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Abstract

In this thesis the gravitational lensing effect is used to explore a number of cosmological topics. We deter-
mine the time delay in the gravitationally lensed quasar system HE 1104−1805 using different techniques.
We obtain a time delay∆tA−B = (−310 ± 20) days (2σ errors) between the two components. We also
study the double quasar Q0957+561 during a three years monitoring campaign. The fluctuations we find
in the difference light curves are completely consistent with noise and no microlensing is needed to explain
these fluctuations. Microlensing is also studied in the quadruple quasar Q2237+0305 during the GLITP
collaboration (Oct.1999-Feb.2000). We use the absence of a strong microlensing signal to obtain an upper
limit of vbulk = 600 km/s for the effective transverse velocity of the lens galaxy (consideringmicrolenses
with Mlens = 0.1 M⊙).

The distribution of dark matter in galaxy clusters is also studied in the second part of the thesis. In the
cluster of galaxies Cl 0024+1654 we obtain a mass-to-light ratio ofM/L ≃ 200 M⊙/L⊙ (within a radius
of 3 arcminutes). In the galaxy cluster RBS380 we find a relatively low X-ray luminosity for a massive
cluster ofLX,bol = 2 · 1044 erg/s, but a rich distribution of galaxies in the optical band.
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Abstract

In dieser Dissertation nutze ich den Gravitationslinseneffekt, um eine Reihevon kosmologischen Fragen
zu untersuchen. Den Laufzeitunterschied des GravitationslinsensystemsHE 1104−1805 wurde mit unter-
schiedlichen Methoden bestimmt. Zwischen den beiden Komponenten erhalte icheinen Unterschied von
∆tA−B = (−310 ± 20) Tagen (2σ -Konfidenzintervall).

Auerdem nutze ich eine dreijährige Beobachtungskampagne, um den Doppelquasar Q0957+561 zu unter-
suchen. Die beobachteten Fluktuationen in den Differenzlichtkurven lassen sich durch Rauschen erklären,
ein Mikrogravitationslinseneffekt wird zur Erklärung nicht ben̈otigt. Am Vierfachquasar Q2237+0305 un-
tersuchte ich den Mikrogravitationslinseneffekt anhand der Daten der GLITP-Kollaboration (Okt. 1999-Feb.
2000). Durch die Abwesenheit eines starken Mikrogravitationslinsensignals konnte ich eine obere Grenze
von vbulk = 600 km/s fr die effektive Transversalgeschwindigkeit der Linsengalaxie bestimmen (unter der
Annahme von Mikrolinsen der MasseMlens = 0.1 M⊙).

Im zweiten Teil der Arbeit untersuchte ich die Verteilung der Dunklen Materie in Galaxienhaufen. Fr
den Galaxienhaufen Cl 0024+1654 erhalte ich ein Masse-Leuchtkraft-Verhältnis vonM/L ≃ 200 M⊙/L⊙
(innerhalb eines Radius von3 Bogenminuten). Im Galaxienhaufen RBS380 finde ich eine relativ geringe
Röntgenleuchtkraft vonLX,bol = 2 · 1044 erg/s, obwohl im optischen eine groe Anzahl von Galaxien gefun-
den wurde.
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Preface

After the discovery of the first gravitationally lensed quasar almost 25 years ago, gravitational lensing –
the bending of light by a mass distribution– has become a powerful and versatile tool. It is used in the search
for planets outside the Solar System and for dark matter in galaxies’ halos and in clusters of galaxies. It is
playing a key role in the study of the nature and structure of quasars, andalso it helps in understanding stellar
atmospheres. The phenomenon itself was a test for General Relativity, but nowadays it has already opened
its own link with singularity theory, giving mathematicians a laboratory for their concepts. And, moreover,
gravitational lensing is probably one of the best tools to answer important cosmological questions about the
age, size and composition of the Universe. Obviously, it is impossible to cover all these topics in a thesis.
Nevertheless, in this work we have tried to address a number of differentproblems applying gravitational
lensing, and we have focused our efforts in its cosmological applications.

Measuring the time delays between multiple images of the same lensed quasar, the Hubble constant –
the expansion rate of the Universe– can be estimated. The Chapter 4 is dedicated to explore some of the
most common techniques employed in the determination of time delays in lensed quasars and to discuss the
problems that might arise. The result is a new time delay estimation in the double quasar HE 1104−1805.
Following with the studies of lensed quasars, Chapter 5 shows a simple but robust way of analysing differ-
ence lightcurves through Monte Carlo simulations. No short time-scale microlensing fluctuations –lensing
induced by substructure in the lens– were found in the double quasar Q0957+561 in the monitoring cam-
paigns analysed. If microlensing fluctuations cannot be measured in a system in which they were previously
detected, interesting implications can be derived. In Chapter 6 the absenceof microlensing in the quadruple
quasar Q2237+0305 is used to place limits on the transverse velocity of the lensing galaxy.

Clusters of galaxies can act as gravitational lenses, too. In fact, they can produce multiple distorted im-
ages of background galaxies (called giant arcs) as well as only inducelittle elongations in them (called
weak lensing). The former effect allows to model the gravitational potentialin the inner parts of the galaxy
cluster, whereas the latter is able to do it at larger scales. Observing galaxy clusters in X-rays offers a way
of cross-checking lensing results. A problem appears when these different approaches give different results
for the same physical quantity. In Chapter 7 the galaxy cluster Cl 0024+1654 is studied using the weak
lensing theory with a multiband photometry dataset and the results compared to other techniques. Chapter 8
is dedicated to the galaxy cluster RBS380, using both X-rays and optical data.

A brief note onhow to read this thesis. The content is divided in four parts: an Introduction (PartI),
with some historical remarks and the needed theoretical background, Part II devoted to quasar lensing, Part
III with the galaxy cluster lensing and X-ray analysis and PartIV with the final remarks. All the chapters
in partsII andIII have a two-paragraph abstract. The first one is calledLink and it is used to introduce
the chapter in the general context of the thesis. The second one is theAbstract itself, and summarizes the
particular content of the chapter. At the end of the thesis anIndex of selected terms is also available.
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Chapter 1

Historical perspective

In the introduction to one of the lastest lensing conferenceproceedings, Virginia Trimble pointed
out that this topic, as any other in science, can be traced arbitrarily far back in history (Trimble
2001). In our view, this is only partially true: ‘arbitrarily’ is too much. Discoveries are not just
snapshots of ideal lives. They require a context to appear and the context is the evolution of
certain initial conditions. One has to go back in time to get awider perspective and not exclusively
scientific. Brilliant minds are needed, but they fight againstsomething else than simple ignorance
in a particular epoch, they also fight against the social conditions at that time and the historical
heritage that configures that society. For several reasons,we cannot analyse all these aspects here.
It would surely be another thesis. Instead, we follow the somehow standard steps in the historical
introduction of the subject, keeping in mind that these are merely guidelines of a story not yet
written.

To understand how the theory of gravitational lensing arosein a particular moment of history,
one must follow the footprints of the theories of gravitation. The historical evolution of the ideas
behind the concept of gravitation is very much linked with the description of the movement of
bodies, both in the sky and on the ground1.

In 1684 Edmond Halley visited Newton in Cambridge. Halley asked Newton what trajectory
would describe a planet following a force inversely proportional to the square of the distances.
Halley, Christopher Wren and Robert Hooke were trying to solve the problem, but they did not find
a solution. Newton answered that it was an elipse, but that hehad not yet the proof and promised
to send it to Halley when found. Newton sent several works in mechanics to Halley. After revising
all the material, Halley pressed Newton to publish the results. The serie of books was called
“Principia mathematica philosophiae naturalis”. The Principia, with the theory of gravitation
included, was a challenge to the accepted view of nature at that time. Newton’s ideas were based on
the work of Brahe, Copernicus, Galileo, Kepler and others, none of them plainly accepted by then.
One of the reasons for this was that discarding the Aristotelian conception of the sky, there was
not a satisfactory cosmogony. Around 1630, Descartes wrote“Le Monde, ou Trait́e de la lumíere”
in which he developed a theory of gravitation in terms of his theory of celestial vortices (the
book appeared after his death because when he was going to publish it, the Inquisition condemned
Galileo and he thought the moment was not the best). In fact, Newton himself was Cartesian before

1Several histories of astronomy are available in the market.Abetti (1949), Hoskin (1999) and North (1994) are the
three we have used. Further readings can be found there.
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4 HISTORICAL PERSPECTIVE

completely developing hisPrincipia. Again, the Newtonian theories were specially rejected by
philosophers, with Leibniz at the head of them. Leibniz did not like the role space and time had in
the Newtonian system. This period is one of the most excitingand turbulent episodes in history,
where scientific progress was mixed up with philosophy, religion and society. The excellence of the
scientific output probably eclipsed this fact. A very interesting discussion, from the philosophical
point of view, can be found in Sklar (1992) and a wider treatment in Torretti (1999).

The idea that mass can bend light2 is well known since the early 19th century, when Soldner
(1804) derived the deflection angle of a light ray passing close to the sun using Newton’s theory of
gravity. In fact, Cavendish calculated it in the same way at the end of the 18th century, motivated
by John Michells ideas on the light attraction by the Sun. Although Cavendish did not publish his
results, they appeared in one of his manuscripts (see Will 1988). Laplace (1795) also calculated the
velocity required to escape from a gravitational field produced by a spherical body. Both Michell
and Laplace realised that a body with a high enough density would not allow the light to escape
from it, so that it would appear completely black. These werethe ideas that inspired Soldner to
calculate the deviation of a test particle when passing close to a body and apply it to light.

The phenomenon was reconsidered a century later, when Einstein developed his General Theory
of Relativity in 1916, predicting a deflection angle twice thevalue obtained by Soldner3. During
the famous solar eclipse in 1919 the apparent angular displacement of background stars when close
to the sun’s limb was measured (an expedition was planned in 1914 by E.Freundlich, but they could
not take scientific data because of the World War I). These measurements were the confirmation of
Einstein’s prediction and one of the successful first tests to General Relativity. At that time, O.J.
Lodge (1919) introduced the term ‘lens’ in the context of gravitational deflection of light, although
he argued that it was imprecise because these lenses have no focal length. The term ‘gravitational
lensing’ was born.

But it was Eddington (1920) first to suggest that multiple images could be observed if two stars
were aligned and calculated, although wrongly, a magnification factor for the images. Moreover,
Chwolson (1924) mentioned that if the alignment between the stars were perfect, there should not
be multiple images, but a ring-like one. We now call these imagesEinstein rings.

Einstein (1936) calculated the cross-section for lensing of stars in our Galaxy and concluded
that it was very small and the phenomenon difficult to observe. Nevertheless, Zwicky (1937a, b)
computed a higher probability for observing lensing when applied to what was calledextragalactic
nebulae(the name for galaxies at that moment). He noted that the discovery of gravitational
mirages would be a test for relativity and the effect would act as a natural telecope since it would
enable us to see galaxies at larger distances, due to the magnification of the sources. Zwicky
applied the virial theorem – which relates the kinetical andpotential energy of a given system
with its dynamical state – to estimate the masses of clustersof galaxies and soon he realised that
gravitational lensing would provide a direct estimator of cluster and galaxy masses.

After Zwicky there was again a parenthesis of around three decades without significant improve-
ment in lensing studies. Then, close in time, Klimov (1963) studied the galaxy-galaxy lensing

2For the historical aspects of gravitational lensing, we follow Schneider et al. (1992), Petters et al. (2001) and
Trimble (2001). More references can be found there.

3Although this factor of two is sometimes viewed as a little difference between the GR and Newton’s one, the fact
is that this factor is nothing but a coincidence. Newton’s theory cannot be applied to explain the light deflection and it
is conceptually wrong to do it.
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configuration concluding that both ring-like and multiple images could form depending on the
alignment of the galaxies and Liebes (1964) paid attention on the star-star lensing. Liebes sug-
gested that stars in our galaxy might lens stars in nearby galaxies (e.g. Andromeda), an idea on
which the actual searching of compact objects (and planets)in the halo of the Milky Way is based
(Paczýnski 1986b). Refsdal (1964a,b) proposed a method for calculating the Hubble constant us-
ing gravitationally lensed quasars based on the different arrival times for each image (15 years
before the phenomenon was observed!!). With the papers by Refsdal, a great theoretical effort on
gravitational lensing started.

The first gravitationally lensed quasar Q0957+561 was discovered by Walsh, Carswell and Wey-
mann (1979). The discovery, as many others in science, was serendipitous: two quasar images were
accidentally observed, with a separation of 6.1 arcsecondsand apparently at the same distance (at
the same redshift ofz =1.41, see Section 2.1.4 for a definition of redshift). Soon after, the lensing
galaxy was detected at a redshift ofz =0.36 (Stockton 1980). There was no doubt about the nature
of the effect: gravitational lensing became an observational fact.



6 HISTORICAL PERSPECTIVE



Chapter 2

Basic concepts

The present Chapter is divided in two main sections. In the first one, the basic concepts of general
relativity and cosmology are reviewed. The second one contains the highlights of the theory of
lravitational lensing. General Relativity gives the framework in which gravitational lensing is
developed, although only those results oriented to cosmology are presented. Moreover, in the
chapters after this general introduction, some concepts might be used in a slightly different way
and then discussed again. In spite of being somewhat repetitive, we consider that in this way the
chapters can also be viewed independently and those readersonly interested in selected parts and
having already some background in the subject can go directly to them.

2.1 General Relativity and Cosmology

The bending of light by matter can only be properly describedby using the theory of General
Relativity (GR). In this Section, we briefly introduce some of the main concepts of GR on which
gravitational lensing is based1.

2.1.1 Einstein field equations

The fundamental equation of GR are the field equations, that describes the space-time curvature
in the presence of a distribution of matter and/or energy. These equations state:

Gik − Λgik =
8πG

c4
Tik (2.1)

whereGik is the curvature tensor that describes the space-time geometry, Λ is the cosmological
constant,gik is the metric tensor,G is the Newtonian gravity constant,c is the speed of light and
Tik is the energy-momentum tensor that describes the mass and energy distribution.

1A detailed description of GR is obviously out of the scope of this short introduction. Textbooks where this can
be found are, e.g., Weinberg (1972), Misner et al. (1973), Schutz B.F. (1985), Peebles (1993) or Peacock (1999)
among many others. A brief but excellent essay is Schrödinger (1950). A monograph with special attention to the
philosophycal implications of GR can be found, e.g., in Friedman (1983).

7



8 BASIC CONCEPTS

2.1.2 The Roberson-Walker metric

Finding exact solutions to Eq. 2.1 is not easy and implies theknowledge of the distribution of
matter and energy in space-time. A way of simplifying this isby assuming the Universe has two
properties:

a) that the average matter on large scales is distributed homogeneously and isotropically (in
general, isotropy from any point implies homogeneity, but the reverse is not true, see Fig. 2.1
to illustrate these ideas);

b) that the matter and energy that fills the Universe can be treated as a perfect fluid.

Condition a) is usually referred to as thecosmological principle, whereas condition b) is called the
Weyl condition. These two conditions can be expressed mathematically as:

cosmological principle → ds2 = c2dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
(2.2)

Weyl condition → Tij = (ρ+ p)uiuj − pgij (2.3)

The expression 2.2 means that the assumption of thecosmological principleallows us to define
the metric (the ‘line element’ds) in terms of a dimensionless time-varying scale factora(t) and a
parameterk = 1, 0,−1, which is the value that determines the total curvature of the Universe;t is
the time coordinate andr, θ andφ are the spatial coordinates. A metric defined in this way is called
Robertson-Walker metric. TheWeyl conditionimplies that the energy-momentum can be described
as in expression 2.3, so that the evolution of the densityρ and the pressurep in time depends on the
metric tensorgij and the 4-velocity componentsui. A cosmology based on these two conditions is
called aFriedmann cosmologyand the solutions obtained from Eq. 2.1 with these constraints are
calledFriedmann models.

FIGURE 2.1: To illustrate the concepts of homogeneity and isotropy. In theleft box, the material dis-
tribution is homogeneous and isotropic. Themiddlebox shows a homogeneous – at large scales – but
anisotropic distribution. Finally, matter in theright box is anisotropically and inhomogeneously distributed.

2.1.3 Friedmann models and cosmological parameters

TheFriedmann solutionscomprise two independent equations:

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

1

3
Λc2 (2.4)

ä

a
=

1

3
Λ − 4πG

3

(
ρ+

3p

c2
)

(2.5)
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With these two equations we relate the pressurep and densityρ to the scale factora(t). In fact, the
quantity(ȧ/a) is the rate at which this scale factor increases or, in other words, the rate at which
the Universe is expanding. This quantity is called theHubble parameter: (ȧ/a) ≡ H and its value
for the present epocht0 is theHubble constant: ȧ(t0)/a(t0) ≡ H0. SettingΛ = 0 andk = 0 in
Eq. 2.4 we get a special value for the density calledcritical or closure density

ρcr =
3H2

0

8πG
. (2.6)

This is the density limit for which the Universe is: a) geometrically closed ifρ < ρcr ; b) geometri-
cally open ifρ > ρcr. Condition a) is satisfied fork < 0 and means that expansion of the Universe
will ‘turn around’ – stops expansion and starts contraction–. Condition b) is satisfied fork > 0
and gives hyperbolic models, which means expansion forever. Cosmologies withk = 0 are called
flat cosmologiesand expansion goes asymptotically to zero.

A Friedmann modelcan then be uniquely determined by four parameters:

H0 =
ȧ0

a0

; ΩM =
8πG

3H2
0

ρ0; ΩΛ =
Λc2

3H2
0

; Ωk = − kc2

a2
0H

2
0

, (2.7)

where subindex0 denotes again present timet0. TheFriedmann solutions, Eqs. 2.4 and 2.5, can
be rewritten in terms of these parameters –the cosmological parameters– as

ΩM + ΩΛ + Ωk = 1. (2.8)

If we considerk = 0, i.e., aflat Universe, Eq. 2.8 is reduced toΩM + ΩΛ = 1. In this case, since
the curvature of space-time is considered to be zero, we recover formally Euclidean space.

2.1.4 Redshift and cosmic distances

Without knowing the value of thethe cosmological parametersparameters, it is not possible to
know the absolute distances to far away objects in the Universe. We refer to the distance of a
given object by itsredshiftz: light suffers the expansion of the Universe and when a photon is
emitted at a timete from a distant object with a wavelengthλe, it is redshifted by the expansion to
a wavelengthλ0 at the present timet0, when it is observed. The relation between theredshift, the
scale factorsa(t) and the wavelengths is

1 + z =
λ0

λe

=
a(t0)

a(te)
. (2.9)

Thus, in a cosmological context, it is common practise to usetheredshiftof a source as a measure
of its distance to us. For this we need a definition of distanceas a function of redshift.

In flat cosmologies(see Eq. 2.8 withk = 0) a useful definition of the distance of a source at a
redshiftz is

D =
2c

H0

1

(1 + z)2

[
1 + z −

√
1 + z

]
. (2.10)
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A distance defined in this way is calledangular-diameter distance. The term comes from the fact
that two separate sources at a distanced that subtend an angleθ satisfyseparation = θ × d. The
angular-diameter distance,Dang between two sources withredshiftsz1 andz2 (andz1 ≤ z2) is

Dang =
2c

H0

1

1 + z2

[
(1 + z1)

−1/2 − (1 + z2)
−1/2

]
. (2.11)

There are other possible ways of defining distances, which are also useful in astronomy. We give
three more definitions and the relations between them2: theproper distance, thecomoving distance
and theluminosity distance.

Theproper distance, Dprop, betweenz1 andz2 is the distance measured by the travel time of a
photon propagating fromz1 to z2 and can be written as

Dprop =
2c

3H0

[
(1 + z1)

−3/2 − (1 + z2)
−3/2

]
. (2.12)

Thecomoving distanceDcom betweenz1 andz2 is the distance which remains constant with epoch
if the two sources are moving with the Hubble flow (i.e., the expansion). Theluminosity distance
DL is defined, like in an Euclidean space, as the relation between the luminosity of a source atz2

and the flux received atz1. The latter two distance definitions can be easily expressedin terms of
the angular-diameter distanceDang as (notice that they are all defined between redshiftsz1 and
z2)

Dcom = (1 + z2) Dang

DL =

(
1 + z2

1 + z1

)2

Dang. (2.13)

Observational cosmology tries to give an answer to probablyone of the main questions in Astro-
physics: which are the values of thecosmological parametersin Eq. 2.7?. To answer this question
means to know the age, size and evolution of the Universe, to fix the distance ladder and also to
know what the Universe is made of. Currently, gravitational lensing has revealed itself as one of
the most powerful tools to explore possible answers to this question. Thus, as it will be described
in the next Section, searching the values of theHubble constantH0 and the density parametersΩM

andΩΛ is what extragalactic gravitational lensing deals with, among other problems.

2.2 Gravitational Lensing

The gravitational lensing theory has been developed in two excellent books. One is Schneider
et al. (1992), with theory, observations and applications;unfortunately its second edition (1999)
was not an update. A more mathematical treatment appeared recently in Petters et al. (2001),
with special attention on singularity theory. Although themain goal of the book is to develop a
mathematical theory of gravitational lensing (in the thin-screen, weak-field approximations), the
part in which the astrophysical aspects are explained is a very good introduction from a physical
point of view. This Section gives an overview following these two books and most of the material
presented here can be found there in much more detail.

2There is a concise discussion on distances in, e.g., Bartelmann and Schneider (2001)
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2.2.1 Deflection angle, lens equation and the gravitational potential

The deflection anglêα of a light ray when passing close to a spherical mass distribution M
within a distance or impact parameterr is

α̂ =
4GM(≤ r)

c2
(2.14)

whereG is the gravity constant andc the speed of light.
This expression can be extended to a surface mass distribution. In that case, the mass can be

expressed asM = Σ(~r′) d2r′, whereΣ(~r′) is the surface mass density in an aread2r′. The
deflection angle becomes

α̂(~r) =
4G

c2r

∫

ℜ2

Σ(~r′)
~r − ~r′

|~r − ~r′|2
d2r′ (2.15)

and is valid for any surface mass density in the limit of velocities v ≪ c and small angles. This is
the weak field limit.

In most of the astrophysical applications the condition of small deflection angles is verified and
the weak-field limit is a good aproximation. By using just geometrical considerations (see Fig. 2.2),
we can derive a relation between the positions in the source and lens planes: the lens equation

~s =
Ds

Dd

~r −Ddsα̂(~r), (2.16)

whereDs,Dd andDds are the angular distances between observer-source, observer-lens (deflector)
and lens-source respectively;~s define positions in the source plane and~r in the lens one.

s

r

Q’

Q

α̂

D D

L
Obs

dds

Ds

FIGURE 2.2: Configuration of a gravitational lens. The deflection angleα̂ relates the position in the lens
plane~r with that in the souce plane~s, using Equation 2.16. Q is the source, Q’ is where the observer (Obs)
sees the image of Q and L is the lens.

The lens equation can be rewritten in a dimensionless way , with a simple change of variables
~x = ~r/r0 and~y = ~s/s0, wheres0 = r0 Ds/Dd andr0 is an arbitrary scale length. The surface
mass density can be normalized and written as

κ(~x) = Σ(~x)/Σcrit, where Σcrit =
c2Ds

4πGDdDds

. (2.17)
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Then, the dimensionless lens equation is:

~y = ~x− ~α(~x) (2.18)

and also the dimensionless deflection angle results in:

~α(~x) =
1

π

∫

ℜ2

κ(~x)
~x− ~x′

|~x− ~x′|2
d2x′ (2.19)

The critical surface mass densityΣcrit in Equation 2.17 is a useful quantity. A sufficient con-
dition for producing multiple images of a background sourceis that the surface mass density is
greater than the critical one. Moreover, if a source lies exactly behind the lens then the image of
the source is a ring, due to the symmetry. The angular radius of this ring is calledEinstein radius
and defines the angular scale of the lensing scenario (see Fig. 2.3). It is defined as

θE =

√
4GM

c2
Dds

DdDs

=

√
M

πD2
dΣcrit

. (2.20)

S L Obs

RE

θE

FIGURE 2.3: An Einstein ring is produced if the lens is perfectly aligned with the source and the observer.
S is the source, L is the lens and Obs is the observer.θE is define in Equation 2.20 andRE = DOS · θE ,
whereDOS is the angular distance between the observer and the source.

It is also useful to define the deflection angle and the lens equation through the gravitational po-
tential. In this way, the deflection angle is the gradient of agravitational potentialψ(~x) (Schneider
1985)

~α(~x) = ∇ψ(~x). (2.21)

The gravitational potential can then be expressed as

ψ(~x) =
1

π

∫

ℜ2

κ(~x) ln |~x− ~x′|d2x′. (2.22)

Using then Eq. 2.21, the lens equation can be written in termsof the gravitational potential

~y = ∇[
1

2
~x2 − ψ(~x)]. (2.23)

Introducing the new two-dimensional potential

φ(~x, ~y) =
1

2
(~x− ~y)2 − ψ(~x), (2.24)

equation the lens equation can be expressed in the elegant and simple way

∇φ(~x, ~y) = 0. (2.25)
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2.2.2 Magnification matrix, convergence, shear and critical lines

The solutions to the lens equation (Eq. 2.16 or 2.18) mark thepositions of a source mapped into
the image plane. The ratio between the solid angles subtended by the image and the source is
calledmagnification. It can be written as the Jacobian matrix of the transformation described by
the lens equation (Eq. 2.16) or it can be derived from the gravitational potential in Eq. 2.22:

Aij =
∂~r

∂~s
=

(
δij −

∂2ψ(~x)

∂xi ∂xj

)
. (2.26)

The Equation 2.22 that relates the gravitational potentialψ(~x) with the surface mass densityκ(~x)
can be inverted to show that

∆ψ = 2κ. (2.27)

This allows us to write themagnificationmatrix as

A =

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
(2.28)

where the trace of the matrix is
trA = 2(1 − κ) (2.29)

and

γ1 =
1

2

(
∂2ψ(~x)

∂x2
1

− ∂2ψ(~x)

∂x2
2

)
γ2 =

(
∂2ψ(~x)

∂x1 ∂x2

)
. (2.30)

From the determinant of themagnificationmatrixA, we can write themagnification factor, µ, as

µ =
1

detA =
1

(1 − κ)2 − γ2
(2.31)

whereγ =
√
γ2

1 + γ2
2 . Its physical interpretation is explained below.

The contribution to themagnificationcan be separated in two terms. One is thesurface mass
densityκ which is also calledconvergenceor Ricci focusing. It depends only on the distribution of
mass inside the light beam. On the other hand, the contribution due to the mass distribution outside
the light beam can also be significant (obviously, if the matter distribution is symmetric, the net
contribution is zero). This is calledshearand is described by the termγ in the previous equations.

Formally, detA can vanish for certain values of~r in the lens equation: then themagnification
factor diverges for those values. The sets of points in the lens plane for which this happens are
calledcritical lines and the corresponding lines in the source plane are calledcaustics. However,
although mathematically themagnification factorbecomes infinite, in ‘real’ cases the sources are
extended (not point-like), so that themagnificationis derived from averaging over the source pro-
file, resulting in a finite value.

Solving the lens equation, the position of the caustics for agiven configuration can be calculated.
For a low number of lenses (n≤2), this can be done analytically. When the number of lenses is
high (n≫2), the distribution of caustics is easier obtained with inverse ray-shooting techniques, in
which rays are traced backwards from the observer to the source through the distribution of lenses
in the lens plane (Kayser et al. 1986, Schneider & Weiss 1987 and Wambsganss 1990). In this way
the two-dimensional magnification distribution in the source plane is obtained. These distributions
are calledmagnification patterns(see Chapter 6 for more details).
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2.2.3 Time delays and the Hubble constant

If a source is lensed and several images are produced, the light coming from the different images
travels paths of different length – or time – , in general. There are two reasons for this: one is that
the geometrical distance is not the same; the other one is that the gravitational potential well of the
lens, that retards the light ray compared to the unlensed path, affects the images differently (same
effect as theShapiro effectin the Sun vicinity). This means that two light beams departing at the
same time but corresponding to two different images will reach the observer at different times. The
difference between the arrival times is calledtime delay. We can consider atime delay function
that can be written, from the lens equation in terms of the gravitational potential (Eq. 2.23), as

T (~x) =
(1 + zd)

c

DdDs

Dds

[
1

2
(~y − ~x)2 − ψ(~x)

]
(2.32)

where the notation is the usual. The geometrical part of thetime delay functionis then proportional
to the difference~y−~x, whereas the gravitational time delay is represented byψ(~x). Thetime delay
function is not an observable, but the quantityT (~xi) − T (~xj), that is thetime delaybetween the
imagesi andj, can be measured and related to the expansion rate of the Universe.

Ho

Obs

S

L
Ho

Obs

S

L

FIGURE 2.4: The time delay in a gravitational lens scales inversely proportional to theHubble constant
H0. In the Figure, angular image positions, image separations and magnificationsas seen from the observer
are the same. Only the time delay can physically scale the proper scenario. A larger time delay (bottom
sketch) results in a smallerH0.

Refsdal (1964a,b) showed that the actual expansion rate of the Universe – theHubble constant
– is inversely proportional to thetime delaybetween two images in a gravitational lens system
and directly proportional to the angular separation between the images and the lens centre. Thus
the relation holds

H0 ∝
∆θ

∆T (2.33)

where the constant needed to make the expression an equalitydepends on the exact description of
the lens mass distribution – a lens model –.
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2.2.4 Simple lens models and lensing scenarios

To give a model of a gravitational lens system means to mathematically describe the gravitational
potential of the deflector. It is usual to classify lens models in two main groups:point-like or
extended mass distributions. Although obviously there are no ‘real’ point-like mass distributions,
sometimes it is not only useful, but can be quantitatively justified. The justification comes from
the ratio between the physical angular size of a lens and its Einstein radius. This ratio can be quite
different depending on the lensing scenario considered, asshown below.

The first lensing scenario considered in this thesis is that where the source is a distant quasar
and we analyse the lensing induced by star-like objects in the halo of the deflector galaxy. These
objects, called MACHOs (for MAssive Compact Halo Objects), can produce multiple images of
the source, but their angular separation is of the order of only micro-arcseconds and cannot be
resolved. The phenomenon is calledmicrolensingand the way we have to detect it is to compare the
intrinsic fluctuations of the lensed quasar from two images after time-delay correction. Subtracting
the lightcurves of these two images one should obtain a flat curve, if no microlensing signal is
present. Although in principle any departure from zero in the difference lightcurve can be assigned
to microlensing, ‘noise’ can introduce additional features. In Chapter 5 we discuss these problems
in the case of the double quasar Q0957+561. In this scenario,the Einstein radii of the micro-
lenses is much bigger (two orders of magnitude) than their physical sizes, so the point source
approximation for the gravitational potential is valid. The same approximation is also valid in the
case of MACHO searches in the Milky Way. The microlensing in our Galaxy is calledgalactic
microlensingand it is not considered in this thesis.

In spite of the success of the point-like mass distributionsfor the situations described in the
previous paragraph, this approximation fails in other cases. For example, if we model a lensing
galaxy. The angular Einstein radius is of the order of one arcsecond, in many cases smaller than
the physical angular size. In the case of the inner parts of galaxy clusters, the typical physical sizes
and their Einstein radii are of the order of half an arcminute. In these two cases, the point lens
approximation is not a good description, extended mass distributions must be considered. And
also in both cases the deflector can be modeled aselliptical mass distributions, a particular and
simple family of extended distributions.

The second scenario we consider in this thesis is the lensingcaused by clusters of galaxies. If not
only the inner parts of the cluster are modeled, but also the outer regions are included, then more
complicated models are needed and it is not enough the use of elliptical mass distributions. The
lensing induced by such structures does not produce multiple images of background objects, but
little distortions on them. The phenomenon is then calledweak lensing, in contrast to thestrong
lensing, where multiple images of background sources appear (even if they are not resolved, as
in the case ofmicrolensing). In Chapter 7 we analyse the weak lensing produced by the galaxy
cluster Cl 0024+1654 and present in more detail some of the theoretical aspects needed in the weak
lensing regime.
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Chapter 3

Recent progress in gravitational lensing: a
context for this thesis

In this Chapter we briefly review some of the recent progress made in aspects of gravitational
lensing related to this thesis. It intends to be a complementto the individual introductions of each
chapter, but it is not a full description of all the methods and ideas in gravitational lensing. Details
on a particular issue can be found in the references.

Thus, we focus on the time delay measurements of lensed quasars and on the different problems
that appear in their determinations (PartII). In Chapter 2 we learned that the Hubble constant
can be estimated knowing the time delay, via a model for the lens. Unfortunately, depending
on the lens modelling, the Hubble constant gets different values. A great improvement has been
done in the way we understand different lensing potentials and their connection with the Hubble
constant and we illustrate this fact using recent literature. Microlensing can be a tool for revealing
substructure in lens galaxies or seen as a problem regardingtime delay estimates. Moreover,
various mechanisms can induce fluctuations in the quasar lightcurves that mimic microlensing.
Several cases where this happens will be reviewed as well.

The application of gravitational lensing to clusters of galaxies is also an important part of this
thesis (PartIII). Both strong (giant arcs) and weak (little distortions) lensing regimes are of
interest in galaxy cluster lensing (see Section 2.2.4 for a discussion of these different regimes).
These two approaches are complementary: the strong lensingdescribes the potential inside (or
near) the Einstein ring of the cluster, whereas the weak lensing extends to the outer parts of it.
Thus, we can have independent estimates of cluster masses. These estimates are then compared
to those obtained with X-ray measurements. We present here some comparisons between lensing
and X-ray estimates and methods.

There are other aspects of microlensing and weak lensing which are not treated in partsII and
III of the thesis. As an overview we offer in the last section of this Chapter a brief description of
these other lensing scenarios.

17



18 RECENT PROGRESS IN GRAVITATIONAL LENSING

3.1 Lensed quasars, time delays, the Hubble constant and mi-
crolensing

In this Section we briefly review the recent improvements made in time delay measurements and
Hubble constant estimates from lensed quasars and describethe problems associated with them
and some of the solutions proposed.

After Refsdal (1964a, b) found that time delays in multiple quasars are related to the Hubble
constantH0, a new door was opened to have an independent and non-local estimate of this impor-
tant constant. Nevertheless, in spite of the apparent simple connection that Refsdal showed (see
Section 2.2.3), we have not yet firmly established the value of the Hubble constant – up to an error
of a few percent –, nor with gravitational lensing theory, nor with any other approach.

Nowadays, there are around 80 gravitationally lensed quasars known1. From those, we ‘only’
know the time delay in 10 of them (see Table 3.1; we do not include the system HE 1104−1805 in
this list, but its time delay is discussed in Chapter 4). The reason why the number of known time
delays is so low is not strictly scientific: semi-dedicated telescopes are required to monitor the
systems during periods that can be of the order of years and modern projects in astronomy demand
quick results in relatively short-time scales. A longer term (∼10 years) international project on
time delays would produce a giant scientific output, but the organizing strategy is a challenge.

Apart from these ‘organizational’ difficulties, some mathematical and physical problems might
also arise when estimating time delays. The time delay determination in a system is done by
comparing the intrinsic variability of of the lensed quasarin two different images. The method
consists in checking which features are identical in the lightcurves of these two images. Usual
problems when treating with discrete signals might arise. These problems can be divided in two
main groups: sampling and additional noise to the signal. The sampling of the signal can be
affected by bad weather conditions, seasonal gaps and observational/technical problems (in Chap-
ter 4 we discuss problems of sampling in more detail). Regarding the time delay, microlensing can
be considered as ‘noise’ (Burud et al. 2001; B1600+434: Burud etal. 2000; RX J0911.4+0551:
Hjorth et al. 2002; HE 1104−1805: Schechter et al. 2003; HE 0435−1223: Wisotzki et al. 2003),
differential extintion (HE 0512−3329: Wucknitz et al. 2003) or random/instrumental artifacts
(e.g., Q0957+561: Chapter 5 in this thesis and Colley et al. 2003a). Moreover, a few authors
(Goicoechea 2002; Ovaldsen et al. 2003) claimed the possibility of multiple time delays in the
double quasar Q0954+561 (with a difference of 15 days, not significant forH0 estimates). This
could be solved using the idea by Yonehara (1999) that different violent events can take place in
different regions of the source, inducing different measurements of a time delay.

So, in principle, one could argue that problems with time delays estimates can be easily solved
in most of the cases and that the determination of the Hubble constant should be a straightforward
task. Nevertheless, this is not so. And the reason is that thegravitational potential to describe the
lens is not, in general, well constrained (see, e.g., Keetonet al. 2000).

Various authors found that many individual lenses are consistent with isothermal models –
which explain the observed flat rotation curves in galaxies –(Maoz & Rix 1993; Kochanek 1995,
1996; Grogin & Narayan 1996). Moreover, Witt, Mao & Keeton (2000) showed that all these
isothermal models can be included in a more general family ofpotentials, finding an expression

1A up-to-date database with gravitationally lensed quasarscan be found inhttp://cfa-www.harvard.edu/castles/
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for the time delay as

∆Tij =
DdDs

2cDds

(1 + zd)(r
2
j − r2

i ) (3.1)

whereri = (x2
i + y2

j )
1/2 is the distance of the imagei to the centre of the lens galaxy (compare

this expression with Equation 2.32). Thus, the time delay inexpression 3.1 can be calculated only
with observables and does not need any fitting procedure, andincludes both singular isothermal
elliptical potentials and singular isothermal ellipticaldensity distributions. They also explained
how the presence of shear introduces uncertainties in the time delays (and inH0) and that if non-
isothermal models are required then numerical modeling is needed.

In spite of this effort, many of the lenses with measured timedelays still have large degenera-
cies between the Hubble constant and the distribution of thelens potential. Kochanek, Keeton
& McLeod (2001) broke these degeneracies by using the infrared Einstein ring observed in the
systems PG1115+080 (Impey et al. 1998), B1608+656 (Fassnacht et al. 1996) and B1938+666
(King et al. 1997) and assuming elliptical symmetry for the sources. In this way, if Einstein rings
are detected (Q2237+0305: Mediavilla et al. 1998; 1RXSJ113155.4−123155: Sluse et al. 2003;
MG 1549+305: Treu & Koopmans 2003), then the lens potential can be much better constrained.
In addition, Saha & Williams (2003) demonstrated that some characteristics (the time-ordering of
the images, the orientation of the lens potential, the morphology of the possible ring) in multiply
imaged quasars are model independent.

Kochanek (2002) showed that the inferred value of the Hubbleconstant strongly depends on
whether the lenses have isothermal mass distributions (corresponding to flat rotation curves) or
constant mass-to-light (M/L) ratios. In the former case, the value of the Hubble constantis rel-
atively lowH0 = (48 ± 3) km s−1 Mpc−1 and in the latterH0 = (71 ± 3) km s−1 Mpc−1 (see
Kochanek & Schechter 2003), a value that agrees with that obtained by the HST Key Project
(Freedman et al. 2001).

Microlensing signals have been observed in several lensed quasars and used to extract informa-
tion on the systems in different ways. In the first discoveredlensed quasar, the double Q0957+561
(Walsh et al. 1979), microlensing is somehow controversial. Several authors have claimed long
term microlensing variability (of the order of years) is present (Falco et al. 1991, Pelt et al. 1998;
see also another interpretation in Gil-Merino et al. 1998).Microlensing on short-time scales (from
days to weeks) in this system has been claimed by Schild & Thomson (1995), Schild (1996), Col-
ley & Schild (2000), Colley et al. (2003b) and Ovaldsen et al. (2003). On the other hand, Schmidt
& Wambsganss (1998) did not find any short term microlensing signal. These authors used the
amplitude of the difference lightcurves to put limits on themass of the microlenses (MACHOs).
In Chapter 5, we report an analysis of the system where no short-time scale microlensing fluctu-
ations were found and, moreover, we found the existing fluctuations were due to noise processes
(Gil-Merino et al. 2001).

In the system Q2237+0305 there is a general agreement that microlensing fluctuations are real
(Irwin et al. 1989, Corrigan 1991, Witt & Mao 1994, Schmidt et al. 2002). Observational mi-
crolensing in this system has been used to put limits on the source size, the transverse velocity
of the lens and the velocity dispersion and mass function of the microlenses (Wambsganss et al.
1990, Webster et al. 1991, Foltz et al. 1992, Yonehara et al. 1999, 2001, Wyithe et al. 1999,
2000a, 2000b). Also some authors have analysed the spectralvariability induced by microlensing
(Schneider & Wambsganss 1990, Lewis et al. 1996, Abajas et al. 2002, Popovíc et al. 2003).
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Name Nimages ∆T (days) Band Ref.

B0218+357 2 10.5±0.2 radio [1]
Q0957+561 2 425±4 optical [2]
SBS1520+530 2 130±3 optical [3]
B1600+434 2 51±2 optical/radio [4]
PKS1830−211 2 26±4 radio [5]
HE2149−2745 2 103±12 optical [6]
RXJ0911+0551 4 146±4 optical [7]
PG1115+080 4 25±2 optical [8]
B1422+231 4 8±3 radio [9]
B1608+656 4 77±2 radio [10]

Table 3.1: A total number of 10 time delays are known in different lensed quasars. Nimages is
the number of images and∆T is the longest time delay when more than two images are seen.
The errors are 1σ. Band indicates the spectral range in which the time delay wasobtained. The
references (Ref.) are: [1] Biggs et al. (1999); [2] Serra-Ricart et al. (1999), see also Pelt et al.
(1994, 1996), Oscoz et al. (1996, 1997), Kundic et al. (1997), Pijpers (1997), Schild & Thomson
(1997), Haarsma et al. (1997, 1999); [3] Burud et al. (2002b);[4] Burud et al. (2000), Koopmans
et al. (2000); [5] Lovell et al. (1998); [6] Burud et al. (2002a); [7] Hjorth et al. (2002); [8] Barkana
(1997); [9] Patnaik & Narasimha (2001); [10] Fassnacht et al. (2002)

In Chapter 6, we analyse the system Q2237+0305 (Gil-Merino et. al 2002a). Two images did
not show strong microlensing signals during the monitoring. We use this fact to put limits on the
effective transverse velocity of the lens galaxy.

The double quasar HE 1104−1805 is a more complicated system. It was discovered by Wisotzki
et al. (1993) and the first time delay estimate (∆T = 0.75 yrs, without error estimates) reported
by Wisotzki et al. (1998). In these works clear indications of microlensing were found (see also
Courbin et al. 2000). Gil-Merino et al. (2002b) presented a new time delay determination (∆T =
310 ± 20 days, 2σ errors; see Chapter 4) based on poorly sampled light curves and applying a
number of techniques. Pelt et al. (2002) argued that the error bars of the time delay reported
by Gil-Merino et al. could be underestimated. Schechter et al. (2003) published a three years
observation of HE 1104−1805 but, due to the strong microlensing signal, were unableto establish
a time delay for the system. Instead, they analysed a wide range of different phenomena that might
originate such a microlensing signal: dark matter dilution, hot spots in the quasar accretion disk,
microlensing with planetary masses and cold spots. They concluded that a model with multiple
hot spots should not be excluded, while the rest of the processes were unlikely. Finally, in a very
recent paper Ofek & Maoz (2003), adding two years of observations to the Schechter et al. dataset,
obtained a new time delay of∆T = 161 ± 7 days (1σ errors).

Microlensing has been also detected in some other systems. Koopmanns & de Bruyn (2000)
found short-time scale fluctuations due to microlensing in the double radio system B1600+434 and
ruled out other sources of variability, like scattering by the ionized component of the Galactic inter-
stellar medium (scintillation). Wucknitz et al. (2003) analysed the double quasar HE 0512−3329,
finding a flux ratio of the components strongly dependent on wavelength. They found that both
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microlensing and differential extinction (differential reddening caused by different extinction ef-
fects) were present. Recently, Wisotzki et al. (2003) presented an integral-field spectrophotometry
of the quadruple quasar HE 03435−1223, finding evidence for microlensing.

Section summary: this Section is a context to the PartII of this thesis. There we present results
concerning three lensed quasar systems: HE 1104−1805, Q0957+561 and Q2237+0305. In the
first system, the time delay is estimated, discussed and compared with other very recent estimates
and the Hubble constant is also inferred from this time delay. Microlensing studies of a system
are done analysing the difference light curves between the components. Such an analysis helps to
understand various physical properties of the system, likethe mass distribution in the lens galaxy
and the size of the source. But sometimes a spurious signal is attributed to microlensing and wrong
conclusions might be obtained. We use the system Q0957+561 to show some problems when
analysing difference light curves that were not previouslypointed out. The system Q2237+0305
has been showing an unambiguous microlensing signal duringseveral monitoring campaigns. Such
a signal has been used to put limits on the masses of the microlenses, on the source size and on the
transverse velocity of the lens. We use a novel approach to put limits to the transverse velocity of
the source, making use of the low amplitude microlensing signal during four months of monitoring.

3.2 Galaxy clusters lensing and X-rays observations

The study of clusters of galaxies provides deep inside in cosmology: the large-scale structure
formation, the content of baryon and dark matter in the Universe or how galaxies form and evolve
are some of the topics related. In this section we review someof the ways in which gravitational
lensing can extract information from clusters of galaxies and their X-ray properties. Two excel-
lent reviews on galaxy cluster lensing by large structures are Mellier (1999) and Bartelmann &
Schneider (2001).

If a distant galaxy sits near a caustic (lines of infinite magnification, see Section 2.2.2) due to
a foreground lens, then a large gravitationally lensed arc is seen. The first giant arcs produced
by galaxy clusters were detected by Lynds & Petrosian (1987,1989) in the clusters A370 and
Cl 2244−02 and by Soucail et al. (1987, 1988) in A370. The suggestion that these could in fact
be gravitational mirages was made by Paczyński (1987) and analysed by computer simulations
by Grossman & Narayan (1988), concluding that the lensing hypothesis was very likely. How to
use these arclets and multiple images produced by galaxy clusters to get the mass distribution in
these objects is discussed in detail in Fort & Mellier (1994). These authors showed that the arc-
like lensed images were produced by the core of the clusters or by compact clumps of galaxies
and that the mass distributions in these regions could be reconstructed modeling the lens poten-
tial. They found typical mass-to-light ratioM/LB =300h100 within the radius of the arcs2 (i.e.
inside the Einstein radius of the cluster). In order to reproduce the multiple images with mod-
els, some substructure in form of dark matter is required surrounding the brightest galaxies or
in clumps with ellipticities following the isophotes of these galaxies (Hammer & Rigaud 1989:
A370 and Cl 2244−02; Mellier et al. 1993: MS 2137−23; Kneib et al. 1993: A370; Kneib et al.
1995: A2218). All these authors found that the core radius ofthe dark matter distribution is small,
< 50h−1

100 kpc (see also Mellier 1999). These conclusions were independently confirmed by later

2The value of h is defined in terms of the Hubble constantH0 = 100h100 km s−1 Mpc−1
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observations using the Hubble Space Telescope (HST; e.g., Gioia et al. 1998: MS 0440+0204;
Tyson et al. 1998: Cl 0024+1654. More recent mass recontructions using strong lensingare e.g.
Broadhurst et al. (2000; on the central mass distribution in Cl0024+1654 using HST data from
Colley et al. 1996), Athreya et al. (2002; ESO-VLT data on MS 1008−1224) and Gavazzi et al.
(2003; on MS 2137.3−2353 using ESO-VLT multiband UBVRIJK data). Theoretical improve-
ment has also been done in the interpretation of these data. Bartelmann & Weiss (1994) explored
the statistics of arcs with N-body simulations, finding thatthe efficiency of arcs productions by
clusters was higher than what it was previously estimated. Williams et al. (1999) compared the
core structure of galaxy clusters also with N-body simulations of cluster formation in cold dark
matter-dominated universes and found that cluster core masses exceed those of dark matter halos
of similar velocity dispersion. In the same direction, Bartelmann et al. (1998) concluded that only
the open CDM cosmological model can reproduce the observed abundance of arcs. Meneghetti
et al. (2003) showed that more realistic analytical models (Navarro et al. 1997 profiles instead of
isothermal spheres), rather than simulations, increase the arc probability. Nevertheless, Wambs-
ganss et al. (2003) found, using ray-shooting simulations,that the observed arc abundance might
also be compatible with aΛCDM cosmological model.

Weak lensing by galaxy clusters – little distorsions induced by a cluster on the background
galaxies – were first detected by Tyson et al. (1990) in the analysis of two clusters: A1689 and
Cl 1409+52. Kaiser & Squires (1993) and Kaiser, Squires & Broadhurst (1995, KSB hereafter)
developed an inversion method, using the fact that the ellipticity of the background galaxies pro-
vides an estimate of the second derivatives of the potential(see Section 2.2.2), to reconstruct the
projected surface mass density of galaxy clusters. This method was then widely applied to different
observations (Bonnet et al. 1994: Cl 0024+1654; Fahlman et al 1994: MS 1224.7+2001; Smail
et al. 1994, 1995: Cl 1455+22, Cl 0016+16, Cl 1603+43; Tyson & Fisher 1995: A1689). Seitz
& Schneider (1995) generalized the method proposed by Kaiser & Squires, trying to avoid the de-
generacies of critical clusters. Bartelmann et al. (1996) proposed a different method to reconstruct
both the cluster morphology and its total mass. The method, called maximum-likelihood recon-
struction, is based on a least-χ2 fit to the 2-dimensional gravitational potential of the cluster (see
also Squires & Kaiser 1996 and Bridle et al. 1996). Seitz et al.(1998) improved the maximum-
likelihood method using the individual ellipticities of each galaxy, instead of smoothing the data.
Hoekstra et al. (1998) slightly modified the method by KSB, improving the way in which image
moments are calculated. This method is used in Chapter 7 and explained in more detail there.

The inversion methods reconstruct the projected surface mass density up to an additional con-
stant, because by adding a lens plane of constant mass density, the distortions of galaxies do not
change (Gorenstein et al. 1988). In order to break this degeneracy, the so-calledmass-sheet degen-
eracy, Broadhurst et al. (1995) proposed to calculate the magnification from the local modification
of the galaxy number density (themagnification bias). The magnification is not invariant under the
addition of a constant mass density plane so, in this way, thedegeneracy is broken if the magnifi-
cation is known. Bartelmann & Narayan (1995) proposed to compare the angular sizes of lensed
galaxies with an unlensed sample (thelens parallax method) to break the mass-sheet degeneracy.
The use of wide-field camaras covering fields larger than the clusters, would introduce boundary
conditions to the surface mass density (because it should vanish at the boundaries of the field) and
thus breaking the degeneracy as well (Mellier 1999). Recently, Athreya et al. (2002) used pho-
tometric redshifts of the background sources from multiband photometry to scale the mass of the
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cluster. We use this last method in Chapter 7 and apply it to thegalaxy cluster Cl 0024+1654.

The mass of galaxy clusters can also be derived from the distribution of their intracluster X-ray
emitting gas, assuming the gas is in hydrostatic equilibrium. In principle, this assumption is rea-
sonable as long as the cluster is stationary and forces otherthan gas pressure and gravity are not
important (Sarazin 1988). Comparison between X-ray and lensing mass estimates has proved to be
a difficult task and the results are puzzling. This mass discrepancy problem has been reported by
many authors in several clusters. Miralda-Escudé & Babul (1995) found thatMlensing ≈ 2-3MX in
the clusters A2218 and A1698. These authors explored a number of possibilities for this discrep-
ancy, finding as the more likely ones projection effects (clumping), temperature profiles toward the
center (i.e. not constant temperatures), multiphase intracluster gas and nonthermal pressure (mag-
netic fields and/or bulk motions). Schindler et al. (1997) found a similar discrepancy in the cluster
RX 1347.4−1145 and concluded that the reason could also be the presenceof substructure or/and
magnetic fields. Wu & Fang (1997) found the same effect in a statistical sample of 29 clusters and
thought that the discrepancy arose from the simplification in the models for the X-ray gas distribu-
tion and dynamical evolution. Similar problems were found by Ota et al. (1998) in Cl 0500−24,
Cl 2244−02 and A370 and Soucail et al. (2000) in Cl 0024+1654. On the other side, some authors
find quite different results. B̈ohringer et al. (1998) found a very good agreement betweenMlensing

andMX in the cluster A2390, interpreting this result as a more relaxed status of the cluster than in
other cases. Although the mass discrepancy problem is not yet definitively explained, it seems that
wrong assumptions on the physical state of the cluster and/or some other physical processes need
to be considered (Allen 1998).

Section summary: in this Section we give a context for PartIII of this thesis. There we
analyse the clusters of galaxies Cl 0024+1654 and RBS380. The former is one of the most studied
clusters. We use weak lensing analysis to obtain the mass, luminosity and mass-to-light profiles.
The advantage of our data is the multiband photometry on filters BVRIJK, which allows to estimate
the photometric redshifts of the background sources and thus break the degeneracy in the mass
determination. The cluster RBS380 is the more distant clusterin the ROSAT Bright Source (RBS)
catalog. We observe this system trying to find gravitationalarcs of background galaxies and we
found none. The reason might be that previous estimates of its mass were too high.

3.3 Other lensing scenarios

There are many other scenarios in which gravitational lensing is applied. These are not discussed
in this thesis, but they are also active research fields. We mention some of them.

Microlensing in individual quasars: Hawkins (1993) and Hawkins & Taylor (1997) argued that
the variability of individual quasars might be due to microlensing. This possibility is hard to be
confirmed, because quasars are intrinsically variable. Moreover, the expected microlensing in sin-
gle quasars is smaller than in multiple ones, since the surface mass density is lower (Wambsganss
2001).

Galactic microlensing: The importance of microlensing at low surface mass densities was first
pointed out by Paczýnski (1986b), suggesting the monitoring of stars in the Large Magellanic
Cloud to catch microlensing events by compact objects in our galaxy. Several collaborations have
existed since then searching for halo compact objects, binaries and planets:MACHO (Alcock et
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al. 1993),EROS(Aubourg et al. 1993) andOGLE(Udalski et al. 1993). Still active collaborations
areOGLE, MOA (Bond et al. 2003),PLANET(Albrow et al. 1998) andMicroFUN3.

Astrometric microlensing: Lewis & Ibata (1998) showed that microlensing of quasars bystars
in external galaxies can introduce fluctuations in the centroid of the macroimages. Although this
shift is very small (microarcsecond scales), it should be possible to be measured with the Space
Interferometry Mission (SIM, planned for 2006) and it will help to reveal the quasar structure and
the stellar mass function of the lensing galaxy (see also Boden et al. 1998 and references therein).
For more ‘exotic’ microlensing (likeparallaxand xallarap events), see Evans 2003 and references
therein.

Galaxy-galaxy lensing: Galaxies at cosmological distances can be lensed by foreground galaxies
(which in principle do not need to be physically related, in groups or clusters). The weak lensing
techniques already described are not valid in this case, because individual galaxies are not massive
enough to produce measurable distortion of background galaxies. The effect of several foreground
galaxies has to be statistically taken into account. In thisway the properties of dark matter halos
of population of galaxies can be investigated. The first report on galaxy-galaxy lensing was made
by Brainerd, Blandford & Smail (1996). Several surveys have been carried out in this direction.
Recent works are Smith et al. (2001) and Hoekstra et al. (2003).

Lensing by large-scale structures: Background galaxies can be lensed by large-scale structures
in the Universe. The effect is an induced correlation of the ellipticity distribution of the lensed
sources. The analysis of thiscosmic shearreveals information on the geometry of the space-time
(giving information onΩM andΩΛ) and on the power spectrum of the matter density perturbation
which induce the distortions. First works in this aspect of lensing are Blandford et al. (1991),
Miralda-Escud́e (1991) and Kaiser (1992). More recent discussions can be found in Van Waerbeke
et al. (2001) and Maoli et al. (2001). Cosmic strings and, in general, topological defects (see
Vilenkin & Shellard 1994) have been investigated as gravitational lenses as well (Bernardeau &
Uzan 2001, Uzan & Bernardeau 2001).

Lensing and the CMB: In the same way in which large structures induce distortions on back-
ground galaxies, the Cosmic Microwave Background (CMB) can suffer lensing effects. The struc-
tures of the CMB maps (temperature anisotropies) will be stretched in the direction of the gravi-
tational lenses. The effect is, however, very small and careful analysis is required because of the
low signal-to-noise ratios of the lens contributions. A review of this topic can be found in Mellier
(1999).

Section summary: in this last section we briefly review aspects of lensing which are not treated
in this thesis. Although the analysis is not exhaustive, thereferences provide further readings for
the interested reader. We have briefly reviewed other aspects of microlensing – from individual
quasars, in the Milky Way and the one due to shifts in the centroids of the macroimages (astromet-
ric) – and also other weak lensing scenarios – galaxy-galaxy, large-scale structures and effects in
the CMB –.

3http://www.astronomy.ohio-state.edu/∼microfun/



Part II

Quasar Lensing and Microlensing

25





Chapter 4

Time delay techniques: a comparative
analysis via the case study of the double
quasar HE 1104−1805⋆

Link. Once a multiple image quasar is identified as a gravitationally lensed system,
researchers want to study it in more detail. The best way of doing so is carring out a
monitoring campaign, in which one will obtain a lightcurve for each quasar image.
Prior to the analysis of the differences between those components, one has to apply a
time delay correction to them. Although in principle the time delay estimation for a
system could appear a very simple task, this is not the case in most of the situations:
seasonal gaps, bad weather conditions, light contamination of many types and/or poor
sampling can induce wrong estimates of the time delays between the components. In
this chapter we analyse an extreme case where the sampling was very poor and check
the behaviour of a number of different available techniques.

Abstract. A new determination of the time delay of the gravitational lens system
HE 1104−1805 (’Double Hamburger’) is presented. A possible bias of the tech-
nique used in the previously published value of∆tA−B = 0.73 years is discussed.
We determine a new value of∆tA−B = (0.85 ± 0.05) years (2σ confidence
level), using six different techniques based on non interpolation methods in the
time domain. The result demonstrates that even in the case ofpoorly sampled
lightcurves, useful information can be obtained with regard to the time delay.
The error estimates were calculated through Monte Carlo simulations. With two
already existing models for the lens and using its recently measured redshift, we
infer a range of values of the Hubble parameter:H0 = (48 ± 4) km s−1 Mpc−1

(2σ) for a singular isothermal ellipsoid (SIE) andH0 = (62± 4) km s−1 Mpc−1

(2σ) for a constant mass-to-light ratio plus shear model (M/L+γ). The possibly
much larger errors due to systematic uncertainties in modeling the lens potential
are not included in this error estimate.

⋆Chapter based on the refereed publication Gil-Merino, Wisotzki & Wambsganss, 2002,
A&A, 381, 428
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4.1 Introduction

The double quasar HE 1104−1805 at a redshift ofzQ = 2.319 was originally discovered by
Wisotzki et al. (1993). The two images with (original) B magnitudes of 16.70 and 18.64 are
separated by3′′.195 (Kochanek et al. 1998). The spectral line ratios and profilesturned out to be
almost identical between the two images, but image A has a distinctly harder continuum. Wisotzki
et al. (1995) report about a dimming of both components over about 20 months, accompanied by
a softening of the continuum slope of both images. The lensing galaxy was discovered by Courbin
et al. (1998) in the NIR and by Remy et al. (1998) with HST. The authors tentatively identified
the lensing galaxy with a previously detected damped Lyman alpha system atz = 1.66 (Wisotzki
et al. 1993; Smette et al. 1995; Lopez et al. 1999). This identification, however, was disputed
by Wisotzki et al. (1998). Using FORS2 at the VLT, Lidman et al.(2000) finally determined the
redshift of the lensing galaxy tozG = (0.729 ± 0.001).

A first determination of the time delay in this system was published by Wisotzki et al. (1998,
hereafter W98), based on five years of spectrophotometric monitoring of HE 1104−1805, in which
the quasar images varied significantly, while the emission line fluxes appear to have remained
constant. The W98 value for the time delay was∆tA−B = 0.73 years (no formal error bars were
reported), but they cautioned that a value as small as 0.3 years could not be excluded.

HE 1104−1805 shows strong and clear indications of gravitational microlensing, in particular
based on the continuum variability with the line fluxes almost unaffected (Wisotzki et al. 1993,
Courbin et al. 2000).

Here we present an analysis of previously unpublished photometric monitoring data of HE 1104-
−1805. First the data and light curves are presented (Sect. 4.2), then a number of numerical tech-
niques are described and discussed and, as the scope of this Chapter is a comparison of different
techniques in the case of poorly sampled data, we finally applied to this data set, in order to de-
termine the time delay (Sect. 4.3). A discussion of the results and the implications for the value
of the Hubble constant based on this new value of the time delay and on previously avalaible lens
models are given in Sect. 4.4. In Sect. 4.5 we present our conclusions.

4.2 Data acquisition and reduction

Between 1993 and 1998, aB band lightcurve of HE 1104−1805 at 19 independent epochs was
obtained, mostly in the course of a monitoring campaign conducted at the ESO 3.6 m telescope in
service mode. The main intention of the programme was to follow the spectral variations by means
of relative spectrophotometry, but at each occasion also atleast one frame in theB band was taken.
A continuumlightcurve, derived from the spectrophotometry, and a firstestimate of the time delay
were presented by W98, where details of the monitoring can also be found. Here we concentrate on
the broad band photometric data (see Table 4.1). Images weretaken typically once a month during
the visibility period. The instrument used was EFOSC1 with a 512×512 pixels Tektronix CCD
until June 1997, and EFOSC2 with a 2K×2K Loral/Lesser chip afterwards. TheB band frames
(which were also used as acquisition images for the spectroscopy) were always exposed for 30
seconds, which ensured that also the main comparison stars were unsaturated at the best recorded
seeing of1′′. Sometimes more than one exposure was made, enabling us to make independent esti-
mates of the photometric uncertainties. A journal of the observations is presented together with the
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measured lightcurve in Tab. 4.1. The CCD frames were reduced ina homogeneous way following
standard procedures. After debiasing and flatfielding, photometry of all sources in the field was
conducted using the DAOPHOT II package (Stetson 1987) as implemented into ESO-MIDAS. The
instrumental magnitudes of the QSO components and reference stars 1–5 (following the nomen-
clature of Wisotzki et al. 1995) were recorded and placed on ahomogeneous relative magnitude
scale defined by the variance-weighted averages over all comparison stars. In Fig. 4.1 we show
the resulting QSO lightcurves, together with the two brightest comparison stars. The variability of
both QSO components is highly significant, including strongfluctuations on the barely sampled
timescales of months. This behaviour is stronger in component A, while component B leads the
variability. The error estimates include shot noise, PSF fitting uncertainties and standard devia-
tions in case of multiple images at a given epoch. Note the similarity of theseB band data with
the completely independently calibrated continuum lightcurves of W98.

FIGURE 4.1: The new photometric dataset running from 1993 to 1998. The zero point for the relative
photometry of HE 1104−1805 is the first data point of component A (see Table 4.1 for error estimates).

4.3 Time Delay Determination

4.3.1 Dispersion spectra method

A first estimation for the time delay in this system resulted in a value of∆tB−A = −0.73 years
(W98), using the dispersion spectra method developed by Peltet al. (1994, 1996; hereafter P94
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Epoch [yrs] ∆BA σBA
∆BB σBB

1993.19 0.000 0.009 1.920 0.022
1994.82 0.397 0.009 2.282 0.019
1995.16 0.529 0.008 2.236 0.028
1995.96 0.399 0.012 2.140 0.014
1996.11 0.436 0.008 2.207 0.017
1996.23 0.454 0.005 2.176 0.013
1996.30 0.486 0.009 2.171 0.023
1996.45 0.500 0.008 2.115 0.019
1996.88 0.383 0.007 2.074 0.012
1997.04 0.389 0.007 2.054 0.016
1997.12 0.533 0.009 2.031 0.013
1997.21 0.428 0.016 2.007 0.015
1997.27 0.392 0.007 2.055 0.012
1997.33 0.403 0.008 2.089 0.014
1998.00 0.252 0.017 2.029 0.018
1998.08 0.279 0.004 2.006 0.011
1998.16 0.292 0.004 2.004 0.011
1998.33 0.531 0.006 2.100 0.011
1998.40 0.441 0.007 2.054 0.030

Table 4.1:B band lightcurve data for HE 1104−1805. The first measurement of component A has
arbitrarily been set to zero. The error estimates include shot noise, PSF fitting uncertainties, and
also standard deviations in case of multiple shoots at a given epoch.

and P96, respectively). Note that we will express the time delay as∆tB−A (instead of∆tA−B),
since B leads the variability (see Fig. 4.1), and thus there appears a minus sign in the result. We
shall demonstrate below that the dispersion spectra methodis not bias-free. To facilitate a better
understanding of this claim, we first briefly describe the method in the following: The two time
seriesAi andBj can be expressed in magnitudes, using the P96 notation, as

Ai = q(ti) + ǫA(ti), i = 1, ..., NA (4.1)

Bj = q(tj − τ) + l(tj) + ǫB(tj), j = 1, ..., NB (4.2)

q(t) being the intrinsic variability of the quasar,τ the time delay,l(t) the magnitude difference and
ǫ(t) another possible noise component (this could be pure noise or microlensing). Both lightcurves
Ai andBj are combined into a new one,Ck, for each value of the pair(τ, l(t)), ‘correcting’ theBj

series byl(t) in magnitudes and byτ in time

Ck(tk) =

{
Ai if tk = ti
Bj − l(tj) if tk = tj − τ

, (4.3)
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with k = 1, ..., N andN = NA +NB. Then the dispersion spectrum is calculated analytically by
the expression

D2
4,k = min

l(t)

N−1∑
n=1

N∑
m=n+1

S
(k)
n,mWn,mGn,m(Cn − Cm)2

N−1∑
n=1

N∑
m=n+1

S
(k)
n,mWn,mGn,m

, (4.4)

whereWn,m are the statistical weights;Gn,m = 1 if the pointsCn andCm come from different time
series,Ai orBj, and0 otherwise; andS(k)

n,m is a function that weights each difference(Cn − Cm)
depending on the distance between the points. In P96 they show three possible definitions for this
function, here we have selected

S(2)
n,m =

{
1 − |tn−tm|

δ
if |tn − tm| ≤ δ

0 if |tn − tm| > δ
, (4.5)

which includes those pairs for which the distance between two observations is less than a certain
decorrelation lengthδ. More details can be found in P94 and P96. The definition of this function
here is slightly different from the one used in W98. We have tworeasons to do so: first, we
will demonstrate that the selection of one or another definition does not play a crucial role in this
case; second, the functionS(3)

n,m used in W98 is supposed to avoid the problem of having big gaps
between the observational points in the lightcurves, but wewill try to solve this problem in a
different way.

The new dataset used here has the same sampling as the one usedfor the first estimation of
the time delay in W98. As the errorbars for individual points are also very similar, one should
expect to obtain a similar time delay. And in fact this is exactly what happens when applying the
dispersion spectra method as described above. The originaldataset is plotted in Fig. 4.1. There are
19 observational points for each component. We apply the dispersion spectra method (P94, P96):
the result is∆tB−A = −0.73 years, i.e., the same value as the first published estimation.

Since W98 did not provide a formal error estimate, we now investigate the goodness of this value
and try to estimate the uncertainty, and we also want to checkthe self-consistency of the method
in this case. For this purpose we do a test based on an iterative procedure: after having applied the
dispersion spectra method to the whole data set, we make a selection of the data trying to avoid
big gaps between the epochs and considering points in both lightcurves that fall in the same time
interval once one has corrected the time shift with the derived time delay. This will avoid the
so-called border effects, and a time delay close to the initial one should result when the dispersion
spectra are recalculated for the selected data. We do this inthe next subsection.

4.3.2 Borders and gaps

We first consider∆tB−A = −0.73 years as a rough estimate of the time delay, in agreement with
W98. It is obvious that using this time delay, the first point ofthe whole dataset (epoch 1993.19) of
component B has no close partner in component A. Eliminatingthis point means avoiding the big
gap of almost two years at the beginning of the lightcurves. Once this is done, the last five points
of the lightcurve B and the first two ones of A (after eliminating the epoch 1993.19) are not useful
anymore for a time delay determination since they do not cover the same intrinsic time interval.
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We also eliminate these points. Now we have a ‘clean’ datasetwith 16 points from component A
and 13 points from component B. The situation is illustrated in Fig. 4.2, where only the epochs
inside the time interval [1994.5, 1998.0] are plotted. Thisis the time interval for which the two
lightcurves overlap after the−0.73 years correction for component A.

FIGURE 4.2: The first point of the whole dataset has been removed and the pointsthat do not fall in the
same time interval once we have shifted the A lightcurve with the value of the firsttime delay estimation,
∆tB−A = −0.73 years. Thus component A has now 16 points and component B 13 points. If the procedure
were self-consistent and the first time delay estimation right, we would naturalyexpect a confirmation of
this value in a second measurement of the delay by using the new dataset.

Now we again apply the dispersion spectra method to the ‘clean’ dataset, i.e. a second iteration
is made. The result is surprising:∆tB−A = −0.38 years. The technique should converge to a
value near to that of the first result, if the previous estimation was correct and the technique is
self-consistent. For consistency, we repeat this analysisassuming a time delay of−0.38 years,
i.e., a third iteration. The result is again unexpected: we recover the previous value of−0.73
years. These results can be seen in Fig. 4.3, upper panel (dispersion with all points), middle panel
(borders and gap corrected around 1 year) and bottom panel (borders and gap corrected around
half a year) where the minimum of the function gives the time delay. The solid and broken lines
in each figure correspond to two slightly different decorrelation lengths (δ1 = 0.3 years,δ2 = 0.4
years).

This clearly means that the method is not self-consistent when applying it to the current data
set. The dispersion spectra method is very sensitive to individual points, and in poorly sampled
sets such as this one, these points are critical. It is obvious that we need better techniques for
the determination of the time delay. But these techniques must not be interpolating ones because
the lightcurves have lots of variability and wide gaps, and any simple interpolation scheme might
introduce spurious signals.
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FIGURE 4.3: Dispersion spectra: Theupper panelshows the result when all the points are taken into
account. In themiddle panel, the result after correcting borders with the first estimation of the time delay,
i.e. ∆tB−A = −0.73 years. In thebottom panelwe use a correction of−0.38 years obtained in the
middle panel. We recover the previous value for the time delay of∆tB−A = −0.73 years, showing the
inconsistency of the method. In each subfigure, two curves are plotted for two different values of the
decorrelation length: solid forδ1 = 0.3 years and broken forδ2 = 0.4 years.
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4.3.3 Techniques based on the discrete correlation function

4.3.3.1 Reasons for ‘clean’ datasets

Many authors have applied different versions of the discrete correlation function (DCF) since it
was introduced by Edelson & Krolik (1988; hereafter EK88). Here we have selected five of them.
These techniques take into account the global behavior of the curves, rather than ‘critical points’.
But in order to properly apply all these methods one has to eliminate border effects and gaps as
described previously. If one does not do this, one will lose signal in the peak of the DCF and
secondary peaks could appear, which can bias the final result. We will demonstrate this last point
later (Fig. 4.7, described in Sect. 4.3.3.4, is used for thispurpose).

4.3.3.2 Standard DCF plus a parabolic fit.

First we apply the usual form of the DCF to the data set. We briefly recall the expression,
following EK88:

DCF (τ) =
1

M

∑

ij

(ai − ā)(bj − b̄)√
(σ2

a − ǫ2a)(σ
2
b − ǫ2b)

, (4.6)

whereM is the number of data pairs (aj, bj) in the bin associated with the lagτ , ǫx the measurement
error,σx the standard deviation and̄x the mean of x.DCF (τ) gives the cross correlation between
both components at lagτ by considering bins that include all pairs of points (aj, bj) verifying
τ − α ≤ (tj − ti) < τ + α, whereα is the bin semisize. In DCF-based techniques, one always
needs to find a compromise between the bin size and the error for each bin: increasing the former
decreases the latter, but resolution with respect toτ is lost. The result of applying this procedure
to the HE 1104−1805 data is a function with a few points and without a prominent feature around
the peak, because of our sparse sampling. The position of thepeak gives the time delay:∆tB−A =
−0.91 years.

A modification of this method was suggested by Lehár et al. (1992). They proposed to fit a
parabola to the peak of the function in case the peak is not resolved. Doing this fit, we obtain
a time delay of∆tB−A = −0.89 years. These results are shown in Fig. 4.4. The noise level is
computed as

√
M , M being the number of pairs in each bin. The problem in this caseis that the

peak of the function is defined with only two points above the noise level. We used a bin semisize
of α = 0.07 years. Increasing the bin semisize toα = 0.14 years does not improve the result in
the sense that the peak is defined by only one point, and the fit does not modify the location of this
peak. The obtained value for the time delay in this case (α = 0.14 years) is∆tB−A = −0.84 years.

4.3.3.3 Locally normalized discrete correlation function:averaging in each bin

The locally normalized discrete correlation function (LNDCF) was also proposed by Lehár et al.
(1992). Its main difference to the simple DCF is that it computes the means and variances locally,
i.e. in each bin:

LNDCF (τ) =
1

M

∑

ij

(ai − ā∗)(bj − b̄∗)

[(σ2
a∗

− ǫ2a)(σ
2
b∗
− ǫ2b)]

1/2
, (4.7)

computing the sum over all pairs whereτ −α ≤ (tj − ti) < τ +α. The mean,̄x∗, and the standard
deviations,σ2

a∗
, are calculated for each bin. Again a parabolic fit is needed for a more accurate
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FIGURE 4.4: The standard DCF and an added fit are shown in this figure. The peak is located at−0.89
years (−0.91 without fit) using a bin semisize= 0.07 years. The continuous lines are the noise levels and
the zero level is also plotted. Only two points defining the peak are outside the noise band.

value of the peak, which then gives the time delay. For the same reasons as in Sect. 4.3.3.2 we
choose a bin semisizeα = 0.07 years. The result is shown in Fig. 4.5. As in the case of the standard
DCF, the peak is just defined by two points. The obtained time delay in this case is∆tB−A = −0.87
years (the value without the fit is−0.91 years). Furthermore, a secondary competing peak appears
at−0.35 years, with more points, although these points have larger errorbars. This is an interesting
aspect, because it was this secondary peak which ‘confused’the dispersion spectra technique and
it may suggest a close relation between these two techniques(both favour ‘local’ behaviour of
the signals, rather than ‘global’ ones). This possible relation merits more attention and will be
investigated in future work. In any case, the poorly defined peak means the technique is again
quite sensitive to our poor sampling. We look for a method less sensitive to this problem. The
two following techniques are two different ways of trying tosolve the problem of not having many
points around the prominent peak.

4.3.3.4 Continuously evaluated discrete correlation function: overlapping bins in the DCF

The continuously evaluated discrete correlation function(CEDCF) was introduced by Goicoechea
et al. (1998a). The difference to the standard way of computing the DCF in this method is that the
bins are non disjoint (i.e. each bin ovelaps with other adjacent bins, see paragraph 4.3.3.2 where
the bins do not overlap each other). One has to fix the distancebetween the centers of the bins in
addition to their width. In this way it is possible to evaluate the DCF at more points, having a more
continuously distributed curve. We will have also more significant points around the peak, i.e.
above the noise level, and there is no need for fitting. Selecting the distance between the centers
of the bins is again a matter of compromise: increasing the distance requires wider bins and, thus,
loses resolution. The adopted time resolution should depend on the sampling; it seems reasonable
to select a value slightly less then the inverse of the highest frequency of sampling (1/f ≃ 0.1
years). We choose0.05 years as the best value for the distance between bin centers and two values
for bin semisizes:α = 0.14 andα = 0.21 years. The overlapping between bins allows us to con-
sider slightly wider bin sizes. We plot the results in Fig. 4.6, upper and lower panel, respectively.
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FIGURE 4.5: The LNDCF is evaluated with a 0.07 years bin semisize and the peak is fittedwith a
parabolic law. The result is a time delay∆tB−A = −0.87 years (−0.91 years without the fit). A secondary
peak appears at−0.35 years, although with larger error bars. This peak was the feature that ”confused” the
dispersion spectra.

The continuous lines are the noise levels. Theα = 0.14 years semisize shows a peak at−0.85
years, whereas with theα = 0.21 years semisize the peak is at−0.80 years.

Now we need a good reason for preferring one over the other binsize. This reason could be
the signal-to-noise ratio of the peak: in the first caseα = 0.14 years,S/N = 3.9, and in the
secondα = 0.21 yrs,S/N = 3.8. Clearly, the difference of these two values is not high enough to
conclude that one of them is the best.

In spite of the insignificant difference in this case, we notice that the signal-to-noise ratio is an
important aspect and it is here where we justify the need for using ‘clean’ data sets, i.e. border
effects and gaps corrected. In Fig. 4.7 we plot the CEDCF for theoriginal dataset (without any
correction): the peak is located at−0.90 years, but the signal-to-noise is 1.95!. The main peak
loses signal recovered by a secondary competing peak aroundlag zero and by the wings. Although
this secondary peak is very unlikely to be the delay peak, Fig. 4.7 cannot solve this ambiguity,
which demonstrates that border effects can be dramatic in some cases. In Sect. 4.3.4 we will
discuss the criteria to select a particular bin size.

4.3.3.5 Continously evaluated bins and locally normalizeddiscrete correlation function:
overlapping bins in the LNDCF

To our knowledge, this technique has not been applied before, but it seems a natural step as
a combination of the two former techniques (i.e., the LNDCF and the CEDCF). From the one
side, we use Eq. (4.7) for computing the DCF, i.e., it is a locally normalized discrete correlation
function. From the other side, we use the idea of overlappingbins described in Sect. 4.3.3.4.
Thus, the final result is a ‘continuously evaluated bins and locally normalized discrete correlation
function’ (CELNDCF). Again, we fix the distances between the bins and also their width. The
result will be a function similar in shape to the LNDCF in Fig. 4.5 but with more points evaluated.

The method was applied for three different values of the bin semisize:α = 0.07, 0.14 and0.21
years. The first value is not a good choice, it gives relatively large errorbars for the points of the
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FIGURE 4.6: The CEDCF is a DCF which is evaluated with overlapping bins.Top panel: using a bin
semisize ofα = 0.14 years we obtain a peak at−0.85 years with a good signal-to-noise ratio equal to 3.9.
Bottom panel: with a bin semisize equal toα = 0.21 years, the peak is at−0.80 years. Although it seems
that the function is better defined, i.e. with more points, the signal-to-noise ratioat the peak is 3.8. The
continuous lines are the noise levels in both panels (cf. also Fig. 4.7).

CELNDCF, since the number of points per bin is low. Selecting the last two values, i.e.α = 0.14
yrs. andα = 0.21 yrs., we obtain Fig. 4.8. The first one gives a time delay of∆tB−A = −0.85
years and the second one a value of∆tB−A = −0.75 years. This second result is very close to the
first estimation in W98. The reader can easily compare the results with and without overlapping
bins (Fig. 4.8 and Fig. 4.5, respectively) and clearly see the advantages of this second procedure.
Nevertheless, there is a relatively large difference between selecting one or the other value of the
bin semisize (i.e.α = 0.14 years vs.α = 0.21 years). This means the technique is also very
sensitive to the poor sampling. The next and final technique will clarify which is the best bin size
selection.
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FIGURE 4.7: Not eliminating borders can be crucial in DCF-based methods. Here theCEDCF has been
computed with the original data set, i.e. using all points. There is a peak at−0.90 years, with a signal-to-
noise value of 1.95. Other points around a secondary peak located at time zero describe another feature.
The great amount of information lost in the main peak is obvious.
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FIGURE 4.8: Top panel: The CELNDCF is evaluated withα = 0.14 years bin semisize and a distance
between bin centers of 0.05 years. The result is a time delay∆tB−A = −0.85 years.Bottom panel: The
CELNDCF computed withα = 0.21 years bin semisize. The distances between the bin centers is also 0.05
years. The peak is obtained at−0.75 years where it is assumed to be the time delay.
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FIGURE 4.9: Theδ2 function for three different values of the bin semisizeα: solid line 0.14 years, short
dashed 0.21 years and long dashed 0.28 years. Sinceδ2

min(α = 0.28) < δ2
min(α = 0.21) < δ2

min(α = 0.14),
the minimum value inδ2 for α = 0.14 years is unlikely to be an artifact (see text for more details).

4.3.4 Theδ2 technique: a comparison between the cross correlation function
and the autocorrelation function

The following method, calledδ2, was introduced by Goicoechea et al. (1998b) and Serra-Ricart
et al. (1999). Its expression is

δ2(θ) =
1

N

N∑

i=1

Si[DCC(τi) −DAC(τi − θ)]2 (4.8)

whereSi = 1 if DCC(τi) andDAC(τi−θ) are both defined andSi = 0 otherwise. The DCC is the
continuously evaluated discrete correlation function, and the DAC is the discrete autocorrelation
function. The method uses the DCC and the DAC of one of the components, and tries to get the best
match between them by minimizing its difference. If one has two equal signals, these functions
must be identical. Theδ2 function reaches its minimumθ0 = ∆tB−A at the time delay. We note
that the match of both functions is not a match between their peaks, but rather a global match.

We have selected component B for computing the DAC, because component A has more vari-
ability (presumably due to microlensing). We computeδ2 for different values of the bin semisize.
Adopting a bin semisizeα = 0.14, the function shows some features and reaches its minimum at
−0.85 years (see Fig. 4.9, solid line). Now we computeδ2 for a bin semisizeα = 0.21 years,
which yields a minimum at−0.90 years (Fig. 4.9, long dashed line). The question now is: are
we loosing resolution using this last bin semisize (α = 0.21 years) or is this minimum at−0.90
years a better estimate? The reader could argue thatδ2

min(α = 0.21) < δ2
min(α = 0.14), so that the

agreement between DAC and DCC is better forα = 0.21. This is not so. Consider a bin semisize
α = 0.28 years (Fig. 4.9, short dashed line): We obtain a minimum at−0.85 years while again
δ2
min(α = 0.28) < δ2

min(α = 0.21). This indicates that the minimum located at−0.85 years with
α = 0.14 years was not an artifact of some noise features, but that these features are real. To clarify
this, Fig. 4.10 shows the comparison between the DCC and DAC function for the three different
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FIGURE 4.10: Upper panel: both DCC (filled circles) and DAC (open circles) are plotted. The bin
semisize isα = 0.14 years and the DAC has been shifted by−0.85 years, which is the value for the time
delay obtained with theδ2 technique.Middle panel: the bin semisize is nowα = 0.21 years. DAC (open
circles) has now been shifted by−0.90 years, which is the value obtained with theδ2 technique. The bin
semisize is nowα = 0.21 years. Bottom panel: for α = 0.28, δ2

min = −0.85 again, so the DCC (filled
circles) is shifted by that value. In the three subfigures the solid lines indicate the noise levels. The best
agreement between DCC and DAC is forα = 0.14 years (upper panel).



42 TIME DELAY TECHNIQUES: THE CASE STUDYHE 1104−1805

values of the bin semisizeα (0.14, 0.21 and 0.28 years in the upper panel, middle panel and bottom
panel, respectively). Accordingly, we consider theα = 0.14 years the best bin semisize and we
analyseδ2 for that value.

In order to better study the features in theδ2 function, we plot it normalized to its minimum
in Fig. 4.11. This figure is quite illustrative: (i) The minimum is reached at−0.85 years. (ii)
The trend of the main feature is asymmetric, with a relatively slow rise at the right hand side,
favoring values in the range[−0.9,−0.7], including most of the estimates from other techniques
or binning. (iii) A ‘secondary minimum’ is present at−0.55 years. This may be due to the fact
remarked already by W98: for such a lag, the observing periodsof one component coincides with
the seasonal gaps in the lightcurve of the other. (iv) The feature in the range[−0.3,−0.4] is not
present, meaning that this value is very unlikely (this was the value that appeared with dispersion
spectra, LNDCF and CELNDCF methods).

To obtain an estimate for the formal error of this method, we used 1000 Monte Carlo simulations.
For each simulation we did the following: for each epochti we associated a value in magnitudes
xi + ∆xi, wherexi is the observed value and∆xi is a Gaussian random variable with zero mean
and variance equal to the estimated measurement error. The histogram is presented in Fig. 4.12.
The simulations reproduce all the information contained intheδ2 function in Fig. 4.11: the most
probable value is−0.85 years (599 simulations); it also appears in a number of simulations around
−0.90 years (57 simulations),−0.80 years (285 simulations),−0.75 years (5 simulations) and
around−0.70 years (20 simulations). A few simulations (36) are also located around−0.55 years,
which is very close to the one considered in W98 as spurious (a value around half a year). In any

FIGURE 4.11: The minimum of theδ2 function at−0.85 years gives the time delay between the compo-
nents. We have normalized it with its minimum. A secondary peak is present around−0.55 years, a value
also considered by W98. The trend of the main feature is asymmetric, favoring values for the time delay in
the range [−0.9, −0.7], including several best estimates of the time delay from other techniques orbinning.

case, the simulations are in very good agreement with the information contained in theδ2 function.
As 95% of the simulations claim a time delay in the interval[−0.90,−0.80], we can adopt a value
of ∆tB−A = (−0.85 ± 0.05) years for the time delay of this system, with a 2σ confidence level
(formal or internal error). Fig. 4.13 shows the lightcurveswith component A shifted by the adopted
time delay.
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FIGURE 4.12: Histogram of time delays obtained in 1000 Monte Carlo simulations, using the δ2 tech-
nique.

4.4 Discussion

4.4.1 Comparison of the different techniques

From our tour through the different techniques we can learn several useful things. First of all,
when only one technique is selected for deriving a time delaybetween two signals, it is important
to check the internal consistency of the method and its behaviour with a given data set. We have
demonstrated in Sect. 4.3.2 that dispersion spectra does not pass this test at least in this case (see
Fig. 4.3). We have then applied and discussed the discrete correlation function and several of
its modifications. The standard DCF (Fig. 4.4) had problems toproperly define the peak in the
case of very poorly sampled lightcurves; although a fit was proposed to solve this problem, there
were only two points above the noise level in the best case andthe fit was not very plausible. The
LNDCF (Fig. 4.5), based on locally normalized bins, had a similar behaviour and although the
error bars of each point are smaller, the peak is not well defined either. The CEDCF (Fig. 4.6)
and the CELNDCF (Fig. 4.8) worked better under these circumstances, but we found the problem
of selecting the bin size; in the case of the CEDCF the difference between the two selected bin
sizes was smaller than in the case of the CELNDCF. Finally applying theδ2 technique, we found
a good reason for selecting one bin size: the match between the DAC and the DCC. The resulting
estimate and its uncertainty include, as a ‘byproduct’, theresults of the rest of the techniques for
the same bin size (except the dispersion spectra method which was not self-consistent). This fact
is not the same as applying all the techniques to obtain an uncertainty. This frequently appears
in the time delay determination literature, although it is not at all clear which was the weight of
each technique when computing the final result. We note that for consistency we should apply a
correction to the original data set with the final adopted time delay of−0.85 years. Due to the
(very) sparse sampling of our data set, this correction gives a reduced data set identical to the
previous ‘clean’ data set obtained with a correction of−0.73 years, so we do not need to repeat
the whole process. The procedure is self-consistent.

It is important to notice that we have not meant to establish any general hierarchy between all
these techniques. The hierarchy is valid in our particular case study. Nevertheless, the idea, not
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FIGURE 4.13: The original dataset with the component A shifted by the new adoptedtime delay,
∆tB−A = −0.85 years.

new, of correcting border effects in the signals with first estimations has been proved to be a good
procedure in DCF based techniques.

4.4.2 Investigation of secondary minima/maxima

In some of the techniques we have discussed and applied here for the data of HE 1104−1805,
there appear secondary peaks/dips located at different values for the time lags (see Fig. 4.5, Fig.
4.8 and Fig. 4.11). Here we investigate two obvious effects that might cause such behaviour,
namely microlensing and sampling. We do this only as a case study for theδ2 technique, but
assume that our conclusions can be generalized to the other methods as well.

4.4.2.1 Microlensing

Microlensing affects the two quasar lightcurves differently. That means that the two lightcurves
will not be identical copies of each other (modulo offsets inmagnitude and time), but there can
be minor or major deviations between them. On the other hand,experience from other multiple
quasar systems tells us that microlensing cannot dominate the variability, because otherwise there
would be no way to determine a time delay at all. In any case, microlensing is a possible source of
‘noise’ with respect to the determination of the time delay.

A complete analysis of microlensing on this system is beyondthe scope of this Section, and
will be addressed in a future work. Here we present a simple, but illustrative, approach to the
way microlensing can affect the determination of the time delay, and in particular its effect on the
δ2 technique. An ‘extreme’ view of microlensing was investigated by Falco et al. (1991), who
showed for the Q0957+561 system that it is very unlikely that microlensing can mimic ‘paral-
lel’ intrinsic fluctuations causing completely wrong values for the time delay correlations. But
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strong microlensing clearly affects the features of the cross-correlation function (Goicoechea et
al. 1998a). Depending on the exact amplitude and shape of themicrolensing event, the main and
secondary peaks of this function can be distorted, possiblyinducing wrong interpretations.

In order to study this effect here, we do the following: we consider the lightcurve of component
B (assumed to reflect only intrinsic quasar variability) anda copy of it, shifted by0.85 years,
which we shall call B′. Obviously, any technique will give a time delay value of∆tB−B′ = −0.85
years between B and B′. In the case of theδ2 technique, a very sharp minimum is located at
this lag. Now we introduce artificial ‘microlensing’ as a kind of Gaussian random process with
zero mean and a certain standard deviationσML to the lightcurve B′. We consider three cases:
σML = 0.050 mag,0.075 mag and0.100 mag. Although microlensing is in general obviously
not a random process (it depends a bit on the sampling), we usethis simple approximation in
order to study whether and how secondary peaks can appear in time delay determinations. The
resultingδ2-functions can be seen in Fig. 4.14, which can be compared to Fig. 4.11. It is very
obvious that for the ‘smallest’ microlensing contribution(σML = 0.050 mag, thin solid line) the
minimum of theδ2 normalized function is still a very sharp feature. For the next case (σML =
0.075 mag, dashed line) theδ2 function gets wider and ‘noisier’, and for the strongest influence
of microlensing (σML = 0.1 mag, thick solid line) a secondary features appears. But in nocase
the distortion prohibits a clear and correct time delay determination, the primary minimum is still
clearly identifiable (microlensing fluctuations during theperiod covered by our monitoring are of
the order of0.07 mag rms; Wisotzki, 2001, priv.comm.).

FIGURE 4.14: We calculate the time delay between the lightcurves B and B′ with theδ2 technique. B′ is
a copy of B, shifted0.85 years and with a gaussian random process added in order to simulate microlensing.
Thin solid line: the gaussian random process has a standard deviation of0.05 mag. There are no secondary
peaks.Dashed line: If the standard deviation of the gaussian random process is0.075 mag., some secondary
features appear.Thick solid line: theδ2 normalized function is much more distorted, but the technique can
calculate the shifted value of0.85 years.

To make sure that this is not a chance observational effect ofthis particular selected lag, we
repeat this exercise for an assumed shift of−0.5 years between the observed lightcurve and its
shifted copy, plus added ‘artificial microlensing’ withσML = 0.1 mag. Again, the correct value
is clearly recovered in all realisations. This is particularly convincing because a lag of 0.5 years
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is the ‘worst case scenario’ with minimal overlap between the two lightcurves. To summarize,
moderate microlensing can be a cause of distortions of the time delay determination function, but
it is unlikely that microlensing dominates it completely inthis dataset.

FIGURE 4.15: We analyse the sampling effect in theδ2 technique. We use lightcurves B and B′, B′ being
a copy of B shifted0.85 years and removing a number of points.Thin solid line: we remove two random
points in the component B′. Dashed line: when removing four random points, there appears secondary
structure in theδ2 function. Thick solid line: if three adjacent points are removed, theδ2 normalized
function is very similar to the one computed with lightcurves A and B (see Fig. 4.11).

4.4.2.2 Sampling

In order to study the effect of sampling on the shape of theδ2 function, we proceed as follows:
again, we consider the lightcurve of component B and an identical copy of it shifted by0.85
years, lightcurve B′. Now we remove some points from lightcurve B′. Resultingδ2 functions
are shown in Fig. 4.15 for three cases. The thin solid line is acase in which two random points
have been removed from B. The minimum of theδ2 normalized function is still well defined, with
no secondary structure. For the dashed curve in Fig. 4.15, four random points were taken away.
The shape of the function is distorted and a secondary dip appears. For the thick solid line, three
adjacent hand-picked points (epochs1997.12, 1997.21, 1997.27) were excluded. Surprisingly,
although all the remaining data points have identical spacing in B′ as in B, the removal of the three
points causes a secondary minimum in theδ2 function, which is very similar to the one obtained
for the real data, using the observed lightcurves A and B (Fig. 4.11). This case is very illustrative:
it suggests that the sampling alone could be responsible forthe secondary minimum found in the
real data (Fig. 4.11). This effect certainly deserves more study. From this preliminary analysis it
appears that better and denser sampling of quasar lightcurves could be much more important for
time delay studies than fewer data points with higher photometric precision.

As above, we also want to check whether the particular value of the time lag plays an important
role, and we again repeat the simulation exercise with an assumed lag of−0.5 years, and 4 ran-
domly selected points removed. The result is again∆tB−B′ = −0.5 years, recovering the assumed
lag in all cases.
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4.4.2.3 Summary of microlensing/sampling effects

Summarizing, we can state that both microlensing and sampling differences affect the shape
of the time delay determination function. However, moderate microlensing will have only small
effects on these curves, whereas moderate (and unavoidable!) differences in the sampling for the
two lightcurves can easily introduce effects like secondary minima. The primary minimum of the
δ2 method in all cases considered was still clearly representing the actual value of the time delay.
Applied to HE 1104−1805, this means that most likely microlensing does not affect much the time
delay determination, the features in the time delay determination function can be easily explained
by the sampling differences, and the primary minimum appears to be a good representation of the
real time delay.

4.4.3 Implications forH0 determination

If one wants to use the time delay to estimate the Hubble parameterH0, one needs to know the
geometry and mass distribution of the system. Accurate astrometry is available from HST images
presented by Lehar et al. (2000). There are also several models for the lens in the literature. In
W98, two models are described: a singular isothermal sphere with external shear and a singular
isothermal ellipsoid without external shear. The first model is similar to Remy et al. (1998)
and Lehar et al. (2000). Courbin et al. (2000) also present twomodels: a singular ellipsoid
without external shear and a singular isothermal ellipsoidplus an extended component representing
a galaxy cluster centered on the lens galaxy.

The redshift of the lens in this system has been establish by Lidman et al. (2000) to bezd =
0.729. Note that HE 1104−1805 is somehow atypical, in the sense that the brightest component
is closer to the lens galaxy. We use the most recents models bythe CASTLES group (Leh́ar et
al. 2000), described by a singular isothermal ellipsoid (SIE) and a constant mass-to-light ratio
plus shear model (M/L + γ). The derived value for the Hubble constant using the first model
(SIE) isH0 = (48 ± 4) km s−1 Mpc−1 with 2σ confidence level. A (M/L + γ) model gives
H0 = (62 ± 4) km s−1 Mpc−1 (2σ), both forΩ0 = 1. The formal uncertainty in these values are
very low, due to the low formal uncertainties both in the timedelay estimation and in the models.
Nevertheless, the mass distribution is not well constrained, since a sequence of models can fit the
images positions (Zhao & Pronk 2000). We note that other models in Lehar et al. (2000) will give
very different results forH0, but we did not use them because no error estimate was reported for
them. Moreover, the angular separation is big enough to expect an additional contribution to the
potential from a group or cluster of galaxies (Muñoz 2001, priv. comm.).

4.5 Conclusions

We have shown that the existing data allow us to constrain thetime delay of HE 1104−1805
with high confidence between 0.8 and 0.9 years, slightly higher than the one available previous
estimate. We have demonstrated that the six different techniques employed in this study were
not equally suited for the available dataset. In fact, this case study has demonstrated that a very
careful analysis of each technique is needed when applying it to a certain set of observations.
Such an analysis becomes even more important in the case of poorly sampled lightcurves. In this
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sense, theδ2 technique showed the best behaviour against the poor sampling: unless the lack of
information due to sampling is so severe that it prevents thedetermination of well defined discrete
autocorrelation (DAC) and cross-correlation (DCC) functions, the minimum of theδ2 function will
be a robust estimator for the time delay.

Our proposed time delay estimate yields a value of the Hubbleparameter which now depends
mostly on the uncertainties of the mass model. The degeneracies inherent to a simple 2-image
lens system such as HE 1104−1805 currently preclude to derive very tight limits onH0. We note,
however, that there are prospects to improve the constraints on the model e.g. by using the lensed
arclet features visible from the QSO host galaxy. Even now, there seems to be a remarkable trend
in favour of a relatively low value ofH0, consistent with other recent lensing-based estimates
(Schechter 2000).

Soon after this work was finished, Pelt et al. (2002) argued that the uncertainties in our time delay
estimation were underestimated, probably due to the poorlysampled lightcurves. They forgot that
this was exactly our exercise: extract information when sampling is far from optimal. They also
argued that our notion of consistency regarding dispersionminimization method was inappropiate.
Nevertheless, they did not explain why the inconsistency wefound in their method does not appear
in all the other techniques.

Recently, two teams have presented new photometries on HE 1104−1805. Schechter et al.
(2003) showed three years of photometry obtained with the OGLE 1.3m telescope. Although
the sampling was three points per month, they found such a strong microlensing signal that they
were unable to estimate a time delay for they system. Instead, they analysed a variety of possible
causes for the microlensing signal. They concluded that themost likely scenario was to consider
multiple hotspots in the quasar accretion disk, an idea based on Gould & Miralda-Escud́e (1997)
and numerically simulated by Wyithe & Loeb (2002).

Ofek & Maoz (2003) observed HE 1104−1805 with the Wise Observatory 1m telescope. They
combined their photometry with that by Schechter et al. (2003), covering a total observing period
of five years. They measured a time delay of∆tA−B = −161+7,+34

−7,−11 days (1σ and 2σ errors). There
are various problems in this new estimate of the time delay that will be discussed in a future work.
We point them out here. The combination of the photometries is a very delicated issue. A little
offset in it can induce wrong time delay estimates. Furthermore, they detect a high microlensing
variability with a timescale of a month. But they do not show a detailed analysis of the influence
of such a signal in the measured time delay nor in the error estimate. Obviously, microlensing is a
source of noise when computing time delays that has to be carefully taken into account.



Chapter 5

Analysis of difference lightcurves:
disentangling microlensing and noise in the
double quasar Q0957+561⋆

Link. After carrying out a monitoring campaign of a multiple image lensed quasar
and correcting for the time delay between the images, one is able to do microlensing
studies of the system. There are different ways of exploring the possiblemicrolensing
fluctuations in the difference lightcurves. One way is using Monte Carlo simulations.
This kind of simulations can be very useful in disentangling microlensing andother
possible sources of noise, which are quite easy to mix up.

Abstract. From optical R band data of the double quasar Q0957+561A,B, we
made two new difference light curves (about 330 days of overlap between the
time-shifted light curve for the A image and the magnitude-shifted light curve
for the B image). We observed noisy behaviours around the zero line and no
short-timescale events (with a duration of months), where the term event refers
to a prominent feature that may be due to microlensing or another source of
variability. Only one event lasting two weeks and rising - 33mmag was found.
Measured constraints on the possible microlensing variability can be used to ob-
tain information on the granularity of the dark matter in themain lensing galaxy
and the size of the source. In addition, one can also test the ability of the obser-
vational noise to cause the rms averages and the local features of the difference
signals. We focused on this last issue. The combined photometries were related
to a process consisting of an intrinsic signal plus a Gaussian observational noise.
The intrinsic signal has been assumed to be either a smooth function (polyno-
mial) or a smooth function plus a stationary noise process ora correlated station-
ary process. Using these three pictures without microlensing, we derived some
models totally consistent with the observations. We finallydiscussed the sensi-
tivity of our telescope (at Teide Observatory) to several classes of microlensing
variability.

⋆Chapter based on the refereed publication Gil-Merino et al., 2001, MNRAS, 322, 397
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5.1 Introduction

5.1.1 Microlensing caused by the Milky Way and other galaxies

Dark matter dominates the outer mass of the Milky Way. In principle, the population of the
Galactic dark halo may include astrophysical objects like black holes, brown dwarfs, white dwarfs
or MACHOs (MAssive Compact Halo Objects) with stellar or substellar mass, as well as elemen-
tary particles (a smooth component). Today, from microlensing surveys, we have some information
about the granular component (MACHOs). The absence of very short duration events – from a
fraction of an hour to a few days – implies that the dark halo cannot be dominated by planetary
objects – with masses10−8 M⊙ ≤ Mplanet ≤ 10−3 M⊙. A joint analysis by theEROSandMA-
CHO collaborations indicated that MACHOs in the mass range10−7M⊙ ≤ M ≤ 10−3M⊙ make
up less than 25% of the dark halo (Alcock et al. 1998). From a likelihood analysis, theMACHO
collaboration concluded that a population of objects of mass∼ 0.5M⊙ is consistent with their first
two year of data. These MACHOs with stellar mass would have an important contribution to the
total mass (Alcock et al. 1997; Gould 1997; Sutherland 1999;Mao 2000). However, very recent
results by theMACHO team, based on approximately six years of observations, point to a rela-
tively small mass fraction (Alcock et al. 2000). For a typical size halo, the maximum likelihood
estimates suggest the existence of a Milky Way dark halo consisting of 20% MACHOs with mass
of ∼ 0.6M⊙ (with a 95% confidence interval of 8%-50%). TheEROScollaboration also agrees
with this small contribution to the dark halo by∼ 0.6M⊙ objects (Lasserre et al. 2000). Lasserre
et al. (2000) derived strong upper limits on the abundance ofMACHOs with different masses. For
example, less than 10% of the dark halo resides in planetary objects. Moreover, they ruled out
a standard spherical halo in which more than 40% of its mass ismade of dark stars with 1M⊙.
Finally, we remark that the Milky Way dark halo inferred fromthe maximum likelihood method
(best standard fits by Alcock et al. 2000) is consistent with the HST (Hubble Space Telescope)
detection of a halo white dwarf population (Ibata et al. 1999). A population of cool white dwarfs
contributing 1/5 of the dark matter in the Milky Way could explain all new observational results,
but this hypothesis presents some difficulties (e.g., Mao 2000; Alcock et al. 2000): e.g., if the
MACHOs are white dwarfs, these stars will produce too much chemical enrichment in the halo
(Freese et al. 2000); also the fraction of MACHOs is larger – the exact value depends on the
adopted cosmology – than the baryon fraction expected from nucleosynthesis.

The information on the nature of galaxy dark haloes is still largely based on a local spiral galaxy
(the Galaxy), and so, the study of other galaxies seems an interesting goal.

The Einstein Cross (Q2237+0305) is az = 1.69 quasar lensed by a face-on barred Sb galaxy at
z = 0.0394 (Huchra et al. 1985). The time delay between the fourquasar images is expected to be
less than a day (Rix et al. 1992; Wambsganss & Paczyński 1994), and so, one can directly separate
intrinsic variability from microlensing signal. For this lens system, light rays of the 4 images
pass through the bulge of the foreground galaxy and there is robust evidence that microlensing
events occur (e.g., Irwin et al. 1989; Wozniak et al. 2000). The observed events are interpreted
as a phenomenon caused by the granularity of the matter associated with the nearby spiral. For
providing an interpretation of theOGLEQ2237+0305 microlensing light curve, Wyithe, Turner &
Webster (2000a) used the contouring technique of Lewis et al. (1993) and Witt (1993) to put limits
on the microlenses mass function, ruling out a significant contribution of Jupiter-mass compact
objects to the mass distribution of the galactic bulge of thelensing galaxy (see Chapter 6 for more
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details on this system).
B1600+434 is another interesting gravitational mirage lensed by an edge-on disk galaxy. Koop-

mans & de Bruyn (2000) measured the radio time delay between the two images of the system and
derived a radio difference light curve which is in disagreement with zero. They investigated both
scintillation and microlensing as possible causes of the non-intrinsic radio variability. If microlens-
ing is the origin of the ‘anomalous’ difference light curve,then it could indicate the presence of a
lens galaxy dark halo filled with MACHOs of mass≥ 0.5M⊙.

5.1.2 Microlensing in the first gravitational lens system (Q0957+561)

A third well-known microlensed quasar is thez = 1.41 double system Q0957+561A,B (Walsh
et al. 1979). The main lens galaxy is an elliptical galaxy (cD) at z = 0.36 (Stockton 1980). While
the light associated with the image B crosses an internal region of the lens galaxy, the light path
associated with the component A is≈ 5 arcsec away from the centre of the galaxy. The cD galaxy
is close to the centre of a galaxy cluster, and consequently,the normalized surface mass densities
κA andκB are the projected mass densities of the lensing galaxy plus cluster along the line of
sight, normalized by the critical surface mass density. Pelt et al. (1998) used the valuesκA =
0.22 andκB = 1.24, which originate from an extended galaxy halo consisting of the elliptical
galaxy halo and additional matter related to the cluster. Itis possible that a considerable part
of the extended halo mass does consist of a dark component, although an estimate of the stellar
contribution (luminous stars) toκA andκB is not so easy as in the Milky Way. For the image
B, if the fraction of mass in granular formκBG is dominated by normal stars and dark stars (i.e.,
MACHOs) similar to the objects that have been discovered in the Milky Way (Alcock et al. 2000),
and simultaneously, the main part of the halo mass is due to a smooth component (κBG << κB,
κBG << 1) and the source quasar is small, then we must expect some long-timescale microlensing
event caused by one star (luminous or dark) crossing the pathof this image. In the case of small
source/one star approximation, the timescale of an Einstein radius crossing will beto(years)≈ 17√
M(M⊙)[600/vt(km · s−1)], wherevt is the effective transverse velocity. The magnification of

the B component has a typical duration from months to severalyears – depending on the exact
values of the source size and the effective transverse velocity – for a 0.5-1M⊙ star. WhenκBG is
high (κBG ∼ 1) and/or the source is large, several stars at a time must be considered and the model
by Chang & Refsdal (1984) is not suitable. The small source/onestar model by Chang & Refsdal
(1984) was generalized in the case of a small source and a large optical depth (Paczyński 1986a)
and the case of an extended source and an arbitrary optical depth (Kayser, Refsdal & Stabell 1986;
Schneider & Weiss 1987; Wambsganss 1990). Therefore, the formalisms by Chang & Refsdal
(1984), Paczýnski (1986a) and Wambsganss (1990) as well as new analyticalapproximations seem
useful tools for a detailed analysis of the optical microlensing history of Q0957+561. A long-
timescale microlensing signal was unambiguously observedfrom 1981 to 1999; see Pelt et al.
(1998), Press & Rybicki (1998), Serra-Ricart et al. (1999, subsequently SR99). In this Chapter,
we concentrate on the rapid fluctuations.

In the past, using a record of brightness as a function of timeincluding photometric data (in
the R band) up to 1995 and assuming a time delay of 404 days, Schild (1996, hereafter S96)
analyzed the possible existence of short-timescale microlensing (rapid external variability on a
timescale of months) and very rapid microlensing events (with duration of≤ 3 weeks) in the
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double Q0957+561A,B. He found numerous events with quarter-year and very short timescales
(a few days). S96 also claimed that the slower component (events with a width of 90 days) can
be interpreted as the imprint of an important population of microlenses with planetary mass of
∼ 10−5M⊙. Assuming an improved delay value of 417 days, Goicoechea etal. (1998, subse-
quently G98) showed a difference light curve correspondingto the 1995/1996 seasons in Schild’s
dataset. G98 obtained fluctuations which could be associated with microlensing events, in fact,
those results are in agreement with the existence of strong microlensing: the fluctuations in the
difference light curve are clearly inconsistent with zero and similar to the fluctuations in the quasar
signal (in amplitude and timescale). New work by Schild and collaborators pointed in the same
direction: adopting a time delay of 416.3 days, Pelt et al. (1998) found that Schild’s photometry
shows evidence in favour of the presence of short-timescalemicrolensing; Schild (1999) made a
wavelet exploration of the Q0957+561 brightness record, and reported that the rapid brightness
fluctuations observed in the A and B quasar images (whose origin may be some kind of microlens-
ing) are not dominated by observational noise; and Colley & Schild (1999), from a new reduction
of ‘old’ photometric data – subtracting out the lens galaxy’s light according to theHSTluminos-
ity profile and removing cross talk light from the A and B imageapertures – , derived a structure
function for variations in the R-band from lags of hours to years, a time delay of 417.4 days and a
microlensing candidate on a timescale less than a day, whichcould imply planetary MACHOs in
the lens galaxy halo. So, from the photometry taken at WhippleObservatory 1.2 m telescope by
Schild, one obtains two important conclusions. First, there is evidence in favor of the existence of
a short-timescale microlensing signal. Second, this rapidsignal seems to support the presence of
MACHOs (in the halo of the cD galaxy) having a very small mass. However we note that Gould &
Miralda-Escud́e (1997) have introduced an alternative explanation to the possible rapid microlens-
ing in the double Q0957+561A,B, which is related to hot spots or other moving structures in the
accretion disk in the quasar, and so, planetary objects are not involved.

Q0957+561A,B was photometrically monitored at Apache Point Observatory (Kundíc et al.
1995, 1997) in the g and r bands, during the 1995 and 1996 seasons. Schmidt & Wambsganss
(1998, hereafter SW98) analyzed this photometry and searched for a microlensing signature. Con-
sidering the photometric data in the g band and a delay of 417 days, SW98 produced a difference
light curve covering≈ 160 days and concluded that it is consistent with zero. Thereis no variation
in the difference light curve with an amplitude in excess of± 0.05 mag and the total magnitude
variation of a hypothetical microlensing signal is assumedto be less than 0.05 mag (see the dashed
lines in Fig. 1 in SW98). They employed this last upper limit toobtain interesting information
on the parameter pair MACHO-mass/quasar-size. The lack of observed fluctuations rules out a
population of MACHOs withM ≤ 10−3 M⊙ for a quasar size of 1014 cm (25%-100% of the mat-
ter in compact dark objects). However, other possible scenarios (e.g., a small source and a halo
consisting of MACHOs withM ≥ 10−2 M⊙, a source size of 1015 cm and a halo with compact
dark objects of mass≤ 10−3 M⊙, etc.) cannot be ruled out from the bound on the microlensing
variability in the 160 days difference light curve. In short, SW98 have not found reliable evidence
for the presence of rapid microlensing events.

The gravitational lens system Q0957+561 was also monitored with the IAC-80 telescope at
Teide Observatory, from the beginning of 1996 February to 1998 July (see SR99). We re-reduced
the first 3 seasons (1996-1998) of Q0957+561 observations in the R band, made the difference
light curves for 1996/1997 seasons and 1997/1998 seasons and studied the origin of the deviation
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between the light curves of the two images. All the results are presented as follows: in Sect. 5.2
we present the difference light curves and report on new constraints on microlensing variability.
In Sect. 5.3 we suggest different models that explain the difference signal. In Sect. 5.4 we discuss
the sensitivity of the telescope to different microlensing‘peaks’. In Sect. 5.5, we summarize our
results.

5.2 Q0957+561 difference lightcurves in the R band

We have been monitoring Q0957+561 from February 1996 with the 82 cm IAC-80 telescope (at
Teide Observatory, Instituto de Astrofisica de Canarias, Spain) and have obtained a large R band
dataset. The contribution to the solution of the old controversy regarding the value of the time
delay (≈ 400-440 days or> 500 days ?) was the first success of the monitoring program (Oscoz
et al. 1996; see also Kundić et al. 1995, 1997; Oscoz et al. 1997).

In order to give refined measurements of both time delay and optical microlensing, we have
introduced some improvements with respect to the original aperture photometry (see Oscoz et al.
1996). Reduction of the images A and B is complicated by the presence of cross contamination and
contamination from light of the main lensing galaxy. The twokinds of contamination depend on
the seeing, and it is not clear what is the optimal way of obtaining the best photometric accuracy.
Here each available night was reduced by fitting a profile to the images, which is consistent with
the point spread function of comparison stars. This new method of reduction and the photometry
from 1996 to 1998 (the first 3 seasons) are detailed in SR99. A table including all data is available
athttp://www.iac.es/project/quasar/lens7.html.

In the Q0957+561 quasar, a time delay of≈ 420 days is strongly supported (e.g., G98). Using
the first 3 seasons of data, the time delay estimates (in SR99) are of (425±4) days (from theδ2-test,
which is based on discrete correlation functions) and (426±12) days (from dispersion spectra). A
comparison between the discrete cross-correlation function and the discrete autocorrelation func-
tion, indicates that a time delay of≤ 417 days is in disagreement with the photometry (see Fig. 16
in SR99), while a delay of about 425 days is favoured. Thus, we adopted a time delay of 425 days.

We concentrate now on the difference lightcurves. In order to estimate the difference lightcurve
(DLC hereafter) for the 1996/1997 and the 1997/1998 seasons, we used 30 observations of image
A corresponding to the 1996 season (A96), 28 observations of image B corresponding to the 1997
season (B97), 44 photometric data of image A in the 1997 season dataset (A97) and 84 photometric
data of image B in the 1998 season dataset (B98). There are about 100 days of overlap between
the time-shifted (with time delay425 days) lightcurveA96 and the lightcurveB97, and about 230
days of overlap between the time delay-corrected lightcurvesA97 andB98. The main problem of
the IAC-80 telescope (using the available observational time of 20-30 min/night) is related to the
photometric errors. The mean errors in the initially selected datasets are approximately 19 mmag
(A96), 24 mmag (B97), 28 mmag (A97) and 24 mmag (B98). For short-timescale and small
amplitude microlensing studies, these errors are large andone must re-reduce the data (binning
them for obtaining lower errors). Because of the possible rapid microlensing variability on one
month timescale, the timescale of the bins should not be too large (≤ 10 days); it should not be
too small for having a sufficient number of data, and so, relatively small errors. The re-reduced
photometry consists of 12, 11, 22 and 36 ‘observations’ in four new (and final) datasetsA96,B97,
A97 andB98, respectively. For bins inA96, the timescales are less than 3 days and the mean error
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FIGURE 5.1: Difference lightcurve for 1996/1997 seasons – in the R band (magnitudes) –. We used bins
with semi-size of 9 days and adopted a time delay of 425 days. The times associated with the circles are the
dates in the time-delay shifted lightcurveA96 (see main text).

is of ≈ 12 mmag, for bins inB97, the timescales are≤ 8 days and the mean uncertainty is of≈
16 mmag, for bins inA97, the timescales are also≤ 8 days and the mean error is lowered to≈ 20
mmag, and for bins inB98, the maximum timescale and the mean uncertainty are 6 days and 16
mmag, respectively. Therefore, making bins with a maximum timescale of≈ 1 week (the mean
timescale is of≈ 2 days), the mean errors are lowered by 7-8 mmag.

As we have seen in the previous paragraph, the brightness record for the A image (A96 orA97)
is measured only at a set of discrete timesti (i = 1,...,N) and the lightcurve for the B image (B97
or B98) is also determined at discrete timestj (j = 1,...,M). Since the observational lightcurves
are irregularly sampled signals, to obtain the DLC (A96/B97 orA97/B98), we can use different
methodologies, for example, the interpolation suggested by SW98 or the binning that appears in
G98. Here, we are interested in the DLC binned in intervals with size 2α – α is then the semisize
of the bin, see below – around the dates in the lightcurveATS (time delay-shifted lightcurveA). In
other words, each photometric measurementATS

i at the dateti + ∆τBA, where∆τBA is the time
delay, will be compared to the observational dataBMS

j = Bj + < A > - < B > at ti + ∆τBA - α
≤ tj ≤ ti + ∆τBA + α (BMS is the magnitude-shifted lightcurveB). The valuesBMS

j within each
bin are averaged to give< BMS

j >i (i = 1,...,N), and one obtains the difference lightcurve (DLC)

δi =< BMS
j >i −ATS

i , (5.1)

beingi = 1,...,N.
The observational processATS(t) can be expanded as an intrinsic signals(t) plus a noise pro-

cessnA(t) related to the procedure to obtain the measurements, and a microlensing signalmA(t).
Hence,BMS(t) = s(t) + nB(t) + mB(t). So, the deviationδi must be interpreted as a combination
of several factors, i.e.,

δi = [< sj >i −si] + [< nBj >i −nAi] + [< mBj >i −mAi]. (5.2)
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FIGURE 5.2: Difference lightcurve for 1997/1998 seasons – in the R band (magnitudes) –. We used bins
with semi-size of 8 days and adopted a time delay of 425 days. The deviations [δi; see Equation 5.1] are
evaluated at discrete dates corresponding to the time-delay shifted lightcurveA97.

If s(t) is a smooth function, thensi = s(ti) andsj = s(tj), while whens(t) is a stochastic process,
si represents a realization of the random variables(ti) andsj denotes a realization of the random
variables(tj). With respect to the observational noise,nAi is a realization of the random variable
nA(ti) – similarly, nBj is one of the possible values ofnB(tj) –. Also, in Equation 5.2,mAi =
mA(ti) andmBj =mB(tj). From Equation 5.2 it is inferred that the difference signal will be never
zero, even in absence of microlensing. There is a backgrounddominated by observational noise,
which is present in any realistic situation. In the case of very weak or zero microlensing, we expect
a trend of the DLC rather consistent with zero (taking into account the standard errorsǫ1,...,ǫN in
the deviations estimated from Equation 5.1). However, in the case of strong microlensing, several
deviations|δi| should be noticeably larger than the associated uncertaintiesǫi.

For the 1996/1997 seasons (from the final datasetsA96 andB97), using a time delay of 425
days and bins with semisize ofα = 9 days, we derived the DLC that appears in Figure 5.1. Two
thresholds are also illustrated:±0.05 mag (discontinuous lines). In Figure 5.1, there is a ‘peak’
around day 1615: two neighbour points significantly deviated from the zero line, that verify|δi| >
ǫi. If the whole DLC is modelled as a single Gaussian event and the data are fitted to the model,
we obtain that the amplitude and the full-width at one-tenthmaximum (FWTM) of the Gaussian
law must be≈33 mmag and≈14 days, respectively (best-fit characterized byχ2/N ≈ 1). Apart
from this very short duration event, which is probably caused by observational noise (see next
section), there is no evidence in favor of the existence of anevent on longer timescales. We note
that ‘event’ is used in a general sense, and it may be due to true microlensing, observational noise,
a combination of both or other mechanisms. In particular, noSchild-event (events having a width
of three months and an amplitude of± 50 mmag; see S96) is found. Although the difference signal
is only tested during a 100 days period, the ‘sampling’ wouldbe sufficient to find a Schild-event
belonging to a dense network of similar fluctuations (positive and negative). In any case, from
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our second DLC (see here below), we must be able to confirm/reject the existence of a network
of events with quarter-year timescale and an amplitude of± 50 mmag. Finally, there are bounds
derived on the amplitude of the microlensing fluctuations of± 0.05 mag, which are similar to the
bounds for 1995/1996 seasons.

For the 1997/1998 seasons (from the final datasetsA97 andB98), we also made the correspond-
ing DLC. In Figure 5.2, the DLC and two relevant thresholds aredepicted. The difference signal
is in apparent agreement with zero, i.e., Figure 5.2 shows a noisy relationshipBMS = ATS. We
observe no Schild-events, and therefore,the total difference signal (≈ 1 year of overlap between
the time-shifted lightcurve for the A component and the magnitude-shifted lightcurve for the B
component) is in clear disagreement with the claim that 90 days and± 50 mmag fluctuations oc-
cur almost continuously. One can also infer constraints on the microlensing variability. In good
agreement with the DLCs for 1995-1997 seasons, a hypothetical microlensing signal cannot reach
values outside the very conservative interval [- 0.05 mag, +0.05 mag]. We finally remark that the
methodology introduced by SW98 (the technique of interpolation) leads to DLCs similar to the
DLCs discussed here – i.e., Figs. 5.1 and 5.2 present no significant differences from those obtain
by SW98 –.

5.3 Interpretation of the difference signal

The DLCs presented in Section 5.2 are in apparent agreement with the absence of a microlensing
signal. However, to settle any doubts on the ability of the observational noise in order to generate
the observational features (e.g., the very rapid event in Fig. 5.1) and the measured variabilities (rms
averages), a more detailed analysis is needed. In this section, we are going to test three simple
mechanisms without microlensing. In brief, the ability of some models for generating combined
lightcurves and difference signals similar to the observational ones is discussed in detail.

The observational combined photometry consists of both lightcurvesATS andBMS – here-
after, we use ‘combined photometry’ always in these terms and it will be a synonym of ‘combined
lightcurve’ –. Thus, assuming thatm(t) = 0, the combined lightcurve (CLC hereafter) must be
related to a processC(t) = s(t) + n(t). The intrinsic signals(t) is chosen to be either a smooth
function (polynomial; picture I) or a polynomial plus a stationary noise process (picture II) or a
correlated stationary process (picture III). In the first case (picture I), we work withs(t) =

∑n
p=0

apt
p (when the CLC is reasonably smooth, this intrinsic signal is asuitable choice). The polyno-

mial law leads toCk =
∑n

p=0 apt
p
k + nk at a datetk, whereCk (k = 1,...,N+M) are the combined

photometric data. Considering that the processn(t) is Gaussian with< n(t) > = 0 andσ2
n(t) =

< n2(t) >, and identifying the measurement errorsσ2
k with the noise processσ2

n(tk), the probabil-
ity distribution ofnk at a given timetk is Pk(nk, tk) = (1/

√
2πσk) exp(-n2

k/2σ
2
k). Here, the angle

brackets denote statistical expectation values. As the random variablesn(tk), k = 1,...,N+M, are
independent (the noise is uncorrelated with itself), the joint probability distribution of the noise
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vectorn = (n1,...,nN+M ) is given by

P (n) =
N+M∏

k=1

Pk

= (2π)−
N+M

2

N+M∏

k=1

(1/σk) exp{−[Ck −
n∑

p=0

apt
p
k]

2/2σ2
k}. (5.3)

Maximizing the likelihood functionL =lnP with respect to the parametersap, or equivalently,
minimizingχ2 =

∑N+M
k=1 [Ck −

∑n
p=0 apt

p
k]

2/σ2
k, we find a possible reconstruction of the intrinsic

signal (and thus, a model). If this procedure does not work (e.g.,χ2/dof is relatively large, with
dof = N+M-(n+1) being the number of degrees of freedom), we perform a fit including a stationary
intrinsic noise as an additional ingredient (picture II). This new ingredient can account for noisy
CLCs. The intrinsic noiseη(t) is taken to be Gaussian with< η(t) > = 0 andσ2

η(t) = σ2
int, and

moreover,η(t) is uncorrelated with bothn(t) and with itself. Now,C(t) = ŝ(t) + ξ(t), whereŝ(t) =∑n
p=0 apt

p andξ(t) = n(t) + η(t), and we focus on the global noise processξ(t). As the processes
n(t) andη(t) are Gaussian and mutually independent, their sum is again Gaussian, and the average
and variance ofξ(t) are the sums of the averages and variances of both individual noise processes.
The probability distribution ofξk at an epochtk can be written asPk(ξk, tk) = [1/

√
2π(σ2

k+σ2
int)

1/2]
exp[-ξ2

k/2(σ2
k + σ2

int)], and the joint probability distribution of the noise vector ξ = (ξ1,...,ξN+M )
should beP (ξ) =

∏N+M
k=1 Pk(ξk, tk). Finally, instead of the standard procedure (to maximize the

likelihood function), we equivalently minimize the function

χ̂2 =
N+M∑

k=1

{ln(σ2
k + σ2

int) + [Ck −
n∑

p=0

apt
p
k]

2/(σ2
k + σ2

int)}. (5.4)

Through this method, the intrinsic signal is partially reconstructed. We find the coefficients of
the polynomial and the variance of the intrinsic noise, but after the fit, the realizationsηk (k =
1,...,N+M) remain unknown. However, the derived model permits us to make simulated CLCs and
DLCs, since only the knowledge of the smooth intrinsic law andthe statistical properties of the
noise processes are required for this purpose.

A very different procedure was suggested by Press, Rybicki & Hewitt (1992 a,b, hereafter
PRH92). They assumed the intrinsic signal to be a correlated stationary process. For this case
III, it is possible to reconstruct the realizations ofs(t), provided that the correlation properties are
known. PRH92 considered that the observational noisen(t) is uncorrelated withs(t) (and with
itself), and therefore, only the autocorrelation functionKs(τ) =< s̃(t)s̃(t+ τ) > is needed, being
s̃(t) = s(t)− < s >. The autocorrelation function of the intrinsic signal is not known a priori and
must be estimated through the CLC. We can relate the autocorrelation properties to the first-order
structure functionD(1)

s (τ) by

D(1)
s (τ) = (1/2ν)

∑

l,m

(sm − sl)
2

≈ 1

2
< [s̃(t+ τ) − s̃(t)]2 >= Ks(0) −Ks(τ), (5.5)
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FIGURE 5.3: The combined photometry of Q0957+561A,B for the 1996/1997 seasons in the R band
(magnitudes) – at Teide Observatory –. The open circles trace the time-shifted (+ 425 days) lightcurve
A96 and the filled squares trace the magnitude-shifted (+ 0.0658 mag) lightcurveB97. The lines are related
to two reconstructions of the intrinsic signal: considering an intrinsic signal of the kind polynomial plus
stationary noise (top panel) and the optimal reconstruction following the PRH92 method (bottom panel).

where the sum only includes the (l,m) pairs verifying thattm − tl ≈ τ (the number of such pairs is
ν). From the CLC, one infers (e.g., Haarsma et al. 1997)

D(1)
s (τ) ≈ (1/2ν)

∑

l,m

[(Cm − Cl)
2 − σ2

l − σ2
m], (5.6)

which is an evaluation of the differenceKs(0) - Ks(τ). As usual we assume a power-law form
for the first-order structure function, and perform a fit to the power law. Finally, the variance of
the intrinsic processKs(0) is assumed to be the difference between the variance of the CLC and a
correction due to the observational noise. The whole technique is described in PRH92 and other
more recent papers (e.g., Haarsma et al. 1997).
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FIGURE 5.4: The first-order and second-order structure functions (1996/1997 seasons of Q0957+561 in
the R band). The open circles are the values inferred from the observational data and the filled triangles
are the predictions from the reconstruction using a polynomial + stationary noise. The observational first-
order structure function was fitted to a power-lawEτ ε (solid line in the top panel). Assuming this fit as an
estimation of the autocorrelation properties of a hypothetical correlated stationary process (Ks(0) - Ks(τ)),
the predicted second-order structure function is illustrated by a solid line in the bottom panel.

5.3.1 The 1996/1997 seasons

For the 1996/1997 seasons, we first determined the corresponding combined lightcurve (CLC).
In a second step, using the picture I (see above), we attempted to fit the combined photometry. A
quadratic law (n = 2) givesχ2/dof = 1.65 (best fit), whereasχ2/dof (n = 1) = 2.52,χ2/dof (n =
3) = 1.74 andχ2/dof (n = 4) = 1.83. Thus the modelling of the CLC has proven to be difficult.
Fortunately, the inclusion of intrinsic noise (picture II)with moderate variance helps to generate
an acceptable fit. When the intrinsic signal is the previous best quadratic fit to which an intrinsic
noise withσint = 9 mmag is added, we obtainχ2/dof = 1.15 (χ2/(N + M) = 0.95 anddof =
N +M − 1). The quality of the fit has improved significantly with the addition of the new noise,
whose variance (σint = 9 mmag) is less than the mean variance of the observational noise (=
12-16 mmag). In Figure 5.3 (top panel) the CLC and the reconstruction are presented. The open
circles represent the time-shifted lightcurveA96, while the filled squares are the magnitude-shifted
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FIGURE 5.5: Global properties of the measured photometry for Q0956+561 data of the 1996/1997 sea-
sons (filled star) and 100 simulation lightcurves (open circles). The rectangle highlights the simulations
with 0.9 ≤ χ2/(N + M) ≤ 1.0. The numerical simulations arise from M1, which is a model with three
ingredients: polynomial law + intrinsic noise + observational noise.

lightcurveB97. The best polynomial (n = 2) is traced by means of a solid line, and the two
lines with points are drawn at± 9 mmag (the best value ofσint) from the polynomial. Apart
from the CLC, we checked the observational structure functionsD(1)

s (see Equation 5.5) andD(2)
s

(Equation 5.7)as well as the predictions (with respect to the structure functions) from our first
succesful reconstruction. The observational second-order structure function is computed in the
following way (see Simonetti, Cordes & Heeschen 1985; we takea normalization factor equal to
1/6):

D(2)
s (τ) ≈ (1/6µ)

∑

l,m,n

[(Cn − 2Cm + Cl)
2 − σ2

l − 4σ2
m − σ2

n], (5.7)

whereµ is the number of (l,m,n) valid triads so thattm − tl ≈ τ andtn − tl ≈ 2τ . The predicted
structure functions are

D(1)
s (τ) ≈ (1/2ν)

∑

l,m

[ŝ(tm) − ŝ(tl)]
2 + σ2

int,

D(2)
s (τ) ≈ (1/6µ)

∑

l,m,n

[ŝ(tn) − 2ŝ(tm) + ŝ(tl)]
2 + σ2

int, (5.8)

whereŝ(t) is the fitted quadratic law. Figure 5.4 shows the good agreement between the observa-
tional values (open circles) and the predicted trends (filled triangles). This result confirms that the
reconstruction is reliable. The meaning of the two straightlines in Figure 5.4 will be explained
here below.

Our interest in this work is less directly in the details of a given reconstruction of the underlying
intrinsic signal than it is in analyzing simulated datasetsconsistent with the reconstruction and
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FIGURE 5.6: The true DLC for 1996/1997 seasons (left-hand top panel) togetherwith 3 simulated DLCs
(via M1) – all in magnitudes –. The solid lines are fits to Gaussian events. A curious result observed in the
simulated DLCs is the existence of events, which could be naively interpretedas microlensing fluctuations.

with the same sampling (dates) and errors as the measured data. The first model (M1) comprises
the best quadratic fit in the absence of intrinsic noise (a smooth component) and a Gaussian noise
process characterized by a known variance at discrete timestk: σ2

k + σ2
int. From M1 we derived

100 simulated CLCs and the corresponding DLCs. We remark that, in each simulation (CLC), N
simulated data points represent a synthetic lightcurveATS, while the other M data are simulated
measurements of the magnitude-shifted lightcurveB. Figure 5.5 shows the relationship between
the values ofχ2/(N+M) (χ2 =

∑N+M
k=1 [Ck − ŝ(tk)]

2/[σ2
k + σ2

int]) and the rms averages of the DLCs
(rms = [ 1

N

∑N
i=1 δ

2
i ]

1/2). The 100 open circles are associated with the simulated photometries and
the filled star is related to the measured lightcurve. The true (measured) lightcurves appears as
a typical result of the model. One sees in the figure a broad range for CLC-χ2/(N+M) (0.2-2.2)
and DLC-rms (8-36 mmag), and the true values of CLC-χ2/(N+M) = 0.95 and DLC-rms = 22
mmag are well placed close to the centre of the open circle distribution. Thus, the measured
combined photometry seems a natural consequence of M1, which is a model without rapid and
very rapid microlensing. However, due to the event found in Figure 5.1 (around day 1615) and
other local features less prominent than the event, we checkthis conclusion analysing the details
in the synthetic DLCs. In Figure 5.5, to provide some guidance, the open circles corresponding
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FIGURE 5.7: Gaussian events (they are classified according to their amplitude and FWTM) found in the
first 33 simulations via M1. The number of features as well as the amplitudes and time-scales show that
noise can explain most of the fluctuations.

to simulated datasets with CLC-χ2/(N+M) similar to the measured value have been enclosed in
a rectangular box. Also, we have drawn an elliptical surfacecentred on the filled star, which
includes (totally or partially) three open circles associated with the synthetic lightcurves analogous
(global properties of both the CLC and the DLC) to the true brightness record. As we must put
into perspective the very rapid event and other local properties discovered in the true DLC for
1996/1997 seasons, this DLC and its features were compared with the three DLCs that arise from
the simulations. In Figure 5.6 we present the comparison. All events (each event includes a set of
two or more consecutive deviations which have equal sign andare not consistent with zero) has
been fitted to a Gaussian law and marked in the figure. The measured DLC (left-hand top panel
and Fig. 5.1) is not different to the other three. In fact, in our 100th simulation (s100; right-hand
bottom panel), two events appear. The positive event is moreprominent than the negative event,
and this last one is similar to the measured one. With respectto the regions without events, the
true variability cannot be distinguished from the simulated ones – i.e., the observed variability is
entirely consistent with noise –. To throw more light upon the problem, we searched for Gaussian
events in 1/3 of all simulations (s1-s33), as a sample of the whole set of simulations because the
computation turned out to be very time-consuming. The results are plotted in Figure 5.7: amplitude
of each event (mmag) vs. FWTM (days). There are a lot of events with amplitude in the interval
[- 50 mmag, + 90 mmag] and duration< 70 days. In particular, the probability of observing a
negative event is 15% and the probability of observing one ormore events is about 50%. So,
it must be concluded thatthe noisy (around zero) difference lightcurve based on observations is
totally consistent with M1, and the deviations from the zero line can be caused by the combined
effect of the processesn(t) – the Gaussian noise process – (main contribution) andη(t) – the
stationary noise process –.

We also propose a reconstruction of the underlying intrinsic signal as realizations of a correlated
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FIGURE 5.8: Global properties of the true DLC for 1996/1997 seasons (filled star) and 100 simulated
DLCs (open circles). The numerical simulations were made through a model including the optimal recon-
struction of a correlated stationary process and a Gaussian observational noise process whose variance at
the dates of the real data is known.

stationary process (picture III). The observational first-order structure function can be fitted to a
power-lawEτ ε (see Fig. 5.4, solid line in the top panel). If one considers this fit as an estimate of
the differenceKs(0) -Ks(τ) for a correlated stationary process, then it is straightforward to obtain
the predicted second-order structure function (see Fig. 5.4, solid line in the bottom panel: the pre-
diction is irrelevant to reconstruct the intrinsic signal,but it is necessary for testing the consistency
of the starting pointKs(0) -Ks(τ) = Eτ ε) and to apply the reconstruction formalism by PRH92.
Therefore, we are able to find the realizations of the intrinsic process at the observational timestk
(k = 1,...,N+M) as well as in the gaps between the observations.The PRH92 technique leads to
an acceptable fit withχ2/dof = 1.18 (dof = N+M-1), and our second successful reconstruction is
showed in Figure 5.3 (bottom panel). The knowledge of both the optimal reconstruction and the
properties of the Gaussian observational noise process at discrete timestk (k = 1,...,N+M), permits
us to make 100 new simulations. In Figure 5.8 details of the rms averages of the DLCs are provided
(open circles). The observational DLC has a rms average (filled star) similar to the rms average in
a 1/5 (20%) of the simulated DLCs. Furthermore, four simulated DLCs with rms in the interval [20
mmag, 24 mmag] (in Fig. 5.8, this range of variability is labeled with two horizontal lines) appear
in Figure 5.9. From the new model (M2), DLCs with no events (as in the analysis presented above,
the Gaussian events are related to ‘peaks’, or in other words, we only made events around consec-
utive multiple deviations with equal sign and well separatefrom zero) and DLCs that incorporate
more or less prominent features are derived. We note that oneDLC (right-hand bottom panel) has
an event almost identical to the true one in Figures 5.1 and 5.6. Figure 5.10 shows the properties of
all Gaussian events in the simulated DLCs with rms in the vicinity of the observational rms (open
circles). The measured event is also depicted (filled star),and we can see two simulated events
analogous to it. We finally conclude thatthe observational DLC is in clear agreement with M2,
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FIGURE 5.9: Four simulated DLCs (via M2). For comparison with the true event in Figure 5.1 (see also
Fig. 5.6), the Gaussian events have been clearly marked on the panels.

and so, microlensing would be not advocated. In this framework(M2), the observational noise
process can originate the measured deviations.

5.3.2 The 1997/1998 seasons

The combined photometry for 1997/1998 seasons and the reconstruction based on a polynomial
fit are showed in Figure 5.11 (top panel). The open circles represent the time-shifted lightcurve
A97 and the filled squares are the magnitude-shifted brightnessrecordB98. There is no need for
the presence of an intrinsic noise, and a simple quadratic law works well, leading toχ2/dof =
0.85 (best fit). In Figure 5.11 (top panel), the solid line traces the reconstruction of the intrinsic
signal. Besides the comparison between the measured CLC and the fitted polynomial, we tested
the predicted structure functions. In Figure 5.12 we present the observationalD(1)

s andD(2)
s (open

circles; see Eqs. (6-7)) and the predictions from the best quadratic fit (filled triangles; see Eqs.
(8) with σint = 0). The laws traced by the dashed and solid lines in this figure will be discussed
below. It is evident that the behaviours deduced from observations and the predicted trends agree
very well, and this result indicates that the reconstruction is robust.

The first model for 1997/1998 seasons (M3) consists of the best quadratic fit together with a
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FIGURE 5.10: Gaussian events found in the numerical simulations (via M2) with 20≤ rms (mmag)≤
24 (open circles). Events very similar to the real event (filled star) are produced in two simulations.

Gaussian observational noise process (whose variance isσ2
k at discrete timestk, k = 1,...,N+M,

beingσk the measurement errors at the dates of observationtk). Using M3 we performed 100
simulated CLCs (and consequently, 100 simulated DLCs). The global properties of the simulated
photometries (open circles) and the true dataset (filled star) are depicted in Figure 5.13. If we
concentrate on the simulations withχ2/N+M similar to the measured value (rectangular box), the
true DLC has a rms relatively small (of about 15 mmag), but consistent with the rms distribution
associated with the simulated DLCs. We remark that 3 simulations (open circles in the elliptical
surface around the filled star) are analogous to the real brightness record, and in Figure 5.14, their
DLCs can be compared with the true DLC. The measured differencesignal (left-hand top panel
and Fig. 5.2) is a quasi-featureless trend and similar to theother synthetic DLCs. There are no
significant events in these four DLCs with small global variability. We conclude thata model with
no microlensing (M3) has the ability of generating ligth curves like the real data for 1997/1998
seasons. Henceforth, we are going to treat the ‘peaks’ as top-hat fluctuations, i.e., given a ‘peak’
including deviationsδP1,...,δPP at timestP1,...,tPP , the amplitude and duration of the associated
top-hat profile will be evaluated as the average of the individual deviations and the difference
tPP − tP1, respectively. In Figure 5.14, a ‘peak’ (defined by two contiguous negative deviations,
which are inconsistent with zero) appears in the DLC from the7th simulation (s7; right-hand top
panel). The ‘peak’ is marked by a double arrow that represents the amplitude and duration of the
associated top-hat profile.

The analysis of the observational first-order structure function (see Fig. 5.12) suggests that the
underlaying law could be intricate. To find the autocorrelation properties of a possible and plausi-
ble correlated stationary process causing the main part of the observed signal (picture III), this ob-
servational structure function was firstly fitted to a non-standard lawD(1)

s (τ) =Eτ ε/[1+(τ/T )λ]2.
As showed in Figure 5.12 (dashed line in the top panel), the fitis excellent. However, when we
attempt to reproduce the observational second-order structure function, an inconsistent prediction
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FIGURE 5.11: The combined photometry for 1997/1998 seasons in the R band (at Teide Observa-
tory). The open circles trace the time-shifted (+ 425 days) lightcurveA97 and the filled squares trace
the magnitude-shifted (+ 0.0603 mag) lightcurveB98. The solid lines represent two reconstructions of
the intrinsic signal: the best quadratic fit (top panel) and the optimal reconstruction following the PRH92
method (bottom panel).

is derived (dashed line in the bottom panel). The predictionfails atτ < 70 days. Other functions
led to fits more or less successful, and finally we adopted the point of view by PRH92. In Fig-
ure 5.12 (top panel) one sees a power-law behaviour up toτ = 140 days. The drop at the largest
lags is due to the coincidence of values in the starting and ending parts of the measured CLC.
Therefore, we assume that the observational first-order structure function is a reliable estimator of
Ks(0) -Ks(τ) at τ ≤ 140 days, whereas it is a biased estimator atτ > 140 days. The power-law
fit to the data at lagsτ ≤ 140 days gives the autocorrelation properties for the correlated stationary
process, shown as a solid line in the Figure 5.12 (top panel).The predicted second-order structure
function (Fig. 5.12, solid line in the bottom panel) is consistent with the observational one up to
a lag of 70 days, and it deviates from the observational trendat τ > 70 days. However, since the
observational second-order structure function at lagτ is associated with the autocorrelation at lag
2τ , the observationalD(2)

s (τ > 70 days) will be related to the autocorrelation atτ > 140 days,
which is poorly traced from observations. Thus the deviation at largest lags is reasonable and the
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FIGURE 5.12: The first-order and second-order structure functions (1997/1998 seasons in the R band).
The open circles are the values inferred from the observational data and the filled triangles are the predictions
from the reconstruction of the kind polynomial. The observational first-order structure function was fitted
to different laws, and two ‘reasonable’ fits are drawn in the top panel (dashed and solid lines). If the fits are
interpreted as the differenceKs(0) - Ks(τ) for a correlated stationary process, the corresponding predicted
second-order structure functions are illustrated by two lines in the bottom panel.

global prediction should be considered as a consistent result.

Once the relationship between the structure function and the autocorrelation has been estab-
lished, we can directly obtain both an optimal reconstruction of the realizations of the intrinsic
signal and a new model (M4). The relatively smooth reconstruction is showed in Figure 5.11
(bottom panel; theχ2/dof value is of 0.86), and the associated model leads to 100 simulations,
whose global properties (rms averages of the DLCs) are presented in Figure 5.15 (open circles). In
Figure 5.15, a filled star represents the true rms average, which is consistent (although marginally)
with the rms distribution from simulations. Finally, four simulated DLCs with rms≤ 17 mmag (in
Fig. 5.15, the upper limit of 17 mmag is marked with one horizontal line) have been selected for a
more detailed inspection. We found noisy behaviours aroundzero and no events in these synthetic
DLCs, i.e., the results agree with the analysis of the real difference signal for 1997/1998 seasons.
The 4 quasi-featureless simulated DLCs appear in Fig. 5.16. We again showed thatmicrolensing
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FIGURE 5.13: Global properties of the true photometry for 1997/1998 seasons (filled star) and 100 sim-
ulated photometries (open circles). The numerical simulations are based on apolynomial plus observational
noise model.

is not necessary. The real combined photometry and difference signal can be due to a set of real-
izations of two very different processes: a correlated stationary process (intrinsic) and a Gaussian
noise (observational).

5.4 The ability of the IAC-80 telescope to detect microlensing
‘peaks’

The sensitivity of the IAC-80 telescope to microlensing variability in a given observational DLC
is an important issue which merits more attention. To explain the observations for 1996/1997
seasons and 1997/1998 seasons, we proposed (in Sect. 3) fourmodels based on pictures including
only an intrinsic signal and observational noise. The simulations arising from these models (100
simulated difference lightcurves per model) are a useful tool to study the statistical properties
of the expected difference signal in the absence of microlensing, and so, to test the resolution
of the IAC-80 telescope for microlensing variability. In Figure 5.17 we present the probability
distributions of the rms values (DLCs) derived from M1 (solidline) and M2 (dashed line). A
value of about 20 mmag has a relatively high probability of 20-40%, while a rms exceeding 36
mmag is inconsistent with both models, as can be seen in Figure 5.17. Figure 5.18 also shows
the probability of observing (in the absence of microlensing) different rms values: via M3 (solid
line) and via M4 (dashed line). The rms averages in the interval 19-27 mmag are highly probable
(20-40%), but a global variability characterized by eitherrms≤ 12 mmag or rms≥ 38 mmag can
be excluded. As a general conclusion, the rms of the difference signal induced by noise does not
exceed a threshold of 37 mmag. Therefore,the rms values of future observational DLCs can be
used to discriminate between the presence of the expected background (global variability with rms
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FIGURE 5.14: The true DLC for 1997/1998 seasons (left-hand top panel) together with 3 simulated DLCs
(via M3). An only ‘peak’ is marked by a double arrow (see right-hand toppanel).

< 40 mmag) and the probable existence of true microlensing signal (rms≥ 40 mmag).
The previous discussion on the global variability is interesting, but it is not the main goal of this

section. Our main goal lies in discussing the sensitivity ofthe telescope (taking into account typical
sampling, photometric errors, re-reduction and making of bins) to several classes of microlensing
‘peaks’ (the cores of the microlensing events). We have seen, in Sect. 3, a figure that shows the
properties of the Gaussian events (amplitude and FWTM) foundin a subset of simulations from
M1 (see Fig. 5.7). Figure 5.7 can be compared to the distribution of top-hat fluctuations found in
all DLCs generated with M1. In Figure 5.19 the distribution ofthe top-hat fluctuations (basically
the properties of the ‘peaks’ associated with them) appears, and a direct comparison between Fig-
ures 5.7 and 5.19 indicates the logical fact that Gaussian fits lead to longer durations than top-hat
estimates. In the case of Gaussian fits, events with a duration (FWTM) of 1-2 months are abundant
and only features with a timescale> 70 days are ruled out. However, the ‘peaks’ (from M1) with
a timescale of about one month are scarce. To discuss the power of resolution of the telescope for
local microlensing variability we chose the top-hat fluctuations (‘peaks’) instead of the events. The
properties of an event (around a ‘peak’) depend on the assumed profile (e.g., Gaussian, Lorentzian,
etc.) and the global behaviour of the DLC, whereas the top-hatshape directly traces the ‘peaks’,
avoiding to make assumptions on their wings and the use of therest of the corresponding DLCs.
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FIGURE 5.15: Global properties of the true DLC for 1997/1998 seasons (filled star) and 100 simulated
DLCs (open circles). The numerical simulations were made from M4 (see maintext).

FIGURE 5.16: Four simulated DLCs via M4. No events are found (for a comparison, see Fig. 5.2).
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FIGURE 5.17: Probability distributions of the rms averages of the synthetic DLCs. The numerical simu-
lations were made from M1 (solid line) and M2 (dashed line).

FIGURE 5.18: Probability distributions of the rms averages of the synthetic DLCs. The numerical simu-
lations are based on M3 (solid line) and M4 (dashed line).
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FIGURE 5.19: Top-hat fluctuations found in the numerical simulations based on M1.We show 84 features
that appear in 100 simulated DLCs.

FIGURE 5.20: Top-hat fluctuations in 100 simulated (via M2) DLCs. They were found 55 ‘peaks’.
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FIGURE 5.21: Top-hat fluctuations from M3. We note the existence of noise ‘peaks’ with a duration
longer than 40 days. All these features are however associated with an unfortunate small gap in our pho-
tometry.

FIGURE 5.22: ‘Peaks’ from M4.



5.5 CONCLUSIONS 75

In a few words, the top-hat structures are more local and freefrom assumptions than the events.
The ‘peaks’ from M2 (Fig. 5.20) are not so numerous as the top-hat fluctuations inferred from the

first model (M1). Moreover, the new cloud of points (open circles) is more concentrated towards
shorter durations. In fact, all ‘peaks’ have a timescale of≤ 20 days. When one takes M3 (Fig. 5.21)
and M4 (Fig. 5.22) the situation is also somewhat different.The probability of observing a 40-60
days top-hat fluctuation is now of about 5%, although most features are due to a small gap of about
50 days around day 1815 (see SR99 and Fig. 5.2). Finally, Figures 5.19 and 5.22 inform on the
true ability of the IAC-80 telescope to detect microlensing fluctuations in an observational DLC
free from gaps:a ‘peak’ with a timescale> 40 days should be interpreted as a feature related
to microlensing or other mechanisms different to the observational noise, while as mainly caused
by the poor resolution at the expected amplitudes within the interval [- 50 mmag, + 50 mmag],
the≤ 20 days microlensing ‘peaks’ cannot be resolved. Even in theunlikely case of very short-
timescale microlensing signal with high amplitude, due to the smoothing by both the re-reduction
and the binning as well as the current uncertainty of one week inthe true time delay, it would be
not possible to reliably reconstruct the microlensing ‘peaks’.

5.5 Conclusions

Several∼ 1m class telescopes around the world are at present involvedin different optical mon-
itoring programs of quasars with the goal to detect microlensing. There are at least two ‘modest’
telescopes searching for microlensing signal related to a far elliptical galaxy (which is responsible,
in part, for the gravitational mirage Q0957+561). The data taken at Whipple Observatory 1.2 m
telescope and at Teide Observatory IAC-80 telescope together with the photometry from a 3.5 m
telescope (at Apache Point Observatory) represent a great effort in order to obtain an accurate time
delay in Q0957+561, follow the long-timescale microlensing event in that system and find some
evidence in favour of very rapid and rapid microlensing (Kundić et al. 1995, 1997; Oscoz et al.
1996, 1997; Pijpers 1997; Schild & Thomson 1997; SR99; S96; Pelt et al. 1998; SW98; G98).

With respect to the very rapid (events with a timescale≤ 3 weeks) and rapid (events with a du-
ration of 1-4 months) microlensing, the previous results (before this work) are puzzling. The com-
bined photometries (CLCs) from data taken at Whipple Observatory only can be well explained in
the context of a picture including intrinsic variability, observational noise and microlensing vari-
ability on different timescales: from days to months (e.g.,S96). The long-timescale microlensing
does not play any role in a CLC. In particular, S96 reported on the existence of a network of rapid
events with a few months timescale and an amplitude of about± 50 mmag (these features found by
Schild are called Schild-events). However, SW98 concluded that a picture with intrinsic signal and
observational noise (without any need to introduce very rapid and rapid microlensing) is consistent
with the observations at Apache Point Observatory. SW98 really show a difference lightcurve in
global agreement with the zero line, but some doubt remains on the ability of the observational
noise for producing the negative and positive measured events around ‘peaks’ (a ‘peak’ is consti-
tuted by a set of two or more consecutive deviations which have equal sign and are not consistent
with zero). In any case, SW98 observed no Schild-events.

In this work, motivated by the mentioned intriguing resultson microlensing variability, we an-
alyzed the data from our initial monitoring program with theIAC-80 telescope (see SR99). We
focused on the possible presence of rapid microlensing events in the lightcurves of Q0957+561
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and the sensitivity of the telescope (using typical observational and analysis procedures) to mi-
crolensing ‘peaks’. Our conclusions are:

1. Using photometric data (in the R band) for the 1996-1998 seasons, we made two difference
lightcurves (DLCs). The total difference signal, which is based on∼ 1 year of overlap be-
tween the time-shifted lightcurve for the A component and the magnitude-shifted lightcurve
for the B component, is in apparent agreement with the absence of microlensing signal. We
can reject the existence (in our DLCs) of events with quarter-year timescale and an amplitude
of ± 50 mmag, and therefore, Schild-events cannot occur almost continuously. On the con-
trary, they must be either rare phenomena (originated by microlensing or another physical
process) or, because two observatories (Apache Point Observatory and Teide Observatory)
found no Schild-events, artificial fluctuations associatedwith the observational procedure
and/or the reduction of data at Whipple Observatory.

2. From a very conservative point of view, in our data, the amplitude of any hypothetical mi-
crolensing signal should be in the interval [- 50 mmag, + 50 mmag]. The rms averages
of the DLCs (global variability) are of about 22 mmag (1996/1997 seasons) and 15 mmag
(1997/1998 seasons), and reasonable constraints on the possible microlensing variability
lead to interesting information on the granularity of the dark matter in the main lensing
galaxy (a cD elliptical galaxy) and the size of the source (QSO). Thus the set of bounds
derived from 1995-1998 seasons (SW98 and this work) rules outan important population of
MACHOs with substellar mass for a small quasar size (Schmidt 1999).

3. In order to settle any doubt on the ability of the observational noise for generating the global
(rms averages) and local (events and other less prominent features) properties of the DLCs,
we have also carried out several experiments as ‘Devil’s advocates’. The measured variabil-
ity (the rms value, a very rapid event and some minor deviations) in the DLC for 1996/1997
seasons can be caused, in a natural way, by the observationalnoise process. In the absence
of microlensing signal, we proposed two different models (M1 and M2; see subsection 3.1)
whose associated photometries (simulations) are consistent with the observations. In addi-
tion, the DLC for 1997/1998 seasons is a quasi-featureless trend with relatively small rms
average. To explain the variability in our second observational DLC, we again showed that
microlensing is not necessary. Two new models (M3 and M4; seesubsection 3.2) only in-
cluding the reconstruction of the intrinsic signal (assumed as a polynomial or a correlated
stationary process) and a Gaussian observational noise process, led to simulated DLCs in
agreement with the measured behaviour.

4. We finally show that from a typical monitoring with our telescope (observing times, method
of analysis, etc.) is not possible to resolve microlensing ‘peaks’ with≤ 20 days. The con-
fusion with noise does not permit the separation between true microlensing features and
‘peaks’ due to the observational noise. However, all hypothetical ‘peaks’ with a timescale>
40 days must be interpreted as phenomena which are not associated with the observational
noise (e.g., microlensing fluctuations). At intermediate timescales (of about one month) the
situation is somewhat intricate. Given a measured DLC, the probability of observing one
noise ‘peak’ (with a duration of about 30 days) is less than 10%. Therefore, if we search
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for microlensing signal and find an ‘intermediate peak’, therelative probabilities that the
fluctuation is a noise feature or a microlensing ‘peak’ are< 1:10.

The same procedure used in this work was applied by David Alcalde (Alcalde, 2002) to the
next two campaigns (1998-2000) from the same telescope, arriving to the same conclusions as
described here. Recently, Colley et al. (2003) found that manyrapid fluctuations in this system
might be due to seeing effects, in well agreement with our noisy processes.

Since the microlensing study is done after correcting for the time delay between the compo-
nents, a wrong estimate of the delay can originate erroneousmicrolensing conclusions. Goicoechea
(2003) has suggested that multiple time delays could be the solution to the discrepancy between
different time delay estimates (425 vs. 417 days). This suggestion is based on Yonehara’s idea
(Yonehara 1999) that the variability from the quasar accretion disk takes place at different posi-
tions of the disk, introducing an additional delay. Ovaldsen et al. (2003) also found evidences in
this direction. This issue is very important in order to extract information from the difference light
curve regarding microlensing.
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Chapter 6

Microlensing Simulations: limits on the
transverse velocity in the quadruple quasar
Q2237+0305⋆

Link. Apart from Monte Carlo simulations seen in the previous Chapter, microlensing
studies can also be carried out by means of ray-shooting simulations. Themethod
is quite powerful: the microlensing fluctuations are statistically reproduced and
tracks in these maps can be translated into physical lightcurves. Again, one can
statistically asign probabilities to a certain fluctuation to be produced by a microlens.
If microlensing fluctuations cannot be found in a given system when expected, this
can also be translated into some physical information. In this Chapter we refine this
procedure and apply it in a not previously used manner.

Abstract. We determine upper limits on the transverse velocity of the lens-
ing galaxy in the quadruple system Q2237+0305, based on four months of
high quality monitoring data. By comparing the very flat lightcurves of com-
ponents B and D with extensive numerical simulations, we make use of the ab-
sence of microlensing in these two components to infer that aperiod of that
length is only compatible with an effective transverse velocity of the lensing
galaxy ofvbulk ≤ 570 km/s for microlenses masses ofMµlens = 0.1M⊙ (or
vbulk ≤ 2000 km/s for microlenses masses ofMµlens = 1.0M⊙).

⋆Chapter based on the refereed publication Gil-Merino, Wambsganss, Goicoechea & Lewis,
2002, A&A, submitted
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6.1 Introduction

Measurements of the peculiar motions of galaxies can provide strong constraints on the nature
of dark matter and the formation and evolution of structure in the Universe. However, determining
such ‘departures from the Hubble flow’, utilizing standard distance indicators as the Tully-Fisher
relation for spirals and theDn − σ method for ellipticals (e.g., Peebles 1993), have proved tobe
quite difficult. While these methods provide radial peculiarmotions, transverse peculiar motions
are also required to fully constrain cosmological models. However, the determination of transverse
velocities is an extremely difficult task, generally beyondthe reach of current technology. Recently,
Peebles et al. (2001) suggested the use of the space missionsSIM and GAIA to estimate the
transverse displacements of nearby galaxies. Roukema and Bajtlik (1999) claimed that transverse
galaxy velocities could be inferred from multiple topological images, under the hypothesis that the
‘size’ of the Universe is smaller than the apparently ‘observable sphere’. In spite of these efforts,
the transverse motions of galaxies are currently unknown.

Dekel et al. (1990) showed that the local galaxy velocity field can be reconstructed assuming
that this field is irrotational, and thus, the measurement ofthe transverse velocities could be used
to test this assumption. In fact the determination of transverse motions would be very useful to
discuss the quality of the whole reconstruction. From another point of view, the reconstruction
methods are powerful tools to estimate galactic transversemotions.

Grieger, Kayser and Refsdal (1986) also suggested using gravitational microlensing of distant
quasars to determine the transverse velocity of the lensinggalaxy via the detection of a ‘microlens
parallax’ as the quasar is magnified during a caustic crossing (see also Gould 1995). The deter-
mination of this parallax, however, requires not only ground-based monitoring, but also parallel
measurements from a satellite located at several AU.

The gravitational lens Q2237+0305 consists of four images of azq = 1.695 quasar lensed by
a low redshiftzg = 0.039 spiral galaxy (Huchra et al. 1985). Photometric monitoringrevealed
uncorrelated variability between the various images, interpreted as being due to gravitational mi-
crolensing (Irwin et al. 1989). This interpretation was confirmed with dedicated monitoring pro-
grams (e.g., Østensen et al. 1996; Woźniak et al. 2000a,b; Alcalde et al. 2002). Q2237+0305
is the best studied quasar microlensing system. Using ten years of monitoring data, Wyithe et al.
(1999) recently used the derivatives of the observed microlensing lightcurves to put limits on the
lens galaxy tranverse velocity of Q2237+0305.

Here in this contribution, we also determine upper limits onthe transverse velocity of the lensing
galaxy G2237+0305 using a different method, based on a comparison between about four months
of high quality photometric monitoring of the four quasar images and intense numerical simula-
tions. The details of the simulations are discussed in Section 6.2. In Section 6.3 we briefly present
and review the lens monitoring results, discuss the variability of the two faintest components, and
outline our method to obtain limits on the transverse velocity. The results of this approach – the
constraints on the transverse velocity of the lensing galaxy – are presented in Section 6.4 and
discussed in sections 6.6 and 6.5.
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6.2 Microlensing simulations background

6.2.1 Lens models of Q2237+0305

Several approaches have been employed in modeling the observed image configuration in the
system Q2237+0305 (Schneider et al. 1988, Wambsganss and Paczyński 1994, Chae et al. 1998,
Schmidt et al. 1998). These models provide the parameters relevant to microlensing studies: the
surface mass density,Σ, and the shear,γ, at the positions of the different images. The former
represents the mass distribution along the light paths projected into the lens plane, while the latter
represents the anisotropic contribution of the matter outside the beams. We can normalize the
surface mass density with the critical surface mass density(see Section 2.2.1 and Schneider et al.
1992 for more details),

Σcrit =
c2

4πG

Ds

DdDds

(6.1)

whereDs, Dd andDds are the angular diameter distances between observer and source, observer
and deflector and between deflector and source, respectively, c is the velocity of light andG is the
gravitational constant. The resulting normalized surfacemass density (also calledconvergenceor
optical depth) is expressed asκ = Σ/Σcrit.

We use here two different sets of values forκ andγ for the four components (Tab. 6.1), corre-
sponding to the Schneider et al. (1988) and the Schmidt et al.(1998) lens models, respectively.
We will demonstrate using these two sets that slightly different values for the two local lensing
parameters do not change the results, and hence that some uncertainty inκ andγ of the images
does not affect the conclusions.

Schneider et al. (1988) Schmidt et al. (1998)
Image κ γ κ γ

A 0.36 0.44 0.36 0.40
B 0.45 0.28 0.36 0.42
C 0.88 0.55 0.69 0.71
D 0.61 0.66 0.59 0.61

Table 6.1: Two different sets of values for the surface mass density,κ, and the shear,γ, of the four
images are used, in order to see the dependence of the result on the lens model (see References for
details).

6.2.2 Simulations

We use the ray-shooting technique (see Wambsganss 1990, 1999) to produce the 2-dimensional
magnification maps for each of the gravitationally lensed images. All the mass is assumed to
be in compact objects – such as stars and planets – with no smoothly distributed matter (this
assumption is valid since the images are projected to the inner part of the lens galaxy, where stars
is the dominant matter component). All of the microlensing objects are assumed to have a mass
of Mµlens and are distributed randomly over the lens plane. Taking into account the effect of the
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shear and the combined deflection of all microlenses, light rays are traced from the observer to
the source. This results in a non-uniform density of rays distributed over the source plane. The
density of rays at a point is proportional to the microlensing magnification of a source at that
position; hence the result of the rayshooting technique is amap of the microlensing magnification
as a function of position in the source plane. The relevant scale factor, the Einstein radius in the
source plane, is defined as

rE =

(
4GMµlens

c2
DsDds

Dd

)1/2

. (6.2)

Finally, the magnification pattern is convolved with a particular source profile. Linear trajectories
across this convolved map, therefore, result in microlensing light curves (see also Schmidt and
Wambsganss 1998).

In general, the details of a quasar microlensing light curvedepend on several unknown param-
eters: the masses and positions of the microlenses and the size, profile and effective transverse
velocity of the source. For this reason, the comparison of the simulated microlensing lightcurves
to the observed ones cannot be done individually, but ratherin a statistical sense.

6.3 The Method

6.3.1 The idea in a nutshell

Before going into details of the method we use, we present a very simple hypothetical scenario
to better illustrate the procedure. Generally, microlensing magnification maps possess significant
structure, in particular they consist of an intricate net ofvery high magnification regions, the caus-
tics . The density and the length of the caustics vary with thevalues of surface mass densityκ and
shearγ. However, for a given pair of parametersκ andγ, there is something like atypicaldistance
between adjacent caustics, though with quite a large dispersion. For illustration purposes, we as-
sume now that we have a magnification pattern with caustics that are equally spaced horizontal and
vertical lines (see, e.g., Fig. 6.1). Though this is far frombeing a realistic magnification pattern,
its simplicity allows us to explain the relation between fluctuations in the microlensing lightcurves
and the velocity of the source in simple terms. The pattern shows schematically the typical low
(dark) and high (white) magnification areas. The length and width of the low magnification areas
is exactly one unit length,lunit. If we compute the magnification along a linear trackinsideone
of this regions, the resultant lightcurve will be flat. However, there is a maximum length for such
flat lightcurves: there cannot be any flat lightcurves with length larger thanlmax =

√
2 lunit. Now

suppose that this magnification map corresponds to a certainhypothetical gravitationally lensed
system and we have a flat observed microlensing lightcurve corresponding to an observing period
of tobs. Then we can calculate an upper limit for the velocity of the source:Vmax =

√
2lunit/tobs.

As stated above, true microlensing magnification maps are much more complex than the ideal-
ized case presented in Figure 6.1. But, nevertheless we can determine an upper limit on the track
lengths in any magnification pattern in a statistical sense,by just replacing thefixeddistance be-
tween caustics by the realistic distribution of caustic distances: this way we can get an upper limit
on the track lengths (inrE) that are consistent with the observed variability. This upper limit on the
track length is labelledlupper. Since we know the duration of the observing periodtobs from the ac-
tual monitoring campaign, it is straightforward to obtain the upper limit on the transverse velocity
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FIGURE 6.1: Idealized magnification pattern to illustrate the idea of the method: Black areas are low
magnification zones, the regular grid of thick white lines represent the caustics (high magnification areas)
and the thin white lines are example tracks due to the effective transverse motion of the source which result
in flat lightcurves.

for assumed values of the lens massMµlens and the source size/profile:Vupper = lupper/tobs.
Although the effective transverse velocity has contributions from all three components source,

lens, and observer as shown below, for the system Q2237+0305, the effective transverse velocity
is dominated by the effective transverse velocity of the lensing galaxy.

6.3.2 Monitoring Observations of Q2237+0305 to be compared with

This study employs the results of the GLITP (Gravitational Lenses International Time Project)
collaboration which monitored Q2237+0305 from October 1st, 1999 to February 3rd, 2000, using
the 2.56 m Nordic Optical Telescope (NOT) at El Roque de los Muchachos Observatory, Canary
Islands, Spain (see Alcalde et al. 2002 for data reduction details and results).

The R band photometry employed here is shown in Fig. 6.2. It isclear that whereas components
A and C show a relatively significant variability (see Shalyapin et al. 2002 and Goicoechea et
al. 2002 for the analysis of the brightest component A), images B and D remain relative flat,
showing no signs of strong microlensing during the monitoring period. As the expected time
delays between the images are short (≤ 1 day), intrinsic fluctuations would show up in all 4 images
almost simultaneously and microlensing fluctuations are relatively easy to distinguish. Keeping in
mind the idea expressed in the previous subsection, we used the flatness of these two components
to statistically infer upper limits on the length of linear tracks in the corresponding magnification
patterns.

For a given component (we here consider B and D), the largest fluctuation in the lightcurve
is given by the difference between the maximum and the minimum magnitudes. Thus∆mX =
mX,max−mX,min, where X denotes component B or D. For the simulated microlensing lightcurves
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FIGURE 6.2: The R band photometry of Q2237+0305 from the GLITP collaboration. The observing
period was from October 1st, 1999 (JD 2459452) to February 3th, 2000 (JD 2459577) with the Nordic
Optical Telescope at Canary Islands, Spain (details in Alcalde et al. 2002). The components are labeled
from A to D (Yee 1988).

the condition to be fulfilled then is:∆mX(simul) ≤ ∆mX , where∆mX(simul) is the difference
between the maximum and the minimum in the simulated lightcurve (again X is component B or
D). For component B we obtained∆mB = 0.116 mag and for component D,∆mD = 0.155 mag
(see Fig. 6.3).

6.3.3 Microlensing Simulations

We computed magnification patterns for quasar images B and D,using the Schmidt et al. (1998)
model for the values ofκ andγ (cf. Table 1). We assumed all compact objects have the same mass,
Mµlens. The physical sizes lengths of these maps were15 rE covered by4500 pixels, resulting in
a spatial resolution of 300 pixels per Einstein radiusrE. The effect of the finite source size is
included by convolving the magnification patterns with a certain source profile. We adopted a
Gaussian surface brightness profile for the quasar. The source size is defined by the Gaussian
width σQ. We used three different values ofσQ= 0.003 rE, 0.01 rE and0.05 rE. This corresponds
to ’physical’ sizes from2×1014 cm to3×1015 cm forMµlens = 0.1M⊙, and a factor of

√
10 larger

for lens masses ofMµlens = 1.0M⊙ (range of sizes favoured by various authors: e.g. Wambsganss
et al. 1990, Wyithe et al. 2000b).

In Fig. 6.4 we show a portion of one of these magnification patterns (for component D): the side
length is4 rE, and it was convolved with a gaussian profile ofσQ = 0.01 rE. White color indicates
high magnification while black means low magnification. The linear track drawn inside Fig. 6.4
illustrates the calculation procedure: we start at a randomposition and with a random direction.
This is indicated by an arrow at the beginning of the white line at the top. We determine the magni-
fication along the track and construct in this way a lightcurve point by point. When∆mD(simul)
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FIGURE 6.3: R band lightcurves of images Q2237+0305 B and D on an expanded scale, with the bands
defined by the the maximum and the minimum in each component. The widths of these bands are∆mB =
0.116 mag and∆mD = 0.155 mag.

– the amplitude between maximum and minimum of the so far constructed lightcurve – gets larger
than∆mD the construction of this particular light curve is stopped,and the length of the track,l,
is determined. This corresponds to the white part in Fig. 6.4.

In order to statistically infer an upper limit on the permitted length of the linear tracks across the
magnification maps we do the following (for a given source size): we randomly select a starting
pixel in the magnification pattern of one of the images, let usassume it is component B. Then
we also select a random direction for which the magnificationalong a linear track is going to be
computed.

As the next step, a random starting point in the magnificationpattern of the other image D is se-
lected. However, this time the direction is not arbitrary: The direction of motion in the two images
relative to the external shear is fixed, the displacements ofthe source in the magnification maps B
and D are no longer independent. In fact, because of the cross-like geometrical configuration of
the system, they are orthogonal to each other (see Fig. 6.5 motivated by Kent & Falco, 1988; Witt
and Mao, 1994; Schmidt et al., 1998). Thus, once the direction in the magnification pattern B is
selected, the one in the magnification pattern D is determined as well. So in this way we construct
simultanously the lightcurves for quasar images B and D point by point along linear tracks.

When either∆mB(simul) or ∆mD(simul) – the amplitudes between maximum and minimum
of the so far constructed lightcurves for images B and D – are larger than∆mB or ∆mD, respec-
tively, then the construction of this particular pair of lightcurves is stopped, and the length of the
two tracks,l, is determined. This corresponds to the white part in Fig. 6.4.

We did this for105 pairs of tracks and stored these105 values for the respective maximum lengths
l. From this distribution we can now derivelupper from the cumulative probabilityP (l ≤ lupper)
= 95%, i.e., the 95 per cent upper limit on the allowed path lengths. The whole procedure was
repeated for magnification patterns constructed with theκ andγ values of the Schneider et al.
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FIGURE 6.4: A small part of the total magnification pattern for component D, convolved with a gaussian
profile withσQ = 0.01 rE . The sidelength is4 rE . The length of the track is determined in such a way as to
fulfill the criterion∆mD(simul) > ∆mD, which corresponds to the white part (the beginning of the track
is indicated by the arrow.

(1988) model, see Table 1. The results were indistinguishable.

6.4 Results

The resulting cumulative probability distributions for the various simulations are shown in Fig. 6.6.
These lines represent the integrated probabilities for certain track lengths in units of Einstein radii.
The three curves represent the three different source sizeswe considered:σQ = 0.003 rE (thin
line),σQ = 0.01 rE (medium line) andσQ = 0.05 rE (thick line).

From each distribution we can determine the upper limit on the length of the tracks consistent
with the variability of the observed lightcurves defined by the bands described before. The three
limits are (95% confidence limit):

lupper = 0.11 rE for σQ = 0.003 rE,

lupper = 0.12 rE for σQ = 0.01 rE,

and

lupper = 0.12 rE for σQ = 0.05 rE.

We can also estimate an error for these numbers from the
√
N – it is a Poissonian process, as

the photon statistics in CCDs – , whereN is the number of simulations at the95% point. The
error is±0.02 rE. So within this error estimation, the results are compatible being the same for the
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FIGURE 6.5: Relative positions of the quasar images, galaxy centre and galaxy bar. The direction of
motion relative to the external shear is not independent between the images because of the cross-like geo-
metrical configuration. This is orthogonal between images A⊥C and B⊥D.

three source sizes considered. These numbers can be converted into physical quantities by using
Eq. 6.2 and a given value for the mass of the microlenses,Mµlens. As we are observing the inner
part of the lens galaxy, a resonable range for the microlenses mass is0.1M⊙ ≤ Mµlens ≤ 1M⊙
(Alcock et al. 1997, Lewis & Irwin 1995, Wyithe et al. 2000a).Using the observing period time,
tobs = 126 days, we can then deducevupper, the 95% limit on the effective tranverse velocity in
this lens system.

In calculating the effective transverse velocity of the lens in the lens plane from these numbers,
we need to use the following expression (Kayser et al. 1986):

~V =
1

1 + zs

~vs −
1

1 + zd

Ds

Dd

~vd +
1

1 + zd

Dds

Dd

~vobs, (6.3)

where~V is the effective transverse velocity of the system,~vs the velocity of the source,~vd the
velocity of the deflector (lens), and~vobs the velocity of the observer. The effective transverse
motion of the lens includes the true transverse velocity of the galaxy as a whole and an effective
contribution due to the stellar proper motions. The adoptedcosmology isΩo = 0.3, Λo = 0.7 and
H0 = 66 km sec−1 Mpc−1. andzs, zd are the redshifts of the source and deflector, respectively.
Putting in the respective values in Eq. 6.3, we get:

V = 0.37 vs − 10.55 vd + 10.18 vobs. (6.4)

Comparison of the Earth’s motion relative to the microwave background (Lineweaver et al. 1996)
with the direction to the quasar Q2237+0305 indicate that these vectors are almost parallel, so that
the last term in the right side of Eq. 6.4 can be neglected. Furthermore, assuming that the peculiar
velocities of the quasar and the lensing galaxy,vs andvd, are of the same order, the first term can
be neglected as well, since its weight is only about4% of the total. In this way, we just keep the
expression

V ≃ 10.55 vd. (6.5)

An upper limit for the effective transverse velocity of the lens measured in the lens plane,vd,
can now be calculated by just settingV = vupper, wherevupper is the 95% limit on the effective
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FIGURE 6.6: Cumulative probability distribution for the maximum lengths of the lightcurvesdetermined
by the criterion∆mB(simul) > ∆mB or ∆mD(simul) > ∆mD for three different source sizes:σQ =
0.003 rE (thin line),σQ = 0.01 rE (medium line), andσQ = 0.05 rE (thick line).

transverse velocity, as inferred from the simulations. Theresulting value for the limit on the
transverse velocity of the lensing galaxy obtained in this way depends on the assumed mass of the
microlenses and on the quasar size. ForMµlens = 0.1M⊙, the numbers are:

vd = 580 km/s

for the smallest source size, and
vd = 633 km/s

for the two larger sources sizes. The limits for masses ofMµlens = 1.0M⊙ are

vd = 1840 km/s and vd = 2005 km/s respectively.

The results are summarized in Tab. 6.2.

source size (rE) lupper (rE) M = 1M⊙ M = 0.1M⊙

0.003 0.11 1840 km/s 580 km/s
0.010 0.12 2005 km/s 633 km/s
0.050 0.12 2005 km/s 633 km/s

Table 6.2: The limiting transverse velocityvd of the lens galaxy for three different source sizes. To
convert the length of the tracks inrE into physical units, we need the mass of the microlenses. We
useMµlens = 1M⊙ andMrmµlens = 0.1M⊙. The error estimation forlupper is ±0.02 rE.

It is even possible to place slightly stronger limits onvbulk. The reason is that the actual effective
lens velocityvd is a combination of the bulk velocity of the galaxy as a whole (vbulk) and the
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source size (rE) lupper (rE) M = 1M⊙ M = 0.1M⊙

0.003 0.11 1817 km/s 508 km/s
0.010 0.12 1985 km/s 568 km/s
0.050 0.12 1985 km/s 568 km/s

Table 6.3: Same as Tab. 6.2 but using Eq. 6.6 to infer slightlystronger limits on the effective
transverse velocityvbulk of the lens galaxy. The error estimation forlupper is ±0.02 rE.

velocity dispersion of the microlenses (vµlens). This latter effect was studied by Schramm et al.
(1992), Wambsganss & Kundic (1993) and Kundić & Wambsganss (1995), and it was found that
the two velocity contributions combined are producing the effective velocity in the following way:

vd =
√
vbulk

2 + (a vµlens)2 (6.6)

wherea represents theeffectivenessof microlensing produced by the velocity dispersion of the
stars versus the one caused by the galaxy bulk motion. The value of this ‘effectiveness param-
eter’ is a ≈ 1.3 (see Wambsganss & Kundic 1993, Kundić & Wambsganss 1995 for details).
Since the velocity dispersion of the lensing galaxy in Q2237+0305 has been measured to be
vµlens ≃ 215 km/s (Foltz et al. 1992), we can use that and infer an even lower value for the
limit on the effective velocity of the bulk motion (using thelargest source size):

vbulk ≃ 568 km/s for Mµlens = 0.1M⊙, and

vbulk ≃ 1985 km/s for Mµlens = 1.0M⊙.

In Tab. 6.3 the resulting values from applying Eq. 6.6 for allthe source sizes are shown.

6.5 Discussion

Wyithe et al. (1999) presented the first contribution for determining the effective transverse
velocity of the lens galaxy in Q2237+0305 via microlensing. Here we compare this approach to
ours. First, as the Wyithe et al. method requires a number of microlensing events happening, they
need a base monitoring line of the order of 10 years or so. Our method – based on the absence
of microlensing fluctuations – can be applied to shorter monitoring base lines (typically one order
of magnitude lower). Second, our statistics is simple and straighforward: fluctuations higher than
the observations are ruled out in the simulations, no other assumptions are necessary. Wyithe
et al. use the Kolmogorov-Smirnov statistic (and a modification of it), where the method has to
accept or reject a previously adopted hypothesis. Third, the results in Wyithe et al. are slightly
quasar size dependent, contrary to ours: this can be understood thinking that the source size plays
a more important role when microlensing fluctuations are present (their method) but not during
quite episodes (our method). Fourth, although the results obtained by Wyithe et al. are model
dependent, their best case is a few per cent lower than our result and it is in very good agreement
within our error estimations. Finally, it is important to notice that if outliers are present in the
photometry, the result will be overestimated (the real limit for the transverse velocity will lower
than the obtained result) and thus a precise data reduction procedure is needed. This seems to be
true in both methods.
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6.6 Conclusions

Estimating peculiar motions of galaxies is in general a difficult task. Here we have derived upper
limits to the transverse velocity of the lensing galaxy in the quadruple quasar system Q2237+0305.
Using four months of monitoring data from the GLITP collaboration (Alcalde et al. 2002), we took
the limits from the lightcurves of components B and D, where no strong microlensing signals are
present. The idea of the method is simple and straightforward: if the galaxy is moving through the
network of microcaustics but no microlensing is present in the observations, this defines a typical
length of the low magnification regions in the magnification patterns, which in turn can be easily
converted into a physical velocity. This typical length is derived in a statistical sense from intensive
numerical simulations using two different macro models forthe lens (which both produce the same
results). The resulting value obtained for this upper limiton the transverse velocity of the lensing
galaxy isvbulk < 570 km/s for lens masses ofM = 0.1M⊙ andvbulk < 2000 km/s for lens masses
of M = 1.0M⊙. Within the error estimation for this limit, the result is independent of the quasar
sizes considered. Future monitoring campaigns of this and other multiply imaged quasars can be
used to provide more and stronger limits on the transverse velocities of lensing galaxies.



92 M ICROLENSINGSIMULATIONS



Part III

Galaxy Cluster Lensing and X-rays
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Chapter 7

Weak lensing: the galaxy cluster
Cl 0024+1654 from VLT-BVRIJK
multiband photometry⋆

Link. The study of clusters of galaxies is a powerful way to get information on
the cosmological parameters. Mass and luminosity estimates of clusters help us to
understand how dark matter is distributed in the Universe. Nevertheless, there are
several ways of analysing galaxy clusters and not all the methods give the same results.
In order to find an explanation to these discrepancies, a detailed description of the
systems and their physical states are needed. Gravitational lensing allowsus to obtain
the total mass of a cluster independently of its dinamical state. In the last years the
improvements in the lensing techniques and in the observational instrumentsmake
possible to get accurate mass distributions.

Abstract. We present a mass reconstruction using weak lensing analysis of the
cluster of galaxies CL0024+1654. We make use of a multiband BVRIJK pho-
tometry to get the photometric redshift of the background galaxies in the field.
This breaks the degeneracy in the mass estimate. We compare the mass pro-
file to the luminosity one and find that mass is well traced by light in a region
of radiusθ < 3 arcminutes from the centre of the cluster. We obtain a mass
of M(θ < 230h−1

65 kpc) = (0.98 ± 0.11) 1014h−1
50 M⊙ and a luminosity ofL =

(0.48±0.04) 1012h−2
65 L⊙. The mass-to-light ratio isM/LR = (200±2)M⊙/L⊙

assuming a constant behaviour in the analysed region. Fitting a universal mass
density profile to the data, we find a concentration parameterc = 9.88+4.18

−2.22.

⋆A paper based on the results of this Chapter is in preparation
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7.1 Introduction

Clusters of galaxies are the largest structures gravitationally bound we know of in the Universe.
The analysis of such systems provides deep insides in understanding the nature and content of dark
matter in the Universe, one of the key issues in cosmology. Thus, mass estimates of galaxy clusters
deserve special attention.

Three independent methods are used to estimate the mass of clusters of galaxies: 1) the applica-
tion of the virial theorem, which relates the galaxy velocity dispersion with the total mass of the
cluster (Zwicky 1993, Smith 1936). Its limitations are the difficulty in measuring radial velocities
for large samples of cluster members and the assumption of dinamical equilibrium, which can be
broken by substructure or/and infalls (Merrit & Tremblay 1994). 2) From the X-ray emission of the
intra-cluster hot gas, assuming spherical symmetry and hydrostatic equilibrium in the cluster, one
can relate the density and temperature obtained from the intracluster gas spectrum with the cluster
mass as a function of radius (Bahcall & Sarazin 1977). 3) By using the gravitational lensing theory.
The gravitational lensing by cluster of galaxies can be divided in two regimes: strong and weak
lensing. Giant lensed arcs and multiple images fall in the former regime, while little distorsions of
background galaxies are the signature of the latter. The mass estimate through strong lensing fea-
tures is associated with lens modeling and gives tight constrains on the mass (Soucail et al. 1987),
although the method is only valid in the inner parts of the cluster defined by the multiple images.
The complementary approach is the weak lensing mass estimates from the observed distortions of
background galaxies (Kaiser & Squires 1993, Squires & Kaiser 1996). This method, with some
recent improvements on the original (see also Section 3.2, is the one we use in this work and it
is described in some detail in Sec. 7.4. Also in the context ofgravitational lensing, the measured
source depletion due to lens magnification can be used to estimate the mass of a galaxy cluster, as
predicted by Broadhurst et al. (1995).

The galaxy cluster Cl 0024+1654 was discovered by Humason & Sandage (1957). It is one
of the most interesting distant clusters of galaxies, withz = 0.395 (Gunn & Oke 1975), due to
the gravitationally lensed features that it produces. Gravitational arcs in this system were firstly
detected by Koo (1988) and then spectroscopically observedby Mellier et al. (1991). It is also
a very rich cluster, with a high central concentration of bright galaxies and not dominated by a
single cD galaxy. Dressler et al. (1985) obtained a velocitydispersion of(1300 ± 100) km s−1,
suggesting a very massive cluster of galaxies (Schneider etal. 1986). B̈ohringer et al. (2000)
and Soucail et al. (2000) analised X-ray ROSAT observationsof Cl 0024+1654, finding a mass
discrepancy of a factor 1.5 to 3 lower with respect to the dinamical approach. Mass estimates
from gravitational lensing by Kassiola et al. (1992), Smailet al. (1997), Tyson et al. (1998) and
Broadhurst et al. (2000) using strong lensing models and by Smail et al. (1996) using weak shear
estimates are in general a factor of 2-3 higher than the X-rayresults. Recently, Ota et al. (2003)
found a discrepancy between lensing mass estimate and X-rays of a factor of 3, using observations
from the CHANDRA satellite. Czoske et al. (2002) proposed a collision scenario where a high
speed encounter between two similar mass clusters would explain all these discrepances. Being
this approach valid would imply that X-ray mass estimates are no longer possible without detailed
hydrodynamic simulations. Furthermore, Kneib et al. (2003) in a wide-fiedl HST analysis, found
significantly massive substructure at a distance of 1 Mpc, suggesting that the system might be not
relaxed.
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Filter Exp. time [s] Seeing [′′] Pixel Size [′′] F.O.V [′′]

B 4800 0.54 0.2 6’.8×6’.8
V 4800 0.57 0.2 6’.8×6’.8
R 4800 0.48 0.2 6’.8×6’.8
I 4200 0.52 0.2 6’.8×6’.8
J – – 0.2 2’.5×2’.5
K – – 0.2 2’.5×2’.5

Table 7.1: VLT data of the galaxy cluster Cl 0024+1654. BVRI bands were obtained with the
FORS camera and JK bands with the ISAAC camera. The field of view(FOV) of the two cameras
is different, so the photometric redshifts can only be calculated for the galaxies in the common
field of both cameras.

In this work we analyse multiband BVRIJK photometry of the galaxy cluster Cl 0024+1654.
In Sec. 7.2 we present the observations and data set. In Sec. 7.3 we describe the cluster members
distribution. Sec. 7.4 describes the mass estimates derived from the weak lensing signal whereas
in Sec. 7.5 we fit this results to an universal density profile.In Sec. 7.6 we analyse the light
distribution and compare to the distribution of the projected mass. Finally, in Sec. 7.7 we compare
our results to previous ones and conclude.

Throughout this Chapter we useH0 = 65 km s−1 Mpc−1, ΩM = 0.3 andΩΛ = 0.7. Using this
cosmology, at the redshift of Cl 0024+1654,1′ corresponds to 230 kpc.

7.2 Data acquisition

The galaxy cluster Cl 0024+1654 was observed with the VLT at ESO. FORS2 camera was used
to obtain the B, V, R and I bands with a field of view of 6’.8×6’.8. The J and K bands were
obtained with the ISAAC camera and field of view of 2’.5×2’.5. The photometric calibrations and
image stacking were done at the TERAPIX1 data center. These data are presented in Tab. 7.1.

This multi-band photometry makes possible to obtain the photometric redshiftszphot of the back-
ground galaxies in the common field of the different bands. The zphot were computed using the
fitting softwarehiperz (Bolzonella et al. 2000) by means of a comparison between the spectral
energy distribution of galaxies inferred from our data set (BVRIJK bands) and spectral templates
of galaxies with time-evolution correction models (a detailed explanation of this procedure can be
found in Athreya et al. 2002). In general,zphot errors obtained from thehiperzsoftware were found
to be∆zphot ∼ 0.05 at zphot ≤ 1 and∆zphot ∼ [0.1 (1 + zphot)] for larger redshifts. It is important
to notice here the fact pointed out by Athreya et al. (2002) that using only BVRI photometry would
introduce a much larger error in these estimates, due to the lack of strong spectral features in the
wavelenghts covered by these filters. The distribution of galaxies versus photometric redshift is
shown in Fig. 7.2.

1http://terapix.iap.fr
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FIGURE 7.1: The galaxy cluster Cl 0024+1654 in the R band obtained with the FORS camera. The field
of view is6′.8 × 6′.8. North is up and East is left.
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FIGURE 7.2: Distribution of galaxies with photometric redshift in Cl 0024+1654 field. The photometric
redshifts were computed usinghiperzsoftware (see text for details) applied to the BVRIJK set of filters.
The inner pannelis the same distribution only in the redshift interval [0.37 0.45]. We cannot confirm/reject
a bimodal distribution of galaxies – as suggested by Czoske et al. (2002) –due to the error estimates in the
photometric redshifts, too high for this comparison.
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7.3 Distribution of cluster members

Czoske et al. (2002) proposed a collision scenario based on the bimodal distribution of the
redshift histogram of the cluster members . They found a large peak centered atz = 0.395 (0.387 <
z < 0.402), i.e., at the known cluster redshift, containing 237 galaxies and a secondary background
peak centered atz = 0.381 (0.374 < z < 0.387) containing 46 cluster members. They interpreted
this as two clusters of galaxies in a merging process.

We looked into our data in order to check this hipothesis. Dueto the error estimates in the
photometric redshifts, large for this purpose although precise enough for the weak lensing analysis,
we cannot confirm/reject this issue. In Fig. 7.2inner pannelwe plot the distribution of galaxies in
the redshift range [0.37 0.45]. No bimodal distribution is found.

The distribution of galaxies with respect to their R magnitude is shown in theleft pannelof
Fig. 7.3 and in theright pannelthe same distribution only for cluster members. This illustrates the
completeness of our sample. The sample is complete until R=25.5 magnitudes.
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FIGURE 7.3: To illustrate the completeness of our sample: theleft pannelis the distribution of the total
number of galaxies in the field in the R band; theright pannelshows the histogram of cluster members
against R magnitude. Our sample is complete until R=25.5 magnitudes.

7.4 Mass reconstruction from weak shear

The mass reconstruction method used here is the Aperture Mass Densitometry orζ-statistics
described by Kaiser & Squires (1993), Fahlman et al. (1994) and Squires & Kaiser (1996), with
some modifications introduced by Hoekstra et al. (1998). We briefly describe the method here and
refer the reader to those authors and references therein forfurther details.

The general idea of the method resides in two basic statements:

(a) that the surface mass density can be calculated inverting the integral expression for the shear
(see e.g. Bartelmann & Schneider 2001)

γ(θ) =
1

π

∫

ℜ2

D(θ − θ′) κ(θ′) d2θ′ (7.1)
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where the complex functionD(θ) = −1
(θ1−iθ2)2

andθ1 andθ2 are the two components of the
vectorθ;

(b) that the shear can be approximated by the weak distortionin the background galaxies in-
duced by the gravitational lensing potential of the cluster. Although this distortion is an
observable, not all the distortion observed in the background galaxies is due to gravitational
lensing: undesirable effects induced by the PSF (‘smearing’) and/or camara distorsions must
be properly corrected.

Following Hoekstra et al. (1998), we first quantify the shapes of the selected background galaxies
calculating the second momentsIij of their fluxes and forming their 2-component polarization
(Blandford et al. 1991)

e1 =
I11 − I22
I11 + I22

and e2 =
2I12

I11 + I22
. (7.2)

The PSF smearing or smear polarizabilityP sm will change the shape of the objects and must
be corrected. It has two opposite effects. One comes from theanisotropy of the PSF, which
introduces a systematic polarization of the galaxies. The other one is the convolution of the PSF
with the seeing that tends to circularize the objects. The PSF can be estimated from the field stars
in the images, fitting a second order polynomial over the fieldand interpolating at the position of
the galaxies. After these corrections, the new galaxy polarization will be

eα → eα −
∑

β

P sm
αβ

P sm∗
αβ

e∗β (7.3)

where asteriks denote measurements from the stars.
Since the seeing circularizes the shape of the objects, it isimportant to take this effect into

account as well. In this way we will be able to have a ‘preseeing’ shear polarizabilityP γ, i.e. the
shear polarizability before ‘suffering’ the seeing effect(Luppino & Kaiser 1997)

P γ = P sh − P sh
∗

P sm
∗
P sm (7.4)

whereP sh denotes ‘postseeing’ shear polarizability which can be directly calculated from the
observations and asteriks denote again measurements from the stars.

Finally, the distortion at a certain position in the image due to gravitational lensing is

gα =
〈 eα〉
〈P γ

αα〉
. (7.5)

Working in the weak lensing regime (whenκ ≪ 1) we can write〈γ〉 ≈ 〈g〉 (see e.g. Kaiser
& Squires 1993, Mellier 1999), the surface mass density can be expressed as (the so-calledζ-
statistics)

ζ(θ1, θ2) = κ(≤ θ1) − κ(θ1 ≤ θ ≤ θ2) =
2

1 − (θ1/θ2)2

∫ θ2

θ1

〈γt(θ)〉 d(lnθ) (7.6)
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and the mass within a certain aperture is given by

M(≤ θi) = κ(≤ θi) Σcrit π (θiDol)
2 (7.7)

whereΣcrit is the critical surface mass density andDol is the angular distance between the observer
and the lens. Also the critical surface mass density can be expressed in terms of the angular
distances:

Σcrit =
c2

4 π G

Dos

Dol Dls

, (7.8)

wherec is the vacuum speed of light,G is the gravitational constant andDos, Dol andDls are
the angular distances observer-sources, observer-lens and lens-sources, respectively (see also Sec-
tion 2.2.1) .

With the photometric redshifts of the background sources,Dos andDls can be calculated, giving
a value for the critical surface mass density:

Σcrit = 1.39 · 109 h65 M⊙ kpc
−2

FIGURE 7.4: Theκ-isocontours obtained with the mass reconstruction process on the R band image of
the galaxy cluster Cl 0024+1654. The field of view is the common area of the FORS1 and ISAAC cameras
(2’.5×2’.5), where the photometric redshift of the background galaxies was calculated. North is up and East
is left.

The surface mass density profileκ(θ) is plotted in Fig. 7.5. It is calculated by computing annuli
centered on the centre of the cluster – we assume the most luminous galaxy is the centre, which
allows us to make comparisons with other authors –.
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FIGURE 7.5: The surface mass density profileκ (or convergence) from the weak lensing analysis of
Cl 0024+1654, using the image in the R band for the reconstruction.

7.5 Universal density profile fitting

Navarro et al. (1997, hereafter NFW) showed, through N-body simulations, that the equilibrium
density profiles of CDM halos of all masses follow the simple distribution

ρ(θ) = ρcrit
δc

(θ/θs) (1 + θ/θs)2
(7.9)

whereθs is a scale radius,δc is a characteristic dimensionless density andρcrit = 3H2/8πG is the
critical density for closure (see Section friedmod. In general, low-mass halos are denser, so having
higher values ofδc than high-mass halos. The dimensionless density can be expressed in terms of
a concentration parameterc as

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
. (7.10)

That halos follow this NFW mass profiles would favor a universe dominated by collision-less
dark matter. Nevertheless is not clear yet whether these NFWprofiles rule out alternative density
profiles, e.g. isothermal spheres (IS hereafter). This degeneracy can be easily explained since both
NFW and IS profiles follow a similarr−2 behaviour at short and intermediate radial distances (a
recent discussion on the validity and implications of the NFW density profiles can be found in
Gavazzi et al. 2003).

The NFW profile results in a surface mass densityκ profile given by (Bartelmann 1996)

κ(x) = κs
f(x)

x2 − 1
(7.11)

where

f(x) =






1 − 2√
x2−1

tan−1
√

x−1
1+x

, (x > 1)

1 − 2√
1−x2

tanh−1
√

1−x
1+x

, (x < 1)

0 , (x = 1)

(7.12)



104 WEAK LENSING ANALYSIS

x = θ/θs andκs = ρcrit δc θs/Σcrit.
Once the surface mass density profileκ(θ) has been calculated after the mass reconstruction

process, we fitted this profile to a NFW profile, obtaining the values forθs andδc. We gotθs =
0.63+0.24

−0.22 andc = 9.88+4.18
−2.22. The fitted mass profile is plot in Figure 7.6.
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FIGURE 7.6: The mass profile from the weak lensing analysis of Cl 0024+1654. This done by computing
consecutive annuli (see Eq. 7.6) on the surface mass density mapp in Fig.7.4 centered on the cluster centre.
Theupper pannelshows the mass profile with the radius expressed in arcminutes. Thelower pannelis the
fitted universal mass density profile NFW; the radius is expressed in kpc for comparison (1′ ≈ 230 kpc).

7.6 Light distribution and mass-to-light ratio

Having the surface mass density distribution computed for our field, it is interesting to compare
this to the distribution of light in the same field. To do this,we computed the luminosity for each
galaxy in the same R-band we used for the mass reconstruction.

The luminosity was then computed assuming no-evolution models and a K-correction for S0/E
galaxies, since it is assumed most of the cluster members belong to this classification (see Sec. 7.3).
The z=0.39 K-correction (the correction at the Cl 0024+1654 redshift) was kindly provided by
Damian Le Borgne based on models by Bruzual & Charlot (1993). Thevalue for the K-correction
in the R-band filter was 0.46.

In Fig. 7.8 we show the luminosity map for the cluster membersand the number density map.
We can compare these maps to theκ-map in Figure 7.4 to see how well theκ-isocontours follow
the light distribution. The mass-to-lightM/LR profile, which quantifies this comparison, is shown
in Fig. 7.7. A fitting to a constant givesM/LR = (200 ± 2) M⊙/L⊙.
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FIGURE 7.7: The mass-to-light ratio (M/LR) profile of Cl 0024+1654 from the weak lensing analysis.
Fitting a constant to the data we obtainM/LR = (200 ± 2)M⊙/L⊙.

7.7 Comparison with previous results and conclusions

Several lensing mass estimates have been reported so far from strong lensing modeling. Kassiola
et al. (1992) and Smail et al. (1997) obtainedM(θ ≤ 220h−1

50 kpc) = (2 ± 0.2) · 1014h−1
50 M⊙,

whereas Tyson et al. (1998) obtained a slightly higher valueM(θ ≤ 220h−1
50 kpc) ≈ 3.2 ·

1014h−1
50 M⊙. Broadhurst et al. (2000), including a new arc redshift measurement atz = 1.675 in

the lens modeling and thus breaking the mass-redshift degeneracy in those previous models, ob-
tainedM(θ ≤ 220h−1

50 kpc) = (2.6± 0.06) · 1014h−1
50 M⊙, a value very close to that from Kassiola

et al. (1992) and Smail et al. (1997). They also claimed that some substructure is required in
Cl 0024+1654 – contrary to what Tyson et al. (1998) concluded – due to the high mass-to-light
ratio they assigned to the central luminous elliptical galaxies, implying a well local minima of a
more general potential.

Using X-ray ROSAT observations, Böhringer et al. (2000) found a cluster mass of(3-4) ·
1014h−1

50 M⊙ within a radius of3h−1
50 Mpc. They also reported the core size of the mass halo

to be66−25
+38h

−1
50 kpc, compatible to those found by Tyson et al. (1998) and Smail et al (1997),

70h−1
50 kpc and(40 ± 10)h−1

50 kpc, respectively. B̈ohringer et. al (2000) concluded that although
the X-ray mass is consistent with the core mass of strong lensing results, there could be much
more unrelaxed gas surrounding the cluster. Furthermore, Soucail et al. (2000) from their X-ray
ROSAT+ASCA analysis foundM(θ ≤ 220h−1

50 kpc) = 0.96+0.82
−0.35 · 1014h−1

50 M⊙ and extrapolating
the total massM(θ < 3h−1

50 Mpc) = 1.4+1.2
−0.5 · 1015h−1

50 M⊙
On the other side, from weak lensing studies, Bonnet et al. (1994) found a mass of4·1015h−1

50 M⊙
within 3h−1

50 Mpc, assuming that the mass density profile remains isothermal at this distance. And
from the velocity dispersion of 26 cluster members, Schneider et al. (1986) inferred a cluster mass
of M(θ < 480h−1

50 kpc) = 6.6 · 1014h−1
50 M⊙.

From our mass profile in Figure 7.6, we can obtain a reference value for the mass at a given
radius. Thus, we get a mass ofM(θ ≤ 230h−1

65 kpc) = (0.98 ± 0.11) · 1014 M⊙. This value is
in surprising good agreement with that obtained by Soucail et al. (2000) in X-rays and a factor
of 2 smaller than other previous estimates using strong lensing. This result is surprising because
usually the discrepancy is between X-rays and optical estimates, rather than between strong and
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FIGURE 7.8: Theleft pannelshows the number density of galaxies members of Cl 0024+1654. Theright
pannelis the luminosity distribution of the same galaxies. The field is the same as in Fig. 7.1,6′.8 × 6′.8.
North is up and East is left.

weak lensing ones, in the case of Cl 0024+1654. Furthermore, our estimates are also in agreement
with the results obtained by Ota et al. (2003) using the CHANDRAX-ray satellite.

Kneib et al. (2003) have recently presented a wide-field HST study of Cl 0024+1654, based
on a panoramic sparse-sampled imaging. They detected weak lensing signal up to a radius of
∼5 h−1

6 5 Mpc. Moreover, they found a secondary mass peak located at∼1 Mpc NW of the cluster
centre, which corresponds with the substructure already detected by Czoske et al. (2002). This
would mean that the galaxy cluster Cl 0024+1654 is not a ‘typical relaxed cluster at all. They also
found that the mass-to-light ratio (M/L) keeps constant at large radii – which agrees with our M/L
profile –.

These results suggest that numerical simulations would be very helpful in order to carefully
analyse all these discrepancies and to explain the physicalstate of Cl 0024+1654



Chapter 8

A search for gravitationally lensed arcs in
the z=0.52 galaxy cluster RBS380 using
combined CHANDRA and NTT
observations⋆

Link. New clusters of galaxies are mainly discovered during X-ray surveys.Their
X-ray luminosity can be used to roughly estimate their masses. After these serendipity
discoveries, optical follow-ups are carried out in order to determine the redshifts of
such systems. With both the mass and the redshift one can assign certain probability to
a cluster as acting as a gravitational lens, suggesting a deeper and more detailed study
of a given cluster. But things are not usually as simple as this. If, e.g., point sources
are not properly removed when estimating the X-ray luminosity of a galaxycluster,
erroneous conclusions can be achieved.

Abstract. CHANDRA X-ray and NTT optical observations of the distant
z = 0.52 galaxy cluster RBS380 – the most distant cluster of the ROSAT Bright
Source (RBS) catalogue – are presented. We find diffuse, non-spherically sym-
metric X-ray emission with a X-ray luminosity ofLX(0.3− 10 keV) = 1.6 1044

erg/s, which is lower than expected from the RBS. The reason is abright AGN in
the centre of the cluster contributing considerably to the X-ray flux. This AGN
could not be resolved with ROSAT. In optical wavelength we identify several
galaxies belonging to the cluster. The galaxy density is at least2 times higher
than expected for such a X-ray faint cluster, which is another confirmation of the
weak correlation between X-ray luminosity and optical richness. The example of
the source confusion in this cluster shows how important high-resolution X-ray
imaging is for cosmological research.

⋆Chapter based on the refereed publication Gil-Merino & Schindler, A&A, in press (also as
astro-ph/0306499)
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8.1 Introduction

The galaxy cluster RBS380 is part of a large optical programme to search for strong gravita-
tionally lensed arcs in X-ray luminous clusters selected from the ROSAT Bright Survey (RBS,
Schwope et al. 2000), with a predicted probability for arcs of 45%. In addition to the optical im-
ages X-ray observations are taken in order to compare massesdetermined with different methods
and to use the X-ray morphology for lensing models. The main goal of this project is to com-
bine X-ray and optical information, together with possiblegravitational lensing information, to
constrain cosmological models.

The cluster presented here – RBS380 – is after RBS797 (Schindler et al. 2001) the second
cluster for which we have performed a combined optical and X-ray analysis. The X-ray source
RBS380 was found in the ROSAT All-Sky Survey (RASS, Voges et al. 1996, 1999) and classified
as a massive cluster of galaxies in the RBS. RBS380 is the most distant cluster of this catalogue.

We present here CHANDRA ACIS-I and NTT SUSI2 observations of theX-ray cluster RBS380
at z = 0.52 and coordinatesα = 03 01 07.6, δ = −47 06 35.0 (J2000).

We find a lower X-ray luminosity than expected from the RBS. The reason is source confusion
in the ROSAT data – the X-ray emission of the central AGN had been mixed up with cluster
emission –.

The high galaxy number density in this cluster is in contrastto its low X-ray luminosity. This
is another confirmation that optical luminosity is not well correlated with X-ray luminosity, see
e.g. Donahue et al. (2001) or the clusters Cl0939+4713 and Cl0050−24 for extreme examples of
optical richness and low X-ray luminosity (Schindler & Wambsganss 1996, 1997; Schindler et al.
1998).

Throughout this Chapter we useH0 = 65 km/s/Mpc,ΩM = 0.3 andΩΛ = 0.7.

8.2 Data acquisition and reduction

8.2.1 X-ray data reduction

The cluster RBS380 was observed on October 17, 2000 by the CHANDRAX-ray Observatory
(CXO). A single exposure of 10.3 ksec was obtained with the Advanced CCD Imaging Spectrom-
eter (ACIS). During the observations the2× 2 front-illuminated array ACIS-I was active, together
with the S0 chip of the ACIS-S1 × 6 array, although this last one was not used for the data reduc-
tion, since the expected cluster centre was placed on the ACIS-I array. Each CCD in the ACIS-I is
a1024 × 1024 pixel array, each pixel subtending0′′.492 × 0′′.492 on the sky, covering a total area
of 16′.9 × 16′.9.

The data were ground reprocessed on February 28, 2001 by the CHANDRA X-ray Center
(CXC). The analysis of these reprocessed data was performed bythe CIAO-2.2 suite toolkit.

As upgraded gainmaps from preprocessing were available, weused theacis processeventstool
to improve the quality of the level2 events file. We also corrected for aspects offsets and removed
bad pixels in the field. For that we used the provided bad pixelfile acisf02201000N001bpix1.fits
by the CXC. We built the lightcurve for the observation period and we searched for short high
backgrounds intervals. We found none, so no data filtering was needed.
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Since we are interested in the diffuse emission of the galaxycluster, special attention has to
be paid to the removal of point sources. This extra care is notneeded when the count rate is
high enough, since the cluster emission can be seen even without any processing. If the number
of counts from diffuse cluster emission is low, any not removed point source can induce wrong
estimates. In a broadband (0.3 − 10 keV) image, we applied two different procedures for the
detection of sources:celldetectandwavdetect. The latter uses wavelets of differents scales and
correlates them with the image; the former uses sliding square cells with the size of the instrument
PSF. In general,celldetectworks well with well-separated point sources, although a low threshold
selection will obviously overestimate the number of point sources. On the other hand,wavdetect
tends to include some diffuse emission regions as point sources. For these reasons, a scientific
judgment must be applied in order to decide which regions must be identified as point sources.
Using a sigma threshold of10−6 in the wavdetectroutine, we found 31 point sources, expecting
a probability of wrong detections of 0.1 in the image. Using analogous criteria for thecelldetect
routine we found no significant differences.

The correction for telescope vignetting and variations in the spatial efficiency of the CCDs was
done by means of an exposure map, using the standard procedure of the CIAO-2.2 package. The
exposure map was generated for an integrated energy distribution peak. The value of the peak
was slightly different depending on the included region. Selecting the whole effective area of the
ACIS-I array, the peak value was 0.7 keV. If the selected area was only the region covering the
central part of the cluster (a circle of radio1′.5), the value of the peak was then 0.5 keV. We used
these two values for the reduction and we could not see any significant change in the final result.

The background correction was done using a blank field background set acisiC i0123 bg evt -
230301.fits provided by the CXC. We used a blank field instead of aregion from the science
image, since one cannot be sure a priori whether a certain region in the field is free of galaxy
cluster emission. The smoothing process for the final image was done with thecsmoothCIAO
tool and compared to the result using the IRAF1 (Image Reduction and Analysis Facility) task
gauss(using aσ = 20 pixels Gaussian) to be sure that no artificial features were created in the
convolution process. We found no significant differences.

8.2.2 Optical data reduction

The galaxy cluster RBS380 was observed in optical wavelength with the New Technology Tele-
scope (NTT) in service mode during summer 2001. The Superb Seeing Imager-2 (SUSI2) camera
was used in bands V and R. The SUSI2 detector is a 2 CCDs array,1024 × 2048 pixels each, sub-
tending a total area on the sky of5′.5×5′.5 (the pixel size in the2×2 binned mode is0.16′′/pixel).
In order to be able to avoid the gap between the two chips during the data reduction process, dither-
ing was applied.

The data reduction was perfomed with the IRAF package. A totalnumber of 6 images in R band
and 3 in V band in very good seeing conditions (≤ 1′′) were used in the analysis. The exposure
time was 760 sec for each image. For each band, after bias subtraction, a standard flatfielding was
not enough to produce good results, because the twilight flats provided by the NTT team contained
some stars and the scientific images showed stronger gradients than the flats. A hyperflat (see

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of
Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
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e.g. Hainaut et al. 1998) was built to flat-correct the images. We briefly describe the hyperflat
technique here.

To produce a hyperflat we processed separately the provided twilight flats and the scientific
images, although the procedure will be analogous in both sets. The technique is to smooth strongly
all the bias subtracted and normalized frames (with e.g a Gaussianσ = 100 pixels). The result
is then subtracted from the original frames, so one obtains avery flat background, but still with
stars in the images. Smoothing again the result with a smaller Gaussian (e.g.σ = 20 pixels)
will show all the stars. One can then mark all these stars in the original frames, median average
them and reject the marked values. Applying this procedure to the twilight flats set and to the
scientific images set, one obtains a final twilight flat and a final night-sky flat, respectively. A
linear combination of these two yields the final hyperflat.

Once the images are flatfielded, they can be co-added, resulting in a deep image of the field and
free of chip gaps. Note that the whole procedure has to be donefor each filter.

E

N

FIGURE 8.1: X-ray image of RBS380 (z=0.52) in the (0.3-10 keV) band, adaptatively smoothed with
thecsmoothCIAO tool and cross-check with the IRAFgausstask. The total area is14′ × 14′. The rotated
square shows the region that was observed in the optical band (V and R). The circle with a radius of1′.5
marks the area within which we have computed a count rate of 0.05 counts/s. Point-like X-ray sources have
been removed. North and East are marked.
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FIGURE 8.2: Optical R band image of RBS380 (z=0.52). The total area is5′ × 5′. North is up and East
is left.

8.3 Analysis and results

8.3.1 X-ray results

The final X-ray image after data reduction (including point sources removal) is shown in Fig. 8.1.
We encircle the main cluster emission within a radius of1′.5 centred on the peak of the emission.
The count rate obtained in that area is 0.05 counts/s. We compared this count rate to the count rate
of the same region in the background fields, finding a value of 0.02 counts/s. We found that this
background count rate was in fact not very sensitive to its position in the field, as expected. Using a
weighted average column densitynH = 2.23 ·1020 cm−2 (Dickey & Lockman 1990), a Raymond-
Smith source model withT = 5 keV and the cluster redshiftz = 0.52, the derived luminosity
is LX(0.3 − 10keV ) = 1.6 · 1044 erg/s. Using slightly lower numbers for the temperature in the
source model (in the range 3-4 keV), reduces the final luminosity result in only by a few per cent.
This is a relatively low X-ray luminosity for a massive cluster of galaxies. As the luminosity is so
low we were particularly careful with the background subtraction and the removal of point sources.

The X-ray luminosity is lower than expected from the RBS results. The reason is an X-ray point
source centred on the coordinatesα = 03 01 07.8 andδ = −47 06 24.0. The point source is
probably an AGN which could not be resolved with ROSAT and therefore not distinguished from
cluster emission. The AGN is probably the central cluster galaxy. Within a radius of7′′ we find a
count rate of 0.07 counts/s for this point source. Using a power law model with photon index 2,
the same column density as for the cluster and an energy range[0.3-10 keV], the obtained flux for
this AGN isfX = 8.2 · 10−13 erg cm2 s−1. This AGN is one of the galaxies for which the RBS
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Name α2000 δ2000 Counts [cts/s] LX [erg/s]

AGN 03 01 07.8 -47 06 24.0 0.07 1.8 1044

RBS380 03 01 07.6 -47 06 35.0 0.05 1.6 1044

Table 8.1: Coordinates of the AGN and the cluster. The AGN is almost at the centre of the cluster
emission. We also show the count rate for the two objects (normalized for the different apertures,
see text for details) and the luminosities, both in the [0.3-10 keV] band (bolometric luminosity for
the cluster is given in Tab. 8.2). The contribution of the AGNis larger than the cluster luminosity.
Both objects are at the same redshift of 0.52. An optical counterpart of the AGN is marked in
Fig. 8.7.

optical follow-up observations (Schwope et al. 2000) yielded a redshift of 0.52 (see Fig. 8.7). In
Tab. 8.1 we summarise the coordinates, count rates and luminosities of the AGN and the cluster.

In addition to the main cluster emission within a circle of radius1′.5 described above, we found
an asymmetric structure extending to both sides of this mainregion. If this is cluster emission, it
could indicate that the cluster is not relaxed, but interacting with surrounding material or/and an
infalling galaxy group. In any case we consider the inferredX-ray luminosityLX as an lower limit
for the cluster. Due to the low number of X-ray counts we did not perform any spectral analysis.

8.3.2 Optical results

Both V and R images show a high number density of galaxies. The main goal is to find a way of
selecting the cluster members in order to determine their number and their spatial distribution. We
select cluster members through a colour-magnitude relation, applying it to all the galaxies detected
both in V and R bands.

We use the SExtractor2 (Source-Extractor) package to build the catalogue for images V and R.
First we extract all the objects detected in both images witha detection threshold of2σ over the
local sky. We show in Fig. 8.3 all the detected objects in bothbands, representing uncalibrated
magnitude vs. FWHM. In the two plots a vertical stellar locus is clearly seen at the position of the
expected seeing for each image (FWHM= 1.1 for V and FWHM= 0.75 for R). We consider all
objects to the right of these values as being galaxies. In theV band, many objects lie on the lower
left side of the vertical stellar locus. We think the problemis due to the low S/N value in the final
V image, built with only 3 original frames.

We select the galaxies present in both images and calibrate the magnitudes. For the calibration
we use data from the SuperCOSMOS Sky Survey3 (SSS). We obtain from the SSS the magnitudes
in R and BJ for two galaxies in our field (see both marked in Fig. 8.7). Thecalibration for our
R filter is straightforward. For our V filter we use the BJ contained in the SSS. This means that
our V filter is not perfectly calibrated, but the offset does not induce any difference in our results
(since we are interested in the shape/slope of the colour-magnitude diagram of our galaxies, the
offset induces only a vertical shift of all the objects in theplot).

In Fig. 8.4 we show the selected galaxies in both V and R images. Stars and deficient detections

2available at http://terapix.iap.fr/soft/sextractor/index.html
3http://www-wfau.roe.ac.uk/sss/
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FIGURE 8.3: All the objects detected in V (upper panel) and R (lower panel) bands. A vertical stellar
locus is present in both plots at the position of the seeing for each image. Themagnitudes are not calibrated.

(SExtractor indicates this with different flags) are rejected. The number of galaxies is 452 in the R
filter and only 64 in the V filter. This represents a 70% of the total number of objects detected in
R and only a 23% of the objects detected in V.

The next step is to cross-check which galaxies detected in the V image were also detected as
galaxies in the R image. We find that all the galaxies in V (64) are also present in the R catalogue.

The existence of a relation between colour and magnitude forearly-type galaxies is well known
(Baum 1959; Sandage & Visvanathan 1978). In Fig. 8.5 we show the colour-magnitude relation
for the selected galaxies. Since the presence of a red sequence of early-type galaxies is an almost
universal signature in clusters (Gladders et al. 1998, Gladders & Yee 2000 and references therein)
and clusters atz ≈ 0.5 tend to concentrate elliptical galaxies in their central regions (Dressler et al.
1997), we look for this sequence in our data. We select only the galaxies below 23rd magnitude as
this is our completeness limit (see Fig. 8.6 upper panel for completeness), and we fit the remaining
galaxies by a straight line. Note that this fit is not sensitive to calibration problems, these induce
only a vertical shift in the line. We used a robust statistical method based on minimizing the
absolute deviation, which is expected to be less sensitive to outliers compared to standard linear
regression (Press et al. 1992).

The result, presented in Fig. 8.6 lower panel, shows a red sequence with slope 0.06. According



8.4 COMPARISON: X-RAY VS. OPTICAL 115

16

18

20

22

24

26
0 1 2 3 4 5

V
 m

ag
ni

tu
de

s

FWHM (arcsec)

V band

16

18

20

22

24

26
0 1 2 3 4 5

R
 m

ag
ni

tu
de

s

FWHM (arcsec)

R band

FIGURE 8.4: Galaxies detected in V (upper panel) and R (lower panel) bands. The magnitudes are
calibrated using the SSS archive.

to the predicted slopes for formation models of galaxy clusters as a function of redshift in Gladders
et al. (1998, see their Fig. 4), this slope is compatible witha galaxy cluster atz = 0.5. This value
does not strongly depend on the cosmology. This is particulary interesting because we would have
derived a most likely redshift of≈ 0.5 from this prediction, which is in good agreement with the
actual redshift of 0.52.

8.4 Comparison: X-ray vs. Optical

In Fig. 8.7 we show the selected galaxies through the colour-magnitude relation, using the R
image. We now want to compare the galaxy number density to thedistribution of the X-ray emis-
sion in the same area. For the number density map, using a blank image of the same size as the
optical image, we allocate pixels with value 1 in all the positions where we detected a galaxy, and
then we smooth it strongly (i.e. with a 200 pixels Gaussian).We need such a large smoothing
Gaussian because of the low number of galaxies finally detected. In this way we obtain the smooth
distribution of the galaxies in the field.

From the X-ray image we extracted the contour lines from the squared region shown in Fig. 8.1
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FIGURE 8.5: Colour-magnitude diagram for the detected galaxies both in V and R filters. Although the
final number of galaxies is low due to the low number of detection in V band, a close relation can be infered
at least up to a limit of 23rd magnitude.
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(which corresponds to the observed region in the optical). In Fig. 8.8 we plot the galaxy number
density together with the X-ray contour lines. The main maximum peak in the number density
map is shifted by2 arcmin in SE direction with respect to the X-ray maximum. Nevertheless,
galaxies are present close to the asymmetric X-ray featureson both sides of the main peak (in N
and NE direction). These asymmetric features might indicate the existence of surrounding material
interacting with the cluster, e.g. infalling galaxy groups.

The number of galaxies to the limiting magnitude is at least2 times higher than expected for a
such faint X-ray cluster (using the number of cluster members detected in an Abell radius ofR ≤
1.5 h−1 within the centre of the cluster) but since the detection members efficiency is not complete
due to the V band poor quality, this number could even be higher. This is another confirmation
that number of galaxies and X-ray luminosity are not well correlated (see Table 1 for a comparison
with other X-ray underluminous clusters).

FIGURE 8.7: Optical R band image of RBS380 (z=0.52). The total area is5′ × 5′. We have inverted
colours and marked the galaxies that were detected as cluster members usingboth R and V bands with a
circle. The arrows indicate the two galaxies used for the calibration from theSSS (see text for details). The
thicker arrow shows the AGN described in Sec. 8.3.1 and in Tab. 8.1. Northis up and East is left.

8.5 Conclusions

The X-ray source RBS380 was found in the RASS and identified as a cluster of galaxies in the
RBS. From the RBS catalogue, the cluster was expected to be very massive due to its inferred
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FIGURE 8.8: RBS380 galaxy number density in the R band (left panel) and the X-rays contours for the
same region (right panel). The circle with radius1′.5 is the same as in Fig. 8.1. The total area in both panels
is 5′ × 5′. North is up and East is left.

Name Redshift Luminosity [erg/s] band

Cl0500−24 0.32 5.6 1044 bolometric
Cl0939+4713 0.41 7.9 1044 bolometric
RBS380 0.52 2 1044 bolometric

Table 8.2: We compare the X-ray luminosity of RBS380 with two more clusters of galaxies which
are optically rich, but have relatively low X-ray luminosity. For comparison, we give the bolometric
luminosity for RBS380 too.

high X-ray luminosity. Its redshiftz = 0.52 makes it the most distant galaxy cluster in that cat-
alogue. Our interest in this object was due to its predicted probability (up to 60%) of acting as a
gravitational lens. In fact these observations are part of abroader project that searches systemati-
cally for gravitational arcs in different galaxy clusters and combines this optical information with
X-ray studies of the same clusters in order to constrain cosmological models and find possible
correlations between X-ray and optical properties of them.

With the new CHANDRA imaging we detect a strong X-ray point source (an AGN) very close
to the cluster centre, which could not be resolved with ROSAT. After subtracting the emission of
this AGN, the remaining diffuse emission is almost one orderof magnitude less luminous than
expected:LX = 1.6 · 1044 erg/s. No previous investigation of the system has been carried out,
so our first aim was to make sure that it is really a cluster of galaxies. The X-ray CHANDRA
observation shows a non-relaxed cluster of galaxies probably interacting with surrounding material
or/and another nearby cluster.

From the NTT optical observations we are able to distinguishsome of the cluster members by



8.5 CONCLUSIONS 119

means of the colour-magnitude relation for early-type galaxies present in the cluster, which is a
well known signature for almost every cluster of galaxies. The obtained slope for this red sequence
is 0.06. Using existing predicted slopes for different formation models as a function of redshift,
the most likely redshift for this slope isz ≈ 0.5, in good agreement with the measured redshift of
0.52.

We could not detect any gravitational arc in this cluster. This is not surprising as with the low
X-ray luminosity the probability for arcs is strongly reduced.

The example of this cluster shows that high-resolution X-ray imaging is crucial for cosmological
research. This type of distant galaxy clusters is often usedfor various types of cosmological
applications. Due to source confusion some clusters can have wrong luminosity measurements
and hence influence the results. This effect might e.g. artificially flatten the luminosity function
for distant clusters.
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Chapter 9

Summary

Ojalá quien visite este folleto
sea lego en Chaquespiare y en sor Juana
no compite mi boina de paleto
con el chambergo de Villamediana.

JOAQUÍN SABINA

9.1 Overall conclusions

A thesis period is thought to be a training time in which the candidate acquires the ability of
conducting research by his/her own. There are many different ways of doing so and the candidate
is, in many cases, the one with less control on it. Different advisors put emphasis on different
aspects – sometimes in opposite directions –, observationsbreak down or the data adquisition is
not good enough or someone you need for something is on the other side of the World. On the
top of that, research is often a blind random walk, a fuzzy dancing in the middle of nowhere and
instead of light at the end of the tunnel, one only sees flashesthat cloud even more the direction to
follow. At some point the thesis project, like an undesired Frankenstein, wakes up to life and there
is not much one can do to keep it under control.

This thesis was planned from the beginning as an investigation on different aspects of lensing.
The goal was to learn different techniques establishing a solid background for the future. In the
end, it has been that, but I also had to go into other problems far from lensing which I decided
not to include in the report (different data reduction problems, mathematical analysis of time de-
lay methods, etc.). And, moreover, learning different techniques is not possible without working
closely with different people, so that I was lucky to do science in several institutions. In this way,
when the thesis project was alive it had most of the ingredients I wanted it to have.

Obviously, if the reader is not familiar with the techniquesor with the state of the art of the topic,
it is difficult to place the results in their proper context. The first part of the thesis is devoted to this
purpose. We give some historical guidelines and then introduce the background needed throughout
the rest of the chapters. And in order to give an actual perspective of the work, we present the most
recent aspects of gravitational lensing. In partsII andIII we present our research, the former
dedicated to quasar lensing and microlensing and the latterto galaxy cluster lensing and X-rays.
We highlight here the main conclusions obtained along this work:
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• We determine a time delay for the double quasar HE 1104−1805 (Chapter 4), using a poorly
sampled dataset. We explore in detail a number of techniquesand find differences in their
behaviour. In general, well sampled datasets are difficult to obtain and it is interesting to
know under which circumstances the available techniques will give useful results. We find
that the dispersion spectra method has some difficulties that are not found in the rest of the
techniques. The more robust result is found with theδ2 method, which gets the time delay by
minimizing the differences between the autocorrelation and the cross-correlation functions
of the two components. We obtain a time delay∆tA−B = (−310 ± 20) days (2σ errors). A
quite different time delay has been reported recently. Thisnew value of∆tA−B = (−161±7)
days (1σ errors) is obtained using a photometric dataset with much better sampling but with
a high microlensing signal. The results probably need further investigation.

• In Chapter 5 we perform an analysis of three monitoring campaigns (1996/98) of the double
quasar Q0957+561. We are able to construct two difference light curves of the system (the
time delay is 420 days). We analyse the fluctuations we see in the difference light curves
with Monte Carlo simulations. We conclude that they are completely consistent with noise
and no microlensing is needed to explain them. The sources ofnoise can be instrumental,
observational or the data reduction itself. These conclusions were extended for two more
years of observations (1998/2000). Recently, other authorsarrived at similar conclusions
(Colley et al. 2003a).

• The system Q2237+0305 studied in Chapter 6 was observed during four months. Microlens-
ing is a well known signature in this system and has been detected by several teams. In our
observing period, two images showed little or no strong microlensing signal. We use this
behaviour to put limits on the effective transverse velocity of the lens galaxy. We conclude
thatvbulk ≤ 570 km/s considering microlenses withMlens = 0.1 M⊙ andvbulk ≤ 1000 km/s
for Mlens = 1 M⊙.

• Chapter 7 is dedicated to the cluster of galaxies Cl 0024+1654. This is one of the most
studied cluster in many aspects. Here we concentrate on the weak lensing signal that can be
detected in the background galaxies. We use this weak lensing to get a mass profile of the
cluster, obtaining a reference values ofM(θ ≤ 230h−1

65 kpc) = (0.98± 0.11) · 1014 M⊙. We
compare this profile to the light distribution. We get an almost constant mass-to-light ratio
M/L ≃ 200M⊙/L⊙ within a radius of3 arcminutes. We found that the best fit to a universal
mass density profile (Navarro et al. 1997) has parametersθs = 0.63+0.24

−0.22 andc = 9.88+4.18
−2.22.

Our mass estimate is in agreement with previous estimates from X-ray studies, which was
unexpected since usually there is a discrepancy of a factor of 2-3 lower in X-rays results.

• The cluster of galaxies RBS380 (Chapter 8) is the most distant cluster in the ROSAT Bright
Source catalogue (z = 0.52). It was thought to be a very massive galaxy cluster due to its
apparent high X-ray luminosity. For this reason it had a predicted probability of≈ 50% for
producing gravitational arcs of background galaxies. Nevertheless, we found that the former
X-ray luminosity estimate was erroneous due to the presenceof an AGN close to the centre
of the galaxy. This AGN contributes about60% of the total X-ray luminosity. In spite of
this low luminosity, we still see an optically rich cluster,which gives another example of an
unclear correlation between optical richness and high X-ray luminosity.
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9.2 Future work

It is quite hard, probably one of the most difficult things to write, to imagine the problems I
would like to solve in the future when my ‘only’ worry is to finish up this thesis. In any case, there
are many open and interesting questions derived from or in parallel to the research presented here.

A very promising tool for the estimate of the Hubble constantis statistics on gravitational lensed
systems with known time delays. This means that regular monitoring of multiple quasars is re-
quired. But it is also important to understand properly the techniques we use for the determination
of the time delays. Currently we have more time delay methods than measured lags. This means
that each author has encountered different problems and tried to solve them with a new method. In
my view, a deep analysis of the techniques is needed, a classification that allows to know which is
the best technique for a given system – or a given dataset –, and what the pros/cons of each tech-
nique are. This will be the only way to properly evaluate the result and to compare the different
results.

The double quasar HE 1104−1805 is a fascinating system. The amount of microlensing that
it shows is a problem for time delay estimates, but opens manyother interesting points. In fact,
several scenarios have been proposed to interpret its high microlensing signal. One of the possible,
and probably one of the best, ways to try to clarify this situation is a multiband analysis of the
system. If the microlensing signal is, e.g., seen in opticalbut not in infrared, we can put limits to
the size of the regions in which the cause of microlensing might be.

Although the double quasar Q0957+561 was the first discovered lensed quasar and has been
studied for long, the system is not fully understood. Several authors claimed that the little dis-
crepancy of the published time delays can only be explained with the existence of multiple time
delays. The short-time scale fluctuations reported by several authors are very likely due to different
types of noise, so a careful data reduction process is alwaysneeded. Furthermore, the long-term
variability has been clearly detected, but interpreted differently by different authors. A long term
campaign would be the best way to clarify these issues.

Numerical simulations are very powerful tools in lensing studies. The analysis we performed
with the quadruple quasar Q2237+0305 was done with limited computer resources. Large simu-
lations with magnification patterns≥ 104 × 104 pixels will help to put stronger limits on physical
properties of the system – source size, effective transverse velocity, etc. –.

The cluster of galaxies RBS380 has revealed itself as one of thecases in which high resolution
X-ray imaging is crucial. In order to improve the understanding of the system, new observations
would increase the signal-to-noise statistics. Furthermore, the mix up of point sources and in-
tracluster gas emissions could occur in more cases, with a significant impact on the luminosity
function for distant clusters. And, as it was concluded fromthe analysis of RBS380, the correla-
tion between optical richness and high X-ray luminosity is far from being clear. This issue deserves
more attention.
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vestigacíon una especie de droga de difı́cil abandono y, en los momentos en los que se obtienen
resultados, llega la euforia introspectiva, una especie deéxtasis personal e intrasferible que casi
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Paczýnski B., 1987, Nature, 325, 572

Patnaik A.R., Narasimha D., 2001, MNRAS, 326, 1403

Peacock J.A., 1999, “Cosmological Physics”, Cambridge University Press

Peebles P.J.E., 1993, “Principles of Physical Cosmology”, Princeton University Press.

Peebles P.J.E., Phelps S.D., Shaya E.J., Tully R.B., 2001, ApJ, 554, 104

Pelt J., Holf W., Kayser R., Refsdal S., Schramm T., 1994, A&A, 286, 775 (P94)

Pelt J., Kayser R., Refsdal S., Schramm T., 1996, A&A, 305, 97 (P96)

Pelt J., Refsdal S., Stabell R., 2002, A&A, 389, L57

Pelt J., Schild R., Refsdal S., Stabell R., 1998, A&A, 336, 829



REFERENCES 137

Petters A.O., Levine H., Wambsganss J., 2001, “SingularityTheory and Gravitational Lens-
ing”, Birkhäuser
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Webster R.L., Ferguson A.M.N., Corrigan R.T., Irwin M.J., 1991, AJ, 102, 1939

Weinberg S., 1972, “Gravitation and Cosmology”, J. Wiley & Sons

Will C.M., 1988, Astr. Ap., 236, 311

Williams L.L.R., Navarro J.F, Bartelmann M., 1999, ApJ, 527, 535

Witt H.J., 1993, ApJ, 403, 530



140 REFERENCES

Witt H.J., Mao S., 1994, ApJ, 429, 66

Witt H.J., Mao S., Keeton C.R., 2000, ApJ, 544, 98

Wisotzki L., Becker T., Christensen L. et al., 2003, A&A, accepted, (astro-ph/0307147)
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