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Graphs are ubiquitous in Computer Science. For this reason, in many areas, it is
very important to have the means to express and reason about graph properties.
In particular, we want to be able to check automatically if a given graph property
is satisfiable. Actually, in most application scenarios it is desirable to be able to
explore graphs satisfying the graph property if they exist or even to get a complete
and compact overview of the graphs satisfying the graph property.

We show that the tableau-based reasoning method for graph properties as in-
troduced by Lambers and Orejas paves the way for a symbolic model generation
algorithm for graph properties. Graph properties are formulated in a dedicated
logic making use of graphs and graph morphisms, which is equivalent to first-
order logic on graphs as introduced by Courcelle. Our parallelizable algorithm
gradually generates a finite set of so-called symbolic models, where each symbolic
model describes a set of finite graphs (i.e., finite models) satisfying the graph prop-
erty. The set of symbolic models jointly describes all finite models for the graph
property (complete) and does not describe any finite graph violating the graph
property (sound). Moreover, no symbolic model is already covered by another one
(compact). Finally, the algorithm is able to generate from each symbolic model a
minimal finite model immediately and allows for an exploration of further finite
models. The algorithm is implemented in the new tool AutoGraph.

5





Contents

1 Introduction 8

2 Related Work 10

3 Preliminaries 12

4 Symbolic Model Generation 20
4.1 Sets of symbolic models . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Symbolic model generation algorithm A . . . . . . . . . . . . . . . . 21

4.3 Generation of SNT,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Compaction of SNT,k into S . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Explorability of S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Implementation 28

6 Conclusion and Outlook 31

A Example Based Comparison with Alloy 37

B Proofs 42

7



1 Introduction

Graphs are ubiquitous in Computer Science. For this reason, in many areas, it is
(or it may be) very important to have the means to express and reason about graph
properties. Examples may be, (a) model-based engineering where we may need
to express properties of graphical models; (b) the verification of systems whose
states are modeled as graphs; (c) to express properties about sets of semi-structured
documents, especially if they are related by links; (d) graph databases, where we
may want to state integrity constraints in the form of graph properties or where we
may want to be able to reason about the validity of graph queries and, in particular,
to understand why queries might be valid or not.

Let us take a closer look at the latter application field to understand how the
symbolic model generation approach for graph properties, as presented in this
paper, will support a typical usage scenario. In general, a graph query for a graph
database G (as formalized in [3] and used in extended form in [21]) formulates
the search for occurrences of graph patterns of a specific form L satisfying some
additional property in G. Since such a query can become quite complex it is
important to have an intuitive query language to formulate it and to have additional
support allowing for reasoning about the query to enhance understandability and
facilitate debugging. Validity of a graph query means that there should exist a graph
database G in which we find an occurrence of the pattern L satisfying the additional
property for L encoded in the query, see for example Figure 3.1b depicting a graph
property p1 expressing validity for a query taken from [9, 38] explained in detail
in chapter 3. First of all automatic support to answer this validity question for a
query is thus desired. Moreover, if validity is the case, then one wants to be able
to inspect a graph database G as a concrete example, but this example should be
of a manageable size. Moreover, if there are considerably different types of graph
databases being witnessed for the validity of a query then we would like to get a
finite, complete, and compact overview S of all these graph databases. Also a flexible
exploration starting from some minimal example graph database to a bigger one
still being a witness for validity is desirable. Finally, of course one wants to see all
these results within a reasonable amount of time.

For a given graph property p, formulating more generically all requirements
occurring in this usage scenario means that we would like to have an algorithm A
returning for p a finite set of so-called symbolic models S such that

• S jointly covers each finite graph G satisfying p (complete),

• S does not cover any finite graph G violating p (sound),

• S contains no superfluous symbolic model (compact),
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1 Introduction

• S allows for each of its symbolic models the immediate extraction of a mini-
mal finite graph G covered (minimally representable), and

• S allows an enumeration of further finite graphs G satisfying p (explorable).

The contribution of this paper is the presentation and implementation of a par-
allelizable symbolic model generation algorithm delivering a complete (provided
termination), sound, compact, minimally representable, and explorable set of sym-
bolic models. We illustrate the algorithm w.r.t. checking validity of some complex
graph queries from [9, 38]. Our algorithm takes as input graph properties formu-
lated in an intuitive, dedicated logic making use of graphs and graph morphisms as
first-class citizens. This logic of so-called nested graph conditions was defined by Habel
and Pennemann [14]. A similar approach was first introduced by Rensink [33]. The
origins can be found in the notion of graph constraint [16], introduced in the area of
graph transformation [34], in connection with the notion of (negative) application
conditions [7, 13], as a form to limit the applicability of transformation rules. These
graph constraints originally had a very limited expressive power, while nested con-
ditions have been shown [14, 28] to have the same expressive power as first-order logic
(FOL) on graphs as introduced by Courcelle [4]. Note that because we support FOL
on graphs our algorithm might in general not terminate. It is designed however
(also if non-terminating) to gradually deliver better underapproximations of the
complete set of symbolic models.

This report is an extended version of the paper [36] and is structured as follows:
In chapter 2 we give an overview over related work. In chapter 3 we introduce our
running example and we reintroduce the key notions of the tableau-based reason-
ing method that our symbolic model generation algorithm is based on. In chapter 4

we present our algorithm and its formalization and in particular show that it fulfills
all requirements. In chapter 5 we describe the algorithm implementation in the new
tool AutoGraph. We conclude the paper in chapter 6 together with an overview
of future work. In Appendix A we compare based on an example the results ob-
tained from AutoGraph with the results when following the translation based
approach facilitating Alloy. Finally, proofs for the included results are contained
in Appendix B.
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2 Related Work

Instead of using a dedicated logic for graph properties, one can define and reason
about graph properties in terms of some existing logic and reuse its associated
reasoning methods. In particular, Courcelle [4] studied systematically a graph
logic defined in terms of first-order (or monadic second-order) logic. In that ap-
proach, graphs are defined axiomatically using predicates node(n), asserting that
n is a node, and edge(n1, n2) asserting that there is an edge from n1 to n2. Such a
translation-based approach for finding models of graph-like properties is followed, for
example, in [11], where OCL properties are translated into relational logic, and rea-
soning is then performed by Kodkod, a SAT-based constraint solver for relational
logic. In a similar vein, in [1] reasoning for feature models is being provided based
on a translation into input for different general-purpose reasoners. Analogously,
in [37] the Alloy analyzer is used to synthesize in this case large, well-formed
and realistic models for domain-specific languages. Reasoning for domain specific
modeling is addressed also in [19, 20] using the FORMULA approach taking care
of dispatching the reasoning to the state-of-the-art SMT solver Z3. In [35] another
translation-based approach is presented to reason with so-called partial models
expressing uncertainty about the information in the model during model-based
software development. In principle, all the previously exemplarily presented ap-
proaches from the model-based engineering domain represent potential use cases
for our dedicated symbolic model generation approach for graph-like properties.
Since we are able to generate symbolic models being complete (in case of termina-
tion), sound, compact, minimally representable, and explorable in combination,
we believe that our approach has the potential to enhance considerably the type
of analysis results, in comparison with the results obtained by using off-the-shelf
SAT-solving technologies.

Following this idea, in contrast to the translation-based approach it is possible,
e.g, to formalize a graph-like property language such as OCL [32] by a dedicated
logic for graph properties [14] and apply corresponding dedicated automated reason-
ing methods as developed in [23, 26, 27, 29]. The advantage of such a graph-dedicated
approach as followed in this paper is that graph axioms are natively encoded in
the reasoning mechanisms of the underlying algorithms and tooling. Therefore,
they can be built to be more efficient than generic-purpose methods as demon-
strated for example in [27, 28, 29], where such an approach outperforms some
standard provers working over encoded graph conditions. Moreover, the transla-
tion effort for each graph property language variant (such as for example OCL)
into a formal logic already dedicated to the graph domain is much smaller than
a translation into some more generic logic, which in particular makes translation
errors less probable. As most directly related work [27, 28] presents a satisfiability
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2 Related Work

solving algorithm for graph properties as employed in this paper [14]. This solver
attempts to find one finite model (if possible), but does not generate a compact and
gradually complete finite set of symbolic models allowing to inspect all possible
finite models including a finite set of minimal ones. In contrast to [27, 28] our
symbolic model generation algorithm is interleaved directly with a refutationally
complete tableau-based reasoning method [23], inspired by rules of a proof system
presented previously in [29], but in that work the proof rules were not shown to be
refutationally complete.
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3 Preliminaries

In this section we first introduce our running example and then recall definitions
and results from [23] simplified for their application in subsequent sections.

We consider as an example two social network queries as described in the Social
Network Benchmark developed by the Linked Data Benchmark Council [9, 38].
The form of social networks to be queried is given by the type graph in Figure 3.1a.
Moreover, we forbid parallel edges of the same type. The first considered graph
query (a variant of query 8 from [3]) looks for pairs of Persons and Tags such that
in such a pair a Tag is new in some Post by a friend of this Person. To be a Post of a
friend, the Post must be from a second Person the Person knows. In order to be new,
the Tag must be linked in the latest Post of the second Person (and thus in a Post
that has no successor Post) and there has to be no former Post by any other or the
same friend that is not her last one and where the same Tag has been already used.
In both cases only Tags that are not simply inherited from a linked Post should
be considered. This query is valid if there is a graph database G in which such a
Person and Tag pair can be found at least once. The corresponding graph property
p1 is depicted in Figure 3.1b. The graph property p2 for a variant of query 10 [9,
38] is given in Figure 3.1c.

Technically, we express graph properties as a special case of nested graph condi-
tions that are formulated over a graph C and satisfied by monomorphisms (monos
for short) [14]. In particular, a graph property satisfied by a graph G is a graph
condition over the empty graph ∅ satisfied by the unique mono ∅→ G.

Definition 1 (condition, property) We define conditions over graphs inductively:

• ∃(m, c) is a condition over C, if m : C ↪−→ D is a mono and c is a condition over D,

• ¬c is a condition over C, if c is a condition over C, and

• ∧(c1, . . . , ck) is a condition over C, if c1, . . . , ck are conditions over C.

A graph property is a condition over the empty graph ∅.

Note, the empty conjunction ∧() serves as a base case for the inductive definition.
Without extending expressiveness of the conditions, we define the following opera-
tors: ∨(c1, . . . , ck):=¬∧ (¬c1, . . . ,¬ck), true:=∧(), false:=∨(), and ∀(m, c):=¬∃(m,¬c).
Finally, we also use ∧(S) if S is a finite set instead of a list.

Definition 2 (satisfaction) A mono q : C ↪−→ G satisfies a condition c over C, written,
q |= c as follows.

• if c = ∃(m : C ↪−→ D, c′) and there is a mono q′ : D ↪−→ G such that q′ ◦m = q and
q′ |= c, then q |= c.
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3 Preliminaries

• if c = ¬c′ and q 6|= c′, then q |= c.

• if c = ∧(c1, . . . , ck), q |= c1, . . . , q |= ck, then q |= c.

Finally, if G is a graph, p is a graph property, and the unique mono i : ∅ ↪−→ G satisfies
p, then G satisfies p, written G |= p.

For example, the graph satisfies the condition c = ∃(m1 : ∅ ↪−→ ,¬∃(m2 : ↪−→
, true)) as explained by the following diagram. According to Definition 2 |= c

if for the unique inclusion i : ∅ ↪−→ satisfies c. Then, i : ∅ ↪−→ |= c if there
is some p1 : ↪−→ such that p1 ◦ m1 = i and p1 |= ¬∃(m2 : ↪−→ , true).
Obviously, there is only one possible p1, which also satisfies p1 ◦ m1 = i. Then,
p1 |= ¬∃(m2 : ↪−→ , true) if we can derive a contradiction from p1 |= ∃(m2 :
↪−→ , true). p1 |= ∃(m2 : ↪−→ , true) implies that there is some p2 : ↪−→

such that p2 ◦m2 = p1 and p2 |= true. However, this is a contradiction because no
such mono p2 exists. This contradiction implies that p1 |= ¬∃(m2 : ↪−→ , true) as
desired.

∅
m1

i

m2

p1
p2  

Note that we reintroduced the definitions above for graphs, but our results
can be generalized to variants of graphs such as, for example, typed attributed
graphs, Petri nets, or even algebraic specifications, since they belong to an M-
adhesive category [6, 22] satisfying some additional categorical properties that
the tableau-based reasoning method [23] requires. This is another advantage as
opposed to using encodings as referred to in related work, since each kind of graph
structure would otherwise need a different encoding. Moreover, since many DB
queries typically make use of attributes by using variables, we will extend our
algorithm to typed attributed graphs in the future: then, the monos from the answer
set also determine an assignment of variables to values from the database. At the
current stage of development such further attribute constraints are not checked
and, therefore, monos would be returned for which such attribute constraints
would have to be checked a posteriori. Finally, it may also be desireable to provide
automatic translations for (a well-defined subset of) graph DB query languages to
AutoGraph. Such translations could then enable the usage of AutoGraph as a
backend reasoner for graph queries replacing translations into more generic FOL
reasoners (as for the model-based engineering scenario in [21]).

Our symbolic model generation method will operate on the subset of conditions
in conjunctive normal form (CNF), simplifying the corresponding reasoning. For
example, ∧(∨()) = ∧(false) is a condition in CNF equivalent to false. We there-
fore assume an operation [·], similarly to operations in [23, 28, 29], translating

13



3 Preliminaries

conditions into equivalent conditions in CNF. This operation applies, besides the
expected equivalences, like the equivalence for removal of universal quantifica-
tion mentioned before Definition 2, an equivalence for the removal of literals with
isomorphisms (for example, ∃(i : A ∼−→ B, ∃(m : B ↪−→ C, true)) is replaced by
∃((m ◦ i) : A ↪−→ C, true) by moving the isomorphism i into the literals of the next
nesting level). See Figure 3.2 for a complete list. In particular, a negative literal
in CNF is trivially satisfiable by the identity morphism, a property that will be
exploited heavily in our symbolic model generation algorithm. Note, skolemization,
which removes existential quantification in FOL SAT-reasoning, is not needed for
graph conditions [28, p. 100]; we employ CNF-conversion on quantified subcondi-
tions separately.

Definition 3 (CNF) A literal ` is either a positive literal ∃(m, c) or a negative literal
¬∃(m, c) where m is no isomorphism and c is in CNF. A clause is a disjunction of literals.
A conjunction of clauses is a condition in CNF.

Remark 1 (Runtime Complexity of Conversion to CNF) As for FOL the conversion
to CNF entails the conversion of subconditions of the shape (a1 ∧ b1)∨ · · · ∨ (an ∧ bn) re-
sulting in 2n clauses of size n. However, in our approach the conversion of graph conditions
into CNF graph conditions usually has no great impact because subconditions from dif-
ferent existential quantifiers are not combined in the conversion, that is, we perform the
conversion on each nesting level of the ∃-quantifier and, hence, we obtain quite small CNF
formulas as inputs. For FOL this is different: after skolemization, which removes existential
quantifiers, all subconditions are related to each other resulting in huge formulas.

In the running example the conversion to CNF requires negligable time (up to 4 ms) and
increases the number of operators from 45 to 61 for the condition p1 ∧ p2 from Figure 3.1.
For a comparison, consider the FOL enconding of this condition in Alloy from Ap-
pendix A. When using Alloy to perform the CNF conversion we obtain 199 122 clauses
in 2169 ms.

Also note, the size of the graphs and the morphisms contained in the condition are
not relevant for the conversion in our case, which is an important difference to the FOL
scenario in Alloy.

The tableau-based reasoning method as introduced in [23] is based on so-called
nested tableaux. We start with reintroducing the notion of a regular tableau for
a graph condition, which was directly inspired by the construction of tableaux
for plain FOL reasoning [15]. Intuitively, provided a condition in CNF, such an
iteratively constructed tableau represents all possible selections (computed using
the extension rule in the following definition) of precisely one literal from each
clause of the condition (note, a condition is unsatisfiable if it contains an empty
clause). Such a selection is given by a maximal path in the tableau, which is called
branch. In this sense, we are constructing a disjunctive normal form (DNF) where
the set of nodes occurring in a branch of the resulting tableau corresponds to one
clause of this DNF. Then, to discover contradictions in the literals of a branch and
to prepare for the next step in the satisfiability analysis we merge (using the lift
rule in the following definition) the selected literals into a single positive literal

14



3 Preliminaries

(note, if no positive literal is available the condition is always satisfiable), which is
called opener. Note that the lift rule is based on a shifting translating a condition
over a morphism into an equivalent condition [8, 14].

Definition 4 (tableau, tableau rules, open/closed branches) Given a condition c in
CNF over C. A tableau T for c is a tree whose nodes are conditions constructed using the
rules below. A branch in a tableau T for c is a maximal path in T. Moreover, a branch is
closed if it contains false; otherwise, it is open. Finally, a tableau is closed if all of its
branches are closed; otherwise, it is open.

• initialization rule:
a tree with a single root node true is a tableau for c.

• extension rule:
if T is a tableau for c, B is a branch of T, and ∨(c1, . . . , cn) is a clause in c, then if
n > 0 and c1, . . . , cn are not in B, then extend B with n child nodes c1, . . . , cn or if
n = 0 and false is not in B, then extend B with false.

• lift rule:
if T is a tableau for c, B is a branch of T, ∃(m, c′) and ` are literals in B, `′ =
∃(m, [c′ ∧ shift(m, `)]) is not in B, then extend B with `′.

The operation shift(·, ·) allows to shift conditions over morphisms preserving sat-
isfaction in the sense that m1 ◦ m2 |= c iff m1 |= shift(m2, c) (see [23, lemma 3]).
Semi-saturated tableaux are the desired results of the iterative construction where
no further rules need to be applied.

Definition 5 (semi-saturation, hook of a branch) Let T be a tableau for condition c
over C. A branch B of T is semi-saturated if it is either closed or

• B is not extendable with a new node using the extension rule and

• if E = {`1, . . . , `n} is nonempty and the set of literals added to B using the extension
rule, then there is a positive literal ` = ∃(m, c′) in E such that the literal in the leaf
of B is equivalent to ∃(m, c′ ∧`′∈(E−{`}) shift(m, `′)). Also, we call ` the hook of B.

Finally, T is semi-saturated if all its branches are semi-saturated.

In fact, a condition c is satisfiable if and only if the leaf condition of some open
branch of a corresponding semi-saturated tableau is satisfiable. Hence, the next
analysis step is required if there is a leaf ∃(m : C ↪−→ C′, c′) of some open branch for
which satisfiability has to be decided. That is, the next analysis step is to construct
a tableau for condition c′. The iterative (possibly non-terminating) execution of this
procedure results in (possibly infinitely many) tableaux where each tableau may
result in the construction of a finite number of further tableaux. This relationship
between a tableau and the tableaux derived from the leaf literals of open branches
results in a so called nested tableau (see Figure 3.3 for an example of a nested
tableau).
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3 Preliminaries

Definition 6 (nested tableau, opener, context, nested branch, semi-saturation)
Given a condition c over C and a poset (I,≤, i0) with minimal element i0. A nested
tableau NT for c is for some I′ ⊆ I a family of triples {〈Ti, j, ci〉}i∈I′ constructed using
the following rules.

• initialization rule:
If Ti1 is a tableau for c, then the family containing only 〈Ti1 , i0, true〉 for some index
i1 > i0 is a nested tableau for c and C is called context of Ti1 .

• nesting rule:
If NT is a nested tableau for c with index set I′, 〈Tn, k, ck〉 is in NT for index n,
the literal ` = ∃(mn : An ↪−→ Aj, cn) is a leaf of Tn, ` is not the condition in any
other triple of NT, Tj is a tableau for cn, and j > n is some index not in I′, then add
the triple 〈Tj, n, `〉 to NT using index j, ` is called opener of Tj, and Aj is called
context of Tj.

A nested branch NB of the nested tableau NT is a maximal sequence of branches Bi1 ,
. . . , Bik , Bik+1 , . . . of tableaux Ti1 , . . . , Tik , Tik+1 , . . . in NT starting with a branch Bi1 in
the initial tableau Ti1 of NT, such that if Bik and Bik+1 are consecutive branches in the
sequence then the leaf of Bik is the opener of Tik+1 . NB is closed if it contains a closed
branch; otherwise, it is open. NT is closed if all its nested branches are closed. Finally,
NT is semi-saturated if each tableau in NT is semi-saturated.

It has been shown in [23] that the tableau based reasoning method using nested
tableaux for conditions c is sound and refutationally complete. In particular, sound-
ness means that if we are able to construct a nested tableau where all its branches
are closed then the original condition c is unsatisfiable. Refutational completeness
means that if a saturated tableau includes an open branch, then the original condi-
tion is satisfiable. In fact, each open finite or infinite branch in such a tableau defines
a finite or infinite model of the property, respectively. Informally, the notion of sat-
uration requires that all tableaux of the given nested tableau are semi-saturated
and that hooks are selected in a fair way not postponing indefinitely the influence
of a positive literal for detecting inconsistencies leading to closed nested branches.

Remark 2 (Refutational Completeness and Fairness)
Incompleteness can be caused in tableaux for FOL by unfair selection of formulas (confer
[15, page 117, Figure 4] for an example where the unsatisfiable condition Q∧¬Q is treated
unfair by never being selected). In our case the set of conditions from which a hook is to be
selected in a fair way changes from one tableau to the next because conditions that are not
selected are lifted into the hook resulting (possibly) in various conditions. These conditions
are called the successors of the not selected, lifted conditions in [23]. To ensure refutational
completeness we ensure that the impact of a condition affects the nested branch eventually
by not postponing the selection of one these successors as a hook indefinitely. Confer to [23,
p. 29] for the discussion in the original paper.
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Figure 3.1: Graph properties for queries from the Social Network Benchmark [9,
38]
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unfold abbreviations except for disjunction

true ≡ ∧()
false ≡ ∨()

∀(m, c) ≡ ¬∃(m,¬c)

move negation in front of existential quantification

¬ ∧ (S) ≡ ∨({¬c | c ∈ S})
¬ ∨ (c1, . . . , cn) ≡ ∧({¬c | c ∈ S})

¬¬c ≡ c

ensure that a conjunction contains only disjunctions and literals

∧(S ∪ {∧(S′)}) ≡ ∧(S ∪ S′)

ensure that a disjunction contains only conjunctions and literals

∨(S ∪ {∨(S′)}) ≡ ∨(S ∪ S′)

ensure that a conjunction contains only disjunctions of literals

∧(S ∪ {∨(S′ ∪ {∧(S′′)})}) ≡ ∧(S ∪ {∨(S′ ∪ {s′′}) | s′′ ∈ S′′})

ensure absence of isomorphisms

∃(m : A ∼−→ A, c) ≡ move-down(m, c)

move-down(m,∧(S)) ≡ ∧({move-down(m, s) | s ∈ S})
move-down(m,∨(S)) ≡ ∨({move-down(m, s) | s ∈ S})

move-down(m,¬c) ≡ ¬move-down(m, c)

move-down(m, ∃(m′, c)) ≡ ∃(m′ ◦m, c)

Figure 3.2: The conversion of conditions into CNF, written [·], applies the equiva-
lences above from left to right
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3 Preliminaries

p

true T0

∃

∃ ¬∃ ¬∃

∃( , [∧(true,∨L1)])

=∃( ,∧(∨(∃ , ∃ )))

∃( , [∧(true,¬ ∨ L2)])

=∃( , false)
∃( , [∧(true,¬ ∨ L3)])

=∃( ,∧(∨¬∃ ,∨¬∃ ))

∧(∨(∃ , ∃ ))

true T1

∃ ∃

false

true T2

false

∧(∨¬∃ ,∨¬∃ )

true T3

¬∃

¬∃true

true T4

true

true T5

Figure 3.3: Nested tableau (consisting of tableau T0, . . . , T5) for graph property
p = ∃( , true) ∧ (∨(∃( , true),¬∃( , true),¬∃( , true))). In the middle branch
false is obtained because ¬ ∨ L2 is reduced to false because ∨L2 is reduced to true
because L2 contains ∃ due to shifting, which is reduced by [·] to true because
of the used isomorphism. We extract from the nested branches ending in T4,
T5, and T3 the symbolic models 〈 , true〉, 〈 , true〉, and 〈 ,∧(¬∃ ,¬∃ )〉.
Here 〈 , true〉 is a refinement of 〈 , true〉 and, hence, would be removed by
compaction as explained in section 4.4
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4 Symbolic Model Generation

In this section we present our symbolic model generation algorithm. We first for-
malize the requirements from the introduction for the generated set of symbolic
models, then present our algorithm, and subsequently verify that it indeed adheres
to these formalized requirements. In particular,we want our algorithm to extract
symbolic models from all open finite branches in a saturated nested tableau con-
structed for a graph property p. This would be relatively straightforward if each
saturated nested tableau would be finite.

However, in general, as stated already at the end of the previous section this
may not be the case. E.g., consider the conjunction p0 = ∧(p1, p2, p3) of the condi-
tions p1 = ∃( 1 , ∀( 1 , false)) (there is a node which has no predecessor), p2 =

∀( 1 , ∃( 1 , true)) (every node has a successor), and p3 = ∀( , false)
(no node has two predecessors), which is only satisfied by the infinite graph
G∞ = . . . .

Thus, in order to be able to find a complete set of symbolic models without
knowing beforehand if the construction of a saturated nested tableau terminates,
we introduce the key-notions of k-semi-saturation and k-termination to reason
about nested tableaux up to depth k, which are in some sense a prefix of a saturated
tableau. Note, the verification of our algorithm, in particular for completeness, is
accordingly based on induction on k. Informally, this means that by enlarging the
depth k during the construction of a saturated nested tableau, we eventually find
all finite open branches and thus finite models. This procedure will at the same
time guarantee that we will be able to extract symbolic models from finite open
branches even for the case of an infinite saturated nested tableau. E.g., we will be
able to extract ∅ from a finite open branch of the infinite saturated nested tableau
for property p4 = ∧(p1 ∨ ∃( 1 , false), p2, p3).

4.1 Sets of symbolic models

The symbolic model generation algorithm A should generate for each graph prop-
erty p a set of symbolic models S satisfying all requirements described in the
introduction. A symbolic model in its most general form is a graph condition over
a graph C, where C is available as an explicit component. A symbolic model then
represents a possibly empty set of graphs (as defined subsequently in Definition 10).
A specific set of symbolic models S for a graph property p satisfies the require-
ments soundness, completeness, minimal representability, and compactness if it
adheres to the subsequent formalizations of these notions.
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4.2 Symbolic model generation algorithm A

Definition 7 (symbolic model) If c is a condition over C according to Definition 1,
then 〈C, c〉 is a symbolic model.

Based on the notion of m-consequence we relate symbolic models subsequently.

Definition 8 (m-consequence on conditions) If c1 and c2 are conditions over C1 and
C2, respectively, m : C1 ↪−→ C2 is a mono, and for all monos m1 : C1 ↪−→ G and m2 :
C2 ↪−→ G such that m2 ◦ m = m1 it holds that m2 |= c2 implies m1 |= c1, then c1 is an
m-consequence of c2, written c2 `m c1. We can state the existence of such an m by writing
c2 ` c1. We also omit m if it is the identity or clear from the context. Finally, conditions
c1 and c2 over C are equivalent, written c1 ≡ c2, if c1 ` c2 and c2 ` c1.

We define coverage of symbolic models based on the notion of m-refinement, which
relies on an m-consequence between the contained conditions.

Definition 9 (m-refinement of symbolic model) If 〈C1, c1〉 and 〈C2, c2〉 are symbolic
models and m : C1 ↪−→ C2 is a mono, and c2 `m c1, then 〈C2, c2〉 is an m-refinement
of 〈C1, c1〉, written 〈C2, c2〉 ≤m 〈C1, c1〉. The set of all such symbolic models 〈C2, c2〉 is
denoted by refined(〈C1, c1〉).

We define the graphs covered by a symbolic model as follows.

Definition 10 (m-covered by a symbolic model) If 〈C, c〉 is a symbolic model, G is a
finite graph, m : C ↪−→ G is a mono, and m |= c then G is an m-covered graph of 〈C, c〉.
The set of all such graphs is denoted by covered(〈C, c〉). For a set S of symbolic models
covered(S) = ∪s∈Scovered(s).

Based on these definitions, we formalize the first four requirements from chapter 1

to be satisfied by the sets of symbolic models returned by algorithm A.

Definition 11 (sound, complete, minimally representable, compact) Given a setS
of symbolic models and a graph property p. S is sound w.r.t. p if covered(S) ⊆ {G |
G |= p ∧ G is finite}, S is complete w.r.t. p if covered(S) ⊇ {G | G |= p ∧ G is finite},
S is minimally representable w.r.t. p if for each 〈C, c〉 ∈ S : C |= p and for each
G ∈ covered(〈C, c〉) there is a mono m : C ↪−→ G, and S is compact if all (s1 6= s2) ∈ S
satisfy covered(s1) * covered(s2).

4.2 Symbolic model generation algorithm A

We briefly describe the two steps of the algorithm A, which generates for a graph
property p a set of symbolic models A(p) = S . The algorithm consists of two steps:
the generation of symbolic models and the compaction of symbolic models, which
are discussed in detail in section 4.3 and section 4.4, respectively. Afterwards, in
section 4.5, we discuss the explorability of the obtained set of symbolic models S .

Step 1 (Generation of symbolic models in section 4.3). We apply the tableau and
nested tableau rules from chapter 3 to iteratively construct a nested tableau. Then,
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4 Symbolic Model Generation

we extract symbolic models from certain nested branches of this nested tableau that
can not be extended. Since the construction of the nested tableau may not termi-
nate due to infinite nested branches we construct the nested tableau in breadth-first
manner and extract the symbolic models whenever possible. Moreover, we elimi-
nate a source of nontermination by selecting the hook in each branch in a fair way
not postponing the successors of a positive literal that was not chosen as a hook
yet indefinitely [23, p. 29] ensuring at the same time refutational completeness of
our algorithm. This step ensures that the resulting set of symbolic models is sound,
complete (provided termination), and minimally representable. The symbolic mod-
els extracted from the intermediately constructed nested tableau NT for growing k
is denoted SNT,k.

Step 2 (Compaction of symbolic models in section 4.4). We obtain the final result S
from SNT,k by the removal of symbolic model that are a refinement of any other
symbolic model. This step preserves soundness (as only symbolic models are re-
moved), completeness (as only symbolic models are removed that are refinements,
hence, the removal does not change the set of covered graphs), and minimal rep-
resentability (as only symbolic models are removed), and additionally ensures
compactness.

4.3 Generation of SNT,k

By applying a breadth-first construction we build nested tableaux that are for
increasing k, both, k-semi-saturated, stating that all branches occurring up to index
k in all nested branches are semi-saturated, and k-terminated, stating that no nested
tableau rule can be applied to a leaf of a branch occurring up to index k in some
nested branch.

Definition 12 (k-semi-saturation, k-terminated) Given a nested tableau NT for con-
dition c over C. If NB is a nested branch of length k of NT and each branch B contained
at index i ≤ k in NB is semi-saturated, then NB is k-semi-saturated. If every nested
branch of NT of length n is min(n, k)-semi-saturated, then NT is k-semi-saturated. If
NB is a nested branch of NT of length n and the nesting rule can not be applied to the leaf
of any branch B at index i ≤ min(n, k) in NB, then NB is k-terminated. If every nested
branch of NT of length n is min(n, k)-terminated, then NT is k-terminated. If NB is a
nested branch of NT that is k-terminated for each k, then NB is terminated. If NT is
k-terminated for each k, then NT is terminated.

We define the k′-remainder of a branch, which is a refinement of the condition
of that tableau, that is used by the subsequent definition of the set of extracted
symbolic models.

Definition 13 (k′-remainder of branch) Given a tableau T for a condition c over C, a
mono q : C ↪−→ G, a branch B of T, and a prefix P of B of length k′ > 0. If R contains (1)
each condition contained in P unless it has been used in P by the lift rule (being ∃(m, c′)
or ` in the lift rule in Definition 4) and (2) the clauses of c not used by the extension
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4.3 Generation of SNT,k

rule in P (being ∨(c1, . . . , cn) in the extension rule in Definition 4), then 〈C,∧R〉 is the
k′-remainder of B.

The set of symbolic models extracted from a nested branch NB is a set of certain
k′-remainders of branches of NB. In the example given in Figure 3.3 we extracted
three symbolic models from the four nested branches of the nested tableau.

Definition 14 (extracted symbolic model) If NT is a nested tableau for a condition c
over C, NB is a k-terminated and k-semi-saturated nested branch of NT of length n ≤ k,
B is the branch at index n of length k′ in NB, B is open, B contains no positive literals,
then the k′-remainder of B is the symbolic model extracted from B. The set of all such
extracted symbolic models from k-terminated and k-semi-saturated nested branches of NT
is denoted SNT,k.

Based on the previously introduced definitions of soundness, completeness, and
minimal representability of sets of symbolic models w.r.t. graph properties we are
now ready to verify the corresponding results on the algorithm A.

Theorem 1 (soundness) If NT is a nested tableau for a graph property p, then SNT,k is
sound w.r.t. p.

Theorem 2 (completeness) If NT is a terminated nested tableau for a graph property p,
k is the maximal length of a nested branch in NT, then SNT,k is complete w.r.t. p.

As explained by the example at the beginning of chapter 4 the algorithm may not
terminate. However, the symbolic models extracted at any point during the con-
struction of the nested tableau are a gradually extended underapproximation of the
complete set of symbolic models. Moreover, the openers ∃(m : G1 ↪−→ G2, c) of the
branches that end nonterminated nested branches constitute an overapproximation
by encoding a lower bound on missing symbolic models in the sense that each
symbolic model that may be discovered by further tableau construction contains
some G2 as a subgraph.

Theorem 3 (minimal representability) If NT is a nested tableau for a graph property
p, then SNT,k is minimally representable w.r.t p.

For p1 ∧ p2 from Figure 3.1 we obtain a terminated nested tableau (consisting of
114 tableaux with 25 032 nodes) from which we generate 28 symbolic models (with
a total number of 5433 negative literals in their negative remainders). For p from
Figure 3.3 we generate 3 symbolic models, which are given also in Figure 3.3. In
the next subsection we explain how to compact sets of symbolic models.

As a further example, consider the univerally quantified graph property ∀(m :
∅ ↪−→ G, c), where G is not the empty graph, which is converted into the CNF
graph property ¬∃(m,¬c). We can then construct a nested tableau for this graph
property, which contains a single tableau with a single branch with the single item
¬∃(m,¬c). The smallest graph satisfying ∀(m, c) (or, equivalently, ¬∃(m,¬c)) is
the empty graph ∅. The algorithm A reflects this by returning {〈∅,¬∃(m,¬c)〉}
as the set of generated symbolic models.
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4 Symbolic Model Generation

4.4 Compaction of SNT,k into S

The set of symbolic models SNT,k as obtained in the previous section can be com-
pacted by application of the following lemma. It states a sufficient condition for
whether a symbolic model 〈A1, c1〉 refines another symbolic model 〈A2, c2〉, which
is equivalent to covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉). In this case we can remove the
covered symbolic model 〈A2, c2〉 from SNT,k without changing the graphs covered.
Since the set of symbolic models SNT,k is always finite we can apply the following
lemma until no further coverages are determined.

Lemma 1 (compaction) If 〈A1, c1〉 and 〈A2, c2〉 are symbolic models, m : A1 ↪−→ A2

is a mono, and the condition ∃(i2, c2 ∧ ¬shift(i2, ∃(i1, c1))) is not satisfiable by a finite
graph G, then covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉).

We may apply this lemma when we determine a mono m such that the condition
∃(i2, c2 ∧ ¬shift(i2, ∃(i1, c1))) is refutable. For this latter part we apply our tableau
construction as well and terminate as soon as non-refutability is detected, that is,
as soon as a symbolic model is obtained for the condition.

For the resulting set S of symbolic models obtained from iterated application of
Lemma 1 we now state the compactness as defined before.

Theorem 4 (compactness) If NT is a nested tableau for a graph property p, then S ⊆
SNT,k is compact.

For p1 ∧ p2 from Figure 3.1 we determined a single symbolic model with minimal
model (given in Figure 3.1e) that is contained by the minimal models of all 28
extracted symbolic models. However, this symbolic model covers only 2 of the other
27 symbolic models in the sense of Lemma 1. For p from Figure 3.3 we removed
one of the three symbolic models by compaction ending up with two symbolic
models, which have incomparable sets of covered graphs as for the symbolic models
remaining after compaction for p1 ∧ p2 from Figure 3.1.

Remark 3 (Runtime Complexity of Compaction) The compaction procedure termi-
nates because only finitely many symbolic models are contained in SNT,k, which have to be
checked pairwise.

To be able to apply Lemma 1 for compaction we first determine a mono. The problem
of finding monos amounts to the subgraph isomorphism problem, which is NP-complete.
However, because we have (a) types and (b) small graphs (by construction we generate
minimal models by operating only on the graphs from the conditions rather than operating
on instance graphs) the required time for finding the monos is not the dominant factor. In
fact, checking whether the condition ∃(i2, c2 ∧ ¬shift(i2, ∃(i1, c1))) is not satisfiable by a
finite graph in Lemma 1 is much more involved (and is in general undecidable as discussed
before, and, hence, not every required removal can be determined using AutoGraph):
we apply AutoGraph on this condition and abort the construction of the nested tableau
once a symbolic model could be extracted (finding a symbolic model implies that the con-
dition is satisfiable by a finite model). However, in cases where no finite models but some
infinite model exists AutoGraph is not suitable for checking the unsatisfiability.
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4.5 Explorability of S

Q ♂ ♂ ♂ Q #

(a) Extension Candidate G1

# ♂ ♂ ♂ Q #

(b) Extension Candidate G2

Figure 4.1: Two extension candidates that include the graph G0 from Figure 3.1e
with obvious monos m1 : G0 ↪−→ G1 and m2 : G0 ↪−→ G2

We believe that it is sufficient for the user in many situations to obtain the set of mini-
mal models: AutoGraph supports this as well by finding the required monos without
checking unsatisfiability by finite graphs: this is sufficient for determining minimal models
as given in Figure 3.1d and Figure 3.1e.

Currently we are unable to prevent overlapping/covering of resulting symbolic models
on the fly (for example, by preventing some kinds of symmetries) during the computation
without a similar impact on runtime.

Remark 4 (Connection to Construction of Tableau) Compaction can also be under-
stood as a certain form of application of the lifting rule from Definition 4 because the con-
dition ∃(i2, c2 ∧ ¬shift(i2, ∃(i1, c1))) to be checked is similar to the operation performed
for lifting, which is based on the shifting as well. However, the lifting rule is applied to a
conjunction (the elements in a branch determine a conjunction) whereas the compaction
is applied to a disjunction (of two symbolic models possibly describing overlapping sets
of models). Consequently, the lifting rule computes the intersection of the covered finite
graphs whereas compaction computes the ⊆-relation of the covered finite graphs.

4.5 Explorability of S

We believe that the exploration of further graphs satisfying a given property p
based on the symbolic models is often desireable. In fact, covered(S) can be explored
according to Definition 10 by selecting 〈C, c〉 ∈ S , by generating a mono m : C ↪−→ G
to a new finite candidate graph G, and by deciding m |= c. Then, an entire automatic
exploration can proceed by selecting the symbolic models 〈C, c〉 ∈ S in a round-
robin manner using an enumeration of the monos leaving C in each case. However,
the exploration may also be guided interactively restricting the considered symbolic
models and monos.

For example, consider p2 from Figure 3.1c for which the algorithm A returns a
single symbolic model 〈G0, c0〉 of which the minimal model is given in Figure 3.1c.
In an interactive exploration we may want to decide whether the two graphs given
in Figure 4.1 also satisfy p2. In fact, because m1 |= c0 and m2 6|= c0 we derive
G1 |= p2 and G2 6|= p2 as expected.

Remark 5 (Feasibility of Exploration) An entire enumeration is often not feasible,
since many properties (such as true and the other properties considered in this report)
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4 Symbolic Model Generation

have infinitely many models. However, we believe that it may prove useful in many ap-
plication scenarios to obtain a finitely representable guidance to construct every possible
finite model if needed. The set of symbolic models represents such a guidance indeed.

Remark 6 (Further Application Scenarios) As mentioned above we will take advan-
tage of explorability more explicitly in the future. In particular, it could be adapted to
generate large sets of graphs or large, realistic graphs, for example, in the context of per-
formance testing.

Moreover, in the context of coverage-based testing the minimal models that we derive
directly from our symbolic models are not necessarily already realistic enough to the user.
He might want to enlarge the models (possibly interactively) and determine whether this
enlargement is consistent with the specification. However, we believe that the minimal
models of a condition, which we are able to generate, are most likely already reasonable test
input sets.
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4.5 Explorability of S

1 : refute-false

res = ∃(m,∧(∨(∅)))

∅

2 : select-hook-from-pre-queue

res = ⊥ q-pre = ` · `s

{(�, `, �, `s, �, �, �)}

3 : no-hook

res = ⊥ inp = ∧()
∅

4 : lift-negative-literal-into-branching-result

res = ∃(m, c) neg = ` · `s shift(m, `) = c′{(�, ∃(m, [c ∧ c′]), `s, �, �, �)}

5 : lift-positive-literals-from-pre-queue

res = ∃(m, c) q-pre = ` · `s shift(m, `) = ∨L{(�, �, �, `s, q-post · ∃(m′, [c′]), �) | ∃(m′, c′) ∈ L ∧ ¬iso(m′)}
∪{(�, ∃(m, [c ∧ ∃(m′, c′)]), �, `s, �, �) | ∃(m′, c′) ∈ L ∧ iso(m′)}

6 : create-nested-tableau

res = ∃(m, c) inp = ∧()
{(c,⊥, �, q-post, λ, m ◦ cm)}

7 : extend-using-first-clause

inp = ∧(cl1, cl2, . . . , cln) cl1 = ∨L{(∧(cl2, . . . , cln), �, �, q-pre · ∃(m, c), �, �) | ∃(m, c) ∈ L}
∪{(∧(cl2, . . . , cln), �, neg · ¬∃(m, c), �, �, �) | ¬∃(m, c) ∈ L}

Figure 4.2: Implemented construction rules: ` is a literal, `s is a sequence of literals,
L is a set of literals, cli is a clause, and � is the unchanged value from the input
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5 Implementation

We implemented the algorithm A platform-independently using Java as our new
tool AutoGraph using xsd-based [39] input/output-format.

While some elementary constructions used (such as computing CNF, existence
of monos, and pair factorization) have exponential worst case executing time, we
believe, based on our tool-based evaluation, that in many practical applications the
runtime will be acceptable. Furthermore, we optimized performance by exploiting
parallelizability of the tableaux construction (by considering each nested branch
in parallel) and of the compaction of the sets of symbolic models (by considering
each pair of symbolic models in parallel).

In Figure 5.1 we have visualized the runtime required by AutoGraph for the
condition p1 ∧ p2 from Figure 3.1. The minimal models derived using AutoGraph

for p1, p2, and p1 ∧ p2 from Figure 3.1 are given in Figure 3.1d and Figure 3.1e. We
believe that the 24 threads will be appropriate when using bigger examples in the
future: for the considered example the runtime is not decreasing further because
the width of the tableau is not large enough. For p from Figure 3.3 AutoGraph

terminates in negligable time.
To limit memory consumption we discard parts of the nested tableau not required

for the subsequent computation, which generates the symbolic models, as follows.
The implemented algorithm operates on a queue (used to enforce the breadth-
first construction) of configurations where each configuration represents the last
branch of a nested branch of the nested tableau currently constructed (the parts
of the nested tableau not given by theses branches are thereby not represented in
memory). The algorithm starts with a single initial configuration and terminates if
the queue of configurations is empty.

A configuration contains the information necessary to continue the further con-
struction of the nested tableau (also ensuring fair selection of hooks) and to extract
the symbolic models whenever one is obtained.

A configuration of the implementation is a tuple containing six elements (inp, res,
neg, q-pre, q-post, cm) where inp is a condition c over C in CNF and is the remainder
of the condition currently constructed (where clauses used already are removed),
res is ⊥ or a positive literal ∃(m : C ↪−→ D, c′) into which the other literals from
the branch are lifted, neg is a list of negative literals over C from clauses already
handled (this list is emptied as soon as a positive literal has been chosen for res),
q-pre is a queue of positive literals over C from which the first element is chosen
for the res component, q-post is a queue of positive literals: once res is a chosen
positive literal ∃(m : C ↪−→ D, c′) we shift the elements from q-pre over m to obtain
elements of q-post, and cm is the composition of the morphisms from the openers
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Figure 5.1: Runtime of AutoGraph for the condition p1 ∧ p2 from Figure 3.1.
The following figure provides a complete overview using 1 to 24 threads on
our machine and 10 iterations. We used the machine with 256 GB DDR4 and
2 × E5-2643 Xeon @ 3.4 GHz × 6 cores × 2 threads. When also executing the
compaction we required about 129 s using 24 threads.

of the nested branch constructed so far and is used to obtain eventually symbolic
models (if they exist).

Given a condition c over C the single initial configuration is (c,⊥, λ, λ, λ, idC).
The implemented construction rules operating on these configurations are given
in Figure 4.2. Given a configuration c we check the rules in the order given for
applicability and apply only the first rule found. For each rule, applicability is
determined by the conditions above the line and each rule results in a set of
configurations given below the rule.

Rule 1 stops further generation if the current result is unsatisfiable. Rule 2 ensures
that hooks are selected from the queue (if the queue is not empty) to ensure fairness
of hook selection. Rule 3 if the queue can not be used to select a hook and no clause
remains, the nested branch is terminated and a symbolic model can be extracted by
taking 〈codomain(cm),∧neg〉. Rule 4 implements the lifting rule (see Definition 4) for
negative literals taken from neg. Rule 5 implements the lifting rule (see Definition 4)
for positive literals taken from q-pre; if the morphism of the resulting positive
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5 Implementation

literal is an isomorphism, as forbidden for literals in CNF, we move an equivalent
condition in CNF into the current hook (also implementing the lift rule) instead
of moving the literal to the queue q-post. Rule 6 implements the nesting rule
(see Definition 6). Rule 7 deterministically implements the extension rule (see
Definition 4) constructing for each literal of the first clause a new configuration to
represent the different nested branches.

For soundness reconsider Definition 13 where the set R used in the condition
∧R recovers the desired information similarly to how it is captured in the config-
urations. The separation into different elements in the configurations then allows
for queue handling and determinization.
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6 Conclusion and Outlook

We presented a symbolic model generation procedure for graph properties being
equivalent to FOL on graphs. Our algorithm is innovative in the sense that it is
designed to generate a finite set of symbolic models that is sound, complete (upon
termination), compact, minimally representable, and flexibly explorable. Moreover,
the algorithm is highly parallelizable. The approach is implemented in a new tool,
called AutoGraph.

As future work we aim at applying, evaluating, and optimizing our approach
further w.r.t. different application scenarios from the graph database domain [40]
as presented in this paper, but also to other domains such as model-driven engi-
neering, where our approach can be used, for example, to generate test models
for model transformations [2, 12, 25]. We also aim at generalizing our approach to
more expressive graph properties able to encode, for example, path-related prop-
erties [24, 30, 31]. Finally, the work on exploration and compaction of extracted
symbolic models as well as reducing their number during tableau construction is
an ongoing task.
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A Example Based
Comparison with Alloy

We compare our tool AutoGraph with the tool Alloy [17], following the
translation-based approach mentioned in chapter 2, w.r.t. the expressiveness of
the input, the computed results, and performance. For this comparison we make
use of the two graph properties p1 and p2 from Figure 3.1. This comparison demon-
strates the key differences and similarities between the two tools.

AutoGraph is a tool introduced in this report and the companion paper [36].
AutoGraph operates on typed graph conditions and generates a set of symbolic
models, which is sound, complete (provided termination), minimally representable,
compact, and explorable.

Alloy (that is, the Alloy analyzer) is a tool operating on the alloy language,
which is an expressive logic based on the notion of relations and is designed for
describing and exploring structures [18]. The Alloy analyzer works by reduction
to SAT also employing Kodkod as a model finding engine [18].

We follow the translation-based approach and translate the two graph properties
as a first step in Alloy as follows.

1 // typegraph
2 sig USER {}
3 sig TAG {}
4 sig FORUM {}
5 sig POST {}
6 sig knows {src : USER, trg : USER}
7 sig hasInterest {src : USER, trg : TAG}
8 sig hasMember {src : FORUM, trg : USER}
9 sig container {src : FORUM, trg : POST}

10 sig hasCreator {src : POST, trg : USER}
11 sig link {src : POST, trg : POST}
12 sig successor {src : POST, trg : POST}
13 sig hasTag {src : POST, trg : TAG}
14

15 // no parallel edges
16 pred no_dup1 {all e1 : knows | all e2 : knows |
17 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
18 pred no_dup2 {all e1 : hasInterest | all e2 : hasInterest |
19 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
20 pred no_dup3 {all e1 : hasMember | all e2 : hasMember |
21 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
22 pred no_dup4 {all e1 : container | all e2 : container |
23 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
24 pred no_dup5 {all e1 : hasCreator | all e2 : hasCreator |
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25 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
26 pred no_dup6 {all e1 : link | all e2 : link |
27 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
28 pred no_dup7 {all e1 : successor | all e2 : successor |
29 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
30 pred no_dup8 {all e1 : hasTag | all e2 : hasTag |
31 e1 != e2 => e1.src != e2.src || e1.trg != e2.trg}
32 pred no_dup {
33 no_dup1
34 && no_dup2
35 && no_dup3
36 && no_dup4
37 && no_dup5
38 && no_dup6
39 && no_dup7
40 && no_dup8
41 }
42

43 // abbreviations
44 pred true {}
45 pred false {not true }
46

47 // first property
48 pred prop1 {
49 one u1 : USER |
50 one t1 : TAG |
51 (one u2 : USER |
52 one p1 : POST |
53 one e1 : knows |
54 one e2 : hasCreator |
55 one e3 : hasTag |
56 u1 != u2
57 && e1.src = u1 && e1.trg = u2
58 && e2.src = p1 && e2.trg = u2
59 && e3.src = p1 && e3.trg = t1
60 && ! (one p2 : POST |
61 one e4 : hasTag |
62 one e5 : link |
63 e4 != e3
64 && p1 != p2
65 && e4.src = p2 && e4.trg = t1
66 && e5.src = p1 && e5.trg = p2
67 )
68 && (one p2 : POST |
69 one e4 : successor |
70 p1 != p2
71 && e4.src = p1 && e4.trg = p2
72 )
73 )
74 && (all u2 : USER |
75 all p1 : POST |
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76 all p2 : POST |
77 all e1 : knows |
78 all e2 : hasCreator |
79 all e3 : hasTag |
80 all e4 : successor |
81 u1 != u2
82 && p1 != p2
83 && e1.src = u1 && e1.trg = u2
84 && e2.src = p1 && e2.trg = u2
85 && e3.src = p1 && e3.trg = t1
86 && e4.src = p1 && e4.trg = p2
87 => (one p3 : POST |
88 one e4 : link |
89 one e5 : hasTag |
90 e3 != e5
91 && p1 != p3
92 && p2 != p3
93 && e4.src = p1 && e4.trg = p3
94 && e5.src = p3 && e5.trg = t1
95 )
96 )
97 }
98

99 // second property
100 pred prop2 {
101 one u1 : USER |
102 one u2 : USER |
103 one u3 : USER |
104 one e1 : knows |
105 one e2 : knows |
106 e1 != e2
107 && u1 != u2
108 && u1 != u3
109 && u2 != u3
110 && e1.src = u1 && e1.trg = u2
111 && e2.src = u2 && e2.trg = u3
112 && (
113 one t1 : TAG |
114 one p1 : POST |
115 one e3 : hasCreator |
116 one e4 : hasTag |
117 one e5 : hasInterest |
118 e3.src = p1 && e3.trg = u3
119 && e4.src = p1 && e4.trg = t1
120 && e5.src = u1 && e5.trg = t1
121 )
122 && ! (one e3 : knows |
123 e1!=e3
124 && e2!=e3
125 && e3.src = u1 && e3.trg = u3
126 )
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127 && (all t1 : TAG |
128 one p1 : POST |
129 one e3 : hasCreator |
130 one e4 : hasTag |
131 one e5 : hasInterest |
132 e3.src = p1 && e3.trg = u3
133 && e4.src = p1 && e4.trg = t1
134 && e5.src = u1 && e5.trg = t1
135 )
136 }
137

138 // command to generate model
139 run {prop1 && prop2 && no_dup} for 3

The tool Alloy then returns the first model based on the command in line 139

in the previous listing with the following output.

1 Executing "Run run$1 for 3"
2 Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
3 71331 vars. 180 primary vars. 199122 clauses. 2184ms.
4 Instance. found. Predicate is consistent. 248ms.

In our notation this result model can be visualized as on the left side in the
following diagram (the right side corresponds to the minimal model computed by
AutoGraph as given in Figure 3.1e and is contained in the left side).

m Q Q Q

#

♂♂ ♂

m

Q

#

♂♂ ♂

This diagram shows the difference between finding some first model in Alloy

(left side) and finding a symbolic, minimally representable model in AutoGraph

(right side). Also note that Alloy is able to generate further models by delegating
this request to the connected SAT-solver. This technique allows a fast generation of
further models. However, due to the scope of 3 given in line 139 Alloy will never
generate models with more than 3 elements of a certain type. Hence, to find bigger
models during exploration Alloy would have to be restarted for bigger scopes,
which then requires time-consuming conversions to CNF again.

To get first information on the runtime of both tools we performed an experiment
to compare both regarding the execution time for finding any first model. For a
fair comparison we temporarily changed AutoGraph to terminate upon finding
the first symbolic model and considered 5 runs of both tools. In this experiment
Alloy requires 2456 ms (2199 ms for the conversion to CNF and 257 ms for finding
the first model) and AutoGraph requires 846 ms. These numbers are hard to
compare because Alloy then allows for a rather quick further exploration, which
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is not yet implemented in AutoGraph, but is confronted with the limiting scope
size as discussed before. Moreover, AutoGraph returns not only a minimally
representable model but a symbolic model.

We summarize our observations:

• Input: Every typed graph condition can be encoded in Alloy but, on the
other hand, we do not expect that every Alloy-input can be properly
rephrased as a typed graph condition. Hence, we conclude that AutoGraph

operates on a more restricted setting compared to Alloy.

• Results: AutoGraph is capable of obtaining minimal, symbolic models,
which allow for a straightforward exploration of further models whereas
Alloy generates models for a given scope not necessarily determining mini-
mal models. Also, AutoGraph allows for the refutation of a given formula,
which is not directly given in Alloy where nonexistence of models is also
bound to scope sizes. Hence, we conclude that AutoGraph computes in
this sense stronger results compared to Alloy.

• Performance: Neglecting the different results we observed for our running ex-
ample comparable runtimes. However, as stated before, AutoGraph already
returns stronger results by computing not only a minimally representable
model but a symbolic model.
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B Proofs

The canonical model can be defined simpler than in [23] if only finite nested
branches are considered.

Definition 15 (k-canonical model of nested branch) Let NT be a nested tableau for
condition c over C and NB be a nested branch starting with branches B1, . . . , Bk of tableaux
T1, . . . , Tk in NT. If Ck is the context of Bk and ∃(m2, c2), . . . , ∃(mk, ck) are the openers
of T2, . . . , Tk, then 〈Ck, mk ◦ · · · ◦m2 ◦ idC : C ↪−→ Ck〉 is the k-canonical model of NB.

Lemma 2 (reflexivity of sufficient graph condition) If c is a condition over C, then
c `idC c.

Proof 1 (of Lemma 2) By Definition 8 we need to show: “for all monos m1 : C ↪−→ G
and m2 : C ↪−→ G such that m2 ◦ idC = m1 it holds that m2 |= c implies m1 |= c.”

Fix monos m1 : C ↪−→ G and m2 : C ↪−→ G such that m2 ◦ idC = m1 and m2 |= c.
We need to show: “m1 |= c.”
We have: m1 = m2 from m2 ◦ idC = m1.
Hence: m1 |= c from m2 |= c.

Lemma 3 (weakening of sufficient graph condition) If c and c′ are conditions over
C and for every mono m : C ↪−→ G it holds that m |= c′ → c, then c′ `idC c.

Proof 2 (of Lemma 3) By Definition 8 we need to show: “for all monos m1 : C ↪−→ G
and m2 : C ↪−→ G such that m2 ◦ idC = m1 it holds that m2 |= c′ implies m1 |= c.”

Fix monos m1 : C ↪−→ G and m2 : C ↪−→ G such that m2 ◦ idC = m1 and m2 |= c′.
We need to show: “m1 |= c.”
We have: m1 = m2 from m2 ◦ idC = m1.
We have: m1 |= c′ from m2 |= c′.
We have: m1 |= c′ → c from the assumption.
We have: m1 |= c′ implies m1 |= c by Definition 2.
Hence: m1 |= c from m1 |= c′ and (m1 |= c′ implies m1 |= c).

Lemma 4 (soundness of shift) If c is a condition over C and m : C ↪−→ D is a mono,
then shift(m, c) `m c.

Proof 3 (of Lemma 4) By Definition 8 we need to show: “m : C ↪−→ D is a mono, and
for all monos m1 : C ↪−→ G and m2 : D ↪−→ G such that m2 ◦ m = m1 it holds that
m2 |= shift(m, c) implies m1 |= c.”

This follows from: “m : C ↪−→ D is a mono, and for all monos m1 : C ↪−→ G and
m2 : D ↪−→ G such that m2 ◦ m = m1 it holds that m2 |= shift(m, c) is equivalent to
m1 |= c.”
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This follows from: “m : C ↪−→ D is a mono, and for every mono m2 : D ↪−→ G it holds
that m2 |= shift(m, c) is equivalent to m2 ◦m |= c.”

This follows from: [23, Lemma 3].

Lemma 5 (soundness of lifting) If c1 and ∃(m : C ↪−→ D, c2) are conditions over C,
then ∃(m, c2 ∧ shift(m, c1)) `idC c1 ∧ ∃(m, c2).

Proof 4 (of Lemma 5) By application of Lemma 3 it is sufficient to show that for every
mono p : C ↪−→ G it holds that p |= ∃(m, c2 ∧ shift(m, c1))→ c1 ∧ ∃(m, c2).

Fix a mono p : C ↪−→ G.

• case p |= c1:

– case p |= ∃(m, c2): the implication holds because the conclusion holds.

– case p 6|= ∃(m, c2):
we need to show p |= ¬∃(m, c2 ∧ shift(m, c1)), which follows from p 6|=
∃(m, c2 ∧ shift(m, c1)). Assume for the contradiction that p |= ∃(m, c2 ∧
shift(m, c1)). That is, there must be a q′ : D ↪−→ G such that q′ |= c2 ∧
shift(m, c1) and q′ ◦m = p. Hence, q′ |= c2. Hence, p |= ∃(m, c2) by using
the same q′ establishing the contradiction.

• case p 6|= c1:
we need to show p |= ¬∃(m, c2 ∧ shift(m, c1)), which follows from p 6|= ∃(m, c2 ∧
shift(m, c1)). Assume for the contradiction that p |= ∃(m, c2 ∧ shift(m, c1)). That
is, there must be a q′ : D ↪−→ G such that q′ |= c2 ∧ shift(m, c1) and q′ ◦ m = p.
Hence, q′ |= shift(m, c1). By application of Lemma 4 we get: shift(m, c1) `m c1.
Hence, for every monos mC : C ↪−→ G and mD : D ↪−→ G holds mD ◦ m = mC
implies mD |= shift(m, c1) implies mC |= c1. Hence, using p for mC and q′ for
mD: q′ ◦ m = p implies q′ |= shift(m, c1) implies p |= c1. This establishes the
contradiction.

Lemma 6 (transitivity of sufficient graph condition) If cA is a condition over A, cB

is a condition over B, cC is a condition over C, m1 : A ↪−→ B is a mono, m2 : B ↪−→ C is a
mono, cB `m1 cA, and cC `m2 cB, then cC `m2◦m1 cA.

Proof 5 (of Lemma 6) From cB `m1 cA we know that: for every monos mB : B ↪−→ G
and mA : A ↪−→ G holds mB ◦m1 = mA implies mB |= cB implies mA |= cA.

From cC `m2 cB we know that: for every monos mC : C ↪−→ G and mB : B ↪−→ G holds
mC ◦m2 = mB implies mC |= cC implies mB |= cB.

For cC `m2◦m1 cA we need to show that: for every monos mC : C ↪−→ G and mA : A ↪−→
G holds mC ◦ (m2 ◦m1) = mA implies mC |= cC implies mA |= cA.

Fix monos mC : C ↪−→ G and mA : A ↪−→ G such that mC ◦ (m2 ◦ m1) = mA and
mC |= cC.

We show that mA |= cA. We apply the first assumption by using mA for mA and
mC ◦m2 for mB: we get (mC ◦m2) ◦m1 = mA implies (mC ◦m2) |= cB implies mA |= cA.
Here, the current goal mA |= cA appears as conclusion.
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We show that (mC ◦m2) ◦m1 = mA and (mC ◦m2) |= cB. Firstly, (mC ◦m2) ◦m1 =

mA holds as stated before. Secondly, (mC ◦m2) |= cB holds as follows.
We apply the second assumption by using mC for mC and mC ◦ m2 for mB: we get

mC ◦ m2 = mC ◦ m2 implies mC |= cC implies (mC ◦ m2) |= cB. Here, the current goal
(mC ◦m2) |= cB appears as conclusion.

We show that mC ◦ m2 = mC ◦ m2 and mC |= cC. Firstly, mC ◦ m2 = mC ◦ m2 is
trivial. Secondly, mC |= cC holds as stated before.

Lemma 7 (satisfaction to sufficient graph condition) If ∃(m : C ↪−→ A, c) is a con-
dition over C then c `m ∃(m, c).

Proof 6 (of Lemma 7) Fix monos mA : A ↪−→ G and mC : C ↪−→ G such that mA ◦m =

mC and mA |= c. We need to show mC |= ∃(m, c). This holds trivially.

To obtain soundness of extracted symbolic models we need a soundness result
for nested tableau that are “prefixes of semi-saturated tableau”.

Lemma 8 (k-soundness of nested tableau) If NT is a nested tableau for a condition c
over C, NB is a k− 1-semi-saturated nested branch of length n ≤ k, NB has branch B of
length at least k′ at index n, 〈C, c′〉 is the k′-remainder of B, 〈Gk, qk : C ↪−→ Gk〉 is the
k-canonical model of NB, then c′ `qk c.

Proof 7 (of Lemma 8) Let 〈C, c′〉 = 〈C,∧Rk′
k 〉 be the k′-remainder of B. By induction

on k.

• case k = 0: the canonical model G0 equals C and q0 = idC by definition. We prove
the property by induction on k′.

– case k′ = 0: If no tableau rule has been applied R0
0 contains all clauses of

c. Hence, ∧(R0
0) `idC c is equivalent to c `idC c. This holds according to

Lemma 2.

– case k′ → k′ + 1: Let 〈C,∧Rk′
0 〉 be the k′-remainder of B0. Let 〈C,∧Rk′+1

0 〉 be
the k′ + 1-remainder of B0. An additional node needs to be considered, which
is added according to one of the tableau rules. We show ∧Rk′+1

0 `idC c. For this
we apply Lemma 3 and have to show that for every mono m : C ↪−→ G it holds
that m |= ∧(Rk′+1

0 )→ ∧(Rk′
0 ).

* application of the initialization rule: In this case Rk′+1
0 = Rk′

0 ∪ {true}
and, hence, the implication is trivially a tautology.

* application of the extension rule: Assume that from clause cl the literal
l has been added. In this case Rk′+1

0 = Rk′
0 − {cl} ∪ {l} and, hence, the

implication is trivially a tautology.

* application of the lift rule: Assume that the literal l has been lifted into
the positive literal ∃(m, c). In this case Rk′+1

0 = Rk′
0 − {l, ∃(m, c)} ∪

{∃(m, [∧(c, [shift(m, l)])])} and, hence, the implication is a tautology by
Lemma 5.
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• case k→ k + 1: Let Bk be the semi-saturated branch at index k in NT. Let qk : C →
Gk with Gk and qk+1 : C → Gk+1 and Gk+1 are the canonical models up to indexes
k and k + 1, respectively. Let Rk be the condition that is collected from Bk according
to Definition 13. Obviously, as Bk is semi-saturated the opener ∃(ak, ck+1) taken
from Bk (that is, the leaf of Bk) contains all the information in the sense that ∧Rk is
equivalent to ∃(ak, ck+1).

By construction of the canonical model qk+1 = ak ◦ qk.

As an assumption we now have that ∧Rk `qk c.

We prove the property by induction on k′. However, before considering the two cases
of the induction we can simplify the goal such that only the reasoning within the
tableau of Bk+1 is to be handled.

Let Bk′
k+1 be the prefix of length k′ of the branch at index k + 1. Let Rk′

k+1 be the
condition that is collected from Bk′

k+1 according to Definition 13.

We need to show that ∧(Rk′
k+1) `qk+1 c.

This follows from: ∧(Rk′
k+1) `ak◦qk c since qk+1 = ak ◦ qk.

This follows from: ∧(Rk′
k+1) `ak ∃(ak, ck+1) and ∃(ak, ck+1) `qk c according to

Lemma 6.

The second part (∃(ak, ck+1) `qk c) holds from ∃(ak, ck+1) ≡ ∧(Rk) and ∧Rk `qk c.

We need to show the first part: ∧(Rk′
k+1) `ak ∃(ak, ck+1).

This follows from: ∧(Rk′
k+1) `idGk+1

ck+1 and ck+1 `ak ∃(ak, ck+1) according to
Lemma 6.

The second part (ck+1 `ak ∃(ak, ck+1)) holds from Lemma 7.

We need to show the first part: ∧(Rk′
k+1) `idGk+1

ck+1.

We now cover the two cases of the induction on k′: these two cases are similar to the
induction proof on k′ for the case of k = 0 in the outer induction.

– case k′ = 0: see the “case k′ = 0:” before replacing R0
0 by R0

k+1, C by Gk+1,
and c by ck+1.

– case k′ → k′ + 1: see the “case k′ → k′ + 1:” before replacing Bk′
0 by Bk′

k+1, Rk′
0

by Rk′
k+1, Rk′+1

0 by Rk′+1
k+1 , C by Gk+1, and c by ck+1.

Proof 8 (of Theorem 1) According to Definition 11 we need to show covered(SNT,k) ⊆
{G | G |= c ∧ G is finite}. According to Definition 10 we need to show {G | G is finite∧
∃〈C′, c′〉 ∈ SNT,k, m : C′ ↪−→ G | m |= c′} ⊆ {G | G |= c ∧ G is finite}. Fix a finite
graph G, a symbolic model 〈C′, c′〉 ∈ SNT,k, and a mono m : C′ ↪−→ G such that m |= c′.
We need to show that G |= c. Let i : ∅ ↪−→ G be the unique mono. We need to show
that i |= c. According to Definition 14 we know that there is a k-terminated and k-semi-
saturated nested branch NB of NT of length n ≤ k such that there is a branch B at index
n of length k′ in NB such that B is open and B contains no positive literals and 〈C′, c′〉 is
the k′-remainder of B. Let 〈Gk, qk : C ↪−→ Gk〉 be the k-canonical model of NB. According
to Lemma 8 we have c′ `qk c. By application of Definition 8 we know that “If c and c′
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are conditions over ∅ and C′, respectively, qk : ∅ ↪−→ C′ is a mono, and for all monos
i : ∅ ↪−→ G and m : C′ ↪−→ G such that m ◦ qk = i it holds that m |= c′ implies i |= c.”
Now, m ◦ qk = i holds by uniqueness of initiality of ∅ and m |= c′ holds as stated above,
hence, i |= c, which had to be shown.

Proof 9 (of Theorem 2) Intuitively, we can construct for condition that is satisfied
by some finite graph G a corresponding nested branch. If the nested branch would
not be finite, the size of the graphs in the hooks would be eventually bigger than
the finite graph G (because nonisomophic monomorphisms increase the size with
each new tableau). Hence, the corresponding nested branch is finite. Then, from
the last branch we can extract a symbolic model covering G.

According to Definition 11 we show covered(SNT,k) ⊇ {G | G |= c ∧ G is finite}.
According to Definition 10 we need to show {G | G is finite ∧ ∃〈C′, c′〉 ∈ SNT,k, m :

C′ ↪−→ G | m |= c′} ⊇ {G | G |= c ∧ G is finite}.
Let G be a finite graph such that G |= c. Let i : ∅ ↪−→ G be the unique inclusion. Then,

G |= c implies i |= c.
We need to show that there are 〈C′, c′〉 ∈ SNT,k and m : C′ ↪−→ G such that m |= c′.
According to Definition 14 we need to show that there is a k-terminated and k-semi-

saturated nested branch NB of NT of length n ≤ k such that there is a branch B at index n
of length k′ in NB such that B is open and B contains no positive literals such that 〈C′, c′〉
is the k′-remainder of B and that there is m : C′ ↪−→ G such that m |= c′.

Since i |= c there is a nested branch NB proving this as follows. For the first tableau T
apply the initialization rule. Then, apply the extension rule such that there is a branch B
containing from each clause some literal satisfied by i.

• If the condition c is false, then i 6|= c (which is an obvious contradiction to i |= c).

• If the condition c is true, then 〈∅,∧()〉 ∈ SNT,k is a symbolic model and the k′-
remainder of B. Hence, this nested branch consisting only of B is a 1-terminated
and 1-semi-saturated nested branch of NT of length 1 and B is the branch at index
1 of length 1 in NB and B is open and B contains no positive literals and 〈∅,∧()〉
is the 1-remainder of B. Moreover, when using m = id∅ : ∅ ↪−→ G, then m |= ∧()
trivially. Thus, we have established an appropriate nested branch.

• In all other cases (c is not true and not false) there is a positive literal and we
select one of these literals as a hook and apply the lift rule with all other literals in
B. The resulting opener (let say, ∃(p1, c1)) is contained as a leaf in the resulting
branch B. By construction (tableau rules, lift rule in particular, are sound; confer
the proof of [23, lemma 8] and [29, lemma 1]) i |= ∃(p1 : ∅ ↪−→ D, c1). Thus, there
is q1 : D ↪−→ G such that q1 ◦ p1 = i and q1 |= c1. Then, we open a new tableau for
c1 using the opener ∃(p1, c1).

This construction principle can be applied iteratively often to obtain with each new
tableau strictly bigger graphs because the morphisms in openers are not isomor-
phisms. However, the graphs constructed (domain of qk) are smaller than the finite
graph G. Hence, this construction principle eventually necessarily terminates and
we end up in one of the two cases before (in fact, it must be the second case because
i |= c).
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Proof 10 (of Theorem 3) Consider a nested tableau NT for the graph property c.
Minimality: According to Definition 10 for every graph G in the set of covered graphs

covered(〈C′, c′〉) there is a mono m : C′ ↪−→ G satisfying c′.
Representability: We need to show that the graph of the symbolic model satisfies the

property.
According to Definition 11 we need to show that for every symbolic model 〈C′, c′〉

contained in SNT,k it holds that C′ |= c.
According to Definition 14 we have for 〈C′, c′〉 ∈ SNT,k that there is a k-terminated and

k-semi-saturated nested branch NB of NT of length n ≤ k such that there is a branch B
at index n of length k′ in NB such that B is open and B contains no positive literals such
that 〈C′, c′〉 is the k′-remainder of B.

According to Definition 13 〈C′, c′〉 satisfies that [c′] contains no clause containing a
positive literal, because the k′-remainder contains in this case the root node true and only
negative literals because neither positive literals nor false are contained in B.

Let 〈Gk, qk : ∅ ↪−→ Gk〉 be the k-canonical model of NB. According to Lemma 8 we have
c′ `qk c. By application of Definition 8 we know that “If c and c′ are conditions over ∅ and
C′, respectively, qk : ∅ ↪−→ C′ is a mono, and for all monos i : ∅ ↪−→ C′ and idC′ : C′ ↪−→ C′

such that idC′ ◦ qk = i it holds that idC′ |= c′ implies i |= c.” Now, idC′ ◦ qk = i holds
by uniqueness of initiality of ∅ and idC′ |= c′ holds (because if ¬(∃(m : C′ ↪−→ C′′, c′′))
is a negative literal in a clause of [c′], then m is no isomorphism and, hence, the triangle
to be closed for idC′ |= ∃(m : C′ ↪−→ C′′, c′′) can not be closed using a mono such that the
triangle commutes), hence, i |= c and this implies C′ |= c which had to be shown.

Proof 11 (of Lemma 1)

covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉)
⇐∀G. G ∈ covered(〈A2, c2〉)→ G ∈ covered(〈A1, c1〉)
⇐@G. G ∈ covered(〈A2, c2〉) ∧ G /∈ covered(〈A1, c1〉)
⇐@G. G ∈ {G | G |= ∃(i2, c2) ∧ G is finite} ∧ G /∈ {G | G |= ∃(i1, c1) ∧ G is finite}
⇐@G. G |= ∃(i2, c2) ∧ G is finite∧ ¬(G |= ∃(i1, c1) ∧ G is finite)

⇐@G. G |= ∃(i2, c2) ∧ G is finite∧ (G |= ¬∃(i1, c1) ∨ G is not finite)

⇐@G. G |= ∃(i2, c2) ∧ G is finite∧ G |= ¬∃(i1, c1)

⇐@G. G is finite∧ G |= ∃(i2, c2) ∧ ¬∃(i1, c1)

⇐@G. G is finite∧ G |= ∃(i2, c2 ∧ shift(i2,¬∃(i1, c1)))

⇐@G. G is finite∧ G |= ∃(i2, c2 ∧ ¬shift(i2, ∃(i1, c1)))

Proof 12 (of Theorem 4) Firstly, merely removing symbolic models ensures S ⊆ SNT,k.
Secondly, the unsatisfiability of the condition ∃(i2, c2 ∧ ¬shift(i2, ∃(i1, c1))) by a finite

graph is actually also necessary.

covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉)
⇒∀G. G ∈ covered(〈A2, c2〉)→ G ∈ covered(〈A1, c1〉)
⇒@G. G ∈ covered(〈A2, c2〉) ∧ G /∈ covered(〈A1, c1〉)
⇒@G. G ∈ {G | G |= ∃(i2, c2) ∧ G is finite} ∧ G /∈ {G | G |= ∃(i1, c1) ∧ G is finite}
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⇒@G. G |= ∃(i2, c2) ∧ G is finite∧ ¬(G |= ∃(i1, c1) ∧ G is finite)

⇒@G. G |= ∃(i2, c2) ∧ G is finite∧ (G |= ¬∃(i1, c1) ∨ G is not finite)

⇒@G. G |= ∃(i2, c2) ∧ G is finite∧ G |= ¬∃(i1, c1)

⇒@G. G is finite∧ G |= ∃(i2, c2) ∧ ¬∃(i1, c1)

⇒@G. G is finite∧ G |= ∃(i2, c2 ∧ shift(i2,¬∃(i1, c1)))

⇒@G. G is finite∧ G |= ∃(i2, c2 ∧ ¬shift(i2, ∃(i1, c1)))

Hence, the fixed-point of iterated application of Lemma 1 ensures compaction directly.
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