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Abstract We prove that if u is a locally Lipschitz continuous function on an
open set X ⊂ Rn+1 satisfying the nonlinear heat equation ∂tu = ∆(|u|p−1u),
p > 1, weakly away from the zero set u−1(0) in X , then u is a weak solution
to this equation in all of X .
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Introduction

The problem under study lies in the following. Suppose A is a nonlinear dif-
ferential operator on an open set X in Rn+1 and S is a closed subset of X . For
a given class F of functions on X \ S, the set S is said to be removable for F
with respect to A if each function u ∈ F satisfying A(u) = 0 on X \S extends
to a solution of this equation on the whole set X . What balance between the
growth of functions in F near S and the �smallness� of S is su�cient in order
that S be removable for F relative to A?

The �rst result of this type is perhaps the Riemann theorem on the remov-
ability of one-point singularities for bounded holomorphic functions. For linear
di�erential operators with C∞ coe�cients the problem was studied in [1], [6],
etc. The paper [6] is of special importance for it singles out the crucial step
in the study of removable singularities. To wit, on assuming F to be a class
of functions on all of X one asks if any weak solution u to A(u) = 0 in X \ S
satis�es this equation weakly in all of X . This paper facilitated considerable
progress in the study of removable sets for solutions of linear equations, see
[17, Ch. 1] and the references given there.

A starting point for nonlinear di�erential equations is the pioneering work
on the local behaviour of solutions of quasilinear equations by Serrin [16]. The
comparatively recent book [19] presents in a uni�ed way the development of
the theory of singularities for solutions of second order elliptic or parabolic
quasilinear equations starting from the linear equations and the work [16]. As
but one motivation of our previous paper [12] we mention that the book [19]
does not contain any reference to [6] while the approach of the latter article
may be undoubtedly of use for nonlinear equations, too. For general nonlinear
equations there is no reasonable concept of a weak solution, however, one
gets it immediately by turning to a variational setting and relaxing the initial
equation into the Euler-Lagrange equation.

Speci�cally we discuss a Radó type theorem for solutions of the porous
medium equation on an open set X in Rn+1 which are de�ned to be weak
solutions u ∈ Lploc(X ) of the quasilinear equation ∂tu = ∆(|u|p−1u), where
p > 1. The operator A(u) = ∂tu − ∆(|u|p−1u) is called the porous medium
operator of index p. It is parabolic away from the zero points of u. The classical
Radó theorem states that if u is a continuous function on an open set X in
the complex plane which is holomorphic away from the set of zeroes then u
is actually holomorphic in all of X , see [14]. By the very nature, this is a
result on removable sets for the class of continuous functions with respect to
the Cauchy-Riemann operator in the plane. In 1983 Král extended the Radó
theorem to harmonic functions showing that each C1 function on an open
set X in Rn+1, which is harmonic away from the set of its zeroes, is actually
harmonic on all of X , see [9]. The paper [5] contains a Radó type theorem for
the so-called generalised Cauchy-Riemann equations in Rn+1. The notice [8]
presents a Radó type theorem for p -harmonic functions on the plane. For a
deeper discussion of Radó theorems for solutions of both linear and nonlinear
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di�erential equations we refer the reader to the monograph [17, 1.3.4] and the
recent notice [12].

We now dwell on the contents of the paper. In Section 1 we remind of the
porous medium equation, which is of great importance in applications. The
particular structure of this nonlinear equation allows one to introduce a nat-
ural concept of a weak solution in the space of Lipschitz continuous functions
on X to the equation. In Section 2 we specify the notion of a removable set
for solutions of quasilinear partial di�erential equations. In Section 3 we ad-
duce a fundamental lemma of [6] which is of key importance in the study of
removable sets for solutions of linear equations. We show that the lemma is
still useful in characterising removable singularities for solutions of quasilinear
equations. Section 4 deals with removable sets for solutions of Sobolev classes
while Section 5 does with removable sets for classes of Cs solutions to the
porous medium equation. The results of Section 5 apply to study removabil-
ity of the zero sets in Section 6. In Section 7 we discuss shortly a Radó type
theorem for solutions of the porous medium equation.

The paper [7] rises immediately from [6] to introduce a notion of capacity
which characterizes removable sets for solutions of linear equations. In [4], a
concept of nonlinear capacity related to a nonlinear operator is applied to
blow-up problems for diverse nonlinear partial di�erential equations including
those with nonlocal nonlinearities.

1 The porous medium equation

The heat equation is one of the three classical linear second order equations
which constitute the basis of any elementary introduction to partial di�erential
equations. A number of related equations have been proposed both by applied
and pure mathematicians as objects of study. The linear theory enjoyed much
progress but it was soon observed that the most equations modelling physi-
cal phenomena without excessive simpli�cation are nonlinear. The di�culty
of building a theory for nonlinear equations had made it impossible to achieve
any signi�cant progress until the development of functional analysis in the �rst
half of the 20 th century led to elaborating the nonlinear theory with mathe-
matical rigor. This happened in particular in the area of quasilinear parabolic
equations in divergence form where the theory reached maturity presented
for instance in [10]. Still the nonlinear parabolic equations like the classical
Navier-Stokes equations have remained a challenge for mathematicians, let
alone the regularity of solutions.

The aim of the present paper is to study removable singularities of solutions
to the nonlinear heat equation

∂tu = ∆(|u|p−1u), (1)

where p > 1. We think tacitly of p as an integer while most of the theory
extends with slight modi�cations to all real p > 1. Equation (1) is called the
porous medium equation. This is an evolution equation in the n -dimensional
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Euclidean space Rn, by ∆ being meant the Laplace operator acting in the
space variables x = (x1, . . . , xn) ∈ Rn. In the particular case p = 2 equation
(1) is called Boussinesq's equation.

This simple variation of the heat equation is of great interest, for the theory
of the porous medium equation contains deep and often sophisticated devel-
opments of nonlinear analysis. The book [18] settles the existence, uniqueness,
stability and regularity theorems and asymptotic behaviour. There are a num-
ber of physical applications where a simple porous medium equation appears
in a natural way, mainly to describe processes involving �uid �ow, heat trans-
fer or di�usion. Perhaps the best known of them is the description of the
�ow of an isentropic gas through a porous medium modelled independently by
Leibenzon [11] and Muscat [13] around 1930. An earlier application is found
in the studyÂ´of groundwater in�ltration by Boussinesq in 1903, see [2]. Other
applications occur in mathematical biology, boundary layer theory, and other
theories.

The full form of the porous medium equation consists of adding a forc-
ing term f in the right-hand side of (1). It makes the natural framework of
the abstract functional theory for the porous medium equation, and has also
received much attention when f = f(u) represents the e�ects of reaction or
absorption. The full form is also referred to as the porous medium equation
with a source term.

Equation (1) is but one example of partial di�erential equations in the
realm of what is called nonlinear di�usion. It is a nonlinear evolution equation
of formally parabolic type. Its complete version in divergence form looks like

∂tu = div (D(u)u′) + f, (2)

which is called the di�usion equation. Here, u′ = (u′x1 , . . . , u′xn) stands for the
complete derivitive of u in x, and usually f ≡ 0. The function D(u) of u ∈ R
is called the di�usion coe�cient. For the porous medium equation it reduces
to D(u) = p|u|p−1, and the condition of nonnegativity of D is needed to make
the equation formally parabolic. Whenever D(u) = 0 for some u ∈ R, we say
that equation (2) degenerates at that u -level, since it ceases to be strictly
parabolic.

2 Removable sets for solutions of the di�usion equation

Assume that X is an open set in the space Rn+1 of the coordinates (x, t),
where x ∈ Rn and t ∈ R. The di�usion equations give rise to a broad class of
nonlinear operators of the form

A(u) := ∂tu− div (D(u)u′) (3)

acting on functions u of (x, t) ∈ X . The following assumption on the di�u-
sion coe�cients will be needed throughout the paper. The Nemytskii operator
ND(u) = D(u) is required to be a continuous selfmapping of L∞loc(X ). (We
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write L∞loc(X ) to emphasize an obvious generalisation for D(x, u) depending
on x ∈ X .) As usual, the designations �loc� and �comp� specify the �local�
and �with compact support� versions of the corresponding global Lebesgue or
Sobolev spaces in X .

In order to introduce weak solutions to the equation A(u) = 0 in X we give
the operator A the domainW 1,∞

loc (X ). By the Rademacher theorem, this space
coincides with the space of all locally Lipschitz continuous functions on X , i.e.,
C0,1

loc (X ). If u ∈ W
1,∞
loc (X ), then A(u) can be speci�ed within the framework

of distributions on X by setting

〈A(u), g〉 := −〈u, ∂tg〉+ 〈D(u)u′, g′〉 (4)

for all g ∈ C∞comp(X ). In fact, the right-hand side of (4) de�nes a continuous
linear functional on the space C1

comp(X ), and so the operator AmapsW 1,∞
loc (X )

continuously into the dual of C1
comp(X ).

If u ∈W 1,∞
loc (X ), then the image A(u) is a distributions on X . In this way,

a function u ∈ W 1,∞
loc (X ) is said to satisfy the equation A(u) = 0 on an open

set U ⊂ X if A(u) = 0 in the sense of distributions in U , i.e., 〈A(u), g〉 = 0 for
all g ∈ C∞comp(U). Hence, by solutions of A(u) = 0 are meant weak solutions.
This allows one to extend the de�nition of removable sets, introduced in [6]
for linear di�erential operators A, to solutions of nonlinear di�usion equations
(2).

De�nition 1 Let S be a closed subset of X and F a class of functions in
W 1,∞

loc (X ). The set S is called removable for F relative to the di�erential
operator A if any function u ∈ F satisfying A(u) = 0 in X \S actually satis�es
A(u) = 0 in all of X .

One may ask what conditions on the �size� of S are su�cient for S to
be a removable set for F relative to A. For a survey of results on removable
singularities we refer the reader to [17, Ch. 1] and [19]. For the most extensively
studied classes F and di�erential operators A there have been known sharp
su�cient conditions on removable sets in terms of the Hausdor� measure of
S. For both necessary and su�cient conditions on removable sets one appeals
to the so-called capacity, see [7].

Example 1 Under a mild condition on the di�usion coe�cient D(u), any set
S ⊂ X of measure zero is removable for W 2,∞

loc (X ) relative to A. Indeed, for
any u ∈W 2,∞

loc (X ), the distribution A(u) is actually regular and coincides with
the locally bounded function A(u) evaluated almost everywhere in X . Hence,
if A(u) = 0 holds weakly in X \ S, then A(u) vanishes as distribution in all of
X .

3 A fundamental lemma

In order to characterize the removable sets in terms of the Hausdor� measure
one uses a fundamental lemma of [6]. We �rst recall the de�nition of the
Hausdor� measure.
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For 0 ≤ d ≤ n+ 1 we set

hd,ε(S) := inf
∑
ν

vd r
d
ν ,

where the in�mum is taken over all countable coverings {Bν} of the set S by
balls with radii rν ≤ ε, and vd is the volume of the unit ball in Rd. Obviously,
hd,ε(S) is a monotone decreasing function of ε→ 0+, and so it has a limit as
ε→ 0+. The number

hd(S) = lim
ε→0+

hd,ε(S)

is called the d -dimensional Hausdor� measure of the set S.
Hausdor� measure is a regular metric outer measure on Rn+1. Therefore,

hd(S) = 0 if and only if hd(K) = 0 for each compact subset K ⊂ S. Note that
hn+1 agrees with the standard Lebesgue measure in Rn+1. In most cases one is
interested only in whether the measure hd(S) is zero, �nite, or in�nite. From
this point of view, instead of coverings by balls in the de�nition of hd, we may
use coverings by cubes or arbitrary (convex) sets of diameter 2rv, because all
such coverings lead to equivalent measures.

Lemma 1 Let K be a compact subset of Rn+1. Then, for each d = n+1−m
and ε > 0, there is a C∞ function χε with compact support in Rn+1 such that

the support of χε belongs to the ε -neighbourhood of K, χε ≡ 1 in a smaller

neighbourhood of K, and

‖∂αχε‖L1(Rn+1) ≤ Cα εm−|α| (hd(K) + ε)

for all α with |α| ≤ m, where the constant Cα is independent of ε.

Proof This is a re�nement of a well-known lemma of [1]. For a proof, see [6]
or [17, 1.2.1].

It is worth pointing out that d is assumed to be nonnegative. Hence it
follows that n+ 1−m ≥ 0, i.e., m ≤ n+ 1.

4 Removable sets for Sobolev functions

In this section we characterize removable sets for the class F :=W 1,∞
loc (X ). As

mentioned, this space is a localisation of Lipschitz continuous functions on X .

Theorem 1 If hn(S) = 0, then the set S is removable for W 1,∞
loc (X ) relative

to A.

For general linear partial di�erential operators A, Theorem 1 is contained
in [6].
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Proof Let u ∈ W 1,∞
loc (X ) satisfy A(u) = 0 in X \ S. Pick any g ∈ C∞comp(X )

and set K = S ∩ supp g. Then

〈A(u), g〉 = 〈A(u), χεg〉+ 〈A(u), (1− χε)g〉

for all ε > 0, where χε is the function of Lemma 1 with m = 1.
Since A(u) = 0 in X \ S and the support of (1− χε)g is a compact subset

of X \ S, it follows that

〈A(u), g〉 = 〈A(u), χεg〉
= −〈u, ∂t(χεg)〉+ 〈D(u)u′, (χεg)

′〉
= −〈u, ∂tχεg〉 − 〈u, χε∂tg〉+ 〈D(u)u′, χ′εg〉+ 〈D(u)u′, χεg

′〉

for all ε > 0. Consequently, by the Hölder inequality and Lemma 1, we readily
obtain

|〈A(u), g〉| ≤ C1 (hn(K) + ε) ‖u‖L∞(Kε) ‖g‖L∞(X )

+ C0 ε (hn(K) + ε) ‖u‖L∞(Kε) ‖∂tg‖L∞(X )

+ C1 (hn(K) + ε) ‖D(u)u′‖L∞(Kε,Rn) ‖g‖L∞(X )

+ C0 ε (hn(K) + ε) ‖D(u)u′‖L∞(Kε,Rn) ‖g
′‖L∞(X ,Rn)

(5)

for all su�ciently small ε > 0, where Kε stands for the ε -neighbourhood of K
and C0, C1 are constants independent of ε.

By assumption, hn(K) = 0 for each compact set K ⊂ S. Therefore, the
right-hand side of (5) tends to zero as ε→ 0+. Thus, 〈A(u), g〉 = 0 weakly in
X , as desired.

The arguments of [17, 1.2.2] show that the assumptions on S in Theorem
1 cannot be improved in terms of the Hausdor� measure.

Example 2 Assume that S is a closed subset of X satisfying hn(S) = 0. Then
the set S is removable for W 1,∞

loc (X ) relative to the porous medium operator
with p ≥ 1.

5 Removable sets for smooth functions

In this section we will be concerned with removable sets for C1
loc(X ) relative

to A. As usual, for any integer s ≥ 0, we denote by Csloc(X ) the space of s
times continuously di�erentiable functions on X . If s = 0, it is customary to
omit the index. In order to get substantial results, it is necessary to put some
restrictions on the di�usion coe�cientD(u) of A. Since this work is intended as
an attempt at motivating the Radó type theorem for solutions of the porous
medium equation, we choose the abstract setting of the di�usion equation.
To wit, assume that the Nemytskii operator ND(u) = D(u) is a continuous
selfmapping of Cloc(X ).
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Theorem 2 Suppose hn(K) < ∞ for each compact set K ⊂ S. Then S is

removable for C1
loc(X ) relative to A.

Under a mild condition on the di�usion coe�cient D(u), the set S is re-
movable for C2

loc(X ) relative to A provided that the interior of S is empty.

Proof Assume that u ∈ C1
loc(X ) satis�es A(u) = 0 weakly on X \ S. Let

g ∈ C∞comp(X ), and let K = S ∩ supp g.
Since the support of A(u) belongs to S, we obtain for the function χε from

Lemma 1 with m = 1 that

〈A(u), g〉 = 〈A(u), χεg〉
= −〈u, ∂t(χεg)〉+ 〈D(u)u′, (χεg)

′〉

= 〈−∂tχεu+

n∑
j=1

∂jχεD(u)∂ju, g〉 − 〈u, χε∂tg〉+ 〈D(u)u′, χεg
′〉

for all ε > 0. On applying the Hölder inequality and Lemma 1 we obtain

| − 〈u, χε∂tg〉+ 〈D(u)u′, χεg
′〉|

≤ C0 ε (hn(K) + ε) ‖u‖L∞(Kε)‖∂tg‖L∞(X )

+ C0 ε (hn(K) + ε) ‖D(u)u′‖L∞(Kε,Rn)‖g
′‖L∞(X ,Rn)

which is dominated by C ε (hn(K) + ε) , where the constant C is independent
of ε. Consequently, A(u) is the limit of the net of continuous functions

−∂tχεu+

n∑
j=1

∂jχεD(u)∂ju (6)

in the space of distributions on X .
By Lemma 1, we have

‖∂tχε‖L1(X ) ≤ C1 (hn(K) + ε) ,
‖∂jχε‖L1(X ) ≤ C1 (hn(K) + ε)

for all positive ε ≤ 1 and j = 1, . . . , n. Since hn(K) < ∞, we can assert that
the nets ∂tχε and ∂1χε, . . . , ∂nχε are bounded in L1(X ). Hence it follows that
every of the nets has a subsequence which converges in the weak∗ topology
of Cloc(X )′. The limit of this subsequence is necessarily zero, for the net χε,
and so also the nets ∂tχε and ∂1χε, . . . , ∂nχε, converges to zero in the sense of
distributions on X . Multiplication by u orD(u)∂1u, . . . ,D(u)∂nu, respectively,
de�nes a continuous operator in Cloc(X )′. Therefore, some subsequence of (6)
converges to zero in the weak∗ topology of Cloc(X )′. Since, however, the net
itself converges to A(u) in the space of distributions on X , it follows that
A(u) = 0 on X , as desired.

Example 3 Suppose hn(K) < ∞ for each compact set K ⊂ S. Then S is re-
movable for continuously di�erentiable solutions of the porous medium equa-
tion in X , with any p > 1.
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6 A Radó theorem

A Radó type theorem for solutions of linear di�erential equations was �rst
formulated in the monograph [17, 1.3.4] whose original Russian edition was
published in 1991.

In order to formulate a Radó theorem in the context of nonlinear di�usion
equations, we still keep the assumption that ND(u) = D(u) maps Cloc(X )
continuously into itself. By Theorem 2, if S is a closed subset of X such that
hn(K) < ∞ for each compact set K ⊂ S, then S is removable for C1

loc(X )
relative to A.

Lemma 2 Assume that S is a smooth hypersurface in X . Then S is removable

for C1
loc(X ) relative to A.

Proof Indeed, when restricted to subsets of a smooth submanifold S of X of
dimension d, the Hausdor� measure hd is commensurable with the correspond-
ing surface measure on S induced by the Lebesgue measure in Rn+1. Hence it
follows immediately that hn(K) < ∞ for each compact set K ⊂ S, showing
the desired assertion.

While Theorem 2 characterises those S ⊂ X which are removable for all
solutions u ∈ C1

loc(X ) to A(u) = 0 in X \ S, the Radó type theorems deal
with individual solutions u ∈ C1

loc(X ) of this equation. As S one takes the
preimage of a point by u, e.g., S = u−1(0) which is the set of all x ∈ X
satisfying u(x) = 0. Then, a Radó theorem for solutions of the nonlinear
equation A(u) = 0 states that if u ∈ C1

loc(X ) satis�es A(u) = 0 weakly in
X \ u−1(0) then A(u) = 0 is actually ful�lled in the sense of distributions in
all of X .

Theorem 3 If u ∈ C1
loc(X ) satis�es A(u) = 0 in X \ u−1(0), then A(u) = 0

away from the set of all x ∈ X satisfying ∂βu(x) = 0 for each multi-index β
with |β| ≤ 1.

Proof Set S = u−1(0), and so S is a closed subset of X . Denote by Sreg the
subset of S consisting of those x ∈ S which satisfy u′(x) 6= 0. Clearly, Sreg

is an open set in S, and so the set S(1) := S \ Sreg, which consists of all
x ∈ S satisfying u(x) = u′(x) = 0, is closed in X . Each point x ∈ Sreg has a
neighbourhood U in X , such that S ∩ U is a hypersurface in U . On applying
Lemma 2 we see that A(u) = 0 holds weakly in U and hence everywhere in
X \ S(1), as desired.

We now elucidate the main analytical problem in studying the Radó theo-
rem for solutions of the equation A(u) = 0. Let u ∈ C1

loc(X ) satisfy A(u) = 0
in X \ S, where S = u−1(0). By Theorem 3, the function u satis�es A(u) = 0
away from the closed set S(1) in X . In all interesting cases the Hausdor� di-
mension of the set S(1) is less than n, and so the hypothesis of Theorem 2 is
satis�ed. By this theorem, one gets A(u) = 0 in all of X , showing the Radó
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theorem. Clearly, no conclusion on the size of S(s−1) can be drawn in the case
of general operators A.

For a counterexample to a Radó theorem we refer the reader to Example 5
in [12]. It should be noted, however, that the equation of this example is not
a di�usion equation.

7 A Radó theorem for solutions of the porous medium equation

The following theorem presents a class of di�usion equations for which the
Radó theorem is valid in the proper formulation.

Theorem 4 Assume that D(u) = O(u) as u → 0. If u ∈ C0,1
loc (X ) satis�es

A(u) = 0 weakly in X \ u−1(0), then it is a weak solution to this equation in

all of X .

Proof Set S = u−1(0). Suppose u ∈ C0,1
loc (X ) satis�es A(u) = 0 weakly in

X \ S. We wish to show that A(u) = 0 in X , i.e.,

−〈u, ∂tg〉+ 〈D(u)u′, g′〉 = 0

for all test functions g ∈ C∞comp(X ).
Fix a function g ∈ C∞comp(X ) and denote by K the intersection of the

support of g with S. By a familiar lemma of Bochner [1], for each ε > 0 there
is a C∞ function χε with compact support in the ε -neighbourhood Kε of K,
equal to 1 in a smaller neighbourhood of K and such that |∂αχε(x)| ≤ cαε−|α|
for all x, where the constant cα is independent of ε. Since the support of A(u)
belongs to S, we get

−〈u, ∂tg〉+ 〈D(u)u′, g′〉 = −〈u, ∂t(χεg)〉+ 〈D(u)u′, (χεg)
′〉.

Hence,

| − 〈u, ∂tg〉+ 〈D(u)u′, g′〉| ≤ C ε−1
∫
Kε

|u(y)| (1 + |u′(y)|) dy (7)

for all su�ciently small ε > 0, where C is a constant depending on g but not
on ε.

For a point x ∈ X , we denote by

mx(u) (δ) = sup
y∈X
|y−x|<δ

|u(y)− u(x)|

the modulus of continuity of u at x. Since, by hypothesis, u ∈ C0,1
loc (X ), it

follows that

sup
x∈K

mx(u) (δ) ≤ c δ
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for all δ > 0 small enough. Thus, (7) yields

| − 〈u, ∂tg〉+ 〈D(u)u′, g′〉| ≤ C ε−1 sup
x∈K

mx(u) (ε)meas (Kε \K)

≤ Ccmeas (Kε \K)

for su�ciently small ε > 0. However, the measure of Kε \K tends to zero as
ε→ 0 (see for instance [3, 3.2.34]). Thus, −〈u, ∂tg〉+ 〈D(u)u′, g′〉 = 0, which
completes the proof.

As but one consequence of Theorem 4 we mention a Radó theorem for the
porous medium equation.

Example 4 For the equation ∂tu = div (p|u|p−1u′) the di�usion coe�cient is
D(u) = p|u|p−1. The Nemytskii operator ND maps Cloc(X ) continuously into
itself and D(u) = O(u) as u→ 0, provided that p ≥ 2. Hence, if u ∈ C0,1

loc (X )
satis�es the equation weakly in X \ u−1(0), then it is a weak solution to this
equation in all of X .

Note that this result does not hold for p = 1. For example, the function
u(x, t) = max{0, xn} in Rn × R belongs obviously to C0,1

loc (Rn+1) and satis�es
∂tu−∆u = −δ{xn=0}, where δ{xn=0} is the distribution given by the integration
over the hyperplane {xn = 0} in Rn+1.
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