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Introduction and statement of the main result

The subject of this work is potential scattering in Rn. Quantum-mechanically, we seek solutions of
the Schrödinger equation

Pψ = P (h)ψ := −h2∆ψ + V ψ = λψ, x ∈ Rn, 0 < h < 1, n ≥ 2, (1)

while classically we seek integral curves (phase trajectories) of the vector field Hp generated by the
hamiltonian

p(x, ξ) = |ξ|2 + V (x), (x, ξ) ∈ Rn × Rn. (2)

In either case we will take V to be a smooth function on configuration space Rnx as follows.

Potential Hypothesis The potential V ∈ C∞(Rn) satisfies

|∂αxV (x)| ≤ Cα〈x〉−%−|α|, % > 1, (3)

for any multi–index α ∈ Nn and a corresponding constant Cα > 0, where 〈x〉 :=
√

1 + |x|2.

Thus V is a short-range potential in the sense of Agmon [1]. In particular, V (x) decays faster than
the Coulomb potential as |x| → ∞.

We will interest ourselves in the semiclassical asymptotics of the scattering amplitude, an object
which we will describe in detail below. In the classical picture, we first fix an “incoming direction”
ω− ∈ Rn and a hyperplane H orthogonal to ω−, the “impact plane”. For V ≡ 0, the trajectories of the
hamiltonian vector field are straight lines in phase space, and we refer to them as “free”. We will consider
the ensemble of trajectories that are asymptotic, for time s → −∞, to free trajectories that intersect H
orthogonally. It turns out that this association is bijective, and we hence obtain a parametrisation of all
trajectories by points in H, denoting such trajectories by Tz, z ∈ H.

The image on the left shows some classical configuration-space trajectories for scattering in R2,
superimposed on the graph of the potential

V (x1, x2) =
20x1

10 + x4
1 + x4

2

. (4)

For s→ −∞, the trajectories approach parallel straight lines. On the right, a bird’s-eye view of the same
image is shown. As time s→ +∞, the trajectories approach straight lines,

x(s, z) ∼ ω+(z)s+ r+(z) in configuration space.
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2 INTRODUCTION AND STATEMENT OF THE MAIN RESULT

where z ∈ H parametrises the trajectories and s ∈ R is the time (flow), coordinate of the integral curve.
We call ω+(z) ∈ Sn−1 the “outgoing direction” of the trajectory Tz, where Sn−1 := {x ∈ Rn : |x| = 1}
denotes the unit sphere in Rn. Of particular interest are points for which the differential of the map
z 7→ ω+(z) has rank less than n− 1 (recall that dimH = n− 1).

For V given by (4), the right-hand figure shows the graph
in S1 × R of the relation z 7→ ω+(z), z ∈ [−14, 14], drawn as a
line over S1. The incoming direction ω− is indicated, and the
projection onto S1 of points of the graph approaches ω− as |z|
becomes large. At ωc the projection onto S1 is singular, i.e.,
the rank of the differential of the projection is zero.
An outgoing direction ω0 ∈ ω+(H) ⊂ Sn−1, ω0 6= ω−, is called
regular (as in [24]) if for all z ∈ H with ω+(z) = ω0 the dif-
ferential dω+|z has rank n − 1. Hence all outgoing directions
except ωc and ω− are regular in this example. ω−

z

S1

ωc

We now review the definition of the scattering amplitude. We denote by H2(Rn) the Sobolev space
of second order and define the operators

P0 = −h2∆, P = P0 + V, domP0 = domP = H2(Rn), 0 ≤ h ≤ 1. (5)

The Potential Hypothesis guarantees (cf. Agmon [1, Theorem 7.1]) that the wave operators

W± := s-lim
t→±∞

ei
t
hP e−i

t
hP0 (6)

exist and are complete, i.e.,

ranW+ = ranW− = L2(Rn)ac, (7)

where L2(Rn)ac denotes the absolute continuity subspace with respect to P . The scattering operator can
then be defined as the unitary operator

S(h) : L2(Rnx) → L2(Rnx), S(h) := W ∗
+W−. (8)

Using the 1/h–Fourier transform Fh of (D.102), we define for γ > 1
2 ,

F0(λ, h) : L2
γ(R

n) → L2(Sn−1), (F0(λ, h)g)(ω) := λ(n−2)/4(Fhg)(
√
λω). (9)

Here L2
γ(R

n) denotes the space of weighted square integrable functions, i.e., all functions f such that
‖〈 · 〉γf‖L2 < ∞. The smoothness of V allows us to find a unitary operator S(λ, h) on L2(Sn−1) such
that

F0(λ, h)S(h)g = S(λ, h)F0(λ, h)g, for all λ > 0, g ∈ L2
γ(R

n
x), γ >

1
2
. (10)

The operator S(λ, h) is called the scattering matrix. The transition matrix T (λ, h), defined through

S(λ, h) = T (λ, h)− 2πiI, (11)

(I denotes the unit operator) is a compact operator on L2(Sn−1). Furthermore, under the Potential
Hypothesis, it can be shown (Isozaki and Kitada, [16, Theorem 0.1]) that T (λ, h) is an integral operator
on L2(Sn−1),

(T (λ, h)g)(ω) =
∫
T (ω, ω′;λ, h)g(ω′) dω′, (12)

where the kernel T (ω, ω′;λ, h) is smooth for ω 6= ω′ and λ > 0. We define the scattering amplitude
f(ω−, ω+;λ, h) as

f(ω−, ω+;λ, h) := cn,k,hT (ω−, ω+;λ, h), (13)

with cn,λ,h = −2π(
√
λ/2πh)(n−1)/2e−i(n−3) π

4 .
In accordance with the classical picture described above, we fix ω− and analyse the semiclassical

asymptotics as h→ 0 of f(ω−, ω+;λ, h) for varying ω+. Our goal will be to give the leading term of these
asymptotics, i.e., the behaviour of f modulo O(h), where here and throughout O(h) refers to function of
ω+ whose modulus is bounded by a constant multiplied by h when h→ 0. Before stating our result, we
first review the available literature on this subject.
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The problem of finding a semiclassical expansion for the scattering amplitude in this setting was
considered by Vainberg [26, 27] in the case of a compactly supported potential V and regular scattering
directions. Protas [21] then expanded Vainberg’s approach to include non-regular points in the setting of
compact potentials, but without giving the leading term of the asymptotics as h→ 0 explicitly, see [12].

Using the phase functions introduced by Isozaki and Kitada [14, 15, 16] for Schrödinger operators,
Robert and Tamura [24] gave a formula for the scattering amplitude for short-range potentials, general-
ising Vainberg’s result but valid only for regular outgoing directions. Robert and Tamura’s techniques
have been used by Brummelhuis and Nourrigat [9] to give an analogous formula for regular scattering
directions in the case of a Dirac operator with compact potential.

All of the above approaches use the theory of the Maslov operator developed by Maslov, presented,
e.g., in [18], [27] and [20]. Following the idea of Protas, we define the lagrangian manifold L+ ⊂ T ∗Sn−1

consisting of the asymptotic angles and angular momenta of the trajectories as time s→ +∞. We build
on Robert and Tamura’s general representation formula for the scattering amplitude in the short-range
case and show that in this case the scattering amplitude can be expressed in leading order as a simple
Maslov operator on L+.

Since non-regular outgoing directions correspond to lagrangian singularities in L+ (see Lemma 3.3.19),
this allows for a full consideration of generically occurring caustics, which in sufficiently small dimensions
have been classified by Arnol’d [5, 6, 7].1 In fact, lagrangian singularities and the asymptotics of
oscillating integrals with corresponding phase functions (especially in the simplest case of a fold singularity
and the Airy function) have been extensively studied, see for instance the textbooks by Arnol’d [8],
Guillemin and Sternberg [11] or Taylor [25, Chapter 6.7]. This has, however, heretofore not been the
case in conjunction with asymptotics of the quantum mechanical scattering amplitude defined in (13),
and we give a short summary of the situation in the physically relevant cases of scattering in R2 and
R3. This is motivated by the fact that the effect of caustics on the scattering amplitude has heretofore
been treated confusedly or simply been avoided in the physics literature. For example, Jung and Pott
[17] mention the problem posed caustics for the scattering amplitude rather clearly, but then apply a
“uniformization” close to caustics and apparently avoid discussing what the precise effects of caustics are.

There has recently been renewed interest in this problem. Alexandrova [2] has given a generalisation
of Vainberg’s and Protas’ work for compactly supported perturbations of the Laplacian. Michel [19] has
generalised [24, Theorem 1] to hold for a slightly weaker non-trapping condition than Robert and Tamura
had assumed, under additional assumptions on the resonances of the Schrödinger operator (see Section
3.4 for more details).

We will work directly from the article of Robert and Tamura [24], which gives the leading-order
semiclassical term of f(ω−, ω+;λ, h) for fixed ω− and ω+ in the case that ω+ 6= ω− is regular. Numerous
results from [24] will be cited in our text.

In Chapter 1 we establish some basic definitions, notation and the setting, introducing the impact
plane H (orthogonal to ω−) and the hamiltonian p ∈ C∞(Rnx × Rnξ ) associated to P (h). We prove
some important estimates concerning the behaviour of the integral curves of the hamiltonian vector
field Hp as the time s → ±∞. These estimates in Propositions 1.2.7 and 1.2.10 are crucial to the
geometrical constructions in Propositions 2.1.4 and 2.4.6. In Section 1.3 we take a more geometrical
viewpoint, showing that the integral curves of the hamiltonian system form a lagrangian manifold Λ ⊂
T ∗Rn (Theorem 1.3.3). The main difficulty there is that instead of the usual initial conditions, we have
“initial conditions at s→ −∞”.

In Chapter 2, we first show that the limit as s→ +∞ of the angle and angular momentum of points on
trajectories exists. The ensemble of the asympotic angles and angular momenta (one for each trajectory)
form a lagrangian manifold L+ ⊂ T ∗Sn−1 (Theorem 2.1.4). In Section 2.2 we review the definition
of phase functions of Isozaki and Kitada [14] and some results of Robert and Tamura, who apply the
phase functions in our setting. In Section 2.3, we obtain generating functions on Λ and L+ (Lemmas
2.3.7 and 2.3.8), which we will use in the construction of Maslov operators on Λ and L+ (see Appendix
D). In Section 2.4 we analyse the relationship between caustics in L+ and caustics in Λ, culminating in
Proposition 2.4.6.

1By a slight abuse of language, we will refer to both p ∈ L+ and πp as caustics if rank dπ|p is not maximal, where π denotes

the canonical projection onto the base.
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After these preparatory results, we commence in Chapter 3 with the generalisation of Robert and
Tamura’s representation formula for f(ω−, ω+;λ, h). After reviewing their results in Section 3.1, we use
a Maslov operator to approximate the action of e

i
hPt for t ∈ [0, T0] for some T0 > 0. These estimates,

using the extended phase space, follow ideas of Maslov [18] which we further refine for our situation,
obtaining Proposition 3.2.16. In Section 3.3 we apply this result to the integral formula for the scattering
amplitude, proceeding with some elaborate constructions before applying the method of stationary phase.
In principle, this construction follows the ideas of Robert and Tamura [24], but is made much more
complicated by the presence of caustics. We complete the proof of Theorem 1, which we state below.

Section 3.4 contains a short discussion of the results obtained, as well as some open question, prin-
cipally on the structure and presence of caustics. In Section 3.5 we review the well-known results on
lagrangian singularities and discuss their application to our scattering problem. Finally, the Appendices
generally serve as a repository of results referred to in the text, Appendix D contains details on the
construction of Maslov operators on lagrangian manifolds.

Definition 1 Let L+ ⊂ T ∗Sn−1 with global coordinate map S+
λ be the lagrangian manifold of Theorem

2.1.4 and F+ the global generating function of Lemma 2.3.8. Denote by πω : T ∗Sn−1 → Sn−1 the canonical
projection onto the base and let {(Σj , χj)}, Σj ⊂ Sn−1, χj : Sn−1 → Rn−1, be an atlas on Sn−1.

Let {(Γk, πΓk,Ik
)}k≥0 denote some lagrangian atlas on L+ with Ik ⊂ {1, . . . , n − 1} as in Definition

2.3.2 such that for all k ≥ 0, Γk ⊂ T ∗Σik for some ik and Γ0 is simply connected and well-projected.
Let {ek}, ek ∈ C∞0 (Γk) be some partition of unity subordinate to {Γk} and define functions {gk},

gk ∈ C∞0 (Σik), such that gk = 1 on πωΓk. Define a Maslov operator on L+ using these data following
Definitions D.1, D.5. In particular,

KL+ : C∞(L+) → C∞(Sn−1), KL+ [ϕ] :=
∑
k

ei
π
2 γkKΓk,Ik

[ekϕ], (14)

where KΓk,Ik
denotes a local Maslov operator on Γk as in (D.105) and γk is the index of the chain of

charts joining Γk to Γ0, cf. Definition D.3.

Theorem 1 Let KL+ be a Maslov operator constructed on L+ as in Definition 1 and let µ0 denote the
Keller-Maslov-Morse path index of some trajectory Tz with S+

λ (z) ∈ Γ0. Let λ > 0 satisfy the Energy
Hypothesis. Then

f(ω−, ω+;λ, h) = eiµ0
π
2 ·KL+ [1](ω+) +O(h) (15)

Remark 1 Note that fixing Γ0 and S+
λ determines a Maslov operator up to O(h), see Remark D.6. The

constant µ0 essentially compensates for the choice of Γ0, cf. Remark 3.3.17.

Remark 2 The representation [24, Theorem 1] is a special case of (15) for the case when ω+ is not a
caustic, i.e., rank d(πω ◦S+

λ )−1 = n−1. In that case the Maslov operator at ω+ can be represented simply
as an exponential function. This is discussed more explicitly at the end of Section 3.3.

The author wishes to thank Prof. Markus Klein for supervising this work with limitless patience
in countless discussions and scrupulous proofreading. Much gratitude is due to Dr. Elke Rosenberger,
whose willingness to engage in innumerable conversations regarding fine points of the proofs and whose
moral support was a major help in the completion of this work. However, this work could not have been
completed without the loving support of Quanbo Xie, who in a million little and a thousand large ways
has helped to make it happen.



CHAPTER 1

The scattering problem in classical phase space

We start this chapter by giving a few essential definitions in Section 1.1 and setting the stage for
the study of asymptotics of the scattering amplitude. In Section 1.2 we will study the classical phase
trajectories in euclidean phase space T ∗Rn with “initial conditions at t → −∞”, which imply an “in-
coming direction” and a “non–trapping energy”. We will obtain essential estimates for the convergence
of trajectories to asymptotically “free” trajectories. A union over all trajectories with given incoming
direction will yield a submanifold of T ∗Rn, which is the main result of Section 1.3.

1.1. The classical setting

In this section we give an introduction to the classical scattering problem, fixing definitions and
notations for later use and formulating some crucial estimates. We will analyse the symbol p ∈ C∞(T ∗Rn)
associated to the operator P (h) of (1), where the cotangent bundle on configuration space Rnx is the
classical euclidean phase space. It will turn out that the crucial objects in the analysis of scattering, the
scattering angle and the angular momentum at infinity, can be regarded as elements of T ∗Sn−1, which
we regard as a natural subspace of T ∗Rn.

1.1.1. Convention For euclidean space Rn we have a natural basis of the tangent space TpRn given by
the partial derivatives ∂

∂xj
evaluated at p ∈ Rn. We then write

TpR
n = {Xp(v) : v ∈ Rn} , Xp(v) :=

n∑
j=1

vj
∂

∂xj

∣∣∣∣
p

, v ∈ Rn. (1.1.1a)

We identify Xp(v) with (p,Xp(v)). Often, the subscript p is redundant, and to shorten our notation we
will omit it, writing instead

(p,X(v)) ∈ TRn, where p, v ∈ Rn and X(v) ≡ Xp(v). (1.1.1b)

For f : Rn → Rm, we write f∗ : TRn → TRm for the the push-forward of f . Analogously, using the dual
basis of 1-forms,

T ∗pR
n =

{
X∗
p (ξ) : ξ ∈ Rn

}
, X∗

p (ξ) :=
n∑
j=1

ξj dxj
∣∣
p
, ξ ∈ Rn. (1.1.2a)

and

(p,X∗(ξ)) ∈ T ∗Rn, where p, ξ ∈ Rn and X∗(ξ) = X∗
p (ξ). (1.1.2b)

We will regard (x, ξ) as canonical coordinates of T ∗Rn. For (p,X∗(η)) ∈ T ∗Rn we write

T(p,X∗(η))(T ∗Rn) =
{ n∑
j=1

uj
∂

∂xj

∣∣∣∣
(p,X∗(η))

+
n∑
j=1

vj
∂

∂ξj

∣∣∣∣
(p,X∗(η))

, u, v ∈ Rn
}

(1.1.3)

and thus obtain natural coordinates (u, v) = (u1, . . . , un, v1, . . . , vn) on T(p,X∗
p (η))(T ∗Rn).

In the present section, we will generally identify T ∗Rn ' Rnx×Rnξ ; all expressions are thus understood
to be in canonical coordinates (x, ξ). The Hamiltonian associated to P (h) is then given by

p(x, ξ) = |ξ|2 + V (x), (x, ξ) ∈ Rn × Rn, (1.1.4)

which is a smooth function in the classical phase space. The hamiltonian vector field is given by

Hp = 2
n∑
i=1

ξi
∂

∂xi
−

n∑
i=1

∂V (x)
∂xi

∂

∂ξi
. (1.1.5)

5



6 1. THE SCATTERING PROBLEM IN CLASSICAL PHASE SPACE

The integral curves of (1.1.5) (which we also call phase trajectories) can be regarded as solutions of the
system of ordinary differential equations

dx

ds
= 2ξ,

dξ

ds
= −(∇V )(x), x, ξ ∈ C∞(R,Rn). (1.1.6)

1.1.2. Definition We denote by (x( · ; y, η), ξ( · ; y, η)) a solution of (1.1.6) with given initial state

(x(0; y, η), ξ(0; y, η)) = (y, η). (1.1.7)

The Hamiltonian p(x, ξ) being constant along an integral curve of the vector field (1.1.5), we define
the energy of an integral curve by

λ(y, η) := p(x(s; y, η), ξ(s; y, η)) = |ξ(s; y, η)|2 + V (x(s; y, η)) for any s ∈ R. (1.1.8)

The hamiltonian flow g is a map R× T ∗Rn → T ∗Rn, defined by

g(t, (y,X∗(η))) := gt(y,X∗(ξ)) := (x(t; y, η), X∗(ξ(t; y, η))) (1.1.9)

While the existence of an injective local flow, i.e., a map gt(y,X∗(η)) for all (y,X∗(η)) ∈ T ∗Rn at least for
|t| < T some small T = T (y, η) is just standard existence and uniqueness theory of ordinary differential
equations, cf., e.g., [25], the existence of an injective global flow is a more complicated question. The
existence of a global flow g in our context will be discussed in Remark 1.2.8 below.

We will consider only phase trajectories that “go out to infinity” as s → ∞; more precisely we
formulate the following property of integral curves.

1.1.3. Definition The energy λ > 0 is called “non–trapping for p” if for any R there exists a time T (R)
so that if |s| > T , then |x(s; y, η)| > R for all integral curves (x( · ; y, η), ξ( · ; y, η) ∈ p−1(λ) with |y| < R.

Energy Hypothesis (“Non–trapping Condition”) We fix an energy λ > 0 that is non–trapping for
p.

1.1.4. Remark We note for later use that the Energy Hypothesis implies that the hamiltonian vector
field does not vanish on p−1(λ), since (∂sx(t; y, η), ∂sξ(t; y, η))t=0 = 0 would imply η = ξ(t; y, η)t=0 = 0
by (1.1.6) and so (x(t; y, η), ξ(t; y, η)) = (y, 0) for all t > 0.

1.2. Phase trajectories defined at infinity

We will assume throughout this and all subsequent sections that the Energy and Potential Hypotheses
hold. We will parametrise the phase trajectories of Hp through an “impact plane” H ⊂ Rn which is
perpendicular to a certain “incoming direction” ω− ∈ Sn−1 = {x ∈ Rn : |x| = 1}. For notational
convenience, and without any ensuing loss of generality, we make the following basic assumption which
we also assume to hold throughout this text:

Impact Plane Hypothesis We fix

ω− := (0, . . . , 0, 1), H := {x ∈ Rn : x⊥ ω−} = {x ∈ Rn : xn = 0}. (1.2.1)

1.2.1. Convention We generally denote points in the impact plane by the letter z. Since H is canonically
isomorphic to Rn−1 via the map Rn−1 3 z 7→ (z, 0) ∈ Rn, we will often use H and Rn−1 interchangeably.
In cases where it becomes necessary to distinguish between Rn−1 and H, we employ the notation

ž := (z, 0) ∈ Rn for z ∈ Rn−1 and x′ := (x1, . . . , xn−1) ∈ Rn−1 for x ∈ Rn (1.2.2)

to avoid confusion.

It will be useful to consolidate the constants Cα of (3) by setting

max
|α|≤m

|(∇∂αxV )(x)| ≤ Cm+1〈x〉−%−1−m, Cm :=
√
n max
|α|≤m

Cα. (1.2.3)

1.2.2. Lemma Take x, y ∈ Rn such that |x|, |y| > R for some R > 0. Then

max
|α|≤m

|(∇∂αV )(x)− (∇∂αV )(y)| ≤ 2|x− y| max
|α|≤m+1

sup
|z|≥R

|(∇∂αV )(z)|

≤ 2Cm+2|x− y|〈R〉−%−2−m. (1.2.4)
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Proof. For x and y given as supposed, we can find a semi–circle C = γ([0, 1]), γ : [0, 1] → Rn, centered
at (x + y)/2 with endpoints γ(0) = y and γ(1) = x, such that |γ(t)| > R for t ∈ [0, 1]. Then for any
j ∈ N = {1, . . . , n},

(∂δjn∂αV )(x)− (∂δjn∂αV )(y) =
∫ 1

0

d

ds
(∂α+δjnV )(γ(s)) ds =

∫ 1

0

〈(∇∂α+δjnV )(γ(s)), ∂sγ(s)〉 ds

where δjn = 1 for j = n, zero otherwise. It then follows from (3) that

max
|α|≤m

|(∇∂αV )(x)− (∇∂αV )(y)| ≤ max
|α|≤m+2

sup
w∈C

|(∂αxV )(w)|
∫ 1

0

|∂sγ(s)| ds

≤ 2 max
|α|≤m+2

sup
w>R

|(∂αxV )(w)| · |x− y|

≤ 2Cm+2|x− y|〈R〉−%−2−m �

We define “free” trajectories in T ∗Rn (see Convention 1.1.1) via

T 0
z := {(x,X∗(ξ)) ∈ T ∗Rn : (x, ξ) = (2

√
λω− · s+ ž,

√
λω−), s ∈ R}, z ∈ Rn−1. (1.2.5)

In other words, a free trajectory has constant momentum in the direction of ω− and at s = 0 the
configuration–space projection intersects the impact plane at ž = (z, 0) ∈ H. Following [23, Chapter
XI.1], we introduce trajectories asymptotic to T 0

z as s→ −∞.

1.2.3. Definition For any z ∈ H we define by (x∞( · , z;λ), ξ∞( · , z;λ)) the unique integral curve of Hp

such that
lim

s→−∞
|x∞(s, z;λ)− 2

√
λω−s− ž| = 0,

lim
s→−∞

|ξ∞(s, z;λ)−
√
λω−| = 0.

(1.2.6)

We further define ω+(z;λ) ∈ Sn−1 and r+(z;λ) ∈ Rn as the unique vectors such that

lim
s→+∞

|x∞(s, z;λ)− 2
√
λω+(z;λ)s− r+(z;λ)| = 0, (1.2.7a)

lim
s→+∞

|ξ∞(s, z;λ)−
√
λω+(z;λ)| = 0. (1.2.7b)

The existence and uniqueness of phase trajectories (x∞( · , z;λ), ξ∞( · , z;λ)) is proven in [23, The-
orem XI.1] (where the estimates of Lemma 1.2.2 are used), while the existence of ω+(z;λ) and r+(z;λ)
such that (1.2.7) holds is shown in [23, Theorem XI.3].

1.2.4. Convention Using the conventions of Definition 1.2.3, we set

Tz := {(x∞(s, z;λ), X∗(ξ∞(s, z;λ))) ∈ T ∗Rn : s ∈ R},

TU :=
⋃
z∈U

Tz. (1.2.8)

T ±z,T := {(x∞(s, z;λ), X∗(ξ∞(s, z;λ))) ∈ T ∗Rn : s ≷ T},

T ±U,T :=
⋃
z∈U

T ±z,T .
(1.2.9)

For future reference we reiterate the existence and uniqueness statements made in Definition 1.2.3.

1.2.5. Proposition [23] The correspondences

Rn−1 3 z 7→ Tz ⊂ T ∗Rn and Rn−1 3 z 7→
(
ω+(z;λ), r+(z;λ)

)
∈ Sn−1 × Rn (1.2.10)

are one-to-one, i.e., bijective on their image.

We will now state two propositions that give more precise estimates on the limits (1.2.6) and (1.2.7).
In particular, it turns out that the map (s, z) 7→

(
x∞(s, z;λ), ξ∞(s, z;λ)

)
is smooth in s and z and that

the convergence as s→ ±∞ is uniform for z ∈ H.
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Figure 1. The projection onto Rnx of a
phase trajectory Tz for ω− = (0, . . . , 0, 1).
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1.2.6. Remark The crucial estimates of Propostions 1.2.7 and 1.2.10 are (to the author’s knowledge)
not covered elsewhere in the literature. In [23, Chapter XI.1] a straightforward fixed-point argument is
given for the existence and uniqueness of continuous functions g± in (1.2.11) and (1.2.15), but without
any considerations of the dependence of integral curves on parameters.

In [10, Section 1.10] the smoothness of trajectories with respect to parameters is analysed, and the
estimates in [10, Theorem 10.1] are similar to (1.2.13) below. However, only derivatives with respect to
an asymptotic momentum parameter (corresponding to z ∈ H) and an initial position are considered, and
no information on the decay with respect to the parameter of the derivative is given. Proposition 1.2.7,
by comparison, yields time– and parameter–decay information for time– and parameter–derivatives of
the trajectories. The same is true of (1.2.13) and the results of Propostion 1.2.10.

1.2.7. Proposition The integral curves of Definition 1.2.3 are smooth, x∞( · , · ;λ), ξ∞( · , · ;λ) ∈
C∞(R× H,Rn). Writing

x∞(s, z;λ) = 2
√
λω−s+ ž + 2g−(s, z;λ), (1.2.11a)

ξ∞(s, z;λ) =
√
λω− + ∂sg−(s, z;λ), (1.2.11b)

the function g− can be estimated uniformly away from the origin in the R×H coordinate plane, i.e., for
any multi–index (k, β) ∈ N × Nn−1 there exist constants CR,R;k,β , CS,H;k,β > 0 and Sk,β , Rk,β > 0 such
that

|∂βz ∂ks g−(s, z;λ)| ≤ CR,R;k,β · 〈z〉−%−|β|〈2
√
λω−s+ ž〉1−k if |z| > Rk,β (1.2.12)

and

|∂βz ∂ks g−(s, z;λ)| ≤ CS,H;k,β · 〈2
√
λω−s+ ž〉1−%−k−|β| if s < Sk,β. (1.2.13)

1.2.8. Remark The fact that for any z ∈ H the map s 7→ (x∞(s, z;λ), ξ∞(s, z;λ)) is smooth implies the
existence of a global flow g( · , · ) on R× Λ, where

Λ =
⋃
z∈H

Tz

(see Theorem 1.3.3 below).

1.2.9. Definition We denote by g the restriction of the hamiltonian flow to R× Λ, i.e., the map

g : R× Λ → Λ, g(t, (x∞(s, z;λ), X∗(ξ∞(s, z;λ))) = (x∞(s+ t, z;λ), X∗(ξ∞(s+ t, z;λ)). (1.2.14)

For short, we write gt( · ) := g(t, · ).

1.2.10. Proposition The functions r+ and ω+ of Definition 1.2.3 are smooth in z, r+( · ;λ), ω+( · ;λ) ∈
C∞(H,Rn). Writing

x∞(s, z;λ) = 2
√
λω+(z;λ)s+ r+(z;λ) + 2g+(s, z;λ), (1.2.15a)

ξ∞(s, z;λ) =
√
λω+(z;λ) + ∂sg+(s, z;λ), (1.2.15b)
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for any multi–index (k, β) ∈ N × Nn−1 there exist positive constants Cω;β, Cr;β, CT,H;k,β and Tk,β such
that

|∂βz (ž − r+(z;λ))| ≤ Cr;β · 〈z〉1−%−|β| (1.2.16a)

|∂βz (ω− − ω+(z;λ))| ≤ Cω;β · 〈z〉−%−|β|, (1.2.16b)

|∂βz ∂ks g+(s, z;λ)| ≤ CT,H;k,β · 〈z〉−|β|〈2
√
λω−s+ ž〉1−%−k for s > Tk,β. (1.2.16c)

1.2.11. Convention While the indices “+” and “∞” of the functions of Proposition 1.2.10 are useful
mnemonics, we will often need to refer to the components of (say) x∞(s, z;λ) ∈ Rn, where they become
cumbersome. We thus write, e.g.,

x∞(s, z;λ) = (xi(s, z;λ))i=1,...,n, g+(s, z;λ) = (gi(s, z;λ))i=1,...,n, (1.2.17)

i.e., we drop the index “+” and “∞” when refering to the components of x∞, ξ∞, ω+, r+, g+ and L+

(the last introduced below in (2.1.14)), all of which are functions mapping Rn → Rn, in cases where no
confusion might arise.

1.2.12. Corollary For any z ∈ H and ε > 0 there exists some T (z, ε) > 0 such that

(1− ε)2
√
λs < |x∞(s, z;λ)| < (1 + ε)2

√
λs for s ≥ T (z, ε). (1.2.18)

There exists some T > 0 such that
√
λs < |x∞(s, z;λ)| for all s > T and z ∈ H. (1.2.19)

Furthermore, for any β ∈ Nn−1 and any ε > 0 there exists some T (ε) > 0 such that for all z ∈ H and
s, s′ ≥ T (ε)

|∂βz (x∞(s, z;λ)− x∞(s′, z;λ))− 2
√
λ∂βz ω+(z;λ)(s− s′)| ≤ ε|s− s′|. (1.2.20)

Moreover, for any multi–index α ∈ Nn there exist constants C ′α > 0 such that

|(∂αxV )(x∞(s, z;λ))| ≤ C ′α〈s〉−%−|α| for all z ∈ Rn−1. (1.2.21)

Proof. The assertion (1.2.18) follows directly from (1.2.15a) with (1.2.16c). In order to show (1.2.19),
we set

x∞(s, z;λ) = 2
√
λs(ω+(z) +R(s, z)),

|x∞(s, z;λ)| = 2
√
λs
√

1 + 2〈ω+(z), R(s, z)〉+ |R(s, z)|2
(1.2.22)

with

R(s, z) :=
r+(z;λ) + 2g+(s, z;λ)

2
√
λs

. (1.2.23)

We first claim that for any (k, β) ∈ Nn∣∣∂ks ∂βz 〈ω+(z;λ), R(s, z)〉
∣∣ ≤ Cs · 〈z〉1−%−|β| · s−1−k. (1.2.24)

Then it follows from (1.2.24) that

1 + 2〈ω+(z;λ), R(s, z)〉+ |R(s, z)|2 > 1− 2|〈ω+(z;λ), R(s, z)〉| > 1
2

(1.2.25)

for sufficiently large s and all z ∈ H. Then (1.2.22) and (1.2.25) imply (1.2.19).
We first prove ∣∣∣∣∂ks ∂βz (R(s, z)− ž

2
√
λs

)∣∣∣∣ ≤ C1 · 〈z〉1−%−|β| · s−1−k. (1.2.26)

(1.2.27)

By (1.2.23),

R(s, z)− ž

2
√
λs

=
1
2
λ−

1
2 s−1(r+(z;λ)− ž) + λ−

1
2 s−1g+(s, z;λ) (1.2.28)

so (1.2.26) follows from (1.2.16a), (1.2.16c) and Corollary A.2.
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We now show (1.2.24). Since 〈ω−, ž〉 = 0,

〈ω+(z), R(s, z)〉 = 〈ω+(z)− ω−, R(s, z)〉+ 〈ω−, R(s, z)〉

= (2
√
λs)−1〈ω+(z)− ω−, ž〉+ 〈ω+(z)− ω−, R(s, z)− (2

√
λs)−1ž〉

+ 〈ω−, R(s, z)− (2
√
λs)−1ž〉 (1.2.29)

and (1.2.24) follows from (1.2.29) using the estimates (1.2.16b), (1.2.16c) and (1.2.26) with the product
rule. This completes the proof of(1.2.19).

We will show (1.2.20). By (1.2.15a),

∂βz (xi(s, z;λ)− xi(s′, z;λ)) = 2
√
λ∂βz ωi(z;λ)(s− s′) + 2∂βz g+(s, z;λ)− 2∂βz g+(s′, z;λ). (1.2.30)

We will show that for any ε > 0 there exists some T (ε) > 0 so that for s, s′ > T (ε)

2|∂βz g+(s, z;λ)− ∂βz g+(s′, z;λ)| < ε. (1.2.31)

By the mean-value theorem, for s, s′ > T ,

|∂βz g+(s, z;λ)− ∂βz g+(s′, z;λ)| ≤ sup
t∈(T,∞)

|∂t∂βz g+(t, z;λ)||s− s′|.

By (1.2.16c), there exists some Cβ > 0 so that

sup
t∈(T,∞)

|∂z∂tg+(t, z;λ)| ≤ Cβ · |T |−%,

hence we can take T sufficiently large to ensure (1.2.31). �

Note that Definition 1.2.3 also yields (1.2.18) and thereby (1.2.21), but without the stated uniformity
in z ∈ H.

In Section 1.3, we will see that the union over z ∈ H of the integral curves Tz forms a lagrangian
manifold. This geometrical object is crucial for the introduction of the canonical Maslov operator (see
Appendix D), which in turn allows the construction of asymptotic solutions to (1). The procedure is
discussed in detail in [27] or [18], and we will make use of it in Section 3.2 below.

Proof of Proposition 1.2.7. We first note that phase trajectories solving (1.1.6) with (1.2.6) have the
form (1.2.11) with g−( · , z;λ) ∈ C∞(R) satisfying the integral equation

g−(s, z;λ) = −
∫ s

−∞

∫ t

−∞
(∇V )(x∞(τ, z;λ)) dτ dt

= −
∫ s

−∞

∫ t

−∞
(∇V )(2

√
λω−τ + ž + 2g−(τ, z;λ)) dτ dt

(1.2.32)

with

|g−(s, z;λ)|, |∂sg−(s, z;λ)| → 0 as s→ −∞.

1.2.13. Remark Referring to the proof of [23, Theorem XI.1], we recall that there exists some T � 0
such that for any z ∈ H there exists T (z) < T such that the map

(Fλ,zu)(s) := −
∫ s

−∞

∫ t

−∞
(∇V )(2

√
λω−τ + ž + 2u(τ)) dτ dt, (1.2.33)

is a strict contraction on

MT (z) :=
{
u ∈ C((−∞, T (z)),Rn) : sup

s<T (z)

|u(s)| < 1
}
, (1.2.34)

where C((−∞, T (z)),Rn) denotes the space of continuous functions on (−∞, T ) with values in Rn. Then
for z ∈ H we choose T (z) so that g−( · , z;λ)|(−∞,T (z)) ∈ MT (z) and the existence and uniqueness of
g−( · , z;λ)|(−∞,T (z)) follows from the existence and uniqueness of the fixed point of Fλ,z|MT (z) . By the
existence and uniqueness of solutions to ordinary differential equations, we obtain for each z ∈ H a unique
function g−( · , z;λ) ∈ C∞(R) (while the continuity of g− follows from the contraction mapping principle,
the smoothness is implied by the continuation of (x∞, ξ∞) as an integral curve of the smooth vector field
(1.1.6)).
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Since the aforementioned time T does not depend on z, the arguments of the proof of [23, Theorem
XI.1] imply that the map

(Fλu)(s, z) := −
∫ s

−∞

∫ t

−∞
(∇V )(2

√
λω−τ + ž + 2u(τ, z)) dτ dt, (1.2.35)

is a strict contraction on

MT,H :=
{
u ∈ C((−∞, T )× H,Rn) : sup

s<T
z∈H

|u(s, z)| <≤ 1
}
. (1.2.36)

Again the existence and uniquenees of a fixed point implies that g−( · , · ;λ)|(−∞,T )×H ∈MT,H and since
g−( · , z;λ) is smooth, g−( · , · ;λ)|(−∞,T )×H is smooth in s and a continuous function of z ∈ H. Our
present goal is to refine these arguments and prove that g−( · , · ;λ) is an element of C∞(R × H;Rn)
satisfying the estimates (1.2.13) and (1.2.12).

For N ∈ N and T ∈ R we introduce the Banach space

BT,H;N =
{
u ∈ CN ((−∞, T )× H,Rn) : lim

s→−∞
|u(s, z)| = 0, ‖u‖T,H;N <∞

}
(1.2.37)

with the norm
‖u‖T,H;N := max

(k,β)∈N×Nn−1

k+|β|≤N

sup
z∈H
s<T

∣∣〈2√λω−s+ ž〉k+|β|∂ks ∂βz u(s, z)
∣∣. (1.2.38)

We will consider the convex subset

MT,H;N =
{
u ∈ BT,H;N : ‖u‖T,H;N ≤ 1

}
, (1.2.39)

which is a complete metric space. The map Fλ of (1.2.35) will turn out (see Lemma 1.2.15 below) to
be a contraction on MT,H;N for any N if T is small enough, yielding a unique fixed point, which is just
g−|(−∞,T )×H. Before proceeding, we need a technical result.

1.2.14. Lemma Let u ∈ MT,H;N for T < −2/
√
λ and let V satisfy the Potential Hypothesis. Then for

any N ∈ N there exists a constant C(N) > 0 such that for any k ∈ N and any multi–index β ∈ Nn−1

with k + |β| ≤ N and any α ∈ Nn with 1 ≤ |α| ≤ 2 the estimate∣∣∂ks ∂βz (∂αV )(2
√
λω−s+ ž + 2u(s, z))

∣∣ ≤ C(N)〈2
√
λω−s+ ž〉−%−|α|−k−|β| (1.2.40)

holds.

Proof. We will apply Lemma A.4 with Ω = (−∞, T ) × H; the assertion (1.2.40) follows directly from
the validity of (A.35) for any α ∈ Nn and k + |β| ≤ N , and

ψ(s, z) := 2
√
λω−s+ ž + 2u(s, z) with u ∈MT,H;N , T < −2/

√
λ, (1.2.41a)

ρ1(s, z) = ρ2(s, z) := 〈2
√
λω−s+ ž〉, (1.2.41b)

The condition (A.33) holds for any α by the Potential Hypothesis. We need to verify (A.34) and first
note that the orthogonality of ž and ω− yields

|2
√
λω−s+ ž|2 = 4λs2 + |z|2. (1.2.42)

Since |2
√
λs| > 4 on Ω by (1.2.41a), we have

〈2
√
λω−s+ ž〉 > |2

√
λω−s+ ž| > 4. (1.2.43)

Using 〈x+ y〉 ≥ 〈x〉 − |y| for x, y ∈ Rn, we have

〈ψ(s, z)〉 = 〈2
√
λω−s+ ž + 2u(s, z)〉 ≥ 〈2

√
λω−s+ ž〉 − 2|u(s, z)| (1.2.44)

and by (1.2.39) we have |u(s, z)| < 1 on Ω, so

〈ψ(s, z)〉 ≥ 1
2
〈2
√
λω−s+ ž〉 ≥ 2. (1.2.45)

It follows from (1.2.41b) and (1.2.45) that

1 ≤ 2〈ψ(s, z)〉ρ2(s, z)−1. (1.2.46)
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Furthermore, by (1.2.38), u ∈MT,H;N implies

|∂js∂δzu(s, z)| ≤ ρ2(s, z)−j−|δ|. (1.2.47)

We verify (A.34) for all j + |δ| ≤ N . For j + |δ| = 0 there is nothing to show, so we assume j + |δ| ≥ 1.
For j + |δ| = 1 we now have, using (1.2.41a),

|∂js∂δzψ(s, z)| ≤ 1 + 2
√
λ+ 2|∂js∂δzu(s, z)| ≤ (1 + 2

√
λ)2ρ2(s, z)−1〈ψ(s, z)〉+ 2ρ2(s, z)−1. (1.2.48)

where we have applied (1.2.46) and (1.2.47). Since 2 ≤ 〈ψ〉 by (1.2.45),

|∂js∂δzψ(s, z)| ≤ (3 + 4
√
λ)ρ2(s, z)−1〈ψ(s, z)〉. (1.2.49)

For 2 ≤ j + |δ| ≤ N , we have

|∂js∂δzψ(s, z)| ≤ 2|∂js∂δzu(s, z)| ≤ ρ2(s, z)−j−|δ|〈ψ(s, z)〉 (1.2.50)

by (1.2.45) and (1.2.47). Thus (A.34) holds for all k, β with k + |β| ≤ N and (A.35) yields∣∣∂ks ∂βz (∂αxV )(ψ(s, z))
∣∣ ≤ C(α, k + |β|) · ρ2(s, z)−k−|β|〈ψ(s, z)〉−%−|α| (1.2.51)

with some constant C(α,N) > 0. Using 〈ψ〉−1 ≤ 2ρ−1
2 by (1.2.46), we can thus deduce the existence of

a single constant C(N) such that (1.2.40) holds. �

1.2.15. Lemma For T = T (N) � −2/
√
λ small enough, Fλ is a strict contraction on MT,H;N .

Proof. For u ∈MT,H;N it follows from Lemmas 1.2.14 and A.6 that |Fλu(s, z)| → 0 as s→ −∞ for any
z ∈ H. With the definition (1.2.38) of ‖ · ‖T,H;N we further see that ‖Fλu‖T,H;N can be made arbitrarily
small by choosing |T | large enough. Thus for some T � −2/

√
λ, ‖Fλu‖T,H;N < 1 if u ∈ MT,H;N , so Fλ

maps MT,H;N onto itself. Furthermore, direct calculation gives

d

dt
Fλ(u+ tv)

∣∣∣∣
t=0

(s, z) = −2
∫ s

−∞

∫ t

−∞
(〈(∇∂xi

V )(2
√
λω−τ + ž + 2u(τ, z;λ)), v(τ, z;λ)〉)ni=1 dτ dt.

(1.2.52)

We need to verify that d
dtFλ(u + tv)|t=0 is continuous in u ∈ MT,H;N to ensure that Fλ is C1 and

d
dtFλ(u+ tv)|t=0 = DFλ|uv. It suffices to show that for v, u, um ∈MT,H;N (m ∈ N),

lim
m→∞

∥∥∥ d
dt
Fλ(u+ tv)|t=0 −

d

dt
Fλ(um + tv)|t=0

∥∥∥
T,H;N

= 0 if lim
k→∞

‖um − u‖T,H;N = 0. (1.2.53)

Note that limm→∞‖um − u‖T,H;N = 0 implies

lim
m→∞

sup
Ω
|∂βz ∂ks (um − u)| = 0, Ω = (−∞, T )× H, k + |β| ≤ N . (1.2.54)

By the smoothness of V and the chain rule (A.3), for any α ∈ Nn, k + |β| ≤ N , (1.2.54) implies

lim
m→∞

sup
Ω
|∂ks ∂βz (∂αV )(2

√
λω−s+ ž + 2u(s, z))− ∂ks ∂

β
z (∂αV )(2

√
λω−s+ ž + 2um(s, z))| = 0. (1.2.55)

Now by (1.2.38) and (1.2.52),

lim
m→∞

∥∥∥ d
dt
Fλ(u+ tv)|t=0 −

d

dt
Fλ(um + tv)|t=0

∥∥∥
T,H;N

≤ 2 lim
m→∞

sup
z∈H
s<T

〈2
√
λω−s+ ž〉k+|β|

∫ s

−∞

∫ t

−∞
max
|α|=2

k+|β|≤N

∣∣∂ks ∂βz 〈(∂αV )(2
√
λω−τ + ž + 2u(τ, z;λ))

− (∂αV )(2
√
λω−τ + ž + 2um(τ, z;λ)), v(τ, z;λ)

〉∣∣ dτ dt (1.2.56)

The product rule (A.30) with (1.2.55) then gives (1.2.53) if we apply the theorem of dominated conver-
gence to take the limit under the integral. The estimate (1.2.40) with Lemma A.6 yield the integrable
dominating function.
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Hence Fλ is C1 and d
dtFλ(u + tv)|t=0 = DFλ|uv. We use (1.2.38), (1.2.52) and the product rule

(A.30) to see that

‖DFλ|u(v)‖T,H;N ≤ 2 sup
z∈H
s<T

∫ s

−∞

∫ t

−∞
max

k+|β|≤N
〈2
√
λω−s+ ž〉k+|β|

× |∂kτ ∂βz (〈(∇∂xiV )(2
√
λω−τ + ž + 2u(τ, z)), v(τ, z)〉)ni=1| dτ dt

≤ 2 · 2N sup
z∈H
s<T

∫ s

−∞

∫ t

−∞
max

k+|β|≤N
α=2

|∂kτ ∂βz (∂αV )(2
√
λω−τ + ž + 2u(τ, z))|

× max
k+|β|≤N

|〈2
√
λω−s+ ž〉k+|β|∂kτ ∂βz v(τ, z)| dτ dt

≤ 2N+1‖v‖T,H;N · sup
z∈H
s<T

∫ s

−∞

∫ t

−∞
max

k+|β|≤N
α=2

|∂kτ ∂βz (∂αV )(2
√
λω−τ + ž + 2u(τ, z))| dτ dt

(1.2.57)

where we have used that max|α|≤N ∂α(f · g) ≤ 2N (max|α|≤N ∂αf)(max|α|≤N ∂αg). It follows that

‖DFλ|u‖ ≤ 2N+1 sup
z∈H
s<T

max
k+|β|≤N
α=2

∫ s

−∞

∫ t

−∞
|∂βz (∂αV )(2

√
λω−τ + ž + 2u(τ, z))|

≤ 2N+1 sup
z∈H
s<T

max
k+|β|≤N
α=2

C(N)
∫ s

−∞

∫ t

−∞
〈2
√
λω−s+ ž〉−%−2−k−|β| dτ dt. (1.2.58)

by (1.2.40). Again Lemma A.6 implies that ‖DFλ|u‖ < 1 if T � −2/
√
λ is chosen sufficiently small. By

Lemma B.2, Fλ is a strict contraction. �

By Lemma B.2 there exists a unique fixed point of Fλ in MT,H;N for any N ∈ N. Since Fλ is
also a contraction on MT,H with fixed point g−|(−∞,T )×H and MT,H;N ⊂ MT,H we can conclude that
g−|(−∞,T )×H ∈ MT,H;N for any N (note that T = T (N)). In particular, we obtain g−|(−∞,T )×H ∈
CN ((−∞, T ) × H) for any N . From (1.2.11), we conclude that (x∞, ξ∞)|(−∞,T )×H ∈ CN ((−∞, T ) ×
H,Rn × Rn). Then the general theory of ordinary differential equations (smoothness of integral curves
with respect to initial conditions) implies that (x∞, ξ∞) (and hence g−) is a CN–map R×Rn−1 → Rn×Rn.
Since this is true for any N , the integral curves (x∞, ξ∞) are actually smooth.

Now g−|(−∞,T )×H ∈MT,H;N for any N ∈ N with T = T (N) implies

|∂ks ∂βz g−(s, z;λ)| ≤ 〈2
√
λω−s+ ž〉−k−|β| for z ∈ H and s < T (k + |β|). (1.2.59)

We will improve this preliminary estimate to obtain (1.2.13).

Proof of (1.2.13). We note that g−|(−∞,T )×H ∈MT,H;N , (1.2.40) and (A.53) imply for k + |β| ≤ N ,

|∂ks ∂βz g−(s, z;λ)| ≤
∫ s

−∞

∫ t

−∞

∣∣∂kτ ∂βz (∇V )(2
√
λω−τ + ž + 2g−(τ, z;λ))

∣∣ dτ dt
≤ C(N)

∫ s

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−%−1−k−|β| dτ dt

≤ C(N)C%+1,k+|β| · 〈2
√
λω−s+ ž〉1−%−k−|β|, z ∈ H, s < T (N). �

The proof of the estimate (1.2.12) stems from the same fixed–point argument as that of (1.2.13). We
set BR := {z ∈ H : |z| > R} and introduce the Banach space

BR,R;N =
{
u ∈ CN (R×BR,R

n) : lim
s→−∞

|u(s, z)| = 0, ‖u‖R,R;N <∞
}

(1.2.60)

with the norm
‖u‖R,R;N := sup

|z|>R
s∈R

max
|β|≤N

|〈2
√
λω−s+ ž〉−1〈z〉|β|∂βz u(s, z)|. (1.2.61)
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We consider the convex subset

MR,R;N =
{
u ∈ BR,R;N : ‖u‖R,R;N ≤ 1

}
, (1.2.62)

which is a complete metric space and show that for suitable R > 0 the map Fλ is actually a contraction
on MR,R;N , yielding a unique fixed point, which will turn out to be g−.

1.2.16. Lemma Let u ∈ MR,R;N for R > 4 and let V satisfy the Potential Hypothesis. Then for any
N ∈ N there exists a constant C(N) > 0 such that for any k ∈ N and any multi–index β ∈ Nn−1 with
k + |β| ≤ N and any α ∈ Nn the estimate∣∣∂βz (∂αV )(2

√
λω−s+ ž + 2u(s, z))

∣∣ ≤ C|α|(N)〈z〉−|β|〈2
√
λω−s+ ž〉−%−|α| (1.2.63)

holds. We set C(N) = max{C|α|(N) : 1 ≤ |α| ≤ 2}

Proof. We will apply Lemma A.4; specifically, we will show that the estimate (A.35) holds on Ω = BR×R
for

ψ(s, z) := 2
√
λω−s+ ž + 2u(s, z) with u ∈MR,R;N , R > 4, (1.2.64a)

and

k = 0, |δ| ≤ |β|, ρ1(s, z) := 1, ρ2(s, z) := 〈z〉. (1.2.64b)

The condition (A.33) holds for any α by the Potential Hypothesis. We note that for |δ| = 0 there is
nothing to show, so we assume |δ| ≥ 1. As in (1.2.45) and (1.2.46), 〈2

√
λω−s+ ž〉 > 4 and |u(s, z)| < 1

on Ω implies

〈ψ(s, z)〉 ≥ 1
2
〈2
√
λω−s+ ž〉 ≥ 1

2
〈z〉 ≥ 2, 1 ≤ 2〈ψ(s, z)〉ρ1(s, z)−1. (1.2.65)

Now u ∈MR,R;N implies

|∂δzu(s, z)| ≤ 〈2
√
λω−s+ ž〉ρ2(s, z)−|δ| (1.2.66)

by (1.2.61). For |δ| = 1 we now have with (1.2.64a), (1.2.66) and (1.2.65)

|∂δzψ(s, z)| ≤ 1 + 2|∂δzu(s, z)|

≤ 1 + 2〈2
√
λω−s+ ž〉ρ2(s, z)−1

≤ 6〈Ψ〉ρ2(s, z)−1. (1.2.67)

For 1 < |δ| ≤ N , we have with (1.2.64a) and (1.2.65),

|∂δzψ(s, z)| ≤ 2|∂δzu(s, z)| ≤ 〈2
√
λω−s+ ž〉ρ2(s, z)−|δ| ≤ 2ρ2(s, z)−|δ|〈ψ(s, z)〉. (1.2.68)

Thus (A.34) holds and (A.35) yields∣∣∂βz (∂αxV )(ψ(s, z))
∣∣ ≤ C(α, |β|) · ρ2(s, z)−|β|〈ψ(s, z)〉−%−|α| (1.2.69)

with some constant C(α,N) > 0. Together with (1.2.65) we can thus deduce the existence of a single
constant C(N) such that (1.2.63) holds. �

1.2.17. Lemma For R = R(N) > 4 large enough, Fλ is a strict contraction on MR,R;N .

Proof. The proof proceeds in an anlogous way as that of Lemma 1.2.15. For u ∈ MR,R;N it follows
from Lemmas 1.2.16 and (A.6), with the definition (1.2.38) of ‖ · ‖T,H;N that ‖Fλu‖T,H;N can be made
arbitrarily small by choosing R large enough. Thus for some R� 4, ‖Fλu‖T,H;N < 1 if u ∈ MR,R;N , so
Fλ maps MR,R;N onto itself. We ca repeat the arguments in the proof of Lemma 1.2.15 to see that Fλ is
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C1 and DFλ|uv is given by (1.2.52). Then similarly to (1.2.57), (1.2.61), the chain rule and (1.2.63) give

‖DFλ|u(v)‖R,R;N

≤ 2N+1 sup
|z|>R
s∈R

〈2
√
λω−s+ ž〉−1

×
∫ s

−∞

∫ t

−∞
max
|β|≤N
α=2

|∂βz (∂αV )(2
√
λω−τ + ž + 2u(τ, z))|〈z〉|β| · max

|β|≤N
|∂βz v(τ, z)| dτ dt

≤ 2N+1C(N) sup
|z|>R
s∈R

〈2
√
λω−s+ ž〉−1

×
∫ s

−∞

∫ t

−∞
max
|β|≤N
α=2

〈z〉−|β|〈2
√
λω−τ + ž〉−%−2 max

|β|≤N
|〈z〉|β|∂βz v(τ, z)| dτ dt

≤ 2N+1C(N)‖v‖T,H;N · sup
|z|>R
s∈R

〈2
√
λω−s+ ž〉−1

∫ s

−∞

∫ t

−∞
max
|β|≤N
α=2

〈z〉−|β|〈2
√
λω−τ + ž〉−%−1 dτ dt (1.2.70)

Hence it follows that

‖DFλ‖ ≤ 2N+1C(N) sup
|z|>R
s∈R

〈2
√
λω−s+ ž〉−1 max

β∈Nn−1

|β|≤N
α=2

〈z〉−|β|
∫ s

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−%−1 dτ dt. (1.2.71)

Again Lemma A.6 allows us to ensure ‖DFλ|u‖ < 1 by choosing R � 4 sufficiently large. By Lemma
B.2, Fλ is then a strict contraction. �

It follows that g−|R×BR
∈MR,R;N and hence there exists a constant C0,β > 0 so that

|∂βz g−(s, z;λ)| = |∂βzFg−(s, z;λ)| ≤ C0,β〈z〉−%−|β|〈2
√
λω−s+ ž〉 for s ∈ R and |z| > R.

Now by (1.2.63)

|∂βz ∂sg−(s, z;λ)| ≤
∫ s

−∞
|∂βz (∇V )(2

√
λω−τ + ž + 2g−(τ, z;λ))| dτ

≤ C1(|β|)〈z〉−|β|
∫ s

−∞
〈2
√
λω−τ + ž〉−%−1 dτ. (1.2.72)

Applying (A.54) and substituting in the integral we obtain

|∂βz ∂sg−(s, z;λ)| ≤ C(N)〈z〉−%−|β|
∫ 2

√
λ〈z〉−1s

−∞
〈τ〉−%−1 dτ

≤ C(N)〈z〉−%−|β|
∫ ∞

−∞
〈τ〉−%−1 dτ

=: C1,β · 〈z〉−%−|β|.

Now since

∂ks g−(s, z;λ) = −∂k−2
s (∇V )(2

√
λω−τ + ž + 2g−(τ, z;λ)) for α ≥ 2,

we can inductively apply (1.2.63) with the chain rule (A.32) and the previously obtained estimates for
∂k−2
s ∂βz g− to obtain estimates for ∂ks ∂

β
z g− for k > 2. This procedure gives (1.2.12). �

Proof of Proposition 1.2.10. Similarly to the representation (1.2.32), the phase trajectories solving
(1.1.6) with (1.2.7) have the form (1.2.15) with

g+(s, z;λ) =
∫ ∞

s

∫ ∞

t

(∇V )(x∞(τ, z;λ)) dτ dt

=
∫ ∞

s

∫ ∞

t

(∇V )(2
√
λω+(z;λ)τ + r+(z;λ) + 2g+(τ, z;λ)) dτ dt

(1.2.73)
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and

|g+(s, z;λ)|, |∂sg+(s, z;λ)| → 0 as s→ +∞. (1.2.74)

The existence and uniqeness of g+ in (1.2.15) follows from the existence and uniqueness of ω+ and r+,
cf. (1.2.7). By (1.2.73), g+ is smooth in s and z. Note that in particular

∂sg−(s, z;λ) = −
∫ s

−∞
(∇V )(x∞(τ, z;λ)) dτ, ∂sg+(s, z;λ) =

∫ ∞

s

(∇V )(x∞(τ, z;λ)) dτ. (1.2.75)

and g+ is a smooth function of s and z. We next verify the estimates (1.2.16), whose proof will incidentally
yield the stated smoothness of ω+ and r+.

Proof of (1.2.16b). Comparing (1.2.11b) and (1.2.15b),

ω− − ω+(z;λ) = λ−
1
2 (∂sg+(s, z;λ)− ∂sg−(s, z;λ)) =

1√
λ

∫ ∞

−∞
(∇V )(x∞(τ, z;λ)) dτ. (1.2.76)

We obtain immediately that ω( · ;λ) ∈ C∞(Rn−1). It is sufficient to show the estimate (1.2.16b) for
|z| > R for some R > 0. We may therefore use the estimate (1.2.12) of Proposition 1.2.7; for |z| > R, R
as in Proposition 1.2.7, there exists constants CR(β) > 0 such that

|∂βz (∇V )(x∞(s, z;λ))| = |∂βz ∂sξ∞(s, z;λ)| ≤ CR(β)〈z〉−|β|〈2
√
λω−s+ ž〉−%−1 (1.2.77)

It follows directly that

|∂βz (ω− − ω+(z;λ))| = 1√
λ

∫ ∞

−∞
|∂βz (∇V )(x∞(τ, z;λ))| dτ

≤ CR(β)√
λ

〈z〉−|β|
∫ ∞

−∞
〈2
√
λω−τ + ž〉−%−1 dτ

Applying (A.54) and substituting in the integral,

|∂βz (ω− − ω+(z;λ))| ≤ CR(β)√
λ

〈z〉−%−1−|β|
∫ ∞

−∞
〈2
√
λ〈z〉−1τ〉−%−1 dτ

≤ CR(β)
2λ

〈z〉−%−|β|
∫ ∞

−∞
〈τ〉−%−1 dτ �

Proof of (1.2.16a). The representations (1.2.11a) and (1.2.15a) at s = 0 yield r+( · ;λ) ∈ C∞(Rn−1),
via

ž − r+(z;λ) = 2(g+(0, z;λ)− g−(0, z;λ))

= 2
∫ 0

−∞

∫ t

−∞
(∇V )(x∞(τ, z;λ)) dτ dt− 2

∫ ∞

0

∫ ∞

t

(∇V )(x∞(τ, z;λ)) dτ dt

where we have used the representations (1.2.32), (1.2.73). Again we assume |z| > R and apply (1.2.12)
to obtain (1.2.77). Thus

|∂βz (ž − r+(z;λ))| ≤ 2
∫ 0

−∞

∫ t

−∞
|∂βz (∇V )(x∞(τ, z;λ))| dτ dt+ 2

∫ ∞

0

∫ ∞

t

|∂βz (∇V )(x∞(τ, z;λ))| dτ dt

≤ 4CR(β)〈z〉−|β|
∫ 0

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−%−1 dτ dt.

Applying (A.54) and substituting in the integral,

|∂βz (ž − r+(z;λ))| ≤ 4CR(β)〈z〉−1−%−|β|
∫ 0

−∞

∫ t

−∞
〈2
√
λ〈z〉−1τ〉−%−1 dτ dt

≤ CR(|β|)
λ

〈z〉1−%−|β|
∫ 0

−∞

∫ t

−∞
〈τ〉−%−1 dτ dt. �
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Proof of (1.2.16c). With the same arguments as in Remark 1.2.13, we obtain that for sufficiently large
T > 0

(F+
λ u)(s, z) :=

∫ ∞

s

∫ ∞

t

(∇V )(2
√
λω−τ + ž + 2u(τ, z)) dτ dt, (1.2.78)

is a strict contraction on

M+
T,H :=

{
u ∈ C((T,∞)× H,Rn) : sup

s>T
z∈H

|u(s, z)| < 1
}
. (1.2.79)

By (1.2.73) and (1.2.74), its fixed point in M+
T,H (for sufficiently large T ) is g+( · , · ;λ)|(T,∞)×H. We will

pursue the same strategy as in the proof of Proposition 1.2.7.
For N ∈ N and T ∈ R we introduce the Banach space

BT,H;N,+ =
{
u ∈ CN ((T,∞)× H,Rn) : lim

s→∞
|u(s, z)| = 0, ‖u‖T,H;N,+ <∞

}
(1.2.80)

with the norm
‖u‖T,H;N,+ := max

β∈Nn−1

|β|≤N

sup
z∈H
s>T

∣∣〈z〉|β|∂βz u(s, z)∣∣. (1.2.81)

We will consider the convex subset

MT,H;N,+ =
{
u ∈ BT,H;N,+ : ‖u‖T,H;N,+ ≤ 1

}
, (1.2.82)

which is a complete metric space.

1.2.18. Lemma Let u ∈ MT,H;N,+ with T > 0 large enough and let V satisfy the Potential Hypothesis.
Then for any N ∈ N there exists a constant C(N) > 0 such that for any multi–index β ∈ Nn−1 with
|β| ≤ N and any α ∈ Nn the estimate∣∣∂βz (∂αV )(2

√
λω+(z;λ)s+ r+(z;λ) + 2u(s, z))

∣∣ ≤ Cα(N)〈z〉−|β|〈2
√
λω−s+ ž〉−%−|α| (1.2.83)

holds. We set C(N) := max|α|≤2 Cα(N)

Proof. We will apply Lemma A.4; specifically, we will show that on Ω = (T,∞)×H the estimate (A.35)
holds for

ψ(s, z) := 2
√
λω+(z;λ)s+ r+(z;λ) + 2u(s, z) with u ∈MT,H;N,+, T large enough, (1.2.84a)

ρ1(s, z) := 1, ρ2(s, z) := 〈z〉, and j = 0, |β| ≤ N . (1.2.84b)

The condition (A.33) holds for any α by the Potential Hypothesis. We first remark that

1 + |2
√
λω+(z;λ)s+ r+(z;λ)|2

= 1 + |2
√
λω+(z;λ)s+ ž + (r+(z;λ)− ž)|2

≥ 1 + 4λs2 − 4
√
λ|r+(z;λ)− ž|s+ |z|2 + |r+(z;λ)− ž|2 − 2|z| · |r+(z;λ)− ž| − 2

√
λ|z|s

≥ 〈2
√
λω−s+ ž〉2 − 2

√
λ|z|s− Cr;0〈z〉1−%(4

√
λs+ 2|z|), (1.2.85)

where we have used the estimate (1.2.16a). For some sufficiently large T > 0 we thus have

〈2
√
λω+(z;λ)s+ r+(z;λ)〉2 = 1 + |2

√
λω+(z;λ)s+ r+(z;λ)|2 ≥ 9

16
〈2
√
λω−s+ ž〉2 (1.2.86)

for s > T , z ∈ H. Then using 〈x+ y〉 ≥ 〈x〉 − |y| and u ∈MT,H;N,+, we can find some T > 0 so that

〈ψ(s, z)〉 ≥ 〈2
√
λω+(z;λ) + r+(z;λ)〉 − 2|u(s, z)| ≥ 3

4
〈2
√
λω−s+ ž〉 − 2 ≥ 1

2
〈2
√
λω−s+ ž〉 > 1 (1.2.87)

for s > T > 0 and z ∈ H. Note that (1.2.87) implies

〈ψ〉 ≥ 1, 〈ψ〉〈z〉−1 ≥ 1
2
, 〈ψ(s, z)〉 ≥

√
λ|s|. (1.2.88)

Now u ∈MR,R;N,+ implies

|∂δzu(s, z)| ≤ ρ2(s, z)−|δ| (1.2.89)
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by (1.2.81). Now for |β| = 0 (A.34) is trivially valid, so we assume |β| ≥ 1, By (1.2.16a) and (1.2.16b)
there exist constants c(β) > 0 such that

|∂βz ω+(z;λ)| ≤ c(β) · ρ2(s, z)−1−|β|, |∂βz r+(z;λ)| ≤

{
c(β) for |β| = 1,
c(β) · ρ2(s, z)−|β| for |β| > 1.

(1.2.90)

Then by (1.2.84a) for |δ| = 1 we have with (1.2.89) and (1.2.90)

|∂δzψ(s, z)| = |2
√
λ∂δzω+(z;λ)s+ ∂δzr+(z;λ) + 2∂δzu(s, z)|

≤ 2
√
λc(δ)ρ2(s, z)−2|s|+ c(δ) + 2ρ2(s, z)−1 (1.2.91)

Then with (1.2.88) we have

|∂δzψ(s, z)| ≤ 2c(δ)ρ2(s, z)−2〈ψ(s, z)〉+ 2c(δ)〈ψ(s, z)〉ρ−1
2 + 2ρ2(s, z)−1〈ψ(s, z)〉

≤ c′(δ) · ρ2(s, z)−1〈ψ(s, z)〉 (1.2.92)

for some c′(β) > 0. Similarly, (1.2.89) and (1.2.90) yield

|∂δzψ(s, z)| ≤ c′′(δ) · ρ2(s, z)−|δ|〈ψ(s, z)〉 (1.2.93)

with some c′′(δ) > 0 for any δ with |δ| > 1. Thus (A.34) holds and (A.35) yields∣∣∂βz (∂αxV )(ψ(s, z))
∣∣ ≤ C(α, |β|) · ρ2(s, z)−|β|〈ψ(s, z)〉−%−|α| (1.2.94)

with some constant C(α,N) > 0. Together with (1.2.88) we can thus deduce the existence of constants
Cα(N) such that (1.2.83) holds. �

Now since

‖F+
λ u‖T,H;N,+ ≤ max

(k,β)∈N×Nn−1

|β|≤N

sup
z∈H
s>T

〈z〉|β|
∫ ∞

s

∫ ∞

t

∣∣∂βz (∇V )(2
√
λω+(z;λ)τ + r+(z;λ) + 2u(τ, z))

∣∣ dτ dt
≤ C(N) max

(k,β)∈N×Nn−1

|β|≤N

∫ ∞

T

∫ ∞

t

〈2
√
λω−τ〉−%−1 dτ dt (1.2.95)

where we have applied (1.2.83), we can ensure that ‖F+
λ u‖T,H;N,+ < 1. Similarly to the proofs of Lemmas

1.2.17, it is not difficult see that F+
λ is C1 and for T > 0 large enough a strict contraction on MT,H;N,+.

Thus g+|(T,∞)×H ∈MT,H;N,+ and we obtain directly that

|∂βz g+(s, z;λ)| ≤ 〈z〉−|β|〈2
√
λω−s+ ž〉1−% for s > T (N), |β| ≤ N and z ∈ H. (1.2.96)

Repeating the arguments following Lemma 1.2.17 and applying (1.2.83) with the chain rule, we inductively
obtain obtain (1.2.16c). �

1.3. The scattering manifold in euclidean phase space

In this section we will show that the union over all z ∈ H of the phase trajectories Tz defined in
(1.2.8) is a lagrangian manifold in phase space T ∗Rn. It is well-known (cf., e.g., [25]) that the union of
the integral curves of a hamiltonian vector field through a non–characteristic (n−1)–dimensional surface
(given by some initial conditions) gives just such a manifold. Here, the Energy Hypothesis and “initial
conditions at t = −∞” will play a major role in the proof of our main result.

1.3.1. Definition Let (N,σ) be a symplectic manifold, i.e., a manifold N with a smooth, non-degenerate
two-form σ. A submanifold M ⊂ N is called lagrangian if σ|TM×TM = 0.

In our situation it is sufficient to consider cotangent bundles, as we are interested in T ∗Rn (and
T ∗Sn−1 in Section 2.1) only. On T ∗Rn we have a canonical one-form α =

∑
ξj dxj . Its exterior derivative,

σ = dξ ∧ dz is known as the canonical symplectic form and (T ∗Rn, σ) is a symplectic space. In (x, ξ)–
coordinates, cf. Notation 1.1.1,

σ̃|p : R2n × R2n → R, σ̃p
(
(u, v), (u′, v′)

)
= 〈u, v′〉 − 〈u′, v〉. (1.3.1)

1.3.2. Remark For later use, we note that the natural symplectic form on T ∗Sn−1 is σ◦ = i∗σ, where
i : T ∗Sn−1 → T ∗Rn is the natural inclusion map.
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1.3.3. Theorem The map

ι : R× Rn−1 → T ∗Rn, (s, z) 7→
(
x∞(s, z;λ), X∗(ξ∞(s, z;λ))

)
(1.3.2)

is an embedding and

Λ := ι(R× Rn−1) (1.3.3)

is a lagrangian submanifold of T ∗Rn.

The proof relies on various preliminary results. We first note that it follows directly from the Energy
Hypothesis and the standard theory of ordinary differential equations that any single trajectory (integral
curve of Hp) is a 1–dimensional embedded submanifold of T ∗Rn.

1.3.4. Lemma For any z ∈ H the map τz := ι( · , z) is an embedding and the trajectories Tz = τz(R) are
mutually disjoint smooth 1–dimensional submanifolds of T ∗Rn.

Proof. Recall from Lemma B.3 that a map between manifolds is an embedding if it is an injective
immersion that is also proper, i.e., the pre-image of every compact subset is again compact.

The map τz is C∞ by Proposition 1.2.7, and the tangent map (τz)∗ : TR→ T (T ∗Rn) is given by

∂

∂t

∣∣∣∣
s

7→= Hp|τz(s). (1.3.4)

Since the hamiltonian vector field Hp does not vanish on τz(R), cf. Remark 1.1.4, the tangent map is
injective and τz an immersion. We claim that τz is injective. In order to see this, we use the hamiltonian
flow gt (cf. (1.1.9)), which acts on τz(s) through gtτz(s) = τz(s + t) and has the semi-group property
gt1gt2 = gt1+t2 . Then if there existed two times s1, s2 = s1 + γ such that τz(s1) = τz(s2) = τz(s1 + γ),
the trajectory would be periodic, i.e., τz(s) = τz(s+ γ) for any s > s1 and therefore bounded as s→∞.
This contradicts the Energy Hypothesis.

It remains to show that τz is proper. Let K ⊂ τz(R) be compact. The continuity of τz implies that
τ−1(K) is closed. Furthermore, by the Energy Hypothesis, τ−1

z (K) is necessarily bounded, therefore
compact.

Thus τz is an embedding for any z ∈ H and Tz is a smooth submanifold of T ∗Rn. The trajectories
Tz are mutually disjoint: for letting p ∈ Tz ∩ Tz′ , we have Tz = g(R, p) = Tz′ using the hamiltonian flow
(1.2.14). But then z = z′ by Proposition 1.2.5. �

Subsequently, we will often make use of “coordinized” maps.

1.3.5. Convention We will usually denote with a tilde the “coordinized” versions of mappings; if
A : M → N is a smooth map and ϕ1, ϕ2 are charts on M ⊃ U1 3 p and N ⊃ U2 3 A(p), respectively,
then Ã = ϕ2 ◦A ◦ ϕ−1

1 on ϕ1(U1).

The complementary objects to the trajectories Tz of (1.2.8) are the “wavefronts” Λs, which we now
introduce.

1.3.6. Lemma For any s ∈ R, ιs = ι(s, · ) is an embedding and Λs := ιs(Rn−1) is a submanifold of T ∗Rn.
Furthermore, for any t ∈ R, the hamiltonian flow (1.2.14) considered as a map

g
(s)
t : Λs → Λs+t,

(
x∞(s, z;λ), X∗(ξ∞(s, z;λ))

)
7→
(
x∞(s+ t, z;λ), X∗(ξ∞(s+ t, z;λ))

)
(1.3.5)

is a diffeomorphism.

Proof. Step 1: We first show that the map ιs is an embedding if s is sufficiently small. We will split ιs
into two auxiliary maps. First, for s ∈ R, we define

κs : Rn−1 → Rn−1, z 7→ x′∞(s, z;λ) = (x1(z; s, λ), . . . ,xn−1(z; s, λ)). (1.3.6)

We will show that for some s0 � 0, any map κs with s < s0 is an embedding. Its differential is given by

Dκs =
(
∂x′∞(s, z;λ)

∂z

)
. (1.3.7)

and (1.2.11a) and (1.2.13) imply

|Dκs − 1| ≤ C|s|−% for all s < −S and z ∈ H. (1.3.8)
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Thus by Lemma B.4, κs is an embedding if s < s0 for some s0 < −S. We define

ψs : κs(Rn−1) → Rn × Rn,

(x1, . . . , xn−1) 7→ (x1, . . . , xn−1, 2
√
λs+ 2gn; ∂sg1, . . . , ∂sgn−1,

√
λ+ ∂sgn).

(1.3.9)

where we have written

(g1, . . . , gn) := g−(s, κ−1
s (x1, . . . , xn−1);λ),

(∂sg1, . . . , ∂sgn) := (∂sg−)(s, κ−1
s (x1, . . . , xn−1);λ)

for short. It is easily seen that ψs is an embedding for s < s0, as it maps coordinates on an open domain
to the graph of a smooth function of these coordinates. It follows from the representations (1.2.11) that

ι̃s = ψs ◦ κs, for s < s0, (1.3.10)

which is therefore an embedding.
Step 2: Let gt : T ∗Rn → T ∗Rn denote the hamiltonian flow of (1.2.14). We will show that if s < s0,

the restriction gt|Λs
is an embedding for arbitrary t ∈ R. By the explicit construction of the trajectories

in Proposition 1.2.7, the map gt|Λs
: Λs → T ∗Rn exists for all t ∈ R. Since the hamiltonian vector field

Hp|Λs
is non–vanishing for any s ∈ R (cf. Remark 1.1.4) gt|Λs

is an immersion. We next show that gt|Λs

is also injective for any s and t.
Fix some s < s0. Then gt(Λs) simply gives the integral curves of Hp at time t with initial conditions

Λs = ιs(Rn−1). Any two points ιs(z), ιs(z′) ∈ Λs are elements of trajectories Tz and Tz′ , respectively, cf.
Lemma 1.3.4. Since these trajectories are disjoint, and gt(Tz) = Tz, the map gt : Λs → Λs+t is clearly
injective for any t.

Furthermore, gt|Λs
is smooth, since the dependence on initial conditions is smooth by the standard

theory of ordinary differential equations, cf., e.g., [25]. The inverse map, g−t|Λs+t
is continuous by the

continuity of ODE solutions with respect to initial conditions.
Thus by Lemma B.3 gt|Λs is an embedding for s < s0 and t ∈ R. It follows immediately that any Λs,

s ∈ R is an (n− 1)–dimensional submanifold. Since g(s)
t is an injective immersion between submanifolds,

it is also a diffeomorphism. Clearly, this also implies that ιs is an embedding for any s ∈ R. �

1.3.7. Corollary For any s ∈ R, the map

ιs : Rn−1 → Λs z 7→ (x∞(s, z;λ), X∗(ξ∞(s, z;λ))) (1.3.11)

is a diffeomorphism and for any z ∈ Rn−1 and any s ∈ R the manifolds Λs are transverse to Tz, i.e.,
TpTz ∩ TpΛs = {0} for p = ι(s, z).

Proof. We will verify through direct calculation that for any z ∈ H the trajectory Tz is transverse to
Λs if s� 0 is sufficiently small. In fact, ιs(z) = τz(s)

(τz)∗
∂

∂t

∣∣∣∣
t=s

=
∑ ∂xi(t; z, λ)

∂t

∣∣∣∣
t=s

∂

∂xi

∣∣∣∣
τz(s)

(1.3.12)

(ιs)∗
∂

∂yj

∣∣∣∣
y=z

=
∑ ∂xi(s; y, λ)

∂zj

∣∣∣∣
y=z

∂

∂xi

∣∣∣∣
ιs(z)

(1.3.13)

and by (1.2.13), ∣∣∣∣(τz)∗ ∂

∂t

∣∣∣∣
t=s

− 2
√
λ

∂

∂xn

∣∣∣∣
τz(s)

∣∣∣∣ ≤ C1 · 〈s〉−%, (1.3.14)

∣∣∣∣(ιs)∗ ∂

∂yj

∣∣∣∣
y=z

−
n−1∑
i=1

∂

∂xi

∣∣∣∣
τz(s)

∣∣∣∣ ≤ C2 · 〈s〉−%. (1.3.15)

This yields the transversality for sufficiently small s. Since gt is an immersion for any t, the transversality
holds for any s ∈ R. �

1.3.8. Lemma For any s ∈ R, the restriction of the hamiltonian flow g|R×Λs is an embedding.
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Proof. We first show that g|R×Λs is injective. Assume that there exist t, t′ ∈ R, z, z′ ∈ H so that(
x∞(s+ t, z;λ), X∗(ξ∞(s+ t, z;λ))

)
=
(
x∞(s+ t′; z′, λ), X∗(ξ∞(s+ t′; z′, λ))

)
. (1.3.16)

We argue as in the proof of Lemma 1.3.4; for z 6= z′, (1.3.16) contradicts the disjointedness of trajectories
Tz in Lemma 1.3.4, while for z = z′, (1.3.16) implies that the trajectory Tz is periodic, which violates the
Non–trapping Condition. Thus g|R×Λs

is injective.
Using (x, ξ)–coordinates for T ∗Rn and the global chart ι−1

s : Λs → Rn−1, we may consider the coor-
dinized map

g̃|R×Λs : R× Rn−1 → Rn × Rn, (t, z) 7→
(
x∞(s+ t, z;λ), ξ∞(s+ t, z;λ)

)
. (1.3.17)

We will show that g̃|R×Λs
is an immersion. The tangent map at (t0, z0) is simply given by

g̃|R×Λs∗|(t0,z0) =

(
x∞(s+t,z;λ)

∂t
x∞(s+t,z;λ)

∂z
ξ∞(s+t,z;λ)

∂t
ξ∞(s+t,z;λ)

∂z

)∣∣∣∣∣
(t0,z0)

. (1.3.18)

Now comparing with the definitions of τz = ι( · , z) and ιs = ι(s, · ), we see that

g̃|R×Λs∗|(t0,z0) =
(
(τ̃z0)∗|s+t0 (ι̃s+t0)∗|z0

)
, (1.3.19)

where the tilde refers to the coordinized maps as usual. Now the n−1 column vectors of the block matrix
(ι̃s+t0)∗|z0 are simply the coordinate vectors of tangent vectors spanning Tιs+t0 (z0)Λs+t0 , while the vector
(τ̃z0)∗|s+t0 is the coordinate representation of (τz0)∗

∂
∂s

∣∣
s+t0

. By Corollary 1.3.7, the latter is independent

of the n− 1 former, mutually independent vectors. It follows that the rank of g̃|R×Λs∗|(t0,z0) is n for any
(s0, t0), so g is an immersion.

Now by standard theory, the integral curves of (1.1.6) are smooth jointly with respect to initial
conditions and time, so g is a smooth injective immersion. The smoothness of the inverse map follows
immediately. �

Proof of Theorem 1.3.3. The proof of Theorem 1.3.3 is now an easy consequence of the proof of
Lemma 1.3.8. Using (x, ξ)–coordinates on T ∗Rn for ι, we see that from (1.3.17),

ι̃ = g̃|R×Λ0 , (1.3.20)

so ι is an embedding and Λ is a submanifold of T ∗Rn. Furthermore, it follows from Corollary 1.3.7 that
for sufficiently small s < 0 the manifold Λs is non-characteristic for the hamiltonian vector field Hp. Thus
the set of integral curves of Hp through Λs (which is just Λ) is a lagrangian manifold, cf. [25]. �





CHAPTER 2

The scattering manifold at infinity; caustics

From the perspective of scattering theory, the “natural” configuration space variable containing
information on the scattered state is the scattering angle ω+( · , λ). We will show that

ω(s, z) :=
x∞(s, z;λ)
|x∞(s, z;λ)|

→ ω+(z;λ) as s→∞. (2.0.21)

For x ∈ Rn we define πx : Rn → Rn as the projection y 7→ 〈x, y〉x, where 〈 · , · 〉 denotes the euclidean scalar
product in Rn. Then for (x,X∗(ξ)) ∈ T ∗Rn we define the “radial momentum” by Lr(x,X∗(ξ)) = πx/|x|ξ.
1 Then it follows from (2.0.21) and (1.2.7b) that

(ι∗Lr)(s, z) = πω(s,z)ξ∞(s, z;λ) s→∞−−−→
√
λω+(z;λ). (2.0.22)

for all z ∈ H. Thus the radial momentum does not contain any additional information about the scattering
behaviour of a trajectory Tz to that already contained in ω+(z;λ).

By contradistinction, we will show that the “angular momentum”, which we will define through a
certain isometric projection of (x,X∗(ξ) ∈ T ∗Rn onto T ∗Sn−1 ⊂ T ∗Rn, converges towards an “asymptotic
angular momentum” (which we denote by L+(z;ω) as s→∞. For each trajectory we thus obtain a point
(ω+(z;λ), X∗(L+(z;λ))) ∈ T ∗Sn−1. We will show the convergence (giving explicit estimates) and prove
that the union over z ∈ H of (ω+(z;λ), X∗(L+(z;λ))) gives a submanifold L+ ⊂ T ∗Sn−1 in Section 2.1.

In Section 2.2 we will prove that the manifolds Λ ⊂ T ∗Rn of Theorem 1.3.3 and L+ are both
lagrangian submanifolds in the cotangent bundles over euclidean space and the sphere, respectively. In
Section 2.3 we will recall the role played by lagrangian coordinates and generating functions, and give
explicit formulae for generating functions on Λ and L+.

Finally, in Section 2.4 we will analyse the interplay between lagrangian coordinates on L+ and Λ,
yielding technical prerequisites for the constructions of a useful Maslov operator on Λ, to be used in
Chapter 3 for the leading–order term in the semi–classical expansion of the scattering amplitude.

2.1. The asymptotic manifold over the sphere

2.1.1. Convention We refer to Convention 1.1.1. We denote by g the usual euclidean metric on TRn,
i.e., its fibre-wise action is given by

gp : Tp(Rn)× Tp(Rn) → R, gp(Xp(v), Xp(v′)) = 〈v, v′〉, (2.1.1)

where 〈 · , · 〉 denotes the euclidean scalar product on Rn. We introduce the dilated metric h by setting

hp( · , · ) = |p|−2gp( · , · ) on TpR
n (2.1.2)

We will regard the tangent and cotangent bundles on the sphere Sn−1 as subspaces of TRn and T ∗Rn,
respectively, setting

TSn−1 = {(p,X(v)) ∈ TRn : |p| = 1, v ⊥ p}, T ∗Sn−1 = {(p,X∗(ξ)) ∈ T ∗Rn : |p| = 1, ξ ⊥ p}. (2.1.3)

Recall that the restriction of h to TSn−1 coincides with the same restriction of g and gives a metric on
the tangent bundle of the sphere, which we denote by h◦. Let

τh : TRn → T ∗Rn, (p,Xp(v)) 7→ (p, hp(Xp(v), · )) = (p,X∗
p (|p|−2v)) (2.1.4)

1Note that for any choice of polar coordinates (r, θ) : Rn → R+ × Rn−1 we then have dr|x = X∗
x(x/|x|) and X∗

x(Lr) =
〈x/|x|, ξ〉 dr|x.

23
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and

τh◦ : TSn−1 → T ∗Sn−1, (q,Xq(u)) 7→ (q, h◦q(Xq(u), · )) = (q,X∗
q (u)) (u⊥ q) (2.1.5)

denote the metric–induced isomorphisms between tangent and cotangent bundles.

We introduce the natural projection

Θ: Rn → Sn−1, Θ(x) := x̂ :=
x

|x|
. (2.1.6)

2.1.2. Remark The action of the push–forward Θ∗ : TRn → TSn−1 of (2.1.6) is given by

Θ∗ : (p,Xp(v)) 7→
(
p̂, Xp̂(|p|−1π⊥p̂ v)

)
, (2.1.7)

where

π⊥x y = y − πxy = y − 〈x, y〉x for x, y ∈ Rn, |x| = 1, (2.1.8)

is the orthogonal projection onto the orthogonal complement of x.

2.1.3. Definition & Lemma The map

Θ : T ∗Rn → T ∗Sn−1, Θ := τh◦ ◦Θ∗ ◦ τ−1
h . (2.1.9)

is explicitly given by

Θ(p,X∗
p (ξ)) = (p̂, X∗

p̂ (|p|π⊥p̂ ξ)). (2.1.10)

It is (fibrewise) an isometry on the orthogonal complement of its kernel with respect to the (dual of the)
dilated euclidean metric on T ∗Rn and the restricted euclidean metric on T ∗Sn−1.

Proof. The formula (2.1.10) follows immediately from (2.1.7), (2.1.4) and (2.1.5). It is sufficient to
show that Θ∗|p : (TpRn, h) → (Tp̂Sn−1, h◦) is an isometry when restricted to the orthogonal complement
of its kernel. By (2.1.7), the kernel of Θ∗|p is given by

ker Θ∗|p = {Xp(v) ∈ TpRn : π⊥p̂ v = 0}. (2.1.11)

Now for

Xp(v), Xp(u) ∈ (ker Θ∗|p)⊥ = {Xp(v) ∈ TpRn : π⊥p̂ v = v} (2.1.12)

(i.e., u, v ⊥ p̂) we have using (2.1.7)

h◦Θ(p)(Θ∗|pXp(v),Θ∗|pXp(u)) = |p|−2h◦p̂(Xp̂(π⊥p̂ v), Xp̂(π⊥p̂ u))

= |p|−2〈π⊥p̂ v, π⊥p̂ u〉
= |p|−2〈v, u〉 = hp(Xp(v), Xp(u)). �

Our main interest is in the action of Θ on Λ, and we will consider Θ ◦ ιs, where ιs : Rn−1 → Λs ⊂ Λ
was introduced in Section 1.3 (cf., e.g., (1.3.11)). Effectively, Θ ◦ ιs maps points in the impact plane
(which parametrize the trajectories) into the angle and angular momentum at time s. We will see that
the limit as s→∞ of these variables exists in T ∗Sn−1 and forms a lagrangian manifold.

In order to keep our notation readable, we set

ω(s, z) :=
x∞(s, z;λ)
|x∞(s, z;λ)|

, L(s, z) := |x∞(s, z;λ)|π⊥ω(s,z)ξ∞(s, z;λ), (2.1.13)

ω+(z) := ω+(z;λ), L+(z) := −
√
λπ⊥ω+(z)r+(z;λ), (2.1.14)

cf. Proposition 1.2.10 for the notation employed.

2.1.4. Theorem For all z ∈ H we have

lim
s→+∞

Θ ◦ ιs(z) = (ω+(z), X∗(L+(z))) =: S+
λ (z), Θ ◦ ιs(z) = (ω(s, z), X∗(L(s, z))). (2.1.15)
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and this limit is uniform in compact subsets of Rn−1; more precisely, for any R, T > 0, any α ∈ N and
any multi–index β ∈ Nn−1 there exist constants Cα,β,R,T , C ′α,β,R,T > 0 so that for s > T ,

sup
|z|≤R

|∂αs ∂βz (ω(s, z)− ω+(z))| ≤ Cα,β,R,T s
−1−α, (2.1.16a)

sup
|z|≤R

|∂αs ∂βz (L(s, z)− L+(z))| ≤ C ′α,β,R,T s
−1−α. (2.1.16b)

Furthermore, the map S+
λ : Rn−1 → T ∗Sn−1 given by (2.1.15) is an embedding and the image

L+ := S+
λ (Rn−1) (2.1.17)

is a submanifold of T ∗Sn−1.

2.1.5. Remark The estimates (2.1.16) differ from those of Propositions 1.2.7, 1.2.10 in two important
respects: first, they are uniform only for z in compact subsets of Rn−1, and second, the speed of conver-
gence as s → ∞ does not depend on % > 1. In fact, even if there is no potential (V ≡ 0), the estimates
cannot be improved. Nevertheless, the convergence expressed in (2.1.16) is the crucial result for our
analysis of the behaviour of the scattering amplitude.

2.1.6. Remark Theorem 2.1.4 is our first result where the sharp estimates of Proposition 1.2.10 are
crucial. While we have previously used the estimates as a matter of convenience, the limit statements of
Definition 1.2.3 together with some uniformity assertion for the impact variable z ∈ H would have been
sufficient. However, the precise asymptotic behaviour of the trajectories as s→ +∞ is indispensable for
the following proof of Theorem 2.1.4.

By contrast, the constructions involving Θ preceeding Theorem 2.1.4 are not srictly necessary, and
serve only as a motivation for the definition of (ω(s, z),L(s, z)). In fact, we will prove Theorem 2.1.4
without any reference to Θ at all.

2.1.1. Proof of Theorem 2.1.4. The proof Theorem 2.1.4 is the main objective of this section. We
first give a straightforward technical result on the behaviour of L+(z;λ):

2.1.7. Lemma For any β ∈ Nn−1 there exists a constant Cl;β > 0 such that

|∂βz (
√
λž − L+(z))| ≤ Cl;β · 〈z〉1−%−|β|, z ∈ Rn−1, ž = (z1, . . . , zn−1, 0). (2.1.18)

Proof. Since

|∂βz (
√
λž − L+(z))| = |∂βz (

√
λž −

√
λr+(z;λ) +

√
λ〈ω+(z;λ), r+(z;λ)〉ω+(z;λ))| (2.1.19)

the result follows from the triangle inequality and the product rule A.1 with the estimates (1.2.16a) and
(2.1.20) below. �

2.1.8. Lemma For any β ∈ Nn there exists a constant c(β) > 0 so that

|∂βz 〈ω+(z;λ), r+(z;λ〉| ≤ c(β) · 〈z〉1−%−|β| (2.1.20)

Proof. The orthogonality of ž and ω− yields

∂βz 〈ω+(z;λ), r+(z;λ)〉 = ∂βz 〈ω+(z;λ)− ω−, r+(z;λ)〉+ ∂βz 〈ω−, r+(z;λ)− ž〉

= ∂βz 〈ω+(z;λ)− ω−, r+(z;λ)− ž〉+ ∂βz 〈ω+(z;λ)− ω−, ž〉+ ∂βz 〈ω−, r+(z;λ)− ž〉
Using (1.2.16b) and (1.2.16a), the product rule A.1 yields (2.1.20). �

We will split the proof into distinct parts, starting with the crucial estimates (2.1.16).

Proof of the estimates (2.1.16). It follows that With (1.2.22) and (1.2.23) we can write

ω(s, z) =
x∞(s, z;λ)
|x∞(s, z;λ)|

=
ω+(z) +R(s, z)√

1 + 2〈ω+(z), R(s, z)〉+ |R(s, z)|2
. (2.1.21)

We assume from now on that R > 0 is fixed and |z| < R. For (α, β) ∈ N×Nn−1 we deduce the existence
of constants cj;α,β,R, j = 1, 2, . . . appearing in the formulae below. By (1.2.16c) we have the initial
estimates

|∂αs ∂βzR(s, z)| ≤ c1;α,β,Rs
−1−α, |z| ≤ R, s > T > 1, (2.1.22)
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where T > 0 is given in Proposition 1.2.10. Corollary A.2 then yields

|∂αs ∂βz (2〈ω+(z), R(s, z)〉+ |R(s, z)|2)| ≤ c2;α,β,Rs
−1−α, |z| ≤ R, s > s+ > 1. (2.1.23)

We choose S = S(R) > s+ so that

|(2〈ω+(z), R(s, z)〉+ |R(s, z)|2)| ≤ 1
2
, |z| ≤ R, s > S(R), (2.1.24)

and note that there exist constants cm > 0 such that

sup
|x|≤1/2

∂mx (1 + x)
1
2 ≤ cm. (2.1.25)

Then from the chain rule (A.32) with (2.1.23), (2.1.24) and (2.1.25) we obtain for |z| ≤ R,

|∂αs ∂βz [(1 + 2〈ω+(z), R(s, z)〉+ |R(s, z)|2)± 1
2 − 1]| ≤ c3;α,β,Rs

−1−α, s > S(α, β,R) > s+. (2.1.26)

Setting

c4;α,β,R := S(α, β,R)1+α sup
s+<t<S(α,β,R)

|z|<R

|∂αs ∂βz [(1 + 2〈ω+(z), R(t, z)〉+ |R(t, z)|2)± 1
2 − 1]|+ c3;α,β,R,

we can improve (2.1.26) to

|∂αs ∂βz [(1 + 2〈ω+(z), R(s, z)〉+ |R(s, z)|2)± 1
2 − 1]| ≤ c4;α,β,Rs

−1−α, s > s+. (2.1.27)

The representation (2.1.21) yields

|∂αs ∂βz [ω(s, z)− ω+(z)]|

≤ |∂αs ∂βz [ω+(z)((1 + 2〈ω+(s, z;λ), R(s, z)〉+ |R(s, z)|2)− 1
2 − 1)]|+ |∂αs ∂βzR(s, z)|

+ |∂αs ∂βz [R(s, z)((1 + 2〈ω+(s, z;λ), R(s, z)〉+ |R(s, z)|2)− 1
2 − 1)]|

Again, Corollary A.2 with the estimates (2.1.22) and (2.1.27) immediately yields (2.1.16a).
We next consider the estimate (2.1.16b). Note that by (1.2.22)

|x∞(s, z;λ)| = 2
√
λs+ 2

√
λs
(
(1 + 2〈ω+(z), R(s, z)〉+ |R(s, z)|2) 1

2 − 1
)
,

so we have with the product rule and (2.1.27)

|∂αs ∂βz |x∞(s, z;λ)|| ≤ c5;α,β,Rs
1−α, |z| ≤ R, s > s+. (2.1.28)

By (2.1.13),

L(s, z) = |x∞(s, z;λ)|ξ∞(s, z;λ)− 〈ω(s, z), ξ∞(s, z;λ)〉x∞(s, z;λ) (2.1.29)

A straightforward calculation using the representations (1.2.15) yields

|x∞(s, z;λ)|ξ∞(s, z;λ) =
√
λ〈ω+(z), ω+(z)− ω∞(s, z;λ)〉|x∞(s, z;λ)| · ω+(z)

+
√
λ〈ω+(z),x∞(s, z;λ)〉 · ω+(z) + |x∞(s, z;λ)| · ∂sg+(s, z;λ)

and

〈ω(s, z), ξ∞(s, z;λ)〉x∞(s, z;λ)

= 〈ω(s, z), ∂sg+(s, z;λ)〉x∞(s, z;λ)−
√
λ|ω+(z)− ω(s, z)|2x∞(s, z;λ)

+
√
λ〈ω+(z), ω+(z)− ω(s, z)〉x∞(s, z;λ) +

√
λx∞(s, z;λ).

Then by (2.1.29),

L(s, z) = L+(z)− 2
√
λg+(s, z;λ) + 2

√
λ〈ω+(z), g+(s, z;λ)〉 · ω+(z) +

√
λ|ω+(z)− ω(s, z)|2x∞(s, z;λ)

+
√
λ|x∞(s, z;λ)|〈ω+(z), ω+(z)− ω∞(s, z;λ)〉 · (ω+(z)− ω∞(s, z;λ))

+ |x∞(s, z;λ)| · ∂sg+(s, z;λ)− 〈ω(s, z), ∂sg+(s, z;λ)〉x∞(s, z;λ)

where L+(z) is defined in (2.1.14). Using the estimates (1.2.16c), (2.1.16a), (2.1.28) in conjunction with
Corollary A.2, the estimate (2.1.16b) follows immediately. �
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Next we show that S+
λ is a proper injective immersion, since by Lemma B.3 it then follows that S+

λ

is a smooth embedding, i.e., the image L+ is a smooth submanifold of T ∗Sn−1 and S+
λ : Rn−1 → L+ is a

diffeomorphism.

2.1.9. Lemma The map S+
λ is injective.

Proof. Assume that there exist y, z ∈ H such that S+
λ (z) = S+

λ (z), i.e., ω+(z;λ) = ω+(y;λ) and
L+(z) = L+(y). Then by (2.1.14),

r+(z;λ) = r+(y;λ) + c · ω+(y;λ) = r+(y;λ) + c · ω+(z;λ) (2.1.30)

for some c ∈ R. By (1.2.7) and (2.1.30),

0 = lim
s→+∞

|x∞(s, y;λ)− 2
√
λω+(z;λ)(s− c/(2

√
λ))− r+(z;λ)|

= lim
s→+∞

|x∞(s+ c/(2
√
λ), y;λ)− 2

√
λω+(z;λ)s− r+(z;λ)| (2.1.31)

and

0 = lim
s→+∞

|ξ∞(s+ c/(2
√
λ), y;λ)−

√
λω+(z;λ)|. (2.1.32)

But (2.1.31) and (2.1.32) together with the uniqueness statement in Definition 1.2.3 imply ξ∞(s +
c/(2

√
λ), y;λ) = ξ∞(s, z;λ), x∞(s + c/(2

√
λ), y;λ) = x∞(s, z;λ) and by Proposition 1.2.5 we have

y = z. �

2.1.10. Lemma The map S+
λ is proper.

Proof. We will show that the pre-image under S+
λ of compact sets is compact. We use the canonical

coordinates (x, ξ) of T ∗Rn for L+ ⊂ T ∗Sn−1 ⊂ T ∗Rn and denote by S̃+
λ the corresponding coordinate

representation of S+
λ , so that

S̃+
λ (z) =

(
ω+(z)
L+(z)

)
. (2.1.33)

Then estimates (1.2.16b) and (2.1.18) imply the existence of a constant C > 0 such that∣∣∣∣S̃+
λ (z)−

(
ω−√
λž

)∣∣∣∣ ≤ C · 〈z〉1−% for all z ∈ H. (2.1.34)

It follows that if R > 0 is sufficiently large,

|S̃+
λ (z)| > 1

2

√
λ|z| for z ∈ H with |z| > R. (2.1.35)

Now let K ⊂ L+ be some compact set. Then (2.1.35), (S̃+
λ )−1(K) is bounded. Since S+

λ is continuous,
(S̃+
λ )−1(K) is closed, hence compact. �

2.1.11. Lemma The map S+
λ is an immersion.

Proof. We differentiate (2.1.33) and see from the second assertion in (2.1.39) below that the rank of
DS̃+

λ |z, and therefore of (S+
λ )∗|z is n− 1 for all z ∈ Rn−1. �

Up to the proof of Propostion 2.1.13 below, we have shown that S+
λ is an embedding and hence L+

is a submanifold of T ∗Sn−1. We now verify that L+ is lagrangian.

2.1.12. Lemma The manifold L+ is lagrangian.

Proof. We need to show that the symplectic form σ = dx ∧ dξ vanishes on L+. Since S+
λ : Rn−1 → L+

is a diffeomorphism, it is sufficient to check that (S+
λ )∗σ|L+ = 0. A straightforward calculation yields

(S+
λ )∗σ|L+ =

n−1∑
i,j=1

〈
∂ω+(z)
∂zi

,
∂L+(z)
∂zj

〉
dzi ∧ dzj

=
n−1∑
i,j=1

〈
∂ω+(z)
∂zi

,
∂r+(z;λ)
∂zj

〉
dzi ∧ dzj (2.1.36)
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Here 〈 · , · 〉 denotes the euclidean scalar product in Rn. We recall that the manifold Λ is lagrangian, cf.
Theorem 1.3.3, hence σ|Λ = 0. Now

Tι(s,z)Λ = span

{(
∂x∞(z,s;λ)

∂z1
∂ξ∞(z,s;λ)

∂z1

)
, . . . ,

(
∂x∞(z,s;λ)
∂zn−1

∂ξ∞(z,s;λ)
∂zn−1

)
,

(
∂x∞(z,s;λ)

∂s
∂ξ∞(z,s;λ)

∂s

)}
, (2.1.37)

and σ|Λ(v, u) = 0 for v, u ∈ TpΛ. A straightforward calculation using the representation (1.2.7) shows
that for all 1 ≤ i, j ≤ n− 1

0 =
〈
∂x∞(z, s;λ)

∂zi
,
∂ξ∞(z, s;λ)

∂zj

〉
−
〈
∂x∞(z, s;λ)

∂zj
,
∂ξ∞(z, s;λ)

∂zi

〉
= 2λ

〈
∂ω+(z)
∂zj

,
∂r+(z;λ)

∂zi

〉
− 2λ

〈
∂ω+(z)
∂zi

,
∂r+(z;λ)
∂zj

〉
+R(s, z) (2.1.38)

where R(s, z) → 0 uniformly in z ∈ H for s → ∞ by (1.2.16c). Since the first terms in (2.1.38) are
independent of s they must vanish seperately from the remainder R(s, z), proving (2.1.36). �

This concludes the proof of Theorem 2.1.4 up to the proof of Proposition 2.1.13 below.

2.1.13. Proposition For any z ∈ Rn−1,

rank

(
∂r+(z;λ)

∂z
∂ω+(z)
∂z

)
= n− 1, rank

(
∂L+(z)
∂z

∂ω+(z)
∂z

)
= n− 1 (2.1.39)

and

rank

(
ω+(z) ∂r+(z;λ)

∂z

0 ∂ω+(z)
∂z

)
= n, rank

(
ω+(z) ∂L+(z)

∂z

0 ∂ω+(z)
∂z

)
= n (2.1.40)

The proof rests on the following technical lemma, which we prove subsequently.

2.1.14. Lemma For h ∈ Rn−1 we define the directional derivative Dh :=
∑
hi

∂
∂zi

. Then

|Dhω+|z0 |+ |π⊥ω+
Dhr+|z0 | > 0 for any h, z0 ∈ Rn−1. (2.1.41)

Proof of Proposition 2.1.13. We consider the first assertion in (2.1.39). First note that (2.1.41)
implies that

|Dhω+|+ |Dhr+| > 0. (2.1.42)

Since any linear combination of columns in the (n− 1)× 2n–matrix has the form
n−1∑
i=1

hi
∂

∂zi

(
r+
ω+

)
=
(
Dhr+
Dhω+

)
for some h = (h1, . . . , hn−1), (2.1.43)

it follows from (2.1.42) that its rank is n− 1. We now claim that (2.1.41) implies

|Dhω+|z0 |+ |Dhπ
⊥
ω+
r+|z0 | > 0 for any z0 ∈ H. (2.1.44)

We argue by contradiction and assume that for some h, z0 ∈ Rn−1

Dhω+|z0 = 0 and Dhπ
⊥
ω+
r+|z0 = 0. (2.1.45)

Now Dhω+|z0 = 0 implies

Dhπ
⊥
ω+
r+|z0 = Dhr+|z0 − 〈ω+(z0;λ), Dhr+|z0〉ω+(z0;λ) = π⊥ω+

(
Dhr+|z0

)
. (2.1.46)

But since the left–hand side vanishes by (2.1.45), this contradicts (2.1.41). By (2.1.14),

rank

(
∂L+(z)
∂z

∂ω+(z)
∂z

)
= rank

(
∂π⊥ω(z)r+(z;λ)

∂z
∂ω+(z)
∂z

)
. (2.1.47)

Now with the same arguments as those following (2.1.42), the inequality (2.1.44) implies that the ranks
in (2.1.47) are equal to n− 1, so we have shown the second assertion in (2.1.39).
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We now turn to the first assertion in (2.1.40). We need to verify that the left column of the matrix is
independent of the right block column (which by (2.1.39) contains n− 1 independent columns). In other
word, we will show that there exists no h = (h1, . . . , hn−1 and no z0 ∈ H such that(

ω+

0

)∣∣∣∣
z0

=
n−1∑
i=1

hi
∂

∂zi

(
r+
ω+

)∣∣∣∣
z0

=
(
Dhr+
Dhω+

)∣∣∣∣
z0

. (2.1.48)

Clearly, the existence of such an h and z0 would contradict (2.1.41), so this is impossible. Furthermore,
by (2.1.39),

rank

(
ω+(z) ∂L+(z)

∂z

0 ∂ω+(z)
∂z

)
= rank

(
ω+(z) −

√
λ
∂π⊥ω(z)r+(z;λ)

∂z

0 ∂ω+(z)
∂z

)
= rank

(
ω+(z)

∂π⊥ω(z)r+(z;λ)

∂z

0 ∂ω+(z)
∂z

)
, (2.1.49)

where we have first divided the upper block row by −
√
λ, then multiplied the left column by the same

factor. By (2.1.39) we need only show that the left column is independent of the other columns. Assume
that for some z0 the left column is a linear combination of the others, i.e., for some h = (h1, . . . , hn−1)
we have

Dhω+|z0 = 0 and Dhπ
⊥
ω+
r+|z0 = ω+(z0). (2.1.50)

But by (2.1.46), Dhω+|z0 = 0 implies Dhπ
⊥
ω+
r+|z0 ⊥ ω+(z0), contradicting (2.1.50). It follows that the

ranks in (2.1.49) are equal to n, completing the proof. �

Proof of Lemma 2.1.14. We will argue by contradiction and assume that for some h, z0 ∈ Rn−1 and
some cr ∈ R we have

Dhω+|z0 = 0 and Dhr+|z0 = cr · ω+(z0;λ). (2.1.51)

Note that by the chain rule, (1.2.15a) and (2.1.51),

Dh|z0
∂V (x∞(τ, z;λ))

∂xj
=

n∑
k=1

∂2V (x∞(τ ; z0, λ))
∂xk∂xj

Dhxk|z0

=
n∑
k=1

∂2V (x∞(τ ; z0, λ))
∂xk∂xj

(
crωk(z0;λ) + 2Dhgk|z0

)
(2.1.52)

Using once more the representation (1.2.15a) and the chain rule, we can rewrite (2.1.52) as

Dh|z0
∂V (x∞(τ, z;λ))

∂xj
=

1
2
√
λ

∂

∂τ

∂V (x∞(τ ; z0, λ))
∂xj

+ 2
n∑
k=1

∂2V (x∞(τ ; z0, λ))
∂xk∂xj

(
Dh|z0gk −

cr

2
√
λ

∂gk(τ ; z0, λ)
∂s

)
. (2.1.53)

By (1.2.73),

Dhgj −
cr

2
√
λ

∂gj
∂s

=
∫ ∞

s

∫ ∞

t

(
Dh −

cr

2
√
λ

∂

∂τ

)∂V (x∞(τ ; z, λ))
∂xj

dτ dt. (2.1.54)

With (2.1.53), (2.1.54) becomes(
Dhgj −

cr

2
√
λ

∂gj
∂s

)∣∣∣∣
z=z0

= 2
∫ ∞

s

∫ ∞

t

n∑
k=1

∂2V (x∞(τ ; z0, λ))
∂xk∂xj

(
Dh|z0gk −

cr

2
√
λ

∂gk(τ ; z0, λ)
∂s

)
dτ dt.

(2.1.55)

From the Corollary 1.2.12, estimate (1.2.21), and Lemma B.2 it follows that for sufficiently large T � 0,
the map

Gλ,z0 : M+
T,H →M+

T,H, (Gλ,z0f)j(s) = 2
∫ ∞

s

∫ ∞

t

n∑
k=1

∂2V (x∞(τ ; z0, λ))
∂xk∂xj

fk(τ) dτ dt. (2.1.56)
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where M+
T,H is defined in (1.2.79), is a strict contraction and has a unique fixed point. By (1.2.16c),

f(s) = Dhgj(s, z0;λ) − cr

2
√
λ

∂gj

∂s (s, z0;λ) ∈ M+
T,H for sufficiently large T > 0. Clearly, f = 0 is a fixed

point of Gλ,z0 . Therefore, for sufficiently large T > 0,

Dhgj
∣∣
z=z0

=
cr

2
√
λ

∂gj
∂s

∣∣∣∣
z=z0

for s > T . (2.1.57)

Now (1.2.15), (2.1.51) and (2.1.57) give

Dhx∞(s, z;λ)|z=z0 =
cr√
λ

∂

∂s
x∞(s, z;λ)

∣∣∣∣
z=z0

,

Dhξ∞(s, z;λ)|z=z0 =
cr√
λ

∂

∂s
ξ∞(s, z;λ)

∣∣∣∣
z=z0

(2.1.58)

for s > T . But the map ι, cf. (1.3.2), is an immersion, and (2.1.58) implies that

ι∗|(s,z0)
(
Dh −

cr√
λ

∂

∂s

)
=

n∑
j=1

(
Dhxj(s, z0;λ)− ∂sxj(s, z0;λ)

) ∂

∂xj

∣∣∣∣
ι(s,z0)

+
n∑
j=1

(
Dhξj(s, z0;λ)− ∂sξj(s, z0;λ)

) ∂

∂ξj

∣∣∣∣
ι(s,z0)

= 0, (2.1.59)

leading to a contradiction. �

2.2. The Isozaki-Kitada phase functions

A crucial role in the further analysis is played by the Isozaki-Kitada phase functions, which we now
introduce.

2.2.1. Definition For a given triplet (R, d, σ) with R� 1, d > 1, −1 < σ < 1, we introduce the notation
2

Γ±(R, d, σ) :=
{
(x,X∗(ξ)) ∈ T ∗Rn : |x| > R, d−1 < |ξ| < d, 〈x̂, ξ̂〉 ≷ σ

}
(2.2.1)

(where x̂ = x/|x|, ξ̂ = ξ/|ξ|) and for non–vanishing momentum

Σ±(R, σ, ξ) :=
{
x ∈ Rn : |x| > R, 〈x̃, ξ̃〉 ≷ σ

}
, ξ 6= 0 fixed. (2.2.2)
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Σ−(R,−σ, ξ)Σ+(R,−σ, ξ)Σ−(R,±σ, ξ)Σ+(R,±σ, ξ)

Rxn

Rn−1
x′ Rn−1

x′

Rxn

Figure 1. The sets Σ±(R,±σ, ξ) ⊂ Rnx for ξ = (0, . . . , 0, 1). Here σ is taken close to −1.

2Note that this definition differs from the convention used by Isozaki and Kitada [14], who seteΓ±(R, d, σ) := {(x, X∗(ξ)) ∈ T ∗Rn : |x| > R, d−1 < |ξ| < d, 〈x̂, ξ̂〉 > ±σ}.
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2.2.2. Proposition [14, Proposition 2.4] Let V obey the Potential Hypothesis and fix d0 > 1 and σ0 ∈
(−1, 1). Then there exist real functions ϕ± ∈ C∞(Rnx × Rnξ ) (Isozaki-Kitada phase functions) with the
following properties:

i) The functions ϕ±(x, ξ) solve the eikonal equation

|∇xϕ±(x, ξ)|2 + V (x) = |ξ|2 (2.2.3)

in Γ±(R0, d0,±σ0) for some R0 � 1,
ii) For any L > 0 and α, β ∈ Nn there exist constants CαβL such that for all (x, ξ) ∈ Rnx × Rnξ ,

|∂αx ∂
β
ξ (ϕ±(x, ξ)− 〈x, ξ〉)| ≤ CαβL〈x〉−|α|〈ξ〉−L (2.2.4)

iii) for all (x, ξ) ∈ Rnx × Rnξ , ∣∣∣∣ ∂2

∂xj∂ξk
(ϕ±(x, ξ)− 〈x, ξ〉)

∣∣∣∣ ≤ ε(R0) <
1
2
,

where ε(R0) can be made arbitrarily small by taking R0 large enough.

2.2.3. Lemma Let Λs ⊂ T ∗Rn, s ∈ R, be the manifold defined in Lemma 1.3.6 and x∞ the configuration
space trajectory of Definition 1.2.3. For any R > 0, σ ∈ (−1, 0) and d > 1 with d−1 <

√
λ < d there exist

times s±(R, d, σ) such that
i) Λs ⊂ Γ−(R, d,−σ) for all s < s−(R, d, σ),
ii) x∞(s, z;λ) ∈ Σ−(R,−σ,

√
λω−) for all z ∈ H and s < s−(R, d, σ),

iii) Λs ⊂ Γ+(R, d, σ) for all s > s+(R, d, σ),
iv) x∞(s, z;λ) ∈ Σ+(R, σ,

√
λω+(z;λ)) for all z ∈ H and s > s+(R, d, σ).

Proof. We fix some (R, d, σ) as in the hypothesis and start with assertion i). By the triangle inequality
and (1.2.11a), (1.2.13) we have a constants c > 0 and S < 0 such that

sup
z∈H

∣∣|ξ∞(s, z;λ)| −
√
λ
∣∣ ≤ sup

z∈H

∣∣ξ∞(s, z;λ)−
√
λ
∣∣ < c|s|−% for s < S. (2.2.5)

It follows that

d−1 < sup
z∈H

|ξ∞(s, z;λ)| < d for s < 0 sufficiently small. (2.2.6)

Again we can use the triangle inequality and (1.2.11a) to see that

|x∞(s, z;λ)| = |2
√
λω−s+ ž + 2g−(s, z;λ)|

≥ |2
√
λω−s+ ž| − 2|g−(s, z;λ)|

=
√
λ|s|+ (

√
λ|s| − 2|g−(s, z;λ|), (2.2.7)

so with (1.2.13),

sup
z∈H

|x∞(s, z;λ)| >
√
λ|s| > R for s < 0 sufficiently small. (2.2.8)

It follows from (1.2.11) with (1.2.13) that for some c′ > 0,

|〈x∞(s, z;λ), ξ∞(s, z;λ)〉 − 2λs| ≤ c′ · |s|1−% for all z ∈ Rn−1. (2.2.9)

Using (2.2.5), (2.2.8), we have

|x∞(s, z;λ)||ξ∞(s, z;λ)| >
√
λ|s|(

√
λ− c|s|−%)) > λ|s| − c

√
λ|s|1−% (2.2.10)

for some c > 0 if s� 0 is sufficiently small. It follows from (2.2.9) and (2.2.10) that

〈x∞(s, z;λ), ξ∞(s, z;λ)〉
|x∞(s, z;λ)| · |ξ∞(s, z;λ)|

<
2λs− c′ · |s|1−%

2(λ|s| − c′′
√
λ|s|1−%)

=
−1− c′λ−1 · |s|−%

1− c′′λ−
1
2 |s|−%

, (2.2.11)

which implies

〈x∞(s, z;λ), ξ∞(s, z;λ)〉
|x∞(s, z;λ)| · |ξ∞(s, z;λ)|

< 0 < −σ for s < 0 sufficiently small. (2.2.12)
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Now by (2.2.1), the assertion i) follows from (2.2.6), (2.2.8) and (2.2.12). By calculations analogous to
(2.2.10) and (2.2.11) we easily see that

〈x∞(s, z;λ), ω−〉
|x∞(s, z;λ)|

< 0 < −σ for s < 0 sufficiently small. (2.2.13)

Then by (2.2.2), assertion ii) follows from (2.2.8) and (2.2.13).
Similarly to (2.2.6) above, we obtain from (1.2.15a) and (1.2.16c) that

d−1 < sup
z∈H

|ξ∞(s, z;λ)| < d for s > 0 sufficiently large. (2.2.14)

Furthermore, using the representation (1.2.15) with (1.2.16c) and noting 〈ž, ω−〉 = 0, we have

|〈x∞(s, z;λ), ξ∞(s, z;λ)〉 − 2λs| ≤ c · 〈z〉1−%s1−% + 〈ω+(z;λ), r+(z;λ)〉
= c · 〈z〉1−%s1−% + 〈ω+(z;λ), r+(z;λ)− ž〉+ 〈ω+(z;λ)− ω−, ž〉.

(2.2.15)

for some c > 0 and s > 0 sufficiently large. Now applying (1.2.16a) and (1.2.16b), we see that

|〈x∞(s, z;λ), ξ∞(s, z;λ)〉 − 2λs| ≤ C for some C > 0 and s > 0 sufficiently large. (2.2.16)

it follows that

〈x∞(s, z;λ), ξ∞(s, z;λ)〉 > 0 for all z ∈ H nd s > 0 sufficiently large. (2.2.17)

Checking (2.2.1), we see that the assertion iii) follows from (1.2.19), (2.2.14) and (2.2.17). We omit the
proof of iv), which is verified in the same way. �

The next lemma is just a result of Robert and Tamura [24, (4.2)-(4.5), Lemma 4.1], which we have
reformulated in terms of the notation of Lemma 2.2.3.

2.2.4. Lemma Let (R, d, σ) be some triple with σ ∈ (−1, 0), d > 1 with d−1 <
√
λ < d and R > 0

sufficiently large such that we can define Isozaki-Kitada functions ϕ± as in Proposition 2.2.2. Set s± =
s±(R, d, σ) ∈ R as in Lemma 2.2.3. Then, using the notation of Definition 1.2.3,

ξ∞(s, z;λ) = (∇xϕ−)(x∞(s, z;λ),
√
λω−) for all z ∈ H and s < s−. (2.2.18)

Moreover,

(∇xϕ+)(x∞(s, z;λ),
√
λω+(z;λ)) = ξ∞(s, z;λ), (2.2.19)

(∇ξϕ+)(x∞(s, z;λ),
√
λω+(z;λ)) = 2

√
λω+(z;λ)s+ r+(z;λ), (2.2.20)

for all z ∈ Rn−1 and s > s+. Additionally, we have the representation

ϕ+(x∞(s, z;λ),
√
λω+(z;λ)) = 2sλ − 〈r+(z;λ),

√
λω+(z, λ)〉 − 2

∫ ∞

s

(|ξ∞(τ, z;λ)|2 − λ) dτ. (2.2.21)

In fact, we can sharpen (2.2.19) to a uniqueness result:

2.2.5. Lemma Let (R, d, σ) be some triple with σ ∈ (−1, 0), d > 1 with d−1 <
√
λ < d and R > 0

sufficiently large such that we can define an Isozaki-Kitada function ϕ+ as in Proposition 2.2.2. Choose
s+ = s+(R, d, σ) ∈ R as in Lemma 2.2.3. Then there exists a time S > s+(R, d, σ) such that for any
z ∈ H and any s > S

ξ∞(s, z;λ) = ∇ϕ+(x∞(s, z;λ),
√
λω) implies ω = ω+(z;λ). (2.2.22)

Proof. By (2.2.4) we have

|∇xϕ+(x,
√
λω)−

√
λω| ≤ C100〈x〉−1. (2.2.23)

Inserting the hypothesis of (2.2.22) together with (1.2.19) into (2.2.23) we obtain

|ξ∞(s, z;λ)−
√
λω| ≤ c1 · |s|−1, (2.2.24)
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for all z ∈ H, s > s+ sufficiently large and some constant c1 > 0. By Lemma 2.2.3 iii), we can assume
that (x∞(s, z;λ), ξ∞(s, z;λ)) ∈ Γ+(R, d, σ) for all z ∈ H and s > s+. Then from the definition (2.2.1) of
Γ+(R, d, σ) and (2.2.24) it follows that

1
|x∞(s, z;λ)|

〈x∞(s, z;λ), ω〉 > σ. (2.2.25)

for all z ∈ H and s > s+ sufficiently large. Hence (x∞(s, z;λ),
√
λω) ∈ Γ+(R, d, σ). Under this condition

it was shown by Robert and Tamura [24, Beginning of Section 4.1] that (using the notation of Definition
1.1.2)

lim
t→+∞

x̃(t, s, z;ω)
|x̃(t, s, z;ω)|

= ω, (2.2.26)

where x̃(t, s, z;ω) := x(t;x∞(s, z;λ),∇xϕ+(x∞(s, z;λ),
√
λω)). However, by the hypothesis of (2.2.22),

x̃(t, s, z;ω) = x∞(s+ t, z;λ) and by (2.1.13), (2.1.16a) the limit in (2.2.26) is ω+(z;λ). �

2.2.6. Definition We fix a triple (R0, d0, σ0) by first choosing σ0 ∈ (−1, 0) and d0 > 1 so that d−1
0 <√

λ < d0. We then choose R0 > 0 sufficiently large to ensure that Proposition 2.2.2 i) holds and fix a
choice of corresponding Isozaki-Kitada functions ϕ− and ϕ+. In the notation of Lemmas 2.2.3 and 2.2.5,
we define

s− := s−(R0, d0, σ0) and s+ := max(s+(R0, d0, σ0), S) (2.2.27)

and set

Λ− :=
⋃
s<s−

Λs and Λ+ :=
⋃
s>s+

Λs. (2.2.28)

2.3. Generating functions

This section discusses the concepts of lagrangian coordinates and local generating functions, which
are both central to the construction of the canonical Maslov operator, the classification of caustics and
the asymptotic formula for the scattering amplitude. We first need to introduce some notation

2.3.1. Convention Let N denote the index set {1, . . . , n}. For I ⊂ N we define |I| := #I (the number
of indices in I) and I := N \ I. Further, we set Ni := N \ {i} for short. We use the index “I” to denote
an ordered |I|–tuple, e.g., with x = (x1, . . . , xn) ∈ Rn we write xI = (xi1 , . . . , xi|I|) with im < im+1.

2.3.2. Definition Let M be a n–dimensional manifold, U ⊂ T ∗M an open set and (x, ξ) : U → Rn × Rn
a local coordinate chart, canonically induced by a chart x : π(U) → Rn, where π : T ∗M →M denotes the
canonical projection. Let Λ ⊂ T ∗M be a lagrangian manifold and Ω ⊂ U an open set in Λ.

i) For any I ⊂ N we define

πΩ,I : Ω → R|I|xI
× R

|I|
ξI
, p 7→ (xI(p), ξI(p)) (2.3.1)

If (2.3.1) is a diffeomorphism on its image, we say that (Ω, πΩ,I) is a lagrangian chart of order |I|
and (xI , ξI) are lagrangian coordinates. If |I| = minp∈Ω rank dπΛ,N |p, we call the lagrangian chart
canonical. A (canonical) lagrangian atlas on Λ is a locally finite open covering of Λ by (canonical)
lagrangian charts. We say that Ω is well-projected if x can be chosen as lagrangian coordinates on
Ω.

ii) a function S ∈ C∞(Λ) is called a global generating function for Λ if

dS =
∑

ξj dxj |Λ. (2.3.2)

If such a function exists and (Ω, πΩ,I) is some lagrangian chart on Λ, we define a local generating
function SΩ,I ∈ C∞(Ω) via

SΩ,I := S − 〈xI , ξI〉 on Ω. (2.3.3)

It then follows that on Ω

ξI =
∂SΩ,I

∂xI
and xI = −∂SΩ,I

∂ξI
. (2.3.4)
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The concept of lagrangian coordinates and their role in the construction of the canonical Maslov
operator on lagrangian manifolds in T ∗Rn has been extensively explored in [18], [27] and elsewhere. For
completeness we repeat the proof of the following basic result.

2.3.3. Lemma ([18]) Any lagrangian manifold admits a canonical lagrangian atlas.

Proof. We keep the notation of Definition 2.3.2. We can without loss consider the coordinized manifold
Λ̃ := (x, ξ)Λ ⊂ Rnx × Rnξ ; indeed, the canonical symplectic form is given by

σ =
n∑
j=1

dxj ∧ dξj

and rank dπ|Λ = rank dπx|eΛ in any set of induced coordinates. We will henceforth drop the tilde and
consider the case of Λ ⊂ Rnx × Rnξ .

Let p ∈ Λ. By the implicit function theorem, a neighbourhood of p can be diffeomorphically mapped
into the tangent plane of Λ at p, i.e., we obtain a coordinate chart in a neighbourhood Ω of p through the
coordinates of the tangent plane at p, which we denote by L. By definition, the tangent plane is lagrangian
(i.e., the symplectic form σ vanishes on L.) In order to prove that there exists an index set I ⊂ N such that
πΩ,I is a diffeomorphism on its image it is then sufficient to show that the map πL,I is a diffeomorphism.
We also claim that if the neighbourhood Ω is sufficiently small, then minΩ rank dπΩ,N = rank dπΩ,N |p.
This can be seen from the fact that the rank of a matrix does not change under small perturbations.

In conclusion, it suffices to show that for any lagrangian plane there exists a set of canonical coor-
dinates. A covering of Λ with appropriate neighbourhoods mapped onto tangent planes then yields a
canonical lagrangian atlas for Λ.

Let L ⊂ Rnx × Rnξ be a lagrangian plane. We will prove that for some I ⊂ N with |I| = rank dπx|L
the canonical projection

πI : Rnx × Rnξ → RIxI
× RIξI

(2.3.5)

is a diffeomorphism when restricted to L. We need only show that kerπI = {0}. Choose I ⊂ N with
|I| = rank dπx|L such that {xI} is a basis of πxL. Then πIu = 0 implies πxu = 0 for u ∈ L. Since
πξI

u = 0 by assumption, it remains to show that πξI
u = 0. However, the symplectic form has the form

σ(u, v) = 〈πξv, πxu〉 − 〈πξu, πxv〉 for u, v ∈ L

so πIu = 0 implies

σ(u, v) = −
∑
i∈I

πξi
u · πxi

v = 0 for all v ∈ L.

This completes the proof. �

The proof of Lemma 2.3.3 is actually much more insightful than the statement of the result, In fact,
the proof yields an important corollary.

2.3.4. Corollary Let Λ be an n–dimensional lagrangian manifold in the notation of Definition 2.3.2
and let p ∈ Λ ∩ U for some chart domain U .

i) We can find an index set I ⊂ N with rank dπΛ∩U,N |p = |I| such that rank dπΛ∩U,I |p = n.
ii) For any I ⊂ N , rank dπΛ,I |p = n if and only if (xI , ξI) are lagrangian coordinates in some neigh-

bourhood Ω of p. They are canonical lagrangian coordinates if and only if minq∈Ω rank d(π|Λ)|q =
rank d(π|Λ)|p.

2.3.5. Remark For an arbitrary cotangent bundle we use the notation π : T ∗M → M for the canonical
projection onto the base, employing πx for the special case M = Rnx and also denoting the corresponding
map Rnξ × Rnx → Rnx by πx. Note that πΛ∩U,N = x ◦ π|Λ, where x : π(U) → Rn is a chart on the base
manifold. Clearly the ranks of the differentials of πΛ∩U,N and π|Λ are equal, and we will make use of
both maps. In T ∗Rn, the mapa are identical.

We will first use the Isozaki-Kitada phase functions to construct local generating functions on the
scattering manifold Λ ⊂ T ∗Rn.
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2.3.6. Lemma Let ϕ−( · ,
√
λω−) ∈ C∞(Rnx) be the Isozaki-Kitada phase function of Lemma 2.2.4. Then

ϕ−(x∞(s, z;λ),
√
λω−) = 〈x∞(s, z;λ),

√
λω−〉+

∫
T −

z,s

〈ξ −
√
λω−, dx〉 (2.3.6)

= 2sλ+ 2
∫ s

−∞
(|ξ∞(τ, z;λ)|2 − λ) dτ. (2.3.7)

Proof. We now show (2.3.6). Let s′ < s < s−. Then

ϕ−(x∞(s, z;λ),
√
λω−)

= ϕ−(x∞(s′, z;λ),
√
λω−) +

∫ s

s′

∂

∂τ
ϕ−(x∞(τ, z;λ),

√
λω−) dτ

= ϕ−(x∞(s′, z;λ),
√
λω−) +

∫ s

s′
〈∇xϕ−(x∞(τ, z;λ),

√
λω−), ∂τx∞(τ, z;λ)〉 dτ (2.3.8)

Inserting (2.2.18) into (2.3.8) yields

ϕ−(x∞(s, z;λ),
√
λω−) = ϕ−(x∞(s′, z;λ),

√
λω−)− 〈

√
λω−,x∞(s′, z;λ)〉+ 〈

√
λω−,x∞(s, z;λ)〉

+
∫ s

s′
〈ξ∞(τ, z;λ)−

√
λω−, ∂τx∞(τ, z;λ)〉 dτ. (2.3.9)

By (2.2.4),∣∣ϕ−(x∞(s′, z;λ),
√
λω−)− 〈x∞(s′, z;λ),

√
λω−〉

∣∣→ 0 as s′ → −∞. (2.3.10)

so letting s′ → −∞, we obtain

ϕ−(x∞(s, z;λ),
√
λω−) = 〈

√
λω−,x∞(s, z;λ)〉+

∫ s

−∞
〈ξ∞(τ, z;λ)−

√
λω−, ∂τx∞(τ, z;λ)〉 dτ. (2.3.11)

But the integral in (2.3.11) is by definition just the line integral of ξ −
√
λω− along T −z,s.

In order to show (2.3.7), we start from (2.3.8). Using (1.1.6) and (2.2.18),

ϕ−(x∞(s, z;λ),
√
λω−) = ϕ−(x∞(s′, z;λ),

√
λω−)− 2λs′ + 2λs

+ 2
∫ s

s′
(|∇xϕ−(x∞(τ, z;λ),

√
λω−)|2 − λ) dτ. (2.3.12)

By (1.2.6) and (1.2.13) there exists a constant c > 0 such that∣∣〈x∞(s′, z;λ),
√
λω−〉 − 2λs′

∣∣ ≤ c|s′|1−%. (2.3.13)

Now (2.3.13) and (2.3.10) imply that |ϕ−(x∞(s′, z;λ),
√
λω−) − 2λs′| → 0 as s′ → −∞ and therefore

(2.3.7) follows from (2.3.12) by letting s′ → −∞. �

2.3.7. Lemma The function S : Λ → R given by

S ◦ ι(s, z;λ) = 〈x∞(s, z;λ),
√
λω−〉+

∫
T −

z,s

〈ξ −
√
λω−, dx〉 (2.3.14)

= 2sλ+ 2
∫ s

−∞
(|ξ∞(τ, z;λ)|2 − λ) dτ. (2.3.15)

is a global generating function for Λ.

Proof. By (2.3.14),

S(x, ξ) = 〈x,
√
λω−〉+

∫
T −

z,s

〈ξ −
√
λω−, dx〉 on Λ, (s, z) = ι−1(x, ξ). (2.3.16)

It follows from (2.3.16) that dS =
∑
ξj dxj on Λ, which proves the lemma. �

Note that on Λ−, the functions S and ϕ−( · ,
√
λω−) ◦ πx coincide.

The construction of local generating functions for L+ ⊂ T ∗Sn−1 is slightly more complicated, involv-
ing the “second” Isozaki-Kitada phase function ϕ+(x, ξ).
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2.3.8. Lemma The function

F : Λ → R, (F ◦ ι)(s, z;λ) = S ◦ ι(s, z;λ)− ϕ+(x∞(s, z;λ),
√
λω+(z, λ)) (2.3.17)

does not depend on s; explicitly,

(F ◦ ι)(s, z;λ) = 2
∫ ∞

−∞
(|ξ∞(τ, z;λ)|2 − λ) dτ − 〈r+(z;λ),

√
λω+(z, λ)〉. (2.3.18)

The function F+ ∈ C∞(L+) defined through

F+ ◦ S+
λ (z;λ) := F ◦ ι(s, z;λ) (2.3.19)

is a generating function for L+, i.e.,
dF+ = 〈ξ, dx〉|L+ . (2.3.20)

Proof. The first part of the Lemma, equation (2.3.18), follows immediately from (2.3.7) and (2.2.21).
We will show that

(S+
λ )∗dF+|z = (S+

λ )∗〈ξ, dx〉|L+ = −
√
λ〈π⊥ω+( · ;λ)r+( · ;λ), (S+

λ )∗dx〉|z. (2.3.21)

The first equality is equivalent to (2.3.20), while the second follows by combining (2.1.17), (2.1.15) and
(2.1.14). By (2.3.17) and (2.3.19), for any s > s+,

(S+
λ )∗dF+|z = d(S ◦ ι)(s, · ;λ)|z −

n−1∑
i=1

〈∇xϕ+(x∞(s, z;λ),
√
λω+(z, λ)), ∂zix∞(s, z;λ)〉 dzi|z

−
√
λ

n−1∑
i=1

〈∇ξϕ+(x∞(s, z;λ),
√
λω+(z, λ)), ∂ziω+(z, λ)〉 dzi|z (2.3.22)

By (2.2.19),

n−1∑
i=1

〈∇xϕ+(x∞(s, z;λ),
√
λω+(z, λ)), ∂zix∞(s, z;λ)〉 dzi|z

=
n−1∑
i=1

〈ξ∞(s, z;λ), ∂zi
x∞(s, z;λ)〉 dzi|z

=
n∑
j=1

ξj(s, z;λ)
(n−1∑
i=1

∂xj(s, z;λ)
∂zi

dzi|z
)

=
n∑
j=1

(ξj ◦ ι) ι∗sdxj |z = ι∗s(〈ξ, dx〉)|z = d(S ◦ ι)(s, · ;λ)|z (2.3.23)

Inserting (2.3.23) and (2.2.20) into (2.3.22) and noting that 〈ω+(z;λ), ∂zi
ω+(z;λ)〉 = 0, we obtain

(S+
λ )∗dF+|z = −

√
λ
n−1∑
i=1

〈r+(z;λ), ∂zi
ω+(z, λ)〉 dzi|z

= −
√
λ
n−1∑
i=1

〈π⊥ω+(z;λ)r+(z;λ), ∂zi
ω+(z;λ)〉 dzi|z

−
√
λ〈π⊥ω+( · ;λ)r+( · ;λ), (S+

λ )∗dx〉|z

completing the proof. �

2.4. Lagrangian coordinates

We will now further explore the relationship between lagrangian coordinates on L+ and on Λ. In
order to formulate the result as explicitly as possible, we will need to introduce coordinates on L+.
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2.4.1. Remark Let (Σ, χ) be a chart on the unit sphere which we write as

χ : Σ → Rn−1, ω 7→ θ = (θk)k∈Ni
(2.4.1)

for some i ∈ N := {1, . . . , n} and Ni := N \ {i}. We obtain an induced chart

χ̃ : T ∗Σ → Rn−1 × Rn−1, (ω,X∗(L)) 7→ (θ, l) (2.4.2)

where l = (lk)k∈Ni ,

lk =
〈
L,
∂χ−1(θ)
∂θk

〉
, k ∈ Ni. (2.4.3)

Writing θ+(z) = χ(ω+(z)), For (ω+, X
∗(L+)) ∈ L+ defined in Theorem 2.1.4 we define θ+(z) := χ(ω+(z))

and l+(z) := (lk(z))k∈Ni with

lk(z) :=
〈
L+(z),

∂χ−1(θ)
∂θk

∣∣∣
θ+(z)

〉
, k ∈ Ni. (2.4.4)

Noting that 〈∂χ
−1(θ)
∂θk

, χ−1(θ)〉 = 0 for k ∈ Ni, we obtain from (2.1.14) and (2.2.20) that for any s > s+
(see Definition 2.2.6) we have

lk(z) = −
√
λ
〈
r+(z;λ),

∂χ−1(θ)
∂θk

∣∣∣
θ+(z)

〉
= − ∂

∂θk
ϕ+(x∞(s, z;λ),

√
λχ−1(θ))

∣∣∣
θ+(z)

, k ∈ Ni. (2.4.5)

We now choose an atlas on Sn−1 that is well–suited to our situation, with charts simply consisting
of the orthogonal projection of hemispheres along their poles.

2.4.2. Definition On the sphere Sn−1 ⊂ Rn we define charts {(Σ±i (δ), χ±i ) : i = 1, . . . , n} for δ ∈ [0, 1/4)
by

Σ±i (δ) := {x = (x1, . . . , xn) ∈ Sn−1 : xi ≷ ±δ}
χ±i : Σ±i (δ) → Bn−1 ⊂ Rn−1 χ±i (x1, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn) = xNj

(2.4.6)

where Bn−1 := {x ∈ Rn−1 : |x| < 1}, Nj := N \ {j}, N = {1, . . . , n}. Note that we have not included δ
in our notation for the maps χ±i : Σ±i (δ) → Bn−1 ⊂ Rn−1. Furthermore, we simply write Σ±i for Σ±i (0).

2.4.3. Lemma On T ∗Sn−1, the maps χ±i induce charts {(T ∗Σ±i (δ), χ̃±i ) : i = 1, . . . , n} given by

χ̃±i : T ∗Σ±i (δ) → Bn−1 × Rn−1, (ω,X∗(L)) 7→
(
ωNj , LNi −

Li
ωi
ωNi

)
. (2.4.7)

Here we have used the notation of Convention 2.3.1 for L+ and ω+, suppressing the subscript when
referring to the components.

Proof. Writing |y|2 =
∑n−1
j=1 y

2
j we have

(χ±i )−1(y1, . . . , yn−1) = (y1, . . . , yi−1,±
√

1− |y|2, yi, . . . , yn−1). (2.4.8)

Then (2.4.7) follows directly from (2.4.3). �

2.4.4. Convention i) For any i ∈ N we use Σi(δ) to denote either Σ+
i (δ) or Σ−i (δ) and χi to denote

either χ+
i or χ−i of (2.4.6).

ii) In the context of Definition 2.3.2, let M = Sn−1, U = T ∗Σi for some i ∈ N and (x, ξ) = χ̃i. Let
Λ = L+ be the lagrangian manifold (2.1.17). Denote by Ω = Γ an open set in L+ ∩ T ∗Σi and
I = J ⊂ Ni := N \ {i}. In this situation, we denote the map πΩ,I in (2.3.1) by π(i)

Γ,J . Conversely,

π
(i)
Γ,J shall always refer to Γ, J, i as above.

iii) The notation πΩ,I shall henceforth refer to a lagrangian chart as in (2.3.1) with M = Rn, (x, ξ)–
coordinates on U = T ∗Rn, the lagrangian manifold Λ of (1.3.3) and Ω ⊂ Λ, I ⊂ N .

2.4.5. Remark i) Setting

l(i) := L− Li
ωi
ω, (2.4.9)
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the lagrangian charts π(i)
J,Γ are given by

π
(i)
J,Γ(ω,X∗(L)) =

(
ωJ(z), l(i)Ni\J

)
. (2.4.10)

Here we have used the notation of Convention 2.4.4 ii) for l(i)+ . For ω+(z) and L+(z) of (2.1.14), we
define

l
(i)
+ (z) := L+(z)− Li(z)

ωi(z)
ω+(z). (2.4.11)

Noting that with θ+(z) := χi(ω+(z)), l(i)+ (z) = (l(i)k (z))i∈N and Remark 2.4.1,

l
(i)
k (z) =

〈
L+(z),

∂χ−1
i (θ)
∂θk

∣∣∣
θ+(z)

〉
=

∂

∂θk
ϕ+(x∞(s, z;λ), χ−1(θ))

∣∣∣
θ+(z)

, k ∈ Ni. (2.4.12)

ii) We have established global coordinates for Λ ⊂ T ∗Rn and L+ ⊂ T ∗Sn−1 in Sections 1.3 and 2.1
through the mappings

ι : R× Rn−1 → Λ and S+
λ : Rn−1 → L+, (2.4.13)

given by (1.3.2) and (2.1.15), respectively. Then by Corollary 2.3.4 (xI , ξI), I = N \I, are lagrangian
coordinates in some neighbourhood of p ∈ Λ if and only if

n = rank dπΛ,I |p = rank
(
∂(xI(s, z;λ), ξN\I(s, z;λ))

∂(s, z)

)
. (2.4.14)

Similarly, for I ⊂ N , (ωJ , l
(i)
Ni\J) are lagrangian coordinates in a neighbourhood of q ∈ L+ ∩ T ∗Σi if

and only if

n− 1 = rank dπ(i)
L+,J

|p = rank
(
∂(ωJ(z;λ), lNi\J(z;λ))

∂z

)
. (2.4.15)

The main result of this section is the relationship between lagrangian coordinates on L+ and coor-
dinates on Λ. Again, the sharp estimates on the behaviour of the trajectories in Proposition 1.2.10 are
crucial for the proof of Proposition 2.4.7, on which Proposition 2.4.6 is based.

2.4.6. Proposition Let K ⊂ Rn−1 be a compact set and T � 0 sufficiently large. Fix δ ∈ (0, 1/4). Then
for any T1 > T0 > T there exists an open covering {Zk} of K, numbers ik ∈ N and index sets Jk ⊂ Nik
such that

(i) Γk := S+
λ (Zk) ⊂ L+ ∩ T ∗Σik(δ) and (Γk, π

(ik)
Γk,Jk

) are lagrangian charts on L+ and
(ii) (Ωk, πΩk,N\Jk

), Ωk := ι((T0, T1), Zk) are lagrangian charts on Λ.

Proposition 2.4.6 relies on various preliminary results, which we give below before completing the
proof at the end of this section.

2.4.7. Proposition For z0 ∈ Rn−1, let i ∈ N such that S+
λ (z0) ∈ L+ ∩ T ∗Σi. Let πω : T ∗Sn−1 → Sn−1

denote the canonical projection onto the base and let rank d(πω|L+)|S+
λ (z0)

= m. Let J ⊂ Ni be an index

set such that |J | = m and rank dπ(i)
L+,J

|S+
λ (z0)

= n − 1 (see Corollary 2.3.4). Then there exists some
T = T (z0) > 0 and some ε = ε(z0) > 0 so that∣∣∣∣det

(
∂(xN\J(s, z;λ), ξJ(s, z;λ))

∂(s, z)

)∣∣∣∣
z=z0

> ε for all s > T . (2.4.16)

Proof. We first claim that for any k ∈ N ,

∂ωk
∂z

∣∣∣∣
z0

∈ span

{
∂ωj
∂z

∣∣∣∣
z0

}
j∈J

. (2.4.17)

By (2.4.15)

rank
(
∂ωJ(z;λ)

∂z

)∣∣∣∣
z=z0

= |J | = m. (2.4.18)
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Furthermore,

m = rank d(πω|L+)|S+
λ (z0)

= rank dπ(i)
L+,Ni

|S+
λ (z0)

= rank
(
∂(ωNi

(z;λ)
∂z

)∣∣∣∣
z=z0

, (2.4.19)

using (2.4.15) in the last step. Then (2.4.18) and (2.4.19) imply (2.4.17) for k ∈ Ni. Differentiating
ω2
i =

∑
j∈Ni

ω2
j gives

∂ωi
∂z

∣∣∣∣
z0

= − 1
ωi

∑
j∈Ni

ωj
∂ωj
∂z

∣∣∣∣
z0

. (2.4.20)

and hence (2.4.17) holds for all k ∈ N .
Now by (1.2.15),

M :=
(
∂(xN\J(s, z;λ), ξJ(s, z;λ))

∂(s, z)

)∣∣∣∣
z=z0

=

(
2
√
λωN\J(z;λ) + 2∂gN\J (s,z;λ)

∂s 2
√
λs

∂ωN\J (z;λ)

∂z + ∂rN\J (z;λ)

∂z + 2∂gN\J (s,z;λ)

∂z
∂2gJ (s,z;λ)

∂s2

√
λ∂ωJ (z;λ)

∂z + ∂2gJ (s,z;λ)
∂z∂s

)∣∣∣∣∣
z=z0

(2.4.21)

By (2.4.17), for any k ∈ N we can write the vector ∂zωk as a linear combination of vectors ∂zωj , j ∈ J .
We will abbreviate this linear combination as

∂ωk
∂z

∣∣∣∣
z0

= lck

(
∂ωJ
∂z

∣∣∣∣
z0

)
, where lck(vJ) :=

∑
j∈J

λjkvj , k ∈ N , for vj ∈ Rm, m ∈ N. (2.4.22)

By adding suitable linear combinations of the lower rows of D to the upper rows, we obtain

detM = det(A+A′), (2.4.23)

where

A :=

(
2
√
λωN\J

∂rN\J

∂z

0
√
λ∂ωJ

∂z

)∣∣∣∣∣
z=z0

. (2.4.24)

and

A′ :=

(
2∂gN\J (s,z;λ)

∂s + 2s lcN\J
(
∂2gJ (s,z;λ)

∂s2

)
2∂gN\J (s,z;λ)

∂z + 2s lcN\J
(
∂2gJ (s,z;λ)

∂z∂s

)
∂2gJ (s,z;λ)

∂s2
∂2gJ (s,z;λ)

∂z∂s

)∣∣∣∣∣
z=z0

(2.4.25)

Applying estimate (1.2.16c), we see that for sufficiently large T there exists a constant CT > 0 such that

‖A′‖z=z0 ≤ CT · s1−% for all s > T . (2.4.26)

Note that

|detA| = 2λ1+|J|−n
2 |detB|, B =

(
ωN\J −

√
λ
∂rN\J

∂z

0 ∂ωJ

∂z

)∣∣∣∣∣
z=z0

(2.4.27)

We will show that rankB = n, i.e.,

0 < |detA| =: 2ε. (2.4.28)

Then by (2.4.23), (2.4.26) and (2.4.28) the continuity of the determinant yields the existence of some
T ′ > T such that

|detD| > 1
2
|detA| = ε for s > T ′. (2.4.29)

The proof of (2.4.16) is thus completed. We now show rankB = n. By (2.4.11) and (2.1.14) we have

∂lj
∂zk

=
∂Lj
∂zk

− Li
ωi

∂ωj
∂zk

− ∂

∂zk

(Li
ωi

)
ωj (2.4.30)

= −
√
λ
∂rj
∂zk

+ β
∂ωj
∂zk

+ αkωj (2.4.31)
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with

β(z) =
√
λ〈ω+(z), r+(z;λ)〉 − Li(z)

ωi(z)
, αk(z) =

∂

∂zk
β(z). (2.4.32)

For k = 1, . . . , n−1 we add the first column multiplied by αk(z) to the (k+1)st column of B. Furthermore,
for k = 1, . . . , n− |J |, we add the linear combination β(z) · lck((0, ∂ωJ

∂z )|z0) (see (2.4.22)) of the lower |J |
rows to the kth row of B. Then by (2.4.31) and (2.4.27),

rankB = rankC, C =

 ωi
∂li
∂z

ωN\J
∂lN\J

∂z

0 ∂ωJ

∂z

∣∣∣∣∣∣
z=z0

. (2.4.33)

By (2.4.15), the rank of the lower n− rows of C is n − 1. We will now show that the uppermost row is
independent of the lowers rows, hence rankC = n− 1.

Similarly to the arguments leading to (2.4.33), it follows from (2.4.30) that

rank

(
ωNi

∂lNi

∂z

0 ∂ωNi

∂z

)
= rank

(
ωNi

∂LNi

∂z

0 ∂ωNi

∂z

)
= n− 1 (2.4.34)

(where we have used (2.4.36) below) and

rankD := rank

(
ω+

∂l+
∂z

0 ∂ω+
∂z

)∣∣∣∣∣
z=z0

= rank

(
ω+

∂L+
∂z

0 ∂ω+
∂z

)∣∣∣∣∣
z=z0

= n, (2.4.35)

where we have used (2.1.40). It follows from (2.4.20), (2.4.34) and (2.4.35) that in D the row (ωi, ∂li∂z ) is
independent of all other rows. The same is then true in the matrix C. �

2.4.8. Lemma For z ∈ Rn−1 choose i ∈ N such that S+
λ (z) ∈ L+ ∩ T ∗Σi. Then

rank

(
∂LNi

(z)

∂z
∂ωNi

(z)

∂z

)
= n− 1 and rank

(
ωNi

(z) ∂LNi
(z)

∂z

0 ∂ωNi
(z)

∂z

)
= n− 1. (2.4.36)

Proof. We start with the first assertion. By Proposition 2.1.13,

rank

(
∂L+(z)
∂z

∂ω+(z;λ)
∂z

)
= n− 1. (2.4.37)

By (2.4.20) the (n+ i)th row of the matrix is a linear combination of the other rows, so it suffices to show
that ∂Li(z)

∂z is also a linear combination of the other rows. Now 〈L+, ω+〉 = 0, so

ωiLi = −
∑
j∈Ni

Ljωj (2.4.38)

and hence
∂Li
∂z

= − 1
ωi

∑
j∈N

Lj
∂ωj
∂z

− 1
ωi

∑
j∈Ni

ωj
∂Lj
∂z

. (2.4.39)

This proves the first assertion. Once more Proposition 2.1.13 yields

rank

(
ω+

∂L+
∂z

0 ∂ω+
∂z

)
= n, (2.4.40)

and by (2.4.20) the n + ith row is a linear combination of the others. We will show that the row
(ωi,

∂Li(z;λ)
∂z ) is independent of the others, thereby completing the proof. Now (2.4.39) expresses ∂Li

∂z as
a linear combination of ∂Lj(z;λ)

∂z , j ∈ Ni, and ∂ωj(z;λ)
∂z , j ∈ N . Hence if (ωi,

∂Li(z;λ)
∂z ) were a combination

of the rows of (2.4.40), we would get

ωi = − 1
ωi

∑
j∈Ni

ω2
j , (2.4.41)

contradicting |ω| = 1. Thus (ωi,
∂Li(z;λ)

∂z ) is independent of the rows of (2.4.40), completing the proof. �
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2.4.9. Lemma Let U ⊂ Rn be open and f : U → Rn be a smooth map. Let K ⊂ U be some compact set,
f |K be injective and df |K be invertible. Then there exists some open set V ⊃ K so that f is injective on
V .

Proof. The inverse map (f |K)−1 : f(K) → K exists (by injectivity of f |K) and is C1 by the invertibility
of df |K . The compactness of K and f(K) together with the continuity of the derivatives of f |K and
(f |K)−1 give the two–sided estimate

C1|x− x′| ≤ |f(x)− f(x′)| ≤ C2|x− x′|, x, x′ ∈ K, (2.4.42)

with uniform constants C1, C2 > 0. By continuity of f , for any ε > 0 we can find some open Uδ ⊃ K
such that

|f(x)− f(x′)| ≥ C1|x− x′| − ε for all x, x′ ∈ Uδ. (2.4.43)

Assume that there is no open set V ⊃ K such that f |V is injective. By (2.4.43), |x − x′| ≤ ε/C1 for
all points x, x′ ∈ Uδ for which f(x) = f(x′). But by the inverse function theorem, for all x ∈ K there
exist neighbourhoods Br(x), where r = r(x) > 0 can be chopsen to continuously depend on x, so that
f |Br(x) is injective. By compactness of K and continuity of r the minimum r0 := minx∈K r(x) exists and
is strictly positive, so we need only choose ε < C1r0 to arrive at a contradiction. �

2.4.10. Lemma For z ∈ Rn−1, let i ∈ N such that S+
λ (z) ∈ T ∗Σi. Let πω : T ∗Sn−1 → Sn−1 denote the

canonical projection onto the base and let rank d(πω|L+)|S+
λ (z) = m. Let J ⊂ Ni be an index set such

that |J | = m and rank dπ(i)
L+,J

|S+
λ (z) = n− 1 (see Corollary 2.3.4). Choose T (z) so that (2.4.16) holds for

z0 = z. Then for any T1 > T0 > T (z) there exists some δ > 0 so that for

Uδ := (T0 − δ, T1 + δ)×Bδ(z) ⊂ R× Rn−1, Bδ(z) = {y ∈ Rn−1 : |z − y| ≤ δ}, (2.4.44)

the map

πι(Uδ),N\J : (x,X∗(ξ)) 7→ (xN\J , ξJ). (2.4.45)

is a diffeomorphism on its image.

Proof. Since ι is a diffeomorphism on its image, it suffices to show that

πι(Uδ),N\J ◦ ι : (s, z) 7→ (xN\J(s, z;λ), ξJ(s, z;λ)). (2.4.46)

is a diffeomorphism on its image. We choose T (z) so that Proposition 2.4.7 and (1.2.20) (with β = 0 and
ε < 1/2) both hold. By (1.2.20) the map πι(Uδ),N\J ◦ ι is injective on K := [T0, T1]× {z}; in fact

|πι(Uδ),N\J ◦ ι(s, z)− πι(Uδ),N\J ◦ ι(s′, z)| > C1|xi(s, z;λ)− xi(s′, z;λ)|
> C2|s− s′|

for some C1, C2 > 0. Furthermore, by (2.4.16), the differential of πι(Uδ),N\J ◦ι is invertible on K. Thus we
can apply Lemma 2.4.9 to obtain the existence of some open set V1 containing K so that πι(Uδ),N\J ◦ ι|V1

is injective. Furthermore, since the differential πι(Uδ),N\J ◦ ι is invertible on K, we can find some open
set V2 ⊃ K where the differential is invertible, too. Taking δ > 0 small enough that Uδ ⊂ V1 ∩ V2, it
follows that πι(Uδ),N\J ◦ ι|Uδ

is an injective immersion. Since Uδ is bounded, the map is trivially proper,
so it is also an embedding, �

Proof of Proposition 2.4.6. For any z ∈ K, choose a continuous function T (z) so that Lemma 2.4.10
holds for that z. Set T := maxz∈K T (z). Then for any z, there exists an open set Uz ⊃ z such that the
assertions (i) (by Corollary 2.3.4) and (ii) (with Zk replaced by Uz; applying Lemma 2.4.10; Uz ⊂ Bδ(z))
hold. By compactness, we can cover K with a finite number of these Uz; denoting this covering by {Zk},
we are finished. �





CHAPTER 3

The scattering amplitude

Using the results of Chapter 2, we can now build on Robert and Tamura’s basic representation formula
for the scattering amplitude. In Section 3.1 we review the relevant results from [24] and establish some
basic definitions and choices of constants. The aim of Section 3.2 is to establish hard estimates which will
allow us to approximate the action of e

i
hPt using Maslov theory; the main results here are Proposition

3.2.16 and Corollary 3.2.17.
Having obtained an integral formula for the scattering amplitude based on a Maslov operator on Λ,

we apply the results of Chapter 2, in particular Lemma 2.3.8 and Proposition 2.4.6, to recast this formula
in terms of a Maslov operator on L+. This leads directly to a proof of Theorem 1. A discussion of the
main result and some aspects of previous results concerning caustics follows in Section 3.4, while Section
3.5 concludes with a review of the caustics encountered in scattering in R2 and R3.

3.1. The representation formula

The aim of this section is to formulate the representation formula for the scattering amplitude that
was obtained by Robert and Tamura [24]. We will therefore first give a summary of their constructions.

We start with a few essential definitions.

3.1.1. Definition For Ω ⊂ Rnx × Rnξ we denote by Am(Ω) the set of all a ∈ C∞(Ω), such that for any
α, β ∈ Nn and any L > 1 there exist constants Cα,β,L > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β,L〈x〉m−|α|〈ξ〉−L. (3.1.1)

If, in particular, Ω = Rnx × Rnξ , we write Am for Am(Ω).

3.1.2. Proposition Let (R0, d0, σ0) be fixed by Definition 2.2.6 and denote by ϕ± the Isozaki-Kitada
phase functions of Proposition 2.2.2. Then for any σ, σ′ ∈ (σ0, 0), σ′ > σ, d, d′ ∈ (1, d0), d′ < d, and
R′ > R > R0 there exist functions c±j, j ∈ N, such that

c±j ∈A−j , supp c±j ⊂ Γ±(R, d,±σ), (3.1.2a)

2〈∇xϕ±,∇xc±j〉+ (∆xϕ±)c±j =

{
0 j = 0
i∆xc±j−1 j ≥ 1

on Γ±(R′, d,±σ′), (3.1.2b)

c±j
|x|→∞−−−−→

{
1 j = 0
0 j ≥ 1

on Γ±(R′, d′,±σ′), (3.1.2c)

where Γ±(R, d, σ) were defined in (2.2.1).

3.1.3. Definition & Lemma Denote by R(ζ, P ) = (P − ζ)−1, Im ζ 6= 0, the resolvent of P , cf. (1).
Then R(ζ, P ) is well defined as an operator L2

γ → L2
−γ for any γ > 1/2 and we can use the principle of

limiting absorption to define R(λ+ i0, P ) : L2
γ → L2

−γ , γ > 1/2, by

R(λ+ i0, P ) := s-lim
κ↘0

R(λ+ iκ, P ) in L2
−γ , λ ∈ R (3.1.3)

3.1.4. Theorem [24, Corollary of Lemma 2.1] Choose N > 100n. Fix 1 < d4 < d3 < d2 < d1 < d0 such
that d−1

4 <
√
λ < d4, σ0 < σ1 < σ2 < σ3 < σ4 < 0, R0 < R1 < R2 < R3 < R4. Define

a±(x, ξ;h) :=
N∑
j=0

a±j(x, ξ)hj , b±(x, ξ;h) :=
N∑
j=0

b±j(x, ξ)hj , (3.1.4)

43
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with a±j defined to have the properties of c±j in Proposition 3.1.2 for R = R1, R′ = R2, d = d1, d′ = d2,
σ = σ1, σ′ = σ2. In the same way, b±j is defined with R = R3, R′ = R4, d = d3, d′ = d4, σ = σ3,
σ′ = σ4.

Let Ra � Rb � R4 (we will choose suitable Ra and Rb below). Let χ( · , ρ) ∈ C∞(R), 0 < χ < 1, be
a function such that χ(x, ρ) = 1 if |x| < ρ and χ(x, ρ) = 0 if |x| > ρ+ 1. Set

χa(x) := χ(x,Ra), χb(x) := χ(x,Rb). (3.1.5)

Let [A , B] = AB −BA denote the usual commutator. Define

g−b(x;h, ω−) := e−
i
hϕ−(x,

√
λω−)[χb(x), P0]b−(x,

√
λω−;h)e

i
hϕ−(x,2

√
λω−),

g+a(x;h, ω+) := e−
i
hϕ+(x,2

√
λω+)[χa(x), P0]a+(x,

√
λω+;h)e

i
hϕ+(x,

√
λω+)

(3.1.6)

and

G0(ω−, ω+;λ, h) :=
(
R(λ+ i0;P )g−b( · ;h, ω−)e

i
hϕ−( · ,2√λω−)

∣∣ g+a( · ;h, ω+)e
i
hϕ+( · ,√λω+)

)
L2 . (3.1.7)

Then

f(ω−, ω+;λ, h) = c1(λ, h)G0(ω−, ω+;λ, h) +O(hN/3), (3.1.8)

where c1(λ, h) = 2πλ(n−3)/4(2πh)−(n+1)/2e−(n−3)iπ
4 .1 Fixing ω− ∈ Sn−1, O(hn) denotes a function of

ω+ whose supremum over the sphere is bounded by a constant multiplied by hn.

Rxn

R
n−1

x
′

supp g+a

supp g
−b Defining

Σ̃±(R, σ, ξ) := Σ±(R, σ, ξ) ∩ {x ∈ Rn : R < |x| < R+ 1} (3.1.9)

we see that
supp g−b( · ;h, ω−) ⊆ Σ̃−(Rb, σ4,

√
λω−),

supp g+a( · ;h, ω+) ⊆ Σ̃+(Ra, σ1,
√
λω+).

(3.1.10)

For short we will write
Σ−b := Σ̃−(Rb, σ4,

√
λω−),

Σ′−b := Σ̃−(Rb, σ3,
√
λω−).

(3.1.11)

Having thus reviewed the basic setting of Robert and Tamura, we now adapt the construction for
our purposes. We now fix Ra, Rb and various other objects in a suitable way, which will be essential for
our analysis of G0.

3.1.5. Definition & Lemma Let σ3 and σ4 be fixed as in Theorem 3.1.4 and σ0, R0, s− and Λ− be fixed
as in Definition 2.2.6. For some sufficiently small ε > 0 we define the compact set

Zε := {z ∈ Rn−1 : |ω+(z;λ)− ω−| > ε} (3.1.12)

We choose Rb > R0 so large that (see (3.1.11))
i) Σ−b ⊂ πxΛ−,
ii) Σ′−b ∩ πxT −z,s− 6= ∅ for all z ∈ Zε and
iii) πxT −Zε,s−

∩ ({x : Rb < |x| < Rb + 1} \ Σ′−b) = ∅.
We set

Ω0 := int supp g−b( · ;h, ω−) ◦ πx|Λ, Z0 := int supp g−b(x∞(s, · ;λ);h, ω−), (3.1.13)

(where ‘intA” denotes the interior of the set A ⊂ Rn) and remark that by the above constructions we
have Zε ⊂ Z0. We further choose a bounded open set Z ⊂ Rn−1 and S0 < S1 < s− such that

Σ−b ⊂ πxΛ−b, Λ−b := ι((S0, S1)×Z) (3.1.14)

1The constant c1 contains a factor λ(n−3)/4 instead of (2λ)(n−3)/4 in [24] due to a differing factor of 2 in the hamiltonian
system (1.1.6).
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πxΛ− Σ−b

πxTZε,s−

R
n−1
x′

Rxn

supp g−b

πxΛ−b

Proof. The compactness of Zε follows immediately from (1.2.16b).
i) We will show that it is possible to ensure Σ−b ⊂ πxΛ− by choosing Rb large enough. Note that
x ∈ Σ̃−(Rb, σ4,

√
λω−) implies

xn = 〈x, ω−〉 < |x|σ4, and |x| > Rb, hence xn < Rb · σ4. (3.1.15)

Now for s0 < s− sufficiently small, by (1.2.11a) with (1.2.13),

Rn−1 × (−∞, 2
√
λ(s0 − 1)) ⊂ πxι((−∞, s0)× H)

⊂ Rn−1 × (−∞, 2
√
λ(s0 + 1)) ⊂ πxΛ−.

(3.1.16)

We now fix such an s0. By (3.1.15), if x ∈ Σ̃−(Rb, σ,
√
λω−) and Rb is chosen sufficiently large then

xn < 2
√
λ(s0 − 1) which by (3.1.16) implies x ∈ πxι((−∞, s0) × H) ⊂ πxΛ−. Thus we can choose

Rb as stated.
ii) A simple geometrical argument shows that

Σ′−b ⊃ {x = (x′, xn) ∈ Rn : Rb < |x| < Rb + 1, xn < 0, |x′| ≤ Rb

√
1− σ2

3}. (3.1.17)

Thus any line πxT 0
z (defined in (1.2.5)) with |z| < Rb

√
1− σ2

4 intersects Σ′−b transversely. Since
the distance between πxTz ∩ {x : xn < 0, |x| > Rb} and πxT 0

z ∩ {x : xn < 0, |x| > Rb} decreases as
Rb increases, we can choose Rb large enough to ensure ii).

iii) This is seen by using the same argument as for ii) above.
Finally, since Σ−b is bounded, we can find suitable S0, S1 and bounded Z. �

3.1.6. Definition & Lemma Let T > 0 be the time T of Proposition 2.4.6 for K = Zε, s−, s+ fixed in
Definition 2.2.6 and Rb, S0, S1 < s− and Z ⊃ Zε fixed in Definition 3.1.5. We set

T1 := T + s+ − S0 + 1 (3.1.18)

and choose Ra > Rb such that ⋃
0≤t≤T1

gtΛ−b ⊂ {x : |x| < Ra − 1}. (3.1.19)

We then choose T0 > T1 + S1 − S0 such that

ι((S0 + T0, S1 + T0)×Z) ⊂ Γ+(Ra + 2, d4, 0), (3.1.20)

where Γ+ is defined in (2.2.1).

Proof. It is possible to choose Ra as stated since πx ◦ ι is continuous on the compact set [S0 + T1, S1 +
T1]×Z. Furthermore, by Lemma 2.2.3 iii) we can achieve (3.1.20) by choosing T0 large enough. �
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Using the above specific choice of T0 we can follow Robert and Tamura’s use of the Egorov theorem
to obtain a formula for G0.

3.1.7. Lemma [24, page 173] Let T0 > 0 be given as in Definition 3.1.6. Then

G0(ω−, ω+;λ, h) =
1
ih

∫ T0

0

e
i
h tλ
(
e−

i
h tP g−be

i
hϕ−( · ,√λω−) | g+ae

i
hϕ+( · ,√λω+)

)
L2 dt+O(h∞). (3.1.21)

3.2. The Maslov Operator in extended phase space

In this section we will construct an approximation to the function e−
i
h tP g−be

i
hϕ− in (3.1.21). This

will involve the construction of a Maslov operator on Λ, the manifold of integral curves of the hamiltonian
system (1.1.6) defined in Theorem 1.3.3. The definition of a Maslov operator is summarised in Appendix
D, and the procedure relies on the main results of Sections 2.2 and 2.3, as well as crucial results from
[18]. The final result is then stated in Corollary 3.2.17.

We consider the Cauchy problem

Qψ(t, x;h) = 0, (3.2.1a)

ψ(0, x;h) = u0(x)e
i
hS0(x), u0 ∈ C∞0 (Rn), S0 ∈ C∞(Rn,R). (3.2.1b)

where

Q := ih
∂

∂t
− P (3.2.2)

and P = P (h) is the Hamiltonian defined in (1).
We henceforth consider u0 and S0 to be given by

u0(x) := g−b(x;h, ω−), and S0(x) := ϕ−(x,
√
λω−), (3.2.3)

and set U0 := int suppu0.

3.2.1. Remark The function

ψ(x, t;h) = e−
i
h tP (g−b( · ;h, ω−)e

i
hϕ−( · ,√λω−))|x. (3.2.4)

solves the Cauchy problem (3.2.1) with (3.2.3). This solution of the Cauchy problem is unique and smooth
in x and t.

We will construct an “approximate” solution of (3.2.1) by considering the associated Hamiltonian

q(x, t, ξ, E) := p(x, ξ) + E = |ξ|2 + V (x) + E (3.2.5)

and studying integral curves of the hamiltonian vector field given by

∂x̃

∂τ
= ξ̃,

∂t̃

∂τ
= 1,

∂ξ̃

∂τ
= −∇xV (x̃),

∂Ẽ

∂τ
= 0. (3.2.6a)

with suitable initial conditions. Deviating slightly from standard notation, for y ∈ U0 we will denote by
{(x̃(τ, y;λ), t̃(τ, y;λ); ξ̃(τ, y;λ), Ẽ(τ, y;λ)) : τ ∈ R} ⊂ R2(n+1) solutions of (3.2.6a) with

x̃(0, y;λ) = y, t̃(0, y;λ) = 0, ξ̃(0, y;λ) = ∇xS0(y), Ẽ(0, y;λ) = −λ. (3.2.6b)

3.2.2. Remark In this section we use (x, t; ξ, E)–coordinates on T ∗Rn+1, treating t as xn+1 and E
as ξn+1. We will sometimes identify T ∗Rn+1 with T ∗Rn × T ∗R by identifying ((x, t), X∗(ξ, E)) with
((x,X∗(ξ)), (t,X∗(E)). We denote by

π(x,ξ) : T ∗Rn+1 → T ∗Rn, ((x, t), X∗(ξ, E)) 7→ (x,X∗(ξ)) (3.2.7)

the projection onto the standard phase space induced by the (x, t)–coordinates.

3.2.3. Lemma The “initial value set”

Ω̂0 := {((x̃(0, y;λ), t̃(0, y;λ)), X∗(ξ̃(0, y;λ), Ẽ(0, y;λ))) : y ∈ U0} (3.2.8)

' Ω0 × {(0, X∗(−λ))} ⊂ T ∗Rn × T ∗R, (3.2.9)
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is an n–dimensional isotropic submanifold. We denote the flow of the hamiltonian vector field Hq (re-
stricted to Ω̂0) by g̃τ : Ω̂0 → T ∗Rn+1. The integral curves of Hq through Ω̂0,

Λ̃ :=
⋃
τ∈R

Λ̃τ , Λ̃τ := g̃τ Ω̂0, (3.2.10)

form a lagrangian manifold and the coordinate map

ι̃1 : R× U0 → Λ̃, (τ, y) 7→ ((x̃(τ, y;λ), t̃(τ, y;λ)), X∗(ξ̃(τ, y;λ), Ẽ(τ, y;λ))) (3.2.11)

is a diffeomorphism. Identifying T ∗Rn+1 with T ∗Rn × T ∗R, ι̃1 is

ι̃1(τ, y) = (ι(s+ τ, z), (τ,X∗(−λ))), (s, z) = ι−1(y,X∗(∇S0(y))), (3.2.12)

where ι was defined in (1.3.2).

The surface represents Λ×{(t,X∗(−λ)) : t ∈ R}. We
have used (x, t; ξ, E)–coordinates, but omitted the
E-axis and drawn only the positive part of the t–axis.
The right edge of the surface then represents Λ (more
precisely, Λ × {(0, X∗(−λ))}). If the lightly shaded
part of the right edge shows Ω0 (more precisely, Ω̂0),
the lightly shaded part of the surface represents Λ̃.

xt

Λ̃
ξ

Ω0 (Ω̂0)

Λ

Λ× R+

3.2.4. Remark We define ι̃2 := ι̃1 ◦ (id⊗πx ◦ ι), i.e.,

ι̃2 : R× ι−1(Ω0) → Λ̃,

(τ, s, z) 7→ ι̃1(τ, πxι(s, z)) = ((x∞(s+ τ, z;λ), X∗(ξ∞(s+ τ, z;λ))), (τ,X∗(−λ))). (3.2.13)

It follows from Lemma 3.2.3 that ι̃2 is a diffeomorphism. Furthermore, we see directly from (3.2.11) and
(3.2.12) that

(x̃(τ, y;λ), ξ̃(τ, y;λ) = (x∞(s+ τ, z;λ), ξ∞(s+ τ, z;λ)) (3.2.14)

for (s, z) = ι−1(y,∇S0(y)) = ι−1(πx|Ω0)
−1y.

Proof of Lemma 3.2.3. Throughout this proof we will consider T ∗Rn+1 to be identified with R2n+2

using (x, t; ξ, E)–coordinates, and similarly identify T ∗Rn with R2n using (x, ξ)–coordinates. We start
by showing that the map ι̃1 is given by (3.2.12). A crucial observation is the fact that the initial value
problem (3.2.6) splits into two independent initial value problems for (x̃, ξ̃) and (Ẽ, t̃). The latter can
be solved immediately, yielding Ẽ(τ, y;λ) = −λ and t̃(τ, y;λ) = τ . Thus

ι̃1(τ, y) = (x̃(τ, y;λ), ξ̃(τ, y;λ); τ,−λ), y ∈ U0. (3.2.15)

On the other hand, (x̃, ξ̃) are integral curves of the system

∂x̃

∂τ
= ξ̃,

∂ξ̃

∂τ
= −∇xV (x̃) (3.2.16)
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with initial conditions (x̃, ξ̃)|τ=0 = (y,∇S0(y)) ∈ Ω0, y ∈ U0. But any point in Ω0 is in fact a point on
an integral curve of (1.1.6), cf. Theorem 1.3.3. Thus for any y ∈ U0,

(y,∇xS0(y)) = (x∞(s, z;λ), ξ∞(s, z;λ)), (s, z) = ι−1(y,∇S0(y)), (3.2.17)

Now (1.1.6) is identical to (3.2.16), so π(x,ξ)g̃τ |Ω̂0
= gτ |Ω0 and hence (3.2.14) holds. Together with (3.2.15)

this implies (3.2.12) and Λ̃ = ι̃1(R× ι−1(Ω0)).
We first consider ι̃1 as a map R × ι−1(Ω0) → T ∗Rn+1 and show that it is an embedding, so Λ̃ is a

submanifold. As usual we will verify that ι̃1 is a smooth, proper injective immersion. By (3.2.12) any
bounded subset in Λ̃ is bounded in t = t̃(t, y;λ). Since t̃(t, y;λ) = τ by (3.2.12) and U0 is bounded,
it follows that the pre-image of any compact subset in Λ̃ is bounded. By (3.2.14) ι̃1 is smooth, so the
pre-image will also be closed, hence compact. Thus ι̃1 is proper. Now (y, τ) 7→ ι̃1(y, τ) can be expressed
as the map y 7→ (y, 0;∇S0(y),−λ) composed with g̃τ . The former map is clearly an injective immersion.
Since g̃τ = (gτ , τ,−λ), where gτ is the (injective and immersive) flow of Hp, g̃τ and hence ι̃1 are also
injective immersions. Thus ι̃1 : R× ι−1(Ω0) → Λ̃ is a diffeomorphism

Now Ω0 is a subset of the lagrangian manifold Λ ⊂ R2n, so we immediately see that Ω̂0 defined by
(3.2.8) is an n–dimensional isotropic manifold. Furthermore, Λ̃ is just the union of integral curves of a
hamiltonian vector field transverse to Ω̂0, and thus is lagrangian by standard arguments in the theory of
ordinary differential equations (cf., e.g., [25]). �

Defining a Maslov operator KeΛ on Λ̃ we can approximate the solution ψ of the Cauchy problem (see
Remark 3.2.1) arbitrarily closely. Explicitly, we have the following result of Maslov:

3.2.5. Proposition [18, Theorem 12.4] for any T0 > 0 there exist functions φk ∈ C∞0 (Λ̃), k ∈ N, such
that for any N there exists a function RN+1( · , · ;h) ∈ C∞(Rnx × Rt) such that

ψ(x, t;h) = KeΛ
[ N∑
k=0

φkh
k
]

+RN+1(x, t;h), 0 ≤ t ≤ T0, (3.2.18)

where

max
t∈[0,T0]

‖RN+1( · , t;h)‖L2 < CT0,Nh
N+1. (3.2.19)

3.2.6. Remark The functions RN+1, N ∈ N, are smooth due to the smoothness of the functions φk and
the smoothness of ψ. It follows from the estiomate (3.2.18) that the functions ϕk are unique and that

ψ(x, t;h) = KeΛ
[
ϕ0 + ϕR

]
, 0 ≤ t ≤ T0, (3.2.20)

where ϕR ∈ C∞0 (Λ̃) and ‖ϕR‖∞ < CRh for some CR > 0.

For an open set Ω̃ ⊂ Λ̃ we define, similarly to (2.3.1), the map

π̃eΩ,I : Ω̃ → R|I|xI
× Rt × R

|I|
ξI
, p 7→ (xI(p), t(p); ξI(p)) (3.2.21)

where I ⊂ N = {1, . . . , n} and I = N \ I. If π̃eΩ,I is a diffeomorphism on its image, (xI , t, ξI) are

lagrangian coordinates on Ω̃ and (Ω̃, π̃eΩ,I) is a lagrangian chart in the sense of Definition 2.3.2.
Denote by

π(x,ξ) : T ∗Rn+1 → T ∗Rn, ((x, t), X∗(ξ, E)) 7→ (x,X∗(ξ)) (3.2.22)

the canonical projection onto the standard phase space.
By (3.1.13), (3.2.7), (3.2.14) and (1.2.8),

π(x,ξ)(Λ̃) = TZ0 (3.2.23)

and for any open set Ω ⊂ TZ0 the pre-image

Ω̃ := (π(x,ξ)|eΛ)−1(Ω) (3.2.24)

is open by continuity. Later we shall see that in this way we can induce Maslov data (in the sense of
Definition D.1) on Λ̃ from Maslov data given on Λ.
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3.2.7. Lemma Let S ∈ C∞(Λ) denote a global generating function on Λ. Then

S̃ = S ◦ π(x,ξ) −
√
λt, S̃ ∈ C∞(Λ̃), (3.2.25)

where t is regarded as the usual coordinate function on Λ̃, is a global generating function on Λ̃.

Proof. Let p ∈ Λ̃. Noting ξ(π(x,ξ)(p)) = ξ(p), dx|π(x,ξ)(p) = dx|p and that S is a generating function,
we see from (3.2.25)

dS̃|p = dS|π(x,ξ)(p) ◦ dπ(x,ξ)|p −
√
λ dt|p

= ξ dx|π(x,ξ)(p) ◦ dπ(x,ξ)|p −
√
λ dt|p

= ξ dx|p + E dt|p. �

We first fix some basic data for KeΛ.

3.2.8. Definition In this section KeΛ denotes a Maslov operator constructed on Λ̃ using the following
Maslov data (cf. Definitions D.1 and D.5):

i) Some lagrangian atlas {(Ω̃m, π̃eΩm,Im
)}m≥0, Im ⊂ N := {1, . . . , n}, where Ω̃0 = (π(x,ξ)|eΛ)−1Ω0, Ω0

defined in (3.1.13), and I0 = N .
ii) The global coordinate map ι̃1 : Rn → Λ of (3.2.11).
iii) The global generating function S̃ given by (3.2.25).
iv) Some partition of unity {ẽm} subordinate to the covering {Ω̃m} (i.e., ẽm ∈ C∞0 (Ω̃m),

∑
ẽm = 1)

v) Some set of functions g̃m ∈ C∞(Rn+1) such that g̃m(x) = 0 for dist(x, π(x,t)Ω̃m) > 1 and g̃m = 1
on π(x,t)Ω̃m. (Here π(x,t) : T ∗Rn+1 → Rn+1 denotes the canonical projection onto the base.)

3.2.9. Lemma Define ũ0 ∈ C∞(Λ̃) through

ũ0 ◦ ι̃1(τ, y) := u0(y), (3.2.26)

let KeΛ denote a Maslov operator as in Definition 3.2.8 and set

v(x, t;h) := KeΛ[ũ0](x, t). (3.2.27)

Then

v( · , 0;h) = ψ( · , 0;h), on U0, (3.2.28)

where ψ is defined in (3.2.4).

We can now apply a crucial result from Maslov theory [18] concerning the construction of approximate
solutions to the Cauchy problem (3.2.1) using a Maslov operator defined on Λ̃ and satisfying the initial
condition (3.2.1b).

3.2.10. Theorem [18, Theorem 10.1] The function v defined in (3.2.27) is an approximate solution to
the Cauchy problem (3.2.1), i.e., it satisfies the initial conditions (3.2.1b) and for any N,T ≥ 0 there
exist constants CN,T ≥ 0 such that

Qv(t, x;h) = r(t, x;h) · h2, for 0 ≤ t ≤ T , where |r(t, x;h)| ≤ CN,T 〈x〉−N . (3.2.29)

We quote the a direct consequence of the Duhamel principle, cf., e.g., [18, Proposition 10.6].

3.2.11. Lemma Let f(t, · ;h) ∈ C∞(Rn) be a smooth function for any 0 ≤ t ≤ T for some T > 0. Then
the (unique) solution of the Cauchy problem

Qφ(t, x;h) = f(t, x;h), 0 ≤ t ≤ T, φ(0, · ;h) ∈ C∞0 (Rn) (3.2.30)

satisfies the estimate

‖φ(t, · ;h)‖∞ ≤ ‖φ(0, · ;h)‖∞ +
∫ t

0

‖f(τ, · ;h)‖∞ dτ (3.2.31)

We hence obtain the basis for the approximate representation of ψ.
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3.2.12. Corollary Let ψ of (3.2.4) and v of (3.2.27) be the exact and an approximate solution, re-
spectively, to the Cauchy problem (3.2.1). Then for any N,T ≥ 0 there exist constants CT ≥ 0 such
that

sup
t∈[0,T ]

‖ψ(t, · ;h)− v(t, · ;h)‖∞ ≤ CT · h2. (3.2.32)

3.2.13. Remark It follows from Proposition 3.2.5, (3.2.20) and Corollary 3.2.12 that ϕ0 = ũ0. hence for
any T0 > 0 we have

ψ(x, t;h) = KeΛ
[
ũ0 + ϕR

]
, 0 ≤ t ≤ T0, (3.2.33)

where ϕR ∈ C∞0 (Λ̃) and ‖ϕR‖∞ < CRh for some CR > 0.

We will now explicitly construct a Maslov operator KeΛ with Maslov data as in Definition 3.2.8 from
any given Maslov operator KΛ with the following Maslov data:

3.2.14. Definition We define KΛ as a Maslov operator constructed on Λ using the following Maslov data
(cf. Definitions D.1 and D.5):

i) Some lagrangian atlas {(Ωm, πΩm,Im
)}m≥0, Im ⊂ N , where Ω0 is either given by (3.1.13) or some

superset in Λ, I0 = N and the maps πΩm,Im
are those of Convention 2.4.4 ii) with Ω = Ωm and

I = Im.
ii) The global coordinate map ι : Rn → Λ of (1.3.2).
iii) The global generating function S given by (2.3.14).
iv) Some partition of unity {em} subordinate to the covering {Ωm} (i.e., em ∈ C∞0 (Ωm),

∑
em = 1)

v) Some set of functions gm ∈ C∞(Rn) such that gm = 1 on πxΩm and gm(x) = 0 for dist(x, πxΩm).

3.2.15. Lemma Let KΛ be a Maslov operator constructed on Λ as in Definition 3.2.14, Setting

ẽm := em ◦ π(x,ξ)|eΛ, g̃m := gm ◦ π(x,ξ)|eΛ (3.2.34)

and defining {Ω̃m, π̃eΩm,Im
} by (3.2.24) and (3.2.21), the operator KΛ induces a Maslov operator KeΛ on

Λ̃ as in Definition 3.2.8.

Proof. We first show that {Ω̃m, π̃eΩm,Im
} is a lagrangian atlas on Λ̃. By the continuity of π(x,ξ), {Ω̃m}

is an open covering of Λ̃. We shall see that π̃eΩ,I is a diffeomorphism on its image. Eeach p ∈ Ω̃ has the

representation p = ι̃1(τ, y) = (x̃(τ, y;λ), τ, ξ̃(τ, y;λ),−λ) for some unique (τ, y) ∈ R × U0, so π̃eΩm,I
acts

via

π̃eΩm,I
: (x̃(τ, y;λ), τ, ξ̃(τ, y;λ),−λ) 7→ (x̃I(τ, y;λ), τ, ξ̃I(τ, y;λ)). (3.2.35)

By working through the usual criteria (injectivity, immersiveness, properness, smoothness), we easily see
that this map is an embedding if and only if the map

π̃eΩm,I
|π(x,ξ)Λτ : (x̃(τ, y;λ), ξ̃(τ, y;λ)) 7→ (x̃I(τ, y;λ), ξ̃I(τ, y;λ)), (y, τ) ∈ ι̃−1

1 (Ω̃) (3.2.36)

is an embedding for fixed τ . In other words, we need to check that π̃eΩm,I
◦ π(x,ξ) ◦ ι̃1(τ, · ) is a diffeomor-

phism. But by (3.2.13),

π̃eΩm,I
◦ π(x,ξ) ◦ ι̃1(τ, · ) = πΩm,I ◦ gτ ◦ (πx|Λ)−1 on U0 ⊂ Rn, (3.2.37)

where πΩm,I is defined in (2.3.1) and (Ωm, πΩm,I) is a lagrangian chart. Since (πx|Λ)−1 is a diffeomorphism
onto Ω0 and gτ (Ω0) ⊂ Ωm, we have shown that π̃eΩ,I |π(x,ξ)Λτ

and hence π̃eΩm,I
is an embedding. Thus

{Ω̃m, π̃eΩm,Im
} is a lagrangian atlas on Λ̃. It is easily verified that the functions ẽm and g̃m have the

required properties of Definition 3.2.8 iv) and v), respectively. �

3.2.16. Proposition Let KΛ be a Maslov operator on Λ as in Definition 3.2.14 and KeΛ an induced
Maslov operator on Λ̃ in the sense of Lemma 3.2.15. Then for any function φ̃ ∈ C∞(Λ̃) there exists a
function φ ∈ C∞(Λ× R) such that

KeΛ[φ̃](x, t) = e−
i
hλtKΛ[φ( · , t)](x) and suppφ( · , t) ⊂ gtΩ0. (3.2.38)
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In particular, if ϕ̃ ∈ C∞(Λ̃) such that ∂τ ϕ̃ ◦ ι̃1(τ, y) = 0, i.e., ϕ̃ ◦ ι̃1(τ, y) does not depend on τ , and
ϕ ∈ C∞(Ω0) with ϕ ◦ ι(s, z) := ϕ̃ ◦ ι̃2(0, s, z), then

KeΛ[ϕ̃](x, t) = e−
i
hλtKΛ[(D

1
2
Ω0,Nϕ) ◦ g−t](x), (3.2.39)

where DΩ0,N is defined in (D.103).

With (3.2.3), (3.2.4) and Remark 3.2.13, Proposition 3.2.16 yields immediately

3.2.17. Corollary Let KΛ be a Maslov operator on Λ as in Definition 3.2.14. Then

e−
i
h tP [g−b( · ;h, ω−)e

i
hϕ−( · ,√λω−)]

= e−
i
hλtKΛ[(D

1
2
Ω0,N g−b( · ;h, ω−) ◦ πx|Ω0) ◦ g−t +R1( · , t;h)](x) (3.2.40)

where for some CT0 > 0 we have

sup
t∈[0,T ]

‖R1( · , t;h)‖∞ ≤ CT0 · h and suppR1( · , t;h) ⊂ gtΩ0. (3.2.41)

Before proving Proposition 3.2.16, we establish a useful result.

3.2.18. Lemma Let Ω ⊂ Λ be an open set with lagrangian coordinates (xI , ξI), I ⊂ N . Then using
Convention 2.4.4 ii) and the definitions (1.3.2), (3.2.11), (3.2.24) and (3.2.21), we have for all (τ, y) ∈
ι̃−1
1 (Ω̃) ∣∣det d(π̃eΩ,I ◦ ι̃1)∣∣ ◦ ι̃−1

1 =
∣∣det d(πΩ,I ◦ ι)

∣∣ ◦ ι−1 ◦ π(x,ξ)

×
∣∣det d(πx ◦ ι)

∣∣−1 ◦ ι−1 ◦ g−t ◦ π(x,ξ), on Ω̃ ∩ Λ̃t (3.2.42)

Proof. We will prove∣∣det d(π̃eΩ,I ◦ ι̃1)∣∣(τ,y) =
∣∣det d(πΩ,I ◦ ι)

∣∣
(s+τ,z)

·
∣∣det d(πx ◦ ι)

∣∣−1

(s,z)
, (s, z) = (πx|Λι)−1(y). (3.2.43)

by calculating the modulus of the determinant of the Jacobian of π̃eΩ,I ◦ ι̃2. By (3.2.13) and the chain
rule we have ∣∣det d(π̃eΩ,I ◦ ι̃2)∣∣(τ,s,z) =

∣∣det d(π̃eΩ,I ◦ ι̃1)∣∣(τ,πxι(s,z))
· |det dπxι(s, z)|(s,z) . (3.2.44)

On the other hand, direct calculation from (3.2.13) yields

∣∣∣det d(π̃eΩ,I ◦ ι̃2)|(τ,s,z)
∣∣∣ =

∣∣∣∣∣∣det

∂xI(s+τ,z;λ)
∂τ

∂xI(s+τ,z;λ)
∂s

∂xI(s+τ,z;λ)
∂z

1 0 0
∂ξI(s+τ,z;λ)

∂τ

∂ξI(s+τ,z;λ)

∂s

∂ξI(s+τ,z;λ)

∂z

∣∣∣∣∣∣
=

∣∣∣∣∣det

(
∂xI(s+τ,z;λ)

∂s
∂xI(s+τ,z;λ)

∂z
∂ξI(s+τ,z;λ)

∂s

∂ξI(s+τ,z;λ)

∂z

)∣∣∣∣∣
=
∣∣det d(πΩ,I ◦ ι)|(s+τ,z)

∣∣ (3.2.45)

Now (3.2.44) and (3.2.45) together yield (3.2.43). �

Proof of Proposition 3.2.16. We will prove (3.2.39) only; the assertion (3.2.38) will follow immedi-
ately from these considerations. An induced Maslov operator on Λ̃ in the sense of Lemma 3.2.15 is given
by

KeΛ[ϕ̃] :=
∑
m

ei
π
2 eγmKeΩm,Im

[ẽmϕ̃], ϕ̃ ∈ Λ̃, (3.2.46)

where γ̃m is the index of the chain of charts joining {Ω̃0, π̃eΩ0,N } to {Ω̃m, π̃eΩm,Im
} and

KeΩm,Im
[ẽmϕ̃](x, t) = g̃m(x, t)F−1

h

[
e

i
h

eSeΩm,Im
◦eπ−1eΩm,Im

(xIm ,t, · )(D̃−
1
2eΩm,Im

· ẽmϕ̃) ◦ π̃−1eΩm,Im
(xIm

, t, · )
]∣∣
xIm

.

(3.2.47)
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By a slight abuse of notation we use the index set Im ⊂ N to denote the index set of the “space variables”
(xIm , t) of extended phase space and write Im = N \ Im. We thus use KeΩm,Im

to denote the Maslov

operator on Ω̃m constructed with lagrangian coordinates (xIm , t, ξIm
), define

S̃eΩm,Im
= S̃ − 〈xIm

, ξIm
〉 on Ω̃m (3.2.48)

as in (2.3.3) with (3.2.25) and set

D̃eΩm,Im
◦ ι̃1(τ, y) :=

∣∣det d(π̃eΩm,Im
◦ ι̃1)

∣∣
(τ,y)

for (τ, y) ∈ ι̃−1
1 (Ω̃m). (3.2.49)

Since the index set I = N \ I of the “fibre variables” ξI is identical in Ω and Ω̃ it follows from (D.100)
that γ(Ω̃m, Ω̃k) = γ(Ωm,Ωk) and hence γ̃m = γm, the index of the chain of charts joining {Ω0, πeΩ0,N } to
{Ωm, πeΩm,Im

}. It is therefore sufficient to show that for ϕ̃ given as in the proposition,

KeΩm,Im
[ẽmϕ̃](x, t) = e−

i
hλtKΩm,Im

[(D
1
2
Ω0,Nϕ) ◦ g−t](x), (3.2.50)

where KΩm,Im is the local Maslov operator on Ωm constructed using the data of Definition 3.2.14. First,
note that

π(x,ξ) ◦ π̃−1eΩm,Im
(t, xI , ξI) = π−1

Ωm,Im
(xI , ξI) for (t, xI , ξI) ∈ π̃eΩm,Im

Ω̃m. (3.2.51)

By (3.2.48), (3.2.25) and (3.2.51) we obtain

S̃eΩm,Im
◦ π̃−1eΩm,Im

(t, xI , ξI) = SΩm,Im
◦ π−1

Ωm,Im
(xI , ξI)−

√
λt, (3.2.52)

where SΩm,Im is the local generating function on Ωm constructed from the global generating function S

in (2.3.14). Similarly, (3.2.34) implies that g̃m(x, t) = gm(x) and, using (3.2.51), ẽm ◦ π̃−1eΩm,Im
(t, xI , ξI) =

em ◦ π−1
Ωm,Im

(xI , ξI). Hence (3.2.47) becomes

KeΩm,Im
[ẽmϕ̃](x, t)

= gm(x)e−
i
hλtF−1

h

[
e

i
hSΩm,Im◦π−1

Ωm,Im
(xIm , · )(D−

1
2eΩm,Im

· ϕ̃) ◦ π̃−1eΩm,Im
(xIm , t, · ) · em ◦ π−1

Ω,I(xIm , · )
]∣∣
xI
.

(3.2.53)

By (3.2.49),

D̃eΩm,Im
◦ π̃−1eΩm,Im

= D̃eΩm,Im
◦ ι̃1 ◦ ι̃−1

1 ◦ π̃−1eΩm,Im

= s
∣∣det d(π̃eΩ,I ◦ ι̃1)∣∣ ◦ ι̃−1

1 ◦ π̃−1eΩm,Im
. (3.2.54)

Applying (3.2.42) with (3.2.51) we obtain

D̃eΩm,Im
◦ π̃−1eΩm,Im

(t, xI , ξI) =
∣∣det d(πΩ,I ◦ ι)

∣∣ ◦ ι−1π−1
Ωm,Im

(xI , ξI)

×
∣∣det d(πx ◦ ι)

∣∣−1 ◦ ι−1 ◦ g−t · π−1
Ωm,Im

(xI , ξI)

= DΩm,Im
◦ π−1

Ωm,Im
(xI , ξI) · DΩ0,N ◦ g−t ◦ π−1

Ωm,Im
(xI , ξI) (3.2.55)

From the fact that ϕ̃ ◦ ι̃1(τ, y) is independent of τ , we see that

ϕ̃ ◦ π̃−1eΩm,Im
(xI , t, ξI) = ϕ ◦ g−t ◦ π−1

Ωm,Im
(xI , ξI), (3.2.56)

where ϕ ∈ C∞(Ω0) is defined by ϕ ◦ ι(s, z) := ϕ̃ ◦ ι̃2(0, s, z). With (3.2.55) and (3.2.56) (3.2.53) becomes

KeΩm,Im
[ẽmϕ̃](x, t) = gm(x)e−

i
hλtF−1

h

[
e

i
hSΩm,Im◦π−1

Ωm,Im
(xIm , · )(em · D

− 1
2

Ωm,Im
) ◦ π−1

Ωm,Im
(xIm

, · )

× (ϕ · D
1
2
Ω0,N ) ◦ g−t ◦ π−1

Ω,I(xIm
, · )
]∣∣
xI

= e−
i
hλtKΩm,Im [em · (ϕD

1
2
Ω0,N ) ◦ g−t]. �
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3.3. The scattering amplitude as a Maslov operator on the asymptotic manifold

In this section, we will finally give the leading term in the asymptotic expansion of the scattering
amplitude as h→ 0, proving Theorem 1, which is the main objective of the present work.

From Lemma 3.1.7 and Corollary 3.2.17 we obtain

G0(ω−, ω+;λ, h) =
1
ih

∫ T0

0

(
KΛ[ψ0] | g+ae

i
hϕ+

)
L2 dt+O(h∞), (3.3.1)

where we have write ϕ+ for ϕ+( · ,
√
λω+), g+a for g+a( · ;h, ω+) and written ψ0 for

ψ0( · , t;h) := (D
1
2
Ω0,N g−b( · ;h, ω−) ◦ πx|Ω0) ◦ g−t +R1( · , t;h) ∈ C∞0 (gtΩ0), 0 ≤ t ≤ T0. (3.3.2)

Recall from Proposition 2.4.6 that we can find open sets on H such that their images under S+
λ and

ι(I, · ) (I ⊂ R is open and bounded) are well-projected onto certain tuples of lagrangian coordinates. We
hence construct a suitable covering of Zε.

3.3.1. Definition We fix some δ ∈ (0, 1/4) and choose an open covering {Zk}Mk=1 of Z0 (defined in
(3.1.13)) such that

i)
⋃
Zk ⊂ Z.

ii) there exist ik ∈ N and index sets Jk ⊂ Nik such that Γk := S+
λ (Zk) ⊂ T ∗Σik(δ) and (Γk, π

(ik)
Γk,Jk

)
are lagrangian charts on L+ (see Convention 2.4.4 for the notation used) and

iii) {(Ωk, πΩk,N\Jk
)}Mk=1, Ωk := ι((S1 + T1, S0 + T0)× Zk), (see Definitions 3.1.5, 3.1.6) are lagrangian

charts on Λ+ (defined in the Scattering Angle Hypothesis). We will write Ik := N \ Jk and I = Jk
for short.

Recall that we have not yet specified the lagrangian atlas on Λ used in the construction of KΛ in
(3.2.40) (with the exception of the chart (Ω0, πΩ0,N ). We first construct an open covering of TZ0 contained
in TZ (note that Z ⊃ Z0, cf. (3.1.14)) and then add a covering of the complement.

3.3.2. Definition We choose an open set Λ+a such that Λ+a ⊂
⋃M
k=1 Ωk and

πx(ι((S1 + T1, S0 + T0), Z0) \ Λ+a) ∩ {x : Ra < |x| < Ra + 1} = ∅.
Then there exist charts Ωk, k > M such that

i) Ωk ∩ Λ+a = ∅,
ii) there exist Ik ⊂ N such that (Ωk, πΩk,Ik

) are lagrangian charts on Λ,
iii) with Λ−b defined in (3.1.14) and Ωk for 1 ≤ k ≤M defined in Definition 3.3.1 we have

TZ0 ⊂ C ⊂ TZ , C := Λ−b ∪
⋃
k≥1

Ωk. (3.3.3)

We next choose open sets {Ω′k}k≥1 such that (Ω′k, πΩ′
k,I

′
k
) are lagrangian charts for some I ′k ⊂ N ,

Λ \ TZ ⊂ C′ ⊂ Λ \ TZ0 for C′ =
⋃
k≥1

Ω′k, (3.3.4)

and Λ = C ∪ C′. We hence obtain a lagrangian atlas

A := {(Λ−b, πΛ−b,N )} ∪
⋃
k≥1

{(Ωk, πΩk,Ik
)} ∪

⋃
k≥1

{(Ω′k, πΩ′
k,I

′
k
)} (3.3.5)

on Λ.

3.3.3. Definition We fix some function eb ∈ C∞0 (Λ−b) so that eb = 1 on Ω0 and choose some gb ∈
C∞0 (Rn) equal to unity on πxΛ−b and supported within {x ∈ Rn : |x| < Ra}.

We define functions ζk ∈ C∞0 (Zk), k = 1, . . . ,M , and τ ∈ C∞0 ((S1 + T1, S1 + T1)) such that for

ek ∈ C∞0 (Ωk) defined via ek ◦ ι(s, z) := τ(s) · ζk(z). (3.3.6)

we have
∑
ek = 1 on Λ+a. We denote by gk ∈ C∞(Rn), k = 1, . . . ,M functions supported in a small

neighbourhood of πxΩk, vanishing outside πxTZ and equal to unity on πxΩk.
We define functions ek ∈ C∞(Ωk), k > M , such that eb+

∑
k≥1 ek = 1 on TZ0 . We further introduce

functions {gk}k>M equal to unity on πxΩk, k > M , and supported in a small neighbourhood of πxΩk, so
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that supp gk ∩ πxΛ+a = ∅ and gk(x) = 0 if dist(x,Ωk) ≥ 1. In particular, for Ωk ∩T +
Z0,S0

6= ∅ and k > M

we require that supp gk ∩ {x : Ra < |x| < Ra + 1} = ∅.
We further cover TZ0 with charts (Ωk, πΩk,Ik

), k > M , such that Ωk ⊂ TZ and a subordinate partition
of unity {ek} such that eb +

∑
k≥1 ek = 1 on TZ0 . We define functions {gk}k>M equal to unity on πxΩk,

k > M , and supported in a small neighbourhood of πxΩk, so that supp gk ∩ πxΛ+a = ∅ and gk(x) = 0 if
dist(x,Ωk) ≥ 1.

Lastly, we define functions e′k ∈ C∞0 (Ω′k), k ≥ 1, so that eb+
∑
k≥1 ek+e′k = 1. (Hence {eb, ek, e′k}k≥1

is a partition of unity subordinate to A of Definition 3.3.2.) We define functions g′k equal to unity on
πxΩ′k and vanishing outside a small neighbourhood of πxΩ′k.

3.3.4. Definition We define KΛ to be the Maslov operator constructed on Λ using
i) The lagrangian atlas A given in Definition 3.3.2. (The Maslov index of any given chart is that of a

chain of charts joining it to Λ−b, defined in (3.1.14).)
ii) The global coordinate map ι : Rn → Λ of (1.3.2).
iii) The global generating function S given by (2.3.14).
iv) The partition of unity {eb, ek, e′k}k≥1 of Definition 3.3.3.
v) The set of functions {gb, gk, g′k}k≥1 of Definition 3.3.3.

3.3.5. Lemma Let KΛ be the Maslov operator constructed in Definition 3.3.4. Then

G0(ω−, ω+;λ, h) =
1
ih

M∑
k=1

ei
π
2 γk

∫ T0

T1

Gk(t;ω+, h) dt+O(h∞) (3.3.7)

with Gk(t;ω+, h) =
(
KΩk,Ik

[ekψ0( · , t;h)] | g+ae i
hϕ+

)
L2 .

Proof. Since ψ0( · , t;h) ⊂ gtΩ0 and Ω0 ⊂ ι((S0, S1)× Z0), we have

suppψ0( · , t;h) ⊂ ι((S0 + t, S1 + t)× Z0) ⊂ T −Z0,S1+t
∩ T +

Z0,S0+t
. (3.3.8)

Hence suppψ0( · , t;h) ∩ supp e′k = ∅ for all k ∈ N and t ∈ [0, T0]. It follows that

KΛ[ψ0( · , t;h)] = KΛ−b,N [ebψ0( · , t;h)] +
∑
k≥1

Ωk∩T +
Z0,S0+t 6=∅

ei
π
2 γkKΩk,Ik

[ekψ0( · , t;h)].

We now note that supp g+a ⊂ {x : Ra < |x| < Ra + 1} and

suppKΛ−b,N [ebψ0( · , t;h)] ⊂ supp gb ⊂ {x ∈ Rn : |x| < Ra}. (3.3.9)

Using (3.3.9) and the definition of gk, k > M and Ωk ∩ T +
Z0,S0+t

6= ∅, we obtain∫ T0

0

(
KΛ[ψ0( · , t;h)] | g+ae

i
hϕ+

)
L2 dt

=
M∑
k=1

ei
π
2 γk

∫ T0

0

(
KΩk,Ik

[ekψ0( · , t;h)] | g+ae
i
hϕ+

)
L2 . (3.3.10)

Furthermore, for t < T1, supp ek ∩ suppψ0( · , t;h) = ∅ by (3.1.19), and we obtain (3.3.7). �

Writing out the terms Gk using Definitions 3.3.4 and (D.5) for the local Maslov operator KΩk,Ik
, we

have

Gk(t;ω+, h) =
∫
gk(x)

(
D
− 1

2
Ωk,Ik

ek · ψ0

)
◦ π−1

Ωk,Ik
(xIk

, ξIk
)g+a(x)

× e
i
h (SΩk,Ik

◦π−1
Ωk,Ik

(xIk
,ξIk

)+〈xI ,ξI〉−ϕ+(x,
√
λω+))

dx d̄hξIk
. (3.3.11)

Here γk is the Maslov index of the chart Ωk, defined as the index of a chain of charts joining Ωk to
Λ−b (see Definitions 3.3.4 i) and D.3), SΩk,Ik

denotes the local generating function on Ωk obtained from
the generating function S ∈ C∞(Λ) (see Definitions 3.3.4 iii) and 2.3.2 ii)), πΩk,Ik

is the notation of
Convention 2.4.4 iv) and DΩk,Ik

∈ C∞(Ωk) is defined via

DΩk,Ik
◦ ι =

∣∣det d(πΩk,Ik
◦ ι)
∣∣ (3.3.12)
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Due to the cut-off function ek ∈ C∞0 (Ωk), the (xIk
, ξIk

)-support of the integrand of Gk lies in πΩk,Ik
Ωk

and we can perform a coordinate transformation

ι−1 ◦ π−1
Ωk,Ik

: (xIk
, ξIk

) 7→ (s, z). (3.3.13)

Noting (3.3.12), we obtain

Gk(t;ω+, h) = (2πh)−|Ik|/2
∫
e

i
h Φk(xI ,s,z;ω+)ψk(s, z, xI) ds dz dxIk

(3.3.14)

with

ψk(s, z, xI) :=
(
D

1
2
Ωk,Ik

ψ0

)
◦ ι(s, z)τ(s)ζk(z)g+a(xIk

(s, z;λ), xI ;h, ω+), (3.3.15)

Φk(xI , s, z;ω+) := SΩk,Ik
◦ ι(s, z)− ϕ+((xIk

(s, z;λ), xI),
√
λω+)

+ 〈xI , ξI(s, z;λ)〉. (3.3.16)

3.3.6. Lemma For k = 1, . . . ,M and some fixed δ ∈ (0, 1/4), ik ∈ N as in Definition 3.3.1 and
Σik(δ),Σik ⊂ Sn−1 given in Definition 2.4.2, we define

σk ∈ C∞0 (Σik) with 0 ≤ σk ≤ 1 and σk = 1 on Σik(δ), (3.3.17)

Let Gk(t; · , h) ∈ C∞(Sn−1 \ {ω : |ω − ω−| ≤ ε}) be defined by (3.3.14). Then

Gk(t; · , h) = σ2
k( · ) ·Gk(t; · , h) +O(h∞). (3.3.18)

Proof. It is sufficient to show that the phase Φk of (3.3.16) has no stationary points on suppψk ∩
supp(1− σk). We will calculate the first derivatives of Φk with respect to the variables of integration in
(3.3.14). First,

∂Φk
∂xIk

= −∇xIk
ϕ+((xIk

(s, z;λ), xIk
),
√
λω+) + ξIk

(s, z;λ) (3.3.19)

Note that since SΩk,Ik
is a local generating function on Ωk, we have

dSΩk,Ik
= ξI dxI − xI dξI (3.3.20)

(see (2.3.4)) and hence the chain rule gives

∂Φk
∂s

=
∂

∂s
SΩk,Ik

◦ ι(s, z)− 〈∇xIk
ϕ+((xIk

(s, z;λ), xIk
),
√
λω+), ∂sxIk

(s, z;λ)〉+ 〈xIk
, ∂sξIk

(s, z;λ)〉

= 〈ξIk
(s, z;λ)−∇xIk

ϕ+((xIk
(s, z;λ), xIk

),
√
λω+), ∂sxIk

(s, z;λ)〉
+ 〈xIk

− xIk
(s, z;λ), ∂sξIk

(s, z;λ)〉. (3.3.21)

In the same way, for m = 1, . . . , n− 1 we obtain

∂Φk
∂zm

= 〈ξIk
(s, z;λ)−∇xIk

ϕ+((xIk
(s, z;λ), xIk

),
√
λω+), ∂zm

xIk
(s, z;λ)〉

+ 〈xIk
− xIk

(s, z;λ), ∂zmξIk
(s, z;λ)〉. (3.3.22)

Since the map (3.3.13) is a diffeomorphism on πΩk,Ik
Ωk, the set of vectors{(

∂sxIk
(s, z;λ)

∂sξIk
(s, z;λ)

)
,

(
∂zm

xIk
(s, z;λ)

∂zmξIk
(s, z;λ)

)}
1≤m≤n−1

(3.3.23)

is a basis of TπΩk,Ik
◦ι(s,z)R

n. Using this in (3.3.21) and (3.3.22) at any stationary point (xIk
, s, z) of

Φk( · , · , · ;ω+) we have with (3.3.19)

xIk
= xIk

(s, z;λ), ξ∞(s, z;λ) = ∇ϕ+(x∞(s, z;λ),
√
λω+). (3.3.24)

Now (s, z, xI) ∈ suppψk implies s ∈ supp τ and z ∈ supp ζk. Hence s > s+ and we can apply Lemma 2.2.5
to deduce ω+ = ω+(z;λ). But z ∈ supp ζk means ω+(z;λ) ∈ Σik(δ) by Definition 3.3.1. Since σk = 1 on
Σik(δ), we have shown that the phase Φk of (3.3.16) has no stationary points on suppψk∩supp(1−σk). �
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3.3.7. Lemma For k = 1, . . . ,M and ik ∈ N we define

uk ∈ C∞0 (Rn−1) with uk = 1 on π
(ik)

S+
λ (Zk),Jk

(S+
λ (Zk)). (3.3.25)

Here we have used the notation of Convention 2.4.4 iii) and Definition 3.3.1. Let ω+ = θ = (θ1, . . . , θn)
and θ′ = θNik

for short. Then(
σk( · )2 ·Gk(t; · , h)

)
◦ χ−1

ik
(θ′)

= σk ◦ χ−1
ik

(θ′)F−1
h

{
uk(θJk

, · )Fh[(σk ·Gk(t; · , h)) ◦ χ−1
ik

(θJk
, · )]

}∣∣
θNik

\Jk

+O(h∞), (3.3.26)

Proof. The first term on the right–hand side of (3.3.26) is explicitly given by∫
ψk(s, z, xI , ϑNik

\Jk
,mNik

\Jk
; θ′)e

i
h Φk(s,z,xIk

,ϑNik
\Jk

,mNik
\Jk

;θ′)
ds dz d̄hxIk

d̄hϑNik
\Jk

d̄hmNik
\Jk

where by (3.3.14)

ψk(s, z, xI , ϑNik
\Jk

,mNik
\Jk

; θ′)

:= (σk ◦ χ−1
ik

)(θ′) · uk(θJk
,mNik

\Jk
) · (σk ◦ χ−1

ik
)(θJk

, ϑNik
\Jk

)

×
(
D

1
2
Ωk,Ik

f0b ◦ g−t
)
◦ ι(s, z)τ(s)ζk(z)g0a(xIk

(s, z;λ), xI ;h, χ
−1
ik

(θJk
, ϑNik

\Jk
)) (3.3.27)

and

Φk(s, z, xIk
, ϑNik

\Jk
,mNik

\Jk
; θ′) := SΩk,Ik

◦ ι(s, z)− ϕ+((xIk
(s, z;λ), xIk

),
√
λχ−1

ik
(θJk

, ϑNik
\Jk

))

+ 〈xIk
, ξIk

(s, z;λ)〉+ 〈mNik
\Jk

, θNik
\Jk

− ϑNik
\Jk
〉. (3.3.28)

As in the proof of Lemma 3.3.6 we will show that the phase Φk( · ; θ′) ∈ C∞(R×Rn−1×R|Ik|×R2|Nik
\Jk|

has no stationary points on the support of ψk( · ; θ′) ∩ supp(1− uk).
We now calculate the stationary points of Φk( · ; θ′), obtaining

0 =
∂Φk

∂mNik
\Jk

= θNik
\Jk

− ϑNik
\Jk

(3.3.29)

at the stationary point. Furthermore, differentiating and then using (3.3.29), at the stationary point we
have

0 =
∂Φk
∂xIk

= −∇xIk
ϕ+((xIk

(s, z;λ), xIk
),
√
λχ−1

ik
(θ′)) + ξIk

(s, z;λ) (3.3.30)

and

0 =
∂Φk

∂ϑNik
\Jk

= −
∂ϕ+((xIk

(s, z;λ), xIk
),
√
λχ−1

ik
(θ′))

∂θNik
\Jk

−mNik
\Jk

. (3.3.31)

Analogously to (3.3.21) we obtain

0 =
∂Φk
∂s

=
∂

∂s
SΩk,Ik

◦ ι(s, z)− 〈∇xIk
ϕ+((xIk

(s, z;λ), xIk
),
√
λχ−1

ik
(θJk

, ϑNik
\Jk

)), ∂sxIk
(s, z;λ)〉

+ 〈xIk
, ∂sξIk

(s, z;λ)〉

= 〈ξIk
(s, z;λ)−∇xIk

ϕ+((xIk
(s, z;λ), xIk

),
√
λχ−1

ik
(θ′)), ∂sxIk

(s, z;λ)〉
+ 〈xIk

− xIk
(s, z;λ), ∂sξIk

(s, z;λ)〉. (3.3.32)

where we have inserted θNik
\Jk

= ϑNik
\Jk

after differentiating. In the same way, for m = 1, . . . , n− 1

0 = 〈ξIk
(s, z;λ)−∇xIk

ϕ+((xIk
(s, z;λ), xIk

),
√
λχ−1

ik
(θ′)), ∂zm

xIk
(s, z;λ)〉

+ 〈xIk
− xIk

(s, z;λ), ∂zm
ξIk

(s, z;λ)〉. (3.3.33)

As in (3.3.24), the equations (3.3.30), (3.3.32) and (3.3.33) imply

xIk
= xIk

(s, z;λ), ξ(s, z;λ) = ∇ϕ+(x∞(s, z;λ),
√
λχ−1

ik
(θ′)). (3.3.34)

Now we have s > s+, hence Lemma 2.2.5 yields

χik(ω+(z;λ)) = θ′. (3.3.35)
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Moreover, (3.3.31) and (2.4.5) imply

mNik
\Jk

= lNik
\Jk

(z;λ). (3.3.36)

It follows from (3.3.35) and (3.3.36) that at the stationary point we have

π
(ik)

S+
λ (Zk),Jk

◦ S+
λ (z) = (ωJk

(z;λ), lNik
\Jk

(z;λ)) = (θJk
,mNik

\Jk
), (3.3.37)

i.e., there can be no stationary point on the support of 1− uk. �

By (3.3.26) we have

Gk(t; · , h) ◦ χ−1
ik

(θ′) =
∫
σk ◦ χ−1

ik
(θ′)F−1

h

{
uk(θJk

, · )Ik(t, s, θJk
, · )
}∣∣
θNik

\Jk

ds+O(h∞) (3.3.38)

where (noting |I|k = |Jk|)

Ik(t, s, θJk
,mNik

\Jk
) = (2πh)−(n−1)/2

∫
uk(θJk

,mNik
\Jk

) · (σk ◦ χ−1
ik

)(θJk
, ϑNik

\Jk
)ψk(s, z, xI)

× e
i
h Φk(s,z,xIk

,ϑNik
\Jk

;mNik
\Jk

,θJk
)
dz dxIk

dϑNik
\Jk

(3.3.39)

with

Φk(z, xIk
, ϑNik

\Jk
; s, θJk

,mNik
\Jk

) := SΩk,Ik
◦ ι(s, z)− ϕ+((xIk

(s, z;λ), xIk
),
√
λχ−1

ik
(θJk

, ϑNik
\Jk

))

+ 〈xIk
, ξIk

(s, z;λ)〉 − 〈mNik
\Jk

, ϑNik
\Jk
〉. (3.3.40)

The following results are preparatory to evaluating Ik using the method of stationary phase.

3.3.8. Lemma Let Φk(z, xIk
, ϑNik

\Jk
; s,mNik

\Jk
, θJk

) be given by (3.3.40), (s, θJk
,mNik

\Jk
) ∈ supp τ ×

suppuk. Then Φk( · ; s,mNik
\Jk

, θJk
) has a unique critical point on suppψk∩suppσk ◦χ−1

ik
)(θJk

, · ) given
by

z = (S+
λ )−1 ◦ (π(ik)

Γk,Jk
)−1(θJk

,mNik
\Jk

), xIk
= xIk

(s, z;λ), ϑNik
\Jk

= ωNik
\Jk

(z;λ). (3.3.41)

For short, we shall write Φk = Φk( · ; s,mNik
\Jk

, θJk
) and denote the values of Φk at such a stationary

point by Φk|stat.pt., also using this subscript to denote derivatives of Φk evaluated at the stationary point
(3.3.41).

Let F+ be the global generating function on L+ of Lemma 2.3.8, (Γk, π
(ik)
Γk,Jk

) given in Definition 3.3.1
and FΓk,Jk

the local generating function derived from F+ as in (2.3.3). Then at the stationary point,

Φk|stat.pt. = FΓk,Jk
◦ (π(ik)

Γk,Jk
)−1(θJk

,mNik
\Jk

) (3.3.42)

using the notation Convention 2.4.4 iii) for π(ik)
Γk,Jk

.

Proof. The stationary points of Φk are given by

0 =
∂Φk
∂xIk

= −∇xIk
ϕ+((xIk

(s, z;λ), xIk
),
√
λχ−1

ik
(θJk

, ϑNik
\Jk

)) + ξIk
(s, z;λ), (3.3.43)

0 =
∂Φk

∂ϑNik
\Jk

= −
∂ϕ+((xIk

(s, z;λ), xIk
),
√
λχ−1

ik
(θJk

, ϑNik
\Jk

))

∂ϑNik
\Jk

−mNik
\Jk

, (3.3.44)

and for m = 1, . . . , n− 1,

0 =
∂Φk
∂zm

= 〈ξIk
(s, z;λ)−∇xIk

ϕ+((xIk
(s, z;λ), xIk

),
√
λχ−1

ik
(θJk

, ϑNik
\Jk

)), ∂zmxIk
(s, z;λ)〉

+ 〈xIk
− xIk

(s, z;λ), ∂zm
ξIk

(s, z;λ)〉. (3.3.45)

Note that for any s ∈ supp τ the map ιs|Zk
: Zk → Ωk ∩ Λs is a diffeomorphism, and the restriction of

πΩk,Ik
to Ωk ∩ Λs remains a diffeomorphism, too. Hence the set of vectors{(

∂zm
xIk

(s, z;λ)
∂zm

ξIk
(s, z;λ)

)}
1≤m≤n−1

(3.3.46)
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is a basis of TπΩk,Ik
◦ι(s,z)R

n−1. Then by (3.3.45) and (3.3.43) at any stationary point (z, xIk
, ϑNik

\Jk
) of

Φk we have

xIk
= xIk

(s, z;λ), ξ∞(s, z;λ) = ∇ϕ+(x∞(s, z;λ),
√
λχ−1

ik
(θJk

, ϑNik
\Jk

)). (3.3.47)

Now (s, z, xI) ∈ suppψk implies s ∈ supp τ and z ∈ supp ζk. Hence s > s+ and we can apply Lemma
2.2.5 to deduce

ω+(z;λ) = χ−1
ik

(θJk
, ϑNik

\Jk
), hence ϑNik

\Jk
= ωNik

\Jk
(z;λ). (3.3.48)

Moreover, (3.3.44), (3.3.47) and (3.3.48) with (2.4.5) imply

mNik
\Jk

= lNik
\Jk

(z;λ). (3.3.49)

Now (3.3.45), (3.3.48) and (3.3.49) together imply (3.3.41).
Thus there exists a single stationary point determined by s and (θJk

,mNik
\Jk

). Inserting (3.3.41)
into (3.3.40) we obtain

Φk|stat.pt. = SΩk,Ik
◦ ι(s, z)− ϕ+((x∞(s, z;λ)),

√
λω+(z;λ))

+ 〈xIk
(s, z;λ), ξIk

(s, z;λ)〉 − 〈lNik
\Jk

(z;λ), ωNik
\Jk

(z;λ)〉. (3.3.50)

Now using the definition (2.3.3) of the local generating function SΩk,Ik
, we have

Φk|stat.pt. = S ◦ ι(s, z)− ϕ+((x∞(s, z;λ)),
√
λω+(z;λ))− 〈lNik

\Jk
(z;λ), ωNik

\Jk
(z;λ)〉. (3.3.51)

Furthermore, by (2.3.17) and (2.3.19),

Φk|stat.pt. = F ◦ ι(s, z;λ)− 〈lNik
\Jk

(z;λ), ωNik
\Jk

(z;λ)〉. (3.3.52)

= F+ ◦ S+
λ (z;λ)− 〈lNik

\Jk
(z;λ), ωNik

\Jk
(z;λ)〉. (3.3.53)

where F+ is the global generating function on L+. But again using (2.3.3), we see that

Φk|stat.pt. = FΓk,Jk
◦ S+

λ (z;λ), (3.3.54)

where FΓk,Jk
is the local generating function on (Γk, π

(ik)
Γk,Jk

), defined in Definition 3.3.1. Now at the
stationary point, z is given by z = (S+

λ )−1 ◦ (πikΓk,Jk
)−1(θJk

,mNik
\Jk

), so we obtain (3.3.42) from (3.3.54).
�

In order to analyse the integrand oif Ik in (3.3.39) at the point of stationary phase, we need some
results of Robert and Tamura.

3.3.9. Lemma [24, Eq. (3.6), (3.7)] We have

g−b(x;h, ω−) = ihg0b(x) + gb(x;h) · h2, g+a(x;h, ω−) = ihg0a(x) + ga(x;h) · h2 (3.3.55)

where gb, ga ∈ C∞0 (Rnx) with supx∈Rn |ga(x;h)|, supx∈Rn |gb(x;h)| ≤ C uniformly for h ∈ [0, 1]. and

g0a(x) = χ0a(x)a+0(x,
√
λω+), χ0a(x) : = 〈∇xϕ+(x;

√
λω+),∇χa(x)〉, (3.3.56)

g0b(x) = χ0b(x)b−0(x,
√
λω−), χ0b(x) : = 〈∇xϕ−(x;

√
λω−),∇χb(x)〉. (3.3.57)

3.3.10. Lemma [24, Lemmas 4.2-4.4] Let z ∈ Zε. Then on the support of f0b we have

D
1
2
Ω0,N ◦ ι(s, z) · g0b(x∞(s, z;λ),

√
λω−) =

1√
2
λ

1
4
∂

∂s
χb(x∞(s, z;λ)) (3.3.58)

Furthermore, let

A(x, ξ) :=
(
∂2ϕ+(x, ξ)
∂x∂ξ

)
. (3.3.59)

Then for z ∈ Zε and s > S0 + T1 − 1,

g0a(x∞(s, z;λ)) =
∂

∂s
χa(x∞(s, z;λ))

√
detA(x∞(s; z, λ),

√
λω+(z;λ)) (3.3.60)
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Proof. Following Robert and Tamura, we will give the proof of (3.3.58) in order to check that the
differing factor of 2 (they define p(x, ξ) = 1

2 |ξ|
2 +V (x)) in the hamiltonian system does not influence the

result. We set

f0b ◦ ι(s, z) = D
1
2
Ω0,N ◦ ι(s, z) · b−0(x∞(s, z;λ),

√
λω−)χ0b(x∞(s, z;λ)) (3.3.61)

where χ0b(x) = 〈∇xϕ−(x;
√
λω−),∇χb(x)〉. It follows from (3.3.61), (3.3.57), (3.1.11), Theorem 3.1.4

and Definition 3.1.5 that

supp f0b ∩ TZε
⊂ (πx|Λ−)−1Σ′−b. (3.3.62)

Hence by (2.2.18), (1.1.6) and the chain rule we have

χ0b(x∞(s, z;λ)) = 〈ξ∞(s, z;λ),∇χb(x∞(s, z;λ))〉 =
1
2
〈∂sx∞(s, z;λ),∇χb(x∞(s, z;λ))〉

=
1
2
∂

∂s
χb(x∞(s, z;λ). (3.3.63)

We now show that

b−0(x∞(s, z;λ),
√
λω−)−2 = e2

R s
−∞(∆xϕ−)(x(τ ;z,λ),

√
λω−) dτ =

1
2
√
λ

DΩ0,N ◦ ι(s, z) (3.3.64)

By (3.3.62), we need to show (3.3.64) only for x∞(s, z;λ) ∈ Σ−(Rb, σ3,
√
λω−), where (by Proposition

3.1.2 and Theorem 3.1.4) b−0 solves

2〈∇xϕ−,∇xb−0〉+ (∆xϕ−)b−0 = 0 with b−0 → 1 as |x| → ∞. (3.3.65)

Noting that |∇xϕ±(x, ξ)− ξ| ≤ c · |x|−1 for some c > 0 and sufficiently large |x|, we apply the method of
characteristics to obtain a representation of b−0. For t < 0 we have the characteristic curve r−(t;x, ξ)

dr−
dt

= 2∇xϕ−(r−, ξ), r−(0;x, ξ) = x

and F−(t;x, ξ) given by

∂F−(t;x, ξ)
∂t

= −∆ϕ−(r−(t;x, ξ), ξ) hence F−(t;x, ξ) = −
∫ t

−∞
∆ϕ−(r−(τ ;x, ξ)) dτ. (3.3.66)

Then (3.3.65) becomes

∂b−0(r−(t;x, ξ), ξ)
∂t

= b−0
∂F−
∂t

implying b−0(r−(t;x, ξ), ξ) = eF−(t;x,ξ). (3.3.67)

Thus b−0(x,
√
λω−) = b−0(r−(0;x, ξ)ξ) = eF−(0;x,ξ). Inserting ξ =

√
λω− and x = x∞(s, z;λ) and taking

the inverse, we obtain the first equality in (3.3.64).
Now let y ∈ Σ′−b. Then by Definition 3.1.5, y = x∞(s, z;λ) for some s < s−, z ∈ H. Using the

notation of Definition 1.1.2,

∂

∂t
x(t; y,∇xϕ−) = 2ξ(t; y,∇xϕ−) = 2∇xϕ−(x(t; y,∇xϕ−),

√
λω−), (3.3.68)

where for short we have abbreviated ∇xϕ−(x(t; y,∇xϕ−),
√
λω−) by ∇xϕ−. Then, by Liouville’s Theo-

rem, we have ∣∣∣∣det
∂x(t; y,∇xϕ−)

∂y

∣∣∣∣ = e2
R t
0 (∆xϕ−)(x(τ ;y,∇xϕ−),

√
λω−) dτ

Now x(t; y,∇xϕ−) = x∞(t+ s, z;λ), so the chain rule yields∣∣∣∣det
∂x(t; y,∇xϕ−)

∂y

∣∣∣∣ = ∣∣∣∣det
∂x∞(t+ s; z, λ)

∂(s, z)

∣∣∣∣ · ∣∣∣∣det
∂x∞(s; z, λ)
∂(s, z)

∣∣∣∣−1

and thus ∣∣∣∣det
∂x∞(s; z, λ)
∂(s, z)

∣∣∣∣ = ∣∣∣∣det
∂x∞(t+ s; z, λ)

∂(s, z)

∣∣∣∣e2 R s
t+s

(∆xϕ−)(x∞(τ ;z,λ),
√
λω−) dτ . (3.3.69)
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Now by (1.2.11),

lim
t→−∞

det
(
∂x∞(t+ s; z, λ)

∂(s, z)

)
= 2

√
λ (3.3.70)

Taking the limit t→ −∞ in (3.3.69) we thus obtain the second half of (3.3.64). �

3.3.11. Lemma Let ψk be given by (3.3.15). Let A(x, ξ) be given by (3.3.59). Then for (s,mNik
\Jk

, θJk
) ∈

suppσk × suppuk and (z, xIk
, ϑNik

\Jk
) determined by (3.3.41) we have

ψk(s, z, xI) =
1√
2
(ih)2λ

1
4 ∂sχb(x∞(s− t, z;λ))∂sχa(x∞(s, z;λ))ζk(z)D

1
2
Ωk,Ik

◦ ι(s, z)

×
√

detA(x∞(s; z, λ),
√
λω+(z;λ)) + h2R2(s, t, z, xI ;h), (3.3.71)

where ‖R2( · ;h)‖∞ < c · h for some c > 0 and 0 < h < 1.

Proof. Since z ∈ Zε at the stationary point (3.3.41), the result for the main term follows immediately
from Lemma 3.3.10. Note that τ(s) does not appear in (3.3.71) since by (3.1.19), (3.1.20) and Definition
3.3.3 we have

τ = 1 on supp τ ∩ {x : Ra ≤ |x∞( · , z;λ)| ≤ Ra + 1}, z ∈ supp ζk. (3.3.72)

and by (3.1.5) we have supp∇χa ⊂ {x : Ra ≤ |x| ≤ Ra + 1}. The estimate of the error R2 follows from
the estimates in Corollary 3.2.17 and Lemma 3.3.9. �

For (Γk, π
(ik)
Γk,Jk

) defined in Definition 3.3.1 and using the notation of Convention 2.4.4 iii) for π(ik)
Γk,Jk

we define

EΓk,Jk
◦ S+

λ =
∣∣det d(π(ik)

Γk,Jk
◦ S+

λ )
∣∣. (3.3.73)

Denoting by g(ik) the matrix representation of the metric tensor of Sn−1 in the coordinates of the chart
(Σik , χik), we define

1gΣik
◦ ω+( · ;λ) := |det(g(ik) ◦ ω+( · ;λ))|. (3.3.74)

3.3.12. Lemma Let Φk(z, xIk
, ϑNik

\Jk
; s,mNik

\Jk
, θJk

) be defined by (3.3.40). Let A(x, ξ) be given by
(3.3.59), DΩk,Ik

by (3.3.12), EΓk,Jk
by (3.3.73) and gΣik

by (3.3.74). Then for (s,mNik
\Jk

, θJk
) ∈

suppσk × suppuk we have

|det Hess Φk( · , · , · ; s,mNik
\Jk

, θJk
)|stat.pt.

=
1
2
λ

n−2
2 DΩk,Ik

◦ ι(s, z) · EΓk,Jk
◦ S+

λ (z) · (gΣik
◦ S+

λ (z;λ))
1
2 · |detA(x∞(s, z, λ),

√
λω+(z;λ)))| (3.3.75)

where (z, xIk
, ϑNik

\Jk
) are determined by (3.3.41).

The proof of Lemma 3.3.12 relies primarily on involved but elementary manipulations of block ma-
trices. It can be found in Appendix C. We can now use the results of Lemmas 3.3.8, 3.3.11 and 3.3.12
to evaluate the integrals Ik of (3.3.39) using the method of stationary phase for parameter–dependent
oscillatory integrals.

3.3.13. Lemma [13] Let φ( · , · ) ∈ C∞(Rn × Rm,R), assume dφ( · , 0)|0 = 0 and |detHessφ( · , 0)|0 6= 0.
Denote by x(y) the solution of the equation dφ( · , y)|x = 0 with x(0) = 0 given by the implicit function
theorem. Then for u ∈ C∞0 (K) for some K 3 (0, 0)∣∣∣∣∫ u(x, y)e

i
hφ(x,y) dx− (2π/h)

n
2

|detHessφ( · , y)|x(y)
ei

π
2 sgn Hessφ( · ,0)|0e i

hφ(x(y),y)u(x(y), y)
∣∣∣∣ ≤ c · hn

2 +1 (3.3.76)

for some c > 0.

We obtain
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3.3.14. Lemma There exists a constant C > 0 such that∣∣∣∣Ik(t, s, θJk
,mNik

\Jk
)− (ih)2(2πh)

n−1
2 λ

3−n
4 ei

π
2 βk∂sχb(x∞(s− t, z;λ))∂sχa(x∞(s, z;λ))

× ζk(z)(g
− 1

4
Σik

E
− 1

2
Γk,Jk

) ◦ (π(ik)
Γk,Jk

)−1(θJk
,mNik

\Jk
)e

i
hFΓk,Jk

◦π−1
Γk,Jk

(θJk
,mNik

\Jk
)
∣∣∣∣ ≤ C · h

n−1
2 +3 (3.3.77)

with z = (S+
λ )−1 ◦ (π(ik)

Γk,Jk
)−1(θJk

,mNik
\Jk

) and βk := sgnHess Φk|stat.pt..

Note that by (3.3.7) and (3.3.38) we have

G0(ω−, ω+;λ, h) =
1
ih

M∑
k=1

ei
π
2 γk

∫ T0

T1

∫ S0+T0

S1+T1

σk ◦ χ−1
ik

(ωNik
)

×F−1
h

{
uk(ωJk

, · )Ik(t, s, ωJk
, · )
}∣∣
ωNik

\Jk

dt ds+O(h
n−1

2 +2) (3.3.78)

where γk was introduced in (3.3.11) and we have written ω+ = (ω1, . . . , ωn), ωI = (ωi)i∈I for I ∈ N and
Nik = N \ {ik}. Inserting (3.3.77) into (3.3.78) we obtain

G0(ω−, ω+;λ, h)

= ih(2πh)
n−1

2 λ
3−n

4

M∑
k=1

ei
π
2 (γk+βk)σk ◦ χ−1

ik
(ωNik

)F−1
h

{
(g−

1
4

Σik
E
− 1

2
Γk,Jk

) ◦ (π(ik)
Γk,Jk

)−1(ωJk
, · )

× ζk ◦ (S+
λ )−1 ◦ (π(ik)

Γk,Jk
)−1(ωJk

, · )G(ωJk
, · )e

i
hFΓk,Jk

◦π−1
Γk,Jk

(ωJk
, · )}∣∣

ωNik
\Jk

+O(h
n−1

2 +2) (3.3.79)

with

G(ωJk
,mNik

\Jk
) =

∫ T0

T1

∫ S0+T0

S1+T1

∂sχb(x∞(s− t, z;λ))∂sχa(x∞(s, z;λ)) ds dt. (3.3.80)

We have omitted the function uk since uk ◦π(ik)
Γk,Jk

◦S+
λ = 1 in supp ζk. Now since ∂sχb(x∞(s− t, z;λ)) =

−∂tχb(x∞(s− t, z;λ)), we have

G(ωJk
,mNik

\Jk
) = −

∫ S0+T0

S1+T1

(χb(x∞(s− T1, z;λ))− χb(x∞(s− T0, z;λ)))∂sχa(x∞(s, z;λ)) ds

=
∫ S0+T0

S1+T1

(0− 1)∂sχa(x∞(s, z;λ)) ds

= 1. (3.3.81)

Here we have used (3.1.5) and Definitions 3.1.5, 3.1.6. With (D.105) we hence obtain from (3.3.79) and
(3.3.81) that

G0(ω−, ω+;λ, h) = ih(2πh)
n−1

2 λ
3−n

4

M∑
k=1

ei
π
2 (γk+βk)KΓk,Jk

[ζk ◦ (S+
λ )−1](ω+) +O(h

n+1
2 +1) (3.3.82)

where KΓk,Jk
denotes a local Maslov operator on (Γk, π

(ik)
Γk,Jk

) (see Definition 3.3.1) defined using the
global generating function F+ of (2.3.19), the global coordinate map S+

Λ : Rn−1 → L+ and the cut-off
functions ζk ◦ (S+

λ )−1 ∈ C∞0 (Γk) and σk ∈ C∞0 (Σik).
Inserting (3.3.82) into (3.1.8)

f(ω−, ω+;λ, h) =
M∑
k=1

e−(n−1+γk+βk)iπ
2KΓk,Jk

[ζk ◦ (S+
λ )−1](ω+) +O(h). (3.3.83)

Recall that γk, introduced into the formula in (3.3.11), is the Maslov index of the chain of charts joining
Ωk to Λ−b and βk is the sign of the Hessian in (3.3.77).

3.3.15. Remark The formula (3.3.83) is the pinnacle of our direct calculations. Unfortunately, the
Hessian of Lemma 3.3.12 is too complicated for the author to evaluate its sign explicitly. We will
therefore pass to some structural arguments top complete the proof of Theorem 1.
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The scattering amplitude f is naturally independent of the concrete choice of the covering {Zk}k≥1

of Zε in Definition 3.3.1 and the subordinate partition of unity {ek} in Definition 3.3.3. Both can be
slightly modified (within the confines of Proposition 2.4.6) without changing f . It follows that

e−(n−1+γk+βk)iπ
2KΓk,Jk

= e−(n−1+γk′+βk′ )i
π
2KΓk′ ,Jk′ +O(h) on Γk ∩ Γk′ , k, k′ ≥ 1, (3.3.84)

where for j = k, k′, γj is the Maslov index of ι((S0 + T1−, S1 + T0 + 1) × Zk and βj is the sign of the
corresponding Hessian Φj .

Now fix any open set Γ0 ⊂ L+ such that rank dπω|p = n − 1 for all p ∈ Γ0 and for any lagrangian
chart (Γj , π

(i)
Γj ,Jj

) on L+ denote by δj the Maslov index of a chain of charts joining Γ0 and Γj . Then for
any two sets Γk and Γk′ we have

e−δki
π
2KΓk,Jk

= e−δk′ i
π
2KΓk′ ,Jk′ +O(h) on Γk ∩ Γk′ , k, k′ ≥ 1, (3.3.85)

by general Maslov theory [18, 20, 27]. Comparing (3.3.84) and (3.3.85) we obtain

n− 1 + γk + βk = δk + c0 for any choice of Γ0 (which induces δk). (3.3.86)

We define a global Maslov operator on L+ in the following way (see Definition D.1):

3.3.16. Definition We use Notation 2.4.4 and define a global Maslov operator KL+ on L+ using the
following objects.

i) The atlas {(Σk, χk)} on Sn−1 of Definition 2.4.2,
ii) A lagrangian atlas (Γk, π

(ik)
Γk,Jk

)k≥0 on L+ such that
– for k = 1, . . . ,M the charts coincide with those of Definition 3.3.1 ii),
– for each k there exists some ik such that each πωΓk ⊂ Σik(δ), where δ was fixed in Lemma

3.3.6,
– and Γ0 is well-projected onto Sn−1.

iii) The global coordinate map S+
λ : Rn−1 → L+ of Theorem 2.1.4,

iv) The global generating function F+ of (2.3.19),
v) A partition of unity {ζk ◦ (S+

λ )−1}, ζk ∈ C∞0 (Rn−1) subordinate to the covering {Γk}, where ζk
coincides with the functions defined in Definition 3.3.3 for k = 1, . . . ,M .

vi) The functions σk ∈ C∞0 (Σk) (note that σik = 1 on πωΩk).

It follows from (3.3.83) and (3.3.86) that for the global Maslov operator of Definition 3.3.16

f(ω−, ω+;λ, h) = eic0
π
2 ·KL+ [1](ω+) +O(h), (3.3.87)

where c0 is fixed by the choice of Γ0 in Definition 3.3.16.

3.3.17. Remark Clearly, the constant c0 in (3.3.87) is not very explicit. It arises because any Maslov
operator on L+ is determined only up to a factor ei

π
2 Z4 by the choice of Γ0. Through an analysis of the case

where (πω|L+)−1ω+ is well-projected, we can make this constant a little more explicit. It is impractical
to use our construction in this case, as in Definition 3.3.1 lagrangian coordinates {ω1, . . . , ωn} \ {ωik} on
Γk = S+

λ (Zk) induce lagrangian coordinates {xik , ξ1, . . . ξn} \ {ξik} on Ωk. Alternatively, however, it is
more practical in this case to take {x1, . . . , xn} as lagrangian coordinates on Ωk, which is also possible.
This is the strategy employed in [24] and instead of repeating their construction, we will compare (3.3.87)
to [24, Theorem 1] to investigate c0.

3.3.18. Lemma Let 2 ≤ n ≤ 6 and assume that L+, dimL+ = n − 1, is in general position. Denote by
πω : T ∗Sn−1 → Sn−1 the canonical projection onto the base. Then for any ω ∈ Sn−1 with ω 6= ω− there
are only finitely many z(k) ∈ H such that (πω|L+)−1ω = S+

λ (z(k)).

Proof. It follows from the estimate (1.2.16b) that for any ε > 0 the set

Zε = {z ∈ Rn−1 : |ω+(z;λ)− ω−| ≥ ε} (3.3.88)

is compact. Choosing ε sufficiently small, we have (πω|L+)−1ω ⊂ S+
λ (Zε), which is compact by continuity

of S+
λ . By the General Position Hypothesis, L+ has only stable singularities and dimS(Λ) ≤ n−1. Hence

(πω|L+)−1ω contains only isolated points. Since S+
λ (Zε) is compact, there can be only finitely many of

such points. �
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We first show that the non–singular points on L+ coincide with regular scattering directions in the
sense of [24]. We will assume that the manifold L+ is in general position, which allows us to use Lemma
3.3.18.

3.3.19. Lemma The scattering direction ω+ ∈ Sn−1, ω+ 6= ω− is regular in the sense of [24] if and only
if all of the (finite number of) points (πω|L+)−1ω+ are well-projected onto Sn−1.

Proof. Assume that ω+ is regular. Then by the implicit function theorem there are finitely many points
z(1), . . . , z(l) such that ω+(z(k);λ) = ω+. Furthermore, for each z(1) we have

σ̂(z(k);λ) :=
∣∣∣det

(
ω+,

∂ω+

∂z1
, . . . ,

∂ω+

∂z1

)∣∣∣
z(k)

6= 0 (3.3.89)

Let (Σ, χ) be some chart on Sn−1 such that ω+ ∈ Σ, χ : Σ 3 ω 7→ θN ′ ∈ Rn−1. Denoting by g the metric
tensor on the sphere we have

σ̂(z(k);λ) = (gΣ ◦ ω+(z(k);λ))
1
2 · EΓk,N ′ ◦ S+

λ (z(k)) (3.3.90)

by (3.3.73), (3.3.74), (C.96). It follows that σ̂(z(k);λ) 6= 0 (i.e., ω+ is regular) if and only if EΓk,N ′ ◦
S+
λ (z(k)) 6= 0 (i.e., S+

λ (z(k)) lies in a chart on L+ that is well-projected onto Sn−1).
Conversely, by Lemma 3.3.18 there are only finitely many points z(1), . . . , z(l) such that S+

λ (πω|L+)−1ω+,
hence ω+(z(k);λ) = ω+ only for k = 1, . . . , l. Furthermore, σ̂(z(k);λ) 6= 0 by the previous argument, so
ω+ is regular �

Assume that ω+ 6= ω− is regular and lies in some chart (Σ, χ), where χ : ω 7→ ωN ′ for some n−1-tuple
N ′ ⊂ N . Assume that ω+(z;λ) = ω+ precisely for z = z(0), . . . , z(l) with some l ∈ N. Let z(k) ∈ Γk ⊂ L+,
k = 0, . . . , l, where by Lemma 3.3.19 we can assume that each Γk is a lagrangian chart well-projected
onto Sn−1. We construct a Maslov operator KL+ on L+ using the charts Γk, k = 0, . . . , l with lagrangian
coordinates ωN ′ together with arbitrary additional charts, but otheriwse as in Defintion 3.3.16 i), iii)-vi).
We can construct KL+ in such a way that by (3.3.87) we have

f(ω−, ω+;λ, h) = e−i
π
2 (γk+c0)

l∑
k=0

KΓk,N ′ [1] +O(h), (3.3.91)

where γj is the Maslov index joining Γj to Γ0. Since each Γk is well-projected onto Sn−1, we have with
(D.105) for θ = χ(ω+),

f(ω−, ω+;λ, h) =
l∑

k=1

e−i
π
2 (γk+c0)e

i
hFΓk,N′◦πΓk,N′ (θ)(gΣ ◦ χ−1(θ);λ))−

1
4 · (EΓk,N ′ ◦ πΓk,N ′(θ))−

1
2 +O(h),

Using (2.3.18) and (3.3.90), we obtain

f(ω−, ω+;λ, h) =
l∑

k=1

σ̂(z(k);λ)−
1
2 e−i

π
2 (γk+c0)e

i
h (2

R ∞
−∞(|ξ∞(τ,z(k);λ)|2−λ) dτ−〈r+(z(k);λ),

√
λω+(z(k),λ)〉) +O(h)

We can compare this to Robert and Tamura’s formula [24, (0.8), (0.9)], and obtain

µj = γj + c0, (3.3.92)

where µj is the Maslov index of the trajectory Tz. We have not introduced the concept of the Maslov
index of a trajectory and refer the reader to [18, §7]. Since γ0 = 0, it follows that c0 is equal to µ0, the
Maslov index of any trajectory Tz with S+

λ (z) ∈ Γ0. This completes the proof of Theorem 1.

3.4. Perspectives and remarks

We will make some remarks on Theorem 1 and further studies on this subject. A formula identical to
(15) for the case where V is compactly supported can be obtained from Protas’ article through a detailed
analysis of the first term in [21, Theorem 2, 2)], see [12]. It is not surprising that the formula carries
over to the case where L+ ⊂ T ∗Sn−1 is induced by a short-range potential. The effect that caustics have
on the asymptotics of the scattering amplitude is discussed above in Section 3.5.

It would be very interesting in practice to explore the relationship between caustics in Λ and caustics
in L+ more deeply. The following questions arise naturally:
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i) For some sufficiently large R > 0, denote UR := {z ∈ H : |z| > R}. Assuming that L+ is in general
position, is then L+ ∩ S+

λ (UR) free of caustics?
ii) Can the uniformity with respect to T, T0, T1 in Propositions 2.4.6 and 2.4.7 be improved? In partic-

ular, does there exist a uniform time T > 0 independent of z ∈ H such that the rank of dπx|p does
not change for p ∈ T +

z,T ?
iii) Under which conditions do caustics occur in Λ and L+ if V 6= 0? (Alexandrova [2, page 1510] claims

that caustics always occur if V ∈ C∞0 (Rnx), V 6= 0, but she is apparently not referring to stable
singularities that remain when L+ is shifted into general position.)

Michel [19] imposes the weakened Energy Hypothesis

Assumption (H) For all z ∈ H, lims→∞|x∞(s; z, λ)| = ∞.

This assumption is sufficient to imply the assertions in Definition 1.2.3, hence all of the results
of Chapters 1 and 2 remain valid, as they depend only on the estimates of the classical trajectories
in Propositions 1.2.7 and 1.2.10. Under additional assumptions on the “analyticity at infinity” of the
potential V and the behaviour of the resolvent R(ζ, P ) Michel proceeds to obtain the results of Robert
and Tamura [24] for regular scattering directions. In fact, is clear from the Proof of [19, Theorem 1.3]
that Michel’s results can be extended to caustics in the same way as Robert and Tamura’s, yielding
Theorem 1 under these weakened conditions.

3.5. On caustics at infinity

Using Theorem 1 the leading term of the asymptotics of the scattering amplitude can be calculated
even in the presence of “caustics at infinity” (i.e., singularities of the projection πω : L+ → Sn−1). These
occur whenever the map z 7→ ω∞(z;λ) is not an immersion, i.e., the “Regular Condition” of [24] is not
fulfilled. In general, the scattering amplitude at a caustic angle will diverge as h→ 0, and (15) allows us
to determine the rate of divergence, which essentially depends on the geometry of L+.

For a lagrangian manifold in general position (see the General Position Hypothesis on page 83),
the possible types of caustics have been classified according to their local generating functions in low
dimensions (n = 1, . . . , 5 for a manifold Λ ∈ T ∗M , dimM = n), while in higher dimensions (n ≥ 6) this
type of classification is essentially impossible [6]. Details on this problem can be found in [4, 6, 7] with
a summary in [8, Appendix 12]. The oscillating integrals occurring in the Maslov operator KL+ then
have a certain asymptotic blow-up as h→ 0, depending on the type of singularity. The exponent in h of
this blow-up was calculated for the classified types of singularities by Arnol’d [5]. It is hence possible to
give the leading term of the asymptotic behaviour as h→ 0 of the scattering amplitude for scattering in
Rn if n = 2, . . . , 6 (note that L+ ∈ T ∗Sn−1). This classification relies essentially on the General Position
Hypothesis (see Appendix D).

Arnol’d’s classification of caustics (lagrangian singularities) in some open subset Ω of a lagrangian
manifold Λ ⊂ T ∗M , dimM = n, is according to the form of the local generating function SΩ,I , cf.
Definition 2.3.2. It is assumed that Λ is in general position and that the singularity occurs at (x, ξ)(p) =
(0, 0). For n = 1 and n = 2 the following stable singularities exist:

n ≥ 1 A1 SΩ,N\{1} ◦ π−1
Ω,N\{1}(xN\{1}, ξ1) = ξ21 (a non-singular region)

n ≥ 1 A2 SΩ,N\{1} ◦ π−1
Ω,N\{1}(xN\{1}, ξ1) = ±ξ31 (a fold)

n ≥ 2 A3 SΩ,N\{1} ◦ π−1
Ω,N\{1}(xN\{1}, ξ1) = ±ξ41 + x2ξ

2
1 (a tuck with a cusp)

While these singularities may occur in any dimension higher than 1 or 2, respectively, more compli-
cated singularities appear only for n ≥ 3. We will now discuss the physical applications of the classification
in more detail. In the case of a non-singular region (A1) we have

x1 = −
∂SΩ,N\{1}

∂ξ1
= −2ξ1 on Ω in the case (A1), (3.5.1)

so it is clear that the set Ω is well-projected onto M . At singularities of type A2 and A3 we have
rank dπ|Λ = n − 1, so it is possible to choose lagrangian coordinates of the form (xI , ξj), I = N \ {j},
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j ∈ N , on Ω. (For simplicity, j = 1 in the table above.) Then there exists a function ηj(xI , ξj) such that

Ψ: πΩ,IΩ → Rn, (xI , ξj) 7→ (xI , ηj) (3.5.2)

is an embedding and S̃Ω,I(xI , ηj) := SΩ,I ◦ Ψ−1(xI , ηj) = SΩ,I(xI , ξj(xI , ηj)) is of the form A2 or A3

above, with N \ {1} replaced by I.

3.5.1. Scattering in R2 and R3. By Theorem 1 the leading term in the asymptotics of the scattering
amplitude is determined through the geometry of L+ ⊂ T ∗Sn−1. We will see that, more precisely, the
leading term is given through the asymptotics of integrals of the type

I(x, h) = (2πh)−
1
2

∫
e

i
hSΩ,N\{1}◦π−1

Ω,N\{1}(xN\{1},ξ1)u0(xN\{1}, ξ1) dξ1, u0 ∈ C∞0 (R). (3.5.3)

The asymptotics of such integrals for stable singularities have been studied by Arnol’d in [5] and more
extensively by Guillemin and Sternberg [11, §9]. For n = 2, 3 we will make this more explicit.

Assume that L+ ⊂ T ∗Sn−1, 2 ≤ n ≤ 3 and apply Definition 1. Fix some ω+ ∈ Sn−1 and assume
that (πω|sL+)−1(ω+) = S+

λ (z0) for some z0 = z0(ω+) ∈ H. Let S+
λ (z0) ∈ Γk for some k ∈ N and assume

that (xN\{ik,jk}, ξjk) are canonical coordinates on Γk, where ik was defined in Definition 1. Then by
Theorem 1,

f(ω−, ω+;λ, h) = ei(µ0+γk) π
2 ·KΓk,N\{ik,jk}[ek( · )](ω+) +O(h). (3.5.4)

Now using (D.105) and the charts of Definition 2.4.2 we have for ω ∈ πωΓk

KΓk,N\{ik,jk}[ek( · )] ◦ χ
−1
ik

(ωN\{ik}) =
∫
e

i
hFΓk,N\{ik,jk}◦(π

(ik)
Γk,N\{ik,jk}

)−1(ωN\{ik,jk},ljk
)

× (g
1
4
Γk,N\{ik,jk}D

− 1
2

Γk,N\{ik,jk}ek) ◦ (π(ik)
Γk,N\{ik,jk})

−1(ωN\{ik,jk}, ljk) dljk . (3.5.5)

By the above considerations, we can find an embedding Ψk as described above so that

Φk(ωN\{ik,1}, ηjk) := FΓk,N\{ik,jk} ◦ (π(ik)
Γk,N\{ik,jk})

−1 ◦Ψ−1
k (ωN\{ik,jk}, ηjk) (3.5.6)

has the form A1, A2 or A3. Performing a transformation of variables ljk 7→ ηjk in the integral, we obtain

f(ω−, · ;λ, h) ◦ χ−1
ik

(ωN\{ik}) = ei(µ0+γk) π
2 ·
∫
A(ωN\{ik,jk}, ηjk)eΦk(ωN\{ik,jk},ηjk

) dηjk +O(h) (3.5.7)

where the amplitude is

A(ωN\{ik,jk}, ηjk) = (g
1
4
Γk,N\{ik,jk}D

− 1
2

Γk,N\{ik,jk}ek) ◦ (π(ik)
Γk,N\{ik,jk})

−1 ◦Ψ−1
k (ωN\{ik,jk}, ηjk) (3.5.8)

×
∂ljk(ωN\{ik,1}, ηjk)

∂ηjk
(3.5.9)

and the phase function Φk is given by (3.5.6) and has one of the forms A1, A2 or A3. The asymptotics
of such integrals can be analysed as in [11, §9], allowing the determination of the principal term of the
asymptotics of f(ω−, ω+;λ, h) once L+ is known.

Summarising, for scattering in R2 we have

f(ω−, ω+;λ, h) ∼

{
const if ω+ is regular,
h−

1
6 if ω+ is a fold point,

h→ 0, (3.5.10)

and in R3 we have

f(ω−, ω+;λ, h) ∼


const if ω+ is regular,
h−

1
6 if ω+ is a fold point,

h−
1
4 if ω+ is a cusp point,

h→ 0. (3.5.11)

No other cases can generically occur in these dimensions, and the factor in front of hγ (γ = 0,− 1
6 or − 1

4 )
can be calculated explicitly when L+ is known.
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3.5.2. An Example. For scattering in two-dimensional configuration space, caustics at infinity occur
in L+ ⊂ T ∗S1. Hence only singularities of type A1 and A2 can occur. In order to further illustrate the
way in which singularities enter into the asymptotics of the scattering amplitude, we will construct an
explicit situation involving a fold (A2) singularity, which gives rise to a scattering amplitude that behaves
as an Airy function.

3.5.1. Definition On S1 we define a chart (Σ+
1 , χ1) by

Σ+
1 := {x = (x1, x2) ∈ R2 : |x| = 1, x1 > 0}, χ1(x1, x2) = arctan(x1/x2). (3.5.12)

We denote the induced chart on the cotangent bundle by (T ∗Σ+
1 , χ̃1). We define open sets

Z ⊂ R, Γ := S+
λ (Z) ⊂ L+ ∩ T ∗Σ+

1 , Σ := πωΓ ⊂ Sn−1 (3.5.13)

where L+ is the lagrangian manifold with coordinate map S+
λ of Theorem 2.1.4 and πω : T ∗S1 → S1

denotes the canonical projection onto the base. We make the following assumptions:
i) (πω|L+)−1Σ = Γ,
ii) For z ∈ Z,

θ2(z) =
π

4
− z2, l2(z) = z, (θ2(z), l2(z)) := χ̃1 ◦ S+

λ (z). (3.5.14)

iii) We define Z ′ = (π/4− ε, π/4 + ε) ⊂ Z for some ε > 0, and set Γ′ := S+
λ (Z ′) ⊂ Γ, Σ′ := πωΓ′ ⊂ Σ.

iv) On Γ we have the lagrangian chart πΓ,∅ : (ω2, l2) 7→ l2 (see Definition 2.3.2). Again for simplicity
we assume that the local generating function FΓ,∅ is given by

FΓ,∅ ◦ π−1
Γ,∅(l2) =

1
3
l32 −

π

4
l2 (3.5.15)

(in general, it may differ by an additive constant).

By Remark D.6, these choices fix KΓ′ up to a factor e
i
h c1+i

π
2 c2 and additive functions of order O(h).

In the situation of Definition 3.5.1, the fold-point is at

p0 = (ω0, L0) =
(

1√
2

(
1
1

)
, 0
)
∈ L+ ∩ T ∗Σ+

1 , (3.5.16)

We denote the Airy function by

Ai[x] :=
1
π

∫ ∞

0

cos(t3/3 + xt) dt. (3.5.17)

3.5.2. Proposition In the situation of Definition 3.5.1, for some γ ∈ Z,

f(ω−, ω+;λ, h) = ei
π
2 γ
√

2πh−
1
6 Ai[h

1
3 (θ − π/4)] +O(h

1
6 ), ω+ ∈ Σ′, θ = χ1(ω+). (3.5.18)

Proof. By Theorem 1, the scattering amplitude is given by

f(ω−, ω+;λ, h) = eiµ0
π
2 ·KL+ [1](ω+) +O(h) (3.5.19)

for some µ0 ∈ {0, 1, 2, 3}. Since (πω|L+)−1Σ = Γ we can construct KL+ in such a way that only the local
Maslov operator on Γ contributes to KL+ [1](ω+) and we can take the Maslov index of Γ to equal zero.
Then we have

f(ω−, ω+;λ, h) = eiµ0
π
2 ·KΓ,∅[e( · )](ω+) +O(h) (3.5.20)

where e( · ) ∈ C∞0 (Γ) and by (D.105),

KΓ,∅[e](χ−1
1 (θ)) = g(χ−1

1 (θ))F−1
h

[
e

i
hFΓ,∅◦π−1

Γ,∅( · )(e · g
1
4
Γ;∅D

− 1
2

Γ,∅) ◦ π
−1
Γ,∅( · )

]∣∣
θ
. (3.5.21)

Here g ∈ C∞0 (Σ+
1 ), g = 1 on Σ, gΓ;∅ ∈ C∞(Γ) is the determinant of the matrix representation of the

metric tensor of the sphere, evaluated at πωp for p ∈ Γ, and

DΓ,∅ ◦ S+
λ (z) = det

(
∂l2
∂z

)
= 1, z ∈ Z. (3.5.22)
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Furthermore, we can choose e ∈ C∞(Γ) such that e = 1 on Γ′ and

gΓ;∅ ◦ S+
λ (z) =

∣∣∣∣〈∂χ−1
1 (θ)
∂θ

,
∂χ−1

1 (θ)
∂θ

〉∣∣∣∣
θ=θ(z)

= |cos2 θ(z) + sin2 θ(z)| = 1. (3.5.23)

Then it follows that for θ ∈ χ1(Σ′),

KΓ,∅[e( · )] ◦ χ−1
1 (θ) =

∫
Z′
e

i
h (〈l,θ〉+FΓ,∅◦π−1

Γ,∅(l) d̄hl +O(h∞)

= (2πh)−1/2

∫ ε

−ε
e

i
h ( 1

3 l
3+l(θ−π

4 ) dl +O(h∞) (3.5.24)

where we have inserted (3.5.15). Now∫ ε

−ε
e

i
h ( 1

3 l
3+l(θ−π

4 ) dl = 2
∫ ε

0

cos
(

1
3h
l3 +

l

h

(
θ − π

4

))
dl

= 2h
1
3

∫ h−
1
3 ε

0

cos
(

1
3
l3 + lh

1
3

(
θ − π

4

))
dl (3.5.25)

where we have substituted in the integral. It is not hard to see that∣∣∣∣∫ ∞

h−
1
3 ε

cos
(

1
3
l3 + lh

1
3

(
θ − π

4

))
dl

∣∣∣∣ ≤ c · h 1
3 (3.5.26)

for some constant c > 0. it follows that

KΓ,∅[e( · )] ◦ χ−1
1 (θ) =

√
2πh−

1
6 Ai[h

1
3 (θ − π/4)] +O(h

1
6 ). (3.5.27)

The (3.5.27) together with (3.5.20) implies (3.5.18). �





APPENDIX A

Some multi–index calculus

For easy reference, this section summarises some well–known results that are referred to in the main
sections.

We will use the standard notation for multi–indices α = (αi)ni=1 ∈ Nm, in particular, we define

α! := α1! · · ·αm! |α| := α1 + · · ·+ αm α+ β := (αi + βi)mi=1, α, β ∈ Nm,

∂αt := ∂α1
t1 . . . ∂αm

tn , ∂αi
ti :=

∂αi

∂tαi
i

, t = (t1, . . . , tm) ∈ Rm,

∂αt x := (∂αt x1, . . . , ∂
α
t xn) x = (x1, . . . , xn) ∈ C∞(Rm,Rn)

 (A.28)

We state the analogue of the generalised product rule in multi–index notation. We define the product
symbol “�” by

x� y :=

{
x · y if x ∈ R and y ∈ Rn or vice–versa,
〈x, y〉 if x, y ∈ Rn.

(A.29)

For functions the corresponding product is assumed to be defined point-wisely.

A.1. Lemma (Leibnitz Rule) Let u ∈ C∞(Rm,Rn), v ∈ C∞(Rm,Rl) be smooth functions. Then for
any multi–index α ∈ Nm,

∂αt [u(t)� v(t)] =
∑

(β,γ)∈Nm×Nm

β+γ=α

α!
β!γ!

∂βt u(t)� ∂γt v(t). (A.30)

A.2. Corollary Let Ω ⊂ R × Rn−1 be an open set and φ ∈ C∞(Ω,Rn), ψ ∈ C∞(Ω,Rm) be smooth
functions. Assume that there exist k, l ∈ Z such that for any α ∈ N and multi–index β ∈ Nn−1 there exist
constants Cφ;Ω,α,β , Cψ;Ω,α,β > 0 such that

|∂βz ∂αs φ(s, z)| ≤ Cφ;Ω,α,β · sk−α, and |∂βz ∂αs ψ(s, z)| ≤ Cψ;Ω,α,β · sl−α (A.31)

for (s, z) ∈ Ω. Then there exists a constant Cφ�ψ;Ω,α,β > 0 so that

|∂βz ∂αs (φ(s, z)� ψ(s, z))| ≤ Cφ�ψ;Ω,α,β · sk+l−α for (s, z) ∈ Ω.

The analogue of the Leibnitz rule for repeated application of the chain rule is Fáa di Bruno’s formula,
which we will cite for the special case of the composition of functions Rm → Rn, Rn → R:

A.3. Lemma (Fáa di Bruno’s Formula) Let Ω ⊂ Rn, x ∈ C∞(Rm,Ω and V ∈ C∞(Ω). Then for
β ∈ Nm \ {0},

∂βt (V ◦ x)(t) =
|β|∑
j=1

∑
α=(α1,...,αj)
αi∈Nm\{0},
i=1,...,j

α1+···+αj=β

cβ,α

j∏
k=1

〈∂αk
t x,∇y〉V (y)|y=x(t), (A.32)

where the coefficients cβ,α are given by

cβ,α =
β!

α1! · · ·αj !
1

m1! · · ·mj !

and ml ∈ N denotes the number of multi–indices in (α1, . . . , αj) that are equal to some αl ∈ {α1, . . . , αj}.

An immediate consequence is the following result,

69
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A.4. Lemma Let V ∈ C∞(Rn) be a smooth function with decay at infinity such that for any multi–index
α ∈ Nn there exist constants Cα so that

|∂αxV (x)| ≤ Cα〈x〉−%−|α|, for some % > 0. (A.33)

Let Ω ⊂ R× Rn−1 be an open set and ψ ∈ C∞(Ω,Rn) a smooth function. Assume that there exist weight
functions ρ1, ρ2 ∈ C∞(Ω,R+) such that for some k ∈ N and some β ∈ Nn−1 there exists a constant ck,β
such that the estimate

|∂js∂δzψ(s, z)| ≤ ck,βρ1(s, z)−jρ2(s, z)−|β|〈ψ(s, z)〉 for all (j, δ) ∈ N× Nn−1, j ≤ k, |δ| ≤ |β| (A.34)

holds. Then there exists a constant depending on α and k + |β| such that for (s, z) ∈ Ω,∣∣∂ks ∂βz (∂αxV )(ψ(s, z))
∣∣ ≤ C(α, k + |β|) · ρ1(s, z)−kρ2(s, z)−|β|〈ψ(s, z)〉−%−|α|. (A.35)

Proof. For k + |β| = 0, the estimate (A.35) is simply a reformulation of (A.33). For k + |β| 6= 0, we
apply the chain rule (A.32),

∣∣∂ks ∂βz (∂αxV )(ψ(s, z))
∣∣ = ∣∣∣k+|β|∑

j=1

∑
l=(l1,...,lj),
δ=(δ1,...,δj),

li∈N\{0}, δi∈Nn\{0},P
li=k,

P
δi=β

ck+|β|,(l,δ)

( j∏
i=1

〈∂lis ∂δi
z ψ(s, z),∇y〉

)
(∂αxV )(y)|y=ψ(s,z)

∣∣∣

≤
k+|β|∑
j=1

∑
l,δ

ck+|β|,(l,δ) max
|γ|=j

|∂γy (∂αxV )(y)|y=ψ(s,z)|
j∏
i=1

|∂lis ∂δi
z ψ(s, z))|. (A.36)

Now (A.33) implies

max
|α|≤m

|(∇∂αxV )(x)| ≤ Cm+1〈x〉−%−1−m, Cm :=
√
n max
|α|≤m

Cα. (A.37)

Then applying (A.37) and inserting the estimates (A.34) into (A.36), we obtain∣∣∂ks ∂βz (∇V )(ψ(s, z))
∣∣ (A.38)

≤
k+|β|∑
j=1

∑
l,δ

ck+|β|,(l,δ)Cj+|α|〈ψ(s, z)〉−%−j−|α|
j∏
i=1

cj,βρ1(s, z)−liρ2(s, z)−|δi|〈ψ(s, z)〉

≤
k+|β|∑
j=1

∑
l,δ

ck+|β|,(l,δ)Cj+|α|〈ψ(s, z)〉−%−|α|cjj,βρ1(s, z)−
P
liρ2(s, z)−

P
|δi|

= 〈ψ(s, z)〉−%−1ρ1(s, z)−kρ2(s, z)−|β|
k+|β|∑
j=1

Cj+|α|c
j
j,β

∑
l,δ

ck+|β|,(l,δ) (A.39)

With

C(α, k + |β|) :=
k+|β|∑
j=1

Cj+|α|c
j
j,β

∑
l=(l1,...,lj),
δ=(δ1,...,δj),

li∈N\{0}, δi∈Nn\{0},P
li=k,

P
δi=β

ck+|β|,(l,δ) (A.40)

(A.39) becomes the assertion (A.35). �

We will need some basic estimate on the integral of 〈 · 〉−α for α ∈ N.

A.5. Lemma For α > 1 we have∫ 0

−∞
〈τ〉−α dτ ≤ α

α− 1
and

∫ t

−∞
〈τ〉−α dτ ≤

√
2

α− 1
〈t〉1−α for t ≤ −1. (A.41)

Furthermore, if α > 2 we have∫ 0

−∞

∫ t

−∞
〈τ〉−α dτdt ≤ 1

2
α

α− 2
(A.42)
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and ∫ s

−∞

∫ t

−∞
〈τ〉−α dτdt ≤

{
2

(α−2)(α−1) 〈s〉
2−α if s ≤ −1,

cα(1 + s) if s > 0.
(A.43)

with some constant cα > 0.

Proof. Using the following basic estimates for α > 1,∫ −1

−∞
〈τ〉−α dτ =

∫ ∞

1

〈τ〉−α dτ ≤
∫ ∞

1

τ−α dτ =
1

α− 1
(A.44)

and ∫ t

−1

〈τ〉−α dτ ≤
∫ t

−1

dτ = t+ 1 for t ≤ 0, (A.45)

we obtain the first assertion in (A.41). Let |τ | ≥ 1. Then

d

dτ
〈τ〉1−α = |1− α|〈τ〉−α τ√

1 + τ2
= −(α− 1)〈s〉−α τ√

1 + τ2
≥ α− 1√

2
〈τ〉−α if τ ≤ −1. (A.46)

Now the second assertion in (A.41) follows from

〈t〉1−α =
∫ t

0

d

dτ
〈τ〉1−α dτ ≥ α− 1√

2

∫ τ

0

〈τ〉−α dτ for t ≤ −1. (A.47)

For −1 ≤ s ≤ 0 we have∫ s

−∞

∫ t

−∞
〈τ〉−α dτdt =

∫ −1

−∞

∫ t

−∞
〈τ〉−α dτdt+

∫ s

−1

∫ t

−∞
〈τ〉−α dτdt

=
∫ ∞

1

∫ −t

−∞
〈τ〉−α dτdt+

∫ s

−1

∫ −1

−∞
〈τ〉−α dτdt+

∫ s

−1

∫ t

−1

〈τ〉−α dτdt

≤
∫ ∞

1

∫ ∞

t

〈τ〉−α dτdt+
1

α− 1

∫ s

−1

dt+
∫ s

−1

(t+ 1)dt

≤
∫ ∞

1

∫ ∞

t

τ−α dτdt+
1

α− 1
(s+ 1) +

1
2
(s+ 1)2

=
1

α− 1

∫ ∞

1

t1−α dt+
1

α− 1
(s+ 1) +

1
2
(s+ 1)2

=
1

α− 1
1

α− 2
+

1
α− 1

(s+ 1) +
1
2
(s+ 1)2 (A.48)

For s = 0 we have∫ 0

−∞

∫ t

−∞
〈τ〉−α dτdt ≤ 1

α− 1
1

α− 2
+

1
α− 1

+
1
2

=
1
2

+
1

α− 2
≤ 1

2
α

α− 2
(A.49)

Then (A.42) follows from (A.42) by setting s = 0. Now for s ≥ 1 we have∫ s

0

∫ t

0

〈τ〉−α dτdt =
∫ 1

0

∫ t

0

〈τ〉−α dτdt+
∫ s

1

∫ 1

0

〈τ〉−α dτdt+
∫ s

1

∫ t

1

〈τ〉−α dτdt

≤
∫ 1

0

∫ t

0

dτdt+
∫ s

1

dt+
∫ s

1

∫ t

1

τ−α dτdt

=
1
2

+ s− 1 +
1

α− 1

∫ s

1

(1− t1−α) dt

= s− 1
2

+
1

α− 1
(s− 1) +

1
α− 1

1
α− 2

(s2−α − 1)
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Since α > 2 and s ≥ 1, we have (s2−α − 1) < 1, so∫ s

0

∫ t

0

〈τ〉−α dτdt ≤ s− 1
2

+
1

α− 1

(
s− 1 +

1
α− 2

)
=

α

α− 1
s− 1

2
+

1
α− 2

− 1
α− 1

(A.50)

Note that by (A.41) we have ∫ s

0

∫ 0

−∞
〈τ〉−α dτdt ≤ α

α− 1
s (A.51)

Now from (A.49), (A.50) and (A.51) we obtain for s > 1∫ s

−∞

∫ t

−∞
〈τ〉−α dτdt =

∫ 0

−∞

∫ t

−∞
〈τ〉−α dτdt+

∫ s

0

∫ 0

−∞
〈τ〉−α dτdt+

∫ s

0

∫ t

0

〈τ〉−α dτdt

≤ 2α
α− 1

s+
2

α− 2
+

1
α− 1

(A.52)

This shows (A.43).
�

An immediate application of Lemma A.5 is the following result, which we will need in Section 1.2.

A.6. Lemma Let ω− ∈ Rn and ž ⊥ ω−, as in Convention 1.2.1. Then for any γ > 0 and α > 2, there
exists a constant Cα,γ > 0 so that for all ž and all s ≤ 0, the estimate

〈2
√
λω−s+ ž〉γ

∫ s

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−α−γ dτ dt ≤ Cα,γ〈2

√
λω−s+ ž〉2−α. (A.53)

holds.

Proof. The orthogonality of ω− and ž gives

〈2
√
λω−s+ ž〉 = 〈z〉〈2

√
λ〈z〉−1s〉. (A.54)

so

〈2
√
λω−s+ ž〉γ

∫ s

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−α−γ dτ dt

= 〈2
√
λ〈z〉−1s〉γ〈z〉−α

∫ s

−∞

∫ t

−∞
〈2
√
λ〈z〉−1τ〉−α−γ dτ dt. (A.55)

We substitute twice in the integral, τ ′ = 2
√
λ〈z〉−1τ and t′ = 2

√
λ〈z〉−1t, to obtain

〈2
√
λω−s+ ž〉γ

∫ s

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−α−γ dτ dt

= 〈2
√
λ〈z〉−1s〉γ〈z〉−α(2

√
λ〈z〉−1)−2

∫ 2
√
λ〈z〉−1s

−∞

∫ t

−∞
〈τ〉−α−γ dτ dt. (A.56)

We consider two cases and show that in each case, there exists a constant allowing the right–hand side
of (A.56) to be estimated by 〈2

√
λω−s+ ž〉2−α.

i) (2
√
λ〈z〉−1s ≤ −1) We can apply (A.43) to the right–hand side of (A.56). Then∫ 2

√
λ〈z〉−1s

−∞

∫ t

−∞
〈τ〉−α−γ dτ dt ≤ 2

(α− 2)(α− 1)
〈
√
λ〈z〉−1s〉2−α (A.57)
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and by (A.56) with (A.54),

〈2
√
λω−s+ ž〉γ

∫ s

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−α−γ dτ dt

≤ 2
(α− 2)(α− 1)

〈2
√
λ〈z〉−1s〉γ〈z〉−α(2

√
λ〈z〉−1)−2〈

√
λ〈z〉−1s〉2−α−γ

=
2λ(α− 2)(α− 1)

〈2
√
λω−s+ ž〉2−α. (A.58)

This shows (A.53) in the first case.
ii) (−1 ≤ 2

√
λ〈z〉−1s ≤ 0) By (A.42), noting s ≤ 0,∫ 2

√
λ〈z〉−1s

−∞

∫ t

−∞
〈τ〉−α−γ dτ dt ≤

∫ 0

−∞

∫ t

−∞
〈τ〉−α−γ dτ dt ≤ α

2(α− 2)
. (A.59)

Furthermore, 〈2
√
λ〈z〉−1s〉γ ≤ 2γ , so with (A.59) we have from (A.56),

〈2
√
λω−s+ ž〉γ

∫ s

−∞

∫ t

−∞
〈2
√
λω−τ + ž〉−α−γ dτ dt (A.60)

=
2γα

8λ(α− 2)
〈z〉2−α. (A.61)

This shows (A.53) in the second case.
�





APPENDIX B

Some properties of smooth maps

We will repeat here some well–known results on the properties of smooth maps which will be used
in the main text. First, we repeat from [22, V.3]

B.1. Definition Let 〈M,%〉 be a metric space. A map T : M →M for which there is a K < 1 such that
%(Tx, Ty) ≤ K%(x, y) is called a strict contraction.

Contraction Mapping Principle A strict contraction on a complete metric space has a unique fixed
point.

B.2. Lemma Let B be a Banach space, M ⊂ B a closed convex subset and T : M → M a C1 mapping.
Then T is a strict contraction and thus has a unique fixed point in M if ‖DT‖ < 1.

Proof. We need to show that ‖Tx−Ty‖ ≤ K‖x−y‖ for x, y ∈M and some K < 1. Since M is convex,
the set {z ∈ B : z = λx+ (1− λ)y, λ ∈ [0, 1]} ⊂ M . Then by the fundamental theorem of calculus (cf.,
e.g., cite[(1.8)]Taylor),

Tx− Ty =
∫ 1

0

DT (λx+ (1− λ)y)(x− y) dλ, (B.62)

so

‖Tx− Ty‖ ≤ ‖DT‖ · ‖x− y‖. (B.63)

and the result follows. �

We will frequently need criteria for smooth maps to be embeddings. In general, we quote from [].

B.3. Lemma Let M,N be smooth manifolds and T : M → N an injective immersion. Then T is an
embedding if

i) T−1 is continuous, i.e., T maps any open set onto an open set,
ii) or T is proper, i.e., the pre–image of any compact set is compact.

B.4. Lemma Let Ω ⊂ Rn be an open convex set and f, g : Ω → Rn smooth functions, λmin(x) > 0 the
smallest eigenvalue of Df |x.

i) If Df |x is a positive self-adjoint matrix for all x ∈ Ω and λinf := infx∈Ω λmin(x) is positive, then f
is an embedding.

ii) If Df is as in i) then there exists some ε > 0 so that if Dg = Df + R with ‖R‖ ≤ ε, then g is an
embedding.

Proof. i) By definition, f is an immersion. Furthermore, it is well–known (e.g., [25, Proposition 3.2])
that f is injective if Df is positive and Ω is convex. It remains to show that the inverse function
f−1 is continuous. Since Df is self–adjoint, the largest eigenvalue of Df−1|x is bounded by 1/λinf

and the continuity follows immediately by applying (B.63) to T = f−1.
ii) The condition on R guarantees that Dg and Dg−1 are both positive with smallest eigenvalues

bounded away from 0.
�
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APPENDIX C

Proof of Lemma 3.3.12

The proof of Lemma 3.3.12 was inspired by Protas [21], who obtained an analogous result for the case
of a compactly supported potential V ∈ C∞0 (Rn). We will deal with rather cumbersome block matrices,
and in order to maintain legibility, we first introduce some notation.

C.1. Convention Let I, J ⊂ N = {1, . . . , n}, ordered such that I = (ik)
|I|
k=1 and J = (jk)

|J|
k=1 with

ik < ik+1, jk < jk+1.

i) We will understand A = (aij′)i∈I,j′∈J to refer to an (|I|×|J |)-matrix given by A = (aikjl′ )1≤k≤|I|,1≤l′≤|J|.
A reference to the ith row or (j′)th column of (aij′) is understood to be to the kth row or the (l′)
column, respectively, of (aikjl′ ).

ii) Whenever A is expressed as (f(i, j′))i∈I,j′∈J , the unprimed variable is understood to refer to the
rows of A, while the primed variable numbers the columns.

iii) Within block matrices, we will often write simply f(i, j′) to express (f(i, j′))i∈I,j′∈J in a space-
conserving fashion. The range (i ∈ I and j′ ∈ J) of the variables will be given in the text.

We shall denote the values of functions at a stationary point by |stat. pt..

Proof of Lemma 3.3.12. In order to lighten the notation, we will omit the subscript k from the for-
mulae, writing, e.g., J ⊂ Ni instead of Jk ⊂ Nik . In the notation of Convention C.1, the Hessian of Φ is
given by the block matrix

Hess Φ =


∂2Φ

∂xı∂xı′
∂2Φ

∂xı∂ϑ′
∂2Φ

∂xı∂zm′

∂2Φ
∂ϑ∂xı′

∂2Φ
∂ϑ∂ϑ′

∂2Φ
∂ϑ∂zm′

∂2Φ
∂zm∂xı′

∂2Φ
∂zm∂ϑ′

∂2Φ
∂zm∂zm′

 (C.64)

for , ′ ∈ J , ı, ı′ ∈ I, m,m′ ∈ N ′, writing N ′ := {1, . . . , n−1}. Note that by (2.2.19), for m = 1, . . . , n−1
and j ∈ N ,

∂ξj
∂zm

=
∑
k∈N

∂2ϕ+

∂xk∂xj

∂xk
∂zm

+
√
λ
∑
k∈N

∂2ϕ+

∂ξk∂xj

∂ωk
∂zm

,
∂ξj
∂s

=
∑
k∈N

∂2ϕ+

∂xk∂xj

∂xk
∂s

. (C.65)

Calculating the derivatives directly from (3.3.40) and using (C.65) we have for m′ ∈ N ′,

∂Φ
∂zm′

= 〈xI − xI(s, z;λ), ∂zm′∇xI
ϕ+(x∞(s, z;λ),

√
λω+(z;λ))(s, z;λ)〉

+
〈
∇xI

ϕ+(x∞(s, z;λ),
√
λω+(z;λ))−∇xI

ϕ+((xI(s, z;λ), xI),
√
λχ−1

i (θJ , ϑNi\J)),

∂zm′xI(s, z;λ)
〉
. (C.66)

At the stationary point (3.3.41) we have

ϕ+((xI(s, z;λ), xI),
√
λχ−1

i (θJ , ϑNi\J)) = ϕ+(x∞(s, z;λ),
√
λω+(z;λ)) (C.67)
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so for m,m′ ∈ Ni,

∂2Φ
∂zm∂zm′

∣∣∣
stat. pt.

= 〈∂zm
(xI − xI(s, z;λ)), ∂zm′∇xI

ϕ+(x∞(s, z;λ),
√
λω+(z;λ))(s, z;λ)〉

+ 〈∂zm(∇xI
ϕ+(x∞(s, z;λ),

√
λω+(z;λ))

−∇xI
ϕ+((xI(s, z;λ), xI),

√
λχ−1

i (θJ , ϑNi\J))), ∂zm′xI(s, z;λ)〉

=
√
λ
∑
k∈N
i∈I

∂xi
∂zm′

∂ωk
∂zm

∂2ϕ+

∂ξk∂xi
−
√
λ
∑
k∈N
ı∈I

∂xı
∂zm

∂ωk
∂zm′

∂2ϕ+

∂ξk∂xı
−
∑
ı,ı′∈I

∂xı
∂zm

∂xı′

∂zm′

∂2ϕ+

∂xı∂xı′

(C.68)

Furthermore,

∂Φ
∂ϑNi\J

= −
∂ϕ+((xI(s, z;λ), xI),

√
λχ−1

i (θJ , ϑNi\J))
∂ϑNi\J

−mNi\J ,

so for , ′ ∈ Ni \ J , m′ ∈ Ni, ı′ ∈ I we obtain

∂2Φ
∂ϑ∂ϑ′

= −
∂2ϕ+((xI(s, z;λ), xI),

√
λχ−1

i (θJ , ϑNi\J))
∂ϑ∂ϑ′

, (C.69)

∂2Φ
∂ϑ∂zm′

= −
∑
i∈I

∂xi
∂zm′

∂2ϕ+((xI(s, z;λ), xI),
√
λχ−1

i (θJ , ϑNi\J))
∂ϑ∂xi

(C.70)

∂2Φ
∂ϑ∂xı′

, = −
∂2ϕ+((xI(s, z;λ), xI),

√
λχ−1

i (θJ , ϑNi\J))
∂ϑ∂xı′

. (C.71)

We have
∂Φ
∂xI

= ξI(s, z;λ)−∇xI
ϕ+((xI(s, z;λ), xI),

√
λχ−1

i (θJ , ϑNi\J)),

so for ı, ı′ ∈ I, m ∈ Ni,

∂2Φ
∂xı∂xı′

= − ∂2ϕ+

∂xı∂xı′
, (C.72)

∂2Φ
∂zm∂xı′

=
∂ξı′

∂zm
−
∑
ı∈I
i∈I

∂xi
∂zm

∂2ϕ+

∂xı∂xi

=
∑
k∈N

∂xk
∂zm

∂2ϕ+

∂xk∂xı′
+
√
λ
∑
k∈N

∂ωk
∂zm

∂2ϕ+

∂ξk∂xı′
−
∑
i∈I

∂xi
∂zm

∂2ϕ+

∂xi∂xı′

=
∑
ı′′∈I

∂xı′′

∂zm

∂2ϕ+

∂xı′′∂xı′
+
√
λ
∑
k∈N

∂ωk
∂zm

∂2ϕ+

∂ξk∂xı′
, (C.73)

where we have applied (C.65). Inserting (C.68)-(C.73) into (C.64), we obtain

Hess Φ|stat. pt. =



− ∂2ϕ+
∂xı∂xı′

− ∂2ϕ+
∂ϑ′∂xı

∑
ı′′∈I

∂xı′′
∂zm′

∂2ϕ+
∂xı′′∂xı

+
√
λ
∑
k∈N

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı

− ∂2ϕ+
∂ϑ∂xı′

− ∂2ϕ+
∂ϑ∂ϑ′

−
∑
i∈I

∂xi

∂zm′

∂2ϕ+
∂ϑ∂xi

∑
ı′′∈I

∂xı′′
∂zm

∂2ϕ+
∂xı′′∂xı′

+
√
λ
∑
k∈N

∂ωk

∂zm

∂2ϕ+
∂ξk∂xı′

−
∑
i∈I

∂xi

∂zm

∂2ϕ+
∂ϑ′∂xi

√
λ
∑
k∈N
i∈I

∂xi

∂zm′
∂ωk

∂zm

∂2ϕ+
∂ξk∂xi

−
√
λ
∑
k∈N
ı∈I

∂xı

∂zm

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı

−
∑
ı,ı′∈I

∂xı

∂zm

∂xı′
∂zm′

∂2ϕ+
∂xı∂xı′


.
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For derivatives of ϕ+ with respect to x- and ξ-variables we have omitted the arguments which are taken
at the stationary point (3.3.41), i.e.,

∂2ϕ+

∂xi∂ξk
=
∂‘2ϕ+(x∞(s, z;λ), χ−1

i (θJ , ϑNi\J)
∂xi∂ξk

. (C.74)

On the other hand, derivatives of ϕ+ with respect to ϑ have not yet been evaluated with the chain rule
and we have written

∂ϕ+

∂ϑ
=
∂ϕ+(x∞(s, z;λ),

√
λχ−1

i (θJ , ϑNi\J))
∂ϑ

. (C.75)

for short. We will now perform elementary row and column manipulations, denoting similar matrices by
“∼”. For all ı′ ∈ I and all m′ ∈ Ni, we multiply the (ı′)th column in the first block column by ∂xı′

∂zm′
and

add it to the (m′)th column of the third block column. The resulting matrix reads

Hess Φ|stat. pt. ∼



− ∂2ϕ+
∂xı∂xı′

− ∂2ϕ+
∂ϑ′∂xı

√
λ
∑
k∈N

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı

− ∂2ϕ+
∂ϑ∂xı′

− ∂2ϕ+
∂ϑ∂ϑ′

−
∑
k∈N

∂xi

∂zm′

∂2ϕ+
∂ϑ∂xk∑

ı′′∈I

∂xı′′
∂zm

∂2ϕ+
∂xı′′∂xı′

+
√
λ
∑
k∈N

∂ωk

∂zm

∂2ϕ+
∂ξk∂xı′

−
∑
i∈I

∂xi

∂zm

∂2ϕ+
∂ϑ′∂xi

√
λ
∑

k,k′∈N

∂xk′
∂zm′

∂ωk

∂zm

∂2ϕ+
∂ξk∂xk′

−
√
λ
∑
k∈N
ı∈I

∂xı

∂zm

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı


Next, for all ı ∈ I and all m ∈ Ni we multiply the (ı)th row in the first block row by ∂xı

∂zm
and add it to

the mth row of the third block row, obtaining

Hess Φ|stat. pt. ∼


− ∂2ϕ+
∂xı∂xı′

− ∂2ϕ+
∂ϑ′∂xı

√
λ
∑
k∈N

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı

− ∂2ϕ+
∂ϑ∂xı′

− ∂2ϕ+
∂ϑ∂ϑ′

−
∑
k∈N

∂xi

∂zm′

∂2ϕ+
∂ϑ∂xk

√
λ
∑
k∈N

∂ωk

∂zm

∂2ϕ+
∂ξk∂xı′

−
∑
k∈N

∂xk

∂zm

∂2ϕ+
∂ϑ′∂xk

√
λ
∑

k,k′∈N

∂xk′
∂zm′

∂ωk

∂zm

∂2ϕ+
∂ξk∂xk′

 (C.76)

At the stationary point ϑJ = θJ , and we will from now on write θk instead of ϑk setting additionally
θ′ = θNi

. Noting that

∂ωj
∂zm′

=
∑
k∈Ni

∂χ−1
j (θ′)
∂θk

∂θk
∂zm′

(C.77)

we evaulate derivatives of the type (C.75) to

∂2ϕ+

∂θ∂xk′
=
√
λ
∑
k∈N

∂χ−1
k (θ′)
∂θ

∂2ϕ+

∂ξk∂xk′
,

∂2ϕ+

∂θ∂θ′
=
√
λ
∑
k∈N

∂χ−1
k (θ′)
∂θ

∂2ϕ+

∂ξk∂θ′
. (C.78)

Hence the matrix in (C.76) is similar to

− ∂2ϕ+
∂xı∂xı′

− ∂2ϕ+
∂θ′∂xı

√
λ
∑
k∈N

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı

−
√
λ
∑
k∈N

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξk∂xı′

, −
√
λ
∑
k∈N

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξk∂θ′

−
√
λ
∑

k,k′∈N

∂xk′
∂zm′

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξk∂xk′

√
λ
∑
k∈N
k′′∈Ni

∂χ−1
k (θ′)

∂θk′′

∂θk′′
∂zm

∂2ϕ+
∂ξk∂xı′

−
∑
k∈N

∂xk

∂zm

∂2ϕ+
∂θ′∂xk

√
λ
∑

k,k′∈N
k′′∈Ni

∂xk′
∂zm′

∂χ−1
k (θ′)

∂θk′′

∂θk′′
∂zm

∂2ϕ+
∂ξk∂xk′


(We will occasionally omit “Hess Φ|stat. pt. ∼” in order to save space)
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For all ı′ ∈ I and all m′ ∈ N ′ we now subtract the (ı′)th column of the leftermost block column,
multiplied with ∂xı′

∂zm′
, from the (m′)th column of the rightermost block column, obtaining

− ∂2ϕ+
∂xı∂xı′

− ∂2ϕ+
∂θ′∂xı

√
λ
∑
k∈N

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı

+
∑
ı′∈I

∂xı′
∂zm′

∂2ϕ+
∂xı∂xı′

−
√
λ
∑
k∈N

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξk∂xı′

, −
√
λ
∑
k∈N

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξk∂θ′

−
√
λ
∑
k∈N
j′∈I

∂xj′

∂zm′

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξk∂xj′

√
λ
∑
k′∈N
k∈Ni

∂χ−1
k′ (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξk′∂xı′

−
∑
k∈N

∂xk

∂zm

∂2ϕ+
∂θ′∂xk

√
λ
∑
k′∈N
k∈Ni

j′∈I

∂xj′

∂zm′

∂χ−1
k′ (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξk′∂xj′


For all  ∈ J and m ∈ N ′ we further add the ()th row of the middle block row, multiplied by ∂θJ

∂zm
to the

mth row of the lowermost block row, obtaining

− ∂2ϕ+
∂xı∂xı′

− ∂2ϕ+
∂θ′∂xı

√
λ
∑
k∈N

∂ωk

∂zm′

∂2ϕ+
∂ξk∂xı

+
∑
ı′∈I

∂xı′
∂zm′

∂2ϕ+
∂xı∂xı′

−
√
λ
∑
k∈N

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξj∂xı′

, −
√
λ
∑
j∈N

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂θ′

−
√
λ
∑
k∈N
j′∈I

∂xj′

∂zm′

∂χ−1
k (θ′)

∂θ

∂2ϕ+
∂ξk∂xj′

√
λ
∑
j∈N
k∈I

∂χ−1
j (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξj∂xı′

−
∑
j∈N

∂xj

∂zm

∂2ϕ+
∂θ′∂xj

−
√
λ
∑
j∈N
∈J

∂θJ

∂zm

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂θ′

√
λ
∑
j∈N
k∈I
j′∈I

∂xj′

∂zm′

∂χ−1
j (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξj∂xj′


From (2.4.5) we obtain

∂l
(i)
′ (z)

∂zm
=

∂2ϕ+

∂zm∂θ′
=
∑
j∈N

∂2ϕ+

∂xj∂θ′

∂xj
∂zm

+
∑
j∈N
k∈Ni

∂χ−1
j (θ′)
∂θk

∂θk
∂zm

∂2ϕ+

∂ξj∂θ′
, (C.79)

allowing us to rewrite the matrix as

− ∂2ϕ+
∂xı∂xı′

− ∂2ϕ+
∂θ′∂xı

∂ξı

∂zm′
−
∑
i∈I

∂xi

∂zm′

∂2ϕ+
∂xi∂xı

−
√
λ
∑
j∈N

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂xı′

, −
√
λ
∑
j∈N

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂θ′

−
√
λ
∑
j∈N
j′∈I

∂xj′

∂zm′

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂xj′

√
λ
∑
j∈N
k∈I

∂χ−1
j (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξj∂xı′

− ∂l′

∂zm
+
√
λ
∑
j∈N
∈J

∂θJ

∂zm

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂θ′

√
λ
∑
j∈N
k∈I
j′∈I

∂xj′

∂zm′

∂χ−1
j (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξj∂xj′


We can now add the entire leftermost block column to the middle block column, obtaining

Hess Φ|stat. pt. ∼



− ∂2ϕ+
∂xı∂xı′

(∗) ∂ξı

∂zm′
−
∑
i∈I

∂xi

∂zm′

∂2ϕ+
∂xi∂xı

−
√
λ
∑
j∈N

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂xı′

, (∗) −
√
λ
∑
j∈N
j′∈I

∂xj′

∂zm′

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂xj′

√
λ
∑
j∈N
k∈I

∂χ−1
j (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξj∂xı′

− ∂l′

∂zm

√
λ
∑
j∈N
k∈I
j′∈I

∂xj′

∂zm′

∂χ−1
j (θ′)

∂θk

∂θk

∂zm

∂2ϕ+
∂ξj∂xj′


(C.80)

where “(∗)” represents a block matrix of suitable size whose precise expression will be irrelevant to us.
Note that I = J by Definition 3.3.1, so

√
λ
∑
k∈N
ı∈I

∂χ−1
k (θ′)
∂θı

∂θı
∂zm

∂2ϕ+

∂ξk∂xı′
=
(
∂θj′

∂zm

∂l′

∂zm

)√λ ∑k∈N ∂χ−1
k (θ′)

∂θj

∂2ϕ+
∂ξk∂xı′

0

 (C.81)
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and

√
λ
∑
k∈N
ı∈I
i′∈I

∂xi′

∂zm′

∂χ−1
k (θ′)
∂θı

∂θı
∂zm

∂2ϕ+

∂ξk∂xi′
=
(
∂θj′

∂zm

∂l′

∂zm

)
√
λ
∑
k∈N
i′∈I

∂χ−1
k (θ′)

∂θj

∂xi′
∂zm′

∂2ϕ+
∂ξk∂xi′

0

 (C.82)

for ı′, j, j′ ∈ J , ′ ∈ J , m,m′ ∈ Ni. It follows from (C.80), (C.81) and (C.82) that

|detHess Φ|stat. pt. =
∣∣∣det

(
∂θj′

∂zm

∂l′

∂zm

)∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



− ∂2ϕ+
∂xı∂xı′

(∗) ∂ξı

∂zm′
−
∑
i∈I

∂xi

∂zm′

∂2ϕ+
∂xi∂xı

−
√
λ
∑
j∈N

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂xı′

, (∗) −
√
λ
∑
j∈N
j′∈I

∂xj′

∂zm′

∂χ−1
j (θ′)

∂θ

∂2ϕ+
∂ξj∂xj′

−
√
λ
∑
k∈N

∂χ−1
k (θ′)

∂θj

∂2ϕ+
∂ξk∂xı′

0 −
√
λ
∑
k∈N
i′∈I

∂χ−1
k (θ′)

∂θj

∂xi′
∂zm′

∂2ϕ+
∂ξk∂xi′

0 1|J| 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.83)

Here 1|J| denotes the |J | × |J | unit matrix. We can expand the block matrix along the lowest block row,
and also consolidate the middle two block rows into a single one, obtaining

|det Hess Φ|stat. pt. = λ
n−1

2 EΓk,Jk
◦ S+

λ (z) · |detM | (C.84)

where

EΓk,Jk
◦ S+

λ =
∣∣det d(π(ik)

Γk,Jk
◦ S+

λ )
∣∣ = ∣∣∣∣det

(∂θJ

∂z
∂lJ
∂z

)∣∣∣∣ (C.85)

and M is the (n− 1 + |I|)× (n− 1 + |I|) matrix

M =


− ∂2ϕ+
∂xı∂xı′

∂ξı

∂zm′
−
∑
i∈I

∂xi

∂zm′

∂2ϕ+
∂xi∂xı∑

k∈N

∂χ−1
k (θ′)

∂θl

∂2ϕ+
∂ξk∂xı′

∑
k∈N
i′∈I

∂χ−1
k (θ′)

∂θl

∂xi′
∂zm′

∂2ϕ+
∂ξk∂xi′

 (C.86)

with l ∈ Ni. We now define the (n+ |I|)× (n+ |I|) matrices

M1 :=


− ∂2ϕ+
∂xı∂xı′

1|I| 0∑
k∈N

∂2ϕ+
∂xı′∂ξk

∂ωk

∂θm
0

∑
k∈N

∂2ϕ+
∂xi′∂ξk

∂ωk

∂θm∑
k∈N

∂2ϕ+
∂xı′∂ξk

ωk 0
∑
k∈N

∂2ϕ+
∂xi′∂ξk

ωk

 , (C.87)

M2 :=


1|I| 0 0

0
∂ξı

∂zm′
−
∑
i∈I

∂2ϕ+
∂xi∂xı

∂xi

∂zm′

∑
ı′∈I

∂2ϕ+
∂xı′∂xı

∂xı′
∂s

0 ∂xi

∂zm′
∂xi

∂s

 (C.88)

whose product is

M1M2 =



− ∂2ϕ+
∂xı∂xı′

∂ξı

∂zm′
−
∑
i∈I

∂2ϕ+
∂xi∂xı

∂xi

∂zm′

∑
ı∈I

∂2ϕ+
∂xı∂xı

∂xı

∂s∑
k∈N

∂2ϕ+
∂xi′∂ξk

∂ωk

∂θm

∑
k∈N
i∈I

∂xi

∂zm′

∂2ϕ+
∂xi∂ξk

∂ωk

∂θm

∑
k∈N
i∈I

∂2ϕ+
∂xi∂ξk

∂ωk

∂θm

∂xi

∂s∑
k∈N

∂2ϕ+
∂xı′∂ξk

ωk
∑
k∈N
i∈I

∂2ϕ+
∂xi∂ξk

ωk
∂xi

∂zm′

∑
k∈N
i∈I

∂2ϕ+
∂xi∂ξk

ωk
∂xi

∂s


. (C.89)
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For all ı′ ∈ I, we add the (ı′)th column of the leftermost block column, multplied by ∂xı

∂s , to the rightermost
(block) column. We obtain

M1M2 ∼



− ∂2ϕ+
∂xı∂xı′

∂ξı

∂zm′
−
∑
i∈I

∂2ϕ+
∂xi∂xı

∂xi

∂zm′
0∑

k∈N

∂2ϕ+
∂xi′∂ξk

∂ωk

∂θm

∑
k∈N
i∈I

∂xi

∂zm′

∂2ϕ+
∂xi∂ξk

∂ωk

∂θm

∑
k,k′∈N

∂2ϕ+
∂xk′∂ξk

∂ωk

∂θm

∂xk′
∂s∑

k∈N

∂2ϕ+
∂xı′∂ξk

ωk
∑
k∈N
i∈I

∂2ϕ+
∂xi∂ξk

ωk
∂xi

∂zm′

∑
k,k′∈N

∂2ϕ+
∂xk′∂ξk

ωk
∂xk′
∂s


. (C.90)

Now differentiating (2.2.20), we see that∑
k′∈N

∂2ϕ+

∂xk′∂ξk

∂xk′

∂s
= 2

√
λωk. (C.91)

Since 〈ω+, ω+〉 = 1 and 〈ω+,
∂ω+
∂θm

〉 = 0, inserting (C.91) into (C.90) yields

M1M2 ∼



− ∂2ϕ+
∂xı∂xı′

∂ξı

∂zm′
−
∑
i∈I

∂2ϕ+
∂xi∂xı

∂xi

∂zm′
0∑

k∈N

∂2ϕ+
∂xi′∂ξk

∂ωk

∂θm

∑
k∈N
i∈I

∂xi

∂zm′

∂2ϕ+
∂xi∂ξk

∂ωk

∂θm
0

∑
k∈N

∂2ϕ+
∂xı′∂ξk

ωk
∑
k∈N
i∈I

∂2ϕ+
∂xi∂ξk

ωk
∂xi

∂zm′
2
√
λ


. (C.92)

By expanding the determinant we obtain

|det(M1M2)| = 2
√
λ|detM |, (C.93)

hence (C.84) becomes

|det Hess Φ|stat. pt. =
1
2
λ

n−2
2 EΓk,Jk

◦ S+
λ (z) · |detM1| · |detM2| (C.94)

Now by (C.87),

|detM1| =

∣∣∣∣∣∣∣det


∑
k∈N

∂2ϕ+
∂xl′∂ξk

∂ωk

∂θm∑
k∈N

∂2ϕ+
∂xl′∂ξk

ωk


∣∣∣∣∣∣∣ =

∣∣∣∣det
(∂ωl′
∂θm

ωl′

)∣∣∣∣ · |detA(x∞(s, z, λ),
√
λω+(z;λ)))| (C.95)

for l′ ∈ N , m ∈ N ′ and A given by (3.3.59). Now(∂ωl′
∂θm

ωl′

)T (∂ωl′
∂θm

ωl′

)
=
(

1 0
0 gµν

)
, gµν =

〈
∂ω+

∂θµ
,
∂ω+

∂θν

〉
(C.96)

so (gµν) is just the metric tensor on the sphere, expressed in the coordinates of Rn−1. It follows that

|detM1| = (gΣik
◦ ω+(z;λ))

1
2 · |detA(x∞(s, z, λ),

√
λω+(z;λ)))| (C.97)

Furthermore, expanding the determinant and applying (C.65),

|detM2| =

∣∣∣∣∣∣det

 ∂ξı

∂zm′
−
∑
i∈I

∂2ϕ+
∂xi∂xı

∂xi

∂zm′

∑
ı′∈I

∂2ϕ+
∂xı′∂xı

∂xı′
∂s

∂xi

∂zm′
∂xi

∂s

∣∣∣∣∣∣
=

∣∣∣∣∣∣det

 ∂ξı

∂zm′
−
∑
i∈I

∂2ϕ+
∂xi∂xı

∂xi

∂zm′

∂ξı

∂s −
∑
i∈I

∂2ϕ+
∂xi∂xı

∂xi

∂s

∂xi

∂zm′
∂xi

∂s

∣∣∣∣∣∣
=

∣∣∣∣∣det

(
∂ξı

∂zm′

∂ξı

∂s
∂xi

∂zm′
∂xi

∂s

)∣∣∣∣∣
= DΩk,Ik

◦ ι(s, z) (C.98)

Combining (C.94), (C.97) and (C.98) then yields (3.3.75). �



APPENDIX D

The canonical Maslov operator

The “canonical” Maslov operator is mathematically a conversion of a function defined on a lagrangian
manifold Λ in some cotangent bundle T ∗M to a function on M . Physically, it converts a classical object
(the lagrangian manifold Λ of integral curves of a hamiltonian vector field Xp = dp, p(x, ξ) being a
function of configuration space) to a quantum-mechnical object (a function ψ ∈ L2(M) solving Pψ = λψ,
Pψ =

∫
e−ixξp(x, ξ)ψ̂(ξ) d̄ξ).

The Maslov operator is “canonical” in the sense that, writing a function ϕ ∈ C∞(Λ) locally as a
function of lagrangian coordinates (xI , ξI) (cf. Definition 2.3.2), a Fourier transform of the ξolI -variables
is performed to obtain a function of the x variables. It is otherwise evident that this procedure is based
on coordinate transformations and is therefore dependent on the choice of chart, local coordinates and
other data not canonically given.

In order to define the Maslov operator, we need to introduce some notation and definitions. A large
amount of literature exists on the theory of the Maslov operator (cf., e.g., [18, esp. §8.4], [27], [20]), but
we will restrict ourselves here to the essentials necessary for the definition on Λ and L+.

D.1. Definition We shall denote by M an n–dimensional riemannian manifold with riemannian metric
tensor g. We use the notation of of Definition 2.3.2. We will refer to the following objects as Maslov
data:

i) An atlas {(Σk, χk)} on M consisting of open sets Σk ⊂M and maps χk : Σk → Rn. If M = Rn we
shall always use global (x, ξ)–coordinates on T ∗Rn.

ii) A lagrangian atlas {(Ωm, πΩm,Im
)}m≥0, Im ⊂ N := {1, . . . , n}, on Λ chosen such that for each m

there exists an km ∈ N such that Ωm $ T ∗Σkm
. We additionally require that I0 = N . The General

Position Hypothesis ensures that we can always choose an Ω0 in this way.
iii) A global coordinate map ι : Rn → Λ.
iv) A global generating function S.
v) A partition of unity subordinate to the covering {Ωm} (i.e., em ∈ C∞0 (Ωm),

∑
em = 1).

vi) A set of functions gm ∈ C∞0 (M) such that gm = 1 on π(Ωm) and g|M\π(Ωm) has compact support.

We will assume that all lagrangian manifolds under consideration are in “general position” in the
sense of Arnol’d [3, Theorem 2.1] if they are of sufficiently small dimension.

General Position Hypothesis We assume that all lagrangian manifolds under consideration (in par-
ticular Λ and L+ of (1.3.3) and (2.1.17), respectively) are in general position if n ≤ 6.

D.2. Remark For lagrangian manifolds of dimension less than six, the General Position Hypothesis
implies that all singularities are stable, i.e., the rank of dπ does not change under a sufficiently small
perturbation of the manifold in the class of lagrangian manifolds. Denote by S(Λ) = {p ∈ Λ: rank dπ|p <
n} the set of singular points of the n–dimensional lagrangian manifold Λ. Then one of the consequences
of the General Position Hypothesis is

dimS(Λ) ≤ n− 1. (D.99)

The statement (D.99) ensures the existence of some lagrangian atlas {(Ωm, πΩm,Im
)}m≥0 on Λ such that

I0 = N .
Note that for V ≡ 0, L+ = T ∗ω−S

n−1 and is hence not in general position.

Following Vainberg[27], we define the Maslov index of a chain of charts.

D.3. Definition & Lemma Let {Ωm, πΩm,Im
}, Im ⊂ N , be a lagrangian atlas on Λ.
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i) We define the Maslov index of a pair of charts by

γ(Ωm,Ωk) = inerdex

(
∂xIm

◦ π−1
Ωm,Im

(xIm
, ξIm

)
∂ξIm

)∣∣∣∣∣
(xIm ,ξIm

)=πΩm,Imp

− inerdex

(
∂xIk

◦ π−1
Ωk,Ik

(xIk
, ξIk

)
∂ξIk

)∣∣∣∣∣
(xIm ,ξIm

)=πΩk,Ik
p

(D.100)

for any p ∈ Ωm ∩ Ωk with p 6∈ Σ(Λ). Here inerdexA (the “inertial index”) denotes the number
of negative eigenvalues of a matrix A. If Ωm ∩ Ωk = ∅, we set γ(Ωm,Ωk) = 0. The index γ is
independent of the choice of p.

ii) We call {Ωmj
}lj=1, l ∈ N, a chain of charts joining Ω0 and Ωk if Ωm1 = Ω0, Ωmp

= Ωk and
Ωmj ∩ Ωmj+1 6= ∅.

iii) We define the index of a chain of charts joining Ω0 and Ωk by

γ(Ωm1 , . . . ,Ωml
) =

l−1∑
j=1

γ(Ωmj
,Ωmj+1) (D.101)

If Ω0 ∩ S(Λ) = ∅, the indices of two chains of charts both joining Ω0 and Ωk are identical, so we
can define γk as the index of any such chain.

D.4. Definition We make the following definitions:
i) The 1/h–Fourier transform of functions ϕ ∈ L2(Rn) is given by

(Fhϕ)(ξ) := (2πh)−n/2
∫
Rn

e−
i
h 〈x,ξ〉ϕ(x) dx, (F−1

h ϕ)(x) = (2πh)−n/2
∫
Rn

e
i
h 〈x,ξ〉ϕ(ξ) dξ. (D.102)

For short, we will write d̄xi := (2πh)−1/2dxi (where x = (xi)).
ii) gΩ ◦ ι(y) := det(g ◦ π|Λ ◦ ι(y))
iii) We define DΩ,I ∈ C∞(Ω) via

DΩ,I ◦ ι(y) :=
∣∣det d(πΩ,I ◦ ι)|y

∣∣ y ∈ ι−1(Ω). (D.103)

We can now introduce the Maslov operator on Λ:

D.5. Definition We refer to the notation and definitions of this section as well as Definition 2.3.2. We
assume that we have chosen Maslov data as in Definition D.1. Then

KΛ : C∞(Λ) → C∞(M), KΛ[ϕ] :=
∑
m

ei
π
2 γmKΩm,Im

[emϕ], (D.104)

with

(KΩ,I [ϕ]) ◦ χ−1(x) := g(x)F−1
h

[
e

i
hSΩ,I◦π−1

Ω,I(xI , · )(g
1
4
Ω;ID

− 1
2

Ω,I · ϕ) ◦ π−1
Ω,I(xI , · )

]∣∣
xI
. (D.105)

defines a Maslov operator on Λ. We shall call KΩ,I as a local Maslov operator, and will sometimes refer
to KΛ as a global Maslov operator in contradistinction to KΩ,I .

D.6. Remark In order to define a Maslov operator KΛ on a lagrangian manifold Λ, a wide variety of
objects were defined or chosen. Without giving any proofs, we will summarise how these objects and
choices influence KΛ. We consider the riemannian manifold (M, g) and Λ ⊂ T ∗M to be fixed.

i) The global coordinate map ι : Rn → Λ effectively defines a measure on Λ, which fundamentally
influences DΩ,I and gΩ;I . Replacing ι by some other global coordinate map would yield an entirely
different Maslov operator.

ii) The global generating function S is defined up to an additive constant c ∈ R, which influences KΛ

by a factor of e
i
h c.

iii) The atlas {(Σk, χk)} on M and the lagrangian atlas {(Ωm, πΩm,Im
)}m≥0 on Λ, the partition of unity

{em} and the functions {gm} all influence Kλ by terms of order O(h), i.e., if Kλ and K ′
λ denote two

Maslov operators constructed using different charts and cut–off functions,

‖Kλ[ϕ]‖2 = ‖K ′
λ[ϕ]‖2 +O(h) for ϕ ∈ L2(M), as h→ 0. (D.106)
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iv) The choice of Ω0 in the definition of γm (the index of the chain of charts joining Ωm to Ω0) influences
KΛ by a multiplicative factor of ei

π
2 µ, µ ∈ {0, 1, 2, 3}.

Hence the term “canonical operator” often seen in the literature is actually a misnomer. However, for
many applications this arbitrariness is not important, as often any given Maslov operator on Λ can be
used to construct approximate solutions to a given problem (e.g., Lemma 3.2.9 and Theorem 3.2.10).

D.7. Remark It is not actually necessary to have a global generating function S and a global coordinate
map ι on Λ; instead one can patch together local generating functions and local measures in a suitable
way, cf. [20]. However, on Λ ⊂ T ∗Rn and L+ ⊂ T ∗Sn−1 we have established these convenient data and
thus make use of them.
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