Institut fir Informatik
Professur Maschinelles Lernen

Discriminative Classification Models for
Internet Security: Mitigating Email Spam
and HTTP-Layer DDoS Attacks

Kumulative Dissertation

zur Erlangung des akademischen Grades
,Doctor rerum naturalium®
(Dr. rer. nat.)
in der Wissenschaftsdisziplin
,Maschinelles Lernen*

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultat
der Universitat Potsdam

vo1

Uwe Dick

Potsdam, den 09. Mai 2016

Published online at the

Institutional Repository of the University of Potsdam:
URN urn:nbn:de:kobv:517-opus4-102593
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102593

1l

Abstract

Services that operate over the Internet are under constant threat of being exposed to
fraudulent use. Maintaining good user experience for legitimate users often requires the
classification of entities as malicious or legitimate in order to initiate countermeasures. As
an example, inbound email spam filters decide for spam or non-spam. They can base their
decision on both the content of each email as well as on features that summarize prior
emails received from the sending server. In general, discriminative classification meth-
ods learn to distinguish positive from negative entities. Each decision for a label may be
based on features of the entity and related entities. When labels of related entities have
strong interdependencies—as can be assumed e.g. for emails being delivered by the same
user—classification decisions should not be made independently and dependencies should be
modeled in the decision function. This thesis addresses the formulation of discriminative
classification problems that are tailored for the specific demands of the following three
Internet security applications. Theoretical and algorithmic solutions are devised to protect
an email service against flooding of user inboxes, to mitigate abusive usage of outbound
email servers, and to protect web servers against distributed denial of service attacks.

In the application of filtering an inbound email stream for unsolicited emails, utilizing
features that go beyond each individual email’s content can be valuable. Information about
each sending mail server can be aggregated over time and may help in identifying unwanted
emails. However, while this information will be available to the deployed email filter, some
parts of the training data that are compiled by third party providers may not contain this
information. The missing features have to be estimated at training time in order to learn
a classification model. In this thesis an algorithm is derived that learns a decision function
that integrates over a distribution of values for each missing entry. The distribution of
missing values is a free parameter that is optimized to learn an optimal decision function.

The outbound stream of emails of an email service provider can be separated by the
customer IDs that ask for delivery. All emails that are sent by the same ID in the same
period of time are related, both in content and in label. Hijacked customer accounts may
send batches of unsolicited emails to other email providers, which in turn might blacklist the
sender’s email servers after detection of incoming spam emails. The risk of being blocked
from further delivery depends on the rate of outgoing unwanted emails and the duration
of high spam sending rates. An optimization problem is developed that minimizes the
expected cost for the email provider by learning a decision function that assigns a limit on
the sending rate to customers based on the each customer’s email stream.

Identifying attacking IPs during HTTP-level DDoS attacks allows to block those IPs
from further accessing the web servers. DDoS attacks are usually carried out by infected
clients that are members of the same botnet and show similar traffic patterns. HTTP-level
attacks aim at exhausting one or more resources of the web server infrastructure, such as
CPU time. If the joint set of attackers cannot increase resource usage close to the maximum
capacity, no effect will be experienced by legitimate users of hosted web sites. However,
if the additional load raises the computational burden towards the critical range, user
experience will degrade until service may be unavailable altogether. As the loss of missing
one attacker depends on block decisions for other attackers—if most other attackers are
detected, not blocking one client will likely not be harmful—a structured output model has
to be learned. In this thesis an algorithm is developed that learns a structured prediction
decoder that searches the space of label assignments, guided by a policy.

Each model is evaluated on real-world data and is compared to reference methods. The
results show that modeling each classification problem according to the specific demands of
the task improves performance over solutions that do not consider the constraints inherent
to an application.

Zusammenfassung

Viele Dienste im Internet benotigen zur Gewahrleistung ihrer Erreichbarkeit die Moglichkeit,
Entitdaten als entweder gefdhrlich oder harmlos zu klassifizieren. Diskriminative Metho-
den des maschinellen Lernens verwenden Features von Entitaten oder Entitatengruppen,
um zwischen positiven und negativen Labels zu unterscheiden. So kénnen beispielsweise
Email-Spamfilter Entscheidungen aufgrund sowohl des Inhalts der Email als auch von In-
formationen treffen, die vorherige Emails des gleichen versendenden Servers zusammen-
fassen. Dariiber hinaus sind Labels zueinander in Verbindung stehender Entitéten, wie
z.B. Emails des gleichen Nutzers, oftmals nicht unabhéngig, so dass auch Klassifikationsent-
scheidungen nicht unabhéngig getroffen werden sollten. Diese Arbeit beschéftigt sich mit
der Formulierung diskriminativer Klassifikationsprobleme, die den speziellen Anforderun-
gen von drei Internetsicherheitsanwendungen Rechnung tragen. Theoretische und algorith-
mische Losungen zum Spamschutz von Nutzer-Inboxen eines Emailanbieters, zum Schutz
von ausgehenden Emailservern gegen Missbrauch und zur Abwehr von Distributed Denial
of Service-Attacken auf Webserver werden entwickelt.

Beim Saubern der bei einem Emailanbieter eingehenden Menge von Emails von unge-
wollten Emails wie Spam koénnen Informationen, die iiber den Inhalt einzelner Emails hin-
ausgehen, von groflem Nutzen sein. Etwa konnen Informationen iiber einen Mailserver
zeitlich aggregiert und zum Klassifizieren neuer Emails des gleichen Servers verwendet wer-
den. Diese Informationen sind in der Regel nur fiir Emails verfiigbar, die vom Emailanbieter
selbst empfangen werden, und fehlen bei Datensétzen, die extern gesammelte Emails bein-
halten. Wahrend des Trainings eines Spamklassifikators miissen diese Features entsprechend
geschétzt werden. In dieser Arbeit wird ein Algorithmus entwickelt, der eine Entscheidungs-
funktion lernt, die iiber eine Verteilung von fehlenden Werten integriert. Die Verteilung ist
ein freier Parameter, der wahrend des Lernens der Entscheidungsfunktion optimiert wird.

Der Strom ausgehender Emails eines Emailanbieters setzt sich zusammen aus Emails
einzelner Kunden. Alle Emails, die vom gleichen Kunden im gleichen Zeitraum gesendet
werden, sind sowohl bzgl. Inhalt als auch Label abhangig. Kompromittierte Kundenac-
counts konnen beispielsweise Batches von Spams an andere Emailanbieter schicken. Nach
erfolgter Spamerkennung konnten diese Anbieter die Mailserver des sendenden Anbieters
auf eine Blacklist setzen und somit am Versand weiterer Emails hindern. Das Risiko einer
solchen Blockierung ist abhangig von der Rate ausgehender ungewollter Emails und der
Dauer hoher Senderaten. Es wird ein Optimierungsproblem entwickelt, das die erwarteten
Kosten des Emailproviders minimiert, indem eine Entscheidungsfunktion gelernt wird, die
die erlaubte Versenderate von Kunden aufgrund der gesendeten Emails dynamisch einstellt.

Um angreifende IPs wahrend einer HTTP-Level-DDoS-Attacke zu blockieren, miissen
sie als solche erkannt werden. DDoS-Angriffe werden tiblicherweise von Clients durchgefiihrt,
die dem gleichen Botnet angeh6ren und ahnliche Traffic-Muster aufweisen. HTTP-Level-
Angriffe zielen darauf, eine oder mehrere Ressourcen der Webserverinfrastruktur, wie etwa
CPU-Zeit, aufzubrauchen. Fiir legitime Besucher ergeben sich erst dann Einschrankun-
gen der User Experience, bis hin zur Unerreichbarkeit der Webseite, wenn Angreifer den
Ressourcenverbrauch in die Ndhe oder iiber die Maximalkapazitat steigern konnen. Dieser
durch einen Angreifer verursachte Verlust héangt von Entscheidungen fiir andere Angreifer
ab; werden z.B. die meisten anderen Angreifer erkannt, wird ein nicht geblockter Angreifer
kaum Schaden anrichten. Es wird deshalb ein Algorithmus entwickelt, der einen Dekodierer
fir strukturierte Vorhersagen trainiert, der, geleitet durch eine Policy, den Raum der
gemeinsamen Labelzuweisungen durchsucht.

Alle Modelle werden auf industriellen Daten evaluiert und mit Referenzmethoden ver-
glichen. Die Ergebnisse zeigen, dass anforderungsspezifische Modellierung der Klassifika-
tionsprobleme die Performance gegeniiber den Vergleichsmethoden verbessert.

vil

Acknowledgements

First, I would like to thank my supervisor Tobias Scheffer for giving me the opportunity to
pursue my PhD in his research group and for his support and guidance. I am also grateful
to STRATO AG for helping to finance my studies via joint research projects with the
University of Potsdam and for giving me the opportunity to translate theory to practice. 1
would like to thank all members, past and current, of our research group for an enjoyable
working environment. Finally, many thanks to friends, family, and L for all the rest.

Contents

1 Introduction 1
1.1 Inbound Spam Classification with Missing Attributes 2
1.2 Outbound Spam Filtering 3
1.3 DDoS Attacker Detection 5

2 Learning from Incomplete Data with Infinite Imputations 7
2.1 Introduction 7
2.2 Problem Setting 8
2.3 Learning from Incomplete Data in One Step 9
2.4 Solving the Optimization Problem 9

2.4.1 Optimal Solution with Finite Combination 9
2.4.2 Tterative Optimization Algorithm 10

2.5 Example Learners Lo 11
2.5.1 Two Standard Learning Algorithms 11
2.5.2 Regularizing towards Prior Belief in Feature Space 11
2.5.3 Imputing the Mean in Feature Space 11

2.6 Empirical Evaluation L. 12
2.6.1 Classification 12
2.6.2 Regression 14

2.7 Conclusion 14
2.8 Acknowledgments 14
2.9 References 14
3 Throttling Poisson Processes 15
3.1 Introduction 15
3.2 Poisson Process Model 0. 16
3.2.1 Derivation of Empirical Loss 16

3.3 Erlang Learning Model L. 17
3.4 Prior Work and Reference Methods 19
3.5 Application 20
3.5.1 Results. 21

3.6 Conclusion 22
3.7 Acknowledgmentso 22
3.8 References 22

4 Learning to Control a Structured-Prediction Decoder for Detection
of HTTP-Layer DDoS Attackers 24
4.1 Introduction oL 24

Contents

4.2 Problem Setting, Motivating Appliation. 26
4.3 Anomaly Detection 27
4.3.1 Problem Setting for Anomaly Detection 27
4.3.2 Support Vector Data Description 27
4.4 Independent Classification 28
4.4.1 Problem Setting for Independent Classification 28
4.4.2 Logistic Regression 0L 28
4.5 Structured Prediction with Approximate Inference 28
4.5.1 Problem Setting for Structured Prediction with Approximate
Inference 29
4.5.2 Tterative Classification Algorithm 29
4.6 Structured Prediction with a Parametric Decoder 29
4.6.1 Problem Setting for Structured Prediction with Parametric De-
coder 30
4.6.2 HC Search 30
4.6.3 Online Policy-Gradient Decoder 31
4.7 Identification of DDoS Attackers. 36
4.7.1 Cost Function L 36
4.7.2 Loss Function 37
4.7.3 Action Space and Stochastic Policy 38
4.74 Feature Representations 38
4.8 Experimental Study oo 40
4.8.1 Data Collection 40
4.8.2 Experimental Setting 41
4.8.3 Reference Methods 41
484 Results. 42
4.8.5 Analysis 43
4.8.6 Feature Relevance. 44
4.8.7 Execution Time L. 44
4.9 Discussion and Related Work 0L 45
4.10 Conclusion e 46
4.11 References 46
Discussion 49
5.1 Application-Specific Related Work 49
5.2 Application-Oriented Modeling and Algorithms 50
5.2.1 Inbound Spam Filtering with Incomplete Data 51
5.2.2 Outbound Spam Filtering with Non-Separable Loss 51
5.2.3 DDoS Filtering with Structured Prediction Models 52
5.3 Empirical Evaluation L. 53

Chapter 1

Introduction

Email and web hosting are both examples of services that operate over the Internet
and are provided to customers by a variety of companies and organizations. Each
service is intended to essentially serve or send data from legitimate customers—e.g.
business web sites hosted at a web hosting company or private emails sent via a free
email service—to eligible recipients—the web browser of a potential customer of the
business web site or the mail server of a friend’s email service provider. Reliability
of provided services is key to the success of any service provider. However, each
service is under constant threat of being exposed to fraudulent use that might render
it unusable to legitimate customers. Web sites can be exposed to high usage—often
initiated by distributed sources corresponding to botnets—that might lead to reduced
availability and suboptimal user experience. In extreme cases, web sites will not be
reachable for legitimate users, leading to potentially lost business for the customers of
the web hosting firm and, ultimately, for the hosting company itself. Email services
can be exploited by flooding it with unwanted and illegitimate emails such as spam or
phishing emails. Without appropriate countermeasures, such as employing content
based spam filters, and thereby cleaning the email inbox from those unwanted emails,
the service would often become unusable. On the other hand, the email infrastructure
of an email service provider can also be exploited by senders of unsolicited bulk email
to deliver their messages. Customer accounts can be hijacked and used for delivering
large amounts of emails in short time spans, or wrongly configured scripts on web sites
can be utilized by spam bots. Sending large amounts of unwanted emails can lead
to IP addresses of outgoing email servers to be blacklisted by other email providers,
thus effectively disrupting parts of the service.

In order to maintain service and good customer experience in all those cases,
countermeasures have to be taken by service providers. Much work has been done on
protecting web server infrastructure against denial of service (DoS) attacks, especially
when multiple attacking IPs are involved. The effects of such distributed denial of
service (DDoS) attacks can often be mitigated by allowing servers to dynamically
adjust TCP timeouts or dynamically provide additional resources. In certain types of
TCP layer attacks, IP addresses can be spoofed. However, HT'TP layer attacks need a
valid TCP connection to be established and a corresponding DDoS mitigation system
should aim at detecting client IPs that participate in an attack. After detection of
attacking clients, those could either be blacklisted and blocked from further accessing
the web servers, or a throttling mechanism could be implemented that limits the
number of allowed connections of detected clients. The next section introduces a

2 Chapter 1. Introduction

problem formulation for learning a DDoS attacker detection mechanism that decides
for attackers based on HTTP traffic features of groups of clients.

Learning content based email spam filters has shown its merit for over a decade,
and email inboxes that consist to a large part of spam emails are a very unusual
sight nowadays. However, performance of spam filters depends to a large part on
size and diversity of the training data which should be a representative sample of
both spam and non-spam (ham) emails. In order to assemble a good data set, it may
be necessary to collect data from different data sources, mainly from the in-house
email service but also from publicly available data sets and other sources. However,
assembling data from different sources can lead to problems of inconsistency of the
compiled data set. In particular, certain meta-information on sender reputation will
be missing in external sources. Section 1.1 introduces this problem formulation in
more depth.

Content-based filters for filtering the outbound stream of emails of an email
provider can be used to effectively control the number of emails a customer is allowed
to send per time. Limiting the sending rate of illegitimate or hijacked customer
accounts will reduce the likelihood that the mail server IPs will be blacklisted by
other email providers. While the occasional spam that is delivered via an email
provider will usually not lead to any problems, sending large amounts of spam emails
in a short time frame will most likely catch the attention of blacklist maintainers.
An email service can reduce that risk by upper bounding the rate of outgoing emails
dynamically, based on attributes of the sending customer and the content of current
and previously delivered emails. That way, normal costumers are allowed to send
large amounts of legit emails without restrictions, whereas suspicious accounts are
throttled in order to stabilize service for all customers. Section 1.2 introduces concepts
that help in understanding how learning an optimal throttling strategy can reduce
costs of email service providers.

We have identified three different threats that can potentially disrupt services
provided by web hosting firms or email providers. Countermeasures against all three
threats involve a classification function that maps inputs r—e.g. incoming emails—to
binary labels y € {+1, —1}—e.g. spam or non-spam. However, different challenges
arise from the way data is collected, costs of misclassification are defined, and de-
pendencies between sets of inputs and outputs are assumed from the formulation.
This thesis handles each of the three applications differently by developing a specific
problem formulation for each of the server security tasks. An optimization criterion
is derived from each problem formulation and algorithmic solutions are presented
that solve the optimization criteria. The following three sections introduce each
application and corresponding paper in more depth and states my contributions on
derivation, implementation, and evaluation of the investigated methods.

1.1 Inbound Spam Classification with Missing At-
tributes

The first application considers learning a spam classifier that decides for each incom-
ing email if it is a spam email (y; = +1) or not (y; = —1). The learner is given
a matrix X of n training instances z; corresponding to the rows of X and a vector
of real labels y. Using content-based binary classification algorithms for learning

1.2. Outbound Spam Filtering 3

to assign spam scores to incoming emails has a long and successful history, see e.g.
[Blanzieri 09] for an overview. However, here the training data is compiled from
several sources, including spam traps, in addition to emails collected from the service
provider’s own email service. Another classifier that was trained using only content
features computes spam scores that are used as a feature in X. In addition to the con-
tents of each email, the service provider records auxiliary real-time information about
the sending servers. We record the number of valid and invalid receiver addresses of
all emails seen from the server so far, and the mean and standard deviation of the
sizes and spam scores of all emails from the server. Such information is not available
for emails from external sources but will be available when classifying unseen emails.

A classification learning algorithm has to estimate the values of missing attributes
and learn a classification function based on such imputations. An imputation w is a
matrix whose values are restricted to w;; = x; if [-th feature is available in instance 7.
We develop a method that learns a distribution of imputations p(w) and integrates
over all imputations in order to compute spam scores. A Mercer kernel k allows for
flexibility of the decision function. We develop an optimization problem for finding
the optimal parameters of decision function f(x;;c,p) = 2?21 ¢; [k(wi,w;)dp(w).
Optimal parameters minimize the average of a loss function ¢(y, fr(x;c,p)) over all
training instances plus a regularization terms for both parameters. ¢ is usually an ap-
proximation of the real loss function—often also called cost function—that measures
the real cost for misclassifying a spam as ham and vice versa.

Parameters ¢ and p have to be estimated by a learning algorithm that minimizes

> (yz-,zcj / /f(wmwz')dp(w)) 0> ciey [besw)dp@) +9Q) . (1)

ij=1

Regularization term Q@ (p) may regularize the distribution towards a prior belief
about how imputations might be distributed.

We show that the optimal distribution p consists of at most n + 2 distinct im-
putations. Based on this theorem we develop an algorithm that greedily adds new
imputations to a set of active imputations and computes a linear combination of
elements of this set that minimize Eqn. 1.1.

Learning from incomplete data has been studied extensively over the years [Little 87,
Shivaswamy 06, Chechik 08, Wang 10]. However, in [Dick 08] (Chapter 2) we develop
a method that employs the flexibility of kernels and integrates over all possible im-
putations w.r.t. a learned distribution of imputations. No assumptions are made on
the type of distribution. I developed and implemented the algorithm and helped in
developing the proof of Theorem 1 in [Dick 08]. I also conducted the experiments.

1.2 Outbound Spam Filtering

The second application considers filtering the outbound stream of emails that is
delivered by an email provider’s infrastructure. The email infrastructure can be
exploited to send large amounts of spam emails. Automated bots may screen hosted
web sites for malconfigured scripts—e.g. ad hoc contact forms that allow for changing
the recipient—and exploit those to send unwanted bulk emails to arbitrary email
addresses. Alternatively, customer account passwords might be hijacked and spam

4 Chapter 1. Introduction

senders could send emails from private accounts without knowledge of the customer.
Protecting an email service against such misuse has been identified as a research
topic [Goodman 04], but only very few work has been published on this specific task
[Zhong 05].

When other email providers detect that the stream of incoming emails from the
provider’s mail servers contains an unusually high fraction of spam they might add
its mail server IPs to an (internal or public) blacklist. This often results in emails
delivered via the email service provider’s infrastructure to be rejected by other email
providers, thus rendering this service at least partly unusable. Note that the occa-
sional spam email generally doesn’t pose a high risk for being blacklisted. Based on
experience of a large web hosting company that employs its own email infrastructure,
we assume that the risk of being blacklisted grows in the rate of spam messages being
sent and the duration over which a high sending rate is maintained. Let the stream
of emails that one customer sends to the mail servers for delivery be defined as a
sequence X = 1, ..., L, of n emails that request delivery at time points t = t1,...t,,.
X, and t, denote the initial sequence of the first k£ elements of x and t, resp. An
outbound email filter 7(xg, t;) decides at time ¢, if email x; will be sent or discarded,
based on previous emails and decisions in that sequence. The outbound rate r™ ('|x, t)
describes the number of emails of x that were delivered over the time interval of length
7—>5 minutes in our application—that ends at ¢’. We assume that all emails that are
send in a batch (x,t) by one customer have the same label y, i.e. all emails are either
spam or non-spam.

In contrast to the problem of inbound spam classification, as described in sec-
tion 1.1, here we assume to learn only from labeled email batches that were recorded
from the internal email infrastructure. Furthermore, as mentioned above, the loss for
misclassifying one email is not independent of previous decisions. Instead, in addition
to the loss £(y, m(xg, ty)) that is incurred for the classification of the k-th email of
the batch, the loss that depends on the duration and rate that spams are delivered
depends on the sequence of decisions. The rate-dependent per-time loss Ay, ™) is
integrated over the whole batch x,t,y to determine the overall loss that a filter 7
incurs on this batch. The loss of m on batch x,t with label y is

L(m;x,t,y) :/n T)\(y,r”(t'|x,t))dt’—i—zg(y,w(xi,ti)) (1.2)

t i=1

Learning sequences of decisions can generally be done using reinforcement learning
methods [Busoniu 10], an approach we also compare against in [Dick 10]. Instead,
in [Dick 10]' (Chapter 3) we develop a specially tailored method that minimizes
the expected loss Ex ¢, [L(m, x,t,y)] over all batches x,t,y by learning a throttling
mechanism. The algorithm learns a rate-limit function fp(x;,t;) that represents the
number of emails that a customer is allowed to send in the interval [¢t; — 7,¢;). The
filter 7 is defined as

m(xi,ti) = {

We develop a problem formulation that assumes that the sequence of delivery time
points t is drawn from a Poisson process. We proof that the corresponding opti-

—1(“allow”) if Tﬂ(ti’Xi, t1> +1< f@(Xi, t1>

+1(“suppress”) otherwise (1.3)

'Published at Conference on Neural Information Processing Systems. https://nips.cc

1.3. DDoS Attacker Detection 5

mization problem is convex and show experimentally that the learned filter indeed
performs better in reducing the expected loss than baseline methods.

I developed the problem formulation, the optimization problem, implemented the
algorithm and performed the experiments in [Dick 10]. Peter Haider helped in writing
the paper and the other authors helped in developing the proof of Theorem 1.

1.3 DDoS Attacker Detection

The third application considers the problem of learning a DDoS attacker detection
mechanism. The filter has to decide which client IPs that currently access a web server
are staging an attack on the server. While most of the time the web servers are not
under attack, in case of an attack the detection mechanism should detect as many
attackers as possible in order to reduce the costs that the attack imposes on the web
hosting company. The attacker detection aims at identifying client IPs that are part
of an HTTP-level attack [Ranjan 06, Liu 11]. HTTP-level attackers try to exhaust
web server resources by querying them with a large number of HTTP-compliant
requests that may each look inconspicuous but which may exhaust resources such as
CPU time very quickly if no countermeasures are taken.

The loss each undetected attacker imposes on the system is dependent on other
detection decisions that the filter outputs at the same time. If only a few attackers
pose a reasonable number of requests to the servers, the server infrastructure will
usually serve the additional load without any effect on the general user experience
of other customers. However, if the additional requests increase the overall load on
a server resource, such as CPU time, close to the available maximum capacity, user
experience will degrade and ultimately web sites may become unavailable, rendering
the attack successful. We assume negative user experience due to high response times
or unavailability of the service to be the main cost inducing factor to the web hosting
company. We therefore assume that the loss of not detecting attacking client IPs
is super-linear—quadratic in our experiments—in the number of requests and used
CPU time initiated by undetected attackers.

Because the joint loss ¢ induced by all undetected attackers is not separable over
individual decisions of the detection mechanism, we resort to learning a structured
prediction model that decides for all current clients on a domain simultaneously (e.g.
[Tsochantaridis 05]). In other words, we aim at finding the subset of clients that
are attackers. Often, all attacking clients are part of the same botnet and their
behavior follows a common pattern. We can take advantage of this knowledge by
defining features for sets of clients that capture common patterns such as common
user agents. Despite an intuitive advantage of this approach over independently
classifying each client individually, the space of possible outcomes of the algorithm
becomes exponential in the number of clients. Here, we would have to evaluate each
subset of clients for its likelihood of containing all attackers but no legitimate clients.

Let the set of clients that access the server in a given time interval-—10 seconds
in our application—be denoted by x = {z1, ..., x,} with real labels y = {y1, ..., yn},
where y; = +1 identifies client x; as an attacker. We learn a joint input-output
function f,(x,y’) that maps clients x and labels y’ to a real-valued score. The
decoder aims at finding the best scoring output from the set of all possible outputs

6 Chapter 1. Introduction

y = argmax fy(x,y’) (1.4)
y'eY(z)

that minimizes the expected loss Ey y[c(X,y, argmaxy ey, fo(X,¥'))]-

Time is very limited in the decoding phase, as decisions have to made in real time.
Searching the complete output space)Y (x) is impossible except in cases where only
very few clients are present. Instead, we have to find a good search strategy that
traverses the output space in such a way that potentially high scoring outputs are
visited early during the search. In [Dick 16]*> (Chapter 4) we investigate a method
that learns a search strategy m, simultaneously to learning the decision function
fs. In each time step T the search strategy my(x,Vr(x)) adds a new element to
the set of visited outputs Yr(x) C Y(x) and with the help of the decision function
fs we can output the best scoring element y = argmaxy.cy, .,) fo(X,¥’). Such a
decoder is called an anytime decoder as the search could be stopped at any time
point [Doppa 14a]. If a distribution of available decoding time steps p(7') can be
estimated, we can optimize both parameters ¢ and ¢ such that more focus is laid on
more likely final time steps. The learned model minimizes the expected cost over all
sets x and y

argmin Ex y) 7y, (x) |¢(X,y, argmax fy(x,¥) (1.5)

d):d’ yEYT(X)
with (x,y) ~p(x,y), T ~p(T|7) (1.6)
Vi(x) ~ p(Vr(x) |, . T) (17)

An algorithm is derived that approximately minimizes the expected costs and is
shown to be convergent. I developed the algorithm and the proof of convergence and
both implemented and evaluated the method in [Dick 16]. I gathered and labeled the
data set from a large web hosting company.

2The final publication is available at Springer via http://dx.doi.org/10.1007/s10994-016-5581-9

Learning from Incomplete Data with Infinite Imputations

Uwe Dick
Peter Haider
Tobias Scheffer

DICK@MPI-SB.MPG.DE
HAIDERQMPI-SB.MPG.DE
SCHEFFERQ@QMPI-SB.MPG.DE

Max Planck Institute for Computer Science, Saarbriicken, Germany

Abstract

We address the problem of learning deci-
sion functions from training data in which
some attribute values are unobserved. This
problem can arise, for instance, when train-
ing data is aggregated from multiple sources,
and some sources record only a subset of at-
tributes. We derive a generic joint optimiza-
tion problem in which the distribution gov-
erning the missing values is a free parame-
ter. We show that the optimal solution con-
centrates the density mass on finitely many
imputations, and provide a corresponding al-
gorithm for learning from incomplete data.
We report on empirical results on benchmark
data, and on the email spam application that
motivates our work.

1. Introduction

In many applications, one has to deal with training
data with incompletely observed attributes. For in-
stance, training data may be aggregated from differ-
ent sources. If not all sources are capable of providing
the same set of input attributes, the combined train-
ing sample contains incompletely observed data. This
situation occurs in email spam detection, where it is
helpful to augment the content of an email with real-
time information about the sending server, such as its
blacklist status. This information is available for all
training emails that arrive at a mail server under one’s
own control, and it is also available at application time.
But if one wants to utilize training emails from public
archives, this information is missing.

We adress a learning setting in which values are miss-
ing at random: here, the presence or absence of values

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

does not convey information about the class labels. If
this condition is not met, it is informative to consider
the presence or absence of values as additional input to
the decision function. Techniques for learning from in-
complete data typically involve a distributional model
that imputes missing values, and the desired final pre-
dictive model. Prior work on learning from incomplete
data is manifold in the literature, and may be grouped
by the way the distributional model is used.

The first group models the distribution of missing val-
ues in a first step, and learns the decision function
based on the distributional model in a second step.
Shivaswamy et al. (2006) formulate a loss function
that takes a fixed proportion of the probability mass
of each instance into account, with respect to the es-
timated distribution of missing values. They derive
second order cone programs which renders the method
applicable only to very small problems. Other exam-
ples include Williams and Carin (2005), Williams et al.
(2005), and Smola et al. (2005).

The second group estimates the parameters of a distri-
butional model and the final predictive model jointly.
As an example, recently Liao et al. (2007) propose
an EM-algorithm for jointly estimating the imputa-
tion model and a logistic regression classifier with lin-
ear kernel, assuming the data arises from a mixture of
multivariate Gaussians.

The third group makes no model assumption about the
missing values, but learns the decision function based
on the visible input alone. For example, Chechik et al.
(2007) derive a geometrically motivated approach. For
each example, the margin is re-scaled according to the
visible attributes. This procedure specifically aims at
learning from data with values that are structurally
massing—as opposed to missing at random. Chechik
et al. (2007) find empirically that the procedure is not
adequate when values are missing at random.

Jointly learning a distributional model and a kernel
predictive model relates to the problem of learning a

8 Chapter 2. Learning from Incomplete Data with Infinite Imputations

kernel function from a prescribed set of parameterized
kernels. This problen drew a lot of attention recently;
see, for example, Argyriou et al. (2005) and Micchelli
and Pontil (2007).

Estimating the distributional model first and training
the predictive model in a second step leaves the user
free to choose any learning algorithm for this second
step. However, a harder problem has to be solved than
would be necessary. If one is only interested in a deci-
sion function that minimizes the desired loss, knowing
the values or distribution of the missing attributes in
the training set is not actually required. Furthermore,
errors made in the imputation step and errors made in
estimating the parameters of the predictive model can
add up in a sequential procedure.

Consequently, we investigate learning the decision
function and the distribution of imputations depen-
dently. Unlike prior work on this topic, we develop a
solution for a very general class of optimization crite-
ria. Our solution covers a wide range of loss functions
for classification and regression problems. It comes
with all the usual benefits of kernel methods. We de-
rive an optimization problem in which the distribution
governing the missing values is a free parameter. The
optimization problem searches for a decision function
and a distribution governing the missing values which
together minimize a regularized empirical risk.

No fixed parametric form of the distributional model
is assumed. A regularizer that can be motivated by a
distributional assumption may bias the distributional
model towards a prior belief. However, the regularizer
may be overruled by the data, and the resulting distri-
butional model may be different from any parametric
form. We are able to prove that there exists an opti-
mal solution based on a distribution that is supported
by finitely many imputations. This justifies a greedy
algorithm for finding a solution. We derive manifesta-
tions of the general learning method and study them
empirically.

The paper is structured as follows. After introducing
the problem setting in Section 2, we derive an opti-
mization problem in Section 3. Section 4 proves that
there is an optimal solution that concentrates the den-
sity mass on finitely many imputations and presents
an algorithm. Example instantiations of the general
solution are presented in Section 5. We empirically
evaluate the method in Section 6. Section 7 concludes.

2. Problem Setting

We address the problem of learning a decision func-
tion f from a training sample in which some attribute

values are unobserved.

Let X be a matrix of n training instances x; and let
y be the vector of corresponding target values y;. In-
stances and target values are drawn #id from an un-
known distribution p(x,y) with x; € R? and y; € Y,
where) denotes the set of possible target values. Ma-
trix Z indicates which features are observed. A value
of z;; = 1 indicates that x;;, the [-th feature of the i-th
example, is observed. Values are missing at random:
y; is conditionally independent of z; given x;.

The goal is to learn a function f : x — y that pre-
dicts target values for completely observed examples.
The decision function should incur only a minimal true
risk R(f) = [L(y, f(x))p(x,y)dxdy, where L is a loss
function for the task at hand.

As a means to minimizing the true risk, we seek a
function f in the reproducing kernel Hilbert space Hy,
induced by a kernel k£ that minimizes a regularized
empirical risk functional R(f) = Y i, U(yi, f(x:)) +
nllfll?. We demand k to be a Mercer kernel. Loss
function [approximates the true loss L. The represen-
ter theorem allows us to write the minimizer as a sum
over functions in Hj centered at training instances:

fx) =300 ¢ik(x5,x).
The learning problem from completely observed data
would amount to solving Optimization Problem 1.

Optimization Problem 1 (Primal learning prob-
lem, observed data). Over c, minimize

}2(07 k‘) = 2; l (yh z; Cjk(Xj, Xz)) +77-Zl CiCjk(Xj, Xi)
1= Jj= 1,]=

We require that the loss function be defined in such
a way that Optimization Problem 1 can be written
in the dual form of Optimization Problem 2. A wide
range of loss functions satisfies this demand; we will
later see that this includes hinge loss and squared loss.

Optimization Problem 2 (Dual of learning
problem). Given a <0, over ¢, mazimize

a{c,Kc) — R*(c)
subject to the constraints

Vit19i(e) 0, V2 hj(c) =0. (1)
R*(c) denotes a differentiable convex function of the
dual variables ¢ which we demand to be independent
of the kernel matrix K. The inequality constraints g;
are differentiable convex and the equality constraints
h; differentiable affine. We like to note that the re-
quirement of independence between R* and K is not

2.3. Learning from Incomplete Data in One Step 9

very restrictive in practice, as we will see in chapter
5. Furthermore, we demand strong duality to hold
between Optimization problems 1 and 2.

3. Learning from Incomplete Data in
One Step

If any instance x; has unobserved features, then
k(x;,x) and, consequently, the decision function f are
not properly defined. In order to learn from incom-
plete data, we will marginalize the decision function
and risk functional by the observable attributes and
integrate over all unobserved quantities. To this end,
we define w € Q% C R"*4 as a matrix of imputations
constrained by w;; = x; if z;; = 1. We demand Q?{ to
be compact for the rest of this paper. Let w; denote
the i-th row of w. Then we can define a family of ker-
nels K(w)(x;,x%;) = k(w;,w;). Any probability mea-
sure p(w) on imputations induces a marginalization of
the kernel by the observable variables. Equation 2 in-
tegrates over all imputations of unobserved values; it
can be evaluated based on the observed values.

Ko)exjx) = [Kewjpwddw) (2
wenZ

Any probability measure p(w) constitutes an optimiza-
tion criterion R(c, K (p)). In the absence of knowledge
about the true distribution of missing values, p(w) be-
comes a free parameter. Note that p(w) is a continu-
ous probability measure that is not constrained to any
particular parametric form; the space of parameters is
therefore of infinite dimensionality.

It is natural to add a regularizer Q(p) that reflects
prior belief on the distribution of imputations p(w) to
the optimization criterion, in addition to the empiri-
cal risk and regularizer on the predictive model. The
regularizer is assumed to be continuous in p. The reg-
ularizer does not constrain p(w) to any specific class
of distribution, but it reflects that some distributions
are believed to be more likely. Without a regularizer,
the criterion can often be minimized by imputations
which move instances with missing values far away
from the separator, thereby removing their influence
on the outcome of the learning process. This leads to
Optimization Problem 3.

Optimization Problem 3 (Learning problem
with infinite imputations). Given n training ex-
amples with incomplete feature values, v > 0, kernel
function k, over all ¢ and p, minimize

Riny(c,p) = R(e,K(p)) +1Q(p) (3)
subject to the constraints
Vw : p(w) >0, fu€Q>Z< p(w)dw = 1.

Each solution to Optimization Problem 3 integrates
over infinitely many different imputations. The search
space contains all continuous probability measures on
imputations, the search is guided by the regularizer Q.
The regularization parameter v determines the influ-
ence of the regularization on the resulting distribution.
For v — oo the solution of the optimization reduces
to the solution obtained by first estimating the distri-
bution of missing attribute values that minimizes the
regularizer. For v — 0 the solution is constituted by
the distribution minimizing the risk functional R.

4. Solving the Optimization Problem

In this section, we devise a method for efficiently find-
ing a solution to Optimization Problem 3. Firstly, we
show that there exists an optimal solution ¢, p with p
supported on at most n + 2 imputations w € Q)Z(Sec-
ondly, we present an algorithm that iteratively finds
the optimal imputations and parameters minimizing
the regularized empirical risk.

4.1. Optimal Solution with Finite Combination

In addition to the parameters c of the predictive mod-
els, continuous probability measure p(w) contributes
an infinite set of parameters to Optimization Problem
3. The implementation of imputations as parameters
of a kernel family allows us to show that there exists
an optimal probability measure p for Equation 3 such
that p consists of finitely many different imputations.

Theorem 1. Optimization Problem 3 has an optimal
solution €,p in which p is supported by at most n + 2
imputations w € Q)Z(

Proof. The compactness of Q% and the continuity of K
immediately imply that there erists some solution to
Optimization Problem 3. It remains to be shown that
at least one of the solutions is supported by at most
n + 2 imputations. Let ¢, p be any solution and let all
requirements of the previous section hold. The idea
of this proof is to construct a correspondence between
distributions over imputations and vectors in R"*!,
where a finite support set is known to exist. Define
S(w)=K(w)ceR"and D = {(S(w)",Q(w))" 1w €
0%} c R*"L. Since Q% is compact and K(-) and Q(-)
are continuous by definition, D is compact as well. We
define a measure over D as (A X B) = p({w : S(w) €
ANQ(w) € B}).

Then, by Carathéodory’s convex hull theorem, there
exists a set of k vectors {(s{,q1)",...,(sf,qx) "} C D
with £ < n 4+ 2 and nonnegative constants v; with

10 Chapter 2. Learning from Incomplete Data with Infinite Imputations

Zle v; = 1, such that

k

[6T (T) = YT 0

i=1

For each i, select any w; such that (S(w;)",Q(w;)) =
(s, qi). We construct p by setting p(w) = S-F_| vide,,,
where d,,, denotes the Dirac measure at w;. The op-
timal € results as arg min. R(c, K(p)). We have

k

Zsiyi, and
i=1

k

quzw

i=1

/D sdu((s™,q)")

/D qdp((s™q)")

Then
K(pe = (K(w)dp<w>>e — [S@w)dp(w)
0z 0z
= [Stw)an ()" Quw)")
k
= ;siui = /Q ?(S(w)dp(w)
= [Kwwe = K
0z
Likewise,
Q) = [Q)dn((8@).Qw))
D
k
= Z%’Vi = Q).
Since Q(p) does not depend on ¢, ¢ =
?rgminc R(c,K(p)), and by strong duality,

¢ = argmaxca(c,K(p)c) — R*(c). This implies
that the Karush-Kuhn-Tucker conditions hold for ¢,
namely there exist constants x; > 0 and A; such that

aK(p)c — VR*(c) + Z kiVgr(e) + Z AjVRI(€) = 0

Vi gi(€) <0, V; hi(c) =0, Vi rigj(c)=0
It is easy to see that therefore ¢ is also a maximizer
of a {c,K(p)c) — R*(c), because K(p)¢c = K(p)¢ and
the Karush-Kuhn-Tucker conditions still hold. Their
sufficiency follows from the fact that K(p) is positive
semi-definite for any p, and the convexity and affinity

premises. Thus,

R(c, K(p)) +7Q(p)

K
¢, K(p)e) — B'(c)] +1Q(p)
€) — R'(e)] +1Q(p)

) = R'(&)] +1Q(0)
= |maxa (e, K(p)e) — R*(c)] +7Q(1)

R(e, K(5))| +7Q()
= R(&, K(p)) +1Q().

We have now established that there exists a solution
with at most n + 2 imputations. O]

4.2. Tterative Optimization Algorithm

This result justifies the following greedy algorithm to
find an optimal solution to Optimization Problem 3.
The algorithm works by iteratively optimizing Prob-
lem 1 (or, equivalently, 2), and updating the distribu-
tion over the missing attribute values. Let pg denote
the distribution p(w) = d5. Algorithm 1 shows the
steps.

Algorithm 1 Compute optimal distribution of impu-
tations on Q)Z(

Initialization: Choose p™) = p_u); e.g., wl(-ll) =0 for
all Zil 75 1
fort=1... do
1. & « argmine R(c, K(p®))
2. Find w(t+1) c Q)Z(Rk7ry(é,pw(t+l)) <
Ry~ (€,p®M). Tf no such w1 exists, terminate.

3. B¢ « argminge (o, [minc Rkﬁ(c,ﬂpw(wn +
(1= B)p2)]
4. ptY « Bipern + (1 — B)p®

5. Vj<t: B« Bi(1—p)
end for

Step 1 consists of minimizing the regularized empiri-
cal risk functional R, given the current distribution.
In step 2 a new imputation is constructed which im-
proves on the current objective value. Since in gen-
eral Ry (c,p,) is not convex in w, one cannot find
the optimal w efficiently. But the algorithm only re-
quires to find any better w. Thus it is reasonable to
perform gradient ascent on w, with random restarts
in case the found local optimum does not satisfy the
inequality of step 2. In step 3 and 4 the optimal dis-
tribution consisting of the weighted sum of currently
used Dirac impulses ZE=1 Bibw, and the new imputa-
tion d,¢+1) is computed. This step is convex in £ if

2.5. Example Learners

11

Ry~ (¢, Bpyn +(1—B)p®) is linear in . By looking
at Optimization Problem 2, we see that this is the case
for R. Thus the convexity depends on the choice for
Q@ (see Sect. 5.2). Step 5 updates the weights of the
previous imputations.

The algorithm finds ¢ imputations w) and their
weights 3;, as well as the optimal example coefficients
c. We can construct the classification function f as

Note that the value n + 2 is an upper bound for the
number of basic kernels which constitute the optimal
solution. The algorithm is not guaranteed to terminate
after n + 2 iterations, because the calculated imputa-
tions are not necessarily optimal. In practice, however,
the number of iterations is usually much lower. In our
experiments, the objective value of the optimization
problem converges in less than 50 iterations.

5. Example Learners

In this chapter we present manifestations of the generic
method, which we call weighted infinite imputations,
for learning from incomplete data that we use in the
experimental evaluation.

Recall from Section 3 the goal to learn a decision func-
tion f from incomplete data that minimizes the ex-
pected risk R(f) = [L(y, f(x))p(x, y)dxdy. In clas-
sification problems the natural loss function L be-
comes the zero-one loss, whereas in regression prob-
lems the loss depends on the specific application; com-
mon choices are the squared error or the e-insensitive
loss. The considerations in the previous chapters show
that, in order to learn regression or classification func-
tions from training instances with missing attribute
values, we only have to specify the dual formulation of
the preferred learning algorithm on complete data and
a regularizer on the distribution of imputations p.

5.1. Two Standard Learning Algorithms

For binary classification problems, we choose to ap-
proximate the zero-one by the hinge loss and perform
support vector machine learning. The dual formula-
tion of the SVM is given by R¥VM (¢, k) =31, o
321 i1 cicjk(x;,%;) subject to the constraints 0 <
;—’ < % and Z?:l ¢; = 0. We see that the demands
of Optimization Problem 2 are met and a finite solu-
tion can be found. Taking the SVM formulation as
the dual Optimization Problem 2 gives us the means —

in conjunction with an appropriate regularizer @ — to

learn a classification function f from incomplete data.

For regression problems, the loss depends on the task
at hand, as noted above. We focus on penalizing the
squared error, though we like to mention that the ap-
proach works for other losses likewise. One widely used
learning algorithm for solving the problem is kernel
ridge regression. Again, we can learn the regression
function f from incomplete data by using the same
principles as described above. Kernel ridge regression
minimizes the regularized empirical risk Y ;- (y; —
Fx))2 +n|lflII*. The dual formulation REEE (¢ k) =
Sy — A 2+ ﬁ szzl cicjk(z;, x;) again
meets the demands of the dual optimization problem
2. Substituting its primal formulation for R in step 1
of Algorithm 1 and in Eqn. 3 solves the problem of
learning the regression function from incomplete data
after specifying a regularizer Q.

5.2. Regularizing towards Prior Belief in
Feature Space

A regularizer on the distribution of missing values can
guide the search towards distributions @ that we be-
lieve to be likely. We introduce a regularization term
which penalizes imputations that are different from
our prior belief @. We choose to penalize the sum
of squared distances between instances x; and @; in
feature space Hj induced by kernel k. We define the
squared distance regularization term *? as

Q*(k,w) = ZH%(Xi)*%(G’i)Hg

n
D k(xi xi) = 2k(xi, @) + k@i, @)
i=1
Note that when using Q®?, step 3 of Algorithm 1 be-
comes a convex minimization procedure.

5.3. Imputing the Mean in Feature Space

In principle any imputation we believe is useful for
learning a good classifier can be used as w. Sev-
eral models of the data can be assumed to com-
pute corresponding optimal imputations. We like
to mention one interesting model, namely the class-
based mean imputation in the feature space Hj in-
duced by kernel k. This model imputes missing
values such that the sum of squared distances be-
tween completed instances to the class-dependent
mean in feature space is minimal over all possi-
ble imputations. @ = argming Y ., |¢r(w;) —
L P ér(w;)||3, where n, denotes the num-

Ny,
ber of instances with label y. Simple alge-
braic manipulations show that this is equivalent to

12 Chapter 2. Learning from Incomplete Data with Infinite Imputations

minimizing the sum of squared distances between
all instances Zue{—l,l} n%zi7j;yi:yjzv | pr(wi) —
on(w)l3 = Zve{—l,l} izz‘,j:yi:yj:u [k(ws,w;) —
2k(wi,w;) + k(wj, w;)]

Definition 1 (Mean in Feature Space). The class-

based mean in feature space imputation method im-
putes missing values @ which optimize

Z : § :
Ny ..
ve{-1,+1} 1,51y =y;=0v
[k(‘*’ivwi) — 2k(w;,wj) + k(wj,wj)}

@ = argmin
w

Note that this model reduces to the standard mean in
input space when using the linear kernel.

6. Empirical Evaluation

We evaluate the performance of our generic approach
weighted infinite imputations for two example realiza-
tions. We test for classification performance on the
email spam data set which motivates our investiga-
tion. Furthermore, we test on seven additional binary
classification problems and three regression problems.

6.1. Classification

We choose to learn the decision function for the binary
classification task by substituting the risk functional of
the support vector machine, —RSVM | as presented in
section 5.1 for R and the squared distance regularizer
Q%7 (Section 5.2) for @) in Optimization Problem 3.

For the motivating problem setting, we assemble a
data set of 2509 spam and non-spam emails, which
are preprocessed by a linear text classifier which is
currently in use at a large webspace hosting company.
This classifier discriminates reasonably well between
spam and non-spam, but there is still a small fraction
of misclassified emails. The classifier has been trained
on about 1 million emails from a variety of sources, in-
cluding spam-traps as well as emails from the hosting
company itself, recognizing more than 10 million dis-
tinct text features. On this scale, training a support
vector machine with Gaussian kernel is impractical,
therefore we employ a two-step procedure. We discard
the contents of the emails and retain only their spam
score from the text classifier and their size in bytes as
content features in the second-step classifier. At the
time of collection of the emails, we record auxiliary
real-time information about the sending servers. This
includes the number of valid and invalid receiver ad-
dresses of all emails seen from the server so far, and
the mean and standard deviation of the sizes and spam
scores of all emails from the server. Such information

is not available for emails from external sources, but
will be available when classifying unseen emails. We
randomly draw 1259 emails, both spam and non-spam,
with server information, whereas half of those were
drawn from a set of misclassified spam-emails. We aug-
ment this set with 1250 emails drawn randomly from
a source without server information for which only 2
of the 8 attributes are observed.

To evaluate the common odd versus even digits dis-
crimination, random subsets of 1000 training examples
from the USPS handwritten digit recognition set are
used. We test on the remaining 6291 examples. Ad-
ditionally, we test on KDD Cup 2004 Physics (1000
train, 5179 test, 78 attributes) data set and on the
4-view land mine detection data (500, 213, 41) as
used by Williams and Carin (2005). In the latter,
instances consist of 4 views on the data, each from
a separate sensor. Consequently, we randomly select
complete views as missing. From the UCI machine
learning repository we take the Breast (277 instances,
9 features), Diabetes (768, 8), German (1000, 20), and
Waveform (5000, 21) data sets. Selection criteria for
this subset of the repository were minimum require-
ments on sample size and number of attributes.

On each data set we test the performance of weighted
infinite imputation using four different regularization
imputations w for the regularizer Q*?(K (p),w). These
imputations are computed by mean imputation in in-
put space (MeanInput) and mean imputation in fea-
ture space (MeanFeat) as by Definition 1. Addi-
tionally we use the FM algorithm to compute the at-
tributes imputed by the maximum likelihood parame-
ters of an assumed multivariate Gaussian distribution
with no restrictions on the covariate matrix (Gauss),
and a Gaussian Mixture Model with 10 Gauss centers
and spherical covariances (GMM).

Four learning procedures based on single imputations
serve as reference methods: the MeanInput, Mean-
Feat, Gauss, and GMM reference methods first de-
termine a single imputation, and then invoke the learn-
ing algorithm.

All experiments use a spheric Gaussian kernel. Its vari-
ance parameter o as well as the SVM-parameter 7 are
adjusted using the regular SVM with a training and
test split on fully observed data. All experiments on
the same data set use this resulting parameter setting.
Results are averaged over 100 runs were in each run
training and test split as well as missing attributes are
chosen randomly. If not stated otherwise, 85% of at-
tributes are marked missing on all data sets. In order
to evaluate our method on the email data set, we per-
form 20-fold cross-validation. Since the emails with

2.6. Empirical Evaluation

13

Table 1. Classification accuracies and standard errors for all data sets. Higher accuracy values are written in bold face,

“x” denotes significant classification improvement.

MeanInput Gauss GMM MeanFeat
Email Single imp || 0.9571 % 0.0022 0.9412 £ 0.0037 0.9505 £ 0.0030 0.9570 £ 0.0022
WII 0.9571 + 0.0022 0.9536 + 0.0022 * 0.9527 - 0.0024 0.9600 + 0.0019 *
USPS Single imp || 0.8581 % 0.0027 0.8688 £ 0.0022 0.9063 £ 0.0012 0.8581 £ 0.0027
WII 0.8641 + 0.0027 * 0.8824 +0.0024 + 0.9105 £ 0.0015 x 0.8687 + 0.0027 *
Physics Single imp || 0.6957 & 0.0035 0.5575 £ 0.0038 0.6137 £ 0.0050 0.6935 £ 0.0028
WII 0.7084 + 0.0039 * 0.6543 +0.0055 + 0.6881 £+ 0.0049 x 0.7036 + 0.0032 *
Mine Single imp || 0.8650 & 0.0025 0.8887 £ 0.0023 0.8916 £ 0.0023 0.8660 £ 0.0026
WII 0.8833 +0.0026 * 0.8921 +0.0021 0.8946 + 0.0022 + 0.8844 £+ 0.0026 *
Breast Single imp || 0.7170 4 0.0055 0.7200 = 0.0048 0.7164 £ 0.0048 0.7085 £ 0.0057
WII 0.7184 + 0.0056 0.7243 £0.0048 x 0.7212 £ 0.0050 * 0.7152 £ 0.0057 *
Diabetes Single imp || 0.7448 4 0.0025 0.7053 £ 0.0036 0.7154 £ 0.0043 0.7438 £ 0.0026
WII 0.7455 £ 0.0025 0.7234+£0.0036 x 0.7389 £0.0031 x 0.7439 & 0.0024
German Single imp || 0.7331 & 0.0029 0.7058 £ 0.0029 0.7056 £ 0.0028 0.7364 + 0.0029
WII 0.7368 +0.0025 * 0.7118 £0.0030 + 0.7120 £ 0.0028 *x 0.7357 & 0.0027
Waveform | Single imp || 0.8700 £ 0.0019 0.8241 £ 0.0031 0.7827 £ 0.0049 0.8679 £ 0.0020
WII 0.8700 + 0.0019 0.8612+0.0019 * 0.8583 £0.0020 * 0.8686 + 0.0020 *
1. Improvement by % Missing 2. Improvement by Sample Size 3. Execution Time by Sample Size
0.08 r T T T T T T 0.05 r T T T 16000 T T T
MeanInput MeanInput WI2I —
L v Gause 14000 | (X138) ———
MeanFeat 0.04 MeanFeat -
0.06 - 12000 [
R 0.05 - . 0.03 § 10000 |
8004 | g 3
3 3 @ 8000 - b
Boos| goo2 =
E 6000 [1
0.02 - = e
001 | ’ 0.01 4000]
0 o 0 2000 - 1
-0.01 L I I I I I I I L L I I I I I i = I I I

40 50
% Missing

60 200 400 600

800
Size

1000 1200 1400 500 1500 2500

Size

3500

Figure 1. Detailed results on USPS classification task.

missing attributes cannot be used as test examples,
the test sets are only taken from the fully observed
part of the data set.

Table 6.1 shows accuracies and standard errors for
the weighted infinite imputations (WII) method with
squared distance regularization compared to all single
imputations w on each data set. Regularization pa-
rameter 7y is automatically chosen for each run based
on the performance on a separate tuning set. Base-
lines are obtained by first imputing w and learning the
classifier in a second step. The weighted infinite impu-
tations method outperforms the single imputation in
virtually all settings. We test for significant improve-
ments with a paired t-test on the 5% significance level.
Significant improvements are marked with a “x” in the
table.

We explore the dependence of classification perfor-

mance on training sample size and the percentage of
missing attribute values in more detail. The first graph
in Figure 1 shows improvements in classification accu-
racy of our method over the single imputations de-
pending on the percentage of missing values. Graph
2 shows classification accuracy improvements depend-
ing on the size of the labeled training set. Both ex-
periments are performed on USPS data set and we
again adjust -y separately for each run based on the
performance on the tuning set. We note that similar
results are obtained for the other classification prob-
lems. The weighted infinite imputation method can
improve classification accuracy even when only 30%
of the attribute values are missing. It shows, though,
that it works best if at least 60% are missing, depend-
ing on w. On the other hand, we see that it works for
all training set sizes, again depending on w. Similar
results are obtained for the other data sets.

14 Chapter 2. Learning from Incomplete Data with Infinite Imputations

Table 2. Mean squared error results and standard errors for regression data sets. Smaller mean squared errors are written

in bold face, “x” denotes significant improvement.

MeanInput Gauss GMM MeanFeat
Housing | Single imp || 193.0908 + 19.9408 288.6192 4 41.5954 160.4940 + 16.2004 1134.5635 4 101.9452
WII 66.5144 + 0.8958 « 62.3073 £ 0.8479 x 66.7959 +0.9173 « 64.7926 + 0.9619 x*
Ailerons | Single imp || 81.7671 + 4.5862 172.5037 + 8.6705 79.8924 + 4.0297 193.5790 + 10.4899
WII 11.8034 +0.1494 « 8.7505 4+ 0.0932 x 11.7595 +£ 0.1530 « 11.8220 + 0.1387 =*
Cpu_act | Single imp || 10454.176 + 962.598 15000.380 £+ 973.100 10123.172 £ 933.143 15710.812 4+ 1099.603
WII 306.257 +12.500 * 204.180 + 5.058 * 305.651 +13.627 x 247.988 4 8.010

To evaluate the convergence of our method, we mea-
sure classification accuracy after each iteration of the
learning algorithm. It shows that classification accu-
racy does not change significantly after about 5 itera-
tions for a typical 7, in this case v = 10° for the USPS
data set. On average the algorithm terminates after
about 30-40 iterations. The computational demands of
the weighted infinite imputation method are approxi-
mately quadratic in the training set size for the classifi-
cation task, as can be seen in Graph 3 of Figure 1. This
result depends on the specific risk functional R and its
optimization implementation. Nevertheless, it shows
that risk functionals which are solvable in quadratic
time do not change their computational complexity
class when learned with incomplete data.

6.2. Regression

We evaluate the weighted infinite imputations method
on regression problems using the squared error as loss
function. Consequently, risk functional RXEF (Sect.
5.1) is used as R and again the squared distance reg-
ularizer Q*? for) in Optimization Problem 3. From
UCT we take the Housing data (506, 14), and from the
Weka homepage cpu_act (1500, 21) and ailerons (2000,
40). Ridge parameter n and RBF-kernel parameter o
were again chosen such that they lead to best results
on the completely observed data. Regularization pa-
rameter v was chosen based on the performance on
a tuning set consisting of 150 examples. Results are
shown in Table 2. We can see that our method outper-
forms the results obtained with the single imputations
significantly for all settings.

7. Conclusion

We devised an optimization problem for learning de-
cision functions from incomplete data, where the dis-
tribution p of the missing attribute values is a free
parameter. The investigated method makes only mi-
nor assumptions on the distribution by the means of a
regularizer on p that can be chosen freely. By simul-
taneously optimizing the function and the distribution
of imputations, their dependency is taken into account

properly. We presented a proof that the optimal so-
lution for the joint learning problem concentrates the
density mass of the distribution on finitely many impu-
tations. This justifies the presented iterative algorithm
that finds a solution. We showed that instantiations
of the general learning method consistently outperform
single imputations.

Acknowledgments

We gratefully acknowledge support from STRATO
Rechenzentrum AG.

References

Argyriou, A., Micchelli, C., & Pontil, M. (2005). Learning
convex combinations of continuously parameterized ba-
sic kernels. Proceedings of the 18th Conference on Learn-
ing Theory.

Chechik, G., Heitz, G., Elidan, G., Abbeel, P., & Koller,
D. (2007). Max-margin classification of incomplete data.
Advances in Neural Information Processing Systems 19.

Liao, X., Li, H., & Carin, L. (2007). Quadratically gated
mixture of experts for incomplete data classification.
Proceedings of the 24th International Conference on Ma-
chine learning.

Micchelli, C., & Pontil, M. (2007). Feature space perspec-
tives for learning the kernel. Machine Learning, 66.

Shivaswamy, P. K., Bhattacharyya, C., & Smola, A. J.
(2006). Second order cone programming approaches for
handling missing and uncertain data. Journal of Ma-
chine Learning Research, 7.

Smola, A., Vishwanathan, S., & Hofmann, T. (2005). Ker-
nel methods for missing variables. Proceedings of the
Tenth International Workshop on Artificial Intelligence
and Statistics.

Williams, D., & Carin, L. (2005). Analytical kernel ma-
trix completion with incomplete multi-view data. Pro-
ceedings of the ICML 2005 Workshop on Learning With
Multiple Views.

Williams, D., Liao, X., Xue, Y., & Carin, L. (2005).
Incomplete-data classification using logistic regression.
Proceedings of the 22nd International Conference on
Machine learning.

15

Throttling Poisson Processes

Uwe Dick Peter Haider = Thomas Vanck Michael Briickner = Tobias Scheffer
University of Potsdam
Department of Computer Science
August-Bebel-Strasse 89, 14482 Potsdam, Germany
{uwedick, haider, vanck,mibrueck, scheffer}@cs.uni-potsdam.de

Abstract

We study a setting in which Poisson processes generate sequences of decision-
making events. The optimization goal is allowed to depend on the rate of decision
outcomes; the rate may depend on a potentially long backlog of events and de-
cisions. We model the problem as a Poisson process with a throttling policy that
enforces a data-dependent rate limit and reduce the learning problem to a convex
optimization problem that can be solved efficiently. This problem setting matches
applications in which damage caused by an attacker grows as a function of the rate
of unsuppressed hostile events. We report on experiments on abuse detection for
an email service.

1 Introduction

This paper studies a family of decision-making problems in which discrete events occur on a contin-
uous time scale. The time intervals between events are governed by a Poisson process. Each event
has to be met by a decision to either suppress or allow it. The optimization criterion is allowed to
depend on the rate of decision outcomes within a time interval; the criterion is not necessarily a sum
of a loss function over individual decisions.

The problems that we study cannot adequately be modeled as Mavkov or semi-Markov decision
problems because the probability of transitioning from any value of decision rates to any other value
depends on the exact points in time at which each event occurred in the past. Encoding the entire
backlog of time stamps in the state of a Markov process would lead to an unwieldy formalism. The
learning formalism which we explore in this paper models the problem directly as a Poisson process
with a throttling policy that depends on an explicit data-dependent rate limit, which allows us to
refer to a result from queuing theory and derive a convex optimization problem that can be solved
efficiently.

Consider the following two scenarios as motivating applications. In order to stage a successful
denial-of-service attack, an assailant has to post requests at a rate that exceeds the capacity of the
service. A prevention system has to meet each request by a decision to suppress it, or allow it
to be processed by the service provider. Suppressing legitimate requests runs up costs. Passing
few abusive requests to be processed runs up virtually no costs. Only when the rate of passed
abusive requests exceeds a certain capacity, the service becomes unavailable and costs incur. The
following second application scenario will serve as a running example throughout this paper. Any
email service provider has to deal with a certain fraction of accounts that are set up to disseminate
phishing messages and email spam. Serving the occasional spam message causes no harm other
than consuming computational ressources. But if the rate of spam messages that an outbound email
server discharges triggers alerting mechanisms of other providers, then that outbound server will
become blacklisted and the service is disrupted. Naturally, suppressing any legitimate message is a
disruption to the service, too.

16

Let x denote a sequence of decision events x1, . . ., T,; each event is a point z; € X" in an instance
space. Sequence t denotes the time stamps ¢; € R of the decision events with ¢; < ¢;4;. We define
an episode e by the tuple e = (x, t,y) which includes a label y € {—1,+1}. In our application, an
episode corresponds to the sequence of emails sent within an observation interval from a legitimate
(y = —1) or abusive (y = +1) account e. We write x; and t; to denote the initial sequence of the
first ¢ elements of x and t, respectively. Note that the length n of the sequences can be different for
different episodes.

Let A = {—1,+41} be a binary decision set, where +1 corresponds to suppressing an event and —1
corresponds to passing it. The decision model 7 gets to make a decision 7 (x;,t;) € A at each point
in time ¢; at which an event occurs.

The outbound rate r7(t'|x,t) at time ¢’ for episode e and decision model 7 is a crucial concept.
It counts the number of events that were let pass during a time interval of lengh 7 ending before t'.
It is therefore defined as r™ (¢'|x,t) = [{i : m(x;,t;) = =1 At; € [t' — 7,1’)}|. In outbound spam
throttling, 7 corresponds to the tlme interval that is used by other providers to estimate the incoming
spam rate.

We define an immediate loss function ¢ : Y x .4 — R that specifies the immediate loss of deciding
a € A for an event with label y € Y as

Ly,a) = c. y=—-1Na=+1 (1)

{ c+ y=+1lANa=-1
0 otherwise,

where c; and c_ are positive constants, corresponding to costs of false positive and false negative
decisions. Additionally, the rate-based loss A : Y x Ry — R, is the loss that runs up per unit
of time. We require A to be a convex, monotonically increasing function in the outbound rate for
y = +1 and to be 0 otherwise. The rate-based loss reflects the risk of the service getting blacklisted
based on the current sending behaviour. This risk grows in the rate of spam messages discharged
and the duration over which a high sending rate of spam messages is maintained.

The total loss of a model 7 for an episode ¢ = (x, t, y) is therefore defined as

tn+T n

L(m;x,t,y) = / Ay, r™ (', 0) dt' + Y€ (y, m(xi,))
t i=1

The first term penalizes a high rate of unsuppressed events with label +1—in our example, a high

rate of unsuppressed spam messages—whereas the second term penalizes each decision individually.

For the special case of A = 0, the optimization criterion resolves to a risk, and the problem becomes

a standard binary classification problem.

An unknown target distribution over p(x,t,y) induces the overall optimization goal
Ext,y[L(m;x,t,y)]. The learning problem consists in finding 7* = argmin Ex ¢ ,[L(7; %, t,y)]
from a training sample of tuples D = {(x}.,t1.,y"), ..., (X[, t7%, y™)}.

2 Poisson Process Model

We assume the following data generation process for episodes e = (x,t,y) that will allow us to
derive an optimization problem to be solved by the learning procedure. First, a rate parameter p,
label y, and the sequence of instances x, are drawn from a joint distribution p(x, p, y). Rate p is the
parameter of a Poisson process p(t|p) which now generates time sequence t. The expected loss of
decision model 7 is taken over all input sequences X, rate parameter p, label y, and over all possible
sequences of time stamps t that can be generated according to the Poisson process.

ExtylL(mx, t,y)] = //t/ZL(ﬂ;x,t,y)p(t\p)p(x,p,y)dpdtdx 3)
x Py

2.1 Derivation of Empirical Loss

In deriving the empirical counterpart of the expected loss, we want to exploit our assumption that
time stamps are generated by a Poisson process with unknown but fixed rate parameter. For each

Chapter 3. Throttling Poisson Processes

3.3. FErlang Learning Model

17

input episode (x, t, y), instead of minimizing the expected loss over the single observed sequence of
time stamps, we would therefore like to minimize the expected loss over all sequences of time stamps
generated by a Poisson process with the rate parameter that has most likely generated the observed
sequence of time stamps. Equation 4 introduces the observed time sequence of time stamps t’ into
Equation 3 and uses the fact that the rate parameter p is independent of x and y given t’. Equation
5 rearranges the terms, and Equation 6 writes the central integral as a conditional expected value
of the loss given the rate p. Finally, Equation 7 approximates the integral over all values of p by a
single summand with value p* for each episode.

BxslLimxt = [[[[S0 Lt tlop(olt x. ¢ n)dpeixas’)
rJx Py

/t, /XZ (/p (/tL(ﬂ;X,t,y)p(tlp)dQ p(plt’)dp) p(x,t', y)dxdt’ (5)
/t, /XZ (/p(Et [L(m;x,t,y) | p}p(pt’)dp> p(x, ', y)dxdt’ ©)
/t, /XZEt [L(m;x,t,y) | p*]p(x,t,y)dxdt’)

Q

We arrive at the regularized risk functional in Equation 8 by replacing p(x, t’,y) by = for all ob-
servations in D and inserting MAP estimate p; as parameter that generated time stamps t°. The
influence of the convex regularizer €2 is determined by regularization parameter 1 > 0.

. 1 *
BxoylL(mx ty)] = — 3 Ee[Llmx“,t,y°) | pi] +n0(r) ®)
e=1
with p. = argmax,,p(p[t®)

Minimizing this risk functional is the basis of the learning procedure in the next section. As noted
in Section 1, for the special case when the rate-based loss A is zero, the problem reduces to a
standard weighted binary classification problem and would be easy to solve with standard learning
algorithms. However, as we will see in Section 4, the A-dependent loss makes the task of learning
a decision function hard to solve; attributing individual decisions with their “fair share” of the rate
loss—and thus estimating the cost of the decision—is problematic. The Erlang learning model of
Section 3 employs a decision function that allows to factorize the rate loss naturally.

3 Erlang Learning Model

In the following we derive an optimization problem that is based on modeling the policy as a data-
dependent rate limit. This allows us to apply a result from queuing theory and approximate the
empirical risk functional of Equation (8) with a convex upper bound. We define decision model 7
in terms of the function fy(x;,t;) = exp(6T ¢ (x;,t;)) which sets a limit on the admissible rate of
events, where ¢ is some feature mapping of the initial sequence (x;, t;) and 6 is a parameter vector.
The throttling model is defined as

.y _) —1(“allow”) if 77 (4%, t) + 1 < fo(xq, t5)
m (xi, ti) = { +1 (“suppress”) otherwise. ®)

The decision model blocks event x;, if the number of instances that were sent within [t; — 7, ¢;), plus
the current instance, would exceed rate limit fy(x;, t;). We will now transform the optimization goal
of Equation 8 into an optimization problem that can be solved by standard convex optimization tools.
To this end, we first decompose the expected loss of an input sequence given the rate parameter in
Equation 8 into immediate and rate-dependent loss terms. Note that t© denotes the observed training
sequence whereas t serves as expectation variable for the expectation E¢[-|p.*] over all sequences

18

conditional on the Poisson process rate parameter p.* as in Equation 8.

E¢ [L(m;x°,t,5¢) | pg]

tne T n’
E¢ {/t A(ye,rm(t']x6,t)) dt’ |pe} +Z]Et Yo, m(x5,t5)) | pi (10)

1 i=1

Et{/tt)T(Ty r™(t']x¢,t)) dt’ |pe} +2Et[m(x$,t:) #y°) |pz:|€(ye,_ye> (a0

Equation 10 uses the definition of the loss function in Equation 2. Equation 11 exploits that only
decisions against the correct label, 7(x¢,t;) # y°, incur a positive loss £(y, 7(x5, t;)).

We will first derive a convex approximation of the expected rate-based loss
Eel [} X (ye, v ('[x¢,t)) dt’|p] (left side of Equation 11). Our definition of the decision
model allows us to factorize the expected rate-based loss into contributions of individual rate limit
decisions. The convexity will be addressed by Theorem 1.

Since the outbound rate r™ increases only at decision points ¢;, we can upper-bound its value with
the value immediately after the most recent decision in Equation 12. Equation 13 approximates
the actual outbound rate with the rate limit given by fp(x¢,t$). This is reasonable because the

outbound rate depends on the policy decisions which are defined in terms of the rate limit. Because
t is generated by a Poisson process, E¢[t;11 — t; | pi] = p% (Equation 14).

ne+T
E, [[i
ty
n€—1

< Z Et[ti-l-l —t | pZ])\(yev’rﬂ-(ti‘Xe:t)) + T>\(yea rw(tne|xeat)) (12)
=1

n®—1

> Beltivr —ti | pEIA(E fa (x5, 85)) + TA(YS, fa(xGe, tEe)) (13)
i=1

Q

n®—1

>

=1

p *)‘(ye7f9(xzvtf))+7-)\(y fo(n57 ne)) (14)

We have thus established a convex approximation of the left side of Equation 11.

We will now derive a closed form approximation of E¢[d (7 (xS, t;) # y©) | pf], the second part of
the loss functional in Equation 11. Queuing theory provides a convex approximation: The Erlang-B
formula [5] gives the probability that a queuing process which maintains a constant rate limit of
f within a time interval of 7 will block an event when events are generated by a Poisson process
with given rate parameter p. Fortet’s formula (Equation 15) generalizes the Erlang-B formula for

non-integer rate limits.
1

JSe =1 + Z)idz
The integral can be computed efficiently using a rapidly converging series, c¢.f. [5]. The formula
requires a constant rate limit, so that the process can reach an equilibrium. In our model, the rate

limit fy(x;,t;) is a function of the sequences x; and t; until instance x;, and Fortet’s formula
therefore serves as an approximation.

B [0(m(x7,) =1)|pc]

B(f,pr) = (15)

Q

B(fo(x7,t7), peT) (16)

-1

[/ —Z(1+p)Fo it dy (17)
0 eT

Unfortunately, Equation 17 is not convex in . We approximate it with the convex upper bound
—log (1 — B(f‘g(Xl ,t8), pi7)) (cf. the dashed green line in the left panel of Figure 2(b) for an
illustration). This is an upper bound, because —logp > 1 — p for 0 < p < 1; its convexity
is addressed by Theorem 1. Likewise, E¢ [0(m (x5, t;) =—1)|p3] is approximated by upper bound
log (B(fo(x$,t5), piT)). We have thus derived a convex upper bound of E¢[d (7(x§, t;) # y°) |p%].

Chapter 3. Throttling Poisson Processes

3.4. Prior Work and Reference Methods

19

Combining the two components of the optimization goal (Equation 11) and adding convex regular-
izer ©2(0) and regularization parameter 7 > 0 (Equation 8), we arrive at an optimization problem for
finding the optimal policy parameters 6.

Optimization Problem 1 (Erlang Learning Model). Over 0, minimize

Z{ i AMyC, fo(xE,49)) + TA(YS, fo(xCe, to0)) (18)

6

+Z—log [6(y°=1) — y*B(fo (x5, t5), *T)]f(ye,—ye)}JrnQ(@)

Next we show that minimizing risk functional 2 amounts to solving a convex optimization problem.

Theorem 1 (Convexity of R). R(0) is a convex risk functional in 0 for any p% > 0 and T > 0.

Proof. The convexity of A\ and €2 follows from their definitions. It remains to be shown that both
—log B(fo(+), pi7)) and —log(1 — B(fy(-), p>) are convex in . Component £(y¢, —y¢) of Equa-
tion 18 is independent of #. It is known that Fortet’s formula B(f, p.*7)) is convex, monotically
decreasing, and positive in f for pi7 > 0 [5]. Furthermore — log(B(f, p57))) is convex and mono-
tonically increasing. Since fy(-) is convex in 6, it follows that — log(B(fs(+), p%)) is also convex.
Next, we show that —log(1 — B(fy(-), p>7))) is convex and monotonically decreasing. From the

above it follows that b(f) = 1 — B(f, pi7)) is monotonically increasing, concave and positive.
Therefore, % —In(b(f)) = bz%—f)b’(f)+ (f)55 = 0 as both summands are positive. Again, it
follows that —log(1 — B(fy(+), pi7))) is convex in 6 due to the definition of fy. O

4 Prior Work and Reference Methods

We will now discuss how the problem of minimizing the expected loss, 7" =

argmin, Ey ¢ ,[L(7;x,t,y)], from a sample of sequences x of events with labels y and observed
rate parameters p* relates to previously studied methods. Sequential decision-making problems
are commonly solved by reinforcement learning approaches, which have to attribute the loss of an
episode (Equation 2) to individual decisions in order to learn to decide optimally in each state. Thus,
a crucial part of defining an appropriate procedure for learning the optimal policy consists in defin-
ing an appropriate state-action loss function. Q™ (s, a) estimates the loss of performing action a in
state s when following policy 7 for the rest of the episode.

Several different state-action loss functions for related problems have been investigated in the litera-
ture. For example, policy gradient methods such as in [4] assign the loss of an episode to individual
decisions proportional to the log-probabilities of the decisions. Other approaches use sampled esti-
mates of the rest of the episode Q(s;,a;) = L(m,s) — L(m,s;) or the expected loss if a distribution
of states of the episode is known [7]. Such general purpose methods, however, are not the optimal
choice for the particular problem instance at hand. Consider the special case A = 0, where the
problem reduces to a sequence of independent binary decisions. Assigning the cumulative loss of
the episode to all instances leads to a grave distortion of the optimization criterion.

As reference in our experiments we use a state-action loss function that assigns the immediate loss
{(y, a;) to state s; only. Decision a; determines the loss incurred by A only for 7 time units, in
the interval [t;,t; + 7). The corresponding rate loss is ["7 A(y, ™ ('|x, t))dt’. Thus, the loss of
deciding a; = —1 instead of a; = +1 is the dlfference in the corresponding A-induced loss. Let
x ¢, t~* denote the sequence x, t without instance x;. This leads to a state-action loss function that
is the sum of immediate loss and A\-induced loss; it serves as our first baseline.

ti+T1
Qi (si,a) = L(y,a) +6(a=-1) / Ay, ™ (x5 7 1) = My, 7™ (¢ [x 70 670))de (19)
t;

By approximating ft Ty, r™(P']x, t)) with 7A(y, r™(t;|x, t)), we define the state-action loss
function of a second plau51ble state-action loss that, instead of using the observed loss to estimate

20

the loss of an action, approximates it with the loss that would be incurred by the current outbound
rate 77 (¢;|x ", t) for 7 time units.

Qry(si,a) =L(y,a) + 6(a=—1) [T(A(y,r’r(tﬂx%,t*i) +1)— /\(y,rﬂ(ti|xfi,t7i)))] (20)

The state variable s has to encode all information a policy needs to decide. Since the loss crucially
depends on outbound rate ™ (¢'|x, t), any throttling model must have access to the current outbound
rate. The transition between a current and a subsequent rate depends on the time at which the next
event occurs, but also on the entire backlog of events, because past events may drop out of the
interval 7 at any time. In analogy to the information that is available to the Erlang learning model,
it is natural to encode states s; as a vector of features ¢(x;, t;) (see Section 5 for details) together
with the current outbound rate r™ (¢;|x, t). Given a representation of the state and a state-action loss
function, different approaches for defining the policy 7 and optimizing its parameters have been
investigated. For our baselines, we use the following two methods.

Policy gradient. Policy gradient methods model a stochastic policy directly as a parameterized
decision function. They perform a gradient descent that always converges to a local optimum [8].
The gradient of the expected loss with respect to the parameters is estimated in each iteration k for
the distribution over episodes, states, and losses that the current policy 7 induces. However, in
order to achieve fast convergence to the optimal polity, one would need to determine the gradient for
the distribution over episodes, states, and losses induced by the optimal policy. We implement two
policy gradient algorithms for experimentation which only differ in using Q);; and Q),», respectively.
They are denoted PG;; and PG,; in the experiments. Both use a logistic regression function as
decision function, the two-class equivalent of the Gibbs distribution which is used in the literature.

Iterative Classifier. The second approach is to represent policies as classifiers and to employ
methods for supervised classification learning. A variety of papers addresses this approach [6, 3, 7].
We use an algorithm that is inspired by [1, 2] and is adapted to the problem setting at hand. Blatt
and Hero [2] investigate an algorithm that finds non-stationary policies for two-action T-step MDPs
by solving a sequence of one-step decisions via a binary classifier. Classifiers m; for time step ¢ are
learned iteratively on the distribution of states generated by the policy (7, ..., m—1). Our derived
algorithm iteratively learns weighted support vector machine (SVM) classifier 7y in iteration k+1
on the set of instances and losses Q™* (s, a) that were observed after classifier 7 was used as policy
on the training sample. The weight vector of 7, is denoted 0. The weight of misclassification of s
is given by Q™" (s, —y). The SVM weight vector is altered in each iteration as 6511 = (1 — oy)0k +

arl, where 6 is the weight vector of the new classifier that was learned on the observed losses. In
the experiments, two iterative SVM learner were implemented, denoted It-SVM,; and It-SVM,,;,
corresponding to the used state-action losses ;; and ()3, respectively. Note that for the special
case A = 0 the iterative SVM algorithm reduces to a standard SVM algorithm.

All four procedures iteratively estimate the loss of a policy decision on the data via a state-action
loss function and learn a new policy 7 based on this estimated cost of the decisions. Convergence
guarantees typically require the Markov assumption; that is, the process is required to possess a
stationary transition distribution P(s;11|s;,a;). Since the transition distribution in fact depends
on the entire backlog of time stamps and the duration over which state s; has been maintained,
the Markov assumption is violated to some extent in practice. In addition to that, A-based loss
estimates are sampled from a Poisson process. In each iteration 7 is learned to minimize sampled
and inherently random losses of decisions. Thus, convergence to a robust solution becomes unlikely.
In contrast, the Erlang learning model directly minimizes the A-loss by assigning a rate limit. The
rate limit implies an expectation of decisions. In other words, the A-based loss is minimized without
explicitely estimating the loss of any decisions that are implied by the rate limit. The convexity of
the risk functional in Optimization Problem 1 guarantees convergence to the global optimum.

S Application

The goal of our experiments is to study the relative benefits of the Erlang learning model and the
four reference methods over a number of loss functions. The subject of our experimentation is the
problem of suppressing spam and phishing messages sent from abusive accounts registered at a
large email service provider. We sample approximately 1,000,000 emails sent from approximately

Chapter 3. Throttling Poisson Processes

3.5. Application

21

o N o ©

Loss
(&)

T
Loss
Loss

o = N W
T

G
Figure 1: Average loss on test data depending on the influence of the rate loss cy for different
immediate loss constants c_ and c,..

10,000 randomly selected accounts over two days and label them automatically based on information
passed by other email service providers via feedback loops (in most cases triggered by “report spam”
buttons). Because of this automatic labeling process, the labels contain a certain smount of noise.

Feature mapping ¢ determines a vector of moving average and moving variance estimates of several
attributes of the email stream. These attributes measure the frequency of subject changes and sender
address changes, and the number of recipients. Other attributes indicate whether the subject line
or the sender address have been observed before within a window of time. Additionally, a moving
average estimate of the rate p is used as feature. Finally, other attributes quantify the size of the
message and the score returned by a content-based spam filter employed by the email service.

We implemented the baseline methods that were descibed in Section 4, namely the iterative SVM
methods It-SVM,,;, and It-SVM;; and the policy gradient methods PG,; and PG;;. Additionally,
we used a standard support vector machine classifier SVM with weights of misclassification corre-
sponding to the costs defined in Equation 1. The Erlang learning model is denoted ELM in the plots.
Linear decision functions were used for all baselines.

In our experiments, we assume a cost that is quadratic in the outbound rate. That is,
AL, 7™ (#']%,1))) = ex - r7(¢'|x,t)® with ¢y > 0 determining the influence of the rate loss to the
overall loss. The time interval 7 was chosen to be 100 seconds. Regularizer §2(6) as in Optimization
problem 1 is the commonly used squared l2-norm Q(6) = [|0]|3.

We evaluated our method for different costs of incorrectly classified non-spam emails (c_), incor-
rectly classified spam emails (c) (see the definition of ¢ in Equation 1), and rate of outbound spam
messages (c)). For each setting, we repeated 100 runs; each run used about 50%, chosen at random,
as training data and the remaining part as test data. Splits where chosen such that there were equally
many spam episodes in training and test set. We tuned the regularization parameter 7 for the Erlang
learning model as well as the corresponding regularization parameters of the iterative SVM methods
and the standard SVM on a separate tuning set that was split randomly from the training data.

5.1 Results

Figure 1 shows the resulting average loss of the Erlang learning model and reference methods.
Each of the three plots shows loss versus parameter c) which determines the influence of the rate
loss on the overall loss. The left plot shows the loss for c. = 5 and c; = 1, the center plot for
(c— =10, c4 = 1), and the right plot for (c— = 20,¢4 =1).

We can see in Figure 1 that the Erlang learning model outperforms all baseline methods for larger
values of c¢y—more influence of the rate dependent loss on the overall loss—in two of the three
settings. For c_ = 20 and cy = 1 (right panel), the performance is comparable to the best baseline
method It-SVM,,;,; only for the largest shown ¢, = 5 does the ELM outperform this baseline. The
iterative classifier It-SVM,,;, that uses the approximated state-action loss @, performs uniformly
better than It-SVMj;, the iterative SVM method that uses the sampled loss from the previous it-
eration. It-SVM,; itself surprisingly shows very similar performance to that of the standard SVM
method; only for the setting c_ = 20 and ¢4 = 1 in the right panel does this iterative SVM method
show superior performance. Both policy gradient methods perform comparable to the Erlang learn-
ing model for smaller values of ¢, but deteriorate for larger values.

22

Fortet function Complement of Fortet function
with convex upper bound with convex upper bound
", T T T T
B(exp(¢8),pt) 1-B(exp(¢6),pt) p
2 b " log(1-B(exp(96),pr)) === - -log(B(exp(66).p1) -~ /

00 0%

(a) Average loss and standard error for (b) Left: Fortet’s formula B(e¢9, p7) (Equation 17) and its
small values of cx. upper bound —log(1 — B(e®?,p)) for pr = 10. Right:

1 — B(e*?, p) and respective upper bound — log(B(e®?, p)).

As expected, the iterative SVM and the standard SVM algorithms perform better than the Erlang
learning model and policy gradient models if the influence of the rate pedendent loss is very small.
This can best be seen in Figure 2(a). It shows a detail of the results for the setting c_ = 5 and
c4+ = 1, for ¢y ranging only from O to 1. This is the expected outcome following the considerations
in Section 4. If ¢, is close to 0, the problem approximately reduces to a standard binary classifi-
cation problem, thus favoring the very good classification performance of support vector machines.
However, for larger ¢y the influence of the rate dependent loss rises and more and more dominates
the immediate classification loss ¢. Consequently, for those cases — which are the important ones in
this real world application — the better rate loss estimation of the Erlang learning model compared
to the baselines leads to better performance.

The average training times for the Erlang learning model and the reference methods are in the same
order of magnitude. The SVM algorithm took 14 minutes in average to converge to a solution. The
Erlang learning model converged after 44 minutes and the policy gradient methods took approxi-
mately 45 minutes. The training times of the iterative classifier methods were about 60 minutes.

6 Conclusion

We devised a model for sequential decision-making problems in which events are generated by a
Poisson process and the loss may depend on the rate of decision outcomes. Using a throttling policy
that enforces a data-dependent rate-limit, we were able to factor the loss over single events. Applying
a result from queuing theory led us to a closed-form approximation of the immediate event-specific
loss under a rate limit set by a policy. Both parts led to a closed-form convex optimization problem.
Our experiments explored the learning model for the problem of suppressing abuse of an email
service. We observed significant improvements over iterative reinforcement learning baselines. The
model is being employed to this end in the email service provided by web hosting firm STRATO.
It has replaced a procedure of manual deactivation of accounts after inspection triggered by spam
reports.

Acknowledgments

We gratefully acknowledge support from STRATO Rechenzentrum AG and the German Science
Foundation DFG.

References
[1] J.A. Bagnell, S. Kakade, A. Ng, and J. Schneider. Policy search by dynamic programming.
Advances in Neural Information Processing Systems, 16, 2004.

[2] D. Blatt and A.O. Hero. From weighted classification to policy search. Advances in Neural
Information Processing Systems, 18, 2006.

[3] C.Dimitrakakis and M.G. Lagoudakis. Rollout sampling approximate policy iteration. Machine
Learning, 72(3):157-171, 2008.

Chapter 3. Throttling Poisson Processes

3.8. References

23

[4] M. Ghavamzadeh and Y. Engel. Bayesian policy gradient algorithms. Advances in Neural
Information Processing Systems, 19, 2007.

[5] D.L. Jagerman, B. Melamed, and W. Willinger. Stochastic modeling of traffic processes. Fron-
tiers in queueing: models, methods and problems, pages 271-370, 1996.

[6] M.G. Lagoudakis and R. Parr. Reinforcement learning as classification: Leveraging modern
classifiers. In Proceedings of the 20th International Conference on Machine Learning, 2003.

[7] J. Langford and B. Zadrozny. Relating reinforcement learning performance to classification
performance. In Proceedings of the 22nd International Conference on Machine learning, 2005.

[8] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. Advances in Neural Information Processing Sys-
tems, 12, 2000.

24

Chapter 4. Learning to Control a Structured-Prediction Decoder

Learning to Control a Structured-Prediction Decoder for
Detection of HTTP-Layer DDoS Attackers

Uwe Dick - Tobias Scheffer

the date of receipt and acceptance should be inserted later

Abstract We focus on the problem of detecting clients that attempt to exhaust server re-
sources by flooding a service with protocol-compliant HTTP requests. Attacks are usually
coordinated by an entity that controls many clients. Modeling the application as a structured-
prediction problem allows the prediction model to jointly classify a multitude of clients
based on their cohesion of otherwise inconspicuous features. Since the resulting output
space is too vast to search exhaustively, we employ greedy search and techniques in which a
parametric controller guides the search. We apply a known method that sequentially learns
the controller and the structured-prediction model. We then derive an online policy-gradient
method that finds the parameters of the controller and of the structured-prediction model in
a joint optimization problem; we obtain a convergence guarantee for the latter method. We
evaluate and compare the various methods based on a large collection of traffic data of a
web-hosting service.

1 Introduction

Distributed denial-of-service (DDoS) flooding attacks [37] intend to prevent legitimate users
from using a web-based service by exhausting server or network resources. DDoS attacks
can target the network level or the application level. One way for attackers to target the
network level is to continuously request TCP connections and leave the connection in an
incomplete state, which eventually exhausts the number of connections which the server
can handle; this is called SYN flooding. Adaptive SYN-received timeouts, packet-filtering
policies, and an increasing network capacity are making it more difficult to mount suc-
cessful network-level attacks [26,37]. By comparison, server resources such as CPU, I/O
bandwidth, database and disk throughput are becoming easier targets [4,28]. Attackers turn
towards HTTP-layer flooding attacks in which they flood services with protocol-compliant

U. Dick
University of Potsdam, Department of Computer Science, Potsdam, Germany
E-mail: uwedick @cs.uni-potsdam.de

T. Scheffer
University of Potsdam, Department of Computer Science, Potsdam, Germany
E-mail: tobias.scheffer @uni-potsdam.de

4.1. Introduction

25

requests that require the execution of scripts, expensive database operations, or the trans-
mission of large files.

HTTP-layer attacks are more difficult to detect, because the detection mechanism ulti-
mately has to decide whether all connecting clients have a legitimate reason for requesting a
service in a particular way. In protocol-compliant application-level attacks, attackers have to
sign their TCP/IP packets with their real IP address, because they have to complete the TCP
handshake. One can therefore defend against flooding attacks by blacklisting offending IP
addresses at the network router, provided that attacking clients can be singled out.

In order to detect attacking clients, one can engineer features of individual clients, train
a classifier on labeled traffic data to detect attacking clients, and blacklist detected attackers.
We follow this approach and evaluate it empirically, but the following considerations already
indicate that it might work less than perfectly in practice. An individual protocol-compliant
request is rarely conspicuous by itself; after all, the service is there to be requested. Most
individual clients only post a small number of requests to a domain after which their IP ad-
dress is not seen again. This implies that classification of individual clients will be difficult,
and that aggregating information over requests into longitudinal client features [28,36,22]
will only provide limited additional information.

However, DDoS attacks are usually coordinated by an entity that controls the attacking
clients. Their joint programming is likely to induce some behavioral coherence of all at-
tacking clients. Features of individual clients cannot reflect this cohesion. But a joint feature
function that is parametrized with all clients z; that interact with a domain and conjectured
class labels y; for all clients can measure the behavioral variance of all clients that are la-
beled as attackers. Structured-prediction methods [20,32] match this situation because they
are based on joint feature functions of multiple dependent inputs x; and their output values
yi. At application time, structured-prediction models have to solve the decoding problem of
maximizing the decision function over all combinations of class labels. If the dependencies
in the feature function are sequential or tree-structured, this maximization can be carried out
efficiently using, for instance, the Viterbi algorithm for sequential data. In general as well as
in this particular case, however, exhaustive search of the output space is intractable. More-
over, in our application environment, the search has to terminate after a fixed but a priori
unknown number of computational steps due to a real-time constraint.

Collective classification algorithms [23] conduct a greedy search for the highest-scoring
joint labeling of the nodes of a graph. They do so by iteratively relabeling individual nodes
given the conjectured labels of all neighboring nodes. We will apply this principle, and
explore the resulting algorithm empirically. More generally, when exhaustive search for a
structured-prediction problem is infeasible, an undergenerating decoder can still search a
constrained part of the output space [13]. Explicit constraints that make the remaining out-
put space exhaustively searchable may also exclude good solutions. One may instead resort
to learning a search heuristic. HC search [10, 11] first learns a heuristic that guides the search
to the correct output for training instances, and then uses this heuristic to control the decoder
during training and application of the structured-prediction model. We will apply this prin-
ciple to our application, and study the resulting algorithm.

The search heuristic of the HC-search framework is optimized to guide the decoder from
an initial labeling to the correct output for all training instances. It is subsequently applied
to guiding the decoder to the output that maximizes the decision function of the structured-
prediction model, while this model is being learned. One may argue that a heuristic that does
well at guiding the search to the correct output (that is known for the training instances) may
do poorly at guiding it to the output that maximizes some decision function. We will there-
fore derive a policy-gradient model in which the controller and the structured-prediction

26

Chapter 4. Learning to Control a Structured-Prediction Decoder

model that uses the controller are learned in a joint optimization problem; we will analyze
convergence properties of this model.

Defense mechanisms against DDoS attacks have so far been evaluated using artificial
or semi-artificial traffic data that have been generated under plausible model assumptions of
benign and offending traffic [28,36,22,8]. By contrast, we will compare all models under
investigation on a large data set of network traffic that we collect in a large shared web host-
ing environment and classified manually. It includes unusual high-volume network traffic
for more than 1,546 domains over 22,645 time intervals of 10 seconds in which we observe
several million connections of more than 450,000 unique clients.

The rest of the paper is structured as follows. Section 2 derives the problem setting from
our motivating application. We model the application as an anomaly-detection problem in
Section 3, as the problem of independently classifying clients in Section 4, as a collective
classification problem in Section 5, and as a structured-prediction problem with a paramet-
ric decoder in Section 6. Section 7 discusses how all methods can be instantiated for the
attacker-identification application. We present an empirical study in Section 8; Section 9
discusses our results against the background of work. Section 10 concludes.

2 Problem Setting, Motivating Application

This section first lays out the relevant details of the application and establishes a high-level
problem setting that will be cast into various learning paradigms in the following sections.

We focus on HTTP-layer denial-of-service flooding attacks [37], which we define to be
any malicious attempts at denying the service to its legitimate users by posting protocol-
compliant HTTP requests so as to exhaust any computational resource, such as CPU, band-
width, or database throughput. Our application environment is a shared web hosting service
in which a large number of domains are hosted in a large computing center. The effects of
an attack can be mitigated when the IP addresses of the attacking clients can be identified:
IP addresses of known attackers can be temporarily blacklisted at the router. Anomalous
traffic events can extend for as little as a few minutes; attacks can run for several hours. We
decompose the problem into time intervals of 10 seconds. For each domain and each time
interval ¢, attacker detection models have to label the entirety of clients that interact with
that domain as legitimate or attacker.

In our application environment, a large number of domains continuously receives re-
quests from an even larger number of legitimate or attacking clients. Any solution has to be
designed such that it can be scaled by distributing it over multiple nodes. Since attackers usu-
ally target a specific domain, we split the overall problem into an independent sub-problem
for each domain. A domain is constituted by the top-level and second-level domain in the
HOST field of the HTTP header (“example.com”). This allows us to distribute the solution
over multiple computing nodes, each of which handles a subset of the domains.

Hence, for each domain, we arrive at an independent learning problem that is character-
ized by an unknown distribution p(x,y) over sets x € X’ of clients z; that interact with the
domain within a 10-seconds interval and output variables y € Y(x) = {—1,1}"" which
label clients as legitimate (y; = —1) or attacker (y; = +1). The classification problem
for each 10-seconds interval has to be solved within ten seconds—otherwise, a backlog of
decisions could build up. The number of CPU cycles that are available within these 10 sec-
onds is not known a priori because it depends on the overall server load. For the structured-
prediction models, we encode this anytime constraint by limiting the number of search steps
to a random number 7" that is governed by some distribution. We can disregard this anytime

4.3. Anomaly Detection

27

constraint for the model that treats clients as independent (Section 4), because the resulting
classifier is sufficiently fast at calculating the predictions.

Misclassified legitimate requests can potentially result in lost business while misclassi-
fied abusive requests consume computational resources; when CPU capacity, bandwidth, or
database throughput capacities are exhausted, the service becomes unavailable. The result-
ing costs will be reflected in the optimization criteria by cost terms of false-negative and
false-positive decisions. When the true labels of the clients x are y, a prediction of ¥ incurs
costs ¢(x,y,¥y) > 0. We will detail the exact cost function in Section 7.

3 Anomaly Detection

In our application, an abundance of the network traffic can be observed. However, manually
labeling clients as legitimate and attackers is an arduous effort. Therefore, our first take is to
model attacker detection as an anomaly detection problem.

3.1 Problem Setting for Anomaly Detection

In this formulation of the problem settings, the set of clients x = {x1, ..., Ty, } that are ob-
served in each 10-seconds interval is decomposed into individual clients ;. At application
time, clients are labeled independently based on the value of a parametric decision function
fo(®x(x;)) which is a function of feature vector ®x(x;). We will define feature vector
P (x;) in Section 7.4.2; for instance, it includes the number of different resource paths that
client z; has accessed, the number of HTTP requests that have resulted in error codes, both
in terms of absolute counts and in proportion to all clients that connect to the domain.

At learning time, an unlabeled sample x1, . . . , x4, of sets of clients is available. Most of
the clients in the training data are legitimate, but some fraction consists of attacking clients.
The unlabeled training instances are pooled into a set of feature vectors

[AD _ U{i’m(l‘i,l)a---7‘I’xi($i,mi)}§ 1)
=1

training results in model parameters ¢.

3.2 Support Vector Data Description

Support-vector data description (SVDD) is an anomaly-detection method that uses unla-
beled data to find a model for unusual instances. The decision function of SVDD is

13V PP (@x(2))) = | @x(z;) — Bl)

that is, SVDD classifies a client as an attacker if the distance between feature vector ®x (z;)

and the parameter vector ¢ that describes normal traffic exceeds a threshold r.
N | ifngDD(@x(xj)) <r 3)
Y97 41 else

28

Chapter 4. Learning to Control a Structured-Prediction Decoder

4 Independent Classification

This section models the application as a standard classification problem.

4.1 Problem Setting for Independent Classification

Clients x = {x1,...,xm} of each 10-seconds interval are treated as independent obser-
vations, described by feature vectors ®x(x;). As in Section 3.1, these vector represen-
tations are classified independently, based on the value of a parametric decision function
fo(®x(x;)). However, features may be engineered to depend on properties of all clients
that interact with the domain in the time interval.

In the independent classification model, misclassification costs have to decompose into
a sum over individual clients: ¢(x,y,¥) = >0, c(x,y;, ;). At learning time, a la-
beled sample (x1,y1),...,(Xn,yn) is available. Each pair (x;,y;) contains instances
Zil,---,%im, and corresponding labels y; 1, ..., Yi,m,. The training data are pooled into
independent pairs of feature vectors and corresponding class labels

LIC = U{(‘:I’x, (Ii71)7 yi71)7 R (‘I)Xi(xi,mi)a yi,mi)}v 4)
=1

and training results in model parameters ¢.

4.2 Logistic Regression

Logistic regression (LR) is a linear classification model that we use to classify clients inde-
pendently. The decision function f({; R(®(x;)) of logistic regression squashes the output
of a linear model into a normalized probability by using a logistic function:

1

LR _
Labels are assigned according to
N —1 if f57(®x(x;)) < 3
Uj = fd) ((mj)) = 2 (6)
+1 else

Logistic regression models are trained by maximizing the conditional log-likelihood of the
training class labels over the parameters ¢. Costs are incorporated by weighting the log-loss
of each observation with the cost of misclassifying it.

5 Structured Prediction with Approximate Inference

In Section 4, the decision function has been evaluated independently for each client. This
prevented the model from taking joint features of particular groups of clients based on its
predicted labels into account.

4.6. Structured Prediction with a Parametric Decoder

29

5.1 Problem Setting for Structured Prediction with Approximate Inference

In the structured-prediction paradigm, a classification model infers a collective assignment y
of labels to the entirety of clients x that are observed in a time interval. In our application, all
clients that interact with the domain in the time interval are dependent. The model therefore
has to label the nodes of a fully connected graph. This problem setting is also referred to as
collective classification [23].

Predictions y of all clients are determined as the argument y that maximizes a decision
function fg(x,y) which may depend on a joint feature vector ®(x, y) of inputs and outputs.
The feature vector may reflect arbitrary dependencies between all clients x and all labels y.
At application time, the decoding problem

y ~ argmax fe(x,y) (7
yeY(x)

has to be solved approximately within an interval of 10 seconds. The number of process-
ing cycles that are available for each decision depends on the overall server load. We
model this by constraining the number of steps which can be spent on approximating the
highest-scoring output to 7" plus a constant number, where 7' ~ p(T'|7) is governed by
some distribution and its value is not known in advance. At training time, a labeled sample
L ={(x1,¥1),-..,(Xn,yn)} is available.

5.2 Iterative Classification Algorithm

The iterative classification algorithm (ICA) [24] is a standard collective-classification
method. We use ICA as a method of approximate inference for structured prediction. ICA
uses a feature vector ®x y (x;) for individual nodes and internalizes labels of neighboring
nodes into this feature vector. For this definition of features, decision function fy(x,y) is a
sum over all nodes. For a binary classification problem, we can use logistic regression and
the decision function simplifies to

fo (@xy(xy)) ify;=+1
fo(x,y) = { ’ . (®)
oC0) = 2 1L fE By (a) ity = 1.

ICA only approximately maximizes this sum by starting an initial assignment y which, in
our, case, is determined by logistic regression. It then iteratively changes labels ¢; such
that the summand for j is maximized, until a fixed point is reached or the maximization is
terminated after 7" steps. When a fixed point y is reached, then y satisfies

oo [LR (Ry () < 5
Viii = {—l—l else. 2

6 Structured Prediction with a Parametric Decoder
In this section, we allow for a guided search of the label space. Since the space is vastly

large, we allow the search do be guided by a parametric model that itself is optimized on the
training data.

30

Chapter 4. Learning to Control a Structured-Prediction Decoder

6.1 Problem Setting for Structured Prediction with Parametric Decoder

At application time, prediction ¥ is determined by solving the decoding problem of Equa-
tion 7; decision function fg(x,y) depends on a feature vector ®(x,y). The decoder
is allowed 7' (plus a constant number of) evaluations of the decision function, where
T ~ p(T|7) is governed by some distribution and its value is not known in advance. The
decoder has parameters 1) that control this choice of labelings.

In the available 7" time steps, the decoder has to create a set of candidate labelings
Y7 (x) for which the decision function is evaluated. The decoding process starts in a state
Yo (x) that contains a constant number of labelings. In each time step ¢ + 1, the decoder
can choose an action at41 from the action space Ay, ; this space should be designed to be
much smaller than the label space) (x). Action asy1 creates another labeling y¢41; this
additional labeling creates successor state Y;11(x) = ar4+1(Yz(x)) = Y2 (x) U {yt+1}-

In a basic definition, Ay, could consist of actions ayj (forally € Y; and 1 < j < ny,
where nx is the number of clients in x) that take output y € Y;(x) and generate labeling
y by flipping the labeling of the j-th client; output Yi+1(x) = Yi(x) U {y} is Yz(x)
plus this modified output. This definition would allow the entire space))(x) to be reached
from any starting point. In our experiments, we will construct an action space that contains
application-specific state transactions such as flip the labels of the k addresses that have the
most open connections—see Section 7.3.

The choice of action a¢41 is based on parameters 1) of the decoder, and on a feature
vector W(x, Y:(x), ar+1); for instance, actions may be chosen by following a stochastic
policy at11 ~ my(x, Yi(x)). We will define feature vector ¥(x, Y;(x),at+1) in Sec-
tion 7.4.4; for instance, it contains the difference between the geographical distribution of
clients whose label action a+41 changes and the geographical distribution of all clients with
that same label. Choosing an action a¢+1 requires an evaluation of ¥(x, Y;(x), at+1) for
each possible action in Ay,). Our problem setting is most useful for applications in which
evaluation of W (x, Y;(x), at+1) takes less time than evaluation of ®(x, y¢+1)—otherwise,
it might be better to evaluate the decision function for a larger set of randomly drawn out-
puts than to spend time on selecting outputs for which the decision function should be eval-
uated. Feature vector ¥(x, Y;(x), a++1) may contain a computationally inexpensive subset
of (I>(X, yt+1).

After T steps, the decoding process is terminated. At this point, the decision-function
values fg of a set of candidate outputs Y7 (x) have been evaluated. Prediction y is the
argmax of the decision function over this set:

y = argmax fy(X,y). (10)
YEYT (%)
At training time, a labeled sample L = {(x1,y1),. .., (Xn,yn)} is available.

6.2 HC Search

HC search [9] is an approach to structured prediction that learns parameters 1) of a search
heuristic, and then uses a decoder with this search heuristic to learn parameters ¢ of a
structured-prediction model (the decision function fg is called the cost-function in HC-
search terminology). We apply this principle to our problem setting.

4.6. Structured Prediction with a Parametric Decoder

31

At application time, the decoder produces labeling ¥ that approximately maximizes
fo(x,y) as follows. The starting point Yp(x) of each decoding problem contains the la-
beling produced by the logistic regression classifier (see Section 4.2). Action a1 € Ay, is
chosen deterministically as the maximum of the search heuristic fy, (¥ (x, Y:(x), at+1)) =
W W(x,Yi(x),at+1). After T steps, the argmax ¥ of fg(x,y) over all outputs in
Yr(x) =ar(...a1(Yo(x))...) (Equation 7) is returned as prediction.

At training time, HC search first learns a search heuristic with parameters 1) as follows.
Let L, be an initially empty set of training constraints for the heuristic. For each training
instance (x;,y;), starting state Yo (x;) contains the labeling produced by the logistic regres-
sion classifier (see Section 4.2). Time ¢ is then iterated from 1 to an upper bound 7 on the
number of time steps that will be available for decoding at application time. Then, iteratively,
all elements a1 of the finite action space Ay, (x;) and their corresponding outputs y; | |
are enumerated and the action a; ; that leads to the lowest-cost output y; , ; is determined.
Since the training data are labeled, the actual costs of labeling x; as y},; when the correct
labeling would be y; can be determined by evaluating the cost function. Search heuristic f,
has to assign a higher value to a;,; than to any other as41, and the costs ¢(x;,y3, y,’5+1)
of choosing a poor action should be included in the optimization problem. Hence, for each
action as+1 € Ay, (x;), constraint

Fo (P (xi, Ye(Xi), ai41)) — fu (P (xi, Ye(xi), ar+1))

> \Jelxiyiyien) — el yi yia) (D

is added to L.;. Model v should satisfy the constraints in L.,. We use a soft-margin version
of the constraints in L, and squared slack-terms which results in a cost-sensitive multi-class
SVM (actions a are the classes) with margin scaling [32].

After parameters @ have been fixed, parameters ¢ of structured-prediction model
fo(x,y) = ¢ ®(x,y) are trained on the training data set of input-output pairs (x;,y;)
using SVM-struct with margin rescaling and using the search heuristic with parameters t»
as decoder. Negative pseudo-labels are generated as follows. For each (x;,y;) € L, heuris-
tic 4 is applied T times to produce a sequence of output sets Yp(x;), . .., Y7 (x;). When
y = argmaxycy,(x,) (,‘Z)T<I>(x, y) # y. violates the cost-rescaled margin, then a new
training constraint is added, and parameters ¢ are optimized to satisfy these constraints.

6.3 Online Policy-Gradient Decoder

The decoder of HC search has been trained to locate the labeling ¥ that minimizes the costs
c(xi,yi,y) for given true labels. However, it is then applied to finding candidate label-
ings for which fg(x,y) is evaluated with the goal of maximizing f,. However, since the
decision function fg may be an imperfect approximation of the input-output relationship
that is reflected in the training data, labelings that minimize the costs ¢(X;,y;,y) might be
different from outputs that maximize the decision function. We will now derive a closed op-
timization problem in which decoder and structured-prediction model are jointly optimized.
We will study its convergence properties theoretically.

We now demand that during the decoding process, the decoder chooses action a;4+1 €
Ay, which generates successor state Y;41(x) = a¢+1(Y2(x)) according to a stochastic
policy, ar41 ~ 7y (X, Yi(x)), with parameter 1 € R™? (where my is the dimensionality
of the decoder feature space) and features W(x, Y;(x), a¢+1). At time 7', the prediction is
the highest-scoring output from Y7 (x) according to Equation 7.

32

Chapter 4. Learning to Control a Structured-Prediction Decoder

The learning problem is to find parameters ¢ and 1) that minimize the expected costs
over all inputs, outputs, and numbers of available decoding steps:

argmin Ex vy 7. v, (x) c(x,y,argmax fe(x,¥) (12)

[oR 7] JEYr(x)
with (x,y) ~p(x,y), T ~p(T|r) (13)
YT(X) Np(YT(X)’ﬂ-’l/MX?T) (14)

The costs ¢(x,y,y) of the highest-scoring element ¥ = argmax, ¢y, (x) fo (X, y') may
not be differentiable in ¢. Let therefore loss /(x,y, Yr(x); ¢) be a differentiable ap-
proximation of the cost that ¢ induces on the set Y7 (x). Section 7.2 instantiates the
loss for the motivating problem. Distribution p(x,y) is unknown. Given training data
S ={(x1,y1),---,(Xm,ym)}, we approximate the expected costs (Equation 12) by the
regularized expected empirical loss with convex regularizers {24 and §2,:

¢*, 9" = argmin Z Voo, r (X, 5) + 2¢ + (24 (15)
PY (xyes

with Vi - (%, y) Z((7)) Y p(YT(X)|7T¢,x,T)€(X,y,YT(X);d))). (16)
T=1 Yr(x)

Equation 15 still cannot be solved immediately because it contains a sum over all values of T'
and all sets Y7 (x). To solve Equation 15, we will liberally borrow ideas from the field of re-
inforcement learning. First, we will derive a formulation of the gradient V., ¢ Vi 6.+ (X, y).
The gradient still involves an intractable sum over all sequences of actions, but its formu-
lation suggests that it can be approximated by sampling action sequences according to the
stochastic policy. By using a baseline function—which are a common tool in reinforcement
learning [16]—we can reduce the variance of this sampling process.

Let ai.. 7 = a1,...,ar with a;41 € Ay, be a sequence of actions that executes a
transition from Yp(x) to Yr(x) = ar(...(a1(Yo(x)))...). The available computation
time is finite and hence p(7T'|7) = 0 for all T > T for some T'. We can rewrite Equation 16:

T

Vour(x)=Y (plan.cxl#:¥009) 3o oTIn) v, (@(300))).

ay.T =

with p(a; 7|, Yo(x wlae|x,a—1(. .. (Yo(x)...)). (17)

HEH\

Equation 18 defines Dy , as the partial gradient V4 of the expected empirical loss for an
action sequence az, . . ., ag that has been sampled according to p(a; 7|9, Yo(x)).

Dy r(ay. 1, Yo(x);) = ZT

_ PTINV el ar(. . (@(Yo(x)) ...);d) (18)

The policy gradient V4, of a summand of Equation 17 is

T
Vyp(ar 7, Yo(x) Y p(TI0)lx,y, az (... (a1(Yo(x))) ...); ¢)
T=1

4.6. Structured Prediction with a Parametric Decoder 33
T
= (plar_zl,Yo(x)) Y Yy logmy(arfx,ar—i(... (@ (¥o(x)...))) (19)
T=1

T

Z (T|7)e(x,y,ar(...(a1(Yo(x)))...); d).

Equation 19 uses the “log trick” Vyp = plog Vp; it sums the gradients of all actions
and scales with the accumulated loss of all initial subsequences. Baseline functions [16]
reflect the intuition that ar is not responsible for losses incurred prior to 77; also, relating
the loss to the expected loss for all sequences that contain ar reflects the merit of ar bet-
ter. Equation 20 defines the policy gradient for an action sequence sampled according to
play 7], Yo(x)), modified by baseline function B.

EZBT(TaYO(X).waqb)

T
Z Vy log my(ar|x,ar—1(... (a1(Yo(x)))...)) (20)

(

Lemma 1 (General gradient) Ler Vi o - (X,y) be defined as in Equation 17 for a differ-
entiable loss function L. Let Dy » and Ey g r be defined in Equations 18 and 20 for any
scalar baseline function B(a...T, Yo(x); %, ¢, x). Then the gradient of Vi 4 - (X,y) is

Mq.

P,y ai(- - (a1 (Yo(%))) ...); @) — Blar..7—1, Yo(x); 9, ¢, X))

Il
~

VouVouwr(xy) = > pla_ 7, Yo(x))

... T -
[EE,B,T(GL..@YO(X)?‘#»¢)T,De,r(a1...T7Y0(X);¢)T 21

Proof The gradient stacks the partial gradients of 19 and ¢ above each other. The par-
tial gradient VgVy g -(x,y) = 32, _play 7Y, Yo(x))Der(ar 1, Yo(x); @)
follows from Equation 18. The partial gradient ViV .o (X,y) =

>a, pPlar 7Y, Yo(x))Ee (a1 7,Yo(x);9,¢) is a direct application of the
Policy Gradient Theorem [31,27] for episodic processes.

The choice of a baseline function B influences the variance of the sampling process,
but not the gradient; a lower variance means faster convergence. Let £y p - T be a sum-
mand of Equation 20 with a value of T'. Variance E[(E¢. g r (a1 7, Yo(X);9,¢) —
E[E.,B,r7(ay. 1, Yo(x); ¥, ¢)|ar..7])?|a1..7] is minimized by the baseline that weights
the loss of all sequences starting in a7 (. .. (a1(Yo(x)))...) by the squared gradient [16]:

ar,, Glar.m41,Y0)*Q(ar. 141, Yo)
2ary, Glar.r41,Y0)?

Ba(ar.. T, Yo(x); 9, ¢,x) = (22)

with Q (a1, T+1,Y0 Zp tr)l(x,y,at(... (Yo(x))...);d)|a1.r+1| (23)

2...T t=T+1

and G(al,.T_H, Yo) :V log 7T¢(CLT+1|X, CLT(. .. (a1 (Yo(x))) Ce)) (24)

34

Chapter 4. Learning to Control a Structured-Prediction Decoder

This baseline function is intractable because it (intractably) averages the loss of all action
sequences that start in state Yr(x) = ar(...a1(Yo(x))...) with the squared length of
the gradient of their first action a7 . Instead, the assumption that the expected loss of all
sequences starting at 7" is half the loss of state Y7 (x) gives the approximation:

1 T
Buy(a1..1, Yo(x); ¢, ¢,x) = 2 Zt:,”_l p(t)l(x,y,ar(...a1(Yo(x))...);). (25)

We will refer to the policy-gradient method with baseline function Byr, as online policy
gradient with baseline. Note that inserting baseline function

T

Br(a1..,Yo(x); %, &, %) = = Y _p(O)Ux,y,acl... (a1(Yo(x)))...);¢) (26)

t=1

into Equation 20 resolves each summand of Equation 21 to Equation 19, the unmodified
policy gradient for a, . We will refer to the online policy-gradient method with base-
line function BRr as online policy gradient without baseline. Algorithm 1 shows the online
policy-gradient learning algorithm. It optimizes parameters 1/ and ¢ using a stochastic gra-
dient by sampling action sequences from the intractable sum over all action sequences of
Equation 21 Theorem 1 proves its convergence under a number of conditions. The step size
parameters «(7) have to satisfy

ZZO a(i) = oo, Zio a(i)? < . @7)

Loss function ¢ is required to be bounded. This can be achieved by constructing the loss
function such that for large values it smoothly approaches some arbitrarily high ceiling C.
However, in our case study we could not observe cases in which the algorithm does not con-
verge for unbounded loss functions. Baseline function B is required to be differentiable and
bounded for the next theorem. However, no gradient has to be computed in the algorithm.
All baseline functions that are considered in Section 7 meet this demand.

Algorithm 1 Online Stochastic Policy-Gradient Learning Algorithm
Input: Training data S, starting parameters ¥, @.

1: let?z = 0.

2: repeat

3: Draw (x,y) uniformly from S

4: Sample action sequence a; 7 witheach at ~ my, (x,at—1(...a1(Yo(x))...)).
50 iy =¥ —a(i)(Eep(ay 5, Yo(X); 94, ¢;) + Vi i2y,)

6: ¢ipq = —a(i)(Der(ay 7, Yo(x);%;) + Vgi2e,)

7: increment <.

8: until convergence
Return 9, ¢,

Theorem 1 (Convergence of Algorithm 1) Let the stochastic policy my, be twice differ-
entiable, let both Ty, and V ymy be Lipschitz continuous, and let V., log 7y, be bounded.
Let step size parameters o (i) satisfy Equation 27. Let loss function € be differentiable in
¢ and both £ and N ¢ be Lipschitz continuous. Let £ be bounded. Let B be differentiable
and both B and N pq B be bounded. Let 24 = 1|, 2y = v2||3||>. Then, Algorithm I
converges with probability 1.

4.6. Structured Prediction with a Parametric Decoder

35

Proof For space limitations and in order to improve readability, throughout the proof we
omit dependencies on x and Yp(x) in the notations when dependence is clear from the
context. For example, we use p(a; |v) instead of p(a; +|v, Yo(x)). We use Theorem
2 from Chapter 2 and Theorem 7 from Chapter 3 of [6] to prove convergence. We first
show that the full negative gradient — -, \ Vy ¢V, 0,7 (X,y) — [yatp, ,y1p,] is
Lipschitz continuous.)

Let L(ar 7,0) = St p(0)A(x,y, ar(..Yo(x)..);). We proceed by showing that

play. 71%)Eepr(ay. 759, ¢) = oy (play. 7[¥) Vy logmy(ar|3p)(Lag. 7, ¢) —
Bl(ai.7—1,%,¢))) is Lipschitzin [T, ¢] ". It is differentiable in [0 ", ¢ '] T per defi-
nition and it suffices to show that the derivative is bounded. By the product rule,

Vy,o(plar 7)) Vylogmy(ar|y)(Llar, 7, @) — Blar..1-1,%, $)))
=Vy,p(p(ar 7Y)Vylogmy(ar|¥))(Llar 7, ¢) — Blar.m-1,%, P)) (28)
+play 7|Y)Vylogmy(ar|¥)Vy,o(Lar. 7, @) — Blai.7-1,%,9)). (29)

We can see that line 29 is bounded because p, Vy, log 7wy, Vg L and V4 B are bounded
by definition and products of bounded functions are bounded. Regarding line 28, we state
that L and B are bounded by definition. Without loss of generality, let 7' = 1.

Vy(p(ay. 7|1)Vy log Ty (a1]y))
= Vy(Vymy(ai|y)p(as. rlary)) (30)
= play. 7la19))VyVymy(ar1l) + Vymy(ai|)Vyplas plai,9)) (31)

Equation 30 follows from pVylogp = Vp. The left summand of Equation 31
is bounded because both p and V.,V my are bounded by definition. Furthermore,
Vyplag 7|¥) = Vymy(a2)plas 1|Yp) + my(a2)Vep(as pl) is bounded because
Vymy(ar) and p(a, |¢) are bounded for all ¢t and we can expand Vyp(as 7|1) re-
cursively. From this it follows that the right summand of Equatio 31 is bounded as well.
Thus we have shown the above claim.

p(ay 7|Y)De.-(aq. ;) is Lipschitz because p(a;_ /1) is Lipschitz and bounded
and Dy - is a sum of bounded Lipschitz functions. The product of two bounded Lipschitz
functions is bounded. [’)llq,b—r) Y2 ¢T]T is obviously Lipschitz as well, which concludes the
considerations regarding the full negative gradient.

Let Mit1 = [Ee,p,r(ar. 3% @) s Deyr(ag 7590,))T
> xy) Vo Ve, .6,,7(%,¥)), where By g -(a1 13 ;, ¢;) and Dy 7 (ay 15 9;) are sam-
ples as computed by Algorithm 1. We show that { M;} is a Martingale difference sequence
with respect to the increasing family of o-fields F; = a([qﬁ(—)r, 1,b(—)r]—r, My, ...,M;),i > 0.
That is, Vi € N, E[M;11|F;] = 0 almost surely, and {M;} are square-integrable with
E[||Mis1?|F:] < K+ ||[@, , 2,] ||?) almost surely, for some K > 0.

E[M;+1|Fn] = 0 is given by the definition of M;;1 above. We have to show
E[|Miy1]?|Fi] < K(1 + ||[¢;,%;]"||?) for some K. We proceed by showing that
for each (x.y, a;) it holds that [|[Ee,p-(ay_ 739) Do (ar r3tb) 11| <
K1+ ||[¢; ,%,;]1"]|?). From that it follows that

1Y "> plar 719)[Eesr(ar 7%, 8) " Der(ar 7:¢) I

Xy ar. 17

<K@+ l[of w1717

and || Miy1]|*> < 4K(1+||[@; ,]]"||?) which proves the claim.

36

Chapter 4. Learning to Control a Structured-Prediction Decoder

Regarding Fy p ., we assume that ||V logmy||® is bounded by some K and it
follows that || 327 _, Vy, log my (ar|x, ar—1(..Yo(x)..)||? is also bounded by T2K".
I(x,y,ar(.Yo(x)..);0)||> < K'(1 + ||¢||*) and B bounded per assumption and
thus 377 p(D)e(x,y, ae(-Yo(x)..)(x);¢) — Blar.r-1;0,9) < K'(1 + H¢H2)
with some K'. It follows that ||Ep 5 ,(a; 53, ¢,)|1> < 2TK"K'(1 + ||¢]?). A
Val(X,y,ar(..Yo(x)..); @) is bounded per assumption, ||De,||* < K for some
K" > 0. The claim follows: [|[E¢,5,-(a1 7;%;,¢;) ", Der(ay mi9,) 1117 =

1B 5.7 (a1, 13 %5, &, |? + IDe.r(ar. 75 % P)lIP < K+ 2TKK'(1 + ||¢%) <
K" + T2 KK (14 [T, 6] |1).

We can now use Theorem 2 from Chapter 2 of [6] to prove convergence by identifying
function h([¢p; , 4, |7) as assumed in the assumptions of that theorem with the full negative
gradient — 3= Vg ¢V 6,7 (X,y) — [’yglp;r, 71¢iT]T. The theorem states that the
algorithm converges with probability 1 if the iterates [qbiTH, 1/)Z-T+1] T stay bounded.

Now, let h(§) = h(r)/r. Next, we show that lim, oo hr(§) = hoo(§) exists and
that the origin in R™ ™2 is an asymptotically stable equilibrium for the o.d.e. £(t) =
hoo (£(t)). With this, Theorem 7 from Chapter 3 of [6]—originally from [7]—states that the
iterates stay bounded and Algorithm 1 converges. Next, we show that h meets (A4):

hr (¢, 9)
= %Z > play 7lr) |:E€,B,T(a1..’f;quvr¢)T7D€,r(al,,T;T¢)T:|T

X,y ay.. 1

+1/r[nr] erd) |

T
=3 3 erlrd) 32 [Vymplarlrs) (Llar..9) = Blanr-)/r

X,y ay. .1 T=1
play. 7|rp)Der(ay :7@) | /r] " + [27 |

VT, L and B are all bounded and it follows that
play. 7lrp) gy [Vemy(arlry) " (Llar, 7,7¢) — Blar.r-1))/r — 0. The
same holds for the other part as p(a, |r) and D, (a, +;r¢) are bounded. It follows
that hoo([tp ", 0"]") = [fylv,bj,fyg@T] . Therefore, the ordinary differential equation
&(t) = hoo(&(t)) has an asymptotically stable equilibrium at the origin, which shows that

(A4) is valid.

7 Identification of DDoS Attackers

We will now implement a DDoS-attacker detection mechanism using the techniques that we
derived in the previous sections. We engineer a cost function, suitable feature representations
® and W, policy 7y, and loss function ¢ that meet the demands of Theorem 1.

7.1 Cost Function

False-positive decisions (legitimate clients that are mistaken for attackers) lead to the tem-
porary blacklisting of a legitimate user. This will result in unserved requests, and potentially

4.7. Identification of DDoS Attackers

37

lost business. False-negative decisions (attackers that are not recognized as such) will result
in a wasteful allocation of server resources, and possibly in a successful DDoS attack that
leaves the service unavailable for legitimate users. We decompose cost function ¢(x,y,y)
for a set of clients x into the following parts.

We measure two cost-inducing parameters of false-negative decisions: the number of
connections opened by attacking clients and the CPU use triggered by clients’ requests.
According to the experience of the data-providing web hosting service, the same damage is
done by attacking clients that a) collectively initiate 200 connections per 10-seconds interval
t and b) collectively initiate scripts that use 10 CPUs for 10 seconds. However, those costs
are not linear in their respective attributes. Instead, only limited resources are available, such
as a finite number of CPUs, and the rise in costs of two scripts that use 80% or 90%, resp.,
of all available CPUs is different from the rise in costs of two scripts that use 20% or 30%
of CPUs. We define costs incurred by connections initiated by attackers to be quadratic in
the number of connections. Similarly, costs for CPU usage are also quadratic.

The hosting service assesses that blocking a legitimate client incurs the same cost as
opening 200 HTTP connections to attackers in an interval or wasting 100 CPU seconds.
Also, by blocking 50 connections of legitimate client the same cost is added. Based on these
requirements, we define costs

1 . 2
c(x,y,y) Z 1 + — X #connections by x; + <— Z #connections by xi)

200 A
Xt yz_fl yz—+1 xzyz:+17yz:71
1 2
+ (71 00 Z CPU seconds initiated by xz) .

ziy;=+1,9;=—1

7.2 Loss Function

In order for the online policy-gradient method to converge, Theorem 1 states that loss func-
tions ¢ need to be differentiable and both ¢ and V¢ have to be Lipschitz continuous. We
discuss loss functions in this section. As mentioned in Section 6.3, the boundedness as-
sumption on loss functions can be enforced by smoothly transitioning the loss function to
a function that approaches some arbitrarily high ceiling C'. We first define the difference in
costs of a prediction y and an optimal label y™* as p(y y) = c(x, y,y) —c(x,y,y").

We denote the margin as gx,y(y*,¥;¢) = /p(¥,¥*) (x,¥) — ®(x,¥")). The
clipped squared hinge loss is dlfferentlable

0 it Vo(¥,y") <o (2(x,9) - (x,
hx,y(y*75’§ ¢) = gx,y(y*ay;¢)2 if 0 < ¢T((I)(X y) ‘I)()) < (yvy*)
207 (2(x,9) — (x,y")) +2 if &' (B(x,¥) — B(x,y)) 0

Equation 32 defines the loss that ¢ induces on Y7 (x) as the average squared hinge loss of
all labels in Y7 (x) except the one with minimal costs, offset by these minimal costs.

* 1 .
bh(x,y,Y1(%x);0) = c(X,y,y) + o) hxy (Y, ¥:¢) (32)
[Yr(x) — 1], -
YEYr (%), £y

with y™ = argmin c(x,y,y)
yEY

In contrast to the standard squared margin-rescaling loss for structured prediction that uses
the hinge loss of the output that maximally violates the margin, here we average the Huber

38

Chapter 4. Learning to Control a Structured-Prediction Decoder

loss over all labels in Y (x); this definition of ¢}, is differentiable and Lipschitz continuous,
as required by Theorem 1. Online policy gradient employs loss function ¢, in our exper-
imentations. We will refer to HC search with loss function £;, as HC search with average
margin and will also conduct experiments with HC search with max margin by using the
standard squared margin-rescaled loss

U (%,y,Y7(x),¢) = max max{gxy(y",¥;),0}". (33)
VEYT(X),yAY*

7.3 Action Space and Stochastic Policy

This section defines the action space Ay, (x;) of HC search and the online policy-gradient
method as well as the stochastic policy 7y, (x, Y;(x)) of online policy-gradient.

The action space is based on 21 rules » € R that can be instantiated for the elements
y € Yi(x); the action space Ay, contains all instantiations a;+1 = (r,y) that add a new
labeling 7(y) to the successor state: Yi41(x) = Yi(x) U {r(y)}. We define the initial
set Yp to contain labels {—1}"* and {+1}"*, where nx is the number of clients in x.
Some of the following rules refer to the score of a binary classifier that classifies clients
independently; we use the logistic regression regression classifier as described in Section 4.2
in our experiments.

— Switch the labels of the 1, 2, 5, or 10 clients from —1 to +1 that have the highest number
of connections, the highest score of the baseline classifier, or CPU consumption. All
combinations of these attributes yield 12 possible rules.

— Switch the labels of the client from —1 to 1 that has the second-highest number of
connections, independent classifier score, or CPU consumption (3 rules).

— Switch the label of the client from 1 to —1 that has the lowest or second-lowest number
of connections, baseline classifier score, or CPU consumption (6 rules).

— Switch all clients from —1 to 4+1 whose independent classifier score exceeds -1, -0.5, 0,
0.5, or 1 (5 rules).

Theorem 1 requires that the stochastic policy be twice differentiable in 1) and that both 7y,
and V,mybe Lipschitz continuous. We define 7y, as

exp(p W (x,Yi(x),ars1)
ZaGAYt eXp('I,bT\I/(X, Y%(X)a a))

Ty (at+1]x, Yi(x)) =

7.4 Feature Representations

We engineer features that refer to base traffic parameters that we explain in Section 7.4.1.
From these base traffic parameters, we derive feature representations for all learning ap-
proaches that we study. Figure 1 gives an overview of all features.

7.4.1 Base Traffic Parameters

In each 10-seconds interval, we calculate base traffic parameters of each client that connects
to the domain. For clients that connect to the domain over a longer duration, we calculate
moving averages that are reset after two minutes of inactivity. On the TCP protocol level,
we extract the absolute numbers of full connections, open connections, open and resent FIN

4.7. Identification of DDoS Attackers

39

Base Traffic Parameters @, (x)

For each count-based base traffic parameter:

- absolute value, globally normalized

- log absolute count

- sum over all clients of domain, globally normalized

Geo-Features
- Geographic region

HTTP Laver_) - log-sum over all clients of domain, globally normalized
- # connections with response codes 3xx - 5xx ﬁ - absolute value, normalized over all clients of domain
- #HTTP 1.0 connections Additional:
- values of several header fields(Accept-Language, Content- - frequencies of specific header field values
Type, Connection, Accept-Charset, Accept-Encoding, Referer) - frequencies of abstracted resource types (plain,
- abstract type of User-Agent (mobile, crawler,other) script, picture, media, other,none)
- resource path file ending (if specified) - entropy (for response code, resource type

- # different resource paths
- frequency of requesting most common path

- ratios of request types (GET, POST, ...) d)x,y (Xi)
- # connections with query string -
- average query-string length - all attributes of ®, (x;)

- # clients classified as +1
- # clients classified as -1

- referer is domain itself

TCP/IP Layer

- # full connections @(x,y)

- # open connections

- # open FIN packets - independent-classifier scores E}’i,y.f’dﬁ”(@x(x,))

- # resent FIN packets

- # RST packets

- # incoming packets

- # outgoing packets

- # open SYNACK packets

resent SYNACK packets
- # empty connections
- # connections closed before handshake W(x, Y (%), ags1)

- incoming payload per connection

For groups of clients labeled +1 and -1 :

- inner-group mean of all base traffic parameters

- inner-group standard deviation of base parameters
- inter-group differences between base parameters

- outgoing payload per connection For group of clients whose label is changed by action:
- average time until first FIN packet é - clients distance to group mean of base parameters
- average time until connection is closed - clients distance to group minimum

- average response time - mean value above and below cutoff value of action

Fig. 1 Feature representations

packets, timeouts, RST packets, incoming and outgoing packets, open and resent SYNACK
packets, empty connections, connections that are closed before the handshake is completed,
incoming and outgoing payload per connection. We determine the average durations until
the first FIN packet is received and until the connection is closed, as well as the response
time.

From the HTTP protocol layer, we extract the number of connections with HTTP re-
sponse status codes 3xx, 4xx, and 5xx, the absolute counts of HTTP 1.0 connections and
of the values of several HTTP header fields (Accept-Language, Content-Type, Connection,
Accept-Charset, Accept-Encoding, Referer). We also extract User-Agent and define mobile
and crawler which count all occurrences of a predefined set of known mobile user agents
(Android and others) and crawlers (GoogleBot and others), respectively.

We count the number of different resource paths that a client accesses and also count
how often each client requests the currently most common path on the domain. If a spe-
cific resource is directly accessed we extract and categorize the file ending into plain, script,
picture, download, media, other, none, which can give a hint on the type of the requested re-
source. We measure the fractions of request types per connection (GET, POST, or OTHER).
We extract the number of connections with a query string and the average length of each
query in terms of number of fields per client. We count the number of connection in which
the referrer is the domain itself. Geographic locations are encoded in terms of 21 parameters
that represent a geographic region.

7.4.2 Input Features for SVDD, Logistic Regression and ICA

Independent classification uses features ®x (x ;) that refer to a particular client x; and to the
entirety of all clients x that interact with the domain. For each of the count-style base traffic
parameters, ®x(z;) contains the absolute value, globally normalized over all clients of all
domains, a logarithmic absolute count, the globally normalized sums and log-sums over all
clients that interact with the domain, and the absolute values, normalized by the values of all
clients that interact with the domain. For HTTP response code, resource type header fields,

40

Chapter 4. Learning to Control a Structured-Prediction Decoder

we also determine the entropy and frequencies per client on for all clients on the domain.
See also Fig 1.

Feature vector ®x y (z;) for ICA contains all features from ®x(x;) plus the numbers
of clients that are assigned class +1 and —1, respectively, in x,y.

7.4.3 Features for Structured Prediction

Feature vector ®(x,y) contains as one feature the sum ngzll Yj f£ R(®y(x;)) of scores
of a previously trained logistic regression classifier over all clients z; € x. In addition,
we distinguish between the groups of clients that y labels as —1 and +1 and determine
the inner-group means, inner-group standard deviations, inter-group differences of the base

traffic parameters. This results in a total of 297 features.

7.4.4 Decoder Features

For HC search and online policy gradient, the parametric decoders depend on a joint feature
representation W(x, Y;(x), at41) of input x and action a¢+1 = (r,y). It contains 92 joint
features of the clients whose label a+41 changes and the group (clients of positive or negative
class) that a1 assigns the clients to. Features include the clients’ distance to the group
mean and the clients’ distance to the group minimum for the base traffic parameters. For
the fourth group of control actions, the feature representation includes the mean values of
these same base attributes for all clients above and below the cutoff value. In order to save
computation time, the mean and minimal group values before reassigning the clients are
copied from ®(x,y) which must have been calculated previously.

7.4.5 Execution-Time Constraint

We model distribution p(7'|7) that limits the number of time steps that are available for HC
search and online policy gradient as a beta distribution with o = 5 and 8 = 3 that is capped
at a maximum value of 7' = 10. We allow ICA to iterate over all instances for five times;
the results do not improve after that. The execution time of logistic regression is negligible
and therefore unconstrained.

8 Experimental Study

This section explores the practical benefit of all methods for attacker detection.

8.1 Data Collection

In order to both train and evaluate the attacker-detection models, we collect a data set of
TCP/IP traffic from the application environment. We focus our data collection on high-
traffic events in which a domain might be under attack. When the number of connections
to a domain per unit of time, the number of clients that interact with the domain, and the
CPU capacity used by a domain lie below safe lower bounds, we can rule out the possibility
of a DDoS attack. Throughout an observation period of several days, we store all HTTP
traffic to any domain for which a traffic threshold is exceeded starting 10 minutes before the

4.8. Experimental Study

41

threshold is exceeded and stopping 10 minutes after no threshold is exceeded any longer.
We will refer to the entirety of traffic to a particular domain that occurs during one of these
episodes as an event. Over our observation period, we collect 1,546 events. We record all
traffic parameters described in Section 7.4. All data of one domain that are recorded within
a time slot of 10 seconds are stored as a block. The same threshold-based pre-filtering is
applied in the operational system, and therefore our data collection reflects the distribution
which the attacker-detection system is exposed to in practice.

We then label all traffic events as attacks or legitimate traffic and all clients as attackers
or legitimate clients in a largely manual process. In a joint effort with experienced adminis-
trators, we decide for each of the 1,546 unusual event whether it is in fact a flooding attack.
For this, we employ several tools and information sources. We search for known vulnerabil-
ities in the domain’s scripts, analyze the domain’s recent regular connection patterns, check
for unusual geo-location patterns and analyze the query strings and HTTP header fields.
This labeling task is inherently difficult. On one hand, repeated queries by several clients
that lead to the execution of a CPU-heavy script with either identical or random parameters
might very likely indicate an attack. On the other hand, when a resource is linked to by a
high-traffic web site and that resource is delivered via a computationally expensive script,
the resulting traffic may look very similar to traffic observed during an attack and one has to
search for and check the referrer for plausibility to identify the traffic as legitimate.

After having labeled all events, we label individual clients that connect to a domain
during an attack event. We use several heuristics to group clients with a nearly identical and
potentially malicious behavior and label them jointly by hand. We subsequently label the
remaining clients after individual inspection.

In total, 50 of the 1,546 events are actually attacks with 10,799 unique attackers. A total
of 448,825 client IP addresses are labeled as legitimate. In order to reduce memory and
storage usage we use a sample from all 10-second intervals that were labeled. We draw 25%
of intervals per attack and 10% of intervals (but at least 5 if the event is long enough) per
non-attack event. Our final data set consists of 1,096,196 labeled data points; each data point
is a client that interacts with a domain within one of the 22,645 intervals of 10 seconds.

8.2 Experimental Setting

Our data includes 50 attack events; we therefore run 50-fold stratified cross validation with
one attack event per fold. Since the attack durations vary, the number of test instances varies
between folds. We determine the costs of all methods as the average costs over the 50 folds.
In each fold, we reserve 20% of the training portion to tune the hyperparameters of all
models by a grid search.

8.3 Reference Methods

All previous studies on detecting and mitigating application-layer DDoS flooding attacks
are based on anomaly-detection methods [37,28,36,8,22]. A great variety of heuristic and
principled approaches is used. In our study, we represent this family of approaches by SVDD
which has been used successfully for several related computer-security problems [12,15].
Prior work generally uses smaller feature sets. Since we have not been able to improve
our anomaly-detection or classification results by feature subset selection, we refrain from

42

Chapter 4. Learning to Control a Structured-Prediction Decoder

Table 1 Costs, true-positive rates, and false-positive rates of all attacker-detection models. Costs marked

[T

with “x” are significantly lower than the costs of logistic regression

Classification Method Mean costs per fold TPR FPR (x10~%)
No filtering 3.363 +1.348 0 0
SVDD 2.826 + 1.049 0.121 £0.036 | 149.8 +89.5
Log. Reg. w/o domain-dependent features 1.322 £0.948 0.394 4+ 0.056 7.0£21
Logistic Regression 1.045 £ 0.715 0.372 4+ 0.056 2.1+0.6
ICA 0.946 + 0.662x 0.369 £ 0.056 3.24+1.0
HC search with average margin 1.042 £0.715 0.406 %+ 0.056 9.14+4.2
HC search with max-margin 1.040 £ 0.714x 0.398 + 0.056 7.0£3.3
Policy gradient with baseline function 0.945 + 0.664x 0.394 4+ 0.055 3.7+1.2
Policy gradient without baseline function 0.947 + 0.665% 0.394 + 0.055 3.7+1.2

conducting experiments with the specific feature subsets that are used in published prior
work.

Some prior work uses features or inference methods that cannot be applied in our ap-
plication environment. DDosShield [28] calculates an attack suspicion score by measuring
a client’s deviation from inter-arrival times and session workload profiles of regular traffic.
Monitoring workload profiles is not possible in our case because the attacker-detection sys-
tem is running on a different machine; it cannot monitor the workload profiles of the large
number of host computers whose traffic it monitors. DDosShield also uses a scheduler and
prioritizes requests by suspicion score. This approach is also not feasible in our application
environment because it still requires all incoming requests to be processed (possibly by re-
turning an error code). Xie and Yu [36] also follow the anomaly-detection principle. They
employ a hidden Markov model whose state space is the number of individual web pages.
In our application environment, both the number of clients and of hosted individual pages
are huge and prohibit state inference for of each individual client.

8.4 Results

Table 1 shows the costs, true-positive rates, and false-positive rates of all methods under
investigation. All methods reduce the costs that are incurred by DDoS attacks substan-
tially at low false-positive rates. SVDD reduces the costs of DDoS attacks compared to
not employing any attacker-detection mechanism (no filtering) by about 16%. Logistic re-
gression reduces the costs of DDoS attacks compared (no filtering) by about 69%; online
policy gradient reduces the costs by 72%. Differences between no filtering, SVDD, and
logistic regression are highly significant. Cost values marked with an asterisk star (“x”)
are significantly lower than logistic regression in a paired ¢-test at p < 0.1. While HC
search is only marginally (insignificantly) better than logistic regression, all other structured-
prediction models improve upon logistic regression. Policy gradient with baseline function
incurs marginally lower costs than policy gradient without baseline function and ICA, but
the differences are not significant.

Logistic regression w/o domain-dependent features does not get access to features that
take into account all other clients of that domain and to the entropy features. This shows
that engineering context features into the feature representation of independent classifica-
tion already leads to much of the benefit of structured prediction. From a practical point of
view, all classification methods are useful, reduce the costs associated with DDoS attacks by
around 70% while misclassifying only an acceptable proportion (below 10~2) of legitimate

4.8. Experimental Study

43

3.0

251 R

ICA
HC search with max-margin
Logistic Regression

SVDD H
Policy Gradient with baseline function

Cost

20

15 R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of Training Data Events

Fig. 2 Learning curves over varying fractions of training events.

clients. We conclude that ICA and policy gradient achieve a small additional cost reduction
over independent classification of clients.

8.5 Analysis

In this section, we quantitatively explore which factors contribute to the residual costs of
structured prediction models. The overall costs incurred by policy gradient decompose into
costs that are incurred because f¢ fails to select the best labeling from the decoding set
Y7(x), and costs that are incurred because decoder 7, approximates an exhaustive search
by a very narrow and directed search that is biased by 1.

We conduct an experiment in which decoder 7y, is learned on training data, and a perfect
decision function f is passed down by way of divine inspiration. To this end, we learn 7y,
on training data, use it to construct decoding sets Y7 (x;) for the test instances, and identify
the elements y = argming cy, (x,) ¢(X4,yi,y) that have the smallest true costs; note that
this is only possible because the true label y; is known for the test instances. We observe
costs of 0.012 1-0.008 for the perfect decision function, compared to costs of 0.945 +0.664
when ¢ is learned on training data. The costs of a perfect decoder that exhaustively searches
the space of all labelings, in combination with perfect decision function f;, would be zero.
This implies that the decoder with learned parameters v performs almost as well as an
(intractable) exhaustive search; it contributes only 1.3% of the total costs whereas 98.7% of
the costs are due to the imperfection of fg. Increasing the decoding time 7" does not change
these results.

This leaves parameter uncertainty of ¢ caused by limited labeled training data and the
definition of the model space as possible sources the residual costs. We conduct a learning
curve analysis to explore how decreasing parameter uncertainty decreases the costs. We
determine costs for various fractions of training events using 10-fold cross validation in
Figure 2. We use 10-fold cross validation in order to make sure that each test fold contains
at least one attack event when reducing the number of events to 0.2. Since Table 1 uses 50-
fold cross validation (which results in a higher number of training events), the end points of
Figure 2 are not directly comparable to the values in Table 1. Figure 2 shows that the costs of

44

Chapter 4. Learning to Control a Structured-Prediction Decoder

Table 2 Most relevant features of fg

Weight | Description
3.01 | Average length of query strings of client
-2.38 | Number of different resource paths of client
2.34 | Sum of incoming payload of all clients of domain
2.27 | Fraction of connections of client that request the most frequent resource path
2.25 | Sum of response times of all clients of domain
2.05 | Sum of response times of client
1.64 | Fraction of connections for domain that accepts any version of English (e.g., en-us) in Accept-
Language
-1.46 | Entropy of request type (GET/POST/OTHER)
-1.32 | Sum of outgoing payload of all clients
1.27 | Sum of number of open FINs of all clients at end of 10-seconds interval
1.23 | Average length of query string per connection
-1.21 | Fraction of connections for domain that accepts any language other than EN, DE, ES, PT, CN,
RU in Accept-Language
1.19 | Fraction of all connections of all clients that query most frequent path
1.17 | Sum of durations of all connections of all clients of domain
1.13 | Fraction of connections of client that accepts any version of English (e.g., en-us) in Accept-
Language
-1.13 | Fraction of combined connections of all clients that directly request a picture type
-1.11 | Fraction of connections of client that specified HTTP header field Content-Type as any text
variant
-1.09 | Fraction of connections of client that accepts any language other than EN, DE, ES, PT, CN,
RU in Accept-Language
1.08 | Log-normalized combined outgoing payload of client
-1.07 | Fraction of all connections of all clients that specified HTTP header field Content-Type as any
text variant

all classification methods continue to decrease with an increasing number of training events.
A massively larger number of training events would be required to estimate the convergence
point. We conclude that parameter uncertainty of ¢ is the dominating source of costs of all
classification models. Anomaly-detection method SVDD only requires unlabeled data that
can be recorded in abundance. Interestingly, SVDD does not appear to benefit from a larger
sample. This matches our subjective perception of the data: HTTP traffic rarely follows a
“natural” distribution; anomalies are ubiquitous, but most of the time they are not caused by
attacks.

8.6 Feature Relevance

For the independent classification model, leaving out features that take into account all
clients that connect to the domain deteriorates the performance (see Line 3 of Table 1. We
have not been able to eliminate any particular group of features by feature subset selection
without deteriorating the system performance. Table 2 shows the most relevant features; that
is, the features that have the highest average weights (over 50-fold cross validation) in the
logistic regression model.

8.7 Execution Time

In our implementation, the step of extracting features ® takes on average 1 ms per domain
for logistic regression and ICA. The additional calculations take about 0.03 ms for logistic

4.9. Discussion and Related Work

45

regression and 0.04 ms for ICA with five iterations over the nodes which results in nearly
identical total execution times of 1.03 and 1.04 ms, respectively.

HC search and online policy gradient start with an execution of logistic regression. For
T = 10 decoding steps, repeated calculations of ®(x,y) and ¥(x, Y;(x), a) lead to a total
execution time of 3.1 ms per domain in a high-traffic event.

9 Discussion and Related Work

Mechanisms that merely detect DDoS attacks still leave it to an operator to take action.
Methods for detecting malicious HTTP requests can potentially prevent SQL-injection and
cross-site scripting attacks, but their potential to mitigate DDoS flooding attacks is limited,
because all incoming HTTP requests still have to be accepted and processed. Defending
against network-level DDoS attacks [26,37] is a related problem; but since network-layer
attacks are not protocol-compliant, better detection and mitigation mechanisms (e.g., adap-
tive timeout thresholds, ingress/egress filtering) are available.

Since known detection mechanisms against network-level DDoS attacks are fairly effec-
tive in practice, our study focuses on application-level attacks—specifically, on HTTP-level
flooding attacks. Prior work on defending against application-level DDoS attacks has fo-
cused on detecting anomalies in the behavior of clients over time [28,36,22,8]. Clients that
deviate from a model of legitimate traffic are trusted less and less, and the rate at which
their requests are processed is throttled. Trust-based and throttling approaches leave it nec-
essary to accept incoming HTTP requests, maintain records of all connecting clients, and
process the requests—possibly by returning an error code instead of the requested result. In
our application environment, this would not sufficiently relieve the servers. Prior work on
defending against application-level DDoS attacks have so far been evaluated using artificial
or semi-artificial traffic data that have been generated under model assumptions of benign
and offending traffic. This paper presents the first large-scale empirical study based on over
1,500 high-traffic events that we detected while monitoring several hundred thousand do-
mains over several days.

Detection of DDoS attacks and malicious HTTP requests have been modeled as anomaly
detection and classification problems. Anomaly detection mechanisms employ a model of
legitimate network traffic [36]—and treat unlikely traffic patterns as attacks. For the detec-
tion of SQL-injection, cross-site-scripting (XSS), and PHP file-inclusion (L/RFI), traffic can
be modeled based on HTTP header and query string information using HMMs [5], n-gram
models [35], general kernels [12], or other models [29]. Anomaly-detection mechanisms
were investigated, from centroid anomaly-detection models [18] to setting hard thresh-
olds on the likelihood of new HTTP requests given the model, to unsupervised learning
of support-vector data description (SVDD) models [12,15].

Classification-based models require traffic data to be labeled; this gives classification
methods an information advantage over anomaly-detection models. In practice, network
traffic rarely follows predictable patterns. Spikes in popularity, misconfigured scripts, and
crawlers create traffic patterns that resemble those of attacks; this challenges anomaly-
detection approaches. Also, in shared hosting environments domains appear and disappear
on a regular basis, making the definition of normal traffic even more challenging. A binary
SVM trained on labeled data has been observed to consistently outperform a one-class SVM
using n-gram features [35]. Similarly, augmenting SVDDs with labeled data has been ob-
served to greatly improve detection accuracy [15]. Other work has studied SVMs [17,21]
and other classification methods [19,25,14].

46

Chapter 4. Learning to Control a Structured-Prediction Decoder

Structured-prediction algorithms jointly predict the values of multiple dependent output
variables—in this case, labels for all clients that interact with a domain—for a (structured)
input [20,32,2]. At application time, structured-prediction models have to find the highest-
scoring output during the decoding step. For sequential and tree-structured data, the highest-
scoring output can be identified by dynamic programming. For fully connected graphs, exact
inference of the highest-scoring output is generally intractable. Many approaches to approx-
imate inference have been developed; for instance, for CRFs [1], structured SVMs [13], and
general graphical models [3]. Several algorithmic schemes are based on iterating over the
nodes and changing individual class labels locally. The iterative classification algorithm [24]
for collective classification simplistically classifies individual nodes, given the conjectured
labels of all neighboring nodes, and reiterates until this process reaches a fixed points.

Online policy-gradient is the first method that optimizes the parameters of the
structured-prediction model and the decoder in a joint optimization problem. This allows us
to prove its convergence for suitable loss functions. By contrast, HC search [9, 10] first learns
a search heuristic that guides the search to the correct labeling for the training data, and sub-
sequently learns the decision function of a structured-prediction model using this search
heuristic as a decoder. Shi et al. [30] follow a complementary approach by first training a
probabilistic structured model, and then using reinforcement learning to learn a decoder.

Wick et al. [34] sample structured outputs using a predefined, hand-crafted proposer
function that samples outputs sequentially. In other work [33] a cascade of Markov mod-
els is learned that uses increasing higher-order features and prunes unlikely local outputs
per cascade level. This work assumes a ordering of such cliques into levels, which is not
applicable for fully connected graphs.

10 Conclusion

We have engineered mechanisms for detection of DDoS attackers based on anomaly detec-
tion, independent classification of clients, collective classification of clients, and structured-
prediction with HC search. We have then developed the online policy-gradient method that
learns a decision function and a stochastic policy which controls the decoding process in an
integrated optimization problem. We have shown that this method is guaranteed to converge
for appropriate loss functions. From our empirical study that is based on a large, manually-
labeled collection of HTTP traffic with 1,546 high-traffic events we can draw three main
conclusions. (a) All classification approaches outperform the anomaly-detection method
SVDD substantially. (b) From a practical point of view, even the most basic logistic re-
gression model is useful and reduces the costs by 69% at a false-positive rate of 2.1 x 10~
(c) ICA and online policy gradient reduce the costs just slightly further, to about 72%.

Acknowledgment
This work was supported by grant SCHE540/12-2 of the German Science Foundation DFG

and by a grant from STRATO AG.

References

1. Discriminative probabilistic models for relational data. In Eighteenth Conference on Uncertainty in
Artificial Intelligence, 2002.

4.11.

References

10.

11.

13.

14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

27.

Max-margin Markov networks. In Advances in Neural Information Processing Systems, volume 16,
2004.

Approximated structured prediction for learning large scale graphical models. Arxiv 1006.2899, 2010.
C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Rajamani, and
W. Zwaenepoel. Bottleneck characterization of dynamic web site benchmarks. Technical report TR-
02-391, Rice University, 2002.

. Davide Ariu, Roberto Tronci, and Giorgio Giacinto. HMMPayl: An intrusion detection system based on

hidden Markov models. Computers & Security, 30(4):221-241, 2011.

Vivek S. Borkar. Stochastic approximation: A Dynamical Systems Viewpoint. Cambridge University
Press, 2008.

Vivek S. Borkar and Sean P. Meyn. The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447-469, 2000.

S. Renuka Devi and P. Yogesh. Detection of application layer DDsS attacks using information theory
based metrics. Department of Information Science and Technology, College of Engineering Guindy
10.5121/csit.2012.2223, 2012.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-search: Learning heuristics and cost func-
tions for structured prediction. In AAAI volume 2, page 4, 2013.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-search: A learning framework for search-
based structured prediction. Journal of Artificial Intelligence Research, 50(1):369-407, 2014.
Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Structured prediction via output space search.
The Journal of Machine Learning Research, 15(1):1317-1350, 2014.

Patrick Diissel, Christian Gehl, Pavel Laskov, and Konrad Rieck. Incorporation of application layer
protocol syntax into anomaly detection. In Information Systems Security, pages 188-202. Springer,
2008.

T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable. In Proceedings
of the International Conference on Machine Learning, 2008.

Farnaz Gharibian and Ali A Ghorbani. Comparative study of supervised machine learning techniques for
intrusion detection. In Annual Conference on Communication Networks and Services Research, pages
350-358. IEEE, 2007.

Nico Gornitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward supervised anomaly detection.
Journal of Artificial Intelligence Research, 46:235-262, 2013.

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. The Journal of Machine Learning Research, 5:1471-1530, 2004.

. Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. A new intrusion detection system using

support vector machines and hierarchical clustering. International Journal on Very Large Databases,
16(4):507-521, 2007.

. Marius Kloft and Pavel Laskov. Security analysis of online centroid anomaly detection. Journal of

Machine Learning Research, 13(1):3681-3724, 2012.

. Levent Koc, Thomas A Mazzuchi, and Shahram Sarkani. A network intrusion detection system based

on a hidden naive Bayes multiclass classifier. Expert Systems with Applications, 39(18):13492-13500,
2012.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: probabilistic mod-
els for segmenting and labeling sequence data. In Proceedings of the International Conference on Ma-
chine Learning, 2001.

Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and Kuobin Dai. An efficient intru-
sion detection system based on support vector machines and gradually feature removal method. Expert
Systems with Applications, 39(1):424-430, 2012.

H. Liu and K. Chang. Defending systems against tilt DDoS attacks. In Proceedings of the International
Conference on Telecommunication Systems, Services, and Applications, 2011.

Luke K. McDowell, Kalyan Moy Gupta, and David W. Aha. Cautious collective classification. The
Journal of Machine Learning Research, 10:2777-2836, 2009.

Jennifer Neville and David Jensen. Iterative classification in relational data. In Proc. AAAI-2000 Work-
shop on Learning Statistical Models from Relational Data, 2000.

Sandhya Peddabachigari, Ajith Abraham, Crina Grosan, and Johnson Thomas. Modeling intrusion detec-
tion system using hybrid intelligent systems. Journal of Network and Computer Applications, 30(1):114—
132, 2007.

Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of network-based defense mecha-
nisms countering the DoS and DDoS problems. ACM Computing Surveys, 39(1):3, 2007.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682-697, 2008.

48

Chapter 4. Learning to Control a Structured-Prediction Decoder

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightley. DDoS-resilient scheduling to counter applica-
tion layer attacks under imperfect detection. In Proceedings of IEEE INFOCOM, 2006.

William K. Robertson and Federico Maggi. Effective anomaly detection with scarce training data. In
Network and Distributed System Security Symposium, 2010.

Tianlin Shi, Jacob Steinhardt, and Percy Liang. Learning where to sample in structured prediction. In
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, pages
875-884, 2015.

Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In In Advances in Neural Information Processing
Systems 12, pages 1057-1063. MIT Press, 2000.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables. Journal of Machine Learning Research, 6:1453-1484, 2005.

David Weiss and Ben Taskar. Structured prediction cascades. In International Conference on Artificial
Intelligence and Statistics, pages 916-923, 2010.

Michael Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and Andrew McCallum. Sam-
plerank: Training factor graphs with atomic gradients. In Proceedings of the 28th International Confer-
ence on Machine Learning, pages 777-784, 2011.

Christian Wressnegger, Guido Schwenk, Daniel Arp, and Konrad Rieck. A close look on n-grams in
intrusion detection: Anomaly detection vs. classification. In Proceedings of the ACM Workshop on
Artificial Intelligence and Security, pages 67-76, 2013.

Y. Xie and S. Z. Yu. A large-scale hidden semi-markov model for anomaly detection on user browsing
behaviors. IEEE/ACM Transactions on Networking, 17(1):54-65, 2009.

Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense mechanisms against
distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials,
15(4):2046-2069, 2013.

Chapter 5

Discussion

Each presented paper advances the state of the art in its specific domain of internet
security applications as well as in its respective field of machine learning research. In
the following, 1 will categorize contributions made by each paper into one of three
categories. The next section embeds each paper into related work covering its respec-
tive field of internet security. By doing so, I highlight their contributions to tackling
their respective internet security application. Section 5.2 shows advancements in the
way the respective application can be modeled as a machine learning problem and in
terms of derived optimization problems and theoretical guarantees of algorithms. The
last section concludes by describing how each of the unique large scale real world data
sets was assembled and how it was used to experimentally evaluate improvements of
the developed methods over baseline methods.

5.1 Application-Specific Related Work

In this section I embed each of the three applications covered in this thesis into
their respective literature on an application level. To this effect, the section discusses
related work regarding the practical problems of inbound and outbound email spam
filtering as well as DDoS attack detection and mitigation.

Research on defense mechanisms against incoming email spam has a long history
in which the development and application of machine learning algorithms played
a prominent part from the early beginnings. Generally, a wide range of methods
should be combined to protect email infrastructure and customer inboxes against
flooding of unsolicited bulk email. From rather simple but effective IP blacklists
such as Spamhaus SBL!, to spam campaign detection mechanisms using Bayesian
clustering of the incoming email stream [Haider 09], and regular expression matching
on spam campaigns [Prasse 15]. However, from the very beginnings of automated
spam detection content-based binary classification algorithms were used to decide for
spam. A wide range of algorithms and feature representations were investigated in
the literature, see e.g. [Blanzieri 09] for an overview. In order to learn good spam
filters, a variety of data sets of spam messages were published, such as those corpora
used in the TREC spam track®. However, using only public corpora will not result in

Thttps://www.spamhaus.org/sbl/

http://trec.nist.gov/data/spam.html

50 Chapter 5. Discussion

state-of-the-art performance of spam filters, both because spam senders have access
to those data sets and because spam emails change heavily over time [Wang 13]. Best
results may be achieved when combining both in-house data sets and external data
sets, a scenario we investigated in chapter 2.

Although filtering outbound emails for spam has been identified as a priority by
email service providers [Goodman 04], literature on this specific problem has not
been as manifold as for filtering incoming emails. Standard content-based spam
filters could be employed—e.g. if clients try to send emails via a HT'TP webmail
interface—and could be combined with some reverse Touring test mechanism such
as CAPTCHAS. A different approach was taken by [Goodman 04], who employed
content-agnostic rate limits for users. This mechanism did not prove to be very
effective, though. [Zhong 05] presented an ad-hoc adaptive rate-limiting approach
that proposed to limit the outgoing email rate based on an estimated spam score.
While using a throttling mechanism might intuitively be appealing, only in [Dick 10]
(Chapter 3) did we show that the approach of learning an adaptive rate-limit follows
directly from the properly defined problem definition.

Work on the detection of distributed denial of service (DDoS) attacks is mani-
fold and can to be partitioned into research that aims at detecting attacks versus
papers that investigate detecting attackers. In chapter 4 we investigated approaches
that were employed against HT'TP-level attacks, in contrast to network level attacks
where IPs could be spoofed in some cases [Peng 07, Zargar 13]. If attack detec-
tion mechanisms are employed in a server infrastructure, attack mitigation mech-
anisms still have to take appropriate countermeasures against attacking clients in
order to mitigate the effect of an attack. A large selection of binary classification
algorithms has been used to detect attacks on the HTTP level, using a diverse
set of features [Ariu 11, Wressnegger 13, Diissel 08, Robertson 10]. As large data
sets of attacks and regular traffic are often hard to acquire and label, and also be-
cause it is sometimes argued that potential attack vectors can not be modeled or
recorded exhaustively, anomaly detection methods were also used to detect DDoS
attacks [Diissel 08, Gornitz 13]. The same holds for prior work on defending against
application-level DDoS attacks which often focused on detecting anomalies in the
behavior of clients over time [Ranjan 06, Xie 09, Liu 11, Devi 12]. In [Dick 16], we
focused on detecting attackers using discriminative models that employ labeled data
from both attackers and regular clients for training classifiers. More importantly,
we investigated the usefulness of structured prediction models for DDoS attacker
identification that consider dependencies between labels of individual clients.

5.2 Application-Oriented Modeling and Algorithms

In this section I discuss how each of the papers presented in chapters 2, 3, and 4 relate
to prior work in their respective field of machine learning research. I first describe
how a learning problem is deducted from the demands of each application and then
compare the derived solutions to related literature.

5.2. Application-Oriented Modeling and Algorithms 51

5.2.1 Imnbound Spam Filtering with Incomplete Data

In [Dick 08] (Chapter 2), an email spam classifier was learned from data that was
compiled from different data sources. All features for computing the decisions are
present when the model is evaluated in the email provider’s email infrastructure,
but training instances coming from external data sources do not include some of
the features such as those representing sender reputation. Learning from incomplete
data has been studied extensively in the machine learning literature. One of the first
approaches was to estimate one imputation per missing value, e.g. its mean over
the observed instances or of the k-nearest neighbors, and to subsequently learn with
the completed data using standard learning algorithms [Little 87]. Other approaches
only consider the available features without modeling a distribution over imputations.
[Chechik 08] uses this approach for applications where features are not missing at
random but are structurally missing. They argue that those features are non-existent
rather than missing. They maximize the margin of a prediction model based on
visible features only. A third group estimates a distribution of imputations in a
first step before learning the decision function based on the estimated distribution of
imputations [Shivaswamy 06, Smola 05]. A final group estimates both a distribution
of imputations and the decision function jointly [Liao 07, Wang 10]. In chapter 2 we
followed the same approach of learning a distribution of imputations and decision
function jointly but allowed for more flexibility of the solution—a nonparametric dis-
tribution of missing values was estimated that is only biased towards a distributional
assumption by a regularizer. [Wang 10] also learn imputations and decision function
simultaneously by using a Mixture of Experts model formulation with linear local
experts. Features are assumed to be drawn according to a mixture of local Gaussian
distributions. The number of experts is inferred using a nonparametric Dirichlet
process prior, thereby extending the model of [Liao 07]. An important difference is
that our work differs in the choice of classification method, where we allowed for a
wider range of kernel methods for learning the decision function, rather than using
a mixture of Gaussian experts. However, we also learned both the distribution of
imputations and the decision function parameters simultaneously. We showed that
depending on regularizer and loss function, the optimal probability distribution con-
sists of n+ 2 imputations. An algorithm was derived that learns the decision function
in an iterative manner by greedily adding new imputations in each iteration.

5.2.2 Outbound Spam Filtering with Non-Separable Loss

In [Dick 10] (Chapter 3), a filter was learned that detects unsolicited emails in the
outbound email stream. Outbound spam filtering is related to inbound spam fil-
tering, as both content and meta information is available at the time of a decision.
Similar to the inbound case, meta information corresponds to knowledge about the
sender. However, because customers that request delivery of their emails via the
outgoing mail server have to login using their credentials, in the outbound case,
sender information can be tied to a specific customer account. Also, rather than
minimizing the global fractions of undetected spam and falsely detected ham emails
in order to improve customer experience, email service providers face a slightly dif-
ferent learning problem in the case of outgoing spam emails. The loss incurred by
undetected spams is a function of the rate of outgoing spam emails per time and the

52 Chapter 5. Discussion

duration over which a high rate is maintained, which corresponds to the risk of being
blacklisted. The loss of each decision depends on previous decisions, and the overall
loss is therefore not separable over individual filter outputs. Minimizing the expected
loss over sequences of decisions can generally be solved using Reinforcement Learn-
ing methods [Busoniu 10]. Reinforcement Learning methods learn a policy which
is a mapping from states—here corresponding to some aggregated representation of
sequences of emails and decisions—to distributions of actions—binary decisions of
blocking or sending—with the goal of minimizing the expected loss over sequences
of states and actions. We tested that approach using a Policy Gradient reinforce-
ment learning algorithm in [Dick 10]. Another, more ad-hoc, approach is to learn a
standard cost-sensitive binary classifier that, at each time point, decides if an email
should be blocked or not. While such general purpose algorithms have shown good
performance in other applications, we developed a filter that is specifically designed
for the given application. In chapter 3 we showed that the loss can be minimized by
learning a filter that throttles the rate of emails a user is allowed to send per time.
This approach differs from the approach of using independent classifiers by explicitly
taking into account the potential damage an illegitimate email sender can impose
on the system due to its sending process. An email is blocked if sending it would
exceed the rate limit. FExact delivery times are unknown in advance, so the filter has
to integrate over all possible sequences of delivery times in order to minimize the
expected risk of wrong decisions. Assuming a Poisson process, the misclassification
probability given a rate limit and a Poisson sending rate can be modeled using Fortet’s
formula. We derived a convex optimization problem that can be solved using a wide
range of optimizers.

5.2.3 DDoS Filtering with Structured Prediction Models

As mentioned in section 5.1, machine learning DDoS detection algorithms often aim
at learning to detect attacks rather than attackers. In chapter 4, attacker detection
was investigated using a novel approach that collectively classifies all client IPs that
access a domain. Previous work only considered learning decision functions that
decide for attackers without considering the predicted labels of other clients that
access a web service [Liu 11, Devi 12]. The main reason for modeling the prob-
lem as a structured prediction problem is that the cost of not detecting attacking
clients is non-linear in the number of undetected malicious clients. Such non-linear
costs can be incorporated into structured prediction models but are generally hard
to integrate into non-structured learning models because the loss is not separable
over individual clients. This is the first time that non-linearity of the loss is taken
into account when learning a DDoS filter. General structured prediction models
[Lafferty 01, Tsochantaridis 05] learn a scoring function for each instance-label pair,
and the decoder outputs the highest scoring label for a given input. Searching the
space of possible outputs may be possible in certain cases such as sequence learning
[Lafferty 01], but if the structure of the output space is less restricted, such as the
exponential set of all subsets of clients, searching the complete space is impossible.
To make things worse, the application in chapter 4 demands that decisions have to
made in real time, thus setting even stronger restrictions on the searchable part of the
space of label assignments. Learning to assign binary interdependent labels to sets of
clients is a special case of collective classification, where relations are usually defined

5.3. Empirical Evaluation 53

by graph structures. Here, the dependency graph is fully connected. Collective Clas-
sification methods aim at finding the best collective labeling by iteratively changing
individual labels according to binary classification models or by randomly switching
labels in order to maximize the likelihood of a Markov model [Neville 00]. In both
cases, the decoder repeatedly iterates over all instances and switches individual labels
according to some model that incorporates interactions between labels.

The approach we took in chapter 4 learns an informed search heuristic on the out-
put space and is potentially applicable to any structured prediction task. Learning
decoders that search the output space of structured prediction problems are also inves-
tigated in [Doppa 14a] and [Doppa 14b]. [Doppa 14b] investigate learning a decision
function that serves the purpose of both deciding which label to choose when decoding
time is up and deciding which outputs to investigate next. [Doppa 14a] follow the
approach of separating search heuristic learning and decision function learning. In
chapter 4 we also modeled search heuristic and decision function using two separate
sets of parameters. We additionally estimated a distribution of available time steps
and focused the learning of both search heuristic and decision function on more
likely output steps. The decoder’s search strategy is learned and evaluated using
computationally cheap features of potentially useful outputs. The most important
theoretical contribution is the derivation of an optimization problem that minimizes
the expected loss over both parameter sets. The derived algorithm simultaneously
optimizes over heuristic and decision function by using stochastic approximations of
the real expected gradient. In [Doppa 14a], search strategy and decision function
are learned in two separate steps. We proved that our combined algorithm always
converges under reasonable assumptions.

5.3 Empirical Evaluation

All models and methods that were derived and investigated in this thesis were also
experimentally tested on real world data sets that were collected and labeled at a
large web hosting company.

In chapter 2, we evaluated the derived method and baseline methods on an email
data set that was collected by the hosting company. It included both spam and ham
emails, where half of the spam emails were drawn from a hard-to-detect set of emails
that had been misclassified by other classifiers in the past. Experiments showed that
the derived method can indeed lower the misclassification rate. Additional experi-
ments on classification and regression tasks confirmed its good performance.

In chapter 3, we collected about 1,000,000 emails from approximately 10,000 ac-
counts over the space of two days and labeled them automatically based on informa-
tion passed by other email service providers via feedback loops (in most cases triggered
by “report spam” buttons). This data set was used to experimentally compare the
investigated throttling mechanism with baseline methods. Results showed that by
using the developed method the loss can be reduced significantly.

In order to learn a DDoS attacker detection mechanism, we collected web traffic
data coming to and from the hosting company’s web servers. Data were collected on
a per-domain basis by splitting traffic according to the HTTP header field “Host”.
All data corresponding to one particular domain in a time interval was considered an
event. We defined unusual traffic patterns on a domain using a set of rules compiled

o4 Chapter 5. Discussion

by operators of the web hosting company. Rules were adjusted so that no potential
attack should go unnoticed. We only stored data corresponding to 1546 unusual
traffic events. Those traffic events were then labeled on a per-IP basis in a largely
manual process. In a first step, complete events were checked for whether they contain
an attack, and, if so, a set of heuristics was used to label chunks of IPs that access a
domain as attackers if, for example, they exhibit very similar and potentially malicious
behavior. All remaining IPs were labeled by manually checking their behavior. We
used the assembled data set in chapter 4 to experimentally answer three questions.
We evaluated if machine learning methods can in fact reduce the cost that DDoS
attacks impose on a web hosting company and if classification methods perform
better than anomaly detection methods. More importantly, we tested if the derived
method for structured prediction can learn a good search strategy, and if structured
prediction is feasible and helpful for HTTP-layer DDoS attacker detection. The
results showed that it may indeed be helpful to employ attacker detection methods
and that one should prefer structured classification algorithms over both independent
classification methods and anomaly detection methods. The experiments also showed
that the developed method works at least as good as baseline methods. To the best
of our knowledge, this was the first time that the performance of machine learning
methods for DDoS detection was tested on such a large real world data set.

Bibliography

[Ariu 11]

[Blanzieri 09

[Busoniu 10]

[Chechik 08]

[Devi 12]

[Dick 08]

[Dick 10]

[Dick 16]

[Doppa 14a]

Davide Ariu, Roberto Tronci & Giorgio Giacinto. HMMPayl:
An intrusion detection system based on Hidden Markov Models.
Computers & Security, vol. 30, no. 4, pages 221-241, 2011.

Enrico Blanzieri & Anton Bryl. A survey of learning-based tech-
niques of email spam filtering. Artificial Intelligence Review,
vol. 29, no. 1, pages 63-92, 2009.

Lucian Busoniu, Robert Babuska, Bart De Schutter & Damien
Ernst. Reinforcement learning and dynamic programming using
function approximators. CRC press, 2010.

Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel & Daphne
Koller. Maz-margin classification of data with absent features.
The Journal of Machine Learning Research, vol. 9, pages 1-21,
2008.

S. Renuka Devi & P. Yogesh. Detection of Application Layer
DDoS Attacks using Information Theory based Metrics. Depart-
ment of Information Science and Technology, College of Engi-
neering Guindy 10.5121 /csit.2012.2223, 2012.

Uwe Dick, Peter Haider & Tobias Scheffer. Learning from In-
complete Data with Infinite Imputations. In Proceedings of the
25th international conference on Machine learning, pages 232—
239. ACM, 2008.

Uwe Dick, Peter Haider, Thomas Vanck, Michael Briickner &
Tobias Scheffer. Throttling Poisson Processes. In Advances in
Neural Information Processing Systems, pages 505513, 2010.

Uwe Dick & Tobias Scheffer. Learning to Control a
Structured-Prediction Decoder for Detection of DDoS Attack-
ers. Preprint of Article in Machine Learning (2016) 104: 385.
doi:10.1007/s10994-016-5581-9, 2016.

Janardhan Rao Doppa, Alan Fern & Prasad Tadepalli. HC-
Search: A learning framework for search-based structured pre-
diction. Journal of Artificial Intelligence Research, vol. 50, no. 1,
pages 369-407, 2014.

96

Bibliography

[Doppa 14b]

[Diissel 08]

[Goodman 04]

[GOrnitz 13]

[Haider 09]

[Lafferty 01]

[Liao 07]

[Little 87]

[Liu 11]

[Neville 00]

[Peng 07]

[Prasse 15]

Janardhan Rao Doppa, Alan Fern & Prasad Tadepalli. Struc-
tured prediction via output space search. The Journal of Machine
Learning Research, vol. 15, no. 1, pages 1317-1350, 2014.

Patrick Dissel, Christian Gehl, Pavel Laskov & Konrad Rieck.
Incorporation of application layer protocol syntax into anomaly
detection. In Information Systems Security, pages 188-202.
Springer, 2008.

Joshua T Goodman & Robert Rounthwaite. Stopping outgoing
spam. In Proceedings of the 5th ACM conference on Electronic
commerce, pages 30-39. ACM, 2004.

Nico Gornitz, Marius Kloft, Konrad Rieck & Ulf Brefeld. Toward
Supervised Anomaly Detection. Journal of Artificial Intelligence
Research, vol. 46, pages 235262, 2013.

Peter Haider & Tobias Scheffer. Bayesian clustering for email
campaign detection. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, pages 385-392. ACM,
20009.

John Lafferty, Andrew McCallum & Fernando CN Pereira. Con-
ditional random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of the International Con-
ference on Machine Learning, volume 18, 2001.

Xuejun Liao, Hui Li & Lawrence Carin. Quadratically gated miz-
ture of experts for incomplete data classification. In Proceedings
of the 24th International Conference on Machine learning, pages
553-560. ACM, 2007.

Roderick JA Little & Donald B Rubin. Statistical analysis with
missing data. John Wiley & Sons, 1987.

H. Liu & K. Chang. Defending systems Against Tilt DDoS
attacks. In Proceedings of the International Conference on
Telecommunication Systems, Services, and Applications, 2011.

Jennifer Neville & David Jensen. Iterative classification in rela-
tional data. In Proc. AAAI-2000 Workshop on Learning Statis-
tical Models from Relational Data, 2000.

Tao Peng, Christopher Leckie & Kotagiri Ramamohanarao. Sur-
vey of network-based defense mechanisms countering the DoS and
DDoS problems. ACM Computing Surveys, vol. 39, no. 1, page 3,
2007.

Paul Prasse, Christoph Sawade, Niels Landwehr & Tobias Schef-
fer. Learning to Identify Concise Regular Ezpressions that De-
scribe Email Campaigns. Journal of Machine Learning Research,
vol. 16, pages 3687-3720, 2015.

Bibliography

57

[Ranjan 06]

[Robertson 10]

[Shivaswamy 06]

[Smola 05]

[Tsochantaridis 05]

[Wang 10]

[Wang 13]

[Wressnegger 13]

[Xie 09]

[Zargar 13]

[Zhong 05]

S. Ranjan, R. Swaminathan, M. Uysal & E. Knightley. DDoS-
Resilient Scheduling to Counter Application Layer Attacks under
Imperfect Detection. In Proceedings of IEEE INFOCOM, 2006.

William K. Robertson & Federico Maggi. Effective Anomaly De-
tection with Scarce Training Data. In Network and Distributed
System Security Symposium, 2010.

Pannagadatta K Shivaswamy, Chiranjib Bhattacharyya &
Alexander J Smola. Second order cone programming approaches
for handling missing and uncertain data. The Journal of Machine
Learning Research, vol. 7, pages 1283—-1314, 2006.

Alexander J Smola, SVN Vishwanathan & Thomas Hofmann.
Kernel Methods for Missing Variables. In The tenth International
Workshop on Artificial Intelligence and Statistics (AISTATS),
2005.

I. Tsochantaridis, T. Joachims, T. Hofmann & Y. Altun. Large
margin methods for structured and interdependent output vari-
ables. Journal of Machine Learning Research, vol. 6, pages 1453—
1484, 2005.

Chunping Wang, Xuejun Liao, Lawrence Carin & David B Dun-
son. Classification with incomplete data using dirichlet process
priors. The Journal of Machine Learning Research, vol. 11, pages
3269-3311, 2010.

De Wang, Danesh Irani & Calton Pu. A study on evolution
of email spam over fifteen years. In 9th International Confer-
ence Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing (Collaboratecom), pages 1-10. IEEE,
2013.

Christian Wressnegger, Guido Schwenk, Daniel Arp & Kon-
rad Rieck. A Close Look on N-grams in Intrusion Detection:
Anomaly Detection vs. Classification. In Proceedings of the ACM
Workshop on Artificial Intelligence and Security, pages 67-76,
2013.

Y. Xie & S. Z. Yu. A large-scale hidden semi-Markov model
for anomaly detection on user browsing behaviors. IEEE/ACM
Transactions on Networking, vol. 17, no. 1, pages 54-65, 2009.

Saman Taghavi Zargar, James Joshi & David Tipper. A survey of
defense mechanisms against distributed denial of service (DDoS)
flooding attacks. TEEE Communications Surveys & Tutorials,
vol. 15, no. 4, pages 2046-2069, 2013.

Zhenyu Zhong, Kun Huang & Kang Li. Throttling Outgoing
SPAM for Webmail Services. In Conference on Email and Anti-
Spam, 2005.

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Inbound Spam Classification with Missing Attributes
	1.2 Outbound Spam Filtering
	1.3 DDoS Attacker Detection

	2 Learning from Incomplete Data with Infinite Imputations
	Abstract
	2.1 Introduction
	2.2 Problem Setting
	2.3 Learning from Incomplete Data in One Step
	2.4 Solving the Optimization Problem
	2.4.1 Optimal Solution with Finite Combination
	2.4.2 Iterative Optimization Algorithm

	2.5 Example Learners
	2.5.1 Two Standard Learning Algorithms
	2.5.2 Regularizing towards Prior Belief in Feature Space
	2.5.3 Imputing the Mean in Feature Space

	2.6 Empirical Evaluation
	2.6.1 Classification
	2.6.2 Regression

	2.7 Conclusion
	2.8 Acknowledgments
	2.9 References

	3 Throttling Poisson Processes
	Abstract
	3.1 Introduction
	3.2 Poisson Process Model
	3.2.1 Derivation of Empirical Loss

	3.3 Erlang Learning Model
	3.4 Prior Work and Reference Methods
	3.5 Application
	3.5.1 Results

	3.6 Conclusion
	3.7 Acknowledgments
	3.8 References

	4 Learning to Control a Structured-Prediction Decoder for Detection of HTTP-Layer DDoS Attackers
	Abstract
	4.1 Introduction
	4.2 Problem Setting, Motivating Appliation
	4.3 Anomaly Detection
	4.3.1 Problem Setting for Anomaly Detection
	4.3.2 Support Vector Data Description

	4.4 Independent Classification
	4.4.1 Problem Setting for Independent Classi�cation
	4.4.2 Logistic Regression

	4.5 Structured Prediction with Approximate Inference
	4.5.1 Problem Setting for Structured Prediction with Approximate Inference
	4.5.2 Iterative Classification Algorithm

	4.6 Structured Prediction with a Parametric Decoder
	4.6.1 Problem Setting for Structured Prediction with Parametric Decoder
	4.6.2 HC Search
	4.6.3 Online Policy-Gradient Decoder

	4.7 Identification of DDoS Attackers
	4.7.1 Cost Function
	4.7.2 Loss Function
	4.7.3 Action Space and Stochastic Policy
	4.7.4 Feature Representations
	4.7.4.1 Base Traffic Parameters
	4.7.4.2 Input Features for SVDD, Logistic Regression and ICA
	4.7.4.3 Features for Structured Prediction
	4.7.4.4 Decoder Features
	4.7.4.5 Execution-Time Constraint

	4.8 Experimental Study
	4.8.1 Data Collection
	4.8.2 Experimental Setting
	4.8.3 Reference Methods
	4.8.4 Results
	4.8.5 Analysis
	4.8.6 Feature Relevance
	4.8.7 Execution Time

	4.9 Discussion and Related Work
	4.10 Conclusion
	4.11 References

	5 Discussion
	5.1 Application-Specific Related Work
	5.2 Application-Oriented Modeling and Algorithms
	5.2.1 Inbound Spam Filtering with Incomplete Data
	5.2.2 Outbound Spam Filtering with Non-Separable Loss
	5.2.3 DDoS Filtering with Structured Prediction Models

	5.3 Empirical Evaluation

	Bibliography

