do nothing if it does not. We assume that y is a new symbol, i.e.
y 6∈ Atm(Π1 ∪Π2 ∪Π ∪ {x}).

(Π′′, <′′) =



r
r′

rx : x←
ry : y ← not x
rx <′′ r′

r <′′ ry


Let us now examine the preferred answer sets of P1 = (Π∗

1, <
∗
1) = (Π1 ∪ Π′ ∪ Π′′, <1 ∪ <′′) and

P2 = (Π∗
2, <

∗
2) = (Π2 ∪Π′ ∪Π′′, <2 ∪ <′′).

For P1, observe that no ordering as described above can be extended for X such that the conditions for
the D–, W–, and B–semantics are meet: Since rx <∗

1 ry , ry must occur before rx in the ordering, but all
semantics also require that rx is ordered before ry . So ASσ(P1) = ∅ for σ ∈ {D,W,B}.

For P2, rx 6<∗
2 ry holds, therefore we can extend the ordering by placing ry just after rx. Moreover, r

and r′ are not necessarily in Π2; if they are not, they can be placed at the very end of the ordering, and they
cannot violate any of the conditions of the three semantics. Therefore ASσ(P2) = {X} for σ ∈ {D,W,B}.
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We obtain that (Π1, <1) 6≡σ
s (Π2, <2), where σ ∈ {D,W,B}, from which the theorem follows.

Proof 5.1.2 If (Π1, <1) ≡σ
s (Π2, <2) and PR((Π1, <1)) 6= PR((Π2, <2)) held, then assume w.l.o.g. that

r ∈ PR((Π1, <1)) but r 6∈ PR((Π2, <2)). So some r′ ∈ Π1 exists, such that r <1 r′ or r′ <1 r, but
neither r <2 r′ nor r′ <2 r, implying <1 6=<2, which contradicts Theorem 5.1.1.

Proof 5.1.3 Follows directly from Theorem 5.1.1.

Proof 5.1.4 Assume that (Π1, <1) ≡σ
s (Π2, <2) and AS(Π1) 6≡s AS(Π2). From Theorem 5.1.1 it follows

that <1=<2 holds.
Since Π1 6≡s Π2, there exists some logic program Π such that AS(Π1 ∪ Π) 6= AS(Π2 ∪ Π). W.l.o.g.,

assume that X ∈ AS(Π1 ∪ Π) and X 6∈ AS(Π2 ∪ Π). X cannot be in ASσ((Π2 ∪ Π, <2)) and not in
ASσ((Π1 ∪Π, <1)), since (Π1, <1) ≡σ

s (Π2, <2)
But, as we will show next, we can construct a Π′ such that as before a X ′ exists such that X ′ ∈

AS(Π1 ∪ Π′), X ′ 6∈ AS(Π2 ∪ Π′), but now X ′ ∈ ASσ((Π1 ∪ Π, <1)), X ′ 6∈ ASσ((Π2 ∪ Π, <2)),
contradicting (Π1, <1) ≡σ

s (Π2, <2).
We construct Π′ as follows, where x is a new atom, i.e. x 6∈ Atm(Π1 ∪Π2 ∪Π):

Π′ = Π ∪
{

rx : x←
r′i : h← B, x for all ri : h← B in Π1 ∪Π

}
Now it is easy to see that X ′ = X ∪ {x} is an answer set of Π1 ∪Π′: It is a model of Π1 ∪Π and also

satisfies rule rx and all rules r′i. Moreover, since no Y ⊂ X satisfies (Π1 ∪ Π)X , also no Y ′ ⊂ X ′ can
satisfy (Π1 ∪Π′)X′ ⊃ (Π1 ∪Π)X .

We next show that X ′ is not an answer set of Π2 ∪Π′: Since X is not an answer set of Π2 ∪Π, it is (i)
either not a model of Π2 ∪ Π, or (ii) X is a model of Π2 ∪ Π, and some Y ⊂ X is a model of (Π2 ∪ Π)X .
In case (i), a rule r ∈ Π2 ∪ Π is not satisfied by X . But r is also in Π2 ∪ Π′ and since x is a new symbol,
X ′ does not satisfy r either and so is neither a model nor an answer set of Π2 ∪ Π′. In case (ii), X ′ is
also a model of Π2 ∪ Π′, and (Π2 ∪ Π′)X′ ⊃ (Π2 ∪ Π)X . If Y ⊂ X is a model of (Π2 ∪ Π)X , then
Y ′ = Y ∪ {x} ⊂ X ′ is a model of (Π2 ∪Π′)X′

, and so X ′ 6∈ AS(Π2 ∪Π′).
Since X ′ 6∈ AS(Π2 ∪Π′), also X ′ 6∈ ASσ(Π2 ∪Π′). As a final step, we observe that X ′ ∈ ASσ(Π1 ∪

Π′): There exists an enumeration ordering rx before an enumeration of all r′i, which is compatible with the
conditions of the respective semantics, followed by an ordering of Π1 ∪Π which is compatible with <1. It
is easy to see that it is possible to find such an ordering for the r′i, as AS(Π∗) = ASσ((Π∗, ∅) holds for all
σ ∈ {D,W,B} and all programs Π∗. For each condition that has to be met for some ri ∈ Π1 ∪Π, there is
some r′j with an appropriate head atom occurring earlier in the enumeration.

Summarizing, we have shown X ′ ∈ ASσ(Π1 ∪ Π′) and X ′ 6∈ ASσ(Π2 ∪ Π′), contradicting the
assumption that (Π1, <1) ≡σ

s (Π2, <2) holds.

Proof 5.1.5 Assume that (Π1, <1) and (Π2, <2) are ordered logic programs such that (Π1, <1) ≡B
s

(Π2, <2), that Cont(Π1) 6= Cont(Π2), and w.l.o.g. that r ∈ Cont(Π1) but r 6∈ Cont(Π2). So by defini-
tion X ∈ AS(Π1∪Π) exists for some Π such that r ∈ RΠ1∪Π(X). By Theorem 5.1.4 also X ∈ AS(Π2∪Π)
holds, and therefore r 6∈ Π2, otherwise r ∈ RΠ2∪Π(X) and therefore r ∈ Cont(Π2) would hold.

We will now construct a (Π′, <′) based on Π, such that X ′ = X ∪ {x} is a preferred answer set of
(Π1, <1) ∪ (Π′, <′) as follows.

(Π′, <′) = Π ∪



rx : x←
rai : a← x for all ai ∈ X \ {head(r)}
ry : y ← not h where h = head(r)
rh for all rh ∈ Π1 ∪Π2

such that head(rh) = head(r) and rh 6= r
rh <′ ry for all rh ∈ Π1 ∪Π2

such that head(rh) = head(r) and rh 6= r


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The intention is to create a rule ry , which is blocked in X ′ and can only be blocked by r (which is not
involved in the preference relation) in an order preserving way. The preference is then extended in a way
such that ry is preferred to all rules, apart from r, that could block ry , so that Π1, which contains r, can
have X ′ as preferred answer set by ordering r before ry , while Π2 cannot order any rule before ry which is
capable of blocking ry . Hence, the existence of a preferred answer set depends on the existence of r.

Additionally, we must take care that X ′ really is a preferred answer set of (Π1, <1) ∪ (Π′, <′). To this
end we include all elements of X (apart from the head atom of r) as quasi-facts (rules rai), which are not
affected by the preference relation. We do not include them as real facts, as such facts may occur in the
original program and hence in the preference relation. Note also that r is not involved in any preference
order, by virtue of Corollary 5.1.2 and the fact that r 6∈ Π2. We are therefore free to order r as the first of all
rules in Π1∪Π, acting also as a quasi-fact. This is possible, since r is a generating rule and the B-semantics
fully decouples preference handling from rule application. In this particular case, all atoms in body+(r)
apart from head(r) are derived by quasi-facts, and if head(r) occurs in body+(r), there must be another
generating rule in Π1 ∪Π the head of which is equal to head(r). For the B-semantics, this rule may occur
after r in the enumeration. For D- and W -semantics, this would not be admissible.

Now, since X ∈ AS(Π1 ∪ Π) = AS(Π2 ∪ Π) and r ∈ RΠ1∪Π(X), we have that head(r) ∈ X , and
so rule ry is satisfied by X ′, as are all other rules in Π1 ∪ Π′. We can also verify that no Y ′ ⊂ X ′ is a
model of (Π1 ∪Π′)X′

, since no Y ⊂ X is a model of (Π1 ∪Π)X . Therefore X ′ ∈ AS(Π1 ∪Π′), and since
Π1 ≡s Π2 (due to Theorem 5.1.4), also X ′ ∈ AS(Π2 ∪Π′).

We can find an enumeration of Π1 ∪ Π′, such that rx is the first rule, followed by all rai . We then
order r, followed by ry , followed by an ordering of all remaining rules which is compatible with <1. This
enumeration is clearly compatible with <1 ∪ <′, and for each rule r′ ∈ (Π1 ∪ Π′) \ RΠ1∪Π′(X ′) there is
either an rai or r earlier in the enumeration such that the head of rai or r occurs in body−(r′) (note that
{head(r′′) | r′′ ∈ {rai , r}} ∪ {x} = X ′). So both conditions of Definition 2.4.3 are satisfied and therefore
X ′ ∈ ASB((Π1, <1) ∪ (Π′, <′)).

On the other hand, for Π2 ∪ Π′ such an enumeration cannot be found. One rule r′ with head(r′) =
head(r) must be ordered before ry , yet since r 6∈ Π2 ∪ Π′, for any such rule r′ <′ ry holds, requiring that
ry occurs before all of these rules. Hence X ′ 6∈ ASB((Π1, <1) ∪ (Π′, <′)), contradicting the assumption
(Π1, <1) ≡B

s (Π2, <2).

Proof 5.1.6 Assume that (Π1, <1) and (Π2, <2) are ordered logic programs such that (Π1, <1) ≡σ
s

(Π2, <2) (σ ∈ {D,W}), that Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r)} 6= Cont(Π2) \ {r ∈
Π2 | head(r) ∈ body+(r)}, and w.l.o.g. that r ∈ Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r)} but
r 6∈ Cont(Π2) \ {r ∈ Π2 | head(r) ∈ body+(r)}.

The reasoning is almost the same as in the proof of Theorem 5.1.5. We observe that some X ∈ AS(Π1∪
Π) exists for some Π such that r ∈ RΠ1∪Π(X). By Theorem 5.1.4 also X ∈ AS(Π2 ∪ Π) holds, and
therefore r 6∈ Π2.

We construct the same (Π′, <′) as in the proof of Theorem 5.1.5, and observe that for X ′ = X ∪ {x},
X ′ ∈ AS(Π1 ∪Π′) and X ′ ∈ AS(Π2 ∪Π′) hold.

Again, we find the same enumeration of Π1 ∪ Π′ as in the proof of Theorem 5.1.5: rx is the first rule,
followed by all rai , r, ry , followed by an ordering of all remaining rules which is compatible with <1.
Again, this enumeration is compatible with <1 ∪ <′, and for each rule r′ ∈ (Π1 ∪ Π′) \ RΠ1∪Π′(X ′)
with non-empty body−(r′) there is either an rai or r earlier in the enumeration such that the head of
rai or r occurs in body−(r′), so conditions 1 and 3 of Definition 2.4.1 resp. Definition 2.4.2 are satisfied.
Concerning condition 2, we note first that, for rule r which is in RΠ1∪Π′(X ′), head(r) 6∈ body+(r). So each
atom in body+(r) occurs in the head of some rai . For all other rules in RΠ1∪Π′(X ′), each atom in body+(r)
occurs in the head of some rai or in the head of r. Here, it is necessary to require head(r) 6∈ body+(r)
since in the D-and W -semantics all atoms in body+(r) must be derived by a rule which occurs earlier in the
enumeration. In our enumeration, head(r) is indeed not derived by a rule occurring earlier. So all conditions
of Definition 2.4.1 resp. Definition 2.4.2 are satisfied and therefore X ′ ∈ ASσ((Π1, <1) ∪ (Π′, <′)) for
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σ ∈ {D,W}.
On the other hand, for Π2 ∪ Π′ such an enumeration cannot be found. One rule r′ with head(r′) =

head(r) must be ordered before ry , yet since r 6∈ Π2∪Π′, for any such rule r′ <′ ry holds, requiring that ry

occurs before all of these rules. Therefore X ′ 6∈ ASσ((Π1, <1) ∪ (Π′, <′)), contradicting the assumption
(Π1, <1) ≡σ

s (Π2, <2), for σ ∈ {D,W}.

Proof 5.1.7 Let (Π1, <1) and (Π2, <2) be ordered logic programs such that

C 1: Π1 ≡s Π2,

C 2: <1=<2, and

C 3: Cont(Π1) = Cont(Π2).

Assume that (Π1, <1) ≡B
s (Π2, <2) does not hold. Then, there exists a (Π, <) such that ASB((Π1 ∪

Π, <1 ∪ <)) 6= ASB((Π2 ∪ Π, <2 ∪ <)). W.l.o.g. assume X ∈ ASB((Π1 ∪ Π, <1 ∪ <)) such that
X 6∈ ASB((Π2 ∪ Π, <2 ∪ <)). Note that X ∈ AS((Π2 ∪ Π)) since Π1 ≡s Π2 and X ∈ AS(Π1 ∪ Π).
Furthermore, there exists an enumeration E1 = 〈sj〉j∈J of Π1 ∪Π for which X is <B- preserving.

Next, we construct an enumeration of Π2 ∪Π for which X is <B– preserving, which is a contradiction
to the assumption X 6∈ ASB((Π2 ∪Π, <2 ∪ <)).

There exists an enumeration E2 = 〈ri〉i∈I1 of (Π2 ∩Π1) ∪Π such that for all i, j ∈ I1, k, l ∈ J where
ri=̂sk, rj=̂sl we have i < j iff k < l. That is, 〈ri〉i∈I1 is the restriction of E1 to the rules which Π1 ∪ Π
and Π2 ∪ Π have in common. Note that in this enumeration all rules r are included, which satisfy at least
one of the following conditions:

• r ∈ Π,

• r ∈ RΠ2∪Π(X) (because of Condition C 3), or

• r is involved in <2 that is there exists an r′ ∈ Π2 such that r′ <2 r or r <2 r′ holds (because of
Condition C 2).

Hence, for the remaining rules r ∈ Π2 \ (Π1∪Π) we have that r is not involved in <2 ∪ < and r fulfills
one of the following conditions:

Case 1: r 6∈ RΠ2∪Π(X) and body+(r) 6⊆ X , or

Case 2: r 6∈ RΠ2∪Π(X), body+(r) ⊆ X and body−(r) ∩X 6= ∅.

We can add rules from Case 1 arbitrarily into the enumeration E2 = 〈ri〉i∈I1 . In Case 2 we have that
body−(r) ∩ {head(rj) | rj ∈ E2} 6= ∅, since all generating rules for X are in E2. Hence, we can insert all
rules r ∈ Π2 \ (Π1 ∪ Π) at the end of the enumeration E2. Thus, we get an <B–preserving enumeration
E = 〈ri〉i∈I of Π2 ∪Π, which is a contradiction to the assumption.

Proof 5.1.8 This proof is similar to the proof for Theorem 5.1.7. We assume that the conditions hold
and that the programs are not strongly <σ-equivalent for σ ∈ {D,W}. Take a preferred answer set of an
admissible extension of one program, which is not a preferred answer set of the same admissible extension
of the other program. Starting from the order preserving enumeration of the preferred answer set, we
construct an order preserving enumeration for the same preferred answer set of the admissible extension
of the other program, contradicting our assumption. The difference to Theorem 5.1.7 is the way how we
construct the order preserving enumeration.

Let σ ∈ {D,W} be fixed, and let (Π1, <1) and (Π2, <2) be ordered logic programs such that

C 1: Π1 ≡s Π2,

C 2: <1=<2, and
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C 3: Cont(Π1)\{r ∈ Π1∪Π | head(r) ∈ body+(r)} = Cont(Π2)\{r ∈ Π2∪Π | head(r) ∈ body+(r)}.

Assume that (Π1, <1) ≡σ
s (Π2, <2) does not hold. Then, there exists a (Π, <) such that ASσ((Π1 ∪

Π, <1 ∪ <)) 6= ASσ((Π2 ∪ Π, <2 ∪ <)). W.l.o.g. assume X ∈ ASσ((Π1 ∪ Π, <1 ∪ <)) such that
X 6∈ ASσ((Π2 ∪ Π, <2 ∪ <)). Note that X ∈ AS((Π2 ∪ Π)) since Π1 ≡s Π2 and X ∈ AS(Π1 ∪ Π).
Furthermore, there exists an enumeration E1 = 〈sj〉j∈J of Π1 ∪Π for which X is <σ- preserving.

Next, we construct an enumeration of Π2 ∪Π for which X is <σ– preserving, which is a contradiction
to the assumption X 6∈ ASσ((Π2 ∪Π, <2 ∪ <)).

There exists an enumeration E2 = 〈ri〉i∈I1 of (Π2 ∩Π1) ∪Π such that for all i, j ∈ I1, k, l ∈ J where
ri=̂sk, rj=̂sl we have i < j iff k < l. That is, 〈ri〉i∈I1 is the restriction of E1 to the rules which Π1 ∪ Π
and Π2 ∪ Π have in common. Note that in this enumeration all rules r are included, which satisfy at least
one of the following conditions:

• r ∈ Π,

• r ∈ RΠ2∪Π(X) \ {r ∈ Π2 ∪Π | head(r) ∈ body+(r)} (because of Condition C 3), or

• r is involved in <2 that is there exists an r′ ∈ Π2 such that r′ <2 r or r <2 r′ holds (because of
Condition C 2).

Hence, for the remaining rules r ∈ Π2 \ (Π1∪Π) we have that r is not involved in <2 ∪ < and r fulfills
one of the following conditions:

Case 1: r ∈ RΠ2∪Π(X) and head(r) ∈ body+(r),

Case 2: r 6∈ RΠ2∪Π(X) and body+(r) 6⊆ X , or

Case 3: r 6∈ RΠ2∪Π(X), body+(r) ⊆ X and body−(r) ∩X 6= ∅.

In Case 1 we have that body+(r) ⊆ {head(rj) | rj ∈ E2}, hence, such rules can be inserted at the end
of enumeration E2. Rules from Case 2 can be added arbitrarily to the enumeration E2. In Case 3 we have
that body−(r) ∩ {head(rj) | rj ∈ E2} 6= ∅. Hence, we can insert all rules r ∈ Π2 \ (Π1 ∪ Π) at the end
of the enumeration E2. Thus, we get an <σ–preserving enumeration E = 〈ri〉i∈I of Π2 ∪ Π, which is a
contradiction to the assumption. For this reason we have (Π1, <1) ≡σ

s (Π2, <2).

Proof 5.1.9 This Corollary follows from Theorem 5.1.4, 5.1.5, 5.1.1 and from 5.1.7.

Proof 5.1.10 This Corollary follows from Theorem 5.1.4, 5.1.6, 5.1.1 and from 5.1.8.

Proof 5.1.11 Let P1 = (Π1, <1) and P2 = (Π2, <2).
If σ = B, then SOEB(P1) = SOEB(P2) is equivalent to the facts that Π1 ≡s Π2, <1=<2, and

Cont(Π1) = Cont(Π2). By Corollary 5.1.9 these conditions are equivalent to P1 ≡B
s P2.

If σ ∈ {D,W}, then SOEσ(P1) = SOEσ(P2) is equivalent to the facts that Π1 ≡s Π2, <1=<2,
and Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r)} = Cont(Π2) \ {r ∈ Π2 | head(r) ∈ body+(r)}. By
Corollary 5.1.10 these conditions are equivalent to P1 ≡B

s P2.

Proof 5.1.12 (a) follows from Corollary 5.1.9 and 5.1.10. (b) follows from Corollary 5.1.10.

Proof 5.1.13 It is common knowledge that checking whether an interpretation I is an answer set of a given
program is feasible in polynomial time, cf. [57].

In [34], it was shown that checking whether an interpretation I is a <B-preferred answer set is polyno-
mial, by virtue of an algorithm called “FULL-ORDER,” which is an enhanced topological sorting method.
Here, we will give deterministic variants of this algorithm, dealing also with <D- and <W - preferred an-
swer sets. In these algorithms, the initial graphs G(P,A) consist of rules as vertices, with an arc (r, r′) if
r′ < r. The arcs therefore point from preferred rules to non-preferred rules. A source vertex of a graph is a
vertex to which no arc points.
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Algorithm Enumerate-D
Input: ordered logic program P = (Π, <),

A ∈ AS(Π)
Output: yes, if A ∈ ASD(P ), with a supporting enumeration of rules;

no otherwise
Method:
1.a. Construct graph G(P,A) = (V,E), where V = Π and

E = {(r, r′) | r′ < r, r, r′ ∈ Π}, labeling each vertex r as follows:
g (generating) if r ∈ RΠ(A)
i (irrelevant) if body+(r) 6⊆ A
z (zombie) otherwise

1.b. Initialize T := ∅ and E := 〈〉
2. If G(P,A) has no vertices, output yes and E, and stop.
3. Let O be the set of source vertices in G(P,A), such that

r is labeled i or
r is labeled g and body+(r) ⊆ T or
r is labeled z and body−(r) ∩ T 6= ∅

4. If O = ∅, output no and stop.
5. a. T := T ∪ {head(r) | r ∈ O and r labeled g}
5. b. Append an arbitrary enumeration of O to E.
5. c. Delete from G(P,A) all vertices in O and all arcs with vertices in O.
6. Continue at 2.

Algorithm Enumerate-W
Input: ordered logic program P = (Π, <),

A ∈ AS(Π)
Output: yes, if A ∈ ASW (P ), with a supporting enumeration of rules;

no otherwise
Method:
1.a. Construct graph G(P,A) = (V,E), where V = Π and

E = {(r, r′) | r′ < r, r, r′ ∈ Π}, labeling each vertex r as follows:
g (generating) if r ∈ RΠ(A)
i (irrelevant) if body+(r) 6⊆ A
z (zombie) otherwise

1.b. Initialize T := ∅ and E := 〈〉
2. If G(P,A) has no vertices, output yes and E, and stop.
3. Let O be the set of source vertices in G(P,A), such that

r is labeled i or
r is labeled g and body+(r) ⊆ T or head(r) ∈ T or
r is labeled z and body−(r) ∩ T 6= ∅ or head(r) ∈ T

4. If O = ∅, output no and stop.
5. a. T := T ∪ {head(r) | r ∈ O and r labeled g}
5. b. Append an arbitrary enumeration of O to E.
5. c. Delete from G(P,A) all vertices in O and all arcs with vertices in O.
6. Continue at 2.

Algorithm Enumerate-B
Input: ordered logic program P = (Π, <),

A ∈ AS(Π)
Output: yes, if A ∈ ASB(P ), with a supporting enumeration of rules;
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no otherwise
Method:
1.a. Construct graph G(P,A) = (V,E), where V = Π and

E = {(r, r′) | r′ < r, r, r′ ∈ Π}, labeling each vertex r as follows:
g (generating) if r ∈ RΠ(A)
i (irrelevant) if body+(r) 6⊆ A or head(r) ∈ A
z (zombie) otherwise

1. b. Initialize T := ∅ and E := 〈〉
2. If G(P,A) has no vertices, output yes and E, and stop.
3. Let O be the set of source vertices in G(P,A), such that

r is labeled i or
r is labeled g or
r is labeled z and body−(r) ∩ T 6= ∅

4. If O = ∅, output no and stop.
5. a. T := T ∪ {head(r) | r ∈ O and r labeled g}
5. b. Append an arbitrary enumeration of O to E.
5. c. Delete from G(P,A) all vertices in O and all arcs with vertices in O.
6. Continue at 2.

Each of these algorithms computes an enumeration for an ordered logic program P = (Π, <) and an
answer set of Π for the respective semantics if one exists or returns “no,” if none exists. Each of these
algorithms runs within a polynomial time bound.

Proof 5.1.14 Membership: Let (Π1, <1) and (Π2, <2) be two ordered logic programs. To show that the
two programs are not σ-equivalent, we guess an interpretation I , and verify in polynomial time that either
(a) I ∈ AS(Π1) and I ∈ ASσ((Π1, <1)) and that I 6∈ AS(Π2) or I 6∈ ASσ((Π2, <2)), or (b) I 6∈ AS(Π1)
or I 6∈ ASσ((Π1, <1)) and that I ∈ AS(Π2) and I 6∈ ASσ((Π2, <2)). All of these subchecks are feasible
in polynomial time (cf. [57, 34]), hence the whole check can be done in polynomial time. Testing Π1 6≡σ Π2

is therefore in NP, and testing Π1 ≡σ Π2 in co-NP.
For hardness, it is sufficient to observe that, for all σ ∈ {D,W,B}, ASσ((Π, ∅)) = AS(Π) holds

for all logic programs Π. Therefore, for two logic programs Π1 and Π2, testing whether Π1 ≡ Π2 is
not harder than testing (Π1, <1) ≡σ (Π2, <2) for two ordered logic programs (Π1, <1) and (Π2, <2).
Testing Π1 6≡ Π2 is well-known to be co-NP. This result per se follows directly from [14] and [148], who
showed that deciding whether an answer set exists for a program is NP-complete, but was, to the best of
our knowledge, reported formally only recently in Theorem 6.17 of [82] in the context of more complex
settings.

Proof 5.1.15 For any given Π, r ∈ Π, Π′, and X ∈ AS(Π ∪ Π′), we construct X∗ = X ∩ Atm(Π)
and Π∗ = {a ←| a ∈ X∗}. We first note that X∗ ∈ AS(Π ∪ Π∗): As ΠX = ΠX∗

, and since X is
closed under ΠX , also X∗ is closed under ΠX∗

. X∗ is trivially closed under Π∗, and no subset of X∗

is closed under Π∗, and hence also no subset of X∗ is closed under Π ∪ Π∗. Finally, we observe that
RΠ∪Π′(X) ∩Π = RΠ(X) = RΠ(X∗) = RΠ∪Π∗(X∗) ∩Π and hence r ∈ RΠ∪Π∗(X∗).

Proof 5.1.16 Membership: Because of Lemma 5.1.15, it is sufficient to check whether some program
Π′ ∈ facts(Atm(Π)) exists such that there is an answer set X ′ = {a | a ←∈ Π′} of Π ∪ Π′ such that
r ∈ RΠ∪Π′(X ′). We guess appropriate Π′ and X ′ out of an exponential number of candidates and verify in
polynomial time that X ′ ∈ AS(Π ∪Π′) and that r ∈ RΠ∪Π′(X ′). The problem is thus in NP.

Hardness: We give a reduction from 3SAT , the propositional satisfiability problem over 3CNF for-
mulas. Let φ = C1 ∧ · · · ∧ Cn be a 3CNF, i.e. a conjunction of clauses

∧n
i=1 Li,1 ∨ Li,2 ∨ Li,3 where

the Li,j are classical literals over propositional atoms X = {x1, . . . , xm}. For a literal l, we define
¬.l = ¬l if l is an atom and ¬.l = x if l = ¬x. We construct the following logic program Πφ over atoms
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{v1, . . . , vm, nv1, . . . , nvm, c1, . . . , cn, inc, sat}, and use the notation ν(xi) = vi and ν(¬xi) = nvi.

Πφ =



r0 : sat← c1, . . . , cn, not inc.
r1,1 : inc← c1, not ν(L1,1), not ν(L1,2), not ν(L1,3).
...
r1,n : inc← cn, not ν(Ln,1), not ν(Ln,2), not ν(Ln,3).
r2,1 : inc← v1, nv1.
...
r2,m : inc← vm, nvm.
r3,1 : inc← not v1, not nv1.
...
r3,m : inc← not vm, not nvm.


If we have r0 ∈ Cont(Πφ), then, by Lemma 5.1.15, there exists a program Π′ ∈ facts(Atm(Πφ))

and X ′ ∈ AS(Πφ ∪ Π′) such that r0 ∈ RΠφ∪Π′(X ′). So {sat, c1, . . . , cn} ⊆ X ′ and inc 6∈ X ′. Since
X ′ ∈ AS(Πφ ∪Π′), we get that for each 1 ≤ i ≤ n, ν(Li,1) ∈ X ′, ν(Li,2) ∈ X ′, or ν(Li,3) ∈ X ′ because
of r1,i. Moreover, for each 1 ≤ j ≤ m, exactly one of vj , nvj is in X ′ because of rules r2,j and r3,j . We
then get Π′ = {a. | a ∈ X ′}. It is now easy to see that X ′ represents a satisfying truth assignment for φ.

In turn, for a satisfying truth assignment µ for φ, we construct

X ′ = {sat, c1, . . . , cn} ∪ {ν(x) | x true in µ} ∪ {ν(¬x) | x false in µ}.

With Π′ = {a ←| a ∈ X ′}, we can verify that X ′ ∈ AS(Πφ ∪ Π′) and that r0 ∈ RΠφ∪Π′(X ′), so
r0 ∈ Cont(Πφ).

Proof 5.1.17 Assume that r ∈ Cont(Π1) and r 6∈ Cont(Π2). Then there exists some Π′ and X ∈
AS(Π1 ∪ Π′) = AS(Π2 ∪ Π′), such that r ∈ RΠ1∪Π′(X). Since the condition for being a generating rule
does not depend on the program context, but only on X , r ∈ Π1 and r 6∈ Π2 must hold. A symmetric
argument can be given for r 6∈ Cont(Π1) and r ∈ Cont(Π2)

Proof 5.1.18 We show that deciding Cont(Π1) 6= Cont(Π2) is NP-complete, and as in the proof for
Theorem 5.1.16, we exploit Lemma 5.1.15.

Membership: Guess a rule r ∈ (Π1 ∪Π2) \ (Π1 ∩Π2), an interpretation X ′ and program P ′. We check
in polynomial time that X ′ ∈ AS(Π1 ∪Π′) = AS(Π2 ∪Π′) and that r is generating in X ′.

Hardness: We give a reduction from 3SAT , the propositional satisfiability problem over 3CNF for-
mulas. For any 3CNF φ, let Π1 = Πφ ∪ {a ←}, where Πφ is as in the proof of Theorem 5.1.16, while
Π2 = Πφ ∪ {a ←} ∪ {r′0}, where r′0 is r0 of Πφ with an additional body literal a. Obviously, Π1 ≡s Π2.
But if φ is satisfiable, an extension and an answer set X of the extended program exist such that both r0

and r′0 are generating rules. Since r′0 occurs only in Π2, Cont(Π1) 6= Cont(Π2) holds in this case. If φ is
unsatisfiable, no extension has an answer set, hence Cont(Π1) = Cont(Π2) holds.

Proof 5.1.19 Membership: According to Corollary 5.1.9 and 5.1.10, we have to check whether the under-
lying programs are strongly equivalent, the ordered programs coincide on their preference relations, and the
underlying programs coincide on their rules contributing to answer sets.

• Checking whether Π1 ≡s Π2 is in co-NP[134].

• Checking whether <1=<2 is in linear time in size of Π1 ∪Π2.

• Checking whether Π1 and Π2 coincide on their rules contributing to answer sets is co-NP-complete
(see Theorem 5.1.18), provided that Π1 ≡s Π2.
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Hardness: Follows from Theorem 5.1.18.

Proof 5.1.20 This follows from Corollaries 5.1.9 and 5.1.10, since (Π, <) ≡σ
s (Π \ {r}, <), the preference

relation is equal on (Π, <) and (Π \ {r}, <), and since Cont(Π) = Cont(Π \ {r}), which implies also
Cont(Π) \ {r ∈ Π | head(r) ∈ body+(r)} = Cont(Π \ {r}) \ {r ∈ Π | head(r) ∈ body+(r)}.

Proof 5.1.21 This follows from Corollary 5.1.10.

C.2 Section 5.2
Proof 5.2.1 Follows directly from Definition 5.2.1.

Proof 5.2.2 Follows directly from definitions of strong and n-strong order equivalence.

Proof 5.2.3 Proof follows directly from that of strong order equivalence.

Proof 5.2.4 Follows directly from Corollary 5.1.9.

Proof 5.2.5 Follows directly from Corollary 5.1.10.

Proof 5.2.6 The counterexamples are given in Section 5.2.1 directly after this theorem.

Proof 5.2.7 Let (Π, <) be an ordered logic program, r1, r2 ∈ Π such that body(r1) = ∅, head(r1) ∈
body(r2), r2 < r1, and σ ∈ {D,W,B}. Assume (Π, <) 6≡σ

n (Π, <′) holds for <′=< \{r2 < r1}. Then,
there exists an Π′ such that (Π ∪ Π′, <) 6≡σ (Π ∪ Π′, <′). Since <′⊆<, we have ASσ((Π ∪ Π′, <)) ⊆
ASσ((Π ∪ Π′, <′)) [177]. That is, there exists an X ∈ ASσ((Π ∪ Π′, <′)) such that X 6∈ ASσ((Π ∪
Π′, <)). Hence, the preference relation r2 < r1 is “responsible” for making X non-preferred. Since
X ∈ ASσ((Π ∪ Π′, <′)), there exists an <σ-preserving enumeration E of Π ∪ Π′ w.r.t. X . Whenever
r1 precedes r2 in this enumeration, E is also an <σ-preserving enumeration for (Π ∪ Π′, <), which is a
contradiction to X 6∈ ASσ((Π ∪ Π′, <)). Hence, for all <σ-preserving enumeration E w.r.t. (Π ∪ Π′, <′)
and X we have that r2 precedes r1. All rules that are higher preferred than r1 are higher preferred than
r2, since < is transitive. Hence, all rules higher preferred than r1 must precede r2 in an order preserving
enumeration. Thus, r1 could precede r2 in an order preserving enumeration w.r.t. <, which leads to a
contradiction to the assumption.

Proof 5.2.8 Let (Π, <) be an ordered logic program and r1, r2 ∈ Π such that head(r1) ∈ body+(r2), and
r1, r2 ∈ Appl(Π). Assume, (Π, <) 6≡B

n (Π, <′) holds for <′=< \{r2 < r1, r1 < r2}. Then, there exists
an Π′ such that ASB((Π∪Π′, <)) 6= ASB((Π∪Π′, <′)). Since <′⊆<, we have that ASB((Π∪Π′, <)) ⊆
ASB((Π ∪Π′, <′)). Then, there exists an X ∈ ASB((Π ∪Π′, <′)) such that X 6∈ ASB((Π ∪Π′, <)).

Let be <′=< \{r2 < r1}. Since r1 ∈ Appl(Π) and all rules higher preferred than r1 are also higher
preferred than r2, there always exists an <B- preserving enumeration where r1 is enumerated before r2.
Hence, r2 can be enumerated after r1 and hence, there exists a <B- preserving enumeration of (Π∪Π′, <)
that is also order preserving for (Π ∪ Π′, <′) w.r.t. X . Hence, X ∈ ASB((Π ∪ Π′, <)). The case <′=<
\{r1 < r2} is analogous.

Proof 5.2.9 Assume (Π, <) 6≡B
n (Π, <′) holds for <′=< \{r1 < r2}. That is, there exists an Π′ such that

ASB((Π∪Π′, <)) 6= ASB((Π∪Π′, <′)). Since <′⊆< we have ASB((Π∪Π′, <)) ⊆ ASB((Π∪Π′, <′)).
Then, there exists an X ∈ ASB((Π ∪ Π′, <′)) such that X 6∈ ASB((Π ∪ Π′, <)). Let E be an <B-
preserving enumeration w.r.t. (Π ∪ Π′, <′) and X . We observe that r2 is blocked by r1 and head(r2) ∈
A(Π). Hence, head(r2) ∈ X since A(Π) ⊆ X . Thus, r2 can be enumerated directly before r1 . For this
reason X ∈ ASB((Π ∪Π′, <)).

Proof 5.2.10 Assume (Π, <) 6≡σ
n (Π, ∅). Then, there exists an Π′ and X ∈ ASσ((Π ∪ Π′, ∅)) such that

X 6∈ ASσ((Π ∪ Π′, <)). More precisely, Π ∪ Π′ has no order preserving enumeration w.r.t. <. Since all
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rules involved in < are in Appl(Π), there exists an order preserving enumeration of Appl(Π). Furthermore,
rules cannot be blocked by lower ranked ones, since < discards no answer set as non-preferred and all non-
applicable rules involved in < are blocked from A(Π). Hence, there exists an order preserving enumeration
of Π ∪Π′ w.r.t. X and <.

Proof 5.2.11 Assume (Π, <) 6≡σ
n (Π \ {r1}, <). Then, there exists an Π′, r1 6∈ Π′, such that (Π ∪ Π′, <

) 6≡σ (Π∪Π′ \ {r1}, <). Abbreviatory, we write Π∗ for Π∪Π′. There are 2 cases. Case 1: There exists an
X ∈ ASσ((Π∗, <)) such that X 6∈ ASσ((Π∗ \{r1}, <)); Case 2: There exists an X ∈ ASσ((Π∗ \{r1}, <
)) such that X 6∈ ASσ((Π∗, <)). In Case 1, we have an <σ- preserving enumeration of Π∗ w.r.t. X , but not
for Π∗\{r1}. That is, r1 is used to derive rules or to block rules in an order preserving way, which can not be
done by r2. That is, r1 precedes r2 in any order-preserving enumeration (otherwise r2 can be used to derive
rules or to block rules). But this is a contradiction to body(r2) ⊆ body(r1) and r1, r2 6∈ PR((Π, <)). In
Case 2, r1 can always be inserted at the end of the enumeration E and we get an <σ- preserving enumeration
of Π∗ w.r.t. X , which is a contradiction to the assumption. Thus, (Π, <) ≡σ

n (Π \ {r1}, <).

Proof 5.2.12 Analogously to Lemma 5.2.11.

Proof 5.2.13 Assume, (Π1, <1) 6≡σ
n (Π2, <2). Hence, there exists a Π′ such that ASσ((Π1 ∪ Π′, <1)) 6=

ASσ((Π2∪Π′, <2)). W.l.o.g., there exists an X ∈ ASσ((Π1∪Π′, <1)) such that X 6∈ ASσ((Π2∪Π′, <2

)). Then, Π′ may have rules from Π1, Π2, and rules S, which are not contained in both programs, i.e.
Π′ = S ∪ ΠS

1 ∪ ΠS
2 , where ΠS

1 ⊆ Π1, ΠS
2 ⊆ Π2, and S ∩ (Π1 ∪ Π2) = ∅. Let S′ be a logic program,

which contains rules head(r) ←, where r belongs to S and r is generating w.r.t. the answer set X , i.e.
S′ = {head(r)← x | r ∈ RS(X)}.

Then, Π∗ = S′ ∪ {x←}∪ΠS
1 ∪ΠS

2 has the form (5.6). Next, we show that X ∈ ASσ((Π1 ∪Π∗, <1))
and X 6∈ ASσ((Π2∪Π∗, <2)) hold. But this holds trivially, since Π∗ comprises the heads of the generating
rules from Π′.

Proof 5.2.14
Membership: We show that deciding (Π1, <1) 6≡σ

n (Π2, <2) is in NP. By Lemma 5.2.13, we have to
find a Π∗ of the form (5.6) such that X ∈ ASσ((Π1 ∪ Π∗, <1)) and X 6∈ ASσ((Π2 ∪ Π∗, <2)). Hence,
we guess appropriate Π∗ and X∗ and verify in polynomial time that X∗ ∈ ASσ((Π1 ∪ Π∗, <1)) and
X∗ 6∈ ASσ((Π2 ∪Π∗, <2)), or X∗ 6∈ ASσ((Π1 ∪Π∗, <1)) and X∗ ∈ ASσ((Π2 ∪Π∗, <2)). The problem
is thus in NP.

Hardness: We give a reduction from strong equivalence for normal logic programs. Let Π1 and Π2 be
logic programs. Then, deciding Π1 ≡s Π2 is co-NP-complete. By Lemma 5.2.1, we have Π1 ≡s Π2 iff
(Π1, ∅) ≡σ

n (Π2, ∅). Hence, (Π1, <1) ≡σ
n (Π2, <2) is co-NP-hard for σ ∈ {D,W,B}.

In total, we obtain that the problem is co-NP-complete.
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Chapter 6: Proofs

D.1 Section 6.1
Proof 6.1.1 LetR be a partial strict order and X be a set of candidates, where x, y, z ∈ X .
rankmin

R (x): Let R↑
x be the following extension of R:

(↑) R↑
x = R ∪ {(x, z) | z 6= x, not (z >R x)}

That is, all candidates which are not initially strictly preferred to x are now less preferred: for all z 6= x,
x > z holds in R↑

x as soon as (z >R x) does not hold that is, as soon as it is possible to enforce x > z.
Note also that it can be easily checked that R↑

x is transitive. Next, we show that R↑
x has at least one

complete extension. For this, let 〈zi〉i∈L be an enumeration of {z | z 6= x, not(z >R x)} such that
i < j if zi >R zj holds for all i, j ∈ L. Analogously, let 〈yi〉i∈K be an enumeration of {y | y >R x}
such that i < j if yi >R yj holds for all i, j ∈ K. Then, let 〈ri〉i∈J be an enumeration of X such that
〈ri〉i∈J = 〈〈yi〉i∈K , x, 〈zi〉i∈L〉. Then, R′, defined as ri ≥R′ rj iff i ≤ j, is an complete extension of R↑

x.
For all complete extensions of R↑

x we have that x has the rank |{y | y >R x}| + 1 since all other
candidates are ranked lower than x. For all complete extensions T which do not satisfy (↑) we have that x
has at least the rank |{y | y >R x}|+2 since there is at least one other candidate who is additionally higher
ranked than x. Hence, we have rankmin

R (x) = |{y | y >R x}|+ 1.
rankmax

R (x): Proof is similar by taking (↓) R↓
x = R ∪ {(z, x) | z 6= x, not (x >R z)}

Proof 6.1.2 LetR be a preference profile, where each Ri is a partial order and Fs be a voting procedure.
1,⇐: Suppose that x is not a necessary winner forR w.r.t. Fs. Then there exists an extension T ofR and
a y 6= x such that S(y, T ) > S(x, T ), thus Smax

R (y) ≥ S(y, T ) > S(x, T ) ≥ Smin
R (x), which contradicts

the assumption that Smin
R (x) ≥ Smax

R (y) holds for all y 6= x.
1, ⇒: Let x be a necessary winner. Then, there don’t exists an T ∈ Ext(R) and there don’t exists an
y 6= x such that S(x, T ) < S(y, T ). Since Smin

R (x) ≤ S(x, T ) and Smax
R (y) ≥ S(y, T ), we have that

there don’t exists an y 6= x such that Smin
R (x) < Smax

R (y).
2: analogously to 1.

Proof 6.1.3 For each partial order Ri and each candidate x, we just have to compute the number of candi-
dates dominated by x and dominating x in Ri, which lead to the exact bound O(n ∗m2), where n is the
number of voters and m the number of candidates.

Proof 6.1.4 LetR be a partial preference profile and x, y two distinct candidates from X .
1: Let us first show that

∑n
i=1 Nmin

Ri
(x, y) = minT ∈Ext(R) NT (x, y). We have

n∑
i=1

Nmin
Ri

(x, y) = |{i | x >i y}| − |{i | not(x ≥i y)|}

181
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Let T = 〈T1, . . . , Tn〉 ∈ Ext(R). We have NT (x, y) = |{i | x >Ti
y}| − |{i | y >Ti

x}|. Now, x >i y
implies x >Ti

y, therefore

(a) |{i | x >Ti y}| ≥ |{i | x >i y}|.
Next, y >Ti

x implies not(x ≥i y), therefore

(b) |{i | y >Ti
x}| ≤ |{i | not(x ≥i y)}|.

(a) and (b) give

(c) |{i | x >Ti
y}| − |{i | y >Ti

x)}| ≥ |{i | x >i y}| − |{i | not(x ≥i y)}|,
which is equivalent to NT (x, y) ≥ |{i | x >i y}| − |{i | not(x ≥i y)}|. Since this holds for all
T ∈ Ext(R), we get minT ∈Ext(R) NT (x, y) ≥

∑n
i=1 Nmin

Ri
(x, y). To show the inequality on the reverse

direction, we consider, as in the proof of Proposition 6.1.1, the worst-case (for x) complete extension of Ri:
for each i, let (Ri)↓x = Ri ∪ {(z, x) | z 6= x, not (x >i z)} andR↓x = 〈(R1)↓x, . . . , (Rn)↓x〉. We have

NR↓
x
(x, y) = |{i | x >(Ri)

↓
x

y}| − |{i | y >(Ri)
↓
x

x)}|
= |{i | x >(Ri)

↓
x

y}| − |{i | not(x ≥(Ri)
↓
x

y)}|
= |{i | x >Ri

y}| − |{i | not(x ≥Ri
y)}|

=
∑n

i=1 Nmin
Ri

(x, y)

Therefore, minT ∈Ext(R) NT (x, y) ≤
∑n

i=1 Nmin
Ri

(x, y). The proof for Nmax
R (x, y) =

∑n
i=1 Nmax

Ri
(x, y)

is similar.
2, ⇐: Assume that x is not a necessary Condorcet winner. Then, there exists an T ∈ Ext(R) and
an y 6= x such that |{i | x >Ti

y}| ≤ |{i | y >Ti
x}|. Hence, NT (x, y) ≤ 0. That implies that

minT ∈Ext(R) NT (x, y) ≤ 0 and thus, Nmin
R (x, y) ≤ 0 which is a contradiction to the assumption that

Nmin
R (x, y) > 0 holds. Hence, x is a necessary Condorcet winner.

2,⇒: Let x be a necessary Condorcet winner. Assume that there exists an y 6= x such that Nmin
R (x, y) ≤ 0

holds for some x. That is, we have |{i | x >i y}| ≤ |{i | not(x ≥i y)}|. Hence, there exists an
T ∈ Ext(R) such that NT (x, y) ≤ 0. Hence, x is no Condorcet winner, which is a contradiction to the
assumption.
3: similar to the proof for necessary Condorcet winners.

Proof 6.1.5 Proof analogously to Corollary 6.1.3.

Proof 6.1.6 Follows directly from the definition of necessary and possible winners in Definition 6.1.1 and
Definition 6.1.2.

Proof 6.1.7 Follows directly from the definition of necessary and possible winners in Definition 6.1.1 and
Definition 6.1.2.

D.2 Section 6.2
Proof 6.2.1 (Sketch) Let be given a set of candidates X , a set of voters V , partial preference profiles for
each voter over the set of candidates, and a voting procedure V P ∈ {Borda, P lurality, Condorcet}.
Furthermore, let Π be the logic program, consisting of rules (6.1)- (6.26).

First, we show that Π has exactly one answer set. We obtain that rules (6.1)- (6.8) are in the well-
founded model of Π (cf. [42] for well-founded semantics of aggregate functions). Hence, recursively, also
rules (6.9)-(6.26) are in the well-founded model of Π. Thus, the well-founded model is total and for this
reason, there exists exactly one answer set Y of Π.

By the semantics of the aggregate functions we can easily verify that the set {X : possible(V P, X) ∈
Y } is the set of all possible winners and {X : necessary(V P, X) ∈ Y } is the set of all necessary winner
w.r.t. voting procedure V P .
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D.3 Section 6.3
Proof 6.3.1 (Sketch) LetM = 〈D,X, NA, k〉 be a meeting scheduling problem and ΠM as described in
Rules (6.27)-(6.37).

Rules (6.27)-(6.31) are initialized as facts. Rule (6.32) gives the availabilities of each person for each
date. Rule (6.33) for group g and date d becomes applicable if and only if |{P ∈ g : P is available for d}| ≥
k. Hence, rule (6.34) becomes applicable for date d if and only if there exists a group g such that |{P ∈ g :
P is available for d}| < k.

For this reason, by rules (6.35)-(6.37), Π has an answer set iff |{P ∈ g : P is available for d}| ≥ k holds
for some date d, where meeting(d) is true. On the other hand, Π has no answer set iff absentgroup(d)
is derivable for all dates d, i.e there exists no d ∈ D such that for all groups g we have |{P ∈ g :
P is available for d}| ≥ k.

Proof 6.3.2 (Sketch) Let M = 〈D,X, NA, k〉 be a meeting scheduling problem and ΠD
M be the corre-

sponding diagnostic model.
Whenever there is a meeting schedulable (according to Definition 6.3.1), rules (6.44), (6.45), (6.47),

(6.48), and (6.49) become not applicable. So, EX = ∅ and RX = ∅.
Whenever no meeting is schedulable according to Definition 6.3.1, then the rules (6.44)–(6.50) catch all

possible reasons. Hence, EX 6= ∅.

Proof 6.3.3 Follows from theorems 6.3.1 and 6.2.1.
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[19] A. Bösel, T. Linke, and T. Schaub. Profiling answer set programming: The visualization component
of the noMoRe system. In J. Alferes and J. Leite, editors, Proceedings of the Ninth European
Conference on Logics in Artificial Intelligence (JELIA’04), 2004.

[20] C. Boutilier. A logical approach to qualitative decision theory. In Proceedings of UAI-94, 1994.

[21] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. Preference-based constraint opti-
mization with CP-nets. Computational Intelligence, 20(2):137–157, May 2004.

[22] C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning with conditional ceteris paribus prefer-
ence statements. In K. Laskey and H. Prade, editors, UAI ’99: Proceedings of the Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence, pages 71–80. Morgan Kaufmann, 1999.

[23] C. Boutilier, R. I. Brafman, C. Domshlak, D. Poole, and H. Hoos. CP-nets: A tool for representing
and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelli-
gence Research, 21:135–191, 2004.

[24] S. Brams and P. Fishburn. Voting procedures. In K. J. Arrow, A. K. Sen, and K. Suzumura, editors,
Handbook of Social Choice and Welfare, volume 1. Elsevier, 2003.

[25] S. Brass and J. Dix. Semantics of (disjunctive) logic programs based on partial evaluation. Journal
of Logic Programming, 40(1):1–46, 1999.

[26] S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up computation of the
well-founded model. Theory and Practice of Logic Programming, 1(5):497–538, September 2001.

[27] G. Brewka. Well-founded semantics for extended logic programs with dynamic preferences. Journal
of Artificial Intelligence Research, 4:19–36, 1996.

[28] G. Brewka. Logic programming with ordered disjunction. In Proceedings of the AAAI National
Conference on Artificial Intelligence, pages 100–105. AAAI Press, 2002.



BIBLIOGRAPHY 187

[29] G. Brewka. Logic programming with ordered disjunction. In S. Benferhat and E. Giunchiglia,
editors, 9th International Workshop on Non-Monotonic Reasoning (NMR 2002), pages 67–76, 2002.

[30] G. Brewka. Answer sets: From constraint programming towards qualitative optimization. In V. Lif-
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[36] G. Brewka, I. Niemelä, and T. Syrjänen. Logic programs with ordered disjunction. Computational
Intelligence, 20(2):335–357, May 2004.
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[69] M. Denecker, V. Marek, and M. Truszczyński. Approximations, stable operators, well-founded fix-
points and applications in nonmonotonic reasoning. In Logic-based artificial intelligence, pages
127–144. Kluwer Academic Publishers, 2000.

[70] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for xml. Computer
Networks, 31(11-16):1155–1169, 1999.

[71] Y. Dimopoulos and C. Kakas. Logic programming without negation as failure. In J. Lloyd, editor,
Proceedings of the International Symposium of Logic Programming, pages 369–383. The MIT Press,
1995.

[72] Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default theories.
Theoretical Computer Science, 170:209–244, 1996.

[73] DLV. http://www.dbai.tuwien.ac.at/proj/dlv/.

[74] meta-interpreter. http://www.dbai.tuwien.ac.at/proj/dlv/preferred/.



190 BIBLIOGRAPHY

[75] W. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability of propositional horn
formulae. Journal of Logic Programming, 1:267–284, 1984.

[76] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv system. AI Commu-
nications, 12(1-2):99–111, 1999.

[77] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing preferred answer sets by meta-interpretation
in answer set programming. Theory and Practice of Logic Programming, 3(4-5):463–498, 2003.

[78] T. Eiter and M. Fink. Uniform equivalence of logic programs under the stable model semantics.
In C. Palamidessi, editor, Logic Programming, 19th International Conference, ICLP 2003, volume
2916 of Lecture Notes in Computer Science, pages 224–238. Springer, 2003.

[79] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A Generic Approach for Knowledge-Based Infor-
mation Site Selection. In D. Fensel, F. Giunchiglia, D. McGuiness, and M.-A. Williams, editors,
Proceedings Eighth International Conference on Principles of Knowledge Representation and Rea-
soning (KR-02), April 22-25, Toulouse, France, pages 459–469. Morgan Kaufmann, 2002. Extended
version Technical Report INFSYS RR-1843-02-09, TU Wien, 2002.

[80] T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifying logic programs under uniform and strong
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