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Introduction and statement of the main result

The subject of this work is potential scattering in R™. Quantum-mechanically, we seek solutions of
the Schrodinger equation

Py = P(h) = —h2Ag + Vip = M, 2€R", 0<h<1, n>2, (1)

while classically we seek integral curves (phase trajectories) of the vector field H, generated by the
hamiltonian

pl(,) = |¢[2 + V (@), (2,6) € R" x R™. (2)
In either case we will take V' to be a smooth function on configuration space R}, as follows.
PoTENTIAL HYPOTHESIS The potential V' € C*°(R") satisfies
05V ()] < Cafa)=e7 1o, 0>1 3)
for any multi-index oo € N and a corresponding constant C, > 0, where (x) := \/m .

Thus V is a short-range potential in the sense of Agmon [1]. In particular, V(z) decays faster than
the Coulomb potential as |z| — 0.

We will interest ourselves in the semiclassical asymptotics of the scattering amplitude, an object
which we will describe in detail below. In the classical picture, we first fix an “incoming direction”
w_ € R™ and a hyperplane H orthogonal to w_, the “impact plane”. For V = 0, the trajectories of the
hamiltonian vector field are straight lines in phase space, and we refer to them as “free”. We will consider
the ensemble of trajectories that are asymptotic, for time s — —oo, to free trajectories that intersect H
orthogonally. It turns out that this association is bijective, and we hence obtain a parametrisation of all
trajectories by points in H, denoting such trajectories by 7, z € H.

The image on the left shows some classical configuration-space trajectories for scattering in R2,
superimposed on the graph of the potential
2OI1

Vv = — .
(1, 22) 10 + z + 23

(4)

For s — —o0, the trajectories approach parallel straight lines. On the right, a bird’s-eye view of the same
image is shown. As time s — 400, the trajectories approach straight lines,

x(8,2) ~wy(2)s+re(2) in configuration space.
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where z € H parametrises the trajectories and s € R is the time (flow), coordinate of the integral curve.
We call w; (2) € S"~! the “outgoing direction” of the trajectory 7., where S"~! := {z € R": |z| = 1}
denotes the unit sphere in R™. Of particular interest are points for which the differential of the map
z +— wy(2z) has rank less than n — 1 (recall that dimH =n — 1).

For V given by (4), the right-hand figure shows the graph \\Z
in S1 x R of the relation z — w, (z), z € [~14,14], drawn as a \ ///T\\*\
line over S*. The incoming direction w_ is indicated, and the \‘ (’/ o \
projection onto S! of points of the graph approaches w_ as |z| \ \ S
becomes large. At w. the projection onto S! is singular, i.e., ST T
the rank of the differential of the projection is zero. \ /'/ e
An outgoing direction wy € wy (H) C S"71, wy # w_, is called \\ \ /// | gt
regular (as in [24]) if for all z € H with w(z) = wp the dif- NG Y /
ferential dw, |, has rank n — 1. Hence all outgoing directions | \\*/J//wc
except w. and w_ are regular in this example. w-

We now review the definition of the scattering amplitude. We denote by H?(R™) the Sobolev space
of second order and define the operators

Py = —h2A, P=Py+V, dom Py = dom P = H*(R"), 0<h<1. (5)
The Potential Hypothesis guarantees (cf. Agmon [1, Theorem 7.1]) that the wave operators
RN B it P _—itPy
Wy '_tili%loeh e'n (6)
exist and are complete, i.e.,
ran W, =ranW_ = L*(R"),c, (7)

where L?(R™),. denotes the absolute continuity subspace with respect to P. The scattering operator can
then be defined as the unitary operator

S(h): L*(R") — L*(R"), S(h) == WiW_. (8)
Using the 1/h-Fourier transform Fj, of (D.102), we define for v > 1,
Fo(A,h): L3(R™) — L*(S"7), (Fo(A, )g)(w) := AT=D/4(Frig) (Vw). (9)

Here LZ/([R”) denotes the space of weighted square integrable functions, i.e., all functions f such that

I(-)fllzz < co. The smoothness of V allows us to find a unitary operator S(\, k) on L%(S"~1) such
that

1
EFy(A\ h)S(h)g = S(A h)Fy(A h)g, for all A >0, g € L2(R}), v > 3 (10)
The operator S(\, h) is called the scattering matrix. The transition matrix T'(A, h), defined through
S\, h) =T\ h) —2mil, (11)

(I denotes the unit operator) is a compact operator on L?(S"~1). Furthermore, under the Potential
Hypothesis, it can be shown (Isozaki and Kitada, [16, Theorem 0.1]) that T'(A, k) is an integral operator
on L?(S"~1),

(T(\ h)g)(w) = / T, A W)g(w) o (12)

where the kernel T'(w,w’; A\, h) is smooth for w # w’ and A > 0. We define the scattering amplitude
flw—,wis A h) as
flom,wis A\ k) == cppnT(w_, wy; A h), (13)

with ¢, n = —27(V\/21h) ("= D/2e=in=3)F

In accordance with the classical picture described above, we fix w_ and analyse the semiclassical
asymptotics as h — 0 of f(w_,wy; A, h) for varying w;. Our goal will be to give the leading term of these
asymptotics, i.e., the behaviour of f modulo O(h), where here and throughout O(h) refers to function of
w4 whose modulus is bounded by a constant multiplied by A when h — 0. Before stating our result, we
first review the available literature on this subject.
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The problem of finding a semiclassical expansion for the scattering amplitude in this setting was
considered by Vainberg [26, 27] in the case of a compactly supported potential V' and regular scattering
directions. Protas [21] then expanded Vainberg’s approach to include non-regular points in the setting of
compact potentials, but without giving the leading term of the asymptotics as h — 0 explicitly, see [12].

Using the phase functions introduced by Isozaki and Kitada [14, 15, 16] for Schrodinger operators,
Robert and Tamura [24] gave a formula for the scattering amplitude for short-range potentials, general-
ising Vainberg’s result but valid only for regular outgoing directions. Robert and Tamura’s techniques
have been used by Brummelhuis and Nourrigat [9] to give an analogous formula for regular scattering
directions in the case of a Dirac operator with compact potential.

All of the above approaches use the theory of the Maslov operator developed by Maslov, presented,
e.g., in [18], [27] and [20]. Following the idea of Protas, we define the lagrangian manifold £, C T*S"~!
consisting of the asymptotic angles and angular momenta of the trajectories as time s — +o0o0. We build
on Robert and Tamura’s general representation formula for the scattering amplitude in the short-range
case and show that in this case the scattering amplitude can be expressed in leading order as a simple
Maslov operator on L.

Since non-regular outgoing directions correspond to lagrangian singularities in £, (see Lemma 3.3.19),
this allows for a full consideration of generically occurring caustics, which in sufficiently small dimensions
have been classified by Arnol’d [5, 6, 7].! In fact, lagrangian singularities and the asymptotics of
oscillating integrals with corresponding phase functions (especially in the simplest case of a fold singularity
and the Airy function) have been extensively studied, see for instance the textbooks by Arnol’d [8],
Guillemin and Sternberg [11] or Taylor [25, Chapter 6.7]. This has, however, heretofore not been the
case in conjunction with asymptotics of the quantum mechanical scattering amplitude defined in (13),
and we give a short summary of the situation in the physically relevant cases of scattering in R? and
R3. This is motivated by the fact that the effect of caustics on the scattering amplitude has heretofore
been treated confusedly or simply been avoided in the physics literature. For example, Jung and Pott
[17] mention the problem posed caustics for the scattering amplitude rather clearly, but then apply a
“uniformization” close to caustics and apparently avoid discussing what the precise effects of caustics are.

There has recently been renewed interest in this problem. Alexandrova [2] has given a generalisation
of Vainberg’s and Protas’ work for compactly supported perturbations of the Laplacian. Michel [19] has
generalised [24, Theorem 1] to hold for a slightly weaker non-trapping condition than Robert and Tamura
had assumed, under additional assumptions on the resonances of the Schrodinger operator (see Section
3.4 for more details).

We will work directly from the article of Robert and Tamura [24], which gives the leading-order
semiclassical term of f(w_,w;; A, h) for fixed w_ and wy in the case that wy # w_ is regular. Numerous
results from [24] will be cited in our text.

In Chapter 1 we establish some basic definitions, notation and the setting, introducing the impact
plane H (orthogonal to w_) and the hamiltonian p € C*°(R} x Rf) associated to P(h). We prove
some important estimates concerning the behaviour of the integral curves of the hamiltonian vector
field H, as the time s — 4o00. These estimates in Propositions 1.2.7 and 1.2.10 are crucial to the
geometrical constructions in Propositions 2.1.4 and 2.4.6. In Section 1.3 we take a more geometrical
viewpoint, showing that the integral curves of the hamiltonian system form a lagrangian manifold A C
T*R™ (Theorem 1.3.3). The main difficulty there is that instead of the usual initial conditions, we have
“initial conditions at s — —o0”.

In Chapter 2, we first show that the limit as s — 400 of the angle and angular momentum of points on
trajectories exists. The ensemble of the asympotic angles and angular momenta (one for each trajectory)
form a lagrangian manifold £, C T*S™~! (Theorem 2.1.4). In Section 2.2 we review the definition
of phase functions of Isozaki and Kitada [14] and some results of Robert and Tamura, who apply the
phase functions in our setting. In Section 2.3, we obtain generating functions on A and £; (Lemmas
2.3.7 and 2.3.8), which we will use in the construction of Maslov operators on A and £ (see Appendix
D). In Section 2.4 we analyse the relationship between caustics in £, and caustics in A, culminating in
Proposition 2.4.6.

1By a slight abuse of language, we will refer to both p € £ and 7p as caustics if rank dr|, is not maximal, where 7 denotes
the canonical projection onto the base.
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After these preparatory results, we commence in Chapter 3 with the generalisation of Robert and
Tamura’s representation formula for f(w_,wy; A, k). After reviewing their results in Section 3.1, we use
a Maslov operator to approximate the action of en** for t € [0, Tp] for some Ty > 0. These estimates,
using the extended phase space, follow ideas of Maslov [18] which we further refine for our situation,
obtaining Proposition 3.2.16. In Section 3.3 we apply this result to the integral formula for the scattering
amplitude, proceeding with some elaborate constructions before applying the method of stationary phase.
In principle, this construction follows the ideas of Robert and Tamura [24], but is made much more
complicated by the presence of caustics. We complete the proof of Theorem 1, which we state below.

Section 3.4 contains a short discussion of the results obtained, as well as some open question, prin-
cipally on the structure and presence of caustics. In Section 3.5 we review the well-known results on
lagrangian singularities and discuss their application to our scattering problem. Finally, the Appendices
generally serve as a repository of results referred to in the text, Appendix D contains details on the
construction of Maslov operators on lagrangian manifolds.

DEFINITION 1 Let £, C T*S™~! with global coordinate map S;f be the lagrangian manifold of Theorem
2.1.4 and F, the global generating function of Lemma 2.3.8. Denote by m,,: T*S"~ — S"~1 the canonical
projection onto the base and let {(3;,x;)}, ¥; C Sn—1 Xj: Sn=t 5 R™ 1 be an atlas on S™L.

Let {(Tk,mr,.1,) te>0 denote some lagrangian atlas on Ly with I, C {1,...,n — 1} as in Definition
2.3.2 such that for all k > 0, I'y C T*%,;, for some i, and I'g is simply connected and well-projected.

Let {ex}, ex € C§°(T'x) be some partition of unity subordinate to {I'y} and define functions {gx},
gr € C3°(5,,), such that g, = 1 on n,I'y. Define a Maslov operator on L using these data following
Definitions D.1, D.5. In particular,

Kr 0 C=(Ly) — C=(S"71), Ke [o] = Zelg%Krk,m lex], (14)
%

where Ky, 1, denotes a local Maslov operator on 'y as in (D.105) and vy is the index of the chain of
charts joining Ty to Ty, cf. Definition D.3.

THEOREM 1 Let K., be a Maslov operator constructed on L as in Definition 1 and let ug denote the
Keller-Maslov-Morse path index of some trajectory T, with S;L(z) € I'yg. Let A > 0 satisfy the Energy
Hypothesis. Then

flo—,wis A h) = e™0% - K [1)(ws) + O(h) (15)

REMARK 1 Note that fizing Ty and S;\r determines a Maslov operator up to O(h), see Remark D.6. The
constant uo essentially compensates for the choice of Iy, c¢f. Remark 3.3.17.

REMARK 2 The representation [24, Theorem 1] is a special case of (15) for the case when wy is not a
caustic, i.e., rank d(m, OS;\F)_1 =n—1. In that case the Maslov operator at wy can be represented simply
as an exponential function. This is discussed more explicitly at the end of Section 3.3.

The author wishes to thank Prof. Markus Klein for supervising this work with limitless patience
in countless discussions and scrupulous proofreading. Much gratitude is due to Dr. Elke Rosenberger,
whose willingness to engage in innumerable conversations regarding fine points of the proofs and whose
moral support was a major help in the completion of this work. However, this work could not have been
completed without the loving support of Quanbo Xie, who in a million little and a thousand large ways
has helped to make it happen.



CHAPTER 1

The scattering problem in classical phase space

We start this chapter by giving a few essential definitions in Section 1.1 and setting the stage for
the study of asymptotics of the scattering amplitude. In Section 1.2 we will study the classical phase
trajectories in euclidean phase space T*R™ with “initial conditions at ¢ — —o0”, which imply an “in-
coming direction” and a “non—trapping energy”. We will obtain essential estimates for the convergence
of trajectories to asymptotically “free” trajectories. A union over all trajectories with given incoming
direction will yield a submanifold of 7*R™, which is the main result of Section 1.3.

1.1. The classical setting

In this section we give an introduction to the classical scattering problem, fixing definitions and
notations for later use and formulating some crucial estimates. We will analyse the symbol p € C*°(T*R™)
associated to the operator P(h) of (1), where the cotangent bundle on configuration space R? is the
classical euclidean phase space. It will turn out that the crucial objects in the analysis of scattering, the
scattering angle and the angular momentum at infinity, can be regarded as elements of 7*S™~!, which
we regard as a natural subspace of T*R™.

1.1.1. CONVENTION For euclidean space R™ we have a natural basis of the tangent space T,R" given by

the partial derivatives % evaluated at p € R™. We then write
J

T,R" = {X,(v): v € R"}, Xp(v) = v; % , veER™ (1.1.1a)
j=1 Jlp

We identify X, (v) with (p, X,(v)). Often, the subscript p is redundant, and to shorten our notation we
will omit it, writing instead

(p, X (v)) € TR™, where p,v € R” and X (v) = X,(v). (1.1.1b)

For f: R" — R™, we write f,: TR™ — TR™ for the the push-forward of f. Analogously, using the dual
basis of 1-forms,

TiR" = {X;(£): £ R}, Xp(©) =) &dus| . E€R" (1.1.2a)
and
(p, X*(§)) € T*R", where p, & € R™ and X*(§) = X, (§). (1.1.2b)

We will regard (z,€) as canonical coordinates of T*R™. For (p, X*( )) € T*R™ we write

Tp,x* () (T*R™) —{ U —|— v
e Z ’ af”ﬂ Z ’ 353 (3. ()

and thus obtain natural coordinates (u,v) = (u1, ..., Un,v1,...,vn) on T x5 () (TR").

VRS IR"} (1.1.3)
(P, X*(

In the present section, we will generally identify T*R™ ~ R7 x RE; all expressions are thus understood
to be in canonical coordinates (z,&). The Hamiltonian associated to P(h) is then given by

p(z,8) = € + V(2), (z,§) € R" x R, (1.1.4)

which is a smooth function in the classical phase space. The hamiltonian vector field is given by

_QZ& Z axl 8& (1.1.5)
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The integral curves of (1.1.5) (which we also call phase trajectories) can be regarded as solutions of the
system of ordinary differential equations

dz d¢
— =2 — = — (R, R™). 1.1.
% o, % W), v EORRY). (116)
1.1.2. DEFINITION We denote by (x(-;y,1),&(-;y,m)) a solution of (1.1.6) with given initial state
(@(03y,m),€(0;9,m)) = (y,m).- (1.1.7)

The Hamiltonian p(z, ) being constant along an integral curve of the vector field (1.1.5), we define
the energy of an integral curve by

Ay,n) = p(x(s;y,m),E(s;9.m)) = [€(s;y,m) > + V(z(s;9,m)) for any s € R. (1.1.8)
The hamiltonian flow ¢ is a map R x T*R™ — T*R", defined by
g(t, (y, X" (1)) :== g¢e(y, X*(8)) := (x(t;9,m), X*(&(;9,m))) (1.1.9)

While the existence of an injective local flow, i.e., a map g;(y, X*(n)) for all (y, X*(n)) € T*R™ at least for
[t| < T some small T'= T(y,n) is just standard existence and uniqueness theory of ordinary differential
equations, cf., e.g., [25], the existence of an injective global flow is a more complicated question. The
existence of a global flow g in our context will be discussed in Remark 1.2.8 below.

We will consider only phase trajectories that “go out to infinity” as s — o0o0; more precisely we
formulate the following property of integral curves.

1.1.3. DEFINITION The energy A > 0 is called “non—trapping for p” if for any R there exists a time T(R)
so that if |s| > T, then |x(s;y,n)| > R for all integral curves (z(-;y,n),&(-;y,n) € p~1(\) with |y| < R.

ENERGY HYPOTHESIS (“NON-TRAPPING CONDITION” ) We fix an energy A > 0 that is non—trapping for
p-

1.1.4. REMARK We note for later use that the Energy Hypothesis implies that the hamiltonian vector
field does not vanish on p~1(\), since (9sx(t;y,n), 0:&(t;y,n))t=0 = 0 would imply n = &(t;9,1m)t=0 = 0
by (1.1.6) and so (x(t;y,7n),&(t;y,m)) = (y,0) for all ¢ > 0.

1.2. Phase trajectories defined at infinity

We will assume throughout this and all subsequent sections that the Energy and Potential Hypotheses
hold. We will parametrise the phase trajectories of H, through an “impact plane” H C R™ which is
perpendicular to a certain “incoming direction” w_ € S"! = {x € R": |¢| = 1}. For notational
convenience, and without any ensuing loss of generality, we make the following basic assumption which
we also assume to hold throughout this text:

ImpaCcT PLANE HYPOTHESIS We fix
w_ :=(0,...,0,1), H={reR":zlw_ }={reR": z, =0} (1.2.1)

1.2.1. CONVENTION We generally denote points in the impact plane by the letter z. Since H is canonically
isomorphic to R~ wia the map R"! 3 z — (z,0) € R, we will often use H and R"~! interchangeably.
In cases where it becomes necessary to distinguish between R* ™1 and H, we employ the notation

zZ:=(z,0) e R" for z e R*1 and ' = (x1,...,2y1) € R for x € R" (1.2.2)
to avoid confusion.
It will be useful to consolidate the constants C,, of (3) by setting
‘glle%ﬁ(vag‘/)(xﬂ < Cppr(z)y-20tmm, Cpn i= \/ﬁlg‘lz;{n Chy. (1.2.3)

1.2.2. LEMMA Take x,y € R™ such that |z|,|y| > R for some R > 0. Then

max [(VOV)(z) — (VO*V)(y)| < 2]z —y| max sup |[(VI*V)(2)|
loe|<m le|<m+12>R

< 2C 4ol — y|(R) 272%™, (1.2.4)
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ProOOF. For x and y given as supposed, we can find a semi-circle C = ([0, 1]), v: [0, 1] — R™, centered
at (z + y)/2 with endpoints v(0) = y and (1) = z, such that |y(¢)] > R for ¢t € [0,1]. Then for any
jeEN={1,...,n},

@0V () = @0 V)) = [ SOV ds = [ (9 (5).00(0) ds

0

where §;, = 1 for j = n, zero otherwise. It then follows from (3) that

max [(VOOV)(z) — (VO°V)(y)| < max sup|(0°V \/ 1047(s)| ds

la|<m lal<m+2 e

<2 max bup|(8°‘ J(w)| - |z =yl
jal<m+2

< Wl — al(R) e O
We define “free” trajectories in T*R™ (see Convention 1.1.1) via
T0 = {(2, X*(€)) € T*R": (z,€) = (2VAw™ - s+ %,V Aw_), s € R}, ze R (1.2.5)

In other words, a free trajectory has constant momentum in the direction of w_ and at s = 0 the
configuration—space projection intersects the impact plane at 2 = (z,0) € H. Following [23, Chapter
XI.1], we introduce trajectories asymptotic to 70 as s — —oo.

1.2.3. DEFINITION For any z € H we define by (oo( -, 2;A), €0 (+,2; A)) the unique integral curve of Hy,
such that
lim |2 (s, 2;A) — 2V Aw_s — 2| =0,

§——00

SEI—DOJE‘X’(S’ 2 A) = Vaw_|=0. (1:28)
We further define w. (z;\) € S 1 and r(z;\) € R as the unique vectors such that
Sleookcoo(s 2 ) — 2V dwy (23 \)s — 14 (23 0)| = 0, (1.2.7a)
Sl{r_&o\{m(&z; A) — VAawy (z;0)] = 0. (1.2.7b)
The existence and uniqueness of phase trajectories (oo ( -, 2;A), € (-, 2;A)) is proven in [23, The-

orem XI.1] (where the estimates of Lemma 1.2.2 are used), while the existence of wy(z;\) and ri(z; \)
such that (1.2.7) holds is shown in [23, Theorem XI.3].

1.2.4. CONVENTION Using the conventions of Definition 1.2.3, we set
T. = {(®oo (5,2 1), X (€ (5,2:A))) € T'R™: s € R},

= T (1.2.8)
zeU

T = {(@oo(s,20), X (€ (5,2 0))) € T*R™: s 2 T},

Tsz — U sz,ET- (1.2.9)
zeU

For future reference we reiterate the existence and uniqueness statements made in Definition 1.2.3.
1.2.5. PROPOSITION [23] The correspondences
R '3z T, C T*R" and R*™ 22 (wi(zN),74(z0)) € S x R® (1.2.10)
are one-to-one, i.e., bijective on their image.

We will now state two propositions that give more precise estimates on the limits (1.2.6) and (1.2.7).
In particular, it turns out that the map (s, z) — (:1:00(3, z; ), € (S, 2 /\)) is smooth in s and z and that
the convergence as s — 400 is uniform for z € H.
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o /”wgzm Rap,
FIGURE 1. The projection onto R} of a
. 4 (252)

phase trajectory 7, for w_ = (0,...,0,1). T TTTT 2

1.2.6. REMARK The crucial estimates of Propostions 1.2.7 and 1.2.10 are (to the author’s knowledge)
not covered elsewhere in the literature. In [23, Chapter XI.1] a straightforward fixed-point argument is
given for the existence and uniqueness of continuous functions g, in (1.2.11) and (1.2.15), but without
any considerations of the dependence of integral curves on parameters.

In [10, Section 1.10] the smoothness of trajectories with respect to parameters is analysed, and the
estimates in [10, Theorem 10.1] are similar to (1.2.13) below. However, only derivatives with respect to
an asymptotic momentum parameter (corresponding to z € H) and an initial position are considered, and
no information on the decay with respect to the parameter of the derivative is given. Proposition 1.2.7,
by comparison, yields time— and parameter—decay information for time— and parameter—derivatives of
the trajectories. The same is true of (1.2.13) and the results of Propostion 1.2.10.

1.2.7. PROPOSITION The integral curves of Definition 1.2.3 are smooth, Too( -, -;A), €xo(+, "3 A) €
C*(R x H,R™). Writing
Too(s,2;0) = 2V Aw_s+ 2429 (s, 2 \), (1.2.11a)
€. (s, 20) = VAw_ 4+ 0,9 _(s,2;\), (1.2.11Db)

the function g_ can be estimated uniformly away from the origin in the R x H coordinate plane, i.e., for
any multi-indez (k,3) € N x N"=1 there exist constants Cr r.k.g, Cspikp > 0 and Sk g, Rrg > 0 such
that

\858§g_(s,z; M| < Cr Rk, - (z}‘g_w@\ﬁw,s + 73>1_k if |z| > R (1.2.12)
and

0%0%g (5,2, 0\)| < Cspinp - (2VAw_s + 2)L-ek=1ol if s < Skg. (1.2.13)

1.2.8. REMARK The fact that for any z € H the map s — (€oo (s, 2; ), € (S, 25 A)) is smooth implies the
existence of a global flow ¢g( -, -) on R x A, where

A:UTZ

zeH

(see Theorem 1.3.3 below).
1.2.9. DEFINITION We denote by g the restriction of the hamiltonian flow to R x A, i.e., the map

G RXxA—=A g, (o(5,20), X (€ (5,25 0)) = (oo (s + 1, 25 A), X (Euc(s +1,2;2)).  (1.2.14)
For short, we write gi(+) = g(¢, - ).

1.2.10. PROPOSITION The functions r4 and wy of Definition 1.2.3 are smooth in z, ro(-;\), wy(-;A) €
C>(H,R™). Writing

Too (5,2, 0) = 2V Awy (23 \)s + 74 (23 A) + 29, (s, 23 \), (1.2.15a)
€oo(5,2:0) = VA (2:0) + 059, (5, 21 M), (1.2.15b)
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for any multi-indez (k,3) € N x N"~1 there exist positive constants C,.g, Cr., Cr ik, and Ty g such
that

107(2 = r(30)] < Crig - (2)' 70717 (1.2.16a)
102 (w- — wi (% V)] < Cugg - (z) 27, (1.2.16b)
|8§8§g+(5, z;A)| < OT Hik 3 (2)7 |ﬁ|<2\[\w_8 4 z)l-e~k for s > Ty . (1.2.16¢)

1.2.11. CONVENTION While the indices “+” and “oc0” of the functions of Proposition 1.2.10 are useful
mnemonics, we will often need to refer to the components of (say) Too(s,z;A) € R™, where they become
cumbersome. We thus write, e.g.,

moo(svzyA) = (mi(svz;)\))i:L.“,n7 g+(8,2;)\) = (gi(svz;A))i:L...,na (1217)

i.e., we drop the index “+” and “oco” when refering to the components of oo, €, wy, 4, g, and Ly
(the last introduced below in (2.1.14)), all of which are functions mapping R® — R", in cases where no
confusion might arise.

1.2.12. COROLLARY For any z € H and € > 0 there exists some T(z,€) > 0 such that

(1 —e)2VAs < oo (s, 2; M) < (1 +2)2VAs for s > T(z,¢). (1.2.18)
There exists some T > 0 such that
VAs < |@oo(s,2; M) forall s >T and z € H. (1.2.19)

Furthermore, for any 8 € N"~! and any € > 0 there exists some T(¢) > 0 such that for all z € H and
s, 8" >T(e)

105 (€00 (5, 2 N) — oo (5, 2; M) — 2V AP wy (2 M) (s — §')| < els — &'|. (1.2.20)
Moreover, for any multi—index o € N™ there exist constants C!, > 0 such that
[(00V ) (oo (5, 23 )| < CF (s) 1] for all z € R*1, (1.2.21)

PROOF. The assertion (1.2.18) follows directly from (1.2.15a) with (1.2.16¢). In order to show (1.2.19),
we set

Zoo(5,2:A) = 2VAs(w4(2) + R(s, 2)),
oo (5,2 M) = 2VAs /1 + 2{w4 (2), R(s, 2)) + | R(s, 2)|?

(1.2.22)

with

r+(z;A) + 29 (s, 2; )

R(s, z) = ol

(1.2.23)

We first claim that for any (k, 3) € N
‘8k85 wi(z;N), R(s,2))| < Cs - (z)lme~IBl . g—1k, (1.2.24)
Then it follows from (1.2.24) that
1
14+ 2(wi(2;0), R(s,2)) + |R(s,2)|> > 1 — 2[{wy(z;\), R(s, 2))| > 3 (1.2.25)

for sufficiently large s and all z € H. Then (1.2.22) and (1.2.25) imply (1.2.19).
We first prove

kgb _ U N—e—B8l . —1-k
koL (R(s,z) Qﬁs)‘ <0y (2) 51k, (1.2.26)
(1.2.27)
By (1.2.23),
R(s,z) — QZW = %)\_%8_1(7“4_(2:; A)—2)+ /\_%s_lg+(s,z; A) (1.2.28)

0 (1.2.26) follows from (1.2.16a), (1.2.16¢) and Corollary A.2.
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We now show (1.2.24). Since (w_, 2) =0,
(Wi (2), R(s, 2)) = (wi(2) = w—, B(s, 2)) + (w—, R(s, 2))
= (2VAs) Hwy (2) —w_, 2) + (wy (2) —w_, R(s,2) — (2V/As)"12)
+{w_, R(s,z) — (2VAs)713) (1.2.29)
and (1.2.24) follows from (1.2.29) using the estimates (1.2.16b), (1.2.16¢) and (1.2.26) with the product

rule. This completes the proof of (1.2.19).
We will show (1.2.20). By (1.2.15a),

% (xi(s,2;0) — (s, 2, 0)) = 2VAPwi (2 \) (s — 8') + 2029 (5,2, 0) — 20%g, (s, 2;0).  (1.2.30)
We will show that for any e > 0 there exists some T'(¢) > 0 so that for s,s" > T'(g)
20029, (s,2:0) —9Pg..(s', 2 \)| < e. (1.2.31)
By the mean-value theorem, for s,s’ > T,

\8fg+(s7z;)\)—8fg+(s’,z;)\)|S sup |8t(“)fg+(t7z;)\)\|s—s'|.
te(T,00)

By (1.2.16¢), there exists some Cj3 > 0 so that
sup [0:01g., (t, 2 M) < Cp - |T|7%,
te(T,00)

hence we can take T sufficiently large to ensure (1.2.31). g

Note that Definition 1.2.3 also yields (1.2.18) and thereby (1.2.21), but without the stated uniformity
inzeMH.

In Section 1.3, we will see that the union over z € H of the integral curves 7, forms a lagrangian
manifold. This geometrical object is crucial for the introduction of the canonical Maslov operator (see
Appendix D), which in turn allows the construction of asymptotic solutions to (1). The procedure is
discussed in detail in [27] or [18], and we will make use of it in Section 3.2 below.

Proof of Proposition 1.2.7. We first note that phase trajectories solving (1.1.6) with (1.2.6) have the
form (1.2.11) with g_( -, z; A) € C*(R) satisfying the integral equation

g (s,z7) = —/_Oo /_w(vv)(w“(T’z;)‘))det (1.2.32)

—/S /t (VV)2VAw_T + 2+ 2g_(7,2;\)) dr dt

with
lg_(s,2; )], |0s9_(s,2;\)| — 0 as § — —00.

1.2.13. REMARK Referring to the proof of [23, Theorem XI.1], we recall that there exists some T < 0
such that for any z € H there exists T'(z) < T such that the map

(Fau)(s) = — L ) [ t (VV)(2VAw_T + % + 2u(T)) dr dt, (1.2.33)

is a strict contraction on

Moy = {u € O((~00,T(2)),R™): sup |u(s)] < 1}, (1.2.34)
s<T(z)

where C((—o0,T'(%)), R™) denotes the space of continuous functions on (—oo,T') with values in R”. Then
for z € H we choose T'(2) so that g_(-,2;\)|(—sc,7(z)) € Mr(z) and the existence and uniqueness of
9_(+,2A)|(—00,7()) follows from the existence and uniqueness of the fixed point of anZ|MT(z)' By the
existence and uniqueness of solutions to ordinary differential equations, we obtain for each z € H a unique
function g_( -, z;A) € C*°(R) (while the continuity of g_ follows from the contraction mapping principle,
the smoothness is implied by the continuation of (z, €.,) as an integral curve of the smooth vector field
(1.1.6)).
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Since the aforementioned time T' does not depend on z, the arguments of the proof of [23, Theorem
XI.1] imply that the map
s t
(Fau)(s, z) = —/ / (VV)2V I w_T + % + 2u(r, 2)) d dL, (1.2.35)
is a strict contraction on
Mry = {u € C((—o0,T) x H,R™): suplu(s,z)| << 1}. (1.2.36)
)
Again the existence and uniquenees of a fixed point implies that g_ (-, - ; A\)|(—oo,7)xH € Mr,1 and since
g_(-,2;A) is smooth, g_(-, -;A)|(—so,7)xn is smooth in s and a continuous function of z € H. Our
present goal is to refine these arguments and prove that g_(-, -;)\) is an element of C*°(R x H;R"™)

satisfying the estimates (1.2.13) and (1.2.12).

For N € N and T' € R we introduce the Banach space

Bryiy = {u € CV((=00,T) x H,R"): lim_[u(s,z)| = 0, |ullzpn < oo} (1.2.37)
with the norm
lull7mn = max sup|<2ﬁw_s—|—é>k+‘m8§35u(s,z)|. (1.2.38)

(k,B)ENXN" 1 2l
KHBISN  S<T

‘We will consider the convex subset

T,H;N < 1}) (1239)

which is a complete metric space. The map Fy of (1.2.35) will turn out (see Lemma 1.2.15 below) to
be a contraction on My .y for any N if T' is small enough, yielding a unique fixed point, which is just
gf\(,ooyT)x[H. Before proceeding, we need a technical result.

Mrpn = {U € Brmn: [Jul

1.2.14. LEMMA Let u € Mpy.n for T < —2/V/X and let V satisfy the Potential Hypothesis. Then for
any N € N there exists a constant C(N) > 0 such that for any k € N and any multi-index 3 € N"~1
with k+ (5] < N and any a € N with 1 < |a| < 2 the estimate

|0502(0°V) 2V hw_s + 2 + 2u(s, 2))| < C(N)(2VAw_s + z) e~ lel=k=IAl (1.2.40)
holds.

ProoF. We will apply Lemma A.4 with Q = (—oc0,T) x H; the assertion (1.2.40) follows directly from
the validity of (A.35) for any a € N™ and k + |3] < N, and

U(s,z) == 2V dw_s + % + 2u(s, 2) with u € Mr .y, T < —2/VA, (1.2.41a)
p1(s,2) = pals, 2) == 2V Aw_s + 2), (1.2.41b)

The condition (A.33) holds for any « by the Potential Hypothesis. We need to verify (A.34) and first
note that the orthogonality of Z and w_ yields

12V Aw_s + 2|? = 4Xs? + |2 (1.2.42)
Since |2v/As| > 4 on Q by (1.2.41a), we have
2V Aw_s+2) > [2V D w_s + 3| > 4. (1.2.43)
Using (x +y) > (x) — |y| for z,y € R"™, we have
(h(s,2)) = (2V Adw_s + % + 2u(s, 2)) > 2V Aw_s + 3) — 2|u(s, 2)| (1.2.44)

and by (1.2.39) we have |u(s,z)] < 1 on €, so
(1h(s,2)) > %(2\5\w,s + ) > 2. (1.2.45)

It follows from (1.2.41b) and (1.2.45) that
1 < 2(%(s,2))pals, )7t (1.2.46)
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Furthermore, by (1.2.38), v € Mpn,n implies
|870%u(s, z)| < pa(s,z)~I710l. (1.2.47)

We verify (A.34) for all j + |0] < N. For j + || = 0 there is nothing to show, so we assume j + |[0] > 1.
For j + 6| = 1 we now have, using (1.2.41a),

187050 (s, 2)| < 14 2VA+2[070%u(s, 2)| < (14 2V A\)2p2(s,2) " (1(s, 2)) + 2pa(s, 2) L. (1.2.48)
where we have applied (1.2.46) and (1.2.47). Since 2 < (¢) by (1.2.45),

010205, 2)| < (34 4V \)pa(s,2) " (¥(s, 2)). (1.2.49)
For 2 < j +|6] < N, we have
0029 (s, 2)| < 2(0]0%u(s, 2)| < pals, 2) 71" (¥(s, 2)) (1.2.50)
by (1.2.45) and (1.2.47). Thus (A.34) holds for all k, 3 with k + 8] < N and (A.35) yields
05025V (0(s,2))| < Clask+18]) - pals, 2) (s, 2)) eI (1.2.51)

with some constant C(a, N) > 0. Using (1)) ~! < 2p; ' by (1.2.46), we can thus deduce the existence of
a single constant C'(N) such that (1.2.40) holds. O

1.2.15. LEMMA For T = T(N) < —2/v/A small enough, F is a strict contraction on M.

PrOOF. For u € My .y it follows from Lemmas 1.2.14 and A.6 that | Fyu(s, z)| — 0 as s — —oo for any
z € H. With the definition (1.2.38) of || -
small by choosing |T'| large enough. Thus for some T' < —2/V\, |Frullr Ny <1if uw € Mpp.n, so Fa
maps Mrp p.n onto itself. Furthermore, direct calculation gives

af)\(u + t’l))

_ (s,2) —2/ / (VO V)2V Aw_T + 24 2u(r, 2, N)), 0(1, 2; A)))P, dr dt.
(1.2.52)

We need to verify that %}'}\(u + tv)|i=o is continuous in u € My y.n to ensure that Fy is C! and
%fA(u + tv)|4=0 = DFx|,v. It suffices to show that for v, u, u,, € M.y (m € N),

d .
Fa(t+ t0)]1—o — —Fr(tm + tv)|t:0H =0 if lim um —ullzgy =0.  (1.2.53)
dt N k—oo

ILAE)

tim |5
ol dt

Note that limy, o ||ttm — u|l7,pn = 0 implies

lim sup|856§(um —u)| =0, Q= (—00,T)xH, k+|8] <N. (1.2.54)

m— 00

By the smoothness of V' and the chain rule (A.3), for any o« € N*, k + |5] < N, (1.2.54) implies
lim sup|akaﬁ(aa )2VAw_s+ 2+ 2u(s, 2)) — 885 (8°V)(2VAw_5 + % + 2upm(s,2)) = 0. (1.2.55)

m—0o0

Now by (1.2.38) and (1.2.52),

A@@H%ﬂ(u + 1) |t=0 — iﬂ(“m T tv)lt:oHT,[H;N

<2 lim sup(2VAw_s+ % k+\ﬁ\/ / max |8k85< VY2V w_T + 2 + 2u(T, 2; \))

m—0oo .y |a|=2
s<T k+|BI<N

— (0°V)(2VAW_T + Z + 2up (1, 23 N)), v(7, 2 \) )| dr dt (1.2.56)
The product rule (A.30) with (1.2.55) then gives (1.2.53) if we apply the theorem of dominated conver-

gence to take the limit under the integral. The estimate (1.2.40) with Lemma A.6 yield the integrable
dominating function.
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Hence Fy is C! and & F)(u + tv)|i=g = DFy|,v. We use (1.2.38), (1.2.52) and the product rule
(A.30) to see that

IDFA|u (V) l7mn < QSup/ / max Qﬁw_s + 73>k+|m
zehl k+|ﬁ|<N
s<

X [OFOP (VO V)2V Aw_T + 2 + 2u(r, 2)), v(7, 2))) 1y | dr dt

<2.2V sup/ / max 0802 (0°V)(2VAw_T + 2 + 2u(r, 2))|

zE[H k+|ﬂ\<

x max [(2VAw_s + 2)FHP9F08y(r, 2)| dr dt
k+IBI<N

<2V || 7 e - sup/ / max 0892 (0°V)(2VAw_T + % + 2u(r, 2))| dr dt
zE[H k+|[3|<

(1.2.57)

where we have used that maxq <y 0%(f - g) < 2V (max|q <y 0% f)(max|q <y 0%g). It follows that

s t
| DFalu| < 2N+ 51615 kﬁbe‘uéN/ / 185(8°V)(2VAw_T + £ + 2u(r, 2))|
s<T «a=2 oo e

<2 e o) [ / (2w + 2702418l drdy, (1:2.58)
z€H k+
s<T «a=2

by (1.2.40). Again Lemma A.6 implies that || DFy|,| < 1if T < —2/v/X is chosen sufficiently small. By

Lemma B.2, F) is a strict contraction. [l

By Lemma B.2 there exists a unique fixed point of Fy in My, for any N € N. Since Fy is
also a contraction on My with fixed point g _|(—oo,7yxn and Mz .y C Mpy we can conclude that
9_|(—oo,r)xtt € Mryn for any N (note that T = T(N)). In particular, we obtain g_|(_s 7)xH €
CN((=00,T) x H) for any N. From (1.2.11), we conclude that (Toc,&.0)|(—oo,m)xtt € CV((—00,T) x
H,R™ x R™). Then the general theory of ordinary differential equations (smoothness of integral curves
with respect to initial conditions) implies that (€, €., ) (and hence g_) is a CV-map RxR" ! — R* xR".
Since this is true for any N, the integral curves (zo., &, ) are actually smooth.

Now g_|(—oo,7)xH € Mr ;N for any N € N with 7' = T'(N) implies

185059 _(s,2;0)] < (2VAw_s + z) k1A for z € Hand s < T(k+ |0]). (1.2.59)
We will improve this preliminary estimate to obtain (1.2.13).

PROOF OF (1.2.13). We note that g_|(_o,7)xn € Mr N, (1.2.40) and (A.53) imply for & + |B] < N,
s t
0%0%g_(s,2;\)] < / / |8f8§(VV)(2ﬁw_T +2+2g_(7,2;0))| dr dt
s t
< C(N)/ / 2V w_T 4 z)"e k=18l gr gt

< O(N)Cyyrprip) - 2V w_s + z)17e k=181, zeH,s<T(N). O

The proof of the estimate (1.2.12) stems from the same fixed—point argument as that of (1.2.13). We
set Br := {z € H: |z| > R} and introduce the Banach space

B gy = {u € CV(R x Bp,R"): lim [u(s,z)| = 0, |ullg,r.v < oo} (1.2.60)
with the norm
|ullg.rev == sup ‘gllg;]y@fw 54 2) U PP u(s, 2)|. (1.2.61)
2>

se[R



14 1. THE SCATTERING PROBLEM IN CLASSICAL PHASE SPACE

‘We consider the convex subset
Mg rN = {u € Brr.N: |[ullrrn < 1}, (1.2.62)

which is a complete metric space and show that for suitable R > 0 the map F) is actually a contraction
on Mg g;n, yielding a unique fixed point, which will turn out to be g_.

1.2.16. LEMMA Let u € Mg g.n for R > 4 and let V satisfy the Potential Hypothesis. Then for any
N € N there exists a constant C(N) > 0 such that for any k € N and any multi-indez 3 € N1 with
k+ 18] < N and any a € N™ the estimate

’85(8QV)(2\f/\w_s + 24 2u(s, 2))| < C‘a|(N)<z>_w 2V w_s + z)y7e~lal (1.2.63)
holds. We set C(N) = max{C|o|(N): 1 < |af <2}

ProOOF. We will apply Lemma A 4; specifically, we will show that the estimate (A.35) holds on 2 = Bp xR
for

U(s,z) = VA w_s+ 3+ 2u(s, 2) with v € Mg r,n, R > 4, (1.2.64a)
and
k=0, 18] < |81, (s, z) =1, p2(s, 2) == (z). (1.2.64Db)

The condition (A.33) holds for any a by the Potential Hypothesis. We note that for |§] = 0 there is
nothing to show, so we assume |§| > 1. As in (1.2.45) and (1.2.46), (2v/dw_s + 2) > 4 and |u(s, z)| < 1
on {2 implies

(W(s,z)) > %(2\5\(,0,8 +2)> () > 2, 1< 2((s, 2))p1(s,2) L. (1.2.65)

N

Now u € MR g,n implies
|2u(s, 2)| < 2V Aw_s + 2)pa(s, z) "1 (1.2.66)
by (1.2.61). For |6] =1 we now have with (1.2.64a), (1.2.66) and (1.2.65)
|029(s, 2)| < 1+ 2(02u(s, 2)|

<1422V w_s + Z)pa(s, z)
< 6(W)pa(s,z)" L. (1.2.67)

For 1 < |§| < N, we have with (1.2.64a) and (1.2.65),
039(s, 2)| < 2(02u(s, 2)| < (2VAw-s + 2)pa(s,2) 71 < 2pa(s,2) 71 (s, 2)). (1.2.68)
Thus (A.34) holds and (A.35) yields
|02(02V)((s,2))| < Cle18]) - pa(s, 2) ™11 (s, 2)) ¢~ 1 (1.2.69)

with some constant C'(«, N) > 0. Together with (1.2.65) we can thus deduce the existence of a single
constant C'(N) such that (1.2.63) holds. O

1.2.17. LEMMA For R = R(N) > 4 large enough, F is a strict contraction on Mg g.n-

ProoF. The proof proceeds in an anlogous way as that of Lemma 1.2.15. For u € Mg g,n it follows
from Lemmas 1.2.16 and (A.6), with the definition (1.2.38) of || - ||7,n;~ that ||Faullzm.~ can be made
arbitrarily small by choosing R large enough. Thus for some R > 4, ||Faullrmny < 1if v € Mg g.N, sO
Fx maps Mg g,y onto itself. We ca repeat the arguments in the proof of Lemma 1.2.15 to see that F) is
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C' and DF,|,v is given by (1.2.52). Then similarly to (1.2.57), (1.2.61), the chain rule and (1.2.63) give
IDFxLu(0) |l R
< 2VF sup (2VAw_s + ) 7!

|z|>R
seR

s t
x/ / ma [0(0°V) 2V R + 2+ 2u(r, () - e |oo(r, )| dr de

< 2NHLC(N) sup 2V Aw_s+ 2) 7!

|[z|>R
seR

/ / max (z) P2V Aw_T + )02 max|< WBLaBY(r, 2)| dr dt
W|<N 18l<

< 2N+1C(N)||v||T7[H;N - sup (2\f)\w,s +z) / / max ( |5\<2fw T+ 27 drdt (1.2.70)
|z|>R \ﬂ\<N
seR

Hence it follows that

s t
|DFy|| < 2VTIC(N) sup 2V Aw_s+ 27! max <z>*lﬂl/ / 2VAw_T+ 2" drdt. (1.2.71)

|z|>R BeEN""1
seR [BISN
a=2

Again Lemma A.6 allows us to ensure |DFy|.|| < 1 by choosing R >> 4 sufficiently large. By Lemma
B.2, F, is then a strict contraction. O

It follows that g_|rx By € Mg, g~ and hence there exists a constant Cy g3 > 0 so that
10%g_(s,2; )| = [0°Fg_(s,2; )] < Coplz) e Bl2vVAw_s + 2) for s € R and |z| > R.
Now by (1.2.63)

1080,g_ (5,2 V)| < / 02 (VV) VAT + 2 +2g_ (1,2 \)|dr

< (1) (=)~ / 2Vw_ T+ )7 L dr. (1.2.72)
Applying (A.54) and substituting in the integral we obtain
2VA(z)"1s
920, (5.5 0] < CV) () [ (r)-etdr

< C(N)<Z>fgf\ﬁ\/ <7.>fg—1 dr

=: Oy 5 (2)797 1AL,
Now since

g (s,2:0) = —0F 2 (VV)(2VIw_T + 2+ 2g (7,2 )\)) for a > 2,

we can inductively apply (1.2.63) with the chain rule (A.32) and the previously obtained estimates for
0%=208g_ to obtain estimates for 9*9%g_ for k > 2. This procedure gives (1.2.12). O

Proof of Proposition 1.2.10. Similarly to the representation (1.2.32), the phase trajectories solving
(1.1.6) with (1.2.7) have the form (1.2.15) with

g.(s,z30) = /soo /tOO(VV)(:BOO(T,z; A))drdt -
= / /t (VV)(Q\/XW+(Z;)\)T+T+(Z;)\) +2g,(1,2;\)) drdt
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and
19.(5,2A)], [0594(s,250)| = 0 as s — 4o0. (1.2.74)

The existence and unigeness of g, in (1.2.15) follows from the existence and uniqueness of w, and 74,
cf. (1.2.7). By (1.2.73), g is smooth in s and z. Note that in particular

859_(5,2;)\):—/8 (VV) (oo (7, 25 ) dr, 8sg+(s,z;)\):/OO(VV)(:cOO(T,z;)\))dT. (1.2.75)

— 00

and g, is a smooth function of s and z. We next verify the estimates (1.2.16), whose proof will incidentally
yield the stated smoothness of w; and r.

PROOF OF (1.2.16b). Comparing (1.2.11b) and (1.2.15b),
wo —wi(z;0) = A"7(0eg, (5,23 0) — Dsg_ (5,2 1)) f/ (VV)(@oo (T, 2; N)) dr. (1.2.76)

We obtain immediately that w(-;)\) € C°°(R?!). It is sufficient to show the estimate (1.2.16b) for
|z| > R for some R > 0. We may therefore use the estimate (1.2.12) of Proposition 1.2.7; for 2| > R, R
as in Proposition 1.2.7, there exists constants Cr(3) > 0 such that

10%(VV) (oo (s, 2 N))| = |020,€ (5,2 N)| < Cr(8)(2) P12V Aw_s 4 2) 72! (1.2.77)
It follows directly that

108 (w_ —wy (V)] f/ 108 (VV) (oo (7, 2 \))| dr
Cr(B) .\ 15 ool gr
<2 | @Viertaeia
Applying (A.54) and substituting in the integral,
Bl — (s Cr(B) | y—o-1-181 [~ A-lry—e-1 g
02~ — ez )] < T2 | et
< GrB) () —eia /OO (ry=etdr O

-2

PROOF OF (1.2.16a). The representations (1.2.11a) and (1.2.15a) at s = 0 yield r4.(-; ) € C®(R"™1),
via

Z—ry(zN) =2(g,(0,2;1) —g_(0,2; X))

—2/ / (VV)(@oo(T, 23 A)) dT dt — 2 / / (VV)(@oo(T, 23 N)) dr dt

where we have used the representations (1.2.32), (1.2.73). Again we assume |z| > R and apply (1.2.12)
to obtain (1.2.77). Thus

0 t oo oo
082 -y (2:0)] < 2 / / 108 (VV) (oo (r, 22 N)) | drdlt + 2 / / 08 (V) (@, 25 \))| dr d

< ACR(B)(z)~ 17! /0 /t 2VAw_T + 2) "¢ dr dt.

Applying (A.54) and substituting in the integral,

0 t
S%@H—m/ / (r)~eLdr dt. O
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PRrOOF OF (1.2.16¢). With the same arguments as in Remark 1.2.13, we obtain that for sufficiently large
T>0

(FYu)(s,2) := / / (VV)(2VAIw_T + £ + 2u(T, 2)) d dt, (1.2.78)
s t
is a strict contraction on
M‘TL’[H = {u e C((T,0) x H,R"): suplu(s,z)| < 1}. (1.2.79)
s>T
z€H

By (1.2.73) and (1.2.74), its fixed point in M;)[H (for sufficiently large 7) is g (-, - ; A)|(7,00)xt1- We will
pursue the same strategy as in the proof of Proposition 1.2.7.
For N € N and T' € R we introduce the Banach space

Brun, = {u € CV((T,00) x H,R"): lim [u(s,2)| = 0, Jullrin, s < o} (1.2.80)
with the norm
llull7mN,+ == max sup’(z)lmafu(s,z)‘. (1.2.81)
BeN™"1 zeH
BI<N s>T

We will consider the convex subset
MrpN = {u € Bryn,+: ullrpy 4 < 1}7 (1.2.82)
which is a complete metric space.

1.2.18. LEMMA Let u € My p.n 4+ with T > 0 large enough and let V' satisfy the Potential Hypothesis.
Then for any N € N there exists a constant C(N) > 0 such that for any multi—index 8 € N"~1 with
|B8] < N and any oo € N™ the estimate

02(0°V)(2Vdw (2 A)s + 14 (23 A) + 2u(s, 2))| < Ca(N)(2) P2V Aw_s + 2) 7o (1.2.83)
holds. We set C(N) := max|q|<2 Ca(N)

Proor. We will apply Lemma A.4; specifically, we will show that on Q = (T, 00) x H the estimate (A.35)
holds for

W(s,2) = 2V hw (25 \)s + 74 (2 A) + 2u(s, 2) with u € Mpp,n 4, T large enough, (1.2.84a)
p1(s,2) =1, pa(s,z) := (2), and j =0, |3| < N. (1.2.84b)
The condition (A.33) holds for any « by the Potential Hypothesis. We first remark that
1+ 2V wi (2 M)s 4 ro (23 \)]?
=142V wi(z;N)s + 2+ (re(z; ) — 2))2
> 144X —AVArg (z; ) — Z|s + |22 + [r (2 0) — 22 = 2|2] - [ry (25 0) — 2| — 2V A|z]s
> 2V w_s 4 2)2 — 2V \|z]s — Cro(2) 72(4V s + 2|2]), (1.2.85)

where we have used the estimate (1.2.16a). For some sufficiently large T' > 0 we thus have
2V AW (Z;N)s + 1o (2 0)2 = 14 12V Awy (23 \)s + o (2 0) ]2 > %m@;_s + 2)2 (1.2.86)

for s > T, z € H. Then using (z + y) > (z) — |y| and v € My n,n 4+, we can find some T > 0 so that

3

(h(s,2)) = 2V Awi (23 A) + 1o (23 A) = 2u(s, 2)| = S(2Vdw_s + 5) — 2 > %(2\[\w_s +2) >1 (1.2.87)

W~ |

for s > T > 0 and z € H. Note that (1.2.87) implies
1
() > 1, (W)(2)™ > 3, (t(s,2)) = VAls|. (1.2.88)

Now u € Mg g;n,+ implies

u(s, 2)| < pals,2) 17 (1.2.89)
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by (1.2.81). Now for || = 0 (A.34) is trivially valid, so we assume |G| > 1, By (1.2.16a) and (1.2.16b)
there exist constants ¢(5) > 0 such that

02 (5 )| < () - pals, ), (a5 < {Egg I S (EX D
Then by (1.2.84a) for |§| = 1 we have with (1.2.89) and (1.2.90)
020)(s, 2)| = [2V 203w (21 A)s + 9014 (23 A) + 200 u(s, 2))|
< 2VAe(8) pals, 2) 72|s| + () 4 2pa(s, 2)~? (1.2.91)
Then with (1.2.88) we have
[024(s, 2)| < 20(5)P2(8 2) 72 (1 (s, 2)) + 2c(8) (1 (s, 2))py " + 202(5,2) T (1(s, 2))
c'(8) - pa(s, 2) " ((s, 2)) (1.2.92)
for some ¢/(3) > 0. Slmﬂarly, (1.2.89) and (1.2.90) yield
025, 2)| < ¢ (8) - pa(s, 2) 7N W (s, 2)) (1.2.93)
with some ¢”(§) > 0 for any 6 with |§] > 1. Thus (A.34) holds and (A.35) yields
10202V (4(s, 2))] < Clas[B]) - pals, 2) 171 (wh(s, 2)) 7271 (1.2.94)
with some constant C'(a, N) > 0. Together with (1.2.88) we can thus deduce the existence of constants
Cy(N) such that (1.2.83) holds. O
Now since

| F ullr N+ < max sup(z ‘ﬁl/ / |02(VV )2V AW (2 AT + 74 (2 A) + 2u(7, 2) )| drdt
(k,B)ENXN""* 2€H
IBI<N  s>T

< C(N)  max / / 2V w Ty tdrdt (1.2.95)
(k,B)ENXN™~1
\ﬂ\<N
where we have applied (1.2.83), we can ensure that || Fy ul|7n. v+ < 1. Similarly to the proofs of Lemmas
1.2.17, it is not difficult see that Fy is C! and for T > 0 large enough a strict contraction on My .y -
Thus g |(7,00)xt € M7 m;n,+ and we obtain directly that

102g., (s, 0)] < (2) 712V Iw_s + 2)1e for s > T(N), |8] < N and z € H. (1.2.96)
Repeating the arguments following Lemma 1.2.17 and applying (1.2.83) with the chain rule, we inductively
obtain obtain (1.2.16¢). O

1.3. The scattering manifold in euclidean phase space

In this section we will show that the union over all z € H of the phase trajectories 7, defined in
(1.2.8) is a lagrangian manifold in phase space T*R™. It is well-known (cf., e.g., [25]) that the union of
the integral curves of a hamiltonian vector field through a non—characteristic (n — 1)—dimensional surface
(given by some initial conditions) gives just such a manifold. Here, the Energy Hypothesis and “initial
conditions at t = —o0” will play a major role in the proof of our main result.

1.3.1. DEFINITION Let (N, o) be a symplectic manifold, i.e., a manifold N with a smooth, non-degenerate
two-form o. A submanifold M C N is called lagrangian if o|ryprx<rm = 0.

In our situation it is sufficient to consider cotangent bundles, as we are interested in T*R™ (and
T+*5"~! in Section 2.1) only. On T*R™ we have a canonical one-form o = Y &; dz;. Its exterior derivative,
o = d¢ A dz is known as the canonical symplectic form and (T*R",0) is a symplectic space. In (z,£)—
coordinates, cf. Notation 1.1.1,

Flp: R x R*™ = R, op((u,v), (W, 0")) = (u,v") = (v, v). (1.3.1)

1.3.2. REMARK For later use, we note that the natural symplectic form on T*S"~! is ¢° = i*c, where
i: T*S"~! — T*R™ is the natural inclusion map.
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1.3.3. THEOREM The map
t:Rx R — T*R", (5,2) = (Too (5,23 X), X* (€0 (5,25 0))) (1.3.2)
is an embedding and
A= 1(Rx R (1.3.3)
s a lagrangian submanifold of T*R™.

The proof relies on various preliminary results. We first note that it follows directly from the Energy
Hypothesis and the standard theory of ordinary differential equations that any single trajectory (integral
curve of Hp) is a 1-dimensional embedded submanifold of T*R™.

1.3.4. LEMMA For any z € H the map 7, := 1( -, 2) is an embedding and the trajectories T, = 7,(R) are
mutually disjoint smooth 1-dimensional submanifolds of T*R™.

PRrROOF. Recall from Lemma B.3 that a map between manifolds is an embedding if it is an injective
immersion that is also proper, i.e., the pre-image of every compact subset is again compact.
The map 7, is C* by Proposition 1.2.7, and the tangent map (7,).: TR — T(T*R"™) is given by

0

a . == le,,.z(s). (134)
Since the hamiltonian vector field H,, does not vanish on 7,(R), cf. Remark 1.1.4, the tangent map is
injective and 7, an immersion. We claim that 7, is injective. In order to see this, we use the hamiltonian
flow g; (cf. (1.1.9)), which acts on 7,(s) through ¢;7.(s) = 7.(s + t) and has the semi-group property
Jt,9ts = Gt,+t,- Then if there existed two times s1,s9 = s1 + 7 such that 7.(s1) = 7.(s2) = 7(s1 + ),
the trajectory would be periodic, i.e., 7,(s) = 7.(s 4+ ) for any s > s; and therefore bounded as s — oo.
This contradicts the Energy Hypothesis.

It remains to show that 7, is proper. Let K C 7.(R) be compact. The continuity of 7, implies that
771(K) is closed. Furthermore, by the Energy Hypothesis, 77 !(K) is necessarily bounded, therefore
compact.

Thus 7, is an embedding for any z € H and 7, is a smooth submanifold of T*R™. The trajectories
7. are mutually disjoint: for letting p € 7, N 7./, we have 7, = g(R, p) = 7., using the hamiltonian flow
(1.2.14). But then z = 2’ by Proposition 1.2.5. O

Subsequently, we will often make use of “coordinized” maps.

1.3.5. CONVENTION We will usually denote with a tilde the “coordinized” wversions of mappings; if
A: M — N is a smooth map and p1,92 are charts on M D Uy > p and N D Us > A(p), respectively,

then A= @0 Ao o1t on w1 (Uh).

The complementary objects to the trajectories 7, of (1.2.8) are the “wavefronts” Ag, which we now
introduce.

1.3.6. LEMMA For any s € R, s = (s, - ) is an embedding and A, := 1s(R"~1) is a submanifold of T*R™.
Furthermore, for any t € R, the hamiltonian flow (1.2.14) considered as a map

ggs): As = Nops, (®oo(5,250), X (oo (5,23 0))) = (Boo(s +1,230), X* (€ (s +1,230)))  (1.3.5)
is a diffeomorphism.

PRrROOF. Step 1: We first show that the map ¢, is an embedding if s is sufficiently small. We will split ¢4
into two auxiliary maps. First, for s € R, we define

ke: RP1 — R*L, 2 xh (s,2;0) = (21(258,A), .., ®n1(25 8, 0)). (1.3.6)

We will show that for some sy < 0, any map ks with s < sg is an embedding. Its differential is given by

D = (2L, 137

and (1.2.11a) and (1.2.13) imply
|Drs — 1| < C|s|™¢ for all s < —S and z € H. (1.3.8)
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Thus by Lemma B.4, k¢ is an embedding if s < sg for some sqg < —5. We define
Vs ks (R — R™ x R™,

(1.3.9)
(-rh e 73;71—1) = (xla cee ,xn_1,2\/XS + 2gn;asgl7 e 788917,—1’ \/X—i_ 8sgn)

where we have written

(917---agn) = g—(sans_l('xlv'"73771—1);)‘)7
(0sg1s---50s9,) = (0s9_)(s, /ss_l(xh ey Tp—1);A)

for short. It is easily seen that 1, is an embedding for s < sg, as it maps coordinates on an open domain
to the graph of a smooth function of these coordinates. It follows from the representations (1.2.11) that

ls = Ps O K, for s < s, (1.3.10)

which is therefore an embedding.

Step 2: Let g;: T*R™ — T*R"™ denote the hamiltonian flow of (1.2.14). We will show that if s < s,
the restriction g:|s, is an embedding for arbitrary ¢ € R. By the explicit construction of the trajectories
in Proposition 1.2.7, the map g¢|s,: As — T*R"™ exists for all ¢t € R. Since the hamiltonian vector field
Hp|a, is non—vanishing for any s € R (cf. Remark 1.1.4) g¢|a, is an immersion. We next show that g¢|a,
is also injective for any s and t.

Fix some s < sg. Then ¢;(A;) simply gives the integral curves of H,, at time ¢ with initial conditions
As = 15(R™1). Any two points t4(2),15(2") € Ay are elements of trajectories 7, and 7/, respectively, cf.
Lemma 1.3.4. Since these trajectories are disjoint, and ¢;(7,) = 7., the map g;: Ay — Ag4y is clearly
injective for any t.

Furthermore, g¢|, is smooth, since the dependence on initial conditions is smooth by the standard
theory of ordinary differential equations, cf., e.g., [25]. The inverse map, g—_¢|a,,, is continuous by the
continuity of ODE solutions with respect to initial conditions.

Thus by Lemma B.3 g¢|a, is an embedding for s < sg and ¢ € R. It follows immediately that any As,
s € Ris an (n — 1)-dimensional submanifold. Since ggs) is an injective immersion between submanifolds,
it is also a diffeomorphism. Clearly, this also implies that ¢s is an embedding for any s € R. (]

1.3.7. COROLLARY For any s € R, the map
ts: R Ay 2 (Too(S, 25 0), X (€ (S, 25 A))) (1.3.11)

is a diffeomorphism and for any z € R*! and any s € R the manifolds A, are transverse to T, i.e.,

T,7. NTpAs = {0} forp=1(s,z2).

Proor. We will verify through direct calculation that for any z € H the trajectory 7, is transverse to
A, if s < 0 is sufficiently small. In fact, t5(2) = 7(s)

0 B ox;(t; z, \) 0
() 5, = > o ol (1.3.12)
(1) o1 _ W’ o (1.3.13)
’ ay] y==z BZj y==z O ts(2)
and by (1.2.13),
0 0
- _ _ < . —e 3.
(72)+ pil_ 2v\ B | Cy - (s)7°, (1.3.14)
o [ty
(bs)s —| - < Cy-(s)C. (1.3.15)
9y; y=2 =1 Oz 72 (s)

This yields the transversality for sufficiently small s. Since g; is an immersion for any ¢, the transversality
holds for any s € R. O

1.3.8. LEMMA For any s € R, the restriction of the hamiltonian flow g|rxa, i an embedding.
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PrROOF. We first show that g|rxa, is injective. Assume that there exist ¢,t' € R, z, 2’ € H so that
(Too(s +1,230), X (€ (5 +1,2:0))) = (Too(s + 132/, 0), X" (€nc (s + 152/, 0))). (1.3.16)

We argue as in the proof of Lemma 1.3.4; for z # 2/, (1.3.16) contradicts the disjointedness of trajectories
7. in Lemma 1.3.4, while for z = 2/, (1.3.16) implies that the trajectory 7 is periodic, which violates the
Non—trapping Condition. Thus g|grxa, is injective.

Using (x, &)—coordinates for T*R™ and the global chart (;1: Ay — R"~!, we may consider the coor-
dinized map

glrxa,: R x R"™" — R* x R”, (t,2) = (T (s +t,230), € (5 + 1,23 N)). (1.3.17)

We will show that g|rxa, is an immersion. The tangent map at (to, z9) is simply given by

o Too (s+t,2;0) Too (s+t,2;0)
g|[R><A5* (to,20) = £w(s?rtt,z;)\) 500(5%215,@)\) (1'3'18)
ot 0z (to,z0)
Now comparing with the definitions of 7, = ¢(-,2) and ¢5s = (s, - ), we see that
g||R><As* (to,z0) — ((;Zo)*|8+to (Zs+to)*|zo)v (1319)

where the tilde refers to the coordinized maps as usual. Now the n — 1 column vectors of the block matrix
(Tstto )|z, are simply the coordinate vectors of tangent vectors spanning T, 1, (20) Ns+to, While the vector

(Tzo )#|s+to is the coordinate representation of (7, ).« %| . By Corollary 1.3.7, the latter is independent

s+to
of the n — 1 former, mutually independent vectors. It follows that the rank of g|rxa.,
(s0,t0), so g is an immersion.

Now by standard theory, the integral curves of (1.1.6) are smooth jointly with respect to initial
conditions and time, so g is a smooth injective immersion. The smoothness of the inverse map follows
immediately. (]

(to,z0) 18 m for any

PrROOF OF THEOREM 1.3.3. The proof of Theorem 1.3.3 is now an easy consequence of the proof of
Lemma 1.3.8. Using (z, )—coordinates on T*R™ for ¢, we see that from (1.3.17),

T: g|[R><on (1320)

so ¢ is an embedding and A is a submanifold of T*R". Furthermore, it follows from Corollary 1.3.7 that
for sufficiently small s < 0 the manifold A is non-characteristic for the hamiltonian vector field H,. Thus
the set of integral curves of H, through A, (which is just A) is a lagrangian manifold, cf. [25]. O







CHAPTER 2

The scattering manifold at infinity; caustics

From the perspective of scattering theory, the “natural” configuration space variable containing
information on the scattered state is the scattering angle w (-, ). We will show that

w(s,z) = Too($,2 )

= — ; 5 § — 00. 2.0.21
2o (5,7 V) wi(z;A) as § — 00 (2.0.21)

For x € R™ we define 7, : R™ — R™ as the projection y — (x, y)x, where (-, - ) denotes the euclidean scalar
product in R™. Then for (2, X*(£)) € T*R" we define the “radial momentum” by L, (z, X*(§)) = 74/ 2(€.
! Then it follows from (2.0.21) and (1.2.7b) that

(L Ly )(8,2) = To(s,2)E 00 (8, 23 A) =, \f)\er(z; A). (2.0.22)

for all z € H. Thus the radial momentum does not contain any additional information about the scattering
behaviour of a trajectory 7, to that already contained in w4 (z; \).

By contradistinction, we will show that the “angular momentum”, which we will define through a
certain isometric projection of (z, X*(&) € T*R"™ onto T*S™"~1 C T*R", converges towards an “asymptotic
angular momentum” (which we denote by L. (z;w) as s — co. For each trajectory we thus obtain a point
(wi(z;0), X*(Ly(2;0)) € T*S"~1. We will show the convergence (giving explicit estimates) and prove
that the union over z € H of (w4 (2;\), X*(L4(z; X)) gives a submanifold £, C T*S™! in Section 2.1.

In Section 2.2 we will prove that the manifolds A C T*R"™ of Theorem 1.3.3 and £, are both
lagrangian submanifolds in the cotangent bundles over euclidean space and the sphere, respectively. In
Section 2.3 we will recall the role played by lagrangian coordinates and generating functions, and give
explicit formulae for generating functions on A and L.

Finally, in Section 2.4 we will analyse the interplay between lagrangian coordinates on £, and A,
yielding technical prerequisites for the constructions of a useful Maslov operator on A, to be used in
Chapter 3 for the leading—order term in the semi—classical expansion of the scattering amplitude.

2.1. The asymptotic manifold over the sphere

2.1.1. CONVENTION We refer to Convention 1.1.1. We denote by g the usual euclidean metric on TR"™,
i.e., its fibre-wise action is given by

gp: Tp(R™) x Tp(R") — R, 9p(Xp(v), Xp(v')) = (v,0), (2.1.1)
where (-, -) denotes the euclidean scalar product on R™. We introduce the dilated metric h by setting
hp(+y ) =1Ip| 2gp( -, ) on T,R" (2.1.2)

We will regard the tangent and cotangent bundles on the sphere S™~ ! as subspaces of TR™ and T*R",
respectively, setting

TS" ' ={(p,X(v)) € TR": |p| =1, v Lp}, T*S"'={(p,X"(&)) e T*R": |p| =1, £ Lp}. (2.1.3)

Recall that the restriction of h to TS™ 1 coincides with the same restriction of g and gives a metric on
the tangent bundle of the sphere, which we denote by h°. Let

7 TR™ — T*R™, (P Xp() = (9, hp(Xp(v), ) = (p, X5 (Ip]?v)) (2.1.4)

INote that for any choice of polar coordinates (r,0): R* — Ry x R"~! we then have dr|, = X (z/|z|) and X}(L,) =
(@/]],€) dr|s.

23
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and
ot TSTL S TS (g, X)) e (g hS(Xy(w), ) = (. XP(w) (wlq)  (215)
denote the metric—induced isomorphisms between tangent and cotangent bundles.

We introduce the natural projection

0:R" — "1, O(x) =7 := Ek (2.1.6)

2.1.2. REMARK The action of the push-forward ©,: TR® — T'S"~! of (2.1.6) is given by
0.1 (p, Xp(v)) = (B, Xp(|p| " m50)), (2.1.7)
where
TRy =y—mzy =y — (T,y)x for x,y € R", |z| =1, (2.1.8)
is the orthogonal projection onto the orthogonal complement of .
2.1.3. DEFINITION & LEMMA The map
©: T"R" — T*s" 1 © =74 00,07, " (2.1.9)
is explicitly given by
O(p, X, (£)) = (B, X5 (lplm5€))- (2.1.10)

It is (fibrewise) an isometry on the orthogonal complement of its kernel with respect to the (dual of the)
dilated euclidean metric on T*R™ and the restricted euclidean metric on T*S™ 1.

PROOF. The formula (2.1.10) follows immediately from (2.1.7), (2.1.4) and (2.1.5). It is sufficient to
show that ©.,|,: (T,R",h) — (T;S™1, h°) is an isometry when restricted to the orthogonal complement
of its kernel. By (2.1.7), the kernel of ©,/|, is given by

ker O, [, = {X,(v) € T,R": m5v = 0}. (2.1.11)
Now for
X, (v), Xp(u) € (ker O,],)F = {X,(v) € T,R": ;U = v} (2.1.12)
(i.e., u,v L p) we have using (2.1.7)

o) (OxlpXp(v), 041, X (w)) = [p| 23 (Xp(mpv), Xp(mpu))
= |p|_2<7rﬁlv,7rﬁLu>

= |pl (v, u) = hp(Xp(v), Xp(u)). U

Our main interest is in the action of ® on A, and we will consider © o ¢,, where ¢;: R* ! — A, C A
was introduced in Section 1.3 (cf., e.g., (1.3.11)). Effectively, ® o s maps points in the impact plane
(which parametrize the trajectories) into the angle and angular momentum at time s. We will see that
the limit as s — oo of these variables exists in T*S™~! and forms a lagrangian manifold.

In order to keep our notation readable, we set

Too (8,25 A)

— .: A ek :
w(s,z):= FEESyE L(s,2) i= [Too (8, 23 A)[Teys,2) 00 (8, 23 M), (2.1.13)
wi(2) == wi (2 N), Li(2) = —VArk, yri(z:0), (2.1.14)

cf. Proposition 1.2.10 for the notation employed.
2.1.4. THEOREM For all z € H we have

lim @ ou,(2) = (wi(2), X*(Li(2))) = S5 (2), O o 4(2) = (w(s,2), X" (L(s, 2))). (2.1.15)

s—+00
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and this limit is uniform in compact subsets of R"~1; more precisely, for any R,T > 0, any o € N and
any multi-index 3 € N1 there exist constants Cy g.r,T, Clp.rr >0 sothat for s > T,

|Slup |8§‘8§(w(s7 2) —wi(2)] < C’a’g’R’Ts_l_", (2.1.16a)
z|<R
sup 10802106, 2) = L4 ()] < Chamrs™ ™ (2.1.16D)

Furthermore, the map S;r: R*=1 — T*S"~1 given by (2.1.15) is an embedding and the image
Ly :=S8HR") (2.1.17)
is a submanifold of T*S™ 1.

2.1.5. REMARK The estimates (2.1.16) differ from those of Propositions 1.2.7, 1.2.10 in two important
respects: first, they are uniform only for z in compact subsets of R”~!, and second, the speed of conver-
gence as s — oo does not depend on ¢ > 1. In fact, even if there is no potential (V = 0), the estimates
cannot be improved. Nevertheless, the convergence expressed in (2.1.16) is the crucial result for our
analysis of the behaviour of the scattering amplitude.

2.1.6. REMARK Theorem 2.1.4 is our first result where the sharp estimates of Proposition 1.2.10 are
crucial. While we have previously used the estimates as a matter of convenience, the limit statements of
Definition 1.2.3 together with some uniformity assertion for the impact variable z € H would have been
sufficient. However, the precise asymptotic behaviour of the trajectories as s — 400 is indispensable for
the following proof of Theorem 2.1.4.

By contrast, the constructions involving ® preceeding Theorem 2.1.4 are not srictly necessary, and
serve only as a motivation for the definition of (w(s,z), L(s, z)). In fact, we will prove Theorem 2.1.4
without any reference to ® at all.

2.1.1. Proof of Theorem 2.1.4. The proof Theorem 2.1.4 is the main objective of this section. We
first give a straightforward technical result on the behaviour of L (z;\):

2.1.7. LEMMA For any 3 € N"~! there exists a constant Cj.3 > 0 such that

102 (VA2 — Ly (2))| < Crp - (2)' 07181, 2eR™, 2=(z1,...,2n-1,0). (2.1.18)
PROOF. Since

03 (VAZ = L (2))] = [02 (VA2 = VArs (23 0) + VAws (5 M), 7 (2 M) (250))] (2.1.19)
the result follows from the triangle inequality and the product rule A.1 with the estimates (1.2.16a) and
(2.1.20) below. U

2.1.8. LEMMA For any 3 € N™ there exists a constant ¢(3) > 0 so that

102w (5,74 (25 N)| < e(B) - ()01 (2.1.20)
PrRoOOF. The orthogonality of Z and w_ yields

02w (50,7 (53 0)) = 2w (5:0) — w1 (5 ) + 2,1 (1) — 2)
= 08w (5 0) — w1 (5 0) = )+ 0w (5 0) — w0, )+ w1 (50) — 2)
Using (1.2.16b) and (1.2.16a), the product rule A.1 yields (2.1.20). O
We will split the proof into distinct parts, starting with the crucial estimates (2.1.16).
PROOF OF THE ESTIMATES (2.1.16). It follows that With (1.2.22) and (1.2.23) we can write
w(s,z) = Tl BN wi(z) + s, 2) . (2.1.21)
[@oo(5, 5 0]~ /T 2002 (2), R, 2) + [R5, 2)]P

We assume from now on that R > 0 is fixed and |z| < R. For (a, 3) € N x N"~! we deduce the existence
of constants ¢j.og,r, j = 1,2,... appearing in the formulae below. By (1.2.16¢) we have the initial
estimates

10%0%R(s,2)| < craprs %, |z| <R, s >T>1, (2.1.22)
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where T' > 0 is given in Proposition 1.2.10. Corollary A.2 then yields
10992 (2(wy (2), R(s,2)) + |R(5,2)|*)| < caaprs 7%, 2| <R, s>sy>1. (2.1.23)
We choose S = S(R) > s so that

1
|(2(wy(2), R(s,2)) + |R(s,2)[})| < 3 |z| <R, s> S(R), (2.1.24)

and note that there exist constants ¢, > 0 such that
sup O (1+ )2 < cp. (2.1.25)

lz[<1/2
Then from the chain rule (A.32) with (2.1.23), (2.1.24) and (2.1.25) we obtain for |z| < R,
|090P[(1 + 2(wy (2), R(s, 2)) + | R(s, z)|2)i% ~1]| < c3aprs Y  s>8(a,3R)>s,. (2.1.26)
Setting
Chapr = S, B, R sup (RO [(1+ 2w (2), R(t,2)) + |R(E,2)P)E2 = 1] + cgia .8,

s4<t<S(a,3,R)
l2|<R
we can improve (2.1.26) to
10295](1 4 2(wy (2), R(s, 2)) + |R(s, z)|2)i% —1]| € caaprs 7, 5> s4. (2.1.27)

The representation (2.1.21) yields

10207 [w(s, 2) — w4 (2)]]

<0802 [ (2)((1+ 20wy (5,2 0), R(s, 2)) + [R(s,2)[) 77 = 1)]| + 050 Rs, 2)|
+ 10902 [R(s, 2)((1 4 2(ws (5,2 0), R(s,2)) + | R(s,2)]) "% = 1)

Again, Corollary A.2 with the estimates (2.1.22) and (2.1.27) immediately yields (2.1.16a).
We next consider the estimate (2.1.16b). Note that by (1.2.22)

[@oc (5,23 \)| = 28 + 2VAs (1 + 2(wy (2), R(s, 2)) + |R(s,2)")2 = 1),
so we have with the product rule and (2.1.27)
10208 |00 (5, 2 N)|| < C500.8.08 %, lz2| <R, s> s;. (2.1.28)
By (2.1.13),
L(s,2) = oo (8, 2; ) |€oo (8, 2; A) — (w(8, 2), € (8, 2; \)) oo (8, 25 A) (2.1.29)
A straightforward calculation using the representations (1.2.15) yields
oo (5,5 MEae (525 A) = VA (2),04 (2) — woo (5,5 W) oo (5, 5 )] - w4 (2)
VA4 (2), Too (5,5 ) w4 (2) + oo (5,5 V)] - Dsg (5,23 1)
and
(w(s,2),€(8,2; \)) oo (8, 25 N)
= (w(s,2),0:9 (5,2 \)Toc (5,23 A) — VAwy (2) — w(s, 2)P oo (5, 23 A)
+ VAW (2), w4 (2) = w5, 2)) oo (5,25 A) + VAZo (5,23 A).
Then by (2.1.29),
L(5,2) = Ly (2) — 2VAg. (5,25 A) + 2VN (w4 (2), 9 (5,25 A)) - 0 (2) + VAw (2) — w(s, )P (5, 23 )
VMoo (5 25 V) (4 (2), @4 (2) — wo(5, 2 1)) « (w4 (2) — woo (5, 5 )
+ 2o (5,2 A)| - g (5,25 N) — (W(8,2), 059, (5, 2; N)) oo (5, 23 N)

where L, (z) is defined in (2.1.14). Using the estimates (1.2.16¢), (2.1.16a), (2.1.28) in conjunction with
Corollary A.2, the estimate (2.1.16b) follows immediately. O
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Next we show that Sj\' is a proper injective immersion, since by Lemma B.3 it then follows that S:\"
is a smooth embedding, i.e., the image £ is a smooth submanifold of 7*S"~! and Sy : R"! — L, is a
diffeomorphism.

2.1.9. LEMMA The map S;f is injective.

PROOF. Assume that there exist y,2 € H such that Sy (z) = SY(2), ie., wi(z;A) = wi(y;A) and
Li(z) = L4(y). Then by (2.1.14),

r+(zA) = (1 A) + e wi (1 A) = (13 A) + ¢ wi(250) (2.1.30)
for some ¢ € R. By (1.2.7) and (2.1.30),
0= lm |@o(s,y;2) — 2V 2w (23 A) (s — ¢/ (2VN)) = 74 (25 )]

S

= Sgrfookcoo(s +¢/(2VA), 13 A) — 2V Aw, (23 0)s — i (23 M) (2.1.31)
and
0= lim [&(s+ ¢/ (2VA), 13 \) — Vdw, (2 M) (2.1.32)

But (2.1.31) and (2.1.32) together with the uniqueness statement in Definition 1.2.3 imply & (s +
c/(2VA), 1 N) = €.(5,2;)), Tools + ¢/(2VA), 43 \) = @oo(5,2;0) and by Proposition 1.2.5 we have
Y=z U

2.1.10. LEMMA The map S;’ 1S proper.

Proof. We will show that the pre-image under S/\+ of compact sets is compact. We use the canonical
coordinates (x,€&) of T*R" for £, C T*S"~! C T*R™ and denote by S:\" the corresponding coordinate
representation of S;\r, so that

Si(z) = <ﬁ§2) . (2.1.33)

Then estimates (1.2.16b) and (2.1.18) imply the existence of a constant C' > 0 such that

5t~ (%)

It follows that if R > 0 is sufficiently large,

<C- ()t for all z € H. (2.1.34)

- 1

15§ (2)] > 5\5\|z| for z € H with |z| > R. (2.1.35)
Now let K C £, be some compact set. Then (2.1.35), (5;()_1(]() is bounded. Since Sy is continuous,
(SY)~Y(K) is closed, hence compact. O
2.1.11. LEMMA The map Sj\' is an immersion.

PrOOF. We differentiate (2.1.33) and see from the second assertion in (2.1.39) below that the rank of
DSY ., and therefore of (Sy).|, isn — 1 for all z € R*~L. O

Up to the proof of Propostion 2.1.13 below, we have shown that Sj\L is an embedding and hence £
is a submanifold of T7*S™"~1. We now verify that £ is lagrangian.

2.1.12. LEMMA The manifold L is lagrangian.

PrOOF. We need to show that the symplectic form o = dz A d€ vanishes on L. Since S;\r: R — L,
is a diffeomorphism, it is sufficient to check that (S¥)*o|z, = 0. A straightforward calculation yields

(St ole, = <‘9w+(z) 3L+(Z)> 0 A dz;

ig=1 8ZZ‘ 82’]‘
n—1
B Owy(z) Ory(z; )
= E < 95 02 dz; N dz; (2.1.36)

ij=1
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Here (-, -) denotes the euclidean scalar product in R™. We recall that the manifold A is lagrangian, cf.
Theorem 1.3.3, hence o]y = 0. Now
0o (2,8;0) 8350(2’59\) 0T oo (2,8;0)
T, (s, A = span 65003(23; N oo {0ty || ee ey ) (2.1.37)
0z1 Ozn_1 s

and o|a(v,u) = 0 for v,u € T,A. A straightforward calculation using the representation (1.2.7) shows
that forall 1 <4, <n-—1

0= <6woo(z,s; N agoo(z7s;x)> B <5woc(z,s;)\) 3{00(z7s;)\)>

8Zi ’ 82’]‘ aZj ’ 8zi
Owy(z) Ory(z;A) Owi(z) Ory(z;A)
=92\ — 2\ , R(s, 2.1.38
where R(s,z) — 0 uniformly in z € H for s — oo by (1.2.16¢). Since the first terms in (2.1.38) are
independent of s they must vanish seperately from the remainder R(s, z), proving (2.1.36). O

This concludes the proof of Theorem 2.1.4 up to the proof of Proposition 2.1.13 below.

2.1.13. PROPOSITION For any z € R"~1,

or4(z;A) 9Ly (z)
rank | 5%, | =n—1, rank | 9%, | =n—1 (2.1.39)
0z 0z
and
Ory (z;0) 0L, (2)
rank | (2) 0%y | =1 rank wi(2) 007 | =n (2.1.40)
0 T 0 T

The proof rests on the following technical lemma, which we prove subsequently.
2.1.14. LEMMA For h € R"! we define the directional derivative Dy, := > hi%. Then
| Dhwp|z0| + |75, Drrilz| >0 for any h,zy € R"1. (2.1.41)

PROOF OF PROPOSITION 2.1.13. We consider the first assertion in (2.1.39). First note that (2.1.41)
implies that

|DhW+| + |Dh7"+| > 0. (2142)
Since any linear combination of columns in the (n — 1) x 2n—matrix has the form
n—1
0 D
Z hi ) = W for some h = (h1,...,hp_1), (2.1.43)
P 821 Wi DhW+
it follows from (2.1.42) that its rank is n — 1. We now claim that (2.1.41) implies
| Drwa |20 + | Dy, 7420 > 0 for any zg € H. (2.1.44)
We argue by contradiction and assume that for some h, zo € R?*~!
Dpwyly, =0 and Dy, 74|z = 0. (2.1.45)
Now Dpwy |, = 0 implies
Dy, Tz = Dirrlzg — (W (205 A)s Dir o )w (205 A) = i, (Dirs|zo) - (2.1.46)
But since the left-hand side vanishes by (2.1.45), this contradicts (2.1.41). By (2.1.14),
0L (2) aﬂi(z)r+(z;)\)
rank | 5,9%,) | = rank 0.27%2) . (2.1.47)
0z 0z

Now with the same arguments as those following (2.1.42), the inequality (2.1.44) implies that the ranks
in (2.1.47) are equal to n — 1, so we have shown the second assertion in (2.1.39).
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We now turn to the first assertion in (2.1.40). We need to verify that the left column of the matrix is
independent of the right block column (which by (2.1.39) contains n — 1 independent columns). In other

word, we will show that there exists no h = (hq,...,h,—1 and no zo € H such that
n—1
W4 0 4 Dh’f'_;,_
= E h; = 2.1.48
( 0 ) - 0z (w+) (th+> ( )
20 =1 20 Z0

Clearly, the existence of such an h and z; would contradict (2.1.41), so this is impossible. Furthermore,
by (2.1.39),

0L (z) 67rj<z>r+(z;)\) aﬂi(z)mr(z;)\)
rank <w+0(z) awiz(z)> = rank <w+(z) -V 9z — rank | @+(?) , (2.1.49)

0z
Aw, (z) Owy (2)
0 o 0 92

0z

where we have first divided the upper block row by —v/\, then multiplied the left column by the same
factor. By (2.1.39) we need only show that the left column is independent of the other columns. Assume
that for some zq the left column is a linear combination of the others, i.e., for some h = (hy,...,hp_1)
we have

Dpwyl., =0 and Dy, m4|z = wi(20). (2.1.50)

But by (2.1.46), Dpw4|., = 0 implies Dy, 74|z, L wy(20), contradicting (2.1.50). It follows that the
ranks in (2.1.49) are equal to n, completing the proof. d

PROOF OF LEMMA 2.1.14. We will argue by contradiction and assume that for some h, zy € R"~! and
some ¢, € R we have

Dpwy|, =0 and Dprylz = ¢ - wi(zo; ). (2.1.51)
Note that by the chain rule, (1.2.15a) and (2.1.51),

Dyl OV (oo (T, 23 N)) - 02V (oo (T3 20, \))
. 8xj axkax]—

(]

Drxi)-,

=~
Il

1
02V (oo (T3 20, \))
0x0x;

I
M=

(crwi (203 A) + 2Dngyl20) (2.1.52)

£
Il
-

Using once more the representation (1.2.15a) and the chain rule, we can rewrite (2.1.52) as

OV (@o(r,z0) 1 9 OV (@eu(ri20,N)

Dy, =
lzo oz 2/ \ O ox;
2 02V (200 (T3 20, \)) er 09, (7520, A)
P DiloGr — . 2.1.53
+ ’; 3zk8xj ( h| 09k 2\/X s ) ( )
By (1.2.73),
¢ 0g; o[ ¢ 0N\ OV (xoo(T32,N))

Dyng.: — e Dy, — — P20 dr dt. 2.1.54
"9 2v/\ Os /‘g /t ( & 2\/X87'> z; g ( )

With (2.1.53), (2.1.54) becomes

e 5” OV (2o (73 20, M) ¢ 0gi(7520,\)
= 2 D . .
#=%0 /S /t k=1 Iy 0z, ( log 2v/\ 0s ) dr dt

(Dhgj - 2?& %)

(2.1.55)

From the Corollary 1.2.12, estimate (1.2.21), and Lemma B.2 it follows that for sufficiently large T > 0,
the map

10 L0V (oo (T3 20, M)
Gz ./\/l;[H — M;[H, (Grzf)i(s) = 2/8 /t ’; Drd; fe(7)drdt. (2.1.56)
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where ./\/lT[H is defined in (1 2.79), is a strict contraction and has a unique fixed point. By (1.2.16¢),

f(s) = Dng;(s,20;A) — 2?} 52 (8, 20;A) € M’TL’[H for sufficiently large T' > 0. Clearly, f = 0 is a fixed

point of Gy .,. Therefore, for sufficiently large 7' > 0,
Cr agj
D — f >T. 2.1.57
hg]‘z =20 2\/X (98 o or s ( )
Now (1.2.15), (2.1.51) and (2.1.57) give
thoo(svz; A)|z=z0 \/_ 8 S Z3 )\) )l
= 2.1.58
. 6 ( )
Dhﬁoo(stQ )\)lzzzo \/_ 8 (87 27)\)
Z=Z0

for s > T. But the map ¢, cf. (1.3.2), is an immersion, and (2.1.58) implies that

c. O i 0
L (5,20) (Dh - ﬁ$> = (Dnw;(s,20; \) — Os(5, 20; N)) o,

j=1 j u(s,20)
n
+ Z Dhs_] S, 205 ) - 885](87’207)\)) %
=1 J 1u(s,20)
=0, (2.1.59)
leading to a contradiction. O

2.2. The Isozaki-Kitada phase functions

A crucial role in the further analysis is played by the Isozaki-Kitada phase functions, which we now
introduce.

2.2.1. DEFINITION For a given triplet (R,d,o) with R>1,d > 1, —1 < o < 1, we introduce the notation
2

Ty(R.d,o) = {(x,X"(€) € T*R": |z| > R, d™* < |¢| < d, (#,€) 20} (2.2.1)
(where & = z/|z|, € = £/|¢|) and for non—vanishing momentum
Si(R,0,8) :={z eR": |z| > R, o}, €#0 fized. (2.2.2)
RO RO

n IRZ‘n

- Sy (R, %0, 6) - S (R, %0,8) - Sy (R, —0,8) - S (R,—0,8)

FIGURE 1. The sets X4 (R, +0,£) C RY for £ = (0,...,0,1). Here o is taken close to —1.

2Note that this definition differs from the convention used by Isozaki and Kitada [14], who set
T4 (R,d,0) :={(z,X"(§)) € T*R": [z| > R, d~" < [¢| <d, (&,&) > +o}.



2.2. THE ISOZAKI-KITADA PHASE FUNCTIONS 31

2.2.2. PROPOSITION [14, Proposition 2.4] Let V' obey the Potential Hypothesis and fix dg > 1 and o9 €
(—=1,1). Then there exist real functions px € C*(Ry x RY) (Isozaki-Kitada phase functions) with the
following properties:

i) The functions pi(x,£) solve the eikonal equation
Ve (@,6)* + V(z) = ¢ (2.2.3)

in T+ (Ro, dy, L09) for some Ry > 1,
ii) For any L >0 and o, f € N" there exist constants Copr, such that for all (z,€) € R x RE,

10508 (¢ (@, €) — (2, )| < Caprlz)~I*(e) " (2.2.4)
iii) for all (z,€) € Ry x RE,
92
0a;06,

where e(Ry) can be made arbitrarily small by taking Rgy large enough.

(022, 8) ~ {2,))| < =(Ro) < 3,

2.2.3. LEMMA Let A; C T*R", s € R, be the manifold defined in Lemma 1.3.6 and T, the configuration
space trajectory of Definition 1.2.3. For any R >0, o € (—1,0) and d > 1 with d~ < VX < d there exist
times s+ (R, d,o) such that
i) As CT_(R,d,—0) for all s < s_(R,d,0),
i) Zoo(s,2;0) € L_(R, —0,vVAw_) for all z€ H and s < s_(R,d,0),
ili) A; CT1(R,d,0) for all s > sy (R,d, o),
iv) Zoo(s,2;0) € B4 (R, 0,V A wy (2;0)) for all z € H and s > s (R, d,0).

PROOF. We fix some (R, d, o) as in the hypothesis and start with assertion i). By the triangle inequality
and (1.2.11a), (1.2.13) we have a constants ¢ > 0 and S < 0 such that

sup||€.. (s, 2; A)| — \5\| < sup|€,.(s,2;A) — \F)\’ <cls|7® for s < S. (2.2.5)
z€H z€M

It follows that
d™' < suplé (s, \)| < d for s < 0 sufficiently small. (2.2.6)
zeH

Again we can use the triangle inequality and (1.2.11a) to see that
|@oo (5,2 M) = 2V Aw_s 4+ 2+ 2g_(5,2; )|
> 2V w_s + 2| — 2|g_(s,2; )|

= Vs| + (VAls] = 2|lg_(s, z; A]), (2.2.7)
so with (1.2.13),
SUp|®a (5,23 )] > VAls| > R for s < 0 sufficiently small. (2.2.8)
z€H
It follows from (1.2.11) with (1.2.13) that for some ¢’ > 0,
oo (5,23 0), €0 (8,23 0)) — 2Xs] < ¢ - |s]' 72 for all z € R™ % (2.2.9)
Using (2.2.5), (2.2.8), we have
oo (5, 23 M) €0 (5, 2 M| > VA[S| (VA = ¢]s]72)) > Als| — eV/As[' ¢ (2.2.10)
for some ¢ > 0 if s < 0 is sufficiently small. It follows from (2.2.9) and (2.2.10) that
. . o 1—p 1 _ )1, -0
(oo(8,2;0),E0.(8, 23 A)) - 2Xs — ¢ - |3 _—1=dA : |s] ’ (2.2.11)
[Toc (8,25 )| [€oc (5,23 A) | 2(A|s| — "VA|s[1=0) 1 — /A3 |s|e
which implies
08,23 ), €00 (5,23 A :
(oo (5,25 A), 6o (5,25 1)) <0< —0o for s < 0 sufficiently small. (2.2.12)

|:L'oo(87 Z5 )‘)l : |£oo(sv 2 )‘)‘
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Now by (2.2.1), the assertion i) follows from (2.2.6), (2.2.8) and (2.2.12). By calculations analogous to
(2.2.10) and (2.2.11) we easily see that
(Too(s, 2 M), w-)
|Too (5,23 A)]
Then by (2.2.2), assertion ii) follows from (2.2.8) and (2.2.13).
Similarly to (2.2.6) above, we obtain from (1.2.15a) and (1.2.16¢) that

<0< -0 for s < 0 sufficiently small. (2.2.13)

d—' < suplé. (s,2;\)| < d for s > 0 sufficiently large. (2.2.14)
z€H

Furthermore, using the representation (1.2.15) with (1.2.16¢) and noting (2,w_) = 0, we have
(oo (5,25 0), € (5,2 0)) = 2As < e+ (2)' 728170 + (wi (23 0), m (23 1))
=c- ()7 T 4 (Wi (23 N), 7 (2 0) = 2) + (wi (5 N) —w_, 2).

(2.2.15)

for some ¢ > 0 and s > 0 sufficiently large. Now applying (1.2.16a) and (1.2.16b), we see that
(oo (8,23 N), Eac (8,25 0)) — 2Xs] < C for some C > 0 and s > 0 sufficiently large. (2.2.16)

it follows that

(Too(8,2;A),E50(8, 23 A)) >0 for all z € H nd s > 0 sufficiently large. (2.2.17)
Checking (2.2.1), we see that the assertion iii) follows from (1.2.19), (2.2.14) and (2.2.17). We omit the
proof of iv), which is verified in the same way. O
The next lemma is just a result of Robert and Tamura [24, (4.2)-(4.5), Lemma 4.1], which we have

reformulated in terms of the notation of Lemma 2.2.3.

2.2.4. LEMMA Let (R,d,o) be some triple with ¢ € (=1,0), d > 1 with d™* < VA < d and R > 0
sufficiently large such that we can define Isozaki-Kitada functions ¢+ as in Proposition 2.2.2. Set s+ =
st(R,d,o) € R as in Lemma 2.2.3. Then, using the notation of Definition 1.2.3,

E.(5,2:0) = (Vo ) (®oo(s, 2, N), VAw_) forallze H and s < s_. (2.2.18)
Moreover,

(Vaor)(@oo (8,23 A), VAw (230)) = € (5,23 A), (2.2.19)

(Ve i) (oo (s, 23 A), VAwy (23 ) = 2V Awy (23 A)s + 14 (25), (2.2.20)

for all z € R"~! and s > s,. Additionally, we have the representation

O (Too (5,23 0), VIwg (23 0)) = 28X — (1 (23 0), VAwg (2,0)) — 2/oo(|£oo(7,z;)\)|2 —A)dr. (2.2.21)

In fact, we can sharpen (2.2.19) to a uniqueness result:

2.2.5. LEMMA Let (R,d,o) be some triple with ¢ € (=1,0), d > 1 with d™* < VA < d and R > 0
sufficiently large such that we can define an Isozaki-Kitada function ¢ as in Proposition 2.2.2. Choose
sy = s4(R,d,o) € R as in Lemma 2.2.3. Then there exists a time S > sy (R,d, o) such that for any
z€H and any s > S

€..(5,20) = Voou (o (5, 2, M), VW) implies w=wi(z; N). (2.2.22)
PrROOF. By (2.2.4) we have
Voo (2, VIw) — VAw| < Croolz) L (2.2.23)
Inserting the hypothesis of (2.2.22) together with (1.2.19) into (2.2.23) we obtain
1€ (5,25 0) — Vw| < ey - |s] 7, (2.2.24)
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for all z € H, s > s, sufficiently large and some constant ¢; > 0. By Lemma 2.2.3 iii), we can assume
that (oo (s, 2;A), € (S, 2;A)) € T4 (R,d, o) for all z € H and s > sy. Then from the definition (2.2.1) of
'y (R,d,o) and (2.2.24) it follows that

1

(s, 27 ] (oo 50 0) > 0 (2.2.25)

for all z € H and s > s, sufficiently large. Hence (o (s, 2; A), VAw) € I'y (R, d, o). Under this condition
it was shown by Robert and Tamura [24, Beginning of Section 4.1] that (using the notation of Definition
1.1.2)
T e (2.2.26)
L Bl 250)
where Z(t, s, 2;w) == ®(t; oo (5, 23 A), Voo (€00 (8, 23 \), VAw)). However, by the hypothesis of (2.2.22),
Z(t,s,2;w) = Too(s + ¢, 2; M) and by (2.1.13), (2.1.16a) the limit in (2.2.26) is wi(z; N). O

2.2.6. DEFINITION We fiz a triple (Ro,do,00) by first choosing ¢ € (—1,0) and dy > 1 so that dal <
VX < dy. We then choose Ry > 0 sufficiently large to ensure that Proposition 2.2.2 i) holds and fix a
choice of corresponding Isozaki-Kitada functions ¢_ and @4. In the notation of Lemmas 2.2.3 and 2.2.5,
we define

s— = s_(Ro,dp,00) and sy = max(s+(Ro, do, 00),5) (2.2.27)
and set
A= U A, and Ay = U As. (2.2.28)
s<s_— §>S4

2.3. Generating functions

This section discusses the concepts of lagrangian coordinates and local generating functions, which
are both central to the construction of the canonical Maslov operator, the classification of caustics and
the asymptotic formula for the scattering amplitude. We first need to introduce some notation

2.3.1. CONVENTION Let N denote the index set {1,...,n}. For I C N we define |I| :== #I (the number
of indices in I) and I := N\ I. Further, we set N; := N\ {i} for short. We use the index “I” to denote
an ordered |I|-tuple, e.g., with x = (x1,...,2,) € R™ we write x; = (;vil,...,:bim) With iy < fmi1-

2.3.2. DEFINITION Let M be a n—dimensional manifold, U C T*M an open set and (z,£): U — R™ x R™
a local coordinate chart, canonically induced by a chart x: w(U) — R™, where m: T*M — M denotes the
canonical projection. Let A C T*M be a lagrangian manifold and Q C U an open set in A.

i) For any I C N we define

ma: Q — R xR, p (1(p).&(p)) (2:3.1)

If (2.3.1) is a diffeomorphism on its image, we say that (Q, mq. 1) is a lagrangian chart of order |I|
and (x1,&7) are lagrangian coordinates. If |I| = minyeq rank dmy ar|p, we call the lagrangian chart
canonical. A (canonical) lagrangian atlas on A is a locally finite open covering of A by (canonical)
lagrangian charts. We say that Q) is well-projected if x can be chosen as lagrangian coordinates on
Q

i) a function S € C°°(A) is called a global generating function for A if
dS =& dajla. (2.3.2)

If such a function exists and (Q,mq ) is some lagrangian chart on A, we define a local generating
function Sq 1 € C*>(Q) via

Sa,r =8 — (z7,&3) on L. (2.3.3)
It then follows that on )
_ 0Sar ~_ 0Sax
& = o1 and IT=""5 - (2.3.4)
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The concept of lagrangian coordinates and their role in the construction of the canonical Maslov
operator on lagrangian manifolds in T*R™ has been extensively explored in [18], [27] and elsewhere. For
completeness we repeat the proof of the following basic result.

2.3.3. LEMMA ([18]) Any lagrangian manifold admits a canonical lagrangian atlas.

PROOF. We keep the notation of Definition 2.3.2. We can without loss consider the coordinized manifold
A= (z,§)A C R} x R¢; indeed, the canonical symplectic form is given by

azidxjmgj

Jj=1

and rank dn|y = rankdm,|; in any set of induced coordinates. We will henceforth drop the tilde and
consider the case of A C R? x R?.

Let p € A. By the implicit function theorem, a neighbourhood of p can be diffeomorphically mapped
into the tangent plane of A at p, i.e., we obtain a coordinate chart in a neighbourhood €2 of p through the
coordinates of the tangent plane at p, which we denote by L. By definition, the tangent plane is lagrangian
(i.e., the symplectic form o vanishes on L.) In order to prove that there exists an index set I C A such that
mq,r is a diffeomorphism on its image it is then sufficient to show that the map 7, ; is a diffeomorphism.
We also claim that if the neighbourhood  is sufficiently small, then ming rank dmrg o+ = rank dmg ar,p-
This can be seen from the fact that the rank of a matrix does not change under small perturbations.

In conclusion, it suffices to show that for any lagrangian plane there exists a set of canonical coor-
dinates. A covering of A with appropriate neighbourhoods mapped onto tangent planes then yields a
canonical lagrangian atlas for A.

Let L C R} x R} be a lagrangian plane. We will prove that for some I C N with |I| = rank dm,|r,
the canonical projection

7 RE X RE — RL x RE (2.3.5)
is a diffeomorphism when restricted to L. We need only show that ker7; = {0}. Choose I C N with
|I| = rankdm,|r such that {z;} is a basis of m,L. Then m;u = 0 implies m,u = 0 for v € L. Since

me;u = 0 by assumption, it remains to show that m¢,u = 0. However, the symplectic form has the form

o(u,v) = (mev, mpu) — (Teu, TLV) for u,v € L
so myu = 0 implies
o(u,v) = —Zﬂ'&u-ﬂ%vz() for all v € L.
iel
This completes the proof. O

The proof of Lemma 2.3.3 is actually much more insightful than the statement of the result, In fact,
the proof yields an important corollary.

2.3.4. COROLLARY Let A be an n—dimensional lagrangian manifold in the notation of Definition 2.3.2
and let p e ANU for some chart domain U.

i) We can find an index set I C N with rank dmanu nlp = |I| such that rank dmanu, 1], = n.

ii) For any I C N, rankdnma 1|, = n if and only if (x1,&3) are lagrangian coordinates in some neigh-
bourhood Q0 of p. They are canonical lagrangian coordinates if and only if mingeq rank d(m|p)], =
rank d(7|a)|p-

2.3.5. REMARK For an arbitrary cotangent bundle we use the notation 7: T*M — M for the canonical
projection onto the base, employing 7, for the special case M = R7 and also denoting the corresponding
map Ry x Ry — R} by m,. Note that manun = @ o w|a, where x: 7(U) — R" is a chart on the base
manifold. Clearly the ranks of the differentials of many a and 7| are equal, and we will make use of
both maps. In T*R"™, the mapa are identical.

We will first use the Isozaki-Kitada phase functions to construct local generating functions on the
scattering manifold A C T*R™.
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2.3.6. LEMMA Let (-, dw_) € C®°(R?) be the Isozaki-Kitada phase function of Lemma 2.2.4. Then

O (Too(5,2;N), VIWT) = (oo (s, 23 \), VIw_) + /2” (€ =V w_, dz) (2.3.6)
=25\ + 2/S (1€oo (T, 23 )2 = N) dr. (2.3.7)

PROOF. We now show (2.3.6). Let s’ < s < s_. Then
O (oo (s, 2 N), VIw_)

S

= o (Too(s', N, V) + | s
s’ 37’

(€oo (T, 2, N), VAw_) dr

S

= o (oo, 2, 0), VIw_) + / (Voo (Too (T, 25 M), VIW_), By oo (T, 23 \)) dT (2.3.8)

ry

Inserting (2.2.18) into (2.3.8) yields
O (oo (5,23 N), VIw_) = o (oo (s, 2 A), VAw_) — (VAw_, Zoo (s, 2, A)) + (VAw_, oo (s, 2; \))

+ /S <€oo (T7 = A) - \&w_, a7'mc>o(7-7 zZ3 >\)> dr. (239)

’

By (2.2.4),
lo—(Too(s', 25 M), VAw_) = (oo (s, 23 M), ﬁw_>| -0 as s’ — —oo. (2.3.10)

so letting s’ — —o0, we obtain
O (Too (5,2 N), VIw_) = (VAw_, Too (s, 23 N)) —|—/ (€ (T, 2:0) = VAw_, 0o (1,2 0)) dr. (2.3.11)
But the integral in (2.3.11) is by definition just the line integral of & — v/Aw_ along T &
In order to show (2.3.7), we start from (2.3.8). Using (1.1.6) and (2.2.18),

O (Too (5,2 N), VIw_) = o (oo (s, 2; A), VAw_) — 25" + 2)s
+ 2/S(|sto—(woo(7, 20, Vw2 — A dr. (2.3.12)

’

By (1.2.6) and (1.2.13) there exists a constant ¢ > 0 such that

(oo (s, 23 N), VAw_) — 2Xs'| < c[s'|* 2. (2.3.13)

Now (2.3.13) and (2.3.10) imply that [o_ (oo (s, 2;A), VAw_) — 2Xs'| — 0 as s’ — —oo and therefore

(2.3.7) follows from (2.3.12) by letting s’ — —oo. O
2.3.7. LEMMA The function S: A — R given by

Sou(s,zN) = (Too(s, 23 A), VAw_) + /T* (€ —Vw_,dz) (2.3.14)

= 25\ + 2/5 (|€.. (T, 2 M) |2 = \) d. (2.3.15)

s a global generating function for A.

PrOOF. By (2.3.14),

Sz, &) = (z,VIw_) +/ (€ = Vw_, dx) on A, (s,2) =t (,£). (2.3.16)
IZ’ZTS
It follows from (2.3.16) that dS =) &; dx; on A, which proves the lemma. O

Note that on A_, the functions S and p_( -, vAw_) o 7, coincide.
The construction of local generating functions for £, C T*S™~! is slightly more complicated, involv-
ing the “second” Isozaki-Kitada phase function ¢4 (z,£).
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2.3.8. LEMMA The function

F:A— [Rv (FOL)(SaZ;)\) :SOL(S,Z;)\) _<p+(moo(57z;>‘)7\/j\w+(z7>\)) (2317)
does not depend on s; explicitly,
(Fou)(s,z;\) = 2/ (1€ (7, 2 N2 = AN dr — (ro(z: M), VAwg (2, M)). (2.3.18)
The function Fy € C*°(Ly) defined through
Fy 0S¥ (2;A) == Fou(s,z; ) (2.3.19)
is a generating function for L, i.e.,
dFy = (&, dz)|z., . (2.3.20)

PrROOF. The first part of the Lemma, equation (2.3.18), follows immediately from (2.3.7) and (2.2.21).
We will show that

(SY) AP = () (6 da)l e, = —VAES, (- oyre (-5 A), (ST)7da)].. (2.3.21)

The first equality is equivalent to (2.3.20), while the second follows by combining (2.1.17), (2.1.15) and
(2.1.14). By (2.3.17) and (2.3.19), for any s > s,

n—1

(Sj:)*dFJr‘Z = d(S o L)(S’ : ’)‘)|Z - Z<vz(p+(w00<57 2 )‘)’ \/X(“LF(Z’ A))’ aziwoo<57 Z3 )‘)> dzz|2

VRN (Ve el ) VR (5 0), Doy (2, X)) dil- (23322)

By (2.2.19),

n—1

(]

<vx(p+(m00(37 = /\)v \/XCU+(Z, /\))’ azimoo(37 = /\)> dzi‘z

Il
-

zs.
L

I
™

~
Il
—

<£OO(S,Z; )‘)7 621-3300(5»29 )\)> dzi|z

n—1 .
(s, z0) (30 2N g )

0z
i=1 v

[
NE

<.
Il
—

[
NE

(& 0 o) thda]. = (& da))]. = d(S 0 0)(s, - M. (2.3.23)

<.
Il
—

Inserting (2.3.23) and (2.2.20) into (2.3.22) and noting that (wi(z;\), 0,,w4(z; A)) = 0, we obtain

n—1
(S;\r)*dF+|z = —\52(74(2; A), 0z,wi (2, 0)) dzil -
i=1

n—1

=—VA Z<7T:+(z;/\)r+<z; A), Oz wi (23 N)) dzil -

i=1
— VS (e, () da).
completing the proof. O

2.4. Lagrangian coordinates

We will now further explore the relationship between lagrangian coordinates on £y and on A. In
order to formulate the result as explicitly as possible, we will need to introduce coordinates on L .



2.4. LAGRANGIAN COORDINATES 37

2.4.1. REMARK Let (¥, x) be a chart on the unit sphere which we write as

x: % — R w0 = (Ok)ken, (2.4.1)
for some i € N :={1,...,n} and NV; := N\ {i}. We obtain an induced chart
X:T*Y — R xR (w, X*(L)) — (8,1) (2.4.2)
where I = (Ix)ken,,
ax'(0)
ly =(L, ———= k i 2.4.
k < " 00, > €N, (2.4.3)

Writing 04 (z) = x(w4(2)), For (wy, X*(L4)) € L4 defined in Theorem 2.1.4 we define 04 (z) := x(wy(2))
and [4(2) := (Ig(2))ken, with
ox (o
() = {L4(), 20

00y,

eu% ke N, (2.4.4)
+(z

Noting that <8X87T}k(9),x’1(9)> = 0 for k € NV;, we obtain from (2.1.14) and (2.2.20) that for any s > s
(see Definition 2.2.6) we have

h(z) = VA(r (), 2O

= a . —1 -
9+(z)> =~ a0, P4 (Too(5, 2, 0), VAXTH(O)) o) keN;,. (24.5)

We now choose an atlas on S™~! that is well-suited to our situation, with charts simply consisting
of the orthogonal projection of hemispheres along their poles.

2.4.2. DEFINITION On the sphere S"~1 C R™ we define charts {(X(0),xE): i =1,...,n} ford € [0,1/4)
by
SEO) ={z=(21,...,2,) € S" L z; = +6}
Xii: Ezi(cS) — Bl cRrR! xli(zl, oy ) = (T T, T, ) = T

where B"! :={x € R" ' |z| < 1}, Nj := N\ {j}, N = {1,...,n}. Note that we have not included §
in our notation for the maps X?E: Eii(é) — B! c R" L. Furthermore, we simply write Eii for Zf(O).

(2.4.6)

2.4.3. LEMMA On T*S™~', the maps x= induce charts {(T*SE(8),XE):i=1,...,n} given by
~ L;
T TSE(S) - B x R, (w, X*(L)) (wNj,LNi - 7%). (2.4.7)
wi

Here we have used the notation of Convention 2.3.1 for Ly and wy, suppressing the subscript when
referring to the components.

PROOF. Writing |y|? = Z;:ll y; we have

(Xii)_l(ylv"'ayn—l):(yla"'7yi—17i 1_|y|2ayi7~-~ayn—l)- (248)
Then (2.4.7) follows directly from (2.4.3). O

2.4.4. CONVENTION i) For anyi € N we use ¥;(8) to denote either ¥ (5) or X; (8) and x; to denote
either x; or x; of (2.4.6).

ii) In the context of Definition 2.3.2, let M = S"~1, U = T*%; for some i € N and (x,&) = X;. Let

A = Ly be the lagrangian manifold (2.1.17). Denote by Q@ = T an open set in L NT*E; and

I=JcCN,:=N\{i}. In this situation, we denote the map mq 1 in (2.3.1) by wl(ﬂiv)J. Conversely,

7r1(j7)J shall always refer to T', J,i as above.
iii) The notation mq 1 shall henceforth refer to a lagrangian chart as in (2.3.1) with M = R", (x,§)-
coordinates on U = T*R", the lagrangian manifold A of (1.3.3) and Q C A, I CN.

2.4.5. REMARK i) Setting
. L
e T (2.4.9)

Wi
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the lagrangian charts W(i} are given by

(W, X*(L)) = (wJ(z),zj(@\J). (2.4.10)
Here we have used the notation of Convention 2.4.4 ii) for lg:). For wy (z) and Ly (z) of (2.1.14), we
define
i Lz z
19(2) = Ly(2) — wzfz@(z)- (2.4.11)
Noting that with 04 (z) := x:(wi(2)), l(j)(z) = (l,(j)(z))ieN and Remark 2.4.1,

—1
W)y _ ox; (0)
b (2) = <L+(z)’ 00y, 04 (2)

ii) We have established global coordinates for A C T*R™ and £, C T*S™ ! in Sections 1.3 and 2.1
through the mappings

tRxR"™P = A and SR = L4, (2.4.13)

_90 . -1 _
0+(z)> N a—akm(xm(&z, A x(0)) ke N;. (2.4.12)

given by (1.3.2) and (2.1.15), respectively. Then by Corollary 2.3.4 (x1,&7), I = N\ 1, are lagrangian
coordinates in some neighbourhood of p € A if and only if
O(xs (s, z; )\),EN—\I(S, z; A))
(s, 2) '

n = rank dmy |, = rank ( (2.4.14)

Similarly, for I C N, (wy, l/(\i/z\ ;) are lagrangian coordinates in a neighbourhood of ¢ € L NT*X%; if
and only if

(2.4.15)

: Aws(2:\), Ly (23 A
n—l—rankdwgi’ﬂp—rank( (ws (25 A), g (2 ))>.

0z
The main result of this section is the relationship between lagrangian coordinates on £ and coor-

dinates on A. Again, the sharp estimates on the behaviour of the trajectories in Proposition 1.2.10 are
crucial for the proof of Proposition 2.4.7, on which Proposition 2.4.6 is based.

2.4.6. PROPOSITION Let K C R"™1 be a compact set and T >> 0 sufficiently large. Fiz § € (0,1/4). Then
for any Ty > Ty > T there exists an open covering {Zy} of K, numbers iy, € N and index sets J, C N,
such that

(i) Ty =S5 (Zy) C Ly NT*E;,(8) and (Fk,ﬂl(j:,)(]k) are lagrangian charts on L, and
(ii) (U, 7o, A\)s = t((To, Th), Zy) are lagrangian charts on A.

Proposition 2.4.6 relies on various preliminary results, which we give below before completing the
proof at the end of this section.

2.4.7. PROPOSITION For zy € R* 1, let i € N such that S;\r(zo) €L, NT*Y;. Let m,: T*S" 1 — gn-1
denote the canonical projection onto the base and let rank d(ﬂw|ﬁ+)|si(z0) =m. Let J C N; be an index

set such that |J| = m and rankdwg}r J|S;:(Z(]) =n —1 (see Corollary 2.3.4). Then there exists some
T =T(zp) > 0 and some € = (z9) > 0 so that

o Ao 20 0.20)

PROOF. We first claim that for any k € N,

> foralls>T. (2.4.16)

zZ=z0

a(Uk 8&1]'
g . S Span { W ZO} ‘ . (2417)
jedJ
By (2.4.15)
rank (aw‘]a(j)\)> . =|J| =m. (2.4.18)
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Furthermore,

, (2.4.19)

zZ=2z0

m = rank d(ww|c+)|5i(%) = rank d”.(cii, ;

B O(wn; (z; M)
Fzo) = rank (82

using (2.4.15) in the last step. Then (2.4.18) and (2.4.19) imply (2.4.17) for k € N;. Differentiating
w2 = D ieN: wf gives

Ow; 1 Ow;
—— D wj? (2.4.20)
92 0 wi JEN; 0z 20
and hence (2.4.17) holds for all k € V.
Now by (1.2.15),
M= <3("'3N\J(872;A)’£J(syz; A)))
(s, z) i
_ <2wa\J(z2 \) + 2M 2v/\s &w\f(Z O BW\BI;Z A 2‘%\3(; 2 A)) oa01)
= 9%95(s,2\) dw (z)\) 929 (s,2:)) 4.
QIT \f J + g(;zaé .

By (2.4.17), for any k € N we can write the vector 0wy, as a linear combination of vectors d,w;, j € J.
We will abbreviate this linear combination as

=lc %
0 B WP

By adding suitable linear combinations of the lower rows of D to the upper rows, we obtain

O
0z

) ,  where lcg(vy) Z)\jkvj, ke N, forv; e R, meN. (24.22)
) jeJ

det M = det(A + A'), (2.4.23)

where

BTN’\J
A= <2ﬁgw\J fé’éw> (2.4.24)
z2=zg
and
s 2220 4 95 lenn g (32%(52”)) 220N | 9slenn s (824%;3’5 ;A)) 2.4.25
T Bng(s,z;)\) BQgJ(s,z;)\) ( o )
0s2 020s

z=2zg

Applying estimate (1.2.16¢), we see that for sufficiently large T there exists a constant C7 > 0 such that

|A||=zy < Cp -570 for all s > T. (2.4.26)
Note that
" BTN\J
|det A| = 2X1H171=% |det B, B= (wﬂé\J f ) (2.4.27)
6Z z=zo

We will show that rank B = n, i.e.,
0 < |det A| =: 2e. (2.4.28)

Then by (2.4.23), (2.4.26) and (2.4.28) the continuity of the determinant yields the existence of some
T" > T such that

1
|det D| > i\det Al=e for s > T'. (2.4.29)

The proof of (2.4.16) is thus completed. We now show rank B = n. By (2.4.11) and (2.1.14) we have

alj 5‘LJ L1 &uj 0 Lz

—t = - —— - — = 2.4.

0z, 0z, w; 0z, Oz ( ) (2.4.30)
oy % + apw; (2.4.31)

3zk
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with

= — . 2.4.32
=2, k() = 5502 (24.32)
For k =1,...,n—1 we add the first column multiplied by a(z) to the (k+1)st column of B. Furthermore,

for k=1,...,n—|J|, we add the linear combination 5(z) - lcx((0, 85’—;)\20) (see (2.4.22)) of the lower |J|
rows to the kth row of B. Then by (2.4.31) and (2.4.27),

B(2) = VAW (2), 71 (5 ) —

Wi %
rank B = rank C, C=(wns al({;fz\J . (2.4.33)
0o %
z Z=Zz0

By (2.4.15), the rank of the lower n— rows of C'is n — 1. We will now show that the uppermost row is
independent of the lowers rows, hence rank C' = n — 1.
Similarly to the arguments leading to (2.4.33), it follows from (2.4.30) that

Ol OL .
vk [N 7 ) = pank (YN B | =1 9.4.34
an 0 0%, | =ran 0 o0% | =n (2.4.34)

0z 0z
(where we have used (2.4.36) below) and
AL,
= rank [ “* Lz
0 &
zZ=Zz0

w oy

rank D := rank O+ 807,
where we have used (2.1.40). It follows from (2.4.20), (2.4.34) and (2.4.35) that in D the row (w;, %lz) is
independent of all other rows. The same is then true in the matrix C. O

=n, (2.4.35)

0z z=z0

2.4.8. LEMMA For z € R"! choose i € N such that Sy (z) € L4 NT*S;. Then

LN, (2) 0Ly, (2)
rank <8wff?(z)> =n-1 and rank (wNO(Z) 3wf/?(z)> =n-—1. (2.4.36)
RE RE

PrOOF. We start with the first assertion. By Proposition 2.1.13,

oL (2)
rank <awf(zz;x)> =n-—1. (2.4.37)
0z

By (2.4.20) the (n+14)th row of the matrix is a linear combination of the other rows, so it suffices to show
that BL#(Z) is also a linear combination of the other rows. Now (L, wi) =0, so

wil; = — Z Ljw; (2.4.38)
JEN;
and hence
- [, — it/ 2.4.39
0z w; Z 7 0z w; Z “i 0z ( )
JEN JEN;
This proves the first assertion. Once more Proposition 2.1.13 yields
wy 0L
rank 0 83;3 =n, (2.4.40)

and by (2.4.20) the n + ith row is a linear combination of the others. We will show that the row

(wi, %) is independent of the others, thereby completing the proof. Now (2.4.39) expresses % as

a linear combination of %7 j €N;, and %ZZ;)‘), j € N. Hence if (w;, w) were a combination
of the rows of (2.4.40), we would get

1 2
wi=—r Z w2, (2.4.41)
JEN;

contradicting |w| = 1. Thus (w;, %) is independent of the rows of (2.4.40), completing the proof. O
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2.4.9. LEMMA Let U C R™ be open and f: U — R™ be a smooth map. Let K C U be some compact set,
fli be injective and df |k be invertible. Then there exists some open set V O K so that f is injective on
V.

PROOF. The inverse map (f|x)~': f(K) — K exists (by injectivity of f|x) and is C* by the invertibility
of df|kx. The compactness of K and f(K) together with the continuity of the derivatives of f|x and
(flx)~ ! give the two-sided estimate
Cilz — 2| < |f(z) — f(2")] < Cylx — 2|, z, 1’ € K, (2.4.42)
with uniform constants C7,Cs > 0. By continuity of f, for any € > 0 we can find some open Us D K
such that
|f(x) = f(2")] > Cilz — 2| — ¢ for all z,z" € Us. (2.4.43)

Assume that there is no open set V' O K such that f|y is injective. By (2.4.43), |z — /| < ¢/C} for
all points z, 2’ € Us for which f(z) = f(«’). But by the inverse function theorem, for all z € K there
exist neighbourhoods B, (z), where r = r(x) > 0 can be chopsen to continuously depend on z, so that
f|B,.(z) is injective. By compactness of K and continuity of » the minimum r¢ := min,c g r(z) exists and
is strictly positive, so we need only choose € < Cyrg to arrive at a contradiction. (]

2.4.10. LEMMA For z € R"™Y, let i € N such that Sy (z) € T*S;. Let m,: T*S"1 — S"~! denote the
canonical projection onto the base and let rank d(ﬂ'w|£+)|sr(2) =m. Let J C N; be an index set such
that |J| = m and rankdw(ﬁii’ﬂsi(z) =n—1 (see Corollary 2.3.4). Choose T(z) so that (2.4.16) holds for
zo = z. Then for any Ty > Ty > T(z) there exists some 6 > 0 so that for
Us:=(To— 6 T1 +6) x Bs(z) CRxR" !, Bs(z) ={y e R"": |z —y| <6}, (2.4.44)
the map
T ws) NI (@ X)) = (@ang, 1) (2.4.45)

is a diffeomorphism on its image.
PROOF. Since ¢ is a diffeomorphism on its image, it suffices to show that

T (Us) N\J O L: (s,2) — (a:N\J(s, 23 ), €5(8, 23 A)). (2.4.46)
is a diffeomorphism on its image. We choose T'(z) so that Proposition 2.4.7 and (1.2.20) (with 8 = 0 and
£ < 1/2) both hold. By (1.2.20) the map m,(y,) A © ¢ is injective on K := [Ty, T1] x {z}; in fact

[Ty wsyang © (s, 2) = Tuws g 0 U8’ 2)| > Crlai(s, 2 ) — (s’ 25 M)
> Cols — §'|

for some Cy, Cy > 0. Furthermore, by (2.4.16), the differential of 7, () ar\ s ot is invertible on K. Thus we
can apply Lemma 2.4.9 to obtain the existence of some open set V; containing K so that ;) a7 0ty
is injective. Furthermore, since the differential 7, ;) an\ s © ¢ is invertible on K, we can find some open
set Vo D K where the differential is invertible, too. Taking § > 0 small enough that Us C V3 N Vs, it
follows that 7,75y a7 © t|u; is an injective immersion. Since Us is bounded, the map is trivially proper,
so it is also an embedding, O

PROOF OF PROPOSITION 2.4.6. For any z € K, choose a continuous function T'(z) so that Lemma 2.4.10
holds for that z. Set T := max,cx T(z). Then for any z, there exists an open set U, D z such that the
assertions (i) (by Corollary 2.3.4) and (ii) (with Zj replaced by U.; applying Lemma 2.4.10; U, C Bs(z))
hold. By compactness, we can cover K with a finite number of these U, ; denoting this covering by {Z}},
we are finished. O






CHAPTER 3

The scattering amplitude

Using the results of Chapter 2, we can now build on Robert and Tamura’s basic representation formula
for the scattering amplitude. In Section 3.1 we review the relevant results from [24] and establish some
basic definitions and choices of constants. The aim of Section 3.2 is to establish hard estimates which will
allow us to approximate the action of e#?* using Maslov theory; the main results here are Proposition
3.2.16 and Corollary 3.2.17.

Having obtained an integral formula for the scattering amplitude based on a Maslov operator on A,
we apply the results of Chapter 2, in particular Lemma 2.3.8 and Proposition 2.4.6, to recast this formula
in terms of a Maslov operator on £, . This leads directly to a proof of Theorem 1. A discussion of the
main result and some aspects of previous results concerning caustics follows in Section 3.4, while Section
3.5 concludes with a review of the caustics encountered in scattering in R? and R3.

3.1. The representation formula

The aim of this section is to formulate the representation formula for the scattering amplitude that
was obtained by Robert and Tamura [24]. We will therefore first give a summary of their constructions.
We start with a few essential definitions.

3.1.1. DEFINITION For Q C R} x Rf we denote by A, (2) the set of all a € C*°(S2), such that for any
a, B €N™ and any L > 1 there exist constants Co g1, > 0 such that

1020 a(x, )] < Cap r(x)™ 1) 7E. (3.1.1)
If, in particular, @ = R x R, we write Ay for Ap ().

3.1.2. PROPOSITION Let (Ry,dy,00) be fized by Definition 2.2.6 and denote by py the Isozaki-Kitada
phase functions of Proposition 2.2.2. Then for any o,0’ € (09,0), o/ > o, d,d’" € (1,dp), d' < d, and
R' > R > Ry there exist functions c+j, j € N, such that

ct+; €A, supp c+; C '+ (R,d, o), (3.1.2a)
0 ] = O / /
2(Vaps, Vacrj) + (Agpi)es; =9 : onT4(R,d,+0"), (3.1.2b)
ZAxCij—l J > 1
|z]— o0 1 57=0 P ,
Chj — s on Ty (R, d',£0"), (3.1.2¢)
0 572>1

where 'y (R, d, o) were defined in (2.2.1).

3.1.3. DEFINITION & LEMMA Denote by R((,P) = (P —({)~%, Im( # 0, the resolvent of P, cf. (1).
Then R(C, P) is well defined as an operator L2 — L% y for any v > 1/2 and we can use the principle of

limiting absorption to define R(A\ + 40, P): L2 — L%w v >1/2, by
R(\ 410, P) := s_1\i%1 R(\ + ik, P) inL?,, AeR (3.1.3)
3.1.4. THEOREM |24, Corollary of Lemma 2.1] Choose N > 100n. Fiz 1 < dy < ds < do < dy < dy such

thatd;1<ﬁ<d4,oo<al<ag<og<a4<0, Ry < R1 < Ry < R3 < Ry. Define
s(x, & h) Zai] z,6)h s(x, & h) Zbﬂ z,€)h (3.1.4)

43
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with ay; defined to have the properties of c+; in Proposition 3.1.2 for R = Ry, R' = Ry, d =dy, d' = da,
o = o1, 0/ = 09. In the same way, by; is defined with R = R3, R’ = Ry, d = d3, d' = d4, 0 = 03,
o' =o0y4.
Let R, > Ry > R4 (we will choose suitable R, and Ry below). Let x(-,p) € C*(R), 0 < x < 1, be
a function such that x(x,p) =1 if |z| < p and x(z,p) =0 if |[x| > p+ 1. Set
Xa(x) := x(z, Rq), xb(x) := x(z, Rp). (3.1.5)
Let [A, B] = AB — BA denote the usual commutator. Define
g-p(@; hyw_) = e FE= @A o (), Pl (, VAw_; h)et #=(@2VA0-), (5.16)
Geal@ houy) = e E9 VD [ (), Pilag (VA et (2 R0) -

and
GO(W*,WJH )‘7 h) = (R(A + 7’07 P)gfb( : ;hvw*)eﬁwi( H2Vw-) ’ g+a( ’ ;h7w+)€%§0+( - ’ﬁer))LZ‘ (317)
Then
flw_,wis A R) = 1 (A, h)Go(w—, wys A, h) + O(hN3), (3.1.8)
where c1 (A, h) = 2eA\=3)/ 42 h) = (D) 2e=(n=3)iF 1 Piging w_ € S"71, O(h™) denotes a function of
w4 whose supremum over the sphere is bounded by a constant multiplied by h'™.
R SUpp g Defining
0 SUPPgia _
Yi(R,0,8) =21 (R0, ) N{zr eR": R< |z| < R+ 1} (3.1.9)

we see that

Suppg—b( : ;h7w—) < i— (Rb70'4, \/X(.U_)7
SUpp ga( -1 h,wi) € Sy (Ray 01, VAwy).

For short we will write

(3.1.10)

Yopi= i—(Rba 04, \/XUJ_),
El—b = i,(Rb, g3, \/Xw,).

Having thus reviewed the basic setting of Robert and Tamura, we now adapt the construction for
our purposes. We now fix R,, R, and various other objects in a suitable way, which will be essential for
our analysis of Gj.

(3.1.11)

3.1.5. DEFINITION & LEMMA Let o3 and o4 be fized as in Theorem 3.1.4 and oy, Ry, s— and A_ be fixed
as in Definition 2.2.6. For some sufficiently small € > 0 we define the compact set

Zo={2zeR" ' ui(z)) —w_| > e} (3.1.12)

We choose Ry > Ry so large that (see (3.1.11))
i) Yoy CmA,
i) ¥, Nm, T #0 forallze Z and
i) 7.7, . N({z: Ry <|z| <Ry +1}\ X ,) =0.
We set
Qo := intsupp g—p( - ; h,w_) o T4, Zy = int supp g—p(Too (s, -5 A); h,w_), (3.1.13)

(where ‘nt A” denotes the interior of the set A C R™) and remark that by the above constructions we
have Z. C Zy. We further choose a bounded open set Z C R"™! and Sy < S1 < s_ such that

Sy C mol_y, Ay = 1((So, S1) % Z) (3.1.14)

IThe constant ¢; contains a factor A("=3)/4 instead of (2A)("=3)/4 in [24] due to a differing factor of 2 in the hamiltonian
system (1.1.6).



3.1. THE REPRESENTATION FORMULA 45

—1
R4
S

supp g—»
WITZE,S,

Y

n

TN _p

PRrROOF. The compactness of Z, follows immediately from (1.2.16Db).

i)

ii)

iii)

We will show that it is possible to ensure 3X_;, C m,A_ by choosing R, large enough. Note that
x € X_(Ry, 04, VAw_) implies

Ty = (T, w_) < |z|og, and |z| > Rp, hence z,, < Ry, - 04. (3.1.15)
Now for sg < s_ sufficiently small, by (1.2.11a) with (1.2.13),
R"1 x (~00,2V/A(s0 — 1)) C mpi((—00, 80) x H)

C R x (=00, 2V A\(sg + 1)) C mpA_.

We now fix such an so. By (3.1.15), if # € S_(Rp, 0, vV w_) and R, is chosen sufficiently large then

T, < 2v/X(s9 — 1) which by (3.1.16) implies z € m((—00,s0) x H) C m,A_. Thus we can choose

Ry, as stated.
A simple geometrical argument shows that

(3.1.16)

Yy o{r= (2" 2,) ER": Ry < |z| < Rp+ 1, z, <0, |2'| < Rpy/1— 02} (3.1.17)

Thus any line 7,7 (defined in (1.2.5)) with |2| < Rpy/1 — 0 intersects X’ , transversely. Since
the distance between 7,7, N {z: z, <0, |z| > Ry} and 7, 7> N {x: x, <0, |x| > Ry} decreases as
R}, increases, we can choose R;, large enough to ensure ii).
This is seen by using the same argument as for ii) above.

Finally, since ¥ _; is bounded, we can find suitable Sy, S; and bounded Z. (]

3.1.6. DEFINITION & LEMMA Let T > 0 be the time T of Proposition 2.4.6 for K = Z., s_, s fized in
Definition 2.2.6 and Ry, So,S1 < s— and Z D Z. fized in Definition 3.1.5. We set

Ty:=T+s, —So+1 (3.1.18)

and choose R, > Ry such that

U oA C{a:|2f < R — 1} (3.1.19)
0<t<T,y

We then choose Ty > T1 + S1 — Sg such that

L((SO + 1o, S1 + To) X Z) C F+(Ra + 27d4,0>7 (3120)

where T'y is defined in (2.2.1).

PROOF. It is possible to choose R, as stated since 7, o ¢ is continuous on the compact set [So + 71, S1 +
T1] x Z. Furthermore, by Lemma 2.2.3 iii) we can achieve (3.1.20) by choosing Tj large enough. O
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Using the above specific choice of T we can follow Robert and Tamura’s use of the Egorov theorem
to obtain a formula for Gy.

3.1.7. LEMMA [24, page 173] Let Ty > 0 be given as in Definition 3.1.6. Then
LT i —iep : C AV Aw” : “VAwt
Go(w_,wy; A h) = %/0 e (e % gper = VAT) | g eher(n Ve ))L2 dt +O(h*). (3.1.21)

3.2. The Maslov Operator in extended phase space

In this section we will construct an approximation to the function e~#*Fg_e#%- in (3.1.21). This
will involve the construction of a Maslov operator on A, the manifold of integral curves of the hamiltonian
system (1.1.6) defined in Theorem 1.3.3. The definition of a Maslov operator is summarised in Appendix
D, and the procedure relies on the main results of Sections 2.2 and 2.3, as well as crucial results from
[18]. The final result is then stated in Corollary 3.2.17.

We consider the Cauchy problem

Qi(t,z;h) =0, (3.2.1a)
(0, z; h) = ug(x)er 0@, up € C°(R™), Sy € C=(R™,R). (3.2.1b)
where
Q~—'h9—P (3.2.2)
=1 815 N

and P = P(h) is the Hamiltonian defined in (1).
We henceforth consider ug and Sy to be given by

uo(x) = g_p(z; h,w_), and So(x) == o (x, VIw_), (3.2.3)
and set Uy := int supp ug.
3.2.1. REMARK The function
Y(a,th) = e B (gy( - hw)eh e VAW (3.2.4)

solves the Cauchy problem (3.2.1) with (3.2.3). This solution of the Cauchy problem is unique and smooth
in x and t.

We will construct an “approximate” solution of (3.2.1) by considering the associated Hamiltonian

q(@,t,6,B) = p(z,&) + E= [+ V(2) + E (3.2.5)
and studying integral curves of the hamiltonian vector field given by
0% = ot 9 - OF
or & or ’ or VaV(@) or 0 (3.2.62)

with suitable initial conditions. Deviating slightly from standard notation, for y € Uy we will denote by

{@(r,y; N), t(r, 95 M); €(1, 5 \), E(T,y3\)): 7 € R} € R2™+1) solutions of (3.2.6a) with

3.2.2. REMARK In this section we use (w,t;&, E)-—coordinates on T*R"*!, treating t as x,,1 and E
as £,401. We will sometimes identify T*R"™! with T*R™ x T*R by identifying ((x,t), X*(&, E)) with
((x, X*(§)), (t, X*(E)). We denote by

Mg T'R™ — T°R", ((z,1), X*(&, E)) — (z, X7(£)) (3.2.7)
the projection onto the standard phase space induced by the (z,t)-coordinates.

3.2.3. LEMMA The “initial value set”

Qo = {(@ (0,55 1), 20,55 \)), X*(€(0, 55 \), E(0, 35 \))): y € Up} (3.2.8)
~ Qo x {(0, X*(=\))} € T*R" x T*R,
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is an n-dimensional isotropic submanifold. We denote the flow of the hamiltonian vector field Hy (re-
stricted to Qo) by gr: Qo — T*R"™1. The integral curves of H, through Qo,

A= J A, A, =GO, (3.2.10)

form a lagrangian manifold and the coordinate map

i1 Rx Up— A, (Ty) = (@ (7,53 M), 87,55 1)), X (&(7, 53 1), E(7, 45 M) (3.2.11)
is a diffeomorphism. Identifying T*R™ ™1 with T*R"™ x T*R, i is
i(ry) = (s +7,2), (1, X"(=N)), (s,2) =7y, X*(VSo(y))), (3.2.12)

where ¢ was defined in (1.3.2).

The surface represents A x {(t, X*(—X)): t € R}. We
have used (z,t;&, E)—coordinates, but omitted the
FE-axis and drawn only the positive part of the t—axis.
The right edge of the surface then represents A (more
precisely, A x {(0,X*(—=X\))}). If the lightly shaded
part of the right edge shows g (more precisely, ﬁo),
the lightly shaded part of the surface represents A.

3.2.4. REMARK We define 75 :=7; o (id ®7, 0 1), i.e.,
To: R x 071 Q) — A,
(1,8,2) = 01 (T, m20(8,2)) = (oo (s + 7,23 A), X (E (s + 7,2, A)), (1, X*(=N))).  (3.2.13)

It follows from Lemma 3.2.3 that 75 is a diffeomorphism. Furthermore, we see directly from (3.2.11) and
(3.2.12) that

(®(T, 5 M), E(T, 3 A) = (Boo (5 + 7,25 X), €0 (s + 7,23 M) (3.2.14)
for (s,2) = 17 (y, VSo(y)) = ¢ (ml,) "'y

PRrROOF OF LEMMA 3.2.3. Throughout this proof we will consider T*R™*! to be identified with R?"*2
using (z,t; €, E)—coordinates, and similarly identify T*R™ with R?" using (x,&)—coordinates. We start
by showing that the map 7; is given by (3.2.12). A crucial observation is the fact that the initial value
problem (3.2.6) splits into two independent initial value problems for (#,€) and (E,%). The latter can
be solved immediately, yielding E(T, y; A) = =X and Z(T, y; A) = 7. Thus

u(ry) = (@(1,y37),8(1, 3 A); 7, = A), y € Up. (3.2.15)
On the other hand, (z, E) are integral curves of the system
% v _

5 =& 5 = -V.V(@) (3.2.16)
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with initial conditions (E,E)|T:O = (y,VSo(y)) € Qo, y € Up. But any point in y is in fact a point on
an integral curve of (1.1.6), cf. Theorem 1.3.3. Thus for any y € Uy,

(1, VaSo(y)) = (®oo(s, 2 A), £ (5, 25 A)), (s,2) = ¢ My, VSo(y)), (3.2.17)
Now (1.1.6) is identical to (3.2.16), so (. ¢)gr|q, = 9-[n, and hence (3.2.14) holds. Together with (3.2.15)
this implies (3.2.12) and A = 7; (R x t=*(Qp)).

We first consider 7; as a map R x t71(€) — T*R™*! and show that it is an embedding, so A is a
submanifold. As usual we will verify that i; is a smooth, proper injective immersion. By (3.2.12) any
bounded subset in A is bounded in t = t(t,y; \). Since t(t,y; \) = 7 by (3.2.12) and Uj is bounded,
it follows that the pre-image of any compact subset in A is bounded. By (3.2.14) i; is smooth, so the
pre-image will also be closed, hence compact. Thus 7; is proper. Now (y,7) — I1(y, T) can be expressed
as the map y — (y,0; VSop(y), —A) composed with g,. The former map is clearly an injective immersion.
Since gr = (g-,7, —A), where g, is the (injective and immersive) flow of H,, g, and hence i; are also
injective immersions. Thus 77: R x t=1(£) — A is a diffeomorphism

Now () is a subset of the lagrangian manifold A C R?", so we immediately see that @0 defined by
(3.2.8) is an n—dimensional isotropic manifold. Furthermore, A s just the union of integral curves of a
hamiltonian vector field transverse to (AZO, and thus is lagrangian by standard arguments in the theory of
ordinary differential equations (cf., e.g., [25]). O

Defining a Maslov operator K5z on A we can approximate the solution v of the Cauchy problem (see
Remark 3.2.1) arbitrarily closely. Explicitly, we have the following result of Maslov:

3.2.5. PROPOSITION [18, Theorem 12.4] for any Ty > 0 there exist functions ¢ € C§°(A), k € N, such
that for any N there exists a function Rny1( -, -;h) € C®°(R? X Ry) such that
N
Y(a b h) = K5 [Z qskhﬂ + Rysa(a, b h), 0<t< T, (3.2.18)
k=0
where
max ||[Ryi1(-,th)|2 < Cpy NV T (3.2.19)
t€[0,To]

3.2.6. REMARK The functions Ryy1, IV € N, are smooth due to the smoothness of the functions ¢;, and
the smoothness of 1. It follows from the estiomate (3.2.18) that the functions ¢ are unique and that

V(@ t:h) = K| o + ¢r). 0<t<Th, (3.2:20)

where g € C§°(A) and ||¢rllco < Crh for some Cr > 0.
For an open set 2 C A we define, similarly to (2.3.1), the map
7o O — R xR, xRy, p = (@r(p), Hp): &(p)) (3.2.21)
where I C N = {1,...,n} and I = N\ 1. If Tg,r is a diffeomorphism on its image, (z1,t,&7) are

lagrangian coordinates on Q and (ﬁ, Tg ;) is a lagrangian chart in the sense of Definition 2.3.2.
Denote by

T(x,€)" T*[RnJrl - T*[Rna ((l',t),X*(f,E)) = (an*(f)) (3222)

the canonical projection onto the standard phase space.
By (3.1.13), (3.2.7), (3.2.14) and (1.2.8),

T(a,) (M) = Tz, (3.2.23)
and for any open set 2 C 7, the pre-image
Q= (T(e.0)]3) Q) (3.2.24)

is open by continuity. Later we shall see that in this way we can induce Maslov data (in the sense of
Definition D.1) on A from Maslov data given on A.
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3.2.7. LEMMA Let S € C*(A) denote a global generating function on A. Then
S =8omue — VA, S e C>®(A), (3.2.25)
where t is regarded as the usual coordinate function on K, is a global generating function on A.

PROOF. Let p € A. Noting E(me)(p) = &), dzlr, . (») = dz|p and that S is a generating function,
we see from (3.2.25)

dg‘p =dS|r, o) © AT(a,6)lp — Vadt|,
= €dln, o) © dn(a0)lp — VA,
= ¢dz|, + E dt|,. O
We first fix some basic data for K73.
3.2.8. DEFINITION In this section K5z denotes a Maslov operator constructed on A using the following

Maslov data (cf. Definitions D.1 and D.5):

i) Some lagrangian atlas Hﬁm’%ﬁm,lm)}mzo’ I, CN :={1,...,n}, where Qo = (7T($7§)|7\)_1Q(), Qo
defined in (3.1.13), and Iy = N.
The global coordinate map 71: R™ — A of (3.2.11).

—-
iy
=

The global generating function S given by (3.2.25).

Some partition of unity {&,} subordinate to the covering {Qu} (i.e., em € CgO(Qm), Sem=1)
Some set of functions g, € C(R"™1) such that gm(x) = 0 for dist(x,ﬂ(w7t)(~2m) >1 and g, =1
on F(I’t)ﬁm. (Here T(z,t) : T*R™! — R"*! denotes the canonical projection onto the base.)

=

3.2.9. LEMMA Define iy € C*(A) through

Ug o t1(7,y) = up(y), (3.2.26)
let Kz denote a Maslov operator as in Definition 3.2.8 and set
v(z,t; h) = Kx[uo)(x,t). (3.2.27)
Then
v(-,0;h) =¢(-,0;h), on Uy, (3.2.28)
where v is defined in (3.2.4).
We can now apply a crucial result from Maslov theory [18] concerning the cgnstruction of approximate

solutions to the Cauchy problem (3.2.1) using a Maslov operator defined on A and satisfying the initial
condition (3.2.1b).

3.2.10. THEOREM [18, Theorem 10.1] The function v defined in (3.2.27) is an approzimate solution to
the Cauchy problem (3.2.1), i.e., it satisfies the initial conditions (3.2.1b) and for any N, T > 0 there
exist constants Cn 1 > 0 such that

Qu(t,x;h) = r(t,z; h) - h?, for 0 <t < T, where |r(t,xz;h)| < C’N7T(x)_N. (3.2.29)
We quote the a direct consequence of the Duhamel principle, cf., e.g., [18, Proposition 10.6].

3.2.11. LEMMA Let f(¢, - ;h) € C®°(R™) be a smooth function for any 0 <t < T for some T > 0. Then
the (unique) solution of the Cauchy problem

Qo(t,a3h) = f(ta:h), 0<t<T, 6(0, -3h) € C*(R") (3.2.30)
satisfies the estimate

[, -5 )]0 < [16(0, -5 h)loo +/0 17, 5 7)o dT (3.2.31)

We hence obtain the basis for the approximate representation of .
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3.2.12. COROLLARY Let 9 of (3.2.4) and v of (3.2.27) be the exact and an approximate solution, re-
spectively, to the Cauchy problem (3.2.1). Then for any N,T > 0 there exist constants Cp > 0 such
that
sup |[9(t, -;h) —v(t, - ;h)|leo < Cr - R (3.2.32)
te[0,T]
3.2.13. REMARK It follows from Proposition 3.2.5, (3.2.20) and Corollary 3.2.12 that ¢ = @g. hence for
any Tp > 0 we have

Wla,t;h) = K[ + ¢r) 0<t<T, (3.2.33)

where ¢ € C§°(A) and ||¢rllc < Crh for some Cr > 0.

We will now explicitly construct a Maslov operator K; with Maslov data as in Definition 3.2.8 from
any given Maslov operator K, with the following Maslov data:

3.2.14. DEFINITION We define Ka as a Maslov operator constructed on A using the following Maslov data
(cf. Definitions D.1 and D.5):

i) Some lagrangian atlas {(m, 7q,,.1,,) tm>0, Im C N, where Qg is either given by (3.1.13) or some
superset in A, In = N and the maps mq are those of Convention 2.4.4 ii) with Q = Q,, and
I=1,.

i) The global coordinate map v: R™ — A of (1.3.2).

iii) The global generating function S given by (2.3.14).
iv)
)

TTL)IWL

—
—

iv) Some partition of unity {en,} subordinate to the covering {Qy,} (i.e., em € C (), D em =1)
v) Some set of functions g, € C°°(R™) such that g, =1 on 7,0 and gm(x) = 0 for dist(x, 7,,).

3.2.15. LEMMA Let K be a Maslov operator constructed on A as in Definition 3.2.14, Setting
€m = €m O M(z.6)| %> Gm = gm © T(z.6)|x (3.2.34)

and defining {ﬁm,%ﬁ 1} by (3.2.24) and (3.2.21), the operator Ky induces a Maslov operator Kz on
A asin Definition 3.2.8.

ProOF. We first show that {(NZm, %ﬁmlm} is a lagrangian atlas on A. By the continuity of 7, ¢), {(Nlm}
is an open covering of A. We shall seel that %51 ; is a diffeomorphism on its image. Eeach p € Q has the
representation p = 71 (7,y) = (&(7,y; A), 7, E(T,y;)\), —A) for some unique (7,y) € R x Uy, so %ﬁm,l acts
via

%ﬁm,lz (x(7,y; )\),T,E(T,y; A), =) = (Zr(T,y; A), T, ET(T,y; A)). (3.2.35)
By working through the usual criteria (injectivity, immersiveness, properness, smoothness), we easily see

that this map is an embedding if and only if the map
%ﬁ [|7\'(m,5)A-r : (%(TvyvA)ag(Tvgh )‘)) = (%I(Tay; )‘)aET(Tvy7)‘))7 (va) € ?;1((2) (3236)

is an embedding for fixed 7. In other words, we need to check that 75 ;o m, ¢) 071 (7, - ) is a diffeomor-
phism. But by (3.2.13),

W1 © M) © 0T, ) = 7@, 10 g7 © (Ta|a) ™ on Up C R, (3.2.37)
where 7q, 1 is defined in (2.3.1) and (Qy,, 7, 1) is a lagrangian chart. Since (7, |5) ! is a diffeomorphism
onto Qo and g,(Qo) C O, we have shown that 75 ;| A, and hence 7g  is an embedding. Thus
{ﬁm,%ﬁm Im} is a lagrangian atlas on A Tt is easily verified that the functions e,, and g, have the

required properties of Definition 3.2.8 iv) and v), respectively. (I

3.2.16. PROPOSITION Let K be a Maslov operator on A as in Definition 3.2.14 and K5 an induced

Maslov operator on A in the sense of Lemma 3.2.15. Then for any function ¢7 € C°°(1~\) there exists a
function ¢ € C°(A x R) such that

Kx[dl(z,t) = e FMEA[p( -, )] () and supp ¢( - ,t) C g:. (3.2.38)
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In particular, if ¢ € C*°(A) such that 0.p o 11(1,y) = 0, i.e., $ oT1(7,y) does not depend on 7, and
w € C(Qo) with pou(s,z) :=poiz(0,s,z), then

Ex[@)(a,t) = e" WM EA[(DG, n) 0 9] (), (3.2.39)
where Do, n is defined in (D.103).
With (3.2.3), (3.2.4) and Remark 3.2.13, Proposition 3.2.16 yields immediately

3.2.17. COROLLARY Let Kp be a Maslov operator on A as in Definition 3.2.14. Then
e F P g p( - s hwo e e VA)]
i 1
= e FNELDR g (i hw ) omlay) o g+ Ri( - h)](x) (3.2.40)
where for some Cr, > 0 we have

sup [|[Ri(-,t;h)]|eo < Cry - h and supp R1( -, t;h) C g:Qp. (3.2.41)
t€[0,T]

Before proving Proposition 3.2.16, we establish a useful result.

3.2.18. LEMMA Let @ C A be an open set with lagrangian coordinates (xr,&5), I C N. Then using
Convention 2.4.4 i) and the definitions (1.3.2), (3.2.11), (3.2.24) and (3.2.21), we have for all (1,y) €

P(%)
|det d(7g ; o 71)] oyt = |det d(mq, o) o™ ome
X ’det d(my o L)‘_l ortog 40 T(2,€)s on QN A, (3.2.42)

Proor. We will prove

ory (8:2) = (mala) M (y).  (3.2.43)

by calculating the modulus of the determinant of the Jacobian of 75 ; 0 73. By (3.2.13) and the chain

|det d(7g s o7y)| 0 = |det d(mq,7 L)’(S_H_’z) - |det d(my 0 1)

(T,

rule we have

|det d(Tg 072)|(T,S,Z) = ’det d(7g o'El)l(T,ﬂmL(S’Z)) - |det dmyu(s, 2)| (5., - (3.2.44)
On the other hand, direct calculation from (3.2.13) yields
Oxy(s+7,2;0)  Owmr(s+7,2;0)  Odwr(s+7,2;0)
_ " or ds 0z
‘det d(7g,; 072)|(rus.ny| = |det 1 0 0
’ &7 (s+7,2;)) 0€7(s+7,2;)) €7 (5+7,2;))
or Os 0z
Oz (s+7,2;0)  Ozr(s+7,2;))
= |det 8&7(56—)1:97',2;)\) 857(52?7'%;)\)
Js 0z
= ’det d(ra,r o L)|(s+7—,z)’ (3.2.45)
Now (3.2.44) and (3.2.45) together yield (3.2.43). O

PROOF OF PROPOSITION 3.2.16. We will prove (3.2.39) only; the assertion (3.2.38) will follow immedi-

ately from these considerations. An induced Maslov operator on A in the sense of Lemma 3.2.15 is given
by

Ex[@] =) €Ky | [Emdl, @ € A, (3.2.46)
where 7,, is the index of the chain of charts joining {QO, %ﬁo N} to {ﬁm, %ﬁm Im} and

~ ~ _ ig o7} (@15t ") 1 o o
K 1 [Enl(@,8) = Gin o, 0)Fy [ im0 VD5 7,3y 072 | (g, )]

m Qs Im mylm sz.
(3.2.47)
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By a slight abuse of notation we use the index set I,,, C N to denote the index set of the “space variables”

(21,,,t) of extended phase space and write I,,, = N\ I, We thus use Kz , to denote the Maslov

operator on O, constructed with lagrangian coordinates (zy,,,t,&7, ), define

Sentn =5 — (o7, 67.) on Qp, (3.2.48)

mydm

as in (2.3.3) with (3.2.25) and set

Dg, ;. ohi(ry) = |detd(7g , oi1)| ) for (7,y) € 7 (). (3.2.49)

Since the index set I = N\ I of the “fibre variables” &7 is identical in © and Q it follows from (D.100)
that Y(Qm, Q) = Y(Qm, Q) and hence 7, = v, the index of the chain of charts joining {Q, Ta, ) to
{Qm, TS, Im}‘ It is therefore sufficient to show that for ¢ given as in the proposition,

i 1
Kg, 1, [Em@)(z,1) = e " MKq 1. (D&, ) © 9—t)(2), (3.2.50)
where Kq 1., is the local Maslov operator on {1, constructed using the data of Definition 3.2.14. First,
note that
Tag) 07, (Lo &) =mg! 1 (21,67) for (t,z1,&7) € T, Qm- (3.2.51)

mydm

By (3.2.48), (3.2.25) and (3.2.51) we obtain

gﬁ I © %:1 (t7 .’I;[, gT) = SQnLyIm, o Trf;},“[rm (xl’ 57) - \/Xt7 (3'252)

midm QI

where Sq,, 1, is the local generating function on €2, constructed from the global generating function S
in (2.3.14). Similarly, (3.2.34) implies that g, (x,t) = g, (x) and, using (3.2.51), &, 0%51 , (L&) =

emomg" 1 (x1,&5). Hence (3.2.47) becomes

mylm

Ks , [Endl(x.t)

i _ i —1 . -1 ~ o~ _
_ gm(m)e—ﬁAt]_-h 1 [eiSnm,fmowgm,zm(zzm’ )(Dﬁi,lm . 80) ° Wﬁl , (-Tlmvta ) “€m O 77971](x1m, )”

molm z7’
(3.2.53)
By (3.2.49),
6§~2m,lm O%:i,lm = Bﬁmlm ol ofLT1 o %:m,lm
= S|det d(%ﬁ,f [¢] /[\,'1)| (o) ’Zj;l ) %571“]7”. (3254)
Applying (3.2.42) with (3.2.51) we obtain
E)ﬁm,lm o %ii“ . (t,x1,&5) = |detd(mqrot)| o flﬂ's_zrln,lm (xr1,&7)
x |det d(my o L)|71 o1 log - Wﬁi,lm (xr1,&)
=Da,, 1, © 7, 1, (#1,67) - Doy 0 g1 0 mg 4, (21,67) (3.2.55)
From the fact that @ o 71(7,y) is independent of 7, we see that
po %Sgi,lm (z1,t,67) = pogiomg. ; (z1,&7), (3.2.56)

where ¢ € C(Q) is defined by @ o (s, 2) := g 072(0, s, z). With (3.2.55) and (3.2.56) (3.2.53) becomes

i i - . _1
Kg, 1, [Em@l(x,t) = gm(a)e” FNF [eﬁsgm’lmwﬂ’l’“f” @) (e, - Dol 1) oman (1, )

l —_
X (p-Dg, ) og-tomg iz, )] |gg7

i 1
=e "MKq, 1, [em - (D3, pr) 0 9t m
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3.3. The scattering amplitude as a Maslov operator on the asymptotic manifold

In this section, we will finally give the leading term in the asymptotic expansion of the scattering
amplitude as h — 0, proving Theorem 1, which is the main objective of the present work.
From Lemma 3.1.7 and Corollary 3.2.17 we obtain

1 ;
Go(w_,wy; A h) = E/ (Ka[to] | Gra€® ), dt +O(h™), (3.3.1)
0
where we have write ¢, for ¢4 (-, ﬁw*), Jta for giq( -5 h,wy) and written ¢ for
1
Yo( st h) == (DG, Arg—b( s h,w-) omzla,) 0 gt + Ra(-,t;h) € Cg°(g1820), 0<t<Tp.  (3.3.2)

Recall from Proposition 2.4.6 that we can find open sets on H such that their images under S; and
t(I, ) (I C Ris open and bounded) are well-projected onto certain tuples of lagrangian coordinates. We
hence construct a suitable covering of Z..

3.3.1. DEFINITION We fiz some § € (0,1/4) and choose an open covering {Zi}M. | of Zy (defined in
(3.1.13)) such that
i) UZ,c 2.
ii) there exist i, € N and index sets J, C N, such that 'y = S} (Zy) C T*%;,(0) and (I‘k,wl(f:v)!]k)
are lagrangian charts on L (see Convention 2.4.4 for the notation used) and
i) {(Qk, o M\ ) Ly, Q= o((S1 + T, So + To) x Zi), (see Definitions 3.1.5, 3.1.6) are lagrangian
charts on A (defined in the Scattering Angle Hypothesis). We will write Iy, :== N\ Jx and T = Jj,
for short.

Recall that we have not yet specified the lagrangian atlas on A used in the construction of K, in
(3.2.40) (with the exception of the chart (Qg, 7, 7). We first construct an open covering of T, contained
in 7z (note that Z D Zy, cf. (3.1.14)) and then add a covering of the complement.

3.3.2. DEFINITION We choose an open set Ay, such that Ay, C UQ/I:1 O and
Wm(b((sl + Tl, SO +T0),Zo) \ A+a) n {m: R, < |ZL'| < R,+ 1} = 0.
Then there exist charts Qy, k > M such that
1) Qk N A+a = @,
ii) there exist I, C N such that (Q, 7, 1,) are lagrangian charts on A,
iii) with A_y defined in (3.1.14) and Q, for 1 < k < M defined in Definition 3.3.1 we have
Tz, CC C Tz, C=AU|J (3.3.3)
k>1
We next choose open sets {Q }x>1 such that (Q,mq; 1) are lagrangian charts for some I}, C N,
A\ Tz CC' C A\ Tz, for € =] %, (3.3.4)
k>1
and A =CUC'. We hence obtain a lagrangian atlas
A= {(Ap,ma_, )} U L% 7 1)} U (UL mor 1)} (3.3.5)
k>1 k>1
on A.
3.3.3. DEFINITION We fix some function e, € C5°(A_p) so that e, = 1 on Qo and choose some g, €
C3°(R™) equal to unity on myA_y and supported within {x € R™: |z| < R,}.
We define functions ¢, € C°(Zy), k=1,..., M, and 7 € C((S1 + 11,51 +T1)) such that for
er € C5° () defined via exo (s, z) :=71(s) ((2). (3.3.6)
we have Y e, =1 on Ay,. We denote by g, € C®(R™), k = 1,..., M functions supported in a small
neighbourhood of 7., vanishing outside 7,7z and equal to unity on w,Q.

We define functions e, € C°(Q), k > M, such that ey +> -, ex =1 on Tz,. We further introduce
functions {gi tr>n equal to unity on ., k > M, and supported in a small neighbourhood of w,Q, so
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that supp gx NNy = 0 and gi(z) = 0 if dist(z, Qi) > 1. In particular, for Q ﬂth,So #0 andk > M
we require that supp gx, N {z: Ry < |z| < Ry + 1} = 0.

We further cover Tz, with charts (Q, T, 1,), k > M, such that Qi C Tz and a subordinate partition
of unity {ex} such that ey + Y <, ex =1 on Tz,. We define functions {gi}r>nm equal to unity on my8y,
k> M, and supported in a small neighbourhood of m,,, so that supp g N TeA e = 0 and gp(x) = 0 if
dist(z, Q) > 1.

Lastly, we define functions ej, € C§°(2,), k > 1, so that ep+)_, -, ex+ej, = 1. (Hence {ep, ek, €} }k>1
is a partition of unity subordinate to A of Definition 3.3.2.) We define functions gy, equal to unity on
8. and vanishing outside a small neighbourhood of w;Y .

3.3.4. DEFINITION We define K to be the Maslov operator constructed on A using

i) The lagrangian atlas A given in Definition 3.3.2. (The Maslov index of any given chart is that of a
chain of charts joining it to A_y, defined in (3.1.14).)

ii) The global coordinate map v: R™ — A of (1.3.2).

ili) The global generating function S given by (2.3.14).

iv) The partition of unity {ep, e, e} }x>1 of Definition 3.3.3.
v) The set of functions {gy, gk, g} }k>1 of Definition 3.3.3.

3.3.5. LEMMA Let K be the Maslov operator constructed in Definition 3.3.4. Then

M T

]. N 0

Go(w—swiidh) = 2 3 | Gultiwn,h) dt+ O(h) (3.3.7)
k=1 1

with Gy(t;w, h) = (Ko, 1, [exto( .t h)] | g+ae%“"+)L2.
PROOF. Since ¢o( -,t;h) C g:Q0 and Qg C ¢((So, S1) X Zp), we have

supp ¥o( -, t;h) Cu((So+t,51 +1t) x Zy) C T7 5,460 TZJB,SOH' (3.3.8)
Hence supp ¢o( - ,t;h) Nsuppe), =0 for all k € N and ¢ € [0, Tp]. It follows that

Kalo(-,t:h)] = Ka_, nvlento( -t h)] + > '3 Ko, 1 lextbo( -, t; h)].
k=1
QkﬁT;o,SO+t?£®

We now note that supp g4+, C {z: R, < |z] < R, + 1} and
supp Ka_, nvlestho( -, t;h)] Csuppgy C {z € R": |z| < R, }. (3.3.9)
Using (3.3.9) and the definition of gi, k > M and Q, N7, 5 ., # 0, we obtain

To .
/o (Ealo( - t;h)] | grae®?t),, dt

- To i
ezf"”“/ (KQk’[k[ek'(/)o(‘,t; h)] | g+aeﬁ“’+)L2. (3.3.10)
0

M=

=
I
—

Furthermore, for t < 17, supp e, Nsupp Yo( -, t;h) = 0 by (3.1.19), and we obtain (3.3.7). O

Writing out the terms Gy, using Definitions 3.3.4 and (D.5) for the local Maslov operator Kq, j,, we
have

_1 B
Gr(t;wy, h) = /gk(x)(DQ,i]kek o) oy 1 (@1, &7, )g1al(®)
X GIL;(SQk,IkOﬂs;;,jk(flk7§7k)+<$7757)_¢+($7\/x“’+)) dr dhff ) (3311)
K

Here ~y; is the Maslov index of the chart €, defined as the index of a chain of charts joining £ to
A_p (see Definitions 3.3.4 i) and D.3), Sq, 1, denotes the local generating function on €, obtained from
the generating function S € C*°(A) (see Definitions 3.3.4 iii) and 2.3.2 ii)), mq, s, is the notation of
Convention 2.4.4 iv) and Dgq, 1, € C*°(Q) is defined via

D1, © ¢ = |det d(mq, 1, ©1)] (3.3.12)
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Due to the cut-off function e, € C§° (), the (:clk,fjk )-support of the integrand of Gy, lies in mq, 1, Qg
and we can perform a coordinate transformation

o 71'5]3’116 : (xlwfjk) — (s, 2). (3.3.13)
Noting (3.3.12), we obtain
Gi(tiwy, h) = (27rh)_|7k|/2/e%@k(ﬁ’s’“‘”*)wk(s,z,xj) dsdzdzy, (3.3.14)
with
1
Uils,2,27) i= (D, 1, v) 0 (s, )T ()Ge(Dgalr, (5, N, apshows),  (3315)
O (27,5, 23w4) 1= Sa,,1, © L(s,2) — o (1, (5,23 A), 27), Vw,)
+ (7. &7(s. 2:0)). (3:3.16)

3.3.6. LEMMA For k = 1,...,M and some fized 6 € (0,1/4), i, € N as in Definition 3.3.1 and
¥, (0),%;, C S"t given in Definition 2.4.2, we define

or € C§° (%) with 0 < o, <1 and o, =1 on %;, (9), (3.3.17)
Let Gi(t; - ,h) € C®(S" 1\ {w: |w —w_| < €}) be defined by (3.3.14). Then
Gr(t; - h) = 02(-) - Gi(t; -, h) + O(h™). (3.3.18)

PROOF. Tt is sufficient to show that the phase ®; of (3.3.16) has no stationary points on supp g N
supp(l — o). We will calculate the first derivatives of ®; with respect to the variables of integration in
(3.3.14). First,
0Py,
8.’Ejk

=—Va;, o+ (@1, (5,23 0), 27, ), Vw,) + &7, (5,23 7) (3.3.19)

Note that since Sq, 1, is a local generating function on €2, we have
dSq,.1, = &rdxy — vpdés (3.3.20)
(see (2.3.4)) and hence the chain rule gives
o®, 0
s %Sﬂhlk o u(s,2) = (Va, o+ (@1, (5,23 0), 27, ), Vwi), 05z, (s, 2 0)) + (a7,,05€7, (5,23 \))
= <€Ik (87 23 )‘) - VIIk 90+<(w1k (S, Z; >\)7 I'Tk)a \/Xer), asw[k (Sa Z; >‘)>

+ (7, — 27, (5,2, 0), 057, (5,2, M)). (3.3.21)
In the same way, for m = 1,...,n — 1 we obtain
0P
aTk = <€Ik (5,2;0) — Vﬁb’lk ()0+(($[k (5,23 M), xfk)a \/Xw-i-)’ Zm LIy, (s,23A))
+ (27, — x7, (8,23 A), 0,67, (5, 23 A)). (3.3.22)
Since the map (3.3.13) is a diffeomorphism on mq, 1, €k, the set of vectors
{ (ZS%(S’ - ;)> (gzmwl’“ > i)) } (3.3.23)
szk(s’z’ ) st[k(s’z’ ) 1<m<n—1
is a basis of T, | oy(s,z)R". Using this in (3.3.21) and (3.3.22) at any stationary point (7, ,s,2) of
Dr(-, -, - ;wys) we have with (3.3.19)
r7, =7, (8,2 A), €.(8,2;0) = Vo (Tao(s, 23 A), \F/\w+). (3.3.24)

Now (s, z,x7) € supp ¢y, implies s € supp 7 and z € supp (x. Hence s > s and we can apply Lemma 2.2.5
to deduce wi = w;(2z;A). But z € supp (x means w4 (z;A) € £;, (d) by Definition 3.3.1. Since o =1 on
%, (6), we have shown that the phase @}, of (3.3.16) has no stationary points on supp ¢¥;Nsupp(l—o). O
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3.3.7. LEMMA Fork=1,...,M and i € N we define

e € C(R™1) with u, = 1 on ng;k_’(zk)’h(sj(zk)). (3.3.25)

Here we have used the notation of Convention 2.4.4 iii) and Definition 3.3.1. Let wy =6 = (01,...,6,)
and 0" = Oy, for short. Then

(ok(+)?- Gi(t: - ) o x;, ' (8)

= 00 X OV F {usl0 VFul(on Gults - 1) o s, MYy, |, +OB), B3

PROOF. The first term on the right-hand side of (3.3.26) is explicitly given by

i
ﬁ‘Pk(S’Z’«T?k ﬂ%\/’ilC \Jp TN

;0"
/wk(s, 2,27, 9N, \ s M\ 0')e D) s gy dpxz, AN, \ g AR, \ gy

where by (3.3.14)
wk(sv 2, X7, ﬁNik\Jk s NG\ i 01)
= (ok 0 X5, )(O0) - w05, mp, ) - (08 0 X5, ) (055 O, \ )
1
X (Dglk,lk fOb © g—t) o L(Sv Z)T(S)Ck(z)goa(il?[k (Sv D )‘)7 a3 ha Xi_,cl(oJk s ﬁNzk\Jk)) (3327)
and
P (s, 2, ) ﬁNik\Jka MNG, \ Tk 0') := Sa,.1, 0 t(s,2) — o1 (@1, (5,23 0), xfk)v \f)‘Xi_kl(ekaﬁMk\Jk))
+ <x7k’£7k (8, zZ; >\)> + (lek\]k,HMk\]k — ﬁle\JIJ (3328)

As in the proof of Lemma 3.3.6 we will show that the phase ®(-;6') € C°(R x R~ x R+l x R2Ni \ /x|
has no stationary points on the support of ¥ (-;6") Nsupp(l — ug).
We now calculate the stationary points of ®y(-;6’), obtaining

0Py,

0= —"—
8mNik\Jk

= On\ e~ Un \a (3.3.29)

at the stationary point. Furthermore, differentiating and then using (3.3.29), at the stationary point we
have

0= dar, ~Va, o ((@r, (5,2 7),07,), VA, (0)) + &5, (5, 20) (3.3.30)
and
0= gy = (892%) LD v (33.31)
Analogously to (3.3.21) we obtain
0= % - %Sﬂm 01(5,2) = (Vay, 0+ (@1, (5,20, 27, ), VAXG (0005 O i) Osry (5,25 0))

+ <l‘7k ) 8S€Tk (57 Z3 )‘)>
= <€Ik (87 23 >‘) - vzzk QDJr((wIk (Sv 23 )‘)7 xfk)v \/XX;;(GI)); 85x1k (37 Z3 )‘)>

+(z7, — 7, (5,2, A),05€7, (5,23 ). (3.3.32)
where we have inserted 6 N\ = 0 Nig\ i after differentiating. In the same way, form=1,...,n—1
0= <€Ik (s,23A) — vﬂﬂlk. (,0+(($B]k (5,23 M), xfk)a \/XXi_,cl(gl))v 0z, 1, (5,2, 7))
+ (27, — @7, (5,25 0),05,,€7, (5,23 N)). (3.3.33)
As in (3.3.24), the equations (3.3.30), (3.3.32) and (3.3.33) imply
r7, = x7, (5,2 N), £(s,2;0) = Vi (@ool(s, 23 A), ﬁxi_kl (0"). (3.3.34)

Now we have s > sy, hence Lemma 2.2.5 yields
Xip (wi(z;0) = 6. (3.3.35)
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Moreover, (3.3.31) and (2.4.5) imply

ma; g, = v, Tk (25 ). (3.3.36)

It follows from (3.3.35) and (3.3.36) that at the stationary point we have
TSty © 54 (2) = @a (250 I\ (52 0) = (B g, \ ), (3.3.37)
i.e., there can be no stationary point on the support of 1 — uy. O

By (3.3.26) we have

Gr(t; - h)ox; 1 (0') = /Ok o X (0)Fy H{un(s,, - )Ti(t,5,0,,, - He o, 5 O0T) (33.38)
where (noting || = |Jx|)

Ti(t, 8,0, mn, \a,) = (2h) =D /Q/Uk(eJk,mNik\Jk) 0k 0 X3, ) (00,0, (0K (s, 2, 37)

x e ORI N im0 g dag, din; g, (3.3.39)
with
O (2,07, I, \ 25 55 0 M ) = Sayn 01, 2) = oy (@, (s, 230, 27,), VG (0, O V)
+ (21,87, (8,2 A)) = (m, \ i Ui\ ) (3.3.40)

The following results are preparatory to evaluating Z; using the method of stationary phase.
3.3.8. LEMMA Let @i (2, 27, U, A\ S \_]k79Jk> be given by (3.3.40), (879Jk,m_/\fik\]k) € supp T X
supp ug. Then ®p(-;s, mNik\Jk70Jk) has a unique critical point on supp ¥ Nsupp O'kOXi_kl)(GJk, -) given
by

2= (ST o (wl )T Os man ) 77, =27, (5,5 0), Oan s = wng (A, (3.341)

For short, we shall write ®, = Py - ;S,mNik\Jk,ejk) and denote the values of @y at such a stationary

point by Prlstat.pt., also using this subscript to denote derivatives of Oy, evaluated at the stationary point
(3.3.41).
(k)

Let Fy be the global generating function on L, of Lemma 2.3.8, (Fk,ﬂ'rk Jk:) given in Definition 3.3.1
and Fr, j, the local generating function derived from Fy as in (2.3.3). Then at the stationary point,
P |stat.pt. = Fry,0 © (Wﬁz,f)Jk) YO, mn, ) (3.3.42)

using the notation Convention 2.4.4 iii) for W§1:7)Jk.

PROOF. The stationary points of ®; are given by

0P B

0= awfk = —Va, o4 ((@r(s,250), 27,), \f/\Xikl(‘ngﬁNik\Jk)) + &7, (5,23 M), (3.3.43)
I

0= 0Py, o _8(p+((m1k(s7z;A)’x7k)7\/XX';CI(GJk7’L9Mk\Jk)) —m (3344)

- aﬁMk\Jk N aﬁNik\Jk Nik\Jk? .O.
and form=1,...,n—1,
0Py, i1
0= 27— = (&r,(5,250) = Var, 04 (@1 (5,2 0),07,), VG (005 O \01), Oz (5,25A)

+ (r7, — @7, (5,2 1),05,,€7, (5,2, 0)).- (3.3.45)

Note that for any s € supp7 the map ts|z, : Zr — Qr N As is a diffeomorphism, and the restriction of
TQ,, I, t0 £ N As remains a diffecomorphism, too. Hence the set of vectors

8z, wlk(saZ;)‘)>
i 3.3.46
[} S o
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is a basis of T, Ikob(&z)[R”*l. Then by (3.3.45) and (3.3.43) at any stationary point (Z,xjk,ﬁ‘/\/ik\.]k) of
®;. we have

vz, =7, (8,2 M), £ (8,2;0) = Vi (xao(s, z; \), ﬁx;cl(ﬁjk,ﬂ/\/ikvk)). (3.3.47)

Now (s, z,x7) € supp ), implies s € supp7 and z € supp (. Hence s > s, and we can apply Lemma
2.2.5 to deduce

wi(z;A) = Xi_,cl (0 I, \ i) hence INi Tk = WA; T (25 ). (3.3.4%)
Moreover, (3.3.44), (3.3.47) and (3.3.48) with (2.4.5) imply

Now (3.3.45), (3.3.48) and (3.3.49) together imply (3.3.41).
Thus there exists a single stationary point determined by s and (G_Jk,ka\Jk). Inserting (3.3.41)
into (3.3.40) we obtain

(I)k|stat.pt. = Sﬂk,lk o L(S, Z) - ()OJr((wOO(S? Z3 A))’ \/XCU+(Z; )‘))
Now using the definition (2.3.3) of the local generating function Sq, 1., we have
(I)k:‘stat.pt. =So L(Sa Z) - (p+((a:00<57 Z3 )‘))7 \/XLU+(Z; )‘)) - <l/\f1k\lk (Z; >‘)? wNik\Jk (Zv )‘)> (3351>
Furthermore, by (2.3.17) and (2.3.19),

Pk stat.pr. = F o e(s, 2 A) = (v, \ai (5 A), war (i (73 4))- (3.3.52)
= Py 0 SF (55 0) — (v, (5 A) o, e (23 0). (3.3.53)

where F is the global generating function on £, . But again using (2.3.3), we see that
Dp|stat.pt. = Fry, 0 © SY (23 A), (3.3.54)

where Fr, s, is the local generating function on (I‘kml@k)] ), defined in Definition 3.3.1. Now at the

stationary point, z is given by z = (Sy) 1o (ﬂliﬂ";c’Jk)_ (0.7, M, \ 7, ), SO We obtain (3.3.42) from (3.3.54).
]

In order to analyse the integrand oif Ij; in (3.3.39) at the point of stationary phase, we need some
results of Robert and Tamura.

3.3.9. LEMMA [24, Eq. (3.6), (3.7)] We have

g_p(x;hyw_) = ihgoy(z) + gp(2;h) - h?, Gra(;hyw_) = ihgoa(x) + ga(z; h) - B (3.3.55)
where gy, go € C§°(RY) with sup,crn|ga(x; )|, sup,crn|gs(z; h)| < C uniformly for h € [0,1]. and
90a(2) = Xoa(¥)ayo(z, Vwy), X0a(®) : = (Vapy (23 VAwy), Vxa(@)), (3.3.56)
gov(z) = Xo()b-0(z, VAw_), Xob(2) 1 = (Voo (23 Vow_), Vxp(2))- (3.3.57)
3.3.10. LEMMA [24, Lemmas 4.2-4.4] Let z € Z.. Then on the support of fo, we have
Déo,N 0u(8,2) - gop(Too (5, 23 N), VIw_) = \7 if)g b(Too (8,23 M) (3.3.58)
Furthermore, let
<P+ T,
Alz €)= 3.3.59

Then for z € Z. and s > So+ 11 — 1,

90a(Too(8,2;A)) = §Xa($00 (s,2;\) \/detA (oo (552, M), VAwy (2 1)) (3.3.60)
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Proor. Following Robert and Tamura, we will give the proof of (3.3.58) in order to check that the
differing factor of 2 (they define p(z,¢) = 1¢|2+ V/(z)) in the hamiltonian system does not influence the
result. We set

fopoi(s,z) = Déw\/ 01(8,2) - b_o(@oo(8, 23 ), VAw_ ) X0b(@oo (s, 23 \)) (3.3.61)

where xop(z) = (Vap_(2;VAw_), Vxp(x)). It follows from (3.3.61), (3.3.57), (3.1.11), Theorem 3.1.4
and Definition 3.1.5 that

supp foo N Tz, C (mz|a_ )15, (3.3.62)
Hence by (2.2.18), (1.1.6) and the chain rule we have

X0b(Too (8,25 0)) = (o (5, 25 0), VXb(Too (5,25 N))) = %(f%woo(s,z;A%VXb(woo(&Z;A)))
10

395 X6(Zoo (8,23 A)- (3.3.63)

‘We now show that
s . 1
b—O(wOO(S7 Z5 )\)7 \/XW—)_Q = 62 f_oo(Aszi)(w(ﬂz,)\)’\/Xwi)dT = 2\/*DQO7N © [’(8 Z) (3364)

By (3.3.62), we need to show (3.3.64) only for €..(s,2;\) € L_(Ry, 03, VAw_), where (by Proposition
3.1.2 and Theorem 3.1.4) b_g solves

2(Vpp_, Vab_g) + (Agp_)b_o =0 with b_¢g — 1 as |z]| — oo. (3.3.65)

Noting that |V,pi(z,£) — €| < c-|z|~! for some ¢ > 0 and sufficiently large |x|, we apply the method of
characteristics to obtain a representation of b_g. For ¢ < 0 we have the characteristic curve r_(¢; x, )

e —oVe (0, OO =s
and F_(t;z,€) given by
% CAg (r (t2,6).6)  hence F(Lz,€) = / Ap (r_(r2,6))dr. (3.3.66)
Then (3.3.65) becomes
ab*’(“é’? 2.6).8) _ b_oaa% implying boo(r_(t;z,8),€) = e~ 1m0, (3.3.67)

Thus b_o(z, VIw_) = b_o(r_(0;z,8)¢) = e~ 08 Inserting € = VAw_ and 2 = (s, z; A) and taking
the inverse, we obtain the first equality in (3.3.64).

Now let y € ¥/ ,. Then by Definition 3.1.5, y = ®(s,2;A) for some s < s_, z € H. Using the
notation of Definition 1.1.2,

0
529 Vo) = 286y, Vap-) = 2Vaip—(@(tiy, Vo), Vaw-), (3.3.68)
where for short we have abbreviated V,¢_ (x(t;y, Vap_), VAw_) by V,p_. Then, by Liouville’s Theo-
rem, we have
det 8(1)(t7 Y, vl(p*) 2f0 N®(T3y,Vaep_), VAw_ )dr
dy
Now x(t;y, Ve—) = oo (t + 8, 2; A), so the chain rule yields
. . _1
d am(t yﬁvlgp—) — det amo@(t+87z7>\) . det axoo(‘g?Z?)\)
y (s, 2) J(s, 2)
and thus
det 0o (852, N) _ get 0o (t+ 852, A) o2 [ (Bap ) (oo (132,0),VAw_) dT (3.3.69)
(s, 2) (s, 2)
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Now by (1.2.11),

0% oo (t + 852, A
lim det 22 E52 MY o 5 (3.3.70)
t——o0 (s, 2)
Taking the limit ¢ — —oo in (3.3.69) we thus obtain the second half of (3.3.64). O

3.3.11. LEMMA Let ¢y, be given by (3.3.15). Let A(z,£) be given by (3.3.59). Then for (S,mNik\Jk,ejk) €
Supp ox X supp ux and (Z7x7k’/l9Nik\Jk) determined by (3.3.41) we have

Vi (s, z, xT) = %(ih)Q)‘%GSXb(:EOO(S —t,2;0))0sXa(Too (8, 2; )‘))Ck(z)Dék,Ik (s, z)

% /et Ao (52, A), VAws (23 0) + B2 Ra(s, , 7,73 h), (3.3.71)
where ||Ra( - ;h)]|loo < c-h for somec>0 and 0 < h < 1.

PROOF. Since z € Z. at the stationary point (3.3.41), the result for the main term follows immediately
from Lemma 3.3.10. Note that 7(s) does not appear in (3.3.71) since by (3.1.19), (3.1.20) and Definition
3.3.3 we have

T=1 on suppT N{z: Ry < [®oo( -, 2;A)] < Ry + 1}, 2 € supp (. (3.3.72)

and by (3.1.5) we have supp Vx, C {z: R, < |z| < R, + 1}. The estimate of the error Ry follows from
the estimates in Corollary 3.2.17 and Lemma 3.3.9. O

For (T, k) ) defined in Definition 3.3.1 and using the notation of Convention 2.4.4 iii) for wlix)
T, Jr Tk, Jk

we define
Er,.. 0S¥ = |detd(m(*), o S})]. (3.3.73)

Denoting by ¢(**) the matrix representation of the metric tensor of S”~! in the coordinates of the chart
(Zik ) Xik)7 we define

lgs,, owy(-;A) == [det(¢") 0wy (-5 ))]. (3.3.74)

3.3.12. LEMMA Let @k(z,xjk,ﬁNik\Jk;S,mNik\Jk79Jk) be defined by (3.3.40). Let A(x,&) be given by
(3.3.59), Dgy,r, by (3.3.12), Er, g, by (3.3.73) and gs, by (3.3.74). Then for (s,my; \s.01.) €
Supp o X supp ux we have

|det Hess CIDk( Cy e, S, mNik\Jk,eJk)|stat,pt.
1 n—2 1
= 5)\ 7 Day,1, © (8,2) - Er,,g, 0 Sy (2) - (g%, © Sy (2;0)7 - |det A(zoo (s, 2, A), Vawy(z;0))| (3.3.75)
where (2,27, ,9n; \1,) are determined by (3.3.41).

The proof of Lemma 3.3.12 relies primarily on involved but elementary manipulations of block ma-
trices. It can be found in Appendix C. We can now use the results of Lemmas 3.3.8, 3.3.11 and 3.3.12
to evaluate the integrals Zj of (3.3.39) using the method of stationary phase for parameter—dependent
oscillatory integrals.

3.3.13. LEMMA [13] Let ¢( -, -) € C®(R™ x R™,R), assume d¢(-,0)]o =0 and |det Hess ¢( -, 0)|o # 0.
Denote by x(y) the solution of the equation dé( - ,y)|. = 0 with £(0) = 0 given by the implicit function
theorem. Then for u € C§°(K) for some K > (0,0)

; 27 /h)%

[det Hess o{ )] )ei%SgnHesSd?(-,0)|Oe%¢(1(y)ay)u(x(y),y) <c-hETl (3.3.76)
b r(y
for some ¢ > 0.

‘We obtain
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3.3.14. LEMMA There exists a constant C > 0 such that
Ik(t’ S, eJkamNik\Jk) - (Zh) (27Th) )‘ T € 2ﬁkast(woo( —t,2z; A))asXa(ono(& 23 )‘))

i —1
) RN (6., ’mNik\Jk)

1 1 i
X Go(2) (5, Er2 ) 0 (mfl ) 7 O m, e

(3.3.77)

with z = (S;f) (Wl(ﬂl:)‘]k) 1(9Jk,mNik\Jk) and By, := sgn Hess @ |stat.pt. -
Note that by (3.3.7) and (3.3.38) we have
1 . So+To
GO(W—7W+; Aa h) A e'z7 / / O © Xz_kl (wNi )
h S1+T1 *

x Fy Hur(wa,, Ikt s,wi,, )} dtds+O(h"> t2) (3.3.78)

YN\

where v, was introduced in (3.3.11) and we have written w, = (w1,...,wy), wr = (w;)ies for I € N and
N, = N\ {ix}. Inserting (3.3.77) into (3.3.78) we obtain

GO(W—vw-‘r; )\7 h)

13- M . 1 .
= ih(27h)" T AT Z R85, o X;kl( OFr { Fka) o (W(FZ:ka)—l(ka’ )
k=1
X Geo (ST o (ml,) " was )G (way, e LA L DY O (3.3.79)
i \ Tk
with
So+To
G(wssmn,\5) / [ 0l (s — 2500w 5, 20) d . (3.3.80)
S1+T1

¢ k) on\' = 1 in supp (k. Now since Osxp(Too(s —t,2;A)) =

We have omitted the function uy, since uy, o mp
—O0xp (oo (s — ¢, 2; X)), we have
So+To

g(ka7mNik\Jk) = - / (Xb(woo(s - Tla z3 /\)) - Xb(woo(s - To, Z5 A)))68XG($N(57 Z5 /\)) ds
S1+T1

So+To
= / (07 1)asXa(moo(Saz;)‘)) ds
S1+T1

=1. (3.3.81)

Here we have used (3.1.5) and Definitions 3.1.5, 3.1.6. With (D.105) we hence obtain from (3.3.79) and
(3.3.81) that

M
Go(w—,wis A h) = ih(2mh) T AT Y OB G0 (SH) T (ws) + O(R™FH) (3.3.82)

k=1
where Kr, j, denotes a local Maslov operator on (Fk,wlgk), ) (see Definition 3.3.1) defined using the
global generating function F of (2.3.19), the global coordinate map S5 : R""! — £, and the cut-off
functions (g o ()71 € C§°(T'y) and oy, € C§° (S5, ).
Inserting (3.3.82) into (3.1.8)
M
flwo,wps A h) = e TS K (G0 (ST) T (wy) + O(R). (3.3.83)
k=1
Recall that i, introduced into the formula in (3.3.11), is the Maslov index of the chain of charts joining
Qk to A_p and Sy is the sign of the Hessian in (3.3.77).

3.3.15. REMARK The formula (3.3.83) is the pinnacle of our direct calculations. Unfortunately, the
Hessian of Lemma 3.3.12 is too complicated for the author to evaluate its sign explicitly. We will
therefore pass to some structural arguments top complete the proof of Theorem 1.
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The scattering amplitude f is naturally independent of the concrete choice of the covering {Zj }r>1
of Z. in Definition 3.3.1 and the subordinate partition of unity {ex} in Definition 3.3.3. Both can be
slightly modified (within the confines of Proposition 2.4.6) without changing f. It follows that

37(n71+%+ﬁk)i%ka’Jk _ 67(n71+7k/+5k/)i§Krk,’Jk/ + O(h) on Ty NI, k, % >1, (3.3.84)

where for j = k, k', 7; is the Maslov index of ¢((Sp + Th1—,S1 + Tp + 1) X Zy and §; is the sign of the
corresponding Hessian ®;.

Now fix any open set I'g C £y such that rankdm,|, = n — 1 for all p € I'y and for any lagrangian
chart (T';, Wl(ﬂlj) Jj) on £ denote by J; the Maslov index of a chain of charts joining I'y and I';. Then for
any two sets I', and I'ys we have

e IR, g, =e WK, 5, +O(h) on Ty NTy, kK > 1, (3.3.85)
by general Maslov theory [18, 20, 27]. Comparing (3.3.84) and (3.3.85) we obtain
n—1+5 + B =0 +co for any choice of I'g (which induces dy). (3.3.86)
We define a global Maslov operator on £ in the following way (see Definition D.1):

3.3.16. DEFINITION We use Notation 2.4.4 and define a global Maslov operator Ko, on L using the
following objects.
i) The atlas {(Zk, xx)} on S"~! of Definition 2.4.2,
ii) A lagrangian atlas (I‘k,w(;:’)h)kzo on L such that
— fork=1,...,M the charts coincide with those of Definition 3.3.1 i),
— for each k there exists some iy such that each 7, Iy, C 3;,(8), where § was fized in Lemma
3.3.6,
— and Ty is well-projected onto S™~1.
iii) The global coordinate map S;'\': R"1 — £, of Theorem 2.1.4,
iv) The global generating function Fy of (2.3.19),
v) A partition of unity {C o (SY)7'}, ¢ € C(R™1) subordinate to the covering {T'x}, where (x
coincides with the functions defined in Definition 3.3.3 fork=1,..., M.
vi) The functions o, € C3°(Zk) (note that o;, = 1 on m,8).

It follows from (3.3.83) and (3.3.86) that for the global Maslov operator of Definition 3.3.16
f(w—7w+; Aa h) = eico% ’ K£+ [1](UJ+) + O(h)v (3387)
where ¢q is fixed by the choice of I'g in Definition 3.3.16.

3.3.17. REMARK Clearly, the constant ¢y in (3.3.87) is not very explicit. It arises because any Maslov
operator on £ is determined only up to a factor €74 by the choice of I'y. Through an analysis of the case
where (7|2, ) 'wy is well-projected, we can make this constant a little more explicit. It is impractical
to use our construction in this case, as in Definition 3.3.1 lagrangian coordinates {w1, ... ,w,} \ {w;, } on
Iy = Sj(Zk) induce lagrangian coordinates {z;,,&1,...&n} \ {&i } on Q. Alternatively, however, it is
more practical in this case to take {z1,...,z,} as lagrangian coordinates on Qj, which is also possible.
This is the strategy employed in [24] and instead of repeating their construction, we will compare (3.3.87)
to [24, Theorem 1] to investigate co.

3.3.18. LEMMA Let 2 < n <6 and assume that L, dim L, = n — 1, is in general position. Denote by
To: T*S"1 — S~ the canonical projection onto the base. Then for any w € S"~ ! with w # w_ there
are only finitely many z*) € H such that (1,|z, ) tw = S ().

PROOF. It follows from the estimate (1.2.16b) that for any € > 0 the set

Z.={ze R lwy(z\) —w_| > ¢} (3.3.88)
is compact. Choosing e sufficiently small, we have (m, |z, ) 'w C Sj\r (Z.), which is compact by continuity
of S/\*. By the General Position Hypothesis, £ has only stable singularities and dim S(A) < n—1. Hence

Twlc, ) ~w contalns only isolated points. Since Z.) is compact, there can be only finitely many o
B tai ly isolated points. Since Sy (Z. t, th be only finitel f
such points. O
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We first show that the non—singular points on £ coincide with regular scattering directions in the

sense of [24]. We will assume that the manifold £ is in general position, which allows us to use Lemma
3.3.18.
3.3.19. LEMMA The scattering direction wy € S 1, w, # w_ is regular in the sense of [24] if and only

if all of the (finite number of ) points (my|z, ) *wy are well-projected onto S™~1.

PROOF. Assume that w, is regular. Then by the implicit function theorem there are finitely many points

2 20 such that wy (2®); \) = wy. Furthermore, for each z(!) we have
Ow Ow
(k). + +)
5(); 0 (det (wr, 52 Ao e )| #0 (3.3.89)

Let (X, x) be some chart on S"~! such that wy € 3, x: ¥ 3 w +— Ox+ € R*~L. Denoting by g the metric
tensor on the sphere we have

5(zW;\) = (gs 0wy (21 1))2 - Er, w0 S (2™) (3.3.90)

by (3.3.73), (3.3.74), (C.96). It follows that &(2(*); \) # 0 (i.e., w, is regular) if and only if Er, n+ o
S (M) #£0 (ie., ST (2®) lies in a chart on £ that is well-projected onto S™~1).

Conversely, by Lemma 3.3.18 there are only finitely many points 21, ..., () such that S} (7|2 L) wy,
hence wy (2¥);\) = w, only for k = 1,...,I. Furthermore, 5(2*); \) # 0 by the previous argument, so
w4 is regular (]

Assume that wy # w_ is regular and lies in some chart (X, x), where x: w — wp for some n— 1-tuple
N’ C N. Assume that w, (z;\) = w, precisely for z = 2(®) ... 2() with some I € N. Let z2(*) € Ty, C L,
k =0,...,l, where by Lemma 3.3.19 we can assume that each I'j is a lagrangian chart well-projected
onto S™ 1. We construct a Maslov operator K, on L, using the charts I'y, K =0,...,[ with lagrangian
coordinates wy together with arbitrary additional charts, but otheriwse as in Defintion 3.3.16 1), iii)-vi).
We can construct K, in such a way that by (3.3.87) we have
1
flom,wis A h) = e 0 N R (1] + O(h), (3.3.91)
k=0
where +; is the Maslov index joining I'; to I'g. Since each I'y is well-projected onto S"~1 we have with
(D.105) for 6 = X(w+)

flo—,wis A h) = Ze i3 (veteo) ok Fry w7 07y, N’(e)(gg ox 1(0); /\))7i - (Ep,. A 0 kayN/(H))fé + O(h),
Using (2.3.18) and (3.3.90), we obtain

l
flw_,wis A h) = ZU( (k). )\)—f —i% (Yetco) o i (222 ([€oo (72 M) =0) dr— (1 (2052),VAw (217, 0))) +O(h)
k=1

We can compare this to Robert and Tamura’s formula [24, (0.8), (0.9)], and obtain
Wi =5 + co, (3.3.92)

where p; is the Maslov index of the trajectory 7.. We have not introduced the concept of the Maslov
index of a trajectory and refer the reader to [18, §7]. Since y9 = 0, it follows that ¢y is equal to pg, the
Maslov index of any trajectory 7, with S;f(z) € I'y. This completes the proof of Theorem 1.

3.4. Perspectives and remarks

We will make some remarks on Theorem 1 and further studies on this subject. A formula identical to
(15) for the case where V' is compactly supported can be obtained from Protas’ article through a detailed
analysis of the first term in [21, Theorem 2, 2)], see [12]. It is not surprising that the formula carries
over to the case where £, C T*S"~! is induced by a short-range potential. The effect that caustics have
on the asymptotics of the scattering amplitude is discussed above in Section 3.5.

It would be very interesting in practice to explore the relationship between caustics in A and caustics
in £ more deeply. The following questions arise naturally:
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i) For some sufficiently large R > 0, denote Ur := {z € H: |2| > R}. Assuming that £, is in general
position, is then £y NSy (Ug) free of caustics?

ii) Can the uniformity with respect to T, Ty, 71 in Propositions 2.4.6 and 2.4.7 be improved? In partic-
ular, does there exist a uniform time T' > 0 independent of z € H such that the rank of dm,|, does
not change for p € ’T:T?

ili) Under which conditions do caustics occur in A and £ if V # 0?7 (Alexandrova [2, page 1510] claims
that caustics always occur if V- € C§°(R?), V' # 0, but she is apparently not referring to stable
singularities that remain when £ is shifted into general position.)

Michel [19] imposes the weakened Energy Hypothesis
AssuMPTION (H) For all z € H, lims_,o0|Z oo (8; 2, A)| = 0.

This assumption is sufficient to imply the assertions in Definition 1.2.3, hence all of the results
of Chapters 1 and 2 remain valid, as they depend only on the estimates of the classical trajectories
in Propositions 1.2.7 and 1.2.10. Under additional assumptions on the “analyticity at infinity” of the
potential V' and the behaviour of the resolvent R({, P) Michel proceeds to obtain the results of Robert
and Tamura [24] for regular scattering directions. In fact, is clear from the Proof of [19, Theorem 1.3]
that Michel’s results can be extended to caustics in the same way as Robert and Tamura’s, yielding
Theorem 1 under these weakened conditions.

3.5. On caustics at infinity

Using Theorem 1 the leading term of the asymptotics of the scattering amplitude can be calculated
even in the presence of “caustics at infinity” (i.e., singularities of the projection 7, : £, — S"~1). These
occur whenever the map z — wso(2; A) is not an immersion, i.e., the “Regular Condition” of [24] is not
fulfilled. In general, the scattering amplitude at a caustic angle will diverge as h — 0, and (15) allows us
to determine the rate of divergence, which essentially depends on the geometry of £ .

For a lagrangian manifold in general position (see the General Position Hypothesis on page 83),
the possible types of caustics have been classified according to their local generating functions in low

dimensions (n = 1,...,5 for a manifold A € T*M, dim M = n), while in higher dimensions (n > 6) this
type of classification is essentially impossible [6]. Details on this problem can be found in [4, 6, 7] with
a summary in [8, Appendix 12]. The oscillating integrals occurring in the Maslov operator K., then

have a certain asymptotic blow-up as h — 0, depending on the type of singularity. The exponent in h of
this blow-up was calculated for the classified types of singularities by Arnol’d [5]. It is hence possible to
give the leading term of the asymptotic behaviour as h — 0 of the scattering amplitude for scattering in
R™ if n=2,...,6 (note that £, € T*S™~1). This classification relies essentially on the General Position
Hypothesis (see Appendix D).

Arnol’d’s classification of caustics (lagrangian singularities) in some open subset 2 of a lagrangian
manifold A € T*M, dim M = n, is according to the form of the local generating function Sq ;, cf.
Definition 2.3.2. It is assumed that A is in general position and that the singularity occurs at (x,&)(p) =
(0,0). For n =1 and n = 2 the following stable singularities exist:

n>1|A; | Soafiy© 7'(-63/\/\{1}(‘%./\[\{1}, &) =¢ (a non-singular region)
n>1| Az | Soaf1y© 775,1]\[\{1}(:5/\/\{1},51) =+£ (a fold)
n>2| Az | Soa{1}© wf_zle\{l}(a:N\{l},fl) = +£&f + 2262 | (a tuck with a cusp)
While these singularities may occur in any dimension higher than 1 or 2, respectively, more compli-

cated singularities appear only for n > 3. We will now discuss the physical applications of the classification
in more detail. In the case of a non-singular region (A;) we have

_9Sampy _
96

so it is clear that the set 2 is well-projected onto M. At singularities of type Ay and Az we have
rank dr|y = n — 1, so it is possible to choose lagrangian coordinates of the form (zr,§;), I = N\ {j},

T = —2& on € in the case (41), (3.5.1)
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Jj €N, on Q. (For simplicity, j = 1 in the table above.) Then there exists a function 7;(zy, ;) such that
U: 7o 12— R”, (xr1,&) — (z1,n5) (3.5.2)

is an embedding and gQJ(.’L'],T]j) = Sq.r 0o U (zr,n5) = Sa,r(xr,&(zr,n;)) is of the form As or A
above, with N"\ {1} replaced by I.

3.5.1. Scattering in R? and R3. By Theorem 1 the leading term in the asymptotics of the scattering
amplitude is determined through the geometry of £, C T*S™"~1. We will see that, more precisely, the
leading term is given through the asymptotics of integrals of the type

I(z,h) = (2rh)"2 /e%SQ'N\{l}Oﬁg}f\f\(l}(IN\{l}’gl)uO(xN\{l},51)d{h uy € CZ(R). (3.5.3)

The asymptotics of such integrals for stable singularities have been studied by Arnol’d in [5] and more
extensively by Guillemin and Sternberg [11, §9]. For n = 2,3 we will make this more explicit.

Assume that £, C T*S""1, 2 < n < 3 and apply Definition 1. Fix some w; € S"~! and assume
that (m|sr, )" (wy) = S¥ (20) for some 29 = 29(wy) € H. Let SY(20) € Tk, for some k € N and assume
that (2an (5.}, &j,) are canonical coordinates on I'y, where i;, was defined in Definition 1. Then by
Theorem 1,

Flowii A h) = e Ky g aler(l@s) +O(R). (35.4)

Now using (D.105) and the charts of Definition 2.4.2 we have for w € 7Ty

i (ig) -1
iFFka\{ikvik}o("rrkk,N\(ik,jk)) (WA {igig 3ol

Kttt 66 0 X w o) = [ @
1 —3 (ir) -
X (glé‘k,N\{ikvjk’}DFkiN\{ikajk}ek) © (ﬂ-l“:,/\/\{ik,jk}) I(WN\{ik,jk}a lj,)dl;,. (3.5.5)
By the above considerations, we can find an embedding ¥ as described above so that
P (WA {13 M) = Py M\ {in} © (W(pl,f,)/\/\{ik,jk})_l o W (WA i .ju}s i) (3.5.6)
has the form Ay, A or As. Performing a transformation of variables {;, — 7;, in the integral, we obtain
Flwos <30 h) 0 i  (wangi,y) = €0t E '/A(wjv\{ik,jk},lek)eé’“(wwk’j’”’"j’“) dnj, +O(h) (3.5.7)

where the amplitude is

1

R 1 (i) - -1
A(WN\{ik,jk}a ij) = (gék7N\{ik7jk}Dl":’/\/\{ihjk}ek) o (WF;,N\{%M}) o v (WN\{ik,jk}ank) (3.5.8)

y Ol (WA fin 13> M)

(3.5.9)
anjk
and the phase function @ is given by (3.5.6) and has one of the forms Ay, As or As. The asymptotics
of such integrals can be analysed as in [11, §9], allowing the determination of the principal term of the
asymptotics of f(w_,w4; A, h) once L4 is known.
Summarising, for scattering in R? we have
t o if i 1
F{CTNRTED W PSR S h—0, (35.10)
h~s if wy is a fold point,
and in R? we have
const if wy is regular,
flw_,wis A\ h) ~{ h™5  if w, is a fold point, h — 0. (3.5.11)
h=1 if w4 is a cusp point,

—

No other cases can generically occur in these dimensions, and the factor in front of A7 (y =0, —% or —7)
can be calculated explicitly when £, is known.
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3.5.2. An Example. For scattering in two-dimensional configuration space, caustics at infinity occur
in £, Cc T*S'. Hence only singularities of type A; and A, can occur. In order to further illustrate the
way in which singularities enter into the asymptotics of the scattering amplitude, we will construct an
explicit situation involving a fold (Az) singularity, which gives rise to a scattering amplitude that behaves
as an Airy function.

3.5.1. DEFINITION On S we define a chart (1,x1) by
Y= {z = (21,22) € R?: |z| = 1, 21 > 0}, X1(z1, x2) = arctan(x /z2). (3.5.12)
We denote the induced chart on the cotangent bundle by (T*YF,X1). We define open sets
Z CR, I:=5(2)cLynT*sf, Yi=n,0cs ! (3.5.13)

where L4 is the lagrangian manifold with coordinate map S:\" of Theorem 2.1.4 and m,: T*S* — S!
denotes the canonical projection onto the base. We make the following assumptions:

i) (mole,) 2 =T,
ii) Forze€ Z,
2

02(z) = % — 2, la(2) = 2, (02(2),12(2)) :== X1 055 (2). (3.5.14)

iii) We define Z' = (n/4—e,m/A+¢€) C Z for somee >0, and set ' := S{(Z') C T, ¥ =m,I' C .
iv) On T we have the lagrangian chart mrg: (w2,l2) — lo (see Definition 2.3.2). Again for simplicity
we assume that the local generating function Fr g is given by

_ 1 T
Frgompg(la) = glg - b (3.5.15)

(in general, it may differ by an additive constant).

By Remark D.6, these choices fix K/ up to a factor en“1 752 and additive functions of order O(h).
In the situation of Definition 3.5.1, the fold-point is at

Po = (w07 Lo) = (\}5 (1) 5 0) S ,C+ N T*Zr7 (3516)

We denote the Airy function by
1 oo
Ai[z] := 7/ cos(t®/3 + xt) dt. (3.5.17)
™ Jo

3.5.2. PROPOSITION In the situation of Definition 3.5.1, for some v € Z,
Flw_,wis A h) = €e37/2rh~ 5 Ai[h3 (0 — w/4)] + O(h?), wy €Y, 0= y1(wy). (3.5.18)
Proor. By Theorem 1, the scattering amplitude is given by
flw_,wys A h) =02 . Kp [1](ws) + O(h) (3.5.19)

for some po € {0,1,2,3}. Since (m,|z, ) *X =T we can construct K, in such a way that only the local
Maslov operator on I' contributes to K, [1](wy) and we can take the Maslov index of T' to equal zero.
Then we have

Flw—,wis A h) = e 0% Kpgle()](wy) + O(h) (3.5.20)
where e(-) € C§°(T") and by (D.105),
Krolel 0 (60) = g0 (0)Fy [eF Froomnt (e gl Dr2) o mrh ()], (3.5.21)

Here g € C°(2]), g = 1 on %, gr.p € C°(T') is the determinant of the matrix representation of the
metric tensor of the sphere, evaluated at m,p for p € I', and

Drg o Sy (2) = det <(;lj> =1, z€Z. (3.5.22)
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Furthermore, we can choose e € C*°(I") such that e =1 on I and

THO) oxTi(e
arao 57(0) = | 250, 20

Then it follows that for 6 € x1(X’),
Krglel)ox" @) = [ el meemei g+ 000)

0=0(z)

€ .
= (27Th)—1/2/ en GEHE=1) g1 4 O(h™)
—€

where we have inserted (3.5.15). Now

1S5 £
””3“(9*1)&:2/ L L™ a
[ et a=a [Ceos (it g (0-)
1
h™ 3¢
1 3 1 ™
/0 co8 (31 + b (9— 4)) dl

where we have substituted in the integral. It is not hard to see that

o 1, 1 T 1
< = 3 — — < c-h3
/h 1 COb(gl +int (o 4)) dl‘_c h

“3e

ol

=2h

for some constant ¢ > 0. it follows that
Krole(+)] o X7 (6) = V2rh~ 5 Ai[h3 (0 — m/4)] + O(h).
The (3.5.27) together with (3.5.20) implies (3.5.18).

= |cos? 0(z) +sin? 0(z)| = 1.
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(3.5.23)

(3.5.24)

(3.5.25)

(3.5.26)

(3.5.27)






APPENDIX A

Some multi—index calculus

For easy reference, this section summarises some well-known results that are referred to in the main
sections.
We will use the standard notation for multi-indices o = (;)?_; € N, in particular, we define

al:=agl- - ap! ol =14+ +am at+8:=(a+0)i, a,feN™,
oo™
of =05t ...o0m, opt = gy t=(t1,...,tm) €R™, (A.28)
ofx = (0pz1,...,00 ) r=(z1,...,2,) € C(R™,R")

We state the analogue of the generalised product rule in multi-index notation. We define the product
symbol “®@” by

. ifre Rand y € R ice— ,

Oy = -y 1 x and y or vice—versa (A.29)
(x,y) ifz,yeR™

For functions the corresponding product is assumed to be defined point-wisely.

A.l. LEMMA (LEIBNITZ RULE) Let u € C®(R™,R"), v € C®(R™ R!) be smooth functions. Then for
any multi-index o € N™,

|
o ovn) = Y %8511(75)@8?1}@). (A.30)
(ﬁ,v[)gimeNm ik
y=a

A.2. COROLLARY Let Q C R x R*™! be an open set and ¢ € C(Q,R"), ¢ € C(Q,R™) be smooth
functions. Assume that there exist k,l € Z such that for any o € N and multi—index 3 € N~ there exist
constants Cy.0.0,8, Cp:0,a,8 > 0 such that

10205 6(5,2)| < Cpi,08 - 8° 7, and 00084 (s,2)| < Cpians - s (A.31)
for (s,z) € Q. Then there exists a constant Cpoyp:0,q0,8 > 0 so that
10207 (9(s,2) © (s, 2))| < Coopisaps - 80 for (s,2) e Q.

The analogue of the Leibnitz rule for repeated application of the chain rule is Fda di Bruno’s formula,
which we will cite for the special case of the composition of functions R™ — R", R" — R:

A.3. LEMMA (FAA DI BRUNO’S FORMULA) Let Q@ C R*, z € C®(R™,Q and V € C*(Q). Then for
B e N\ {0},

18] j
Vo)) => Y. csa [0, V)V W)ly=a), (A.32)
=1l a=(a1,...,o ) k=1
o €N\ {0},
i=1,..,]
ay+-ta;=0
where the coefficients cg. o are given by
A! 1
C =
B oz1!~-~ozj!m1!-~-mj!
and m; € N denotes the number of multi-indices in (a1, ..., ;) that are equal to some oy € {a1,...,a;}.

An immediate consequence is the following result,

69
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A.4. LEMMA Let V € C*(R™) be a smooth function with decay at infinity such that for any multi—index
« € N™ there exist constants C,, so that

09V (2)| < Cy(x)=e 1ol for some o > 0. (A.33)

Let Q C R x R"™L be an open set and 1) € C°(Q, R™) a smooth function. Assume that there exist weight
functions p1, pa € C*(Q,Ry) such that for some k € N and some 3 € N1 there exists a constant cy g
such that the estimate

01020 (5, 2)| < enppi(s, 2) 7 pa(s, 2) (s, 2))  for all (,0) € N X N", G <k, |8 < 18] (A.34)
holds. Then there exists a constant depending on « and k + |3| such that for (s, z) € Q,
1050203 V) (95, 2))] < Clask +181) - pa(s, 2) " pals,2) ™11 (s, 2)) e, (A.35)

PRrROOF. For k + |3| = 0, the estimate (A.35) is simply a reformulation of (A.33). For k + |3] # 0, we
apply the chain rule (A. 32)

k+18] J
|6k86 (osv (s,z))| = ‘ Z Z Ck4181,(1,6) (H 000 Vy>)(6§V)(y)|y:¢(s,z)
j:1 l:(ll,...,l]‘), =1
6=(61,....0;),
1;eN\{0}, 6;EN"\{0},
k+18| J
<Y errisae ) max|0y (V) (y Ny=y(s,0) | [ 105024 (s, 2)))- (A.36)
j=1 1,8 i=1
Now (A.33) implies
max (VO V)(@)] < Crngr{z) 0717, Cp 1= \/ﬁln‘lgx Ca. (A.37)
Then applying (A.37) and inserting the estimates (A.34) into (A.36), we obtain
0202 (VV)(w(s, 2)| (A.38)
k+18] _ J
<Y 116 Cilal (s, 2) 7071 T ¢5.801 (s, 2) H pals, 2) 710 (s, 2))
j=1 1,6 i=1
k+18] _
<Y k1116 Cllal (5, 2)) 707101 spi (s, 2) 7 21 pa(s, 2) ™ 2104
j=1 1,8
k4161 }
= ((5,2)) 7 pr(s,2) Fpals,2) N Crpia €l 5D criare (A.39)
j=1 1,6
With
k5] _
Closk+18)) - Z it1alC). 8 > Ch+18,(1,8) (A.40)
I=(l1,sl5),
6=(d1,...,0;),
LieN\{0}, 6;eN"\{0},
S li=k, 3 6;=p
(A.39) becomes the assertion (A.35). O

We will need some basic estimate on the integral of (- )~ for a € N.

A.5. LEMMA For a > 1 we have

[ wrars s wa [ e Pt pres

— 00 a—1 oo ~a—1

Furthermore, if a > 2 we have

0 t
1
/ / (r) drdt < 5~ - 5 (A.42)
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and

s t 2 2—a :
[ [ s e s (A.43)
Y S T el +8) if s > 0.

with some constant c, > 0.

PRrROOF. Using the following basic estimates for o > 1,

1 o0 0 1
[ orcar=[Tmears [Tear= 1 (A.44)
- 1 1 a—1
and
¢ ¢
/ (T)~%dr < / dr=t+1 for t <0, (A.45)
-1 —1

we obtain the first assertion in (A.41). Let |7| > 1. Then

d

)t = 1 al(r) e

T a T a—-1, _,
\/1+72:—(a—1)(5> Vier2 T V2 )

Now the second assertion in (A.41) follows from

if 7 < —1. (A.46)

== [ iz L [Moear for t < 1. (A.47)

dr V2
For —1 < s <0 we have

/_; /_;(ﬂ_adrdt:/__l/ ry-a drdt+/_sl /_;<T>—a drdt
=/1 / ad¢dt+/s /1<T>ad7dt+/s /t1<r>adrdt
</100/t O‘deH—i/ dt+/ (t+1)d

o0 (o) 1
g/ / T tdrdt + ———= (s + 1) + 5 (s+1)
v S —1 2

= /Ootl_“dt—i— ! (+1)+1( +1)?

_a—l : a—17 27
11 1 1

= 1)+ = 1)? A4
a—la—2+a—1(s+ )+2(s+) (A.48)

For s = 0 we have

0 t
11 11 1 1
o grdt < St <
/,OO/,C,O<T> e s s T B R

Then (A.42) follows from (A.42) by setting s = 0. Now for s > 1 we have

/ / O‘det:/1 /t<7'>°‘drdt+/s/1(7'>D‘det—F/lS/lt(T)adet
//det+/ dt-l—// “¥drdt

- -1 - tla
2+s + /

1 11
- 1)
2+a—1(5 N P 10

(A.49)

DO | =
Q
|
[\

= S —

(27— 1)
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Since @ > 2 and s > 1, we have (s>~ — 1) < 1, so

// <s-3 a11(8_1+cv12>

_ 1 _ A.
a-1""27a-2 a-1 (A.50)
Note that by (A.41) we have
s 0 o
-« < .
/o /700(7'> det_a_ls (A.51)
Now from (A.49), (A.50) and (A.51) we obtain for s > 1
s t s t
/ / ()~ %drdt = / / “*drdt + / / “*drdt + / / (T)~%drdt
—00 J —00 0 0 0
< .
_a—l _2+a_1 (A.52)
This shows (A.43).
(|

An immediate application of Lemma A.5 is the following result, which we will need in Section 1.2.

A.6. LEMMA Let w_ € R"™ and z L w_, as in Convention 1.2.1. Then for any v > 0 and a > 2, there
exists a constant Cq > 0 so that for all Z and all s <0, the estimate

s t
2Vaw_s + )7 / / VI T+ 27V drdt < Con(2V Aw_s + )27 (A.53)

holds.

PrROOF. The orthogonality of w_ and 2 gives
2V \w_s + 2) = (2)(2VA(z) " 1s). (A.54)

2V w_s + z)7 /; /too<2ﬁw_¢ + 2T dr dt
= (2VA(z) / / VX)) T drdt. (A.55)

We substitute twice in the integral, 7/ = 2v/A(z) "7 and ¢ = 2v/A(z)~'t, to obtain
s t
2V xw_s + 2)7 / / 2V w_T + 2) "V drdt

2V X(z)"ts gt
:<2ﬁ<z>*1s>7<z>*a(2fx<z>*1)*2/ / ()™ Vdrdt. (A.56)

— 00 —0o0

We consider two cases and show that in each case, there exists a constant allowing the right—hand side
of (A.56) to be estimated by (2vAw_s 4 )2,

i) (2v/A(z)"'s < —1) We can apply (A.43) to the right-hand side of (A.56). Then

2V (z) 7!
/ /_ @Tdrdr< m<ﬁ<z>—ls>2-a (A.57)

— 00
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and by (A.56) with (A.54),
s t
(2VAw_s + 2)7 / / 2V w_T + 2) "V dr dt

# ATlg\r ()~ 2y~ 12 S\ —lg\2—a—y
oD T 2T VM) T VAR )

= e D@D 2V w_s + )27, (A.58)

This shows (A.53) in the first case.
ii) (=1 <2vA(z)~'s <0) By (A.42), noting s < 0,

2V(z)"ts gt 0 t a
oY dr dt < —O=T dr dt < . A.

/_oo /_OO<T> det_/_oo/_oo<T> drdi < (A.59)

Furthermore, (2v/A(2)~'s)7 < 27, so with (A.59) we have from (A.56),
s t

(2VAw_s + 2)7 / / (2VIw_T + 2) " Vdrdt (A.60)
27 9_

=— <. A.61

This shows (A.53) in the second case.






APPENDIX B

Some properties of smooth maps

We will repeat here some well-known results on the properties of smooth maps which will be used
in the main text. First, we repeat from [22, V.3]

B.1. DEFINITION Let (M, o) be a metric space. A map T: M — M for which there is a K < 1 such that
o(Tz, Ty) < Ko(x,y) is called a strict contraction.

CONTRACTION MAPPING PRINCIPLE A strict contraction on a complete metric space has a unique fized
point.

B.2. LEMMA Let B be a Banach space, M C B a closed convex subset and T: M — M a C' mapping.
Then T is a strict contraction and thus has a unique fized point in M if |DT|| < 1.

PrROOF. We need to show that || Tz —Ty|| < K|z —y| for z,y € M and some K < 1. Since M is convex,
the set {z € B: z =Xz + (1 — ANy, A €[0,1]} C M. Then by the fundamental theorem of calculus (cf.,
e.g., cite[(1.8)] Taylor),

1
Te—Ty= / DT Az + (1 — Ny)(z —y) dA, (B.62)
0
SO
[Tz —Ty[| < |IDT|| - [|= — y]. (B.63)
and the result follows. O

We will frequently need criteria for smooth maps to be embeddings. In general, we quote from [].

B.3. LEMMA Let M, N be smooth manifolds and T: M — N an injective immersion. Then T is an
embedding if

i) T=1 is continuous, i.e., T maps any open set onto an open set,

it) or T is proper, i.e., the pre—image of any compact set is compact.

B.4. LEMMA Let Q C R™ be an open convex set and f,g: Q@ — R™ smooth functions, Amin(z) > 0 the
smallest eigenvalue of D f|.
i) If Df|. is a positive self-adjoint matriz for all x € Q and Aint := infrcq Amin () is positive, then f
is an embedding.
ii) If Df is as in i) then there exists some € > 0 so that if Dg = Df + R with |R|| < €, then g is an
embedding.

PROOF. i) By definition, f is an immersion. Furthermore, it is well-known (e.g., [25, Proposition 3.2])
that f is injective if D f is positive and 2 is convex. It remains to show that the inverse function
f~!is continuous. Since Df is self-adjoint, the largest eigenvalue of Df~1|, is bounded by 1/Ain¢
and the continuity follows immediately by applying (B.63) to T' = f~1.

ii) The condition on R guarantees that Dg and Dg~! are both positive with smallest eigenvalues
bounded away from 0.
O
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APPENDIX C

Proof of Lemma 3.3.12

The proof of Lemma 3.3.12 was inspired by Protas [21], who obtained an analogous result for the case
of a compactly supported potential V' € C§°(R™). We will deal with rather cumbersome block matrices,
and in order to maintain legibility, we first introduce some notation.

C.1. CoNVENTION Let I,J C N = {1,...,n}, ordered such that I = (ik)‘kll and J = (jk)kal1 with
i < kg1, Jk < Jh+1-

i) We will understand A = (aij: )icr,j e to refer to an (|I|x|J| )-matriz given by A = (a4, j, )1<k<|1],1<1'<|J|-
A reference to the ith row or (j')th column of (ai;) is understood to be to the kth row or the (I')
column, respectively, of (as,j, )-

ii) Whenever A is expressed as (f(i,j'))icrjocs, the unprimed variable is understood to refer to the
rows of A, while the primed variable numbers the columns.

iii) Within block matrices, we will often write simply f(i,5") to express (f(i,j"))ier,jrcs in a space-
conserving fashion. The range (i € I and j' € J) of the variables will be given in the text.

We shall denote the values of functions at a stationary point by |stat. pt.-

PRrROOF OF LEMMA 3.3.12. In order to lighten the notation, we will omit the subscript & from the for-
mulae, writing, e.g., J C N; instead of Ji C N, . In the notation of Convention C.1, the Hessian of ® is
given by the block matrix

o) o) 5%
Ox70x4 89076197/ Ox70z,,1
o 9%® 9%® RS
Hess @ = 99,01, 00700, 0050z, (C.64)
o) o) foa )

0zm Oxy1 D2 OV 02m 0z,

for7,7 € J,2,7 € I, m,m’ € N’, writing N’ := {1,...,n—1}. Note that by (2.2.19), form = 1,...,n—1
and j € NV,

0¢; Do Omy, oy Owy, 3 P, Oy
Ozm ,CZA/ 0x0x; 02, - \/Xkezj\/- 06,0 Ozm’ ds kezj\/ Oz 0, s (C.65)

Calculating the derivatives directly from (3.3.40) and using (C.65) we have for m’ € N,

od

B (7 — x7(5,2; 1), 0z, , Vo oy (Too (8,25 M), ﬁw_i_(z; M) (s, 25 0))

+ <v33190+(m00(5’ 2 >‘)7 ﬁw+(z; /\)) - Vx,<p+((a:1(s, Z3 )‘)7 17)’ \/XXi_l(ah 19./\@\]))7
d. xi(s,z;\)). (C.66)

At the stationary point (3.3.41) we have

P+ ((@1(5,2:0),27), VA (05,90000)) = 04 (@ oo (5,2 0), VAwi (20)) (C.67)

s
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so for m,m’ € N;,
0%®

8zm8zm/ stat. pt.

= (0., (17 — T7(5, 21 1)), 0=, , Var 04 (oo (5, 23 A), VAw (25 0)) (s, 21 0))
+ (02, (Viay 04 (oo (5, 23 1), VAwy (230))
= Vi, o+ ((T1(s,250), x7)7 \/XX;I(HL 19_/\@\J)))7 aszmf(sa z; \))

0x; Owr 0%, 0x; Owyp 0%p, Oxy Oxy 0%p,
=V — VA
f}ﬁ;\/ 0z 0z 0810T; \Fk;\f 0zm 0z 080T 72 0%, 02y 017027

iel 7€l
(C.68)
Furthermore,
0P _ 78904-((:1:[(552’;)‘)717)’\/XXi_l(eJ719./\/}\J)) —my
Inn g Inn g A
so for 7,7 € N3 \ J, m' € N, 7 € I we obtain
9% _ _82(p+((w1<5’2;)‘)’x7)’\/Xx;l(eJ’ﬂNi\JD (C 69)
819j8'l9j/ 8’[938195/ ’ '
U oy Oz 0%y ((xr(s, 21 0),27), VAX; (05, 9n,\)) (C.70)
aﬁjazm/ 8Zrn/ 81978% !
el
0*® _ _8 (er((wI(&Z;)‘)’xT)’\/szl(eJﬂﬁNi\J)) (C 71)
3197521;/ ’ 8’!938565/ ' '
We have
0P -1
e &1 (5,23 0) = Vo (15,25 N), 27), VAX; (07, 90000))s
T
so for 7,77 € I, m € Nj,
82(1) 82<p+
_ 72
3%8;& 6%8:5;/ ’ (C 7 )
0%® 8&, Z ox; 0%,
Ozm0Ty 0z, 0170,
lEI
Oz, 0%, Owp 0% ox; 0%,
= +VA -
kEZN 0z, O, 0xy keZ/\/ 0z 061 0xy lezl 0z Ox;0xy
Oxy  O? 0%y Owy, %,
_ C.73
Z Do Bamdry TV Z < 0z O6x0wy (C.73)
where we have applied (C.65). Inserting (C.68)-(C.73) into (C.64), we obtain
a2 9? oz & dwy, 0°
= - aﬂf e P Fe 29> Ty =
7 el N
_ oy _ ey -3 dx; 9oy
90507, 99500 Z4 07,7 00302

ox; dwi 0 ¢4
\/X Z 0z,,1 Ozm O&10x;
Hess @|spat. pt. = keN

Z am 17 6 P4 el
8zm 8:6 11 6£E =/ 2 Oz~ awk 824p+
7€ -y Om Oes VA X Dz D27 DEr Oy
+\/> Z 8wk 02 ot =1 O0zZm dﬂjlaxi keN m
v O&x O ¢ zel

o Z Oz 6:1: 92 D4
Oz 02z,,1 Oxz0x4
77 el
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For derivatives of ¢, with respect to z- and {-variables we have omitted the arguments which are taken
at the stationary point (3.3.41), i.e

6280+ _ 8‘2@+(m00(87 Z5 >‘)7 X;l(eJa 19./\/1\])
D0, 00y, '

(C.74)

On the other hand, derivatives of ¢, with respect to ¥ have not yet been evaluated with the chain rule
and we have written

Doy O (@ao(s, % N), VX (01, In))

a0, a0, (C.75)

for short. We will now perform elementary row and column manipulations, denoting similar matrices by
“~”. For all 7 € T and all m’ € N, we multiply the (?)th column in the first block column by 02y — and
add it to the (m)th column of the third block column. The resulting matrix reads

R oy dwy, ps
- Ox70x7 - 6197/ Oxz \/X k:%./:\f 0z, 0§07y
_ oy _ %o _ z dx; O0°¢pr
005051 99709 et 0z, 0950z}
Hess¢|5tat' pt‘ ~ Ox11 8250+ \/X Z awk/ aWk 82¢+
DR ok Dzs Dz DErDap:
a azm 8%7//3.’1)7/ 2 k k‘lEN m
7'eT , _ Z dxz; O ¢y \/; Z bme Dur P
Owy, O ¢4 . Ozm 0¥5 0x; —V )\ T K +7
A Y St aebe | i€ (2, O Ozr 061055
keN 7€l

Next, for all 7 € T and all m € N; we multiply the (7)th row in the first block row by 5 awl and add it to
the mth row of the third block row, obtaining

%oy %o, dwy o4
- Ox70x51 - 8197/ Ozt f ZN Zt O&k 0T
oy % dx; O+
Hess ®|sat. pt. ~ ~ 90,02, ~ 99,00, ZN Dz, 0070xx (C.76)
Owp 3290-%— _ oxy, 6299-%— amk/ Owp 92 P+
\/Xk;ezj\f azm 851“8(127/ kg\/’ 8Z7” 8197/ Omk \/> ’ZN SZWL/ 627" afkaa:k/
kk'€

At the stationary point Y5 = 67, and we will from now on write 0 instead of ¥y setting additionally
0" = 6;,. Noting that

dw; 3 ox; H(0") oy,

C.77
8zm/ KEN, 80k 8Zm/ ( )
we evaulate derivatives of the type (C.75) to
o 0T N5\ Z 6Xk (0') ¢y Py VY Z 8Xk Py (C.78)
0050z = 005 00z’ 06005 097 85;@097 '
Hence the matrix in (C.76) is similar to
2? 2? dwy,  0°
_aiﬂfg;—/ _89—%;7 \/X Z B;k/ af;:ng
keN ™ .
Ixg (0) 9% g (0) &p 9z, Ox, (0)) 9%
—Va Z —on D _\FIE:N oo dgkd«;/ _\[\k k’XéN Dy 00 9w
aX, (0") 80,1 0% dx, 0@ o o Ox, (0) 80, 9%
VA k;\/ 00 Dz DErden _k%:\/ D 897/8;,c \[\k k/z;/\/ Dz 00pn Dawy DExDr
K" eN; K EN;

We will occasionally omit “Hess ®|stat. pt. ~” in order to save space
p
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For all 7 € T and all m’ € N we now subtract the (7)th column of the leftermost block column,

multiplied with 7 92 from the (m/)th column of the rightermost block column, obtaining
_ ey _ Py dwy, oy Omy %oy
Ox70x51 005 0z \/ngj\f 0z, 0§ 0xy + Z 0z,,1 Oxz0xy
el
8X71(9/) 82§0 axfl(gl) 8250 Ox ./ ax—l(gl) 8290
VAN ox 9) + VX X, 0) + VY J k +
ng 007 0€,0wy ]%:N 905 9€,00 k;v 9z, 00;  0€,0x,
j'el
O, (0)) 9o, _0%¢s om, _0%ps o 0x; (0) g, %o
f Z (9t9k 8Zm 36,4333;/ - Z azm 397/(9%]9 \/X Z 8Zm/ 89k azm 8fk/8$j/
& & &
eN; j/eeli
For all 7 € J and m € N we further add the (7)
mth row of the lowermost block row, obtaining
%oy %oy dwy %oy my 0%y
_81’7817/ _807/8937 \/ng\/ 0z,,1 0§, 0xy + Z 0z,,1 Oxz0xy
Bxk (0') 9%¢p. ax; (9") 924, Oz 1 3Xk (9/) %oy
—VA Z 06, 0&,;0m, VA Z 96;  OE; 005 _\Akg\/ Dz 007 0Er0my
j'el
_ E: Ox; 9%py
Ozm 89—/ Ox
ax; " (0) g0, 0%, , oz x;1(0") 59, 0%
fz aefax L8) 8% VYD LA k +
0 m OL; 0, ox; V) + 0 1 OE; 01,
(9 k Oz O&;0xy 89* agjaaj/ JeEN 0z 00, O0zm 85.78m1
kEI kel
jGI j'er
From (2.4.5) we obtain
(1) 2 —1/pr 2
ol (z) Z DPoy Oz, N Z ox; 1 (0") 08, %0, (©.79)
— , .
0zm 8zm89— 8:@86‘7 0zm =~ 08y O0zy 08005
keN;
allowing us to rewrite the matrix as
_ 0%y _ 00y 06 _ 3 dz; 0o+
Ox70x5 60—/6IT 0z,,1 =4 0z, 0x;0xy
3
0 (0) 9P ox; 1 (0) %0y oz, Ox, (0) 9p.
VA Z d0;  0€;0my " -V Z 907  OE; 00 VA g\[ 0z, 007  OE;0x;
J
j'el
0x; (9) 90, 0%y Ol 007 0x; ' (9) 9, ox; 0x; ' (0) 0o, 0%y
VA Z 00r  Dzm 96,000 | dem T 2 Z}\/ dzm  08; OE;00, 2 g\/ 0z, 00x Oz 0&; 0,
: j .
ke] = kel
j'el

We can now add the entire leftermost block column to the middle block column, obtaining

8oy 657 om; 0y
_81781’—/ (*) Z 0z, Ox;0xy
ax; (0 &g, Gw/r?x (0) &,
—VA Z Jaef 9, 0z 7 (%) VA Z Dz %97 g, 0z,
Hess q>|stat‘ pt. ~ ] EI (080)
ax; (0 59, 02 al, oz, ox; (0)) g9, 02
\/X Z J k Pt _ 95 \/X Z i J k Pt
00 Ozm 0&; 0z Ozm 0z, 00 Ozm 0&;0;
je./lf k z & O0xy z jE/y z k z 13 x
kel kel
j'el

where “(*)I represents a block matrix of suitable size whose precise expression will be irrelevant to us.
Note that I = J by Definition 3.3.1, so
Oxy (0) 82
oy Z 8X ) 00; %o, _ (af)j/ Al ) VA Z Xlée agkg;
397 8zm 0,0y O0zm  Ozm 0

(C.81)
keN
7€l
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and
ax (o) oz, 9%p.
AZ Oz Ox,'(0') 00; D*py (ae,»/ al,) 2 Z '59 92,/ 0€ Oy (C82)
’ — v - 62.771 a % I ’
= 02m 0y 0z, 0&,0x; 6 0
7el
i'el
for 7,4,5' € J,7 € J, m,m’' € N;. It follows from (C.80), (C.81) and (C.82) that
00/ Ol
|det Hess @|spas. pt. = ‘det( 9m 62“)’
92 ¢, 9xz; 0°
78x7g;7/ (*) 0z, Z 0z, 8x;g;r:7,
ax; ' (0) &2 amj, ax; (0 o2
VA Z o0, ag_,ggn (*) | =VA g\/ Dz, 007 agjg;j,
x |det ;el (C.83)
Ix, (0) 2 ax ) O, O°
keN
% EI
0 ]l|7| 0

|J| unit matrix. We can expand the block matrix along the lowest block row

Here 17 denotes the |J| x
and also consolidate the middle two block rows into a single one, obtaining
n—1
|det Hess ®|stat. pt. = A 2 Er,,J, © S;\r(z) - |det M| (C.84)
where
i 90y
+_ i )| =
Er,.,s, 0 Sy = |detd( 7TF: . 053] = |det (gf )‘ (C.85)
and M is the (n — 1+ |I]) x (n — 1 + |I]) matrix
_ %oy 08y oz 8289-%-
Ox70x4 0z, £ Oz,,1 Ox;0xy
M= [ P |y 0500 e 9 (C.56)
kEN 091 d&kdl;l k:E,/\/ 091 dzm/ d&kdxi/
i'el
with [ € N;. We now define the (n + |I|) x (n + |I|) matrices
o
B Oxz0x ]l|ﬂ 0
%p)  Huwy 0 ot Buy,
Ml = kez_/\f E)z;/agk 80m Z 0513 /E).fk 60 5 (C87)
%oy
Z -, WE 0 Z ; WE
keN Oz 0L keN M" ng
BE— 32Lp+ ox; 32tp+ amf/
M2 = 0 Z 0x;0xy 0%,y Z Qx5 0xy Os (C88)
7el
Gzi ox;
0 R Bs
whose product is
oy (%33 oy Owm; os oy
7895761'7/ 0z, - Z Ox; 0y 0z,,1 Z Ox70x7 Os
el 7€l
62<P+ Owpg oz, o? Y+ Owg Z ER Y+ Owy Ox;
M1M2 _ S 0,10 00m, kej}f 0z,,1 0x; 08, 00y, kE/I\f 0x;08, 00,, Os (089)
1€
oy P oz; o oz;
k%:j\/’ 3:67/8{)9 wk Zj[\f 8m 3&';” k Bzm/ k%;}/ 8Iia§k wk Os
1€
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For all7’ € I, we add the (7’)th column of the leftermost block column, multplied by %f, to the rightermost
(block) column. We obtain
& agf oy dm
- Bm:g;i/ Z da:;gzz Bzi/ 0
%oy dwy, Ba:, %01 dwi 0701 Owy, 0Ty
My My ~ ZN 02,108, 00y, E}[ 9z, 01,08k 00, k,k’ze/\f dx,, 08y, 00,, s . (C.90)
%o ox; %oy oz,
Z Oz~ la.fk ZN agk wk azm ’ & kz’:/\[ BIk/afk k (9;c
k'€
el
Now differentiating (2.2.20), we see that
oy Omp
=2 C.91
Z 8xk/8§k 0s fwk ( )
Since (wi,w4) =1 and (wy, g‘g—ﬂ = 0, inserting (C.91) into (C.90) yields
% 85— oy om;
B axTﬁ;;/ Z ox; 8;7 azfn/ 0
%oy Ouwy Z Bml oy duwy 0
]\411\42 ~ kEN Bzi/{){k 80,,,, ‘/I\/ 8Zm/ 6178& 819771 . (C92)
5” 5> ox;
Z iwk Z Vﬁer Wk i 2\5
k,‘EN 31)7/8§k k:‘e./}/' 8x185k 82 n’!
By expanding the determinant we obtain
|det( M, Ma)| = 2v/X|det M|, (C.93)
hence (C.84) becomes
|det Hess @stat. pt. f)\ T Er‘k Ju oSJr (2) - |det Mq| - |det My| (C.94)
Now by (C.87),
o? ow
Z ox %+ . o
1198k 00, owyr
|det M| = |det kez = |det (‘Zf;t)‘ - |det A(@oo (s, 2, A), \f)\w+(z; ) (C.95)
amllagk

for’ e N, m € N" and A given by (3.3.59). Now

(g;’,ﬁ)T (2;;;) _ <1 0 ) , Gy = <3“’+ 3w+> (C.96)

wy wy 0 guw 00, 90

50 (guw) is just the metric tensor on the sphere, expressed in the coordinates of R”~L. It follows that
|det M1| = (gs,, 0wy (2;A)7 - |det A(@oo (5,2, A), VAwg (2 M) (C.97)

Furthermore, expanding the determinant and applying (C.65),

T Z 82Lp+ ox; Z 8?2 oy Oxy

0z, 1 Ox;0x7 Oz, 1 Owxy Oxy Os
|det M| = |det ™ el " | wer
az n’! Os

0&; 62LP+ Oz 35* oy O
0z, Z 0x; 0y 0%, Z Ox;0xy Os

Bm, 6m7 /

= |det

0s

= Dgq, 1, 0 t(s,2) (C.98)
Combining (C.94), (C.97) and (C.98) then yields (3.3.75). O



APPENDIX D

The canonical Maslov operator

The “canonical” Maslov operator is mathematically a conversion of a function defined on a lagrangian
manifold A in some cotangent bundle T* M to a function on M. Physically, it converts a classical object
(the lagrangian manifold A of integral curves of a hamiltonian vector field X, = dp, p(z,§) being a
function of configuration space) to a quantum-mechnical object (a function v € L?(M) solving Py = M\,
Py = [ e~ p(a, €)(€) ).

The Maslov operator is “canonical” in the sense that, writing a function ¢ € C*°(A) locally as a
function of lagrangian coordinates (xr, &) (cf. Definition 2.3.2), a Fourier transform of the {y;-variables
is performed to obtain a function of the = variables. It is otherwise evident that this procedure is based
on coordinate transformations and is therefore dependent on the choice of chart, local coordinates and
other data mot canonically given.

In order to define the Maslov operator, we need to introduce some notation and definitions. A large
amount of literature exists on the theory of the Maslov operator (cf., e.g., [18, esp. §8.4], [27], [20]), but
we will restrict ourselves here to the essentials necessary for the definition on A and £,.

D.1. DEFINITION We shall denote by M an n—dimensional riemannian manifold with riemannian metric
tensor g. We use the notation of of Definition 2.3.2. We will refer to the following objects as Maslov
data:

i) An atlas {(Zk, xx)} on M consisting of open sets X, C M and maps xp: X — R™. If M = R™ we
shall always use global (x,&)—coordinates on T*R™.

ii) A lagrangian atlas {(Qm, 7, .1,,) }m>0s Im C N :={1,...,n}, on A chosen such that for each m
there exists an k,, € N such that Q,, g T*Yy,.. We additionally require that In = N'. The General
Position Hypothesis ensures that we can always choose an qy in this way.

) A global coordinate map t: R™ — A.

iv) A global generating function S.

v) A partition of unity subordinate to the covering {Qlm} (i.e., em € C§° (), D em =1).

vi) A set of functions g, € CG°(M) such that g, =1 on ©(y,) and gl x(q,,) has compact support.

111

We will assume that all lagrangian manifolds under consideration are in “general position” in the
sense of Arnol’d [3, Theorem 2.1] if they are of sufficiently small dimension.

GENERAL PosITION HYPOTHESIS We assume that all lagrangian manifolds under consideration (in par-
ticular A and £ of (1.3.3) and (2.1.17), respectively) are in general position if n < 6.

D.2. REMARK For lagrangian manifolds of dimension less than six, the General Position Hypothesis
implies that all singularities are stable, i.e., the rank of dm does not change under a sufficiently small
perturbation of the manifold in the class of lagrangian manifolds. Denote by S(A) = {p € A: rankdn|, <
n} the set of singular points of the n—dimensional lagrangian manifold A. Then one of the consequences
of the General Position Hypothesis is

dim S(A) <n-—1. (D.99)

The statement (D.99) ensures the existence of some lagrangian atlas {(Q,, 7q,,.1,.) }m>0 on A such that
In=N.

Note that for V =0, £, = T* S"~! and is hence not in general position.
Following Vainberg[27], we define the Maslov index of a chain of charts.

D.3. DEFINITION & LEMMA Let {Q,,,7q,, 1.}, Im C N, be a lagrangian atlas on A.

83



84 D. THE CANONICAL MASLOV OPERATOR

i) We define the Maslov index of a pair of charts by

Or+ omgt rr &5
Y(Qm, Q) = inerdex Im WQ’"’I’"( fm 617”')
&z

Or= omol, (x5, &
—inerdex( L Q""I’“( o)

m

(@10, 587, ) =T, Im P

(D.100)

&3,

for any p € Qp N Qg with p & X(A). Here inerdex A (the “inertial index”) denotes the number
of negative eigenvalues of a matriz A. If Qp, N Qe = 0, we set ¥(Qp, Q) = 0. The index v is
independent of the choice of p.

ii) We call {Qm].}é»:l, I € N, a chain of charts joining Qo and Q. if Qp, = Qo, L, = Qi and
i, N,y # 0.

iii) We define the index of a chain of charts joining Qo and Qy by

(@10 5€7,, ) =T 1, P

-1
’y(le g 7sz) = ZW(Qmj ) Qm]-+1) (D101)
j=1

If Qo N S(A) = 0, the indices of two chains of charts both joining Qo and €y are identical, so we
can define vy as the index of any such chain.

D.4. DEFINITION We make the following definitions:
i) The 1/h—Fourier transform of functions ¢ € L*(R™) is given by

(Fup)(€) := (2mh) 2 /

For short, we will write dx; := (2mh)~'/2dx; (where x = (x;)).

ii) goou(y) :=det(gom|row(y))
iii) We define Do ; € C™(Q) via

Da,r o u(y) := |det d(mq,1 o t)ly| y € Q). (D.103)

i

ey do, () = @eh) 2 [ cheOpede (D102

n n

We can now introduce the Maslov operator on A:

D.5. DEFINITION We refer to the notation and definitions of this section as well as Definition 2.3.2. We
assume that we have chosen Maslov data as in Definition D.1. Then

Ky COO(A) - COO(M)’ KA[SD] = Z ei%’YmKQme [em¢]7 (D104)

with
: omg (zr, - i3 —
(Karll) o x~"(x) = g(a) Fy, ek Soremanten ) (gg Doy - ) o mg(ar, -], - (D.105)
defines a Maslov operator on A. We shall call Ko 1 as a local Maslov operator, and will sometimes refer
to K as a global Maslov operator in contradistinction to Kq .

D.6. REMARK In order to define a Maslov operator K, on a lagrangian manifold A, a wide variety of
objects were defined or chosen. Without giving any proofs, we will summarise how these objects and
choices influence K. We consider the riemannian manifold (M, g) and A C T*M to be fixed.

i) The global coordinate map ¢: R® — A effectively defines a measure on A, which fundamentally
influences D 1 and gqo.r. Replacing ¢ by some other global coordinate map would yield an entirely
different Maslov operator.

ii) The global generating function S is defined up to an additive constant ¢ € R, which influences K,
by a factor of e#®.

ili) The atlas {(Xg, xx)} on M and the lagrangian atlas {(,, 7q,, 1,,) }m>0 on A, the partition of unity
{emm} and the functions {g,, } all influence K by terms of order O(h), i.e., if K and K} denote two
Maslov operators constructed using different charts and cut—off functions,

KA [e]ll2 = (K3 [#]ll2 + O(R) for ¢ € L*(M), as h — 0. (D.106)
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iv) The choice of Qg in the definition of 7,, (the index of the chain of charts joining 2, to ) influences
K by a multiplicative factor of e'2#, 1 € {0,1,2,3}.
Hence the term “canonical operator” often seen in the literature is actually a misnomer. However, for
many applications this arbitrariness is not important, as often any given Maslov operator on A can be
used to construct approximate solutions to a given problem (e.g., Lemma 3.2.9 and Theorem 3.2.10).

D.7. REMARK It is not actually necessary to have a global generating function S and a global coordinate
map ¢ on A; instead one can patch together local generating functions and local measures in a suitable
way, cf. [20]. However, on A C T*R"™ and £, C T*S™~! we have established these convenient data and
thus make use of them.
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