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UNIVERSITÄT POTSDAM

Abstract

Mathematisch-Naturwissenschaftliche Fakultät

Institute of Biochemistry and Biology

Doctor rerum naturalium

Post-transcriptional Control of Gene Expression

by Celine Sin

Gene expression describes the process of making functional gene products (e.g. proteins

or special RNAs) from instructions encoded in the genetic information (e.g. DNA). This

process is heavily regulated, allowing cells to produce the appropriate gene products nec-

essary for cell survival, adapting production as necessary for different cell environments.

Gene expression is subject to regulation at several levels, including transcription, mRNA

degradation, translation and protein degradation. When intact, this system maintains

cell homeostasis, keeping the cell alive and adaptable to different environments. Mal-

function in the system can result in disease states and cell death. In this dissertation,

we explore several aspects of gene expression control by analyzing data from biological

experiments. Most of the work following uses a common mathematical model framework

based on Markov chain models to test hypotheses, predict system dynamics or elucidate

network topology. Our work lies in the intersection between mathematics and biology

and showcases the power of statistical data analysis and math modeling for validation

and discovery of biological phenomena.
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allgemeinverstaendlichen Zusammenfassung

(English)

Mathematisch-Naturwissenschaftliche Fakultät

Institute of Biochemistry and Biology

Doctor rerum naturalium

Post-transcriptional Control of Gene Expression

by Celine Sin

The central dogma of molecular biology proposes that the flow of genetic information

starts with DNA, which is copied into RNA and then translated into proteins (Crick

1970). This system of information transfer provides for two very natural checkpoints

where gene expression can be adjusted – either at the level of mRNA (i.e. controlling

transcription or mRNA degradation processes) or the level of proteins (i.e. controlling

translation or protein degradation processes). Within each checkpoint, there are a mul-

titude of processes simultaneously active, adjusting and fine-tuning the concentrations

of mRNAs and proteins. In concert, all of these processes contribute to maintain a

stable internal environment in the cell. Malfunction in the system can result in disease

states and cell death. In this dissertation, we explore several aspects of gene expression

control by analyzing data from biological experiments. Our work lies in the intersection

between mathematical modeling and biology, showcasing the power of statistical data

analysis and modeling for validation and discovery of biological phenomena.
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allgemeinverstaendlichen Zusammenfassung - German

UNIVERSITÄT POTSDAM

allgemeinverstaendlichen Zusammenfassung

Mathematisch-Naturwissenschaftliche Fakultät

Institute of Biochemistry and Biology

Doctor rerum naturalium

Post-transcriptional Control of Gene Expression

by Celine Sin

Das ,,zentrale Dogma der Molekularbiologie” besagt, dass der Fluss genetischer Infor-

mation mit der DNS startet, die dann auf die RNS kopiert und in Proteine übersetzt

wird (Crick 1970). Dieses System der Informationsübertragung bietet zwei natürliche

Eingriffspunkte, an denen Genausprägungen manipuliert werden können – entweder auf

dem Level der mRNS (z.B. durch Kontrolle der Transkriptions- oder mRNS- Degrada-

tionsprozesse) oder auf dem Level des Proteins (z.B. durch Kontrolle der Translations-

oder Proteindegradationsprozesse). An jedem Eingriffspunkt sind eine Vielzahl unter-

schiedlicher Prozesse zeitgleich aktiv, um die Konzentrationen von mRNS und Proteinen

präzise einzustellen. All diese Prozesse tragen dazu bei, die Zelle intern im stationäzen

Zustand zu halten, denn eine Fehlfunktion im System kann zu Krankheitszuständen

oder zum Zelltot führen. In dieser Arbeit untersuchen wir verschiedene Aspekte der

Kontrolle der Genausprägungs, indem wir Daten biologischer Experimente analysieren.

Unsere Arbeit liegt hierbei zwischen den Bereichen der mathematischer Modellierung

und der Biologie und zeigt den immensen Nutzen von statistischen Analysemethoden

und mathematischer Modellbildung zur Validierung und Neuentdeckung biologischer

Phänomene auf.
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0

INTRODUCTION

In this cumulative dissertation, we explore several aspects of gene expression control by

analyzing data from biological experiments. Chapter 1-4 are ordered temporally by the

point in the process which the mechanism(s) studied might occur. Chapter 1 explores

the biochemical network for degradation of mRNA through the miRISC pathway [1].

Chapter 2 presents a global picture of the transcriptional and translational state of E.

coli under several stress environments [2]. Chapter 3 quantifies the effect of ribosome

drop-off [3]. Chapter 4 is a proteome wide study of degradation [4]. Chapter 5 presents

the mathematical modeling framework used in most of our work and derivation of the ex-

perimentally measurable quantities. Furthermore, the implications of pulse time on the

measurable dynamics and considerations for optimal experimental design are discussed

[5].

3
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Abstract

This section begins with an outline of the gene expression process with em-

phasis on possible points of control. Next, we provide a layperson’s overview

of the experimental techniques utilized to capture the data involved in our

analysis. Finally, we briefly describe the mathematical modeling framework

to translate single molecule predictions into population averages.

0.1 Overview of the Gene Expression Process

The central dogma of molecular biology proposes that the flow of genetic information

starts at the level of DNA which is copied into RNA and then translated into proteins [9].

This system of information transfer provides for two very natural checkpoints where gene

expression can be adjusted – either at the level of mRNA (i.e. controlling transcription

or mRNA degradation processes) or the level of proteins (i.e. controlling translation

or protein degradation processes). Within each checkpoint, there are a multitude of

processes simultaneously active, adjusting and fine-tuning the concentrations of mRNAs

and proteins.

Figure 1: The Central Dogma of Molecular Biology [9]

0.1.1 Gene Expression Control through mRNA synthesis

Genetic information is stored as a nucleotide sequence in the DNA [9]. DNA is tran-

scribed into RNA by RNA polymerase [11, 12]. The first level of control involves regu-

lating the amount of RNA available, by modulating the synthesis and degradation rates

or deactivating RNA products. Increased transcription potentially increases the gene

expression rate by increasing the amount of mRNA available for translation. Conversely,

decreased transcription rate potentially decreases the gene expression rate [13]. RNA

products can also be temporarily deactivated, or sequestered away from the translation

machinery, thus decreasing the gene expression level [14–16].

RNA is synthesized by RNA polymerase. In E. coli, there are over 4000 genes but

only 2,000 RNA polymerase molecules in normal growing conditions [17]. Thus, RNA

polymerase somehow must know which genes to transcribe – this process is heavily
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regulated by transcription factors. Transcription factors are proteins that bind directly

to DNA and can enhance transcription (activators), or block transcription (repressors)

[18, 19].

In prokaryotes, one of the main mechanisms to control the initiation of RNA polymerase

on specific genes is provided through the σ subunit [17]. RNA polymerase is a multiunit

enzyme composed of two α units, one β unit, one β’ unit and one σ unit (also known as

σ factor) [20]. Before initiation, RNA polymerase scans the DNA, looking for promoter

sequences located upstream of genes which signal the start of genes [21]. The σ factor

recognizes specific promoter sequences and binds to them. Binding causes the DNA to

unravel, exposing the bases for RNA synthesis and initiating transcription [22]. While it

was once believed that σ factor dissociates from the complex and activates other RNA

polymerases once transcription is initiated (σ cycling), leaving the α2ββ′ complex to

complete RNA transcription by itself [23], new single molecule measurements seem to

suggest otherwise [24].

There are seven types of σ factors, each recognizing a different promoter sequence [17].

Many genes share the same promoter sequence. By controlling the type of σ factor

associated with the RNA polymerases, different subsets of genes can be expressed [19,

25]. In bacteria, the σ70 family is often active, recognizing promoter regions of genes

mostly used for general housekeeping in normal cell growing conditions [26]. Other σ

factors are more specialized; for example, σ32 is affiliated with promoter regions of genes

in response to heat shock [27].

In eukaryotes, the regulation process is more complex, often requiring several transcrip-

tion factors interacting with the DNA both upstream and downstream of the start site

[18]. Furthermore, the amount of mRNA ultimately made available for translation also

depends on the rate of post-transcriptional processing steps including 5’ capping, splic-

ing, polyadenylation and nuclear export. These topics are outside the scope of this

dissertation but a comprehensive review can be found in [28].

0.1.2 Gene Expression Control through mRNA degradation

Once RNA has been synthesized (and for the case of eukaryotes: processed and ex-

ported), degradation is the final process that affects the amount of mRNA in the cell.

RNA degradation is a crucial process in cell metabolism; it allows for recycling of pre-

cursors, removal of errant transcripts and gene expression control [29]. Not surprisingly,

the degradation system is very robust and has many redundancies; in E. coli there are

∼24 RNAases [30] and inactivation or mutation of one or more RNAase species gener-

ally does not block RNA degradation [31]. RNA is degraded by a number of different
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pathways, some specific to distinct populations of transcripts in the cell (i.e. specific

genes), and some which are non-specific.

Turnover of mRNA in prokaryotes is relatively rapid, on the order of minutes [32].

While multicellular organisms are able to buffer themselves from external environmental

changes, prokaryotes are bathed in their external environment. Thus, sudden changes in

the external environment require rapid reprogramming of cell’s gene expression. Quick

mRNA turnover time enables rapid reprogramming necessary for cell viability; in this

way, the cell can adjust the mRNA population to the proteins that are currently needed

[2, 29].

Prokaryote mRNA degradation is achieved through a suite of endonucleases and exonu-

cleases. Exonucleases degrade RNA from the 3’ or 5’ ends while endoncleases cut RNA

internally. In general, once a nuclease has attacked an RNA molecule either from inter-

nally or from the 3’ or 5’ ends, the subsequent decay of the RNA quickly follows – RNA

decay generally follows 1st order kinetics in an all-or-none pattern and intermediates are

rarely observable unless the ribonucleases are inactivated [29].

RNA lifetimes vary greatly and depend on a number of different properties: RNA se-

quence and secondary structure, subcellular location, translatability of the mRNA and

interaction to other RNA or proteins are all possible factors that determine the stability

of an RNA [29]. Some degradation pathways are activated on RNA containing specific

sequences. Secondary structure on the mRNA can increase or decrease the degradation

rate depending on where the secondary structure is found: stem-loops in the 5’ UTRs

decrease stability by making the mRNA more susceptible to RNAaseE, but stem-loops

in the 3’ UTR increase stability by blocking 3’ to 5’ exonuclease action [32]. mRNA

that are very actively translated (i.e. being simultaneously translated by many ribo-

somes) are more protected by nuclease action than naked mRNA [33]. In the same

fashion, mRNA interaction with proteins can also protect it from nuclease action [29].

Thus mRNA within a cell can have very different lifetimes. In prokaryotes, the amount

of mRNA available for translation is determined solely by the net effects of synthesis

and degradation. In Chapter 2, one of the aims of the project is to quantify the level

of mRNA expression for E. coli in different stress conditions using RNA-seq. A short

overview of the experimental procedure can be found in Supplementary section 0.2.2,

and the full details can be found in Supplementary Section 2. Measuring the steady

state level of over 4000 mRNA, this type of experiment gives us a global view of the

transcriptional program. Indeed, we find that the cell adapts different transcriptional

programs in response to stress conditions [2].

While many mRNA degradation processes in prokaryotes have homologous counterparts

in eukaryotic organisms, eukaryotic organisms have (additionally) a much larger suite
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of mRNA degradation processes. S. cerevisiae turns out to be a convenient organism

for studying eukaryotic mRNA degradation processes, as many processes are similar

to mammalian cells [13]. Many of these processes are multistep with dynamics that

sometimes can be distinctly measured. This allows for interesting possibilities to enhance

system sensitivity and/or robustness and, for our intents and purposes, opportunities

for modeling

Deadenylation dependent pathways

Degradation of mRNA in mammals can be divided into two categories: deadenylation-

dependent or deadenylation-independent. Deadenylation-dependent mRNA decay is one

of the major degradation pathways in mammalian cells [13].

Mature mRNA have a polyadenylated (polyA) tail that is added post-transcriptionally

during the process of mRNA maturation. The polyA tail is used in the processes of

nuclear transport, translation and is a determinant of stability. Mature mRNAs are

often found “circularized”, where the 3’ polyadenylated end is bridged to the 5’ end with

a chain of proteins. The protein structures protect the 3’ and 5’ ends from exonucleases,

thus increasing the stability of the mRNA. If the polyA tail is shortened (i.e. the

mRNA becomes deadenylated), the bridge structure is destabilized, and the 3’ and 5’

ends become exposed, increasing the probability of degradation.

Deadenylation dependent mRNA decay is a multistep process. In general it is believed

that special exonucleases (e.g. PARN, DAN, PAN2/PAN3) begin the process by initi-

ating deadenylation of the polyA tail, and CCR/NOT finish deadenylation via 3’ to 5’

exonuclease digestion [10, 34]. Without the polyA tail, the interaction of the mRNA to

the polyA binding proteins (which stabilize the bridge) cannot occur. Without the pro-

tein bridge that circularizes the mRNA, the 5’ cap dissociates from the mRNA (through

the action of DCP1), leaving both ends subject to exonucleolytic action [35]. While

it is currently not possible to measure the intermediate steps of this pathway, experi-

ments with the deadenylases deactivated can be used to understand the dynamics of the

system.

miRISC (microRNA Induced Silencing Complex) is one of the deadenylation dependent

mRNA degradation pathways. This pathway uses microRNA (miRNA) to selectively

target mRNA for degradation. miRNA are short non-coding RNA sequences (approxi-

mately 20-30 nucleotides) known to be one of the key regulators of gene expression [15].

They exert their function through complementary base pairing with the target mRNA.

Depending on the location of base pairing with an mRNA, miRNA can block ribosome
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initiation, enhance ribosome initiation, or block ribosome action. In the miRISC path-

way, miRNA serves to target the degradation/silencing complex to target mRNAs. The

miRISC pathway plays a very prominent role in mRNA degradation [1, 15, 36].

In Chapter 1, we present the process of building a model for the miRISC degradation

pathway. The work is made possible by the comprehensive assay of the miRISC degra-

dation pathway by [10]. GW182/AGO is the docking platform for the miRNA and the

suite of proteins involved in the miRISC degradation pathway [10, 36]. In [10], it was

found that NOT1 and PAN3 make direct interactions with AGO through a coimmuno-

precipitation assay. Then, to quantify the contributions of these two protein factors

in the degradation pathway, a series of experiments where one or more of the factors

(miRNA, NOT1 and/or PAN3) were removed or knocked down were preformed. From

this, it was concluded that NOT1 is a more relevant factor than PAN3 in mRNA desta-

bilization. Furthermore, a hypothesis regarding the recruitment of NOT1 and PAN3 in

the miRISC degradation pathway was presented.

As a starting point, we used the data from the experiments to build and calibrate a model

that represented the preliminary hypothesis proposed in [10]. We translate the pathway

proposed in [10] into a Markov Chain model. Markov Chain models describe stochastic

processes which move through discrete states connected via a network of transitions.

Each experiment corresponds to a different Markov Chain model – deactivating one

of the factors is synonymous to deactivation of the corresponding transitions. Thus,

starting with the experiment with the most transitions deactivated, we calibrate the

reduced model. We continue on, one experiment at a time, until all the transitions are

active and we have determined the transition rates between all the states.

Ultimately, we find that the hypothesis presented in [10] is unlikely to be true – if it

were true, the data tell us that only a very small fraction of the target mRNA (7%)

would pass through the miRISC pathway. We propose an alternative hypothesis where

the interaction between GW182/AGO and NOT1/PAN3 occur before interaction with

the target mRNA. With this model, we get very good fits for all the data collected.

Deadenylation independent pathways

Alternative to deadenylation-dependant pathways, eukaryotic mRNA degradation can

also occur through deadenylation-independent pathways. Endoribonucleolytic pathways,

which degrade mRNA internally (instead of from the ends) are less common, but still

prevalent. These endonucleases (e.g. PMR1, ERN1/IRE1, Zc3h12a) often target ac-

tively translating mRNAs [13].
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Surveillance pathways, which degrade mRNA that would potentially make defective

proteins, are also independent of deadenylation. There are three types of surveillance

pathways: Nonsense Mediated Decay (NMD), NonStop mRNA decay (NSD) and No-

Go mRNA decay (NGD). In Nonsense Mediated Decay, mRNA with premature stop

codons or introns within the 3’UTR are degraded. This can be caused by mutations

in genes, errors in mRNA splicing, or errors in mRNA transcription. Conversely, for

mRNA with absent stop codons (i.e. the ribosomes would keep translating all the way

to the 3’ end), the NonStop mRNA decay pathway is activiated. This could be the result

of faulty transcription such that the stop codon is missing, or ribosome frameshifting

(the ribosome “reads” in a different frame). Lastly, the No-Go mRNA decay pathway is

activated when there are stalled ribosomes along the message. Stalling can be caused by

low tRNA availability or strong secondary structure. In these cases, ribosomes cannot

properly locate and finish translation of the mRNA. If this continues, many ribosomes

will be occupied and unable to make proteins. Ref. [37] provides a very comprehensive

review of the various surveillance pathways in eukaryotic cells, including hypotheses of

the biochemical pathways as well as common targets for each mechanism.

The last mechanism we review in brief here is the system of stress granules and P-

bodies. Stress granules are visible clusters of mRNA and proteins found in the cytoplasm

of stressed cells [38]. One of the first images of stress granules were captured by [39]

in plant cells under heat shock stress. Since then, the granules have been found in

a number of different organisms, including mammalian cells. The process is thought

to start by phosphorylation of the initiation factor elF2α [6]. TIA-1 and TIAR, both

mRNA binding proteins normally found in the nucleus, move to the cytoplasm and

spontaneously aggregate into stress suppressing translation of any mRNA to which they

are bound [40]. The mechanism of aggregation is akin to the aggregation of αβ proteins

in Alzheimer’s patients. Stress granules are thought to be sites for mRNA sorting,

sequestration and storage [41]. mRNA selected for degradation is passed to processing

bodies (P-bodies) [41, 42].

0.1.3 Gene Expression Control at the level of translation

After transcription of mRNA by RNA polymerase, the resultant mRNAs are read by

ribosomes. In this process, the nucleotide instructions are decoded by ribosomes and

transferRNA (tRNA) into amino acid sequences, which are then folded into proteins [9].

The nucleotide instructions are encoded in “genetic code”, made of nucleotide triplets,

called codons. As there are 4 nucleotides, there are 43 = 64 possible codons [43]. Each

codon (apart from the 3 stop codons, UAG, UGA and UAA), signifies one of the 20

amino acids and some of the amino acids are represented multiple times in the code.
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tRNAs are the adaptor molecules to bring amino acids to the ribosome: one side carries

the amino acid, and the other side has the 3-nucleotide sequence for complementary base

pairing with the codon on the mRNA [44]. The tRNA delivers the appropriate amino

acid to the ribosome. The ribosome catalyzes the aminotransferase reaction and then

moves on to the next codon. When the ribosome reaches a stop codon, the amino acid

chain is released and the protein sequence is complete.

The protein synthesis process can be broken up into several steps: initiation, elongation

and termination. Each of these steps can potentially contribute to gene expression

control. That being said, in general, the amount of protein synthesized is directly

correlated to the amount of mRNA present – that is to say, that much of gene expression

is controlled at the mRNA level [2, 45]. But there are indeed deviations for some genes,

as well as in different conditions [2, 46].

In protein synthesis, initiation is thought to be the rate limiting step. A number of

studies have explored the idea of “Ribosome Economics” [47–49]. Ribosomes are ex-

tremely energetically expensive to produce and thought to be in limited supply. Thus

the idea that cell viability is dependent on appropriate allocation of ribosomal resources

depending on the current condition is not too farfetched. Indeed, there are mechanisms

to rescue ribosomes inappropriately stuck on non productive transcripts, for example,

the three mRNA surveillance pathways [37]. Conversely, there are also mechanisms to

sequester ribosomes away. In some conditions, ribosomes were found to “hibernate”. By

dimerizing the 30S subunits, ribosomes are effectively sequestered away [50].

The ribosome is composed of several subunits which must come together with the help of

a number of initiation factors. The 5’ cap structure provides a base for the small subunit

of the ribosome and initiation factors to assemble. Additionally, a tRNA carrying the

first amino acid (always methionine) associates. This complex scans the mRNA to find

the start site (AUG), which makes complementary base pairing with met-tRNA. From

here, the 60S subunit of the ribosome (large subunit) can associate, and protein synthesis

can proceed. Hiding the start site is an effective method of gene expression control [51].

As all coding regions for genes necessarily begin with AUG, all proteins start with

a methionine amino acid. This can be exploited to label proteins produced during an

experiment. Azidohomoalanine (AHA) is a synthetic amino acid that has a similar shape

as methionine. By using a cell culture free from methionine, AHA will be incorporated

into newly synthesized proteins. AHA contains an azido group which can be used for click

chemistry. In Chapter 4, this strategy is used to label newly synthesized proteins. To

separate the existing proteins from the newly synthesized (labeled) proteins, the lysate is

run though alkyne agarose beads. The azido group on the AHA-labeled proteins reacts

with the alkyne triple bonds in a cycloaddition reaction, attaching themselves to the



0. Introduction 11

beads, while the unlabeled proteins wash through. In this way, the newly synthesized

proteins are isolated and can be measured. Elongation of the nascent protein chain can

begin once the ribosome has been properly assembled on the mRNA. The met-tRNA

enters the P-site of the ribosome causing the ribosome to change shape and open the

A-site. A new tRNA which matches the current codon on the mRNA enters the A-site.

If the matching is correct, the ribosome changes shape again, and catalyzes the peptide

bond reaction between the two amino acids (methionine and the new one). Once the

bond is formed, the ribosome changes shape again, moves forward along the mRNA

chain putting the newly added amino acid in the P-site and opening the A-site again.

The “used up” tRNA (formerly met-tRNA in this case) is moved to the E-site. This

process continues until the ribosome comes upon a stop codon (UAG, UGA or UAA).

A detailed description of the ribosomal conformation changes can be found in [52].

Unsurprisingly, elongation (and thereby protein synthesis) is a much slower process

than RNA synthesis. For reference, in E. coli elongation occurs at ∼20 amino acids per

second [53], whereas RNA is synthesized ∼1000-5000 nucleotides per second [54]. The

discrepancy is from the combinatorics of the job at hand and the proofreading steps

necessary. There are only 4 nucleotides for RNA synthesis compared to the 20 amino

acids for protein synthesis. For each elongation cycle in translation, tRNA diffuse into

the A-site, many of which may not match the current codon. These tRNA need to

diffuse away before a new tRNA can enter. The waiting time for the correct tRNA to

diffuse into the A-site depends on the concentration of the correct tRNA and also the

diffusion rates in the system [55]. In this way, the precise codon sequence can influence

the rate of protein synthesis; some amino acids are signified by more than one codon,

and the tRNA matching these codons have different abundances in the cell [46, 56, 57].

Indeed, much scientific effort has gone into measuring the decoding rates of the 61 sense

codons [56, 58–61]. Furthermore, the concentration of specific tRNAs can be different in

different conditions, and this in turn can facilitate or impede synthesis of specific proteins

[46, 62]. If the waiting time is too long, mRNA degradation pathways can be activated

to “rescue” the ribosomes. Alternatively, the ribosome may be blocked by 3-dimensional

objects in the path of translation, also increasing the waiting time. For example, large

secondary structures, protein mRNA interactions, other ribosomes or RNA polymerase

(in the case of prokaryotes, where transcription and translation are sometimes coupled)

can all impeded ribosome progress [57]. In these cases, the ribosome can drop off and

thus would not finish translation of the protein. Furthermore, ribosomes can also drop off

in the normal elongation process. Each elongation step involves several conformational

changes of the ribosome. With each conformational change, the ribosome subunits shift

and rotate with respect to each other [52]. Again, in these cases, the ribosome can
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drop off before completing translation of a full protein. The ribosome drop off rate was

estimated to be approximately 1 per 10,000 elongation steps in prokaryotes [55, 63, 64].

Despite evidence of ribosomal drop off both in vitro and in vivo [63, 65–67], analysis of

ribosomal footprinting experiments failed to find the existence of measurable ribosome

drop off [68–70]. Upon closer inspection of the analysis by [68–70], we found that the

method normally used to determine drop off was not sensitive enough to detect it. The

reason for this is that the sensitivity of these methods depended on the length of the

open reading frame (see Section 3.1.3 for more details). In the systems considered, the

drop off rate was simply too low with respect to the length of the open reading frame (i.e.

low drop off rate and short genes) to be measurable by those methods. In Chapter 3, we

use a novel highly sensitive data analysis method to quantify the ribosome drop off rate

in previously collected data (including those from [68–70]). We were able to measure a

statistically significant drop off rate ranging from 1.4 · 10−4 to 5.6 · 10−4 [3]. E. coli has

an average gene length of 300 codons – if we assume drop off in the range of 4 · 10−4

events per codon, approximately 10 out of 100 ribosomes will drop off before reaching

the stop codon.

Once the ribosome reaches the stop codon, the last step of translation, termination, can

begin. The stop codons are recognized by two release factors (RF1 and RF2). These

factors trigger hydrolyzation of the ester bond between the last tRNA and its amino

acid, releasing the amino acid chain. The amino acid chain may need further folding

or post translational modifications before becoming a functional protein. Release factor

3 (RF3) comes to release RF1 or RF2 from the ribosome’s A-site, and from there, the

ribosome can be disassembled from the mRNA so that it may be reused. In some cases,

the ribosome has been shown to be “recycled” to translate the same mRNA.

The processes of initiation, elongation, drop off and termination are all possible processes

that could be influenced for the purposes of gene expression control on the level of protein

synthesis. Increased rates of initiation, elongation and termination can all potentially

increase the rate of protein synthesis. Increased rate of drop off would decrease the

rate of protein synthesis. The processes of protein synthesis serve as the penultimate

point of gene expression control. Furthermore, protein synthesis serves as a robust

target for antibiotics. Because ribosome structure is well conserved within a kingdom,

differences in ribosomes between prokaryotic and eukaryotic translation can be exploited

to selectively target bacteria [71].
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0.1.4 Gene Expression Control at the level of protein degradation

The abundance of protein present in the cell is determined by the net effects of protein

synthesis and protein degradation. Proteins are extensively turned over. Similar to

mRNA, protein degradation facilitates changes in the gene expression pattern, regulation

of cellular processes, recycling of protein precursors and removal of damaged proteins.

Protein lifetimes vary for different proteins – for example, in mammalian cells, proteins

involved in signaling pathways tend to have short lifetimes, on the order of minutes, while

proteins for basic cellular processes such as translation, respiration and metabolism tend

to have longer lifetimes, on the order of hours or even days [72].

Proteins are degraded through a number of different pathways. Similar to mRNA degra-

dation, proteins can be degraded through specific as well as non-specific degradation

pathways. In eukaryotes, the major protein degradation pathways are through lyso-

somes (non-specific) and the Ubiquitine-Proteasome system (specific).

Non-specific protein degradation occurs in special organelles called lysosomes. Lyso-

somes are small, acidic organelles with a suite of more than 50 different enzymes to

break down all types of biomolecules, including proteins. Molecules are introduced into

the lysosome through autophagocytosis or endocytosis, and the suite of enzymes degrade

the contents. In addition to non-specific protein degradation pathways, there are also a

number of protein-specific pathways. The most prominent pathway in eukaryotes is the

ubiquitine-proteasome system (UPS). In this system, a peptide bond is formed between

the target protein and ubiquitine, a small 76 amino acid protein. A single protein can be

ubiquinated up to 4 times. Marked proteins are shuttled to proteasomes for degradation.

The UPS pathway is a prime example of a protein degradation which can be described

as a multi-step process with several biochemical stages. For these pathways, the widely

accepted assumption of exponential decay is often not sufficient to describe the degra-

dation of the target proteins. Furthermore, the erroneous assumption of exponential

decay leads to incorrect calculations for average life time and half-lives of the proteins

in question.

In Chapter 4 we characterize the degradation curves for over 5000 proteins in the mouse

proteome. The data was collected by Erik McShane in the lab of M. Selbach at the Max

Delbruck Center in Berlin-Buch using metabolic pulse-chase labeling and quantitative

mass spectrometry. By fitting the degradation data to two candidate models and using

the Akaike Information Criterion to evaluate the suitability of each model with respect

to the available data, we determine that ∼15% of the proteins are degraded in a non-

exponential fashion. In all cases, the non-exponentially decaying (NED) proteins were

less stable in the first few hours of their life and more stable as they age. Repeating
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the experiments and analysis in human fibroblast cells, we found that the degradation

profiles were mostly conserved. Many non-exponentially degraded proteins are subunits

of multiprotein complexes. In all, we show that non-exponential degradation is a non-

trivial contribution to protein degradation. It is evolutionarily conserved and it has

functional consequences for protein complex formation [4].

0.2 Experimental Techniques

My contribution to the research reported in this thesis is purely focused on mathematical

modeling and statistical data analysis. However, a crucial step preceding both of those

processes is the collection of experimental data. In this section, I describe some of the

experimental techniques for collection of the data used in our studies.

0.2.1 F-luc reporting (Chapter 1)

There are a number of bioluminescent molecules which can be used in biochemical ex-

periments. One such molecule is “Firefly luciferase” (F-luc). This is a class of enzymes

produced by fireflies that generate light. The gene to make F-luc can be coupled to a

gene of interest. By measuring the amount of luminescence, researchers can determine

the expression level of the gene of interest.

In [10], F-luc is coupled to Nerfin, a known target of the microRNA miR-9b.

0.2.2 mRNA Sequencing and Ribosomal Footprinting (Chs. 2 and 3)

RNA sequencing (RNA-seq) is the key technology critical to ribosome profiling experi-

ments. With this technology, we can measure the amount (and identities) of RNA at a

given moment in time. mRNA sequencing is often preformed in parallel with Ribo-Seq

to serve as a baseline for comparison.

First, the RNA is isolated and digested with nucleases to generate fragments.1 The

fragments are ligated to adapters (the sequence of the adapter is known), and the re-

sulting fragments are amplified by PCR2. The adapters associate with the clusters in the

1If the experiment will be used as a baseline for a parallel Ribo-Seq experiment, digestion time will be
adjusted to produce fragments approximately 30 nucleotides long (the length of the ribosome protected
fragments), and further selected by a gel.

2Polymerase Chain Reaction: a technology to amplify (make many copies of) a particular RNA or
DNA sequence. It is preformed by reacting the template RNA/DNA with RNA/DNA polymerase and
the appropriate RNA/DNA bases. The temperature is cycled to promote and dissociate the double
strand pairing, thereby copying the template sequence.
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sequencing machine, immobilizing the fragment. Then, fluorescently labeled nucleotides

(one color for each base) are added, and unincorporated nucleotides are washed away.

The fragments grow one nucleotide at a time, and the fluorescence is captured by a

camera. The flourescent part is then cleaved away, and the cycle is repeated again. In

this way, the sequence is “read out” by sequential photos. Modern machines can read

up to 500,000 bases/hour. The runs take 2-11 days to complete, and the output files

range from 5-600GB.

Ribosomal footprinting is a variant on RNA-seq. Instead of sequencing all mRNA, the

mRNA sequences actively being translated are isolated and sequenced. During transla-

tion, a length of the mRNA ∼30nt long is completely inside the ribosome. Conveniently,

the ribosome sterically protects the mRNA from nucleases. These “ribosome protected

fragments” (RPF) are then isolated and sequenced to determine the locations of the

ribosomes.

For sequencing experiments, mapping the fragments to positions on the reference genome

is a non-trivial computational task. For this, we use a pipeline of existing software tools.

Details can be found in Chapter 3 and Supplementary Section 2.

0.2.3 Pulse Chase (Chs. 4 and 5)

Pulse chase experiments are often used to measure the decay of macromolecules such

as proteins or mRNA. The experiment consists of two phases: First in the “pulse”

phase, cells are exposed to a labeling compound that is integrated into newly synthesized

macromolecules of interest. For example, if one wants to follow the fate of proteins,

radio or isotope labeled amino acids can be introduced. If one wants to follow the fate

of mRNA, radio or isotope labeled nucleic acids can be introduced. In the second phase,

the chase phase, the same compound in the unlabeled form is added in excess, replacing

the labeled form. Any macromolecules synthesized during the “chase” phase will not be

labeled. At the end of the chase, the macromolecules that were synthesized during the

pulse can be tracked.

Following the pulse, the pool of labeled molecules consists of molecules of different ages,

with age ranging from a minimum of 0 (newly synthesized) to a maximum of the pulse

length. This population of molecules of various ages is collected in the chase phase.
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For molecules that decay exponentially, the age of the molecule does not affect the

probability of degradation. However, this is not the case for non-exponentially de-

grading molecules. Thus, pulse-chase experiments with different pulse lengths for non-

exponentially decaying molecules result in different degradation patterns, due to different

starting age distributions in the pool of measured molecules.

With a mathematical model of the degradation process, one can derive the functions to

predict the degradation pattern resulting from a given pulse length. In Chapter 5, we

go over the calculation and discuss the implications of the pulse time on the measurable

dynamics and considerations for optimal experimental design. The theory is applied to

all the calculations in Chapter 1 and 4 as well as the case study example in Chapter 5.

0.2.4 Quantitative Mass Spectrometry (Chapter 4)

Mass spectrometry is a method to help identify molecules in a sample. The sample is

fragmented by electron beams and the fragments are sorted by their mass/charge ratio.

The abundances of the fragments can be measured, and the identity of the original

molecule can be extrapolated with knowledge of how molecules tend to fragment.

By clever manipulation of the growing conditions in cells which then produce the sample

to be measured in the mass spectrometer, Erik McShane and Matthias Selbach at the

Max Delbruck Center in Berlin-Buch measure the abundances of over 5000 proteins in

the cell over time. To do this, they use a combination of stable isotope (SILAC) and

click-chemistry (AHA) labeling (Figure 2).

Cell cultures are cultivated in growth medium containing amino acids labeled with

heavy/medium/light isotopes. The three populations (heavy, medium and light) are

subject to a labeling pulse where methionine is depleted and replaced by Azidohomoala-

nine (AHA) for 1 hour. AHA is a non-natural amino acid which incorporates readily in

place of methionine and contains an azido group which can be used in click chemistry.

Thus in all three populations, the proteins synthesized in the last hour are labeled with

AHA.

Measurement of protein abundance over time is achieved by “chasing” the synthesized

proteins in each cell population (heavy/medium/light) for a different time. One cell

population serves as the “baseline” measurement with chase time = 0, and the other

two populations provide data on later times. At the end of the chases, the populations

are mixed together and the proteins are isolated. Protein abundance is measured by

quantitative mass spectrometry. For each experiment with three isotope populations,
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we can collect two time points; one isotope population is used as a baseline representative

of the proteins present at t = 0.

The peaks from the differently weighted populations are compared to each other to

obtain the relative ratio difference between the time points. In other words, the infor-

mation we get is that the amount of protein at t = currentTime is X times less then the

amount of protein at t = 0.

Each protein fragments in a predictable way, resulting in a characteristic pattern of

peaks. The ratio calculation of any one protein and time is aggregated from the data

of several peaks. Peaks are analyzed with the MaxQuant software package [73]. The

number of peaks evaluated for each calculation is known as the quantification “counts”.

In general, proteins of low abundance are not as easy to measure as proteins of high

abundance. Furthermore, smaller proteins are not as easy to measure as large proteins.

Low-abundance and small proteins will tend to have lower quantification counts. We

omit data where the number of quantification counts does not pass a minimum threshold.

Lastly, based on the assumption of log-normal errors, all further analysis is with the

logged data.

0.3 Mathematical Modeling framework

Models are representations of complex systems or processes. Mathematical models use

mathematical concepts and symbolic language to describe the connections and interac-

tions within a system. Indispensible for systems biology, models can be used to better

understand biological systems, study the effects of different conditions and make predic-

tions about the system’s response.

In Chapter 1, we use a mathematical model to explore the biochemical network for

mRNA degradation through the miRISC pathway. In Chapter 3, we model ribosome

density on mRNA length as a result of drop-off and use this model to fit the data from

RiboSeq experiments. In Chapter 4, we evaluate the protein degradation patterns in

the mouse proteome for signs of non-exponential decay. To this aim, we use the data to

calibrate two simple models – exponential decay and a 2-stage model – and find model

better describes each protein.

Mathematical models can be developed by translating physical phenomena into math-

ematical equations. For example, a biochemical degradation process which occurs in

several steps can be conveniently modeled as a Markov chain. In this model, each

Markov state represents a biochemical state of the degradation process. The rate of
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Figure 2: Experiment scheme for measuring protein degradation. Cell cultures are
cultivated in growth medium containing amino acids labeled with heavy/medium/light
isotopes, red/orange/pink, respectively. The three populations (heavy, medium and
light) are subject to a labeling pulse where methionine is depleted and replaced by

Azidohomoalanine (AHA) for 1 hour. Depiction of the process by Erik McShane.

reaction or transitions between the states are the fluxes between the Markov states.

Thanks to this modeling framework, we are able to create a theoretical bridge between

the single molecule perspective of the biochemical process of degradation and the cell

culture measurements, as explained in Chapter 5.

In summary, the Markov chain gives us a description of a probabilistic stochastic process

over the states. From this, we can solve the equations to find the lifetime distributions

of the molecules, and then transform them into predictions of the population average

[74]. While single molecules are difficult to measure in the lab, population averages are

much more easily measured. These measurements can be used to establish the structure

of the underlying biochemical network and solve for the transition rates in the model.
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0.4 Closing remarks

In the process of gene expression, there are a number of points where gene expression

control can occur. I have arranged the Chapters 1-4 in order of when the mechanism(s)

studied might occur.

The first checkpoint is to control the amount of mRNA available for translation. In

Chapter 1, we explore the biochemical network for one of the major pathways for mRNA

degradation - the miRISC pathway. The second checkpoint is to control the amount of

proteins. The processes in Chapter 2 encompasses both checkpoints in E. coli under

stress conditions. With mRNA-seq, we get a picture of the transcriptional state rep-

resentative of the net effects of transcription and mRNA degradation. With Ribo-seq,

we get a picture of the translational state, representative of the effects of initiation and

elongation3. Chapter 3 quantifies the effect of ribosome drop-off. Changes in ribosome

drop-off rate affect the protein synthesis rate (second checkpoint). And lastly, we have

a proteome wide study of protein degradation in Chapter 4.

Chapter 5 presents the mathematical modeling framework used in most of our work and

derivation of the experimentally measurable quantities. Furthermore, the implications

of pulse time on the measurable dynamics and considerations for optimal experimental

design are discussed.

This dissertation is organized as a “cumulative dissertation”. Part I contains the papers

as well as a discussion of the work completed. Chapter 1, 2, 3 and 5 have been published,

and Chapter 4 is under review. The supplementary sections to each of the papers are

found in Part II. Other work not included in the papers are found in the appendices, as

well as documentation for the tools developed in-house for analysis.

3but not complete synthesis nor protein degradation
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Figure 3: Overview of the dissertation
miRISC cartoon from [10]
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0.5 Author contributions

In this cumulative dissertation, I have had the fortune to make many collaborations

with other scientists. The following outlines my personal contributions to the projects.

All work was supervised by Dr. Angelo Valleriani in the department of Theory and

Biosystems at the Max Planck Institute for Colloids and Interfaces.

Chapter 1: Single-molecule modeling of mRNA degradation by miRNA: Lessons

from data [1]

All authors took part in conceiving the project, developing the model

and writing the manuscript. I extracted the data from Braun et. al.,

2011, preformed the data analysis and parameter estimation.

Chapter 2: Bacteria differently regulate mRNA abundance to specifically respond

to various stresses [2]

Large collaboration with many members. I designed many of the met-

rics. I made the initial calculations on copy number, ribosome density

and translational burden. Our main contribution to the manuscript was

the fold change analysis. I also made the calculations to test for repro-

ducibility and statistical significance. Additionally (but not included in

the manuscript), I preformed additional analyses on codon usage, ribo-

some speed and trends by decile. The structure used to manipulate the

data is documented in Appendix C.

Chapter 3: Quantitative assessment of ribosome drop-off in E. coli [3]

This project was the evolution of [2]. I discovered that there was a

length dependent relationship to ribosome density, through the decile

analysis. Furthermore, it appeared that the relationship between length

and ribosome density followed a power law. Together, we concluded

that this could be due to the phenomenon of ribosome drop-off, and we

designed an analysis to test it. DC preformed all the bioinformatics and

coded the scripts for analysis. I used the mapped reads from DC to

confirm the results in parallel using my own scripts.

Chapter 4: Global quantification of cellular protein degradation kinetics [4]
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Another large collaboration with many members. I was involved very

early on with the idea of age-dependent degradation. I designed the

normalization schemes. I implemented all the normalization schemes

and parameter estimation machinery. I made the calculations to describe

the lifetime properties of each protein (e.g. average lifetime, half-time,

steady state distributions, etc.) I also made many of the calculations

to evaluate reproducibility, sensitivity and statistical significance. The

structure used to manipulate the data is documented in Appendix D.

Chapter 5: Degradation Parameters from Pulse-Chase Experiments [5]

All authors took part in conceiving the project, developing the experi-

ment and writing the manuscript. I extracted the data from Wheatley,

et. al., 1980. I preformed the data analysis, parameter estimation and

sensitivity analysis on the system.
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Abstract

Recent experimental results on the effect of miRNA on the decay of its

target mRNA have been analyzed against a previously hypothesized single

molecule degradation pathway. According to that hypothesis, the silencing

complex (miRISC) first interacts with its target mRNA and then recruits

the protein complexes associated with NOT1 and PAN3 to trigger deadeny-

lation (and subsequent degradation) of the target mRNA. Our analysis of

the experimental decay patterns allowed us to refine the structure of the

degradation pathways at the single molecule level. Our analyses show that

the hypothesized biochemical network must be complemented by additional

pathways in order to fit the data. More surprisingly, we found that if the

previously hypothesized network was correct, only about 7% of the target

mRNA would be regulated by the miRNA mechanism, which is inconsistent

with the available knowledge.

Based on systematic data analysis, we propose the alternative hypothe-

sis that NOT1 interacts with miRISC before binding to the target mRNA.

Moreover, we show that when miRISC binds alone to the target mRNA,

the mRNA is degraded more slowly, probably through a deadenylation-

independent pathway.

The new biochemical pathway we propose both fits the data and paves the

way for new experimental work to identify new interactions.

1.1 Introduction

1.1.1 Background

In living cells, the level of protein expression is thoroughly regulated. Many crucial

processes for this regulation occur at the post-transcriptional level. In this context, the

control mechanisms acting on messenger RNAs (mRNAs) play a pivotal role. Indeed,

living cells are endowed with a number of biochemical pathways converging on cytosolic

mRNAs, that serve to enhance or repress gene expression. These pathways are known

to operate (1) either by enhancement [75, 76] or repression [15, 77] of translation or (2)

modulating mRNA lifetimes [15, 77–79]. The global picture emerging from the grow-

ing body of experimental evidence, depicts a complex interaction network which affects

the mRNAs available for translation. This network is composed of several biochemical

pathways, often interwoven and cross-talking [80, 81], and involves mRNA binding pro-

teins as well as non coding RNAs [31, 82, 83]. While there are a number of mechanisms
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responsible for mRNA degradation in eukaryotic cells [31], the decay of messages medi-

ated by micro-RNAs (miRNAs) plays a prominent role in the control of gene expression

[15, 84, 85].

Despite extensive study, the topology and dynamics of the miRNA-mediated mRNA

degradation pathway are still unclear. One of the main challenges stems from the fact

that intermediate states of the pathway are unknown or difficult to quantify; experimen-

tally, it is only feasible to measure the final state of the pathway (e.g. the decay pattern

of the target mRNA). Bridging the gap between observed decay patterns and degradation

pathways is non-trivial [86], since the former refer to a population average and the latter

refers to the single-molecule stochastic process of degradation. Here we apply a rigor-

ous strategy to reconstruct the miRNA-mediated degradation pathway, starting from

experimentally measured decay patterns. Surprisingly, we find the previously proposed

pathway not consistent with the experimental data. We propose an alternative model

which both fits the decay pattern and allows us to gain some insight on the network

topology.

1.1.2 The experimental data

Figure 1.1: The biochemical degradation network hypothesized by Braun et al. [10]
for the degradation of a target mRNA by miRNA in D. melanogaster S2 cells. According
to this network, the mRNA in its initial state (green circle) first binds to the miRISC
complex thus leading to a new biochemical state (black circle). The miRISC and its
target then recruit the proteins NOT1 and/or PAN3, leading to the two states indicated
with the blue and yellow circle, respectively. From these two states the mRNA is finally
degraded through a complex sequence of events including deadenylation followed by
decapping [15]. This unspecified sequence of events is indicated with dotted arrows in

all figures of this paper.

To clarify the interplay of the various factors in a degradation pathway involving miRNA,

and the protein complexes NOT1 and PAN3, Braun et al. [10] performed a series of
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controlled knock-down experiments in D. melanogaster S2 cells containing constructs

for the miRNA miR-9b, its target mRNAs, namely the F-Luc-Nerfin mRNAs, and the

factors NOT1 and PAN3, which are known to trigger mRNA deadenylation. In each ex-

periment, a subset of NOT1, PAN3 and/or the miRNA miR-9b were selectively knocked

down, yielding cell lines expressing different combinations of those factors: a control line

without the miRNA, a cell line with miR-9b only, a cell line with NOT1+miR-9b (but

not PAN3), a cell line with PAN3+miR-9b (but not NOT1), and finally a cell line with

all three factors NOT1+PAN3+miR9-b. After steady state expression of the factors,

the transcription of mRNA was blocked and the decay patterns over time were measured

and reported (see Figure 1.2).

Figure 1.2: The experiment performed by Braun et al.[10] consists of knocking down
several permutations of the target’s degradation factors. The “Control (-)” data concern
an experimental set-up in which the miR9-b is not expressed; the “PAN3 & NOT1 KD”
data concern an experimental set-up in which only the miR9-b is expressed but both
NOT1 and PAN3 are knocked down; the “NOT1 KD” data concern a set-up in which
miR9-b and PAN3 are expressed while NOT1 is knocked down; the “PAN3 KD” data
concern a set-up in which miR9-b and NOT1 are expressed while PAN3 is knocked-
down; the “Control (+)” data concern a set-up in which all three factors are expressed.
The data have been extracted from figure 7A of [10]. The numerical values are reported

in the supplementary materials.

The conclusion of this detailed experimental study is that NOT1 is a more relevant

factor than PAN3 in destabilizing the mRNA [10]. When only NOT1 is knocked down,

the decay of F-Luc-Nerfin mRNA is significantly slower (yellow curve, Figure 1.2) than

the control (red curve, Figure 1.2). In contrast, the effect of PAN3 knock down is

less significant (blue curve, Figure 1.2). These findings apparently confirm that the

degradation pathway through NOT1 in Figure 1.1 is the most prominent pathway for

degradation of the target mRNA. Although this conclusion is relatively robust, the

published analyses do not validate the hypothesized biochemical degradation pathway

given in Figure 1.1. Indeed, in the negative control (green curve in Figure 1.2), the
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miRNA is knocked-down so that the formation of a specific silencing complex miRISC

is suppressed, yet the target mRNA still decays. Additionally, when only the miRNA

is expressed while PAN3 and NOT1 are knocked-down, the target mRNA decays (black

curve in Figure 1.2), but is definitively more stable than in the negative control. Both

of these cases suggest that the model hypothesized in Figure 1.1 should be expanded to

include additional degradation pathways.

An important conceptual consideration is that Figure 1.1 depicts degradation from the

single-molecule perspective whereas the curves in Figure 1.2 are averages as a function of

time. Therefore, our strategy consists in starting with the network shown in Figure 1.1

and validate it against the experimental decay patterns. At the same time, we will

propose alternative parsimonious extensions of the network when the validation fails.

1.2 Methods

As previously mentioned, the relationship between degradation pathways (such as the

one in Figure 1.1) and decay patterns (such as those in Figure 1.2) is not trivial. If the

decay pattern was exponential, the halftime of the mRNA population estimated from

the decay pattern would be directly related to the rate of decay of single molecules. The

decays shown in Figure 1.2 are clearly not exponential; if they were, the traces would

appear as straight lines when plotted in a linear-log scale (see Figure 7A in [10]).

Figure 1.3: This two-state model is able to fit all of the decay patterns in figure 1.2,
by an appropriate choice of the three fitting parameters, λ, µ, ν. In this context, the
mRNA is initially in the state A. From this state it can be degraded directly with a
rate µ or change biochemical state, with rate λ, from which it is then degraded with
rate ν. Although this network performs a better fit of the data and is preferred to
the exponential fitting based on the AIC criterion, the interpretation of the states is
unclear. The fitting curves and the parameters are discussed in the supplementary

materials.

The issue of relating complex degradation pathways to decay patterns has been tackled

in [86] and in [87]. In [86] it was shown that decay patterns similar to those depicted in
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Figure 1.2 can be generated by single-molecule networks satisfying certain properties, if

one assumes that the transitions between biochemical states can be modeled as first-order

chemical reactions. The mathematics supporting this reasoning was presented in [86] and

is summarized in the supplementary materials where we show how to derive the necessary

mathematical functions using first passage time methods [88–90]. In order to generate

decay patterns such as those in Figure 1.2, the corresponding single-molecule degradation

pathway must be composed of at least two states from which degradation is possible.

Thus, in principle, one can either hypothesize a network of states that represents the

biochemical pathway of degradation based on predictions and prior knowledge, or one

can use the mathematical relationships mentioned above to find the most parsimonious

network that fits that data. The most parsimonious network of states that is able to fit

each one of the curves in Figure 1.2 is given by a two-state model depicted in Figure 1.3.

While the network in Figure 1.3 results in a definitively better fit to the data and thus

could be used to derive quantities such as the average lifetime and the age dependent

degradation rate, it does not address the question as to whether or not the network

in Figure 1.1 is a suitable framework for the decay patterns observed in Figure 1.2.

To address this question we employ a hierarchical strategy: (i) we start by fitting the

negative control decay pattern (the green trace “Control (-)” in Figure 1.2) to the most

parsimonious model (Figure 1.3) and thereby fix the corresponding three rates; (ii) we

then consider the next decay pattern with one additional decay factor active and enlarge

the network of states to accommodate the additional decay factor. We continue until

each curve has been evaluated and the corresponding network is built.

1.3 Results

Based on the hierarchical strategy above, we start with the “Control (-)” curve (green

decay pattern, Figure 1.2). This curve describes the decay of the mRNA when none

of the degradation factors (miRNA, NOT1 and PAN3) are present. In the framework

of the hypothesized network in Figure 1.1, this would correspond to all downstream

processes inactive thus reducing the network to just the first state (green circle). This

is obviously not sufficient to explain the observed decay, since a single state without

decay would produce a horizontal line (i.e. no decay). This one-state scenario is also not

consistent with biological reality. Indeed, even the most stable cellular macromolecule

is eventually degraded. In particular, there are many biochemical pathways devoted to

mRNA degradation [31].

In the absence of further information, we fit the green ”Control (-)” curve of Figure 1.3 to

the most parsimonious (or minimal) network that still captures the dynamics of the data
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(Figure 1.4). It turns out that in absence of miRNA-dependent degradation, mRNA

molecules can be degraded through two pathways, differing by their kinetic features

(see Figure 1.3). The first class of pathways (governed by the rate µ in Figure 1.3) is

characterized by a single step and it can be representative of the set of “constitutive”

reactions which target mRNAs non-specifically and are catalyzed by enzyme complexes

such as the exosome [31]. The second class of pathways (along the path λ and ν in

Figure 1.3) exhibits two steps and represents the degradation processes (independent of

miRNAs) passing through a control step of a more complex degradation pathway (e.g.

the preliminary binding of specific proteins to the target mRNA). One such example

independent of miRNA and the NOT1/PAN3 factors is the ARE-mediated degradation

pathway [79, 91].

Figure 1.4: The negative control decay pattern can be fitted with the single
molecule network from figure 1.3. This delivers the rates λ, µ and ν that will
be kept constant through any successive enlargement of the network when consid-
ering the other decay patterns. The values of the rates are: λ = 0.0008 min−1,
µ = 0.0276 min−1, ν = 0.0028 min−1, with confidence intervals [0.0002, 0.0013],

[0.0229, 0.0324], [0.0018, 0.0038], respectively.

1.3.1 The crisis of the original hypothesis

At the next level of our hierarchical approach we consider the decay pattern that results

when the miRNA is expressed but NOT1 and PAN3 are knocked-down (black decay

pattern in Figure 1.2). When PAN3 and NOT1 are knocked down, the arrows from

the black state to the blue and yellow states are absent, resulting in the right pathway

having no transition to degradation. However, if we look at the corresponding decay

pattern (black line in Figure 1.2), we realize that such a structure is not compatible with

the data because a vertex without transition to degradation would imply a flattening of

the curve to a steady state amount of mRNA, corresponding to the amount of mRNA
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Figure 1.5: The initial hypothesis of Braun et al. [10] is complemented with an
alternative pathway that competes with the miRNA-mediated pathway. Initially, all
mRNA start at the state represented by the central green circle and follow one of the two
competing paths. The path towards the left (denoted by λ) is exclusive of the miRISC
pathway (towards the right, denoted by λR), and vice versa. The rates λ, µ and ν have
been fixed through the fitting performed in Figure 1.4. The negative control “Control
(-)” data concern the decay pattern of the mRNA when only the states represented by

the green circles are available.

arrested in this rightmost state (black circle). To model the observed decay of mRNA,

we need to postulate an additional transition from the rightmost state (represented by

the black circle, after binding with miRISC) to degradation. A possible interpretation

is that the additional transition (from the black circle to degradation in Figure 1.6)

includes unknown biochemical degradation pathways which are independent of dead-

enylation. Supporting this hypothesis are the findings reported in [92]: they report that

the binding of the miRISC complex to the target mRNA can promote the dissociation

of Poli-A-Binding Proteins (PABPs). Indeed, PABPs are known to protect the poli-A

tail of the mRNA from being hydrolyzed, thus stabilizing the mRNA. Thus, miRNA-

mediated PABP dissociation can trigger NOT1 and PAN3-independent deadenylation,

which eventually leads to the degradation of the mRNA [92].

Fitting the data to the network depicted in figure 1.6 reveals several crucial aspects of

the hypothesized network of Figure 1.1 and shows the shortcomings of the latter. While

the fit of the data using the network in Figure 1.6 works pretty well (see Figure 1.7),

it fixes the rate λR associated to the binding of miRISC on the mRNA. This rate is

therefore independent of the transitions occurring downstream.

The next step in our hierarchical program, however, would be to take the next decay

patterns and fit them to the network given in Figure 1.5 activating the appropriate

pathway depending on which factor (NOT1 and/or PAN3) is present while keeping λR
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Figure 1.6: After fixing the rates µ, λ and ν from the fitting of the negative decay
pattern in figure 1.4, we use this network in order to model the decay pattern when
miRNA is expressed but NOT1 and PAN3 are knocked down. In order to perform
this fit, however, we must add a new transition to degradation after the binding of the
miRISC (rightmost transition to degradation). This new transition might contain a
complex set of processes which are most likely independent of deadenylation. In the
light of recent results, this arrow could include deadenylation-independent decapping

[35, 92].

Figure 1.7: After fixing the rates µ, λ, ν from the fitting of the negative decay pattern
in figure 1.4, we use the network in figure 1.6 to fit the decay pattern when miRNA
is expressed but NOT1 and PAN3 are knocked down. The values of the rates are
λR = 0.0023 min−1 and µR = 0.0052 min−1 with 95% confidence intervals [0, 0.0052]

and [0.0030, 0.0074], respectively.

fixed. Before doing that, however, a simple computation shows that the fraction of

mRNA going through the miRISC pathway is given by

σR =
λR

λR + λ+ µ
∼ 0.074 , (1.1)

i.e. , about 7% of the whole mRNA binds to miRISC complexes in the absence of NOT1

and or PAN3, based on the network shown in Figure 1.6. This discovery leads to two

conclusions. First, the fraction of mRNA that can be manipulated after binding with

miRISC is so small that an enlargement of the network by including a separate NOT1 and
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a separate PAN3 pathway downstream of miRISC binding becomes meaningless. Indeed,

attempts to do so lead to very poor fitting of the remaining curves (see supplementary

materials). Second, such a small fraction of miRNA-regulated mRNA (about 7%) would

indicate that miRNA cannot be considered a strong mechanism of gene regulation,

contrary to the experimental evidence that miRNA is a strong regulatory mechanism.

Therefore, consistent with the strong role of miRNA in the regulation of mRNA, we are

forced to partially reject the hypothesis formulated in Figure 1.1 and revise it in search

for other possible interactions between miRISC, PAN3 and NOT1.

Finally, the comparison between the decay pattern fitted in Figure 1.4 and 1.7 shows

that binding of miRISC alone does stabilize the mRNA compared to when the miRNA

is not expressed. This is a strong indication that miRISC “protects” the target mRNA

from the action of alternative, competing degradation pathways.

1.3.2 A new hypothesis arises from the data

Since the initial hypothesis that miRISC binds to the mRNA and then recruits the

NOT1 molecule does not result in a reasonable fit, we can hypothesize that miRISC

binds to NOT1 before recruiting the target mRNA. This hypothesis is formulated in

Figure 1.8, which can be used to fit the data where only the PAN3 complex has been

knocked down.

Figure 1.8: Biochemical network able to fit the data when PAN3 has been knocked
down. After fixing the rates µ, λ and ν from the fitting of the negative decay pattern
in figure 1.4, we use this network in order to model the decay pattern when miRNA
is expressed but PAN3 is knocked down (“PAN3 KD” data). The transition from the
central green state to the state with the mRNA bound to the complex miRISC and
NOT1 is ruled by the transition rate λRN . The downwards transition, ruled by the rate

µRN includes several steps that cannot be specified from these data.

The fit is indeed very good, as seen in Figure 1.9. Based on this result, the sole effect of

NOT1 binding to the miRISC leads to a strong increase of the percent of mRNA that
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are degraded through miRISC activity, given by

σRN =
λRN

λRN + λ+ µ
∼ 0.64 , (1.2)

which emphasizes the strong role of NOT1 in the degradation of mRNA.

Figure 1.9: After fixing the rates µ, λ, ν from the fitting of the negative decay pattern
in Figure 1.4, we use the network in Figure 1.8 in order to fit the decay pattern when
miRNA is expressed but PAN3 is knocked down. The values of the rates are λRN =
0.046 min−1 and µRN = 0.0461 min−1 with 95% confidence intervals [0.0305, 0.0687]
and [0.0319, 0.0602], respectively. These rates indicate that in the absence of PAN3,
about 64 % of the mRNA in the experiment are degraded by the action of miRISC.

The final curve of the experiment in [10] concerns the action of all the factors together.

On the basis of the results obtained so far in Figure 1.8 and Figure 1.9 there may be

several hypotheses about the possible combined action of PAN3 and NOT1. Since PAN3

alone (yellow curve in the original data shown in Figure 1.2) does not have a significant ef-

fect on the decay of the mRNA compared to the action of miRISC alone, we conclude that

PAN3 works cooperatively with NOT1 by forming a complex miRISC+NOT1+PAN3

before binding to the target mRNA. This hypothesis is formulated in Figure 1.10.

The data fits the network in Figure 1.10 quite well, as one can see in Figure 1.11.

By using the values λRNP and µRNP we can again compute the fraction of target mRNA

that is degraded by the action of miRISC+NOT1+PAN3:

σRNP =
λRNP

λRNP + λ+ µ
∼ 0.84 , (1.3)

indicating that this model produces the strong regulatory effect of the miRNA on its

target as expected.
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Figure 1.10: Biochemical network able to fit the data when all three factors miRISC,
NOT1 and PAN3 are expressed. After fixing the rates µ, λ and ν from the fitting of
the negative decay pattern in Figure 1.4, we use this network in order to model the
decay pattern when all three factors are expressed. The transition from the central
state (green) to the state with the mRNA bound to the complex miRISC + NOT1 +
PAN3 is ruled by the transition rate λRNP . The downwards transition, ruled by the

rate µRNP includes several steps that cannot be specified from these data.

Figure 1.11: After fixing the rates µ, λ, ν from the fitting of the negative decay
pattern in Figure 1.4, we use the network in Figure 1.10 in order to fit the decay
pattern when all three factors, miRNA, NOT1 and PAN3 are expressed. The values
of the rates are λRNP = 0.1501 min−1 and µRNP = 0.0493 min−1 with 95% confidence
intervals [0.0908, 0.2094] and [0.0373, 0.0612], respectively. These rates indicate that
when both NOT1 and PAN3 are expressed together with the miRNA, about 84 % of

the mRNA in the experiment are degraded by the action of miRISC.

1.3.3 The cooperative role of PAN3

We have seen that the expression of PAN3 in a system with miRNA and NOT1 strongly

destabilizes the target mRNA and shortens its lifetime. Nevertheless, we can better

understand the role played by PAN3 in cooperation with NOT1, when we compare

the fraction of target mRNA that are expected to be found in the ”miRISC+NOT1”

state in Figure 1.9 (blue circle) with the fraction of target mRNA to be found in the

”miRISC+NOT1+PAN3” state in Figure 1.11 (red circle). This comparison is made
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in Figure 1.12. There, we find the fraction of mRNAs in each of the three states after

denoting state 0 the state in the middle of the network, state 1 the state on its left

side and state 2 the state on the right side (blue circle in Figure 1.9 and red circle in

Figure 1.11).

Figure 1.12: Percent of mRNA at steady state expression level in each of the three
main states of the networks in Figure 1.9 and 1.11. State 0 represents the mRNAs
that are not bound to miRISC and not bound to the competing alternative complexes.
The alternative degradation pathways lead to state 1 whereas the miRISC-mediated
pathway leads to state 2. The blue histogram refers to the case when only the miRNA
and NOT1 are expressed whereas the histogram in red refers to the experiments when
all three factors miRNA, NOT1 and PAN3 are expressed. The percent of mRNA in
state 2 is strongly increased by the expression of PAN3 at the expenses of the amount
of mRNA in state 1 This indicates that the most important role of PAN3 is to shift the

balance towards miRNA-mediated decay.

We can see from the bar plot that the major contribution of PAN3 is to shift the

balance of forces in favor of the miRNA by subtracting target mRNAs to the alternative

pathway. By expressing PAN3, indeed, the amount of mRNA that are found in state 1,

corresponding to the mRNA bound to protein complexes competing with the miRISC,

decreases by almost 20% of the total mRNA, whereas the amount found in state 0

decreases by only a 5% of the total. This might indicate that the major role played

by PAN3 is not to enhance deadenylation but rather to enhance the recruitment of the

target mRNA at the expenses of alternative degradation pathways that do not involve

miRNA. From the available data it is not possible to establish if the mRNA in these

three states are also translational competent or are silenced. From the biochemical

point of view, moreover, each of these three states might be a complex of different states

sharing the same kinetic characteristics. Nevertheless, experiments designed to estimate

the amount of mRNA bound or not bound to miRISC and NOT1 can provide important

information to validate this model.
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1.4 Summary and Discussion

In this paper, we show that the current hypothesis about the sequence of interactions

between miRISC, its target mRNA and the factor NOT1 is not supported by the data.

We have shown that the mRNA is also degraded when the miRNA is not expressed,

indicating the existance of an alternative pathway, possibly competing with the miRNA

pathway.

We also show that when only miRNA is expressed (NOT1 and PAN3 are knocked down),

the target mRNA is stabilized, probably because it is protected from the action of

an alternative miRNA-independent pathway. We postulate that the binding between

miRISC and mRNA is irreversible and leads to the deadenylation independent decay

of the target message in agreement with recent experimental studies. However, this

assumption is not obligatory. Indeed, one could have hypothesized that binding to

miRISC is reversible, and that the presence of miRNA alone just slows down the action

of the alternative pathway. With the present data it is not possible to distinguish

between these two alternatives.

Finally, our analysis indicates that the miRISC complex and NOT1 interact with each

other before interacting with the mRNA. We assume that this discovery is not lim-

ited to the special miRNA-mRNA pair studied in [10] and is therefore a new general

mechanism of mRNA control. Our analyses confirm the conclusions in [10] that PAN3

without NOT1 does not lead to an identifiable destabilization of the mRNA. Neverthe-

less, we see a strong cooperative effect between PAN3 and NOT1, where PAN3 is able

to strongly enhance the binding of the miRISC+NOT1+PAN3 complex to the target

mRNA compared to the miRISC+NOT1 complex alone.

Experimentally, one should be able to detect the presence of miRISC+NOT1 complexes

in the absence of target mRNA, in order to verify our findings. Moreover, steady state

relative amounts of mRNA in the different biochemical states can provide further vali-

dation data for our networks and additional information to unveil further details of the

miRNA-mediated mRNA degradation.
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Abstract

Environmental stress is detrimental to cell viability and requires an ad-

equate reprogramming of cellular activities to maximize cell survival. We

present a global analysis of the response of E. coli to acute heat and osmotic

stress. We combine deep sequencing of total mRNA and ribosome-protected

fragments to provide a genome-wide map of the stress response at transcrip-

tional and translational level. For each type of stress, we observe a unique

subset of genes that shape the stress-specific response. Upon temperature

upshift, mRNAs with reduced folding stability up- and downstream of the

start codon, and thus with more accessible initiation regions, are transla-

tionally favoured. Conversely, osmotic upshift causes a global reduction of

highly-translated transcripts with high copy numbers, allowing reallocation

of translation resources to not degraded and newly synthesised mRNAs.

2.1 Introduction

Environmental stress and suboptimal growth conditions reduce cell viability and put

cells at risk. Acute stress requires an immediate but specific response in order to maxi-

mize cell survival. Multicellular organisms can efficiently buffer external changes using

the capacity of internal homeostasis [93]. In contrast, unicellular organisms are directly

exposed to sudden alterations of their environment and need to immediately reprogram

their cellular activities. By examining the gene expression of cells exposed to differ-

ent types of stress numerous previous studies suggest that bacteria respond to stress

over different time scales [94–97]. Gene expression is subject to extensive regulation

at different levels, including transcription, mRNA degradation, translation and protein

degradation. It is now clear that in each of these processes a series of regulatory steps

is involved [84, 98–100], but little is known about how their combined effect shapes

the cellular response to stress in bacteria. Advances in massively parallel nucleotide

sequencing platforms and approaches to capture ribosomal position with nucleotide res-

olution [101] allow precise deconvolution of the control mechanisms of gene expression

at translational level. This approach has been pioneered for yeast [101] and applied to

bacteria to determine mRNA sequence features leading to non-uniform distribution of

the ribosomal reads [69] and to monitor the co-translational binding of chaperones [70].

Here we modified this methodology and combined it with RNA-sequencing (RNA-Seq)

to quantitatively assess transcriptional and translational response of E. coli to different

nutrient conditions and to acute heat and osmotic stress. Our analysis unravelled com-

mon and stress-specific response programs which E. coli uses to counteract acute stress.
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In both type of stress we observed that for a large fraction of genes changes in mRNA

levels are co-directional with changes in translation. However, for each stress type, a

significant group of genes opposed this trend and showed mainly translational regulation

with no changes in the mRNA levels. Analysis of these gene subsets revealed disparate

mode of translational regulation at each type of stress.

2.2 Materials and Methods

2.2.1 Media, cultivation conditions and cell quantification

E. coli MC4100 strain was cultured at 37°C to mid-log phase (OD600 ∼ 0.3 or 0.4) in

LB media or MM medium (12.8 g/l Na2HPO4 · 7H2O, 3 g/l KH2PO4, 1 g/l NH4Cl, 2

mM MgSO4, 0.1 mM CaCl2, 0.4% glucose). For heat stress, an aliquot of cells grown in

LB medium was centrifuged for 4 min at 4000 · g at room temperature, resuspended in

LB medium preheated to 47°C and further incubated for 7 min at 47°C. Osmotic stress

was exerted to an aliquot of cells grown in MM medium by adding NaCl to 0.3M (0.6

Osm) and further incubated for 20 min at 37°C. The number of viable cells was deter-

mined after staining the cells with BDTMCell Viability Kit with liquid counting beads

(BD Bioscience) and analysed by flow cytometry on a FACSCalibur (BD Biosciences)

equipped with an argon 488-nm and diode 632-nm lasers. The data was analysed with

Cyfoogic 1.2.1 (CyFlo Ltd.).

2.2.2 Cell lysis, polysome isolation and enrichment of RPFs

To isolate mRNA-bound ribosome complexes we used a previously described approach

[102] with some modifications. Exponentially growing cells were poured over crushed ice

containing 100 µg/ml chloramphenicol and harvested by centrifugation at 5000 · g for 5

min at 4°C. All subsequent operations were carried out on ice with pre-chilled buffers.

To obtain polysomal profiles, the cell pellet from 100 ml culture was resuspended in

12 ml of ice-cold sucrose-buffer solution (16 mM Tris pH 8.1 supplemented with 0.5

M RNase-free sucrose, 50 mM KCl, 8.75 mM EDTA, 100 µg/ml chloramphenicol, 1.25

mg/ml lysozyme) and gently stirred for 5 min on ice. 0.3 ml of 1M MgCl2 was added to

inhibit lysozyme and the suspension was spun at 6000 · g for 10 min at 4°C. The pellet

was resuspended in 0.7 ml freshly prepared lysis buffer (10 mM Tris pH 7.8 containing

50 mM NH4Cl, 0.01 M MgCl2, 0.2% triton X-100, 100 µg/ml chloramphenicol and 10 U

DNase I (RNase-free, Fermentas)). The lysate was clarified by centrifugation at 10000 ·g
for 10min at 4°C and frozen at -80°C if not analysed immediately. Up to 0.4 ml of clar-

ified lysate was layered onto 15 to 50% (w/v) sucrose gradient (buffered in 10 mM Tris
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pH 7.8 supplemented with 50 mM NH4Cl, 10 mM MgCl2, 0.2% triton X-100, 100 µg/ml

chloramphenicol) and centrifuged for 1.5 h at 35,000 rpm in SW 55Ti rotor (Beckman)

at 4°C. The gradient was slowly pumped out from the bottom of the tubes with a flow

rate set to 0.38 ml/min and the absorbance at 254 nm (A254) was recorded via a flow-

through UV spectrophotometer cell (Pharmacia LKB-UV-M II). For the isolation of

RPFs, an aliquot of 100 A260 units of ribosome-bound mRNA fraction (prior to ultra-

centrifugation in the sucrose gradients, see above) was subjected to nucleolytic digestion

with 10 units/µl micrococcal nuclease (Fermentas) for 10 min at room temperature in

buffer with pH 9.2 (10 mM Tris pH 11 containing 50 mM NH4Cl, 10 mM MgCl2, 0.2%

triton X-100, 100 µg/ml chloramphenicol and 20 mM CaCl2). The monosomal fraction

was separated by sucrose density gradient (15-50% w/v). The total RNA was isolated

from the monosomes using the hot SDS/phenol method. The micrococcal nuclease also

cleaved the rRNAs into fragments with a size similar to the RPFs. The sample was

enriched predominantly in one rRNA fragment which was removed by subtractive hy-

bridization at 70 0C using a 5’-biotin-5’-GCCTCGTCATCACGCCTCAGCC-3’ DNA

oligonucleotide along with µMACS Streptavidin Kit (Myltenyi Biotec) to remove the

biotin-labeled DNA/rRNA hybrids. 3’ adaper was first ligated to the dephosporylated

fragments with T4 RNA ligase 2 truncated (New England Biolabs). Following 3’ phos-

phorylation of the 5’ adapter with T4 PNK (New England Biolabs), the 5’ adapter was

ligated to the fragment with T4 RNA ligase 2 truncated (New England Biolabs). The

generation of the libraries was performed as described [103].

2.2.3 Random mRNA fragmentation and spike-in with a control RNA

Total RNA was isolated from ∼6 ml exponentially growing bacteria with GeneJET™

RNAPurification Kit (Fermentas). Prokaryotic mRNA is a minor fraction of the to-

tal cellular RNA, therefore mRNAs were enriched by removal of 16S and 23S rRNAs

[104] with a MICROBExpress™ Bacterial mRNA Enrichment Kit (Ambion). 20 µl of

the enriched mRNA was mixed with equal volume of 2x alkaline fragmentation solu-

tion (2 mM EDTA and 100 mM Na2CO3Na2CO3 pH 9.2) and incubated for 40 min

at 95 °C. The reaction was stopped by adding 560 µl 300 mM NaOAc pH 5.5, fol-

lowed by isopropanol precipitation [105]. For quantification [106], after the random

fragmentation the RNA sample was spiked with an external 25-nt RNA standard (5’-

AAUGAUAAUUCAAGAAUCAUAACGG-3’) which does not align anywhere in the E.

coli genome. Typically, 10 ng of spike-in RNA were added to 25.5 µg total extracted

RNA. The optimal time for fragmentation of the mRNA was determined using GAPDH

mRNA (0.25 µg; Fermentas) and the spectra were recorded with BioAnalyzer (Agilent
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RNA 6000 Kit). RNA-size selection and generation of the cDNA libraries was performed

as described [103].

2.2.4 Mapping of the sequencing reads

Sequencing reads were aligned to E. coli K-12 substrain MG1655 genome sequence

(GenBank: U00096.2) with FANSe mapping algorithm allowing up to 3 mismatches

and enabled indel detection [107]. The reads aligning to rRNA and tRNA genes were

subtracted from the data sets. Sequencing reads spanning two (overlapping) ORFs were

assigned to one of the two annotated ORFs (NCBI) based on the position of the middle

nt1.

2.2.5 Quantitative RT-PCR

Total mRNA was extracted using the GeneJETTM RNA Purification Kit (Fermentas)

and treated with DNase I (Fermentas). The cDNA was synthesised with RevertAid™ H

Minus Reverse Transcriptase (Fermentas) and quantitative RT-PCR was performed on

a StepOnePlus™ Real-Time PCR system (Applied Biosystems) using template-specific

primers. The values were normalised to the amount of the total RNA.

2.2.6 Quantification of the absolute transcript numbers

The copy number of the transcripts (Xi) was quantified using the following method

[108].

Xi =
Ci
CLi

T (2.1)

where Ci represents the mapped reads on a transcript i with a length Li (in nt), C =∑
iCi is the sum of all mapped reads within a RNA-Seq data set, whereas T is the

length of the transcriptome in base pairs [108]. From the reads and the amount of the

added spike-in standard, we determined the number of molecules of spike-in standard

in nt. T was calculated by converting the total mRNA mapped reads in each RNA-Seq

experiment into molecules of mRNA (in nt) using the number of molecules of spike-in

standard (nt) and normalised per cell number quantified by FACS. The length of the

transcriptome, T , in base pairs we calculated as follows:

1For reads with an even number of nt-s, the nt closer to the 5’-terminus was arbitrarily taken as a
middle nt
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1. The amount (ng) of added spike-in standard was converted into molecules spike-in

in nt using the molecular weight and nucleotide length of the spike-in and the

Avogadro number.

2. The total amount of mRNA to which the spike-in was added was converted into

nt using the molecules of spike-in (nt) and the sequencing reads mapped to the

transcriptome and spike-in standard.

3. The total mRNA length (nt) was divided by the cell number quantified by FACS

to calculate the total length (T ) of the trasncriptome per cell. 1.81 ·108±2.4 ·107,

7.84 · 108 ± 1.21 · 107, 1.52 · 108 ± 2 · 107 and 4.72 · 108 ± 7.3 · 107 was the total

number of cells in LB, MM, under heat or osmotic stress, respectively.

4. Finally, to calculate the copy number of each gene, we multiply the rpkMd values

of each gene by T (Equation (2.1)).

2.2.7 Differential gene expression and GO analyses

The number of raw reads unambiguously aligned to ORFs in both RNA-Seq and RPF

data sets, for each condition, were normalised by the median of the total number of reads

aligned to all ORFs, which gives more stable normalization [109] and is more suitable for

differential expression analysis than other normalization approaches using total number

of reads aligned to all ORFs (reads per total mapped reads, rpM, or fragment per total

mapped reads, FPM) [110]. For comparison between different genes, the number of the

aligned reads was normalised by the length of the ORF and the median of the total

number of reads aligned to all ORFs (reads per kilobase of ORF per median of the total

mapped reads, rpkMd). Furthermore, to avoid false-positives originating from genes

with very low read counts, genes with mRNA or RPF read counts <60 were ‘upgraded’

to 60 in the differential gene expression analysis. The value of minimal 60 reads in both

RNA-Seq and RPF-Seq analysis was determined from the analysis of the sampling error

between two biological replicates as described [101]. Thereafter, the ribosome density

(RD) for each gene was calculated as follows2:

RDi =
RPFi[rpMd]

mRNAi[rpMd]
(2.2)

To assess the biological functions affected by different stress conditions, we identified the

GO terms with significant enrichment for each differentially expressed gene set using R

(version 2.15.2) and Bioconductor packages ecoli2.db and GO.db. p-values were adjusted

2Note, it is similar to the definition of the TE value as described already [101]
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for multiple testing using false discovery rate, FDR according to Benjamini-Hochberg

[111].

2.2.8 Secondary structure analysis

Structure profiles were computed with RNAfold program with default parameters from

the Vienna RNA Package 2.0 [112] using a sliding window with different widths reported

in the literature for such analysis. For each nucleotide of a transcript the minimum free

energy was calculated moving the window with a single nucleotide at a time. Average

profiles for groups of genes were generated by taking the mean of their per-base folding

energy contributions. The 23-nt window, with a width equal to the average of our read

lengths, revealed very noisy profiles due to the small window size. In contrast, the 101-nt

window, albeit informative on long-range interactions, smoothed too many features in

the profiles. For our analysis we choose the 39-nt window [113] which gave very similar

result to the 51-bp window [114]. The significance of the structural differences between

two gene groups was evaluated nucleotide-wise using a two-sample Kolmogorov-Smirnov

test. A two-sided test was performed for each base and the corresponding p-values

were collected and adjusted for multiple testing using FDR according to Benjamini-

Hochberg [111]. To judge the significance of the whole curve, the single p-values were

median averaged. We further assessed the uniqueness of the identified groups of genes

by comparing the folding energy distributions to those of equally-sized random sets of

genes. We analysed 10,000 subsamples with sample size equal to the gene group of

interest and calculated a p-value as the number of points crossing the corresponding

average folding profile divided by the total number of sampled points. The dispersion

of the subsamples between 2.5th and 97.5th percentiles of the distribution of values per

nt is shadowed grey (Figure 2.4b and d).

2.3 Results

2.3.1 Difference in gene expression between growth on mineral and

complex medium

We first compared the transcriptional and translational activities of E. coli (strain

MC4100) at rapid growth in complex (LB) medium or at moderate growth rate in

medium containing mineral compounds and glucose as the only carbon and energy

source (minimal medium, MM). For both conditions we performed deep sequencing of

the total mRNA (RNA-Seq) [108] and ribosome-protected fragments (RPF or RPF-Seq
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Figure 2.1: Changes of the copy numbers upon stress exposure. (a) Schematic of
the experiment to analyse differences in expression under different stress conditions.
Distribution of the gene copy numbers quantified from the RNA-Seq data sets from
cells grown in MM and LB (b), exposed to osmotic (c) or heat stress (d) Dashed
vertical lines delimit the three expression groups. The copy numbers between LB and
MM are significantly different (p < 0.01 according to Kolmogorov-Smirnov test). Note
the bimodal distribution evident in the LB density curve corresponding to mRNAs with

large copy numbers (> 25).

[103, 105]) (Figure 2.1a). The total mRNA was isolated from each sample and ran-

domly fragmented under alkaline conditions into fragments with similar length to the

RPFs (Supplementary Figure 2.1a). We directly ligated 5’- and 3’-adapters to the RPFs

and mRNA fragments which enabled us to capture transcripts of high and moderate

abundance as well as low-abundance transcripts (Figure 2.1b) with high reproducibility

between biological replicates (Supplementary Figure 2.1b, c). For each sequencing set,

the unambiguously mapped mRNA and RPF reads were normalised by the median of the

total number of reads mapped to all open-reading frames (ORF) and presented as reads

per median of the total mapped reads (rpMd) or reads per kilobase of ORF per median
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of the total mapped reads (rpkMd). Normalization by the median of the total number of

reads aligned to all ORFs gives more stable normalization than normalization to reads

per total mapped reads, rpM, or fragment per total mapped reads, FPM [109]. We

spiked each RNA-Seq experiment (Figure 2.1a) with an external RNA-standard whose

sequence does not align anywhere in the E. coli genome. Reads mapped to the spike

in sequence showed high reproducibility between biological replicates. With this twist,

the RNA-Seq data sets, normalised to the living cell counts (determined by FACS) were

used to calculate the absolute copy number of each mRNA per cell (Equation (2.1)).

From 4325 total mRNA-coding genes of E. coli we were able to map reads to 4254 ORFs

in LB and 4269 ORFs in MM3. Cells grown in LB medium have about three times more

mRNA transcripts than cells grown in MM (∼7800 mRNA copies/cell vs. ∼2400 mRNA

copies/cell) (Figure 2.1b); correlating to the 4x larger volume of cells cultured in LB.

The mean mRNA copy number was 1.79 copies/cell in LB and 0.56 copies/cell in MM.

Similar low overall mRNA copy numbers per cell have been theoretically predicted [115]

and experimentally determined in ensemble and single-cell measurements for another E.

coli strain [45]. Relatively low mRNA copies/cell have been reported also for budding

[116] and fission [117] yeast; yet the unicellular eukaryotes have on average an order of

magnitude higher number of total mRNA molecules/cell which mirrors the larger cell

volume and larger size of their genomes compared to E. coli . We separated the genes in

three groups, similar to the expression zones arbitrarily-defined in unicellular eukaryotic

organism, fission yeast [117]: group 1 contains genes with low-abundance mRNA (<0.5

copies/cell); group 2 consists of genes expressed at ∼1 mRNA copy/cell (0.5-2 copies/-

cell) and group 3 comprises genes with robust expression at >2 mRNA copies per cell

(Figure 2.1b). In general, despite the difference in the total mRNA copy number between

LB and MM, similar functional categories (GO terms) were enriched for genes expressed

at >2 mRNA copies/cell, whereas there was no significant GO term overlap for genes

expressed at ∼1 mRNA copy/cell (Supplementary Figure 2.1d). The high copy number

group (>2 copies/cell) in both LB and MM is dominated by mRNAs encoding proteins

involved in translation, main metabolism pathways and ATP synthesis (Supplementary

Figure 2.1d). Moreover, in LB medium a subset of mRNAs is expressed at compara-

tively very high copy numbers give a rise to a bimodal distribution of the transcript copy

numbers (Supplementary Figure 2.1d); this subset of genes is comprised mostly of such

encoding proteins participating in ribosome biogenesis and translation. The mRNAs of

the ribosomal proteins were also among the transcripts with the highest mRNA copies

in MM, yet their mRNA copy numbers were 5-8 times lower than in LB, correlating with

the much lower number of ribosomes per cell for bacteria grown in MM [118]. The sec-

ond group of genes expressed at ∼1 mRNA copy/cell (0.5-2 mRNA copies/cell) in MM

comprises mostly genes involved in the production or conversion of products that are not

3In E. coli, the total number of genes including rRNA, tRNA and non-coding RNAs is 4496
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supplied by the MM growth medium, including amino acids and nucleotides. The group

of the genes expressed at a level below one copy per cell on average is the largest group

in both media (Figure 2.1b) which could result from a small transcription rate [119] or

short lifetime of a transcript [74, 120]. Our results are consistent with recent sequencing

experiments from fission yeast [117] or metazoan [119] which also detected a large frac-

tion of mRNAs expressed below 1 mRNA copy/cell. RPF-Seq revealed the position of

the translating ribosomes (Figure 2.1a) and enabled quantification of actively translated

transcripts. As a quantitative measure of translation of each gene we determined the

ribosome density (RD) per gene which is defined as the ratio of the normalised RPF

reads to the normalised mRNA reads for each gene (Equation (2.2)). For the majority

of translationally-active genes (i.e., for those which RPFs were detected), the mRNA

counts are positively correlated with the corresponding RPF counts (Spearman corre-

lation coefficients 0.89 for LB and 0.91 for MM). Next we compared the changes in the

gene expression at the level of transcription and translation between LB and MM by

assessing the log2-fold changes of the mRNA counts and RD values. This analysis re-

vealed that 605 genes were significantly (>95% confidence) transcriptionally regulated

(Supplementary Figure 2.1b and Supplementary Table 1, online4). Genes participat-

ing in translation, ribosome biogenesis and aerobic respiration were enriched among the

transcriptionally controlled genes (Benjamini-Hochberg corrected p-value < 0.001, Sup-

plementary Table 1, online). 239 genes showed significant changes in RD values (95%

confidence, Supplementary Figure 2.1c) without any significant changes in the mRNA

counts (Supplementary Table 1, online). Interestingly, comparing the cells grown in LB

to those cells grown in MM, the mRNA coverage for the majority of factors participat-

ing in translation was within the 5th percentile and RD values were not significantly

changed. In other words, the RPFs increased proportionally to the mRNA reads keep-

ing the RD values were unchanged (Supplementary Table 1, online), implying similar

biosynthetic activities per unit cell volume in both LB and MM.

2.3.2 Similarities and dissimilarities of the response programs to coun-

terbalance various types of acute stress

Next, we evaluated stress-induced reprogramming of gene expression at the level of tran-

scription and translation upon exposure of the cells to two types of acute stress: E. coli,

grown in LB or MM until the early exponential phase, were subjected to temperature

shift or exposed to osmotic upshift by adding NaCl to the medium, respectively (Fig-

ure 2.1a). The experimental conditions were chosen to allow for monitoring of rapid

4http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf

http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
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Figure 2.2: Transcriptional and translational response to different types of stress.
(a) Polysomal profiles of cells grown in different conditions. The profiles changed for
cells exposed to stress (compare LB to heat stress and MM to osmotic stress): the
peaks corresponding to large polysomes decreases under stress, while the monosomal
fraction (1x) increases. The fractions corresponding to mRNA with di-, tri-, tetra- and
polysomes are designated as 2x, 3x, 4x and >5x, respectively. (b) Correlation between
the log2-fold changes of the normalised RPF and mRNA read counts from cells exposed
to heat or osmotic stress. Pearson correlation coefficients are: 0.667 (heat stress) and

0.492 (osmotic stress).

changes in the transcriptional and translational programs during the acute stress re-

sponse, but not to capture long-term adaptive stress reactions. The different types of

stress were applied on different time scales and in different media. Thermal stress was

applied for 7 min, the time at which transcription of the heat-shock induced genes is

maximal [121]. Osmotic stress was applied in a time-window which is prior to the onset

of intrinsic osmolyte synthesis [122] and in MM which was free of any osmoprotective

substances that can be taken up to counteract osmotic stress [123]. The mRNA ex-

pression of marker genes, known to be specifically upregulated in heat [97] or osmotic
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stress [124], was verified with quantitative RT-PCR (Supplementary Figure 2.1a,b).

Intriguingly, osmotic stress caused a global reduction of transcripts (Figure 2.1c and

Supplementary Figure 2.2c), from ∼2400 mRNA copies/cell in MM to ∼1600 mRNA

copies/cell upon osmotic upshift. In particular, mRNAs with higher copies (from the

groups of mRNAs with >2 copies/cell) were reduced (Figure 2.1c, Supplementary Fig-

ure 2.2e). Conversely, heat stress caused a little global reduction of the transcripts –

from ∼7800 mRNA copies/cell in LB to ∼7200 mRNA copies/cell (Figure 2.1d and

Supplementary Figure 2.2d,e).

Figure 2.3: Fold-change analysis of the cellular response to stress. Venn diagram
showing the genes differentially expressed between heat stress vs. LB and osmotic
stress vs. MM. Blue, genes with mRNA (read counts) log2-fold changes over the 95th
percentile threshold of biological replicates (Supplementary Table 1, online5); red, genes
with RD log2-fold changes over the 95th percentile threshold of biological replicates
(Supplementary Figure 2.1c); purple, genes with significant changes in both, mRNA and
RD values. The genes in each diagram correspond to the genes listed in Supplementary
Table 1, online. (b) GO terms with significant enrichment under heat stress vs. LB

and under osmotic stress vs. MM. The colour code is the same as in Figure 2.3a.
***: p<0.001; **: p<0.01; *: p<0.05

To assess the global effect of stress on translation, we compared the polysome profiles

under stress with the corresponding control condition (Figure 2.2a). In both types of

stress the amount of the large polysome fraction (>5 ribosomes) decreased in parallel

to the increase of the monosome peak (Figure 2.2a) which is likely a result of riboso-

mal drop-off [122] and implies a general repression of translation. Yet, some translation

http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
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activity is retained as evidenced by the presence of 2-5-polysomes (Figure 2.2a). We

then compared the mRNA and RPF counts for each gene under both stress conditions

(Figure 2.2b). Overall, for the majority of translationally-active genes under stress (i.e.,

for which RPFs were detected), we found that the log-log linear correlation between the

mRNA change and RPF change is relatively high and positive for both stress condi-

tions (Figure 2.2b). On a global scale, we observed that changes in mRNA counts are

codirectional with changes in the RPF counts, for both induced and repressed genes,

in response to heat or osmotic stress, with correlation coefficients of 0.667 or 0.492,

respectively (Figure 2.2b). However, for both stress conditions, a sizeable fraction of

genes oppose this trend: for these genes, changes in mRNA counts do not correlate with

changes of the RPF counts. This raised the question as to whether these gene sets shape

the cellular response against each type of stress. To compare expression between dif-

ferent conditions we performed pairwise comparison of RD and mRNA read counts and

ranked them according to the log2-fold changes (Figure 2.3a and Supplementary Table

1, online). Comparison of the gene groups with significant changes upon osmotic upshift

and heat exposure (> 95% confidence from the biological replicates, Supplementary Fig-

ure 2.1b, c) revealed a common pattern in the response to both types of stress: 43.3%

of the genes showed similar log2-fold changes at transcriptional level, while only 15.7%

displayed similarities of their fold changes at the level of translation, as captured by the

RD values Supplementary Table 1, online). When mammalian cells are exposed to ther-

mal stress, RPFs accumulate within the first 30-40 nucleotides at the start of the genes

[125, 126]. In bacteria, subunits alternative to the housekeeping σ70(rpoD)-factor of the

RNA polymerase orchestrate the expression of stress-related genes to counteract exter-

nal stress [127]. The mRNA levels of σ32 (rpoH, related to heat stress) were upregulated

under both osmotic and thermal stress, while σS (rpoS, related to starvation stress) and

σE (rpoE, related to periplasmic stress) were upregulated only under osmotic upshift

(Supplementary Table 1, online). Despite the pervasive upregulation of transcription of

rpoH under both osmotic and thermal stress condition, the down-stream genes of the

heat-shock regulon (chaperones, proteases of the Clp-family [128]), whose expression is

regulated by σ32 [128], were upregulated only at elevated temperature with log2-fold

changes in the mRNA coverage, ranging from 1.6 to 6.3 (examples: dnaK – 5.6, dnaJ –

5.1, clpB – 6.3, clpX – 1.9, clpP – 1.8) (Fig. 3 and Supplementary Table 1, online). The

specific expression of some marker genes, specifically upregulated in heat stress [97], was

verified with quantitative RT-PCR (Supplementary Figure 2.2a). Notably, under the

heat stress, the translation of the genes from the heat-shock regulon was also enhanced,

i.e. the absolute number of RPFs was higher under heat stress, though the overall RD

ratio remained similar to LB. Upon exposure to osmotic stress, we did not detect any

upregulation of genes from the heat regulon other than clpB (fold-change 1.89), implying

the high specificity of σ32-dependent regulation under heat stress.

http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
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2.3.3 Genes with lower secondary structure propensity are translated

under thermal stress

Bacteria use complex strategies to coordinate temperature-dependent expression, in-

cluding temperature-sensing RNA sequences – RNA-thermometers – whose structure

melts at elevated growth temperature and increases the efficiency of translation initia-

tion [129]. Next, we compared the expression of two established examples of transla-

tional regulation in E. coli, rpoH and ibpA [129] using our genome-wide analysis under

heat stress. For both genes, the absolute number of RPFs increased significantly un-

der heat stress, although the RD for ibpA increased while for rpoH it remained similar

to the unstressed condition because of corresponding changes of rpoH mRNAs Supple-

mentary Table 1, online). The cellular concentration of σ32 at elevated temperature is

comprehensively balanced at different levels, including transcriptional, translational and

post-translational protein stabilization [129–131]. Importantly, the RPF reads for both

genes did not change under osmotic stress.

In addition to the genes regulated by the σ32 factor under heat stress, 94 of the 129

genes exhibited a significant boost in translation (positive fold-change of RD) without

any changes in the mRNA read counts (Figure 2.3a and Supplementary Table 1, online)).

This group was mostly enriched with genes participating in protein folding (p <0.01)

and metabolic activities (p < 0.01 and p < 0.05; Figure 2.3b). The transcripts of these

genes were highly translated, with high RPF coverage along the whole mRNA and no

significant accumulation of reads in the 5’-region of the ORFs as in the all-genes group

(Figure 2.4a). We hypothesised that this gene set might bear some structural features to

facilitate translation and thus we calculated the folding energy in the sequences flanking

the initiation start. Typically, the folding profiles of all genes (Figure 2.4b, black line)

showed reduced folding stability and fewer paired nucleotides around the initiation start

compared to the coding sequence (observed as a peak in the folding energy profile) [113].

The folding energy of the genes translationally upregulated under heat was significantly

lower than that of the remaining genes in the genome not only around the initiation site

but also over a much broader sequences flanking the initiation (Figure 2.4b). Their fold-

ing energy is significantly different than that of randomly sampled genes (gray shadowed

area, p = 0.00204, Figure 2.4b). 5’-UTRs, which tend to be less structured than the

protein coding sequence of the gene [113], were also less structured in the translationally

upregulated genes under heat stress (Figure 2.4b). Further downstream of the start

codon, along the coding mRNA sequence, the folding energy relaxes to the mean folding

profile of all genes (Supplementary Figure 2.3a). Reduced mRNA secondary structure

around the start codon facilitates expression [56, 113, 132] and analysis of the mRNA

folding stability at the initiation start revealed a positive correlation with the changes in

http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
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Figure 2.4: Genes translationally upregulated under heat stress have much lower
propensity to form secondary structure. Normalised read coverage for upregulated
genes under heat (red line) (a) and osmotic (blue line) (c) stress. The RPF reads for all
genes in each group were normalised to the median of the corresponding mRNA reads
and aligned at the start (zero is the first nucleotide of the start codon in each ORF) and
compared to all genes (black lines in a and c). Average folding energy of upregulated
genes under heat (red line) (b) and upon exposure to osmotic stress (blue line) (d)
compared to all protein-coding genes in E. coli (black lines in b and d). p-values
(median averaged from a two-sample Kolmogorov-Smirnov-Test) for the upregulated
genes under heat (b) 0.00204 [lower quartile – 0.00027; upper quartile – 0.01434] and
osmotic stress (d) 0.58343 [lower quartile – 0.42999; upper quartile – 0.57026]. The area
of folding energy distribution sampled from random gene groups of the same size (as
the upregulated gene group) is shadowed in gray (b and d). p-value from the sampling
for genes under heat (b) and osmotic (d) stress are 0.0014 and 0.26072, respectively.

the RD values under heat stress; lower folding stability correlated with higher changes

of the RD values (Supplementary Figure 2.3b). Interestingly, genes whose translation

is favoured under heat stress do not originate solely from the subgroup with the least

structured initiation area (1-500 gene group, Supplementary Figure 2.3b); rather these

upregulated genes contain genes from subgroups with various folding energies, including
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the group with the most structured initiation region. In E. coli, a large fraction (53%) of

protein-coding genes is organised in operons as polycistronic mRNAs and is suggested to

coordinate the expression of functionally related proteins [133]. Among the genes trans-

lationally upregulated under heat stress those residing in operons were significantly less

than the genome-wide operon configuration of E. coli (45% vs. 53%, p = 9.36 · 10−6).

Furthermore, even for the few of them encoded within the same polycistronic mRNA

we did not detect a coordinated expression. This might be not surprising in light of the

fact that translation level of ORFs within the same polycystronic mRNA largely differ

as they underlie independent initiation [68] and the strength of the Shine-Dalgarno (SD)

sequence differs between the ORFs within one operon [134]. Together, this implies that

the response to acute heat stress is at least in part shaped by selection of a subset of

genes whose structure up- and downstream of the translation start most likely under-

goes significant melting at higher temperatures. Thus, the initiation regions of these

genes become more accessible upon heat stress, facilitating ribosome binding and in

turn, translation.

2.3.4 Under osmotic upshift cells reallocate translation resources

Exposure of E. coli to high osmolarity causes rapid loss of water (plasmolysis), turgor

pressure and shrinkage of the cell. A crucial reaction of the cell is the upregulation of

osmotic stress-protective genes and genes encoding ATP-driven transporters of ions and

small solutes [123, 135]. Their expression was mainly regulated at the level of transcrip-

tion with significant increase of the mRNA copy numbers (Figure 2.3a and Supplemen-

tary Table 1, online)); the RPFs increased proportionally to the mRNA reads while the

RD values remained unchanged. The major transporters maintaining the uptake of os-

motic substances, proV, proP, proX, proW, otsA, under osmotic upshift were expressed

at very high copy numbers (>2 mRNA copies/cell); in contrast their copy numbers

were extremely low in MM, <0.5 mRNA mRNA copies/cell. The mRNA expression

of those marker genes, known to be specifically upregulated under osmotic stress [124],

was verified with quantitative RT-PCR (Supplementary Figure 2.2b). The cell response

to osmotic stress at the translational level was clearly distinct from the response to

acute heat stress: different sets of genes maintain the cell response at the level of trans-

lation, i.e., genes with significant log2-changes of the RD values but invariant mRNA

read counts. The group of translationally upregulated genes under osmotic stress was

enriched for transcripts of genes participating in amino acid metabolic processes (p <

0.05) and iron transport (p < 0.001; Figure 2.3b). Although those genes do share some

functional similarities they were not enriched in genes encoded by the same polycistronic

mRNA (p = 0.26 compared to the genome-wide fraction of genes organised in operons).

http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
http://rsta.royalsocietypublishing.org/content/roypta/suppl/2016/02/05/rsta.2015.0069.DC1/rsta20150069supp1.pdf
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Next we analysed the cumulative profiles of this gene group (Figure 2.4c). Upregulated

genes showed much higher accumulation of RPFs in the first 30 nucleotides and also

approximately 10 nt upstream of the gene start (Figure 2.4c). This was clearly not

driven by any secondary structural features of the mRNA specific to these genes; their

propensity to be involved in secondary structure was not significantly distinguishable

from the profiles of the other transcripts (Figure 2.4d). Importantly, translationally up-

regulated genes under osmotic stress also show higher accumulation of RPFs upstream

of the start codon in the vicinity of the SD sequence which raised the question as to

whether those genes are enriched in strong SD motifs which will favour their initiation.

We performed a search for SD motifs based on the minimum hybridization energy as

described in [50], however SD sequences were not significantly enriched in those genes

(p = 0.025). Osmotic stress, but not thermal stress, resulted in a 35% reduction of the

mRNA transcripts globally, whereby transcripts with high copy numbers in normal con-

ditions (>2 mRNA copies/cell) were the most affected (Figure 2.1c and Supplementary

Figure 2.2c). Over 25% of the genes in the high copy number group had significantly re-

duced transcripts (Supplementary Figure 2.2e). The subset of the genes with >2 mRNA

copies/cell which underwent reduction in their copy numbers upon osmotic stress were

also highly translated (Supplementary Figure 2.1f) implying that the reduction of these

abundant, highly translated transcripts will release a large portion of ribosomes.

2.4 Discussion

Here, we quantify mRNA abundance and translational activities of E. coli using deep

sequencing of ribosome-protected fragments. Even though E. coli is an extensively

studied organism, the response to different types of acute stress has a complexity not

captured by existing studies. A small subset of genes, unique for each type of stress,

is regulated only at the level of translation, while the majority of translationally-active

genes show concordant co-directional changes between mRNA and translation (RPF). A

common feature among the genes translationally upregulated under heat stress is their

higher accessibility in the initiation region at higher temperature which in turn facilitates

their translation. In general, the genes from this subset are not necessarily genes with

the lowest propensity to form secondary structure; some of the genes may undergo the

most significant melting at elevated temperatures. In contrast, preferential expression

of genes to counterbalance osmotic stress is driven by reduction of highly abundant

and highly translated transcripts, thereby making translation resources available to the

whole pool of mRNAs which contains mRNAs that remained intact under stress or

newly synthesised mRNAs. Under normal conditions more than 90% of the ribosomes

are involved in translation [136, 137] thus leaving little capacity to reallocate ribosomes to



2. Ribosome Footprinting 56

new mRNAs [138]. Upon exposure to osmotic stress the global transcript level is reduced

significantly, by about 33% (from ∼2400 mRNA copies/cell in MM to ∼1600 mRNA

copies/cell), thereby preferably highly translated mRNAs with high copy numbers are

significantly reduced. Since the number of ribosomes does not change during osmotic

stress, as estimated for yeast, the hypothesis that transcript reduction is linked to re-

distribution of translational capacity is supported by a theoretical study suggesting that

in E. coli continuous growth rate and nutrient quality are balanced by the ribosome

allocation [139]. Moreover, transcript reduction was also observed by exposure of yeast

to osmotic upshift [140] implying conserved features of response across the species. The

effect of transcript reduction is highly specific for osmotic stress: the transcript reduction

upon heat exposure is 7.6% (from ∼7800 mRNA copies/cell in LB to ∼7200 mRNA

copies/cell). The five major transporters maintaining the uptake of osmotic substances,

proV, proP, proX, proW, otsA were expressed at normal conditions at very low copy

number <0.5 copies/cell and upregulated to >2 copies/cell upon osmotic upshift. Other

osmotic stress-related genes are upregulated from ∼1 mRNA copy/cell in MM to >2

copies/cell upon osmotic stress. Under normal conditions their translation will compete

with genes involved in key physiological processes, translation and energy metabolism

(expressed at >2 copies/cell). Thus, the reduction of the total amount of mRNA serves

to replenish the pool of free ribosomes, which in turn boosts the translation on the

remaining pool of mRNAs. Ultimately, proteins mediate stress response and their levels

have to be rapidly adjusted to ensure cell adaptability and survival under stress. Our

observations are in a qualitative agreement with an earlier observation suggesting that

the average copy number correlates well with the average protein concentration [45].

Previous analysis comparing transcript and protein abundance in E. coli concluded a

relatively good correlation on a global, population level, while on a single cell level, the

mRNA and protein levels correlate poorly. This poor correlation is often attributed to

different time scales of transcript and protein turnover [45]. Although each RPF read on

an mRNA is producing a protein [68], the RPF coverage does not give an information

on protein amounts, thus we cannot judge the contribution of protein degradation. In

summary, our data reveals a multifaceted stress-specific response in bacteria towards

acute thermal and osmotic stress, enabled by a versatile induction of transcriptional and

translational programs. Unicellular organisms lack the internal homeostatic buffering

capacity of multicellular species, and for survival under acute stress they need a quick

reprogramming of their cellular activities. For the majority of genes, changes in the

mRNA level correspond to the translation level for both types of stress. Outside of

these genes, a unique fraction of genes are regulated only at the level of translation

in response to the two stress conditions we studied. Indeed, reprogramming of cellular

activities by translating existing mRNAs is more efficient than the response shaped by de
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novo transcription followed by translation enabling the cell to respond faster to changing

environments.
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Abstract

Premature ribosome drop-off is one of the major errors in translation of

mRNA by ribosomes. However, repeated analyses of Ribo-seq data failed

to quantify its strength in E. coli. Relying on a novel highly sensitive data

analysis method we show that a significant rate of ribosome drop-off is mea-

surable and can be quantified also when cells are cultured under non-stressing

conditions. Moreover, we find that the drop-off rate is highly variable, de-

pending on multiple factors. In particular, under environmental stress such

as amino acid starvation or ethanol intoxication, the drop-off rate markedly

increases.

3.1 Introduction

Translating messenger RNA (mRNA) into proteins is a complex polymerization process

that lies at the heart of protein synthesis. Ribosomes play a pivotal role in this process,

decoding of the genetic information contained in the mRNA into amino acid sequences

[141].

Given their crucial role, ribosomes are designed to be accurate and robust processive

machines. Nevertheless, inherent to all biological processes, errors can occur during

protein synthesis. One of the possible errors is premature termination of the translation

process; here the ribosome fails to complete the synthesis of a full-length protein.

Various mechanisms are known to mediate translation abortion. Some of them are be-

lieved to be relevant mainly when the cell faces stressing conditions that hamper mRNA

translation, e.g. amino acid starvation. In bacteria, at least four abortion-mediating

factors, namely the tmRNA-SmpB complex [142, 143], RF3 [144], ArfA [145] and ArfB

[146] are known to help rescue stalling ribosomes through processes that eventually

lead to premature termination of protein synthesis. More surprisingly, translation aban-

donment can be also part of a proof reading mechanism that interrupts the synthesis of

miscoded polypeptides [147]. Besides these factor-mediated pathways, unspecific events,

often referred to as nonsense errors [148] or processivity errors [55, 65, 149, 150] can in-

terrupt the elongation of the nascent peptide. Some examples of these errors include

false termination due to a false stop codon resulting from frameshift and accidental pep-

tidyl tRNA dissociation from the translation complex [151, 152]. Also, local depletion

of ternary complexes can provoke longer pausing events, which may trigger the drop-off

of the ribosome [153]. Both factor-mediated translation abandonment and processivity

errors prevent the ribosome from reaching the final stop codon. Hence, irrespectively
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of the mechanism involved, we will use the term “ribosome drop-off” to denote all the

events that entail the premature detachment of the ribosomes from the mRNA template.

Ribosome drop-off is not limited to stress conditions; it occurs even when the cell is in

a non stressing environment [55, 63, 65–67, 149]. In these conditions, the frequency of

drop-off events in not affected by external stress and, thus, it is expected to assume a

“basal” value. In addition to the seminal works of Kurland and co-authors – reviewed

in [149] – other proposals have explored the magnitude of the ribosome drop-off “basal

rate” or the dynamics of the phenomenon.

In Refs. [65–67] ribosome drop-off was clearly detected and estimated for the β-galactosidase

gene through different in vitro approaches. In Ref. [63] an in vivo experiment estimated

the drop-off rate for E. coli to be 4 · 10−4 events per codon. In Ref. [154], theoretical

arguments demonstrate that the presence of a basal drop-off rate leads necessarily to an

exponential distribution of ribosomes along the mRNA, while in Ref. [148] a model-based

approach elucidates the impact of ribosome drop-off on protein synthesis. Thus, a well

assessed quantitative estimate of the rate of ribosome drop-off could have a strong im-

pact on modeling of ribosomal traffic and protein synthesis [155, 156] as well as provide

further hints to understand the relationship between gene length and protein abundance

[64, 157].

In spite of these well-assessed findings, so far the analysis of data from Ribosome-profiling

(Ribo-seq) experiments failed to find the existence of measurable ribosome drop-off fre-

quency in non stressing conditions [68–70].

The ribosome profiling technique [158] begins with drug-mediated interruption of the

cellular translation process, followed by the hydrolysis of the mRNA regions that are

not covered (protected) by the ribosomes. The residual mRNA oligomers (known as

ribosome protected fragments, RPF, because they are the mRNA fragments that were

protected by the ribosome) are deep sequenced. Then, the positions of the ribosomes

are determined by mapping the sequences to the reference genome.

In this setting, the relative abundance of RPFs that map to different parts of the single

genes, usually evaluated in terms of ribosome density (RD) and measured in number

of RPFs per codon, is typically used to estimate the protein synthesis rate for each

gene. The distribution of RPFs along the genes can also provide information about the

possible presence of ribosome drop-off: an average decrease of the RD from the 5’ end

to the 3’ end of each open reading frame (ORF) reveals that a significant number of

ribosomes fail to reach the 3’ end.

In this work we reevaluate the analysis of Ribo-seq data with the goal of quantifying

weak signals of ribosome drop-off. The methods used so far were not able to detect
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Dataset Series Organism Samples Ref.
# (GSE ID) (E. coli) (GSM ID)

1 68762 MC4100 1680885 - 1680884 [2]
2 MC4100 1680887 - 1680886
3 MC4100 1680889 - 1680888
4 MC4100 1680891 - 1680890

5 51052 MG1655 1399615 - 1399616 [159]
6 MG1655 1399610 - 1399611
7 BW25113 1399617 - 1399618
8 BW25113 1399612 - 1399613

9 56372 MG1655 1360042 - 1360030 [160]
10 MG1655 1360043 - 1360031
11 MG1655 1360044 - 1360032
12 MG1655 1360045 - 1360033
13 MG1655 1360046 - 1360034
14 MG1655 1360045 - 1360035

15 58637 MG1655 1415871 - 1415869 [161]
16 MG1655 1415872 - 1415870

17 53767 MG1655 1300279 - 300282 [68]

Table 3.1: Coordinates of the datasets analyzed in this paper. Column 1: Samples ID
(referenced throughout the paper); Column 2: GEO Series ID; Column 3: Organisms
used for the sequencing; Column 4: GEO Samples ID (left: Ribo-seq sample; right:
RNA-seq sample). Column 4: Publication of reference. The entries reported in italic

are the technical replicates of the entries reported above them.

any ribosome drop-off in these data, despite experimental evidence of the phenomena.

Through a new way of analyzing the same Ribo-seq data we will show that we find sig-

nificant evidence of ribosome drop-off and that its rate of occurrence can be determined

quantitatively and it is consistent with earlier experimental estimates.

3.2 Materials and Methods

To compute the ribosome drop-off rate in E. coli , we analyzed all the related datasets

present up to now in the GEO database [162] in which both the Ribo-seq data and the

corresponding RNA-seq data were submitted. The GEO coordinates for these datasets

are reported in Table 3.1. The experimental datasets analyzed here provide both ribo-

seq and RNA-seq data for E. coli grown under different normal and stressed conditions.

Datasets 1 and 2 refer to E. coli grown in LB medium (dataset 1) and then subject

to acute heat stress at 47◦C (dataset 2). Datasets 3, and 4 refer to E. coli grown
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in minimal medium (dataset 3) and then subject to acute osmotic stress (dataset 4).

Dataset 5 refers to a strain of E. coli unable to synthesize Leucine when grown in a

medium with Leucine. Dataset 5 will be compared with dataset 6, where the growth

medium has no Leucine. Dataset 7 refers to a strain of E. coli unable to synthesize

Serine when grown in a medium that provides Serine. Dataset 7 will be compared with

dataset 8, where the growth medium has no Serine. Datasets 9, 11, 13 refer to E. coli

grown in LB medium, subject to acute ethanol stress, and subject to chronic ethanol

stress, respectively. Datasets 10, 12, 14 are replicas thereof. In datasets 15 and 16, E.

coli is grown under normal conditions (dataset 15) and then subject to induced high

expression of the sigma factor σE . Finally, dataset 17 reports on E. coli grown under

normal conditions (LB medium).

In each case, we started our study from the “raw data” consisting of FASTQ files [163].

These files contain both the sequence of the oligonucleotides (reads) coming from the

deep sequencing process (without any a posteriori data manipulation) and information

about the quality of each read, i.e., the probability that of each nucleotide being correctly

sequenced.

Our analysis protocol consists of two subsequent steps. In the “upstream phase”, we use

existing software tools pipelined together to obtain a reliable mapping of the reads on the

reference genome. In the “downstream phase”, we performed statistical analysis of the

outputs from the upstream step using in-house scripts written in the “R environment”

[164].

3.2.1 Upstream analysis

For the upstream analysis of both the Ribo-seq and the related RNA-seq data, we ap-

plied the following procedure. The raw data was filtered using CUTADAPT [165] (release

1.8.3) such that only high quality reads were kept (Q-score ≥ 40, which corresponds to a

sequencing error probability of 0.0001%). This refinement of the read sequences allowed

us to reduce the probability of errors in the subsequent mapping phase; the presence

of mis-sequenced nucleotides introduces artifacts that can increase the similarities be-

tween the query sequences and wrong mapping positions in the reference genome, thus

increasing the probability of incorrect mapping. CUTADAPT was then used again to

trim the adaptor sequences from the remaining reads.

We then filtered out all the reads that were shorter than 15 nucleotides to reduce the

prevalence of multi-mapping errors. Shorter reads have a much higher chance of mapping

to multiple places in the reference genome, simply due to combinatorics; thus with short
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reads, we cannot be confident that the part of the genome that the read mapped to

actually reflects the origin of the read.

Afterwards, we mapped the resulting reads against the rRNA sequences of E. coli to

filter out the reads coming from the sequencing of rRNAs. We used the Bowtie2 aligner

[166] (release 2.2.5) setting the running parameters in order to allow a successful mapping

only when a high degree of similarity between the query read and the reference sequence

occurs. In particular, we set the seed length to 15 (the minimum reads length) and we

allowed no mapping mistakes in the seed. In this way, we maximized the probability of

ruling out only the rRNA reads.

Finally, the remaining reads were mapped against the whole set of protein coding ORFs

in E. coli , taken from the EnsemblBacteria database [167]. Among the reads that

mapped on the reference ORFs we selected the ones that mapped with the highest score

possible for Bowtie2 (MAPQ = 42).

Ultimately, in the upstream phase we aim to minimize the bias that could arise either

from the non-optimal quality of the sequenced reads or from the mapping process. For

each sample analyzed (Table 3.1, fourth column), we obtained two set of reads (one

coming from the raw Ribo-seq data and the other from the corresponding raw RNA-

seq data) mapping on the same set of ORFs. These “refined” datasets are used in the

subsequent phase of our analysis.

3.2.2 Downstream analysis

In this step of our analysis lies the core of our method. All the procedures described

hereafter were implemented through a custom script in the “R environment”. For the

sake of readability we report all the details of the downstream analysis in Supplementary

Section 3.1.

Computing the average number of RPFs per ORF: a novel binning strategy.

For each dataset reported in Table 3.1, we divided each ORF in bins of ` nucleotides

and we counted the number of RPFs that mapped in each bin. This results in the RPF

matrix composed by cells (i, j) reporting the number of RPFs that, for any given ORFi,

map in the corresponding bin j (see Supplementary Figure 3.1).

To normalize the amount of RPFs with the abundance of the corresponding RNA-seq

reads, we divided the value in each cell of the RPF matrix by the quantity RNA(i,j)
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given by

RNA(i,j) = ( total RNA-seq reads for ORFi) ·
`(i,j)

Li
, (3.1)

where `(i,j) is the number of nucleotides of the ORFi in cell (i, j) and Li is the length of

the ORFi in number of nucleotides.

In this way, we obtain the matrix NRPF that reports the normalized Number of RPFs

per bin in each cell:

NRPF(i,j) =
RPF(i,j)

RNA(i,j)
, (3.2)

which is equivalent to assume a uniform coverage of each ORF by the RNA-seq reads

mapping on it.

Finally, we computed the average over each column j of the NRPF matrix, obtaining a

vector Y that contains the average normalized number of RPFs per bin for the whole

set of ORFs. This averaging procedure ensures that sequence-specific features are also

averaged out. We then use the vector Y to compute the drop-off rate r as detailed in

the next paragraph. Supplementary Figure 3.1 reports a schematic representation of the

binning strategy described above.

Estimation of the drop-off rate and its associated error.

To obtain an estimate of the drop-off rate r per codon, we investigated the relationship

between the average number of RPFs per bin Y and the bin number X. Inspired by

theoretical considerations [154], we studied the dependence of Y from X in the form of

the exponential decay

Y = A e−RX , (3.3)

where X = 1, 2, . . . is the bin number and A is the intercept, which is of no interest here.

The value of R can be referred to as the drop-off rate per bin and, widely speaking,

indicates the probability per bin that a ribosome prematurely detaches from the mRNA

template. The corresponding drop-off rate per codon r can be exactly related to R

considering that drop-off events can occur anywhere inside each bin. Indeed, if r is the

drop-off rate per codon, then the probability that the ribosome does not drop-off within a

bin of `c codons is (1−r)`c . Consequently, the probability R that any ribosome drops-off

anywhere within the bin is 1− (1−r)`c and the drop-off per codon is r = 1− (1−R)1/`c .

To obtain a precise estimate of R and its associated error, we relied on a bootstrapping

procedure, applied to each column of the NRPF matrix. In this way, for each dataset,

we produced 105 Y vectors that are independent but statistically equivalent to each

other. For each Y vector of any given dataset, we estimated one value of R through the
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(weighted) linear regression of lnY versus X, thus exploiting the relationship described

by Equation 3.1. From this procedure we obtained a normal distribution of the possible

values of R for each original dataset (Supplementary Figure 3.2). The average and

the variance of that distribution provide a first estimate of the true value of R and its

associated variance. We call RBS the estimate of the drop-off rate per bin from the

bootstrap. Its standard deviation is called SBS . Both RBS and SBS are specific to each

single dataset (Supplementary Table 3.1).

Bin number (X)

N
um

be
r o

f g
en

es
 p

er
 b

in
0

50
0

10
00

15
00

20
00

25
00

30
00

ln
(Y

)
-0

.4
-0

.2
0.

0
0.

2
0.

4
0.

6

0 10 20 30 40 50 60 70

Figure 3.1: Number of elements in each column of the NRPF and BS matrices. The
hisogram (blue vertical bars) gives the number of genes contributing in each bin (scale on
the left vertical axes). This number decreases from left to right. The plot superimposed
to the vertical bars (resulting from the analysis of dataset 17, right vertical axes) shows
that the scattering of the plotted values increases with the bin number, indicating an
increase of the variance associated to the estimation of average normalized RPF’s per
bin, Y . The green vertical line represents the cut-off (39 bins of 100 nucleotides) that

we chose to obtain the best estimate of the drop-off rate.

We further evaluated our estimate of R for possible systematic errors resulting from the

choice of the bin size and the number of bins considered for the regression. The bin size

affects the sensitivity of the regression to the drop-off rate. Larger bin sizes result in

smoother curves, but lose information to averaging. Furthermore, the number of bins

considered in the regression also affects the reliability of the estimation of R. In E. coli,

the length of ORFs in genes is not uniformly distributed – there are significantly fewer

genes with very long ORFs (Figure 3.1). Thus, statistics for later bins are sparse, and

the bin average becomes a bad estimator of vector Y .

To evaluate possible systematic errors, for each one of the analyzed datasets we created

several simulated datasets. The simulated datasets replicated the original counterparts

both in the ORDs lengths and in the number of reads mapping in each ORF. The

position of the RPFs, instead, was redistributed along the ORFs according to a nominal
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drop-off rate. Our aim was to repeat the boostrapping procedure as we did for the real

datasets and to measure the systematic deviations from the nominal drop-off rate used

to generate the artificial profiles. For each dataset, we repeated the bootstrap process

for various combinations of bin sizes and number of bins considered in the regression,

looking for the combination that resulted in an R closest to the nominal drop-off rate.

From this analysis we found that using a bin size of 100 nucleotides and the first 39 bins

for the regression yields an estimate of R which is closest to the nominal value used for

all datasets. With these settings, the estimated R was offset from the nominal value

by a datasets-specific ∆ and an associated standard deviation S∆. The results obtained

are reported in detail in Supplementary Table 3.1. Thus, for each experimental dataset,

the best estimate of the drop-off rate R and its associated standard deviation per bins

of 100 nucleotides is given by

R = RBS − ∆SR =
√
S2
BS + S2

∆ , (3.4)

from which we obtain the drop-off rate and standard deviation per codon as r = 1 −
(1−R)3/100 and Sr = 1− (1− SR)3/100, respectively.

Summing up, our procedure to evaluate R consists of two steps: first, our bootstrap ap-

proach allows us to produce a set of “simulated technical replicas”. From this, we obtain

a provisional estimate of the drop-off rate RBS and its associated standard deviation

SBS . Next, we correct for the systematic effects of binning by adding the offset ∆ while

taking its variance S∆ into account.

3.3 Results

For each experimental dataset reported in Table 3.1 we applied the analysis protocol

described in Materials & Methods. The values we obtained for the drop-off rate per

codon, r, are reported in Table 3.2 together with the respective standard deviations, Sr,

and the 99% confidence intervals (Supplementary Section 3.2).

To check whether the values we obtained for r are significantly different from 0, we

performed a Z-test for the mean for each of the r with a significance level of 0.01 (3.2).

The results of our tests revealed that in 14 out of 17 cases we measured a drop-off rate

significantly larger than 0. In the two datasets 6 and 8, instead, the relationship between

X and Y is more complex than the single exponential decay described by Equation 3.1

and, thus, r cannot be evaluated through our method. The corresponding entries in

Tables 3.2 are, then, labeled with n.a..
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Dataset r (10−4) Sr (10−4) CI (10−4)

1 2.9 0.3 r±0.8
2 2.2 0.4 r±1.0
3 2.4 0.2 r±0.5
4 1.9 0.3 r±0.8

5 0.7 0.3 r±0.8
6 n.a. n.a. n.a.
7 1.9 0.2 r±0.5
8 n.a. n.a. n.a.

9 2.4 0.5 r± 1.3
10 2.2 0.7 r±1.8
11 5.1 0.4 r±1.0
12 5.6 0.3 r±0.8
13 2.3 0.3 r±0.8
14 2.3 0.3 r±0.8

15 3.0 0.3 r±0.8
16 0.0 0.4 r±1.0

17 1.4 0.2 r±0.5

Table 3.2: Drop off rates detected in the analyzed datasets. Column 1: Datasets ID
(see Table 1 for the respective GEO coordinates). Column 2: Drop-off rate per codon.
Column 3: Standard deviation associated to r. Column 4: 99% Confidence Interval

associated to r.

Further analysis, based on the ANOVA test revealed significant differences among some

values of r (see Supplementary Section 3.2.3 for details). Given that the ANOVA test

does not tell us which of the tested values are significantly different or equal to each

other, we performed a series of coupled post hoc tests to investigate the sources of the

detected variability. In particular, we compared the values we obtained for r within each

GEO series. The outcomes of this analysis are reported in the next paragraphs.

3.3.1 Comparing the Drop-off rates in normal and stressing conditions

Datasets 9, 11 and 13: Ethanol-induced stress.

This series refers to a set of experiments performed to elucidate the effect of ethanol

intoxication on the translation machinery of E. coli MG1655. To this aim, the bacterial

cells, first cultured in a minimal medium (M9 minimal medium, supplemented with

MgSO4 1 mM, CaCl2 0.1 mM, and glucose 10 g/L) were exposed at T0 = 0 to a



3. Ribosome Drop-off 69

toxic concentration of ethanol (40g/l) and sampled after T1 = 10 minutes and T2 = 70

minutes.

Through the Z-test, we compared the drop-off rate that we measured at each time point

and, as shown in Table 3.3, it resulted that at T1 there was a significant increase in the

drop-off rate. At T2, instead, the frequency of drop-off events restored to values similar

to the basal rate that we measured at T0.

Compared samples Exp. conditions Z score Sig. level ZB

(Dataset ID) (±Z0.0025 )

9 M9 Minimal Medium
vs. vs. 4.19 ± 2.81 ± 3.14
11 Ethanol stress - T1

9 M9 Minimal Medium
vs vs. 0.17 ± 2.81 ± 3.14
13 Ethanol stress - T2

13 Ethanol stress - T2

vs vs. 6.08 ± 2.81 ± 3.14
11 Ethanol stress - T1

Table 3.3: Results of the Z-tests to compare the drop-off rates of Datasets 9, 11 and
13. Column 1: Dataset ID (see Table 1 for the respective GEO Coordinates). Col-
umn 2: Experimental conditions. Column 3: Z-score computed from the comparison
of the Drop-off rates. Column 4: Percentiles of the standard normal distribution cor-
responding to a total rejection area of 0.005. Column 5: Percentiles of the standard
normal distribution corresponding to a total rejection area of 0.005, corrected accord-
ing to the Bonferroni method [168]. This test shows that the drop-off rate under acute
ethanol stress is significantly different form the drop-off rate under normal conditions

and chronic stress.

The results of our analysis agree with the findings that ethanol alters the structure of

ribosomes, inducing an increase of translational errors and stalling events that in turn

trigger cellular responses leading to premature translation termination [143]. Figure

3.6, reporting the plots we obtained from our analysis, provides a graphical view of our

findings.

Hence, our approach reveals the existence of a basal drop-off rate that can be affected

by environmental stress. Moreover, performing our analysis at different time points, we

were able to provide some insights on the timing of the stress response: the reliability

of the translation process is affected by ethanol only for a limited amount of time.
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Figure 3.2: Plot of the vector Y vs. the number of bins (X). The slopes of the dashed
lines correspond to the drop-off rate r reported in Table 3.2. a): Dataset 9 - Control
(T0). b): Dataset 11 - T1, after 10 minutes of ethanol stress. c): Dataset 13 - T2,
after 70 minutes of ethanol stress. The plots includes only the first 39 bins that we
considered in our analysis. To facilitate the comparison with the similar graphs present
in the paper we shifted the plots for a distance equal to the intercept of the regression

line. The complete plots are reported in Supplementary Figure 3.6.
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Datasets 5, 6, 7, 8: Amino acids starvation.

The experiments related to this series report the analysis of E. coli MG1655 and E. coli

BW25113 cells that exhibit auxotrophic phenotypes respectively for the amino acids

Serine and Leucine. The auxotrophic strains were grown either in a complete medium

containing also the essential amino acids (rich medium - MOPS) or in conditions of

starvation of the essential amino acid. Through our analysis, we succeeded in evaluating

the basal drop-off rates related to the control experiments (growth in rich medium).

More interestingly, the effect of premature ribosomal drop-off in the starvation conditions

resulted to be qualitatively different from the normal conditions (Figures 3.3 and 3.4).

This finding is consistent with the findings in Ref. [159] where an increase in the drop-

off events upon amino-acid starvation was detected. Noticeably, the method used in

[159] did not allow the detection of drop-off events in the control conditions. A possible

explanation for this discrepancy is that in Ref. [159] a sliding window approach was

used to average the ribosome profiles. In our method, the averages are computed in

bins of fixed length. Even though the sliding window technique usually enhances the

signal to noise ratio, it is also less sensitive to the signal detection with respect to our

strategy. Therefore, it is possible that in Ref. [159] low frequencies of drop-off events are

not detected because the sensitivity is compromised for the noise dampening. Another

likely possibility is that a drop-off rate of 10−4 is hardly visible at the scale used in the

plots of [159].

Inspecting the plots, the decay of the density profile Y under both starvation conditions

seem as it could be better desribed by a two-exponential decay model in which a steeper

exponential curve is followed by a less steep one. Thus, the poor fit with a single

exponential decay, prevents a computation of r. This finding suggests that a more

complex dynamics of the drop-off events is likely to come into play in conditions of

heavy cellular stress such as amino acid starvation.

Summing up, our method allowed us to gain preliminary insights on the dynamics of

drop-off events measured in different experimental settings. The global increase in the

drop-off rate during amino-acid starvation is consistent with the idea that the starvation-

induced increase of ribosome stalling events enhances the triggering of the rescue path-

ways [143] that, eventually, lead to a higher frequency of translation abortions.

Datasets 15 and 16: A novel σE -induced sRNA.

The set of experiments related to this dataset were performed to find putative novel

targets for the σE transcription factor, which is known to play a pivotal role in regu-

lating the homeostasis of the outer membrane [169]. In one of the experiments, σE was
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Figure 3.3: Plot of the vector Y vs. the number of bins (X). The slope of the dashed
line corresponds to the drop-off rate r reported in Table 3.2. a) Dataset 5 - Control
(MOPS - Rich medium) b) Dataset 6 - Leucine starvation. In this case, due to the
poor fit with a single exponential model, we could not compute r. Thus, the regression
line is not represented here.The plots include only the first 39 bins that we considered
in our analysis. To facilitate the comparison with the similar graphs present in the
paper we shifted the plot for a distance equal to the intercept of the regression line.

The complete plots are reported in the Supplementary Figure 3.7.

ectopically overexpressed, inducing the overespression plasmid pRpoE through 1mM of

IPTG. Two samples were, then, harvested at T0 = 0 and T1 = 20 minutes and analyzed

through Ribo-seq and the corresponding RNA-seq.

We analyzed the outcomes of these experiments and measured the drop-off rates at the

two time points. Our Z-test reveals a clear difference in the two drop-off rates (see

Table 3.4) which is evident also by inspecting the plots reported in Figure 3.5.

In particular, the sample collected at T1 exhibits a drop-off rate approximately equal to

zero, which is the only case we obtained in our analysis. The biological interpretation of

this finding is not easy to achieve, due to the scarcity of information regarding the role

of σE in the regulation of the translation process. Indeed, the transcription factor σE is

mainly known as a pleiotropic gene expression inducer that promotes the transcription

of about 100 genes and three small regulatory RNAs. Our results point towards possible

additional roles of σE in increasing the reliability of the translation process, at least

when it is highly expressed.
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Figure 3.4: Plot of the vector Y vs. the number of bins (X). The slope of the dashed
line corresponds to the drop-off rate r reported in Table 3.2. a) Dataset 7 - Control
(MOPS - Rich medium) b) Dataset 8 - Serine starvation. In this case, due to the poor
fit with a single exponential model, we could not compute r. Thus, the regression line
is not represented here. The plots include only the first 39 bins that we considered in
our analysis. To facilitate the comparison with the similar graphs present in the paper
we shifted the plot for a distance equal to the intercept of the regression line. The

complete plots are reported in the Supplementary Figure 3.8.

Compared samples Exp. conditions Z score Sig. level ZB

(Dataset ID) (±Z0.0025 )

15 Control - T0

vs. vs. 6.07 ± 2.81 n.a.
16 High level σE - T1

Table 3.4: Results of the Z-tests to compare the drop-off rates of Samples coming from
the GEO Series GSE58637. Column 1: Dataset ID (see table 1 for the corresponding
GEO coordinates) . Column 2: Experimental conditions. Column 3: Z-score computed
from the comparison of the drop-off rates. Column 4: Percentiles of the standard normal
distribution corresponding to a total rejection area of 0.005. Column 5: Percentiles
of the standard normal distribution corresponding to a total rejection area of 0.005,
corrected according to the Bonferroni method [168]. The result of the Z-test confirms
a significant difference between the drop-off rates at time T = 0 and at time T = 20

minutes.

Datasets 1, 2, 3 and 4: Heat and Osmotic Stress.

The data reported in Ref. [2] refer to the analysis of E. coli MC4100 cells cultured in

the LB medium or in a minimal medium (12.8 g/l Na2HPO4 7H2O, 3 g/l KH2PO4, 1
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Figure 3.5: Plot of the vector Y vs. the number of bins (X). The slope of the dashed
lines correspond to the drop-off rates r reported in Table 3.2. a): Dataset 15 - Control
(T0). b): Dataset 16 - T1, after 20 minutes of σE over expression induction. The
plots include only the first 39 bins that we considered in our analysis. To facilitate
the comparison with the similar graphs present in the paper we shifted the plot for a
distance equal to the intercept of the regression line. The complete plots are reported

in the Supplementary Figure 3.9.

g/l NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2, 0.4% glucose) and subjected, respectively, to

acute heat stress (47◦C for 7 minutes) and to acute osmotic stress (NaCl 0.3M for 20

minutes at 37◦C). Through our analysis we succeeded in measuring a “basal” rate of

drop-off events (see Supplementary Figure 3.10 and 3.11) but we detected no significant

differences in the drop-off rates between the control and stress condition. Table 3.5 re-

ports the results of our Z-tests for the mean, showing that the obtained Z-scores (column

3) are in the boundaries of the acceptance area, thus supporting the null hypothesis of

equal means.

These results could imply either that the cell-scale translation reprogramming events

that are expected to occur in stressing conditions are not strong enough to be detected

by our method or that the time scales chosen for harvesting the cells subjected to the

stressing conditions were large enough to allow the translation dynamics to be restored

to the initial levels. Unfortunately, our method does not allow to discriminate between

these two hypotheses.
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Compared samples Exp. conditions Z-score Sig. level ZB

(Dataset ID) (±Z0.0025 )

1 LB Medium
vs. vs. 1.61 ± 2.81 ± 3.02
2 Heat Stress

3 Minimal Medium
vs. vs. 1.21 ± 2.81 ± 3.02
4 Osmotic Stress

Table 3.5: Results of the Z-tests to compare the drop-off rates of samples coming from
the GEO Series GSE68762. Column 1: Dataset ID (see table 1 for the corresponding
GEO coordinates). Column 2: Experimental conditions. Column 3: Z-score computed
from the comparison of the drop-off rates. Column 4: Percentiles of the standard normal
distribution corresponding to a total rejection area of 0.005. Column 5: Percentiles
of the standard normal distribution corresponding to a total rejection area of 0.005,
corrected according to the Bonferroni method [168]. The results of the tests (all the Z
scores falls into the acceptance area) show that the drop-off rates measured in normal

and stressed conditions do not differ significantly.

3.4 Discussion and Conclusions

Despite clear experimental evidence of ribosome drop-off, past attempts to detect ribo-

some drop-off in Ribo-Seq data were unsuccessful. In this paper we present a simple

data analysis method that is sensitive enough to detect the weak decay of ribosome

density over the ORF, which allows us to measure the cell-wide ribosome drop-off rate.

With this method, we can even measure the basal rate of ribosome drop-off for cells in

non-stressed conditions.

The other analytical approaches reported in literature so far were unsuccessful because

the proposed binning strategy was not sensitive enough. These approaches typically

divide each ORF into two halves and compare the number of reads that map on each

half (see Ref. [68] and Supplementary Section 3.1.3). A significant reduction of reads in

the second half would reveal that a certain number of ribosomes have not successfully

completed translation. These results are typically illustrated by means of scatterplots

where the ribosome density in the first half are plotted against the ribosome density

in the second half (Supplementary Figure 3.3 and 3.5). When there is no significant

difference between the densities in the two halves, the plotted points will cluster around

a straight line with slope = 1. For an ORF where the density of the second half is

significantly lower than the first half, the corresponding point would fall below the

straight line. At least in principle, this method is mathematically sound. However, it

has a major drawback: the sensitivity of this approach depends critically on the ORF
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length. When the frequency of drop-off events is not large enough with respect to length

of the ORFs, the difference in ribosome density between the two halves of the ORF are

too small to be detected in a log-log scatterplot. As a consequence, if the genome of

interest prevalently contains short genes, the scatterplot-method is not sensitive enough

to detect the drop-off. This would lead to the wrong conclusion that, at the genome

scale, the ribosome drop-off rate is not measurable.

Fortunately, our analysis technique is not affected by the length of the ORFs. We used

our method to analyze various datasets referring to the bacterium E. coli cultured in

different experimental conditions. The values we obtained for the drop-off rate ranged

from a minimum of 1.4 · 10−4 to a maximum of 5.6 · 10−4 events per codon. These

values make ribosome drop-off not negligible at the cellular level. Indeed, if we consider

a drop-off rate of 4 · 10−4 per codon and an ORF length of 300 codons (approximately

the average ORF length for E. coli ), it turns out that on average, 10 out of every 100

ribosomes will fail to complete the translation of the messenger.

Furthermore, taking into account the speed of ribosomes and the number of ribosomes

actively involved in translation [53], and assuming a drop-off rate of 4 · 10−4 per codon

in all growth conditions, the number of premature ribosome drop-off ranges from 1400

per minute per cell at slow growth conditions to 29000 per minute per cell at fast growth

conditions. Even considering the lifetime of a cell [136], the total number of drop-off

events in a slowly growing population is about 14·104 events per cell cycle at slow growth

(doubling time 100 minutes) and 75 · 104 at fast growth conditions (doubling time 25

minutes).

Furthermore, we come to a more general result relating drop-off rate and the length of

genes. We found that, for a given drop-off rate, there is a limiting gene length above

which the translation process becomes ineffective due to the high number of expected

drop-off events. In the case of low drop-off rate, this threshold length is usually higher

than the maximum gene length of E. coli. However, in those cases where ribosomes drop

off with a higher frequency, the completion of translation is only reliable for shorter mR-

NAs. This suggests that when living organisms face conditions leading to increased

drop-off rate (e.g. amino acids starvation) only a subset of genes can be effectively ex-

pressed. Since the probability of a ribosome to complete translation decreases exponen-

tially with the ORF length, the magnitude of ribosome drop-off becomes an important

evolutionary constraint of ORF length. If the genome of an organism is composed of

ORFs that are too long relative to the drop-off rate, the reliability of translation may

not support cell viability.

Our result is related also to the ongoing discussion concerning the existence of a high

density of reads at the beginning of the ORF, a phenomenon sometimes referred to as
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the “ramp” [170]. With the exception of the data referring to the acute amino acids

starvation, the analysis of our density profiles shows that in the samples considered

here there is no phenomenological cross-over between the beginning of the ORF and the

more downstream bins. Qualitatively, this means that our results would not change after

eliminating the two first upstream bins. This indicates that in E. coli there is only one

mechanism, namely ribosome drop-off, responsible for the decrease of the reads density

in the whole ORF.

Contrary to previous Ribo-seq analysis results, we have shown that the magnitude of

ribosome drop-off is highly variable and dependent on case-specific factors, including

experimental conditions and the protocol used to collect Ribo-Seq data. Since the es-

timation of translation rates from Ribo-seq data assumes negligible ribosome drop-off,

these estimations should be reevaluated to correct for possible biases due to drop-off

events. In fact, we speculate that ribosome drop-off could be a possible explanation for

the ubiquitous negative correlation between gene length and protein synthesis rate.
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Abstract

Do young and old protein molecules have the same probability to be de-

graded? To answer this question we used metabolic pulse-chase labeling and

quantitative mass spectrometry to obtain degradation profiles for thousands

of proteins. We find that more than 10% of proteins are degraded non-

exponentially in mouse fibroblasts. In all of these cases, proteins are less

stable in the first few hours of their life and become more stable as they age.

We find that degradation profiles are conserved between mouse and human

and are similar in two different cell types. Many non-exponentially degraded

(NED) proteins are subunits of multiprotein complexes that are produced in

super-stoichiometric amounts relative to their exponentially degraded (ED)

counterparts. Within complexes, NED proteins have larger interaction in-

terfaces and assemble earlier than ED subunits. Amplifying genes encoding

NED proteins increases their initial degradation. Consistently, our decay

profiles can help to predict how DNA copy-number alterations affect protein

levels. Together, our data show that non-exponential degradation is com-

mon, evolutionarily conserved and has important functional consequences

for protein complex formation and aneuploidy.

4.1 Introduction

Pioneering experiments by Rudolph Schoenheimer established that proteins are in a

dynamic state of synthesis and degradation [171]. The subsequent discovery of lysosomes

and the ubiquitin-proteasome system (UPS) provided detailed insights into the molecular

mechanisms of cellular protein homeostasis [172, 173]. It is now well-established that

proteins are extensively turned over, that this process is specific, and that the stability

of individual proteins can vary under different physiological conditions [174].

Despite these mechanistic insights, the kinetics of cellular protein degradation are still

not well understood. Early analyses indicated that intracellular protein degradation

follows first order kinetics [175, 176]. Accordingly, protein degradation is thought to be

an exponential decay process in which young and old proteins have the same degrada-

tion probability per unit time (i.e., degradation rate) (Figure 4.1A). However, there is

substantial evidence that protein degradation does not always follow first-order kinet-

ics. Pulse-chase experiments by Wheatley et al. indicated that a substantial fraction

of proteins are degraded within the first 2 h after synthesis [7]. In addition, the newly

synthesized immature forms of proteins, like the cystic fibrosis transmembrane conduc-

tance regulator (CFTR) and basigin (CD147), were found to be rapidly degraded while
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Figure 4.1: A) Exponential decay implies that 50% of protein molecules are de-
graded within one half-life time period. Plotting the remaining number of molecules
over time results in a straight line (in a semi log plot). The degradation probability
within one half-life time period is 0.5 and constant, i.e. young and old molecules have
the same degradation probability. B) Experimental setup for global pulse-chase exper-
iments. Fully SILAC labelled NIH 3T3 cells are pulse-labelled with azidohomoalanine
(AHA) and either directly harvested (time point 0 h) or chased in medium containing
methionine (cold chase). Samples are combined and AHA containing proteins are en-
riched by click chemistry. Proteins are digested “on-bead“ and peptides are analysed by
LC-MS/MS. C) Measured MS spectra for three peptides representing the major types
of decay profiles detected. Filamin alpha (Flna, ASGPGLNTTGVPASLPVEFTIDAK)
shows slow exponential degradation, Cathepsin L1 (Ctsl1, NLDHGVLLVGYGYEGTD-
SNK) shows fast exponential degradation, Basigin (Bsg, VLQEDTLPDLHTK) shows
non-exponential degradation. Three experiments with different chase times were com-
bined using Heavy samples (t = 0h) as a common reference. D) Decay profiles of
individual proteins from one of three biological replicates (grey traces). Highlighted
profiles depict proteins shown in C) and are based on all three replicates (µ ± σ).

Outliers (> 130% protein left, < 1% of data points) were removed.
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the “older” mature forms were stable [177, 178]. It was also observed that proteins

can be ubiquitinated co-translationally [179] and that most ubiquitinated proteins in

a cell are relatively young [180]. Finally, it has been estimated that around 30% of

newly synthesized proteins are quickly degraded [181], although this number was ques-

tioned in later studies [182]. Collectively, these studies suggest that decay probabilities

of proteins can vary as a function of their molecular age. However, to the best of our

knowledge, the degradation kinetics of individual proteins has not yet been investigated

on a proteome-wide scale.

To systematically assess cellular protein degradation kinetics we sought to perform pulse-

chase experiments on a proteome-wide scale. The general idea is to metabolically label a

population of proteins with a short pulse and then to quantify how much of this popula-

tion is left after different lengths of chase. Traditionally, such experiments are carried out

using radioactive amino acids followed by SDS-PAGE and autoradiography [175, 176].

However, this set-up either does not reveal the identity of the labeled proteins or, when

coupled to immunoprecipitation, is not scalable and is thus not suitable to study degra-

dation kinetics on a proteome-wide scale. We and others have previously used stable

isotope labeling by amino acids in cell culture (SILAC) to study protein synthesis and

turnover [72, 183–189]. However, in order to achieve good labeling efficiencies, these ap-

proaches require labeling times of several hours, which limits their temporal resolution.

Recently, metabolic labeling with bioorthogonal amino acids has emerged as an attrac-

tive alternative [190]. Cells can incorporate the artificial amino acid azidohomoalanine

(AHA) into newly synthesized proteins instead of methionine [191]. AHA contains an

azide group enabling capture of proteins via click chemistry [190]. Combining AHA with

SILAC enables relatively short pulse times [192, 193].

Here, we combined AHA and SILAC labeling to obtain the first global survey of protein

degradation kinetics. We find that a sizable fraction of proteins are degraded non-

exponentially. Degradation profiles were similar in mouse fibroblasts and human epithe-

lial cells. Many non-exponentially degraded (NED) proteins are members of heteromeric

protein complexes. These NED proteins are typically over-produced relative to other

members of the same complex. Thus, in contrast to recent findings in bacteria [68],

disproportional protein synthesis appears to be a common and evolutionarily conserved

process in mammalian cells. Our data allowed us to predict how protein levels change

in response to gene copy number alterations in aneuploid cells. Therefore, our kinetic

profiles are also relevant for gene expression control. Our first global quantification of

protein degradation kinetics reveals an unexpected layer of posttranslational regulation

with important functional implications.
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4.2 Results

4.2.1 Combining metabolic pulse labeling and click-chemistry for global

pulse-chase experiments

To perform proteome-wide pulse chase experiments we combined AHA and SILAC la-

beling (Figure 4.1B). First, cells are fully labeled heavy, medium-heavy or light using

SILAC. Second, all three cell populations are pulse labeled with AHA for 1 h. This rela-

tively long pulse labeling time was chosen to allow sufficient label incorporation. Heavy

cells are harvested immediately after the pulse while medium-heavy and light cells are

chased in AHA-free medium for different lengths of time. All three cell populations

are then combined and lysed. Mixing cell populations at this early stage minimizes

the impact of sample processing steps on quantification and thus increases robustness.

AHA-containing proteins are then purified from the mixed lysate. After digestion into

peptides, SILAC-based quantification reveals how much of the pulse labeled fraction

remains at different time points.

To establish AHA pulse chase we first analyzed click chemistry-based capturing of

heavy AHA labeled proteins after mixing them with unlabeled cells (Supplementary

Figure 4.1A). After enrichment, more than 80% of identified proteins were exclusively

detected in the heavy form and the rest had a median enrichment ratio higher than

10. Thus, AHA enrichment is highly efficient. We next checked if AHA itself affects

protein degradation kinetics. To this end, we pulse labeled cells with both AHA and ra-

dioactive cysteine (Supplementary Figure 4.2A). Chasing for six and 24 h did not reveal

any apparent impact of AHA on protein degradation compared to control experiments

using methionine (Supplementary Figure 4.2B-D). Also, peptides derived from both the

N-terminal and C-terminal halves of AHA-labeled proteins had similar intensities, sug-

gesting that AHA does not induce premature termination (Supplementary Figure 4.3).

Collectively, these data indicate that AHA pulse-chase (AHA p-c) enables efficient en-

richment of newly synthesized proteins with no apparent impact on protein stability,

consistent with previous reports [190, 194–196]

For global quantification of protein degradation kinetics we performed three parallel

triple-SILAC experiments with different chase times (1, 2, 4, 8, 16 and 32 h) in mouse

fibroblasts (NIH 3T3). Heavy cells were always harvested immediately after the pulse

and served as a common reference point. Exemplary mass spectra for a stable protein

(filamin A, Flna) and an unstable protein (cathepsin L, Ctsl1) show expected slow and

fast degradation, respectively (Figure 4.1C). Interestingly, the levels of basigin (Bsg)

quickly decreased after the chase but then stabilized after about 4 h. This is consistent

with the observation that most of the newly synthesized immature basigin is degraded
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while the mature form of the protein is stable [177]. We combined the data from the

three triple-SILAC experiments to obtain kinetic profiles with seven time points. To

compensate for differences in cell numbers we normalized the data using a selected set

of very stable proteins (Supplementary Figure 4.4, Materials and Methods). We also

subtracted background signals which could otherwise give rise to erroneous degradation

profiles (see Materials and Methods for details). The entire large scale experiment was

carried out three times, thus yielding data from three independent biological replicates.

In total, this analysis yielded profiles for 5,247 proteins (Figure 4.1D, Supplemental

Table S1). Overall, reproducibility was very good with coefficients of variation (CVs,

computed in log space) of less than 10% at time point 32 h for about 90% of the proteins

(Supplementary Figure 4.5).

4.2.2 Stochastic modeling reveals extensive non-exponential protein

degradation

To model our experimental protein degradation profiles we adapted a Markov chain-

based approach previously used to study mRNA decay (Figure 4.2A) [86]. We consid-

ered two different models. In the first model proteins only exist in a single state “A”

that is characterized by a constant decay probability. This “1-state model” therefore de-

scribes exponential degradation (ED). The second model has an additional state: Newly

synthesized proteins first populate state A from where they can either be degraded or

transit to state B, which is characterized by a different decay probability. This “2-state

model” thus describes non-exponential degradation (NED). To distinguish between both

scenarios we compared the relative quality of both models for each protein degradation

profile using the Akaike information criterion (AIC) [197]. This approach considers the

trade-off between the goodness of fit and model complexity (that is, the number of pa-

rameters). Hence, the 2-state-model is only preferred when the improved fit outweighs

the increased complexity. The AIC thus provides a conservative estimate of the fraction

of non-exponentially degrading proteins. Degradation profiles of Ctsl1 and Flna were

better explained by the 1-state model (Figure 4.2B). In contrast, the degradation profile

of basigin was better explained by the 2-state model.

Overall, we found that the profiles of 510 proteins are better explained by the 2-state

model (Figure 4.2C, AIC probability > 0.8). This corresponds to about 14% of the 3,642

proteins that passed our quality criteria (see Supplementary Methods). We conclude

that a sizable number of proteins show a tendency towards NED. Hence, the implicit

assumption that protein decay generally follows first order kinetics does not hold for one

out of seven proteins in our dataset.
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Figure 4.2: A) Graphical representation of the two Markov models applied. The
1-state model and 2-state model reflect exponential degradation and non-exponential
degradation, respectively. B) Fitting both models to the exemplary profiles from Fig-
ure 4.1D. For Flna and Ctsl1 both models have residual sum of squares (RSS) of similar
size. The Akaike information criterion (AIC) therefore recommends the simpler 1-state
model. In contrast, the profile of Bsg is better explained by the 2-state model. C)
Histogram of all probabilities for the 2-state model for all proteins that passed our
quality criteria. D) All proteins with a 2-state probability > 0.8 had a larger initial
degradation rate (kA) than later state degradation rate (kB). E) The delta score (∆-
score) as a simple measure for the extent of non-exponential degradation. For each
profile, a straight line is drawn between the 0 and 8 h time point (in semi log plot).
The ∆-score corresponds to the distance of the measurement at 4 h from this line. F)
Plotting the ∆-scores against the 2-state model probability similar to a volcano plot.
Non-exponentially degraded (NED) proteins were selected based on a ∆-score > 0.15
and 2-state probability > 0.8. Exponentially degraded (ED) proteins were required to
have absolute ∆-scores < 0.15 and 2-state probabilities < 0.2. All other proteins were

classified as undefined (UN).
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In principle, the 2-state model can describe two different scenarios: When the degrada-

tion rate in state A is higher than in state B (kA > kB) the model describes proteins

that become more stable as they age. Alternatively, when the degradation rate in state

B is higher than in state A (kB > kA) the model describes destabilization of older pro-

teins. Intriguingly, we only observed age-dependent stabilization (Figure 4.2D). This is

surprising, as we originally expected proteins to become more unstable over time due to

the cumulative effects of age-related damage. However, in our cell line model and within

the time period monitored (32 h) we did not find any evidence for this. Our finding

is consistent with previous evidence that newly synthesized proteins are preferentially

degraded [7, 179–181].

While our AIC-based p-value describes the relative quality of both models, it does not

provide information about the extent of NED for individual proteins. We therefore

also measured the distance of intermediate data points from the linear fit in the semi

log plot (Figure 4.2E). This ∆-score is thus a simple measure for the extent of non-

exponentiality of individual degradation profiles (see Materials and Methods for details).

We then used the ∆-scores and the AIC probabilities to plot the data similar to a volcano

plot (Figure 4.2F). Based on this figure, we selected a high confidence set of NED

proteins by requiring a 2-state AIC probability of at least 0.8 and a minimal ∆-score

of 0.15. Conversely, proteins with absolute ∆-scores < 0.15 and 2-state probabilities

< 0.2 were classified as ED. With these cut-offs, about 10% (n=333) were classified as

NED and 49.3% as ED (n=1624). The remaining proteins were classified as undefined.

For all subsequent analyses we relied on this classification. In summary, our first global

quantification of cellular protein degradation kinetics reveals that many proteins become

more stable once they have survived the first few hours of their existence.

4.2.3 Validation

Although AHA labeling does not appear to globally affect protein degradation (Sup-

plementary Figure 4.2), it is still possible that labeling with an artificial amino acid

introduces systematic biases. We therefore wanted to validate our data with indepen-

dent methods. First, we compared protein degradation rates in the present study with

previously published dynamic SILAC data from the same cell line [72]. First, we as-

sumed exponential degradation and calculated protein half-lives from the degradation

profiles by simply taking the time point at which 50% of the protein is left (“exponential

half-life”). For ED proteins this resulted in good agreement with the dynamic SILAC

data (Figure 4.3A). This is reassuring, especially since dynamic SILAC does not involve

artificial amino acids and the way in which half-lives are computed is different. In con-

trast, NED proteins had overall shorter half-lives in AHA p-c data when we assumed
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Figure 4.3: A-D) Comparison of half-lives measured by AHA p-c to published half-
lives measured by dynamic SILAC [72]. A) Half-lives of ED proteins are overall similar
in both datasets. B) NED proteins have shorter half-lives in AHA p-c when an expo-
nential fit is used. C-D) Computing “Steady state” half-lives based on the 2-state model
improves the agreement with dynamic SILAC data. Proteins with half-lives > 300 h
were excluded in A-D because they cannot be accurately quantified. E) Experimental
design for direct validation of non-exponential decay. Light (L) cells are pulsed with
Heavy (H) SILAC medium for 4 h and split into two populations. The first population
is harvested immediately while the second is chased for 8 h in Medium-heavy SILAC
medium (M chase). If new proteins are less stable than old proteins their H/L ratio
is expected to decrease during the chase. Two example spectra from an ED (F) and
an NED protein (G) confirm this expectation. H) All proteins identified in the SILAC
p-c experiment were divided into the three populations as defined by AHA p-c. NED
proteins show significantly reduced H/L ratios after the chase compared to ED and
UN proteins. This holds true independent of the order of labels and length of chase
(Supplementary Figure 4.6). P-values from a one sided Kolmogorov-Smirnov test are

displayed on top for significantly different distributions (α = 0.05).

exponential degradation (Figure 4.3B). This is expected since the exponential fit does

not take into account that these proteins become stabilized at later time points. We

therefore used our Markov chain-based model to compute “steady state half-lives” [74].

This half-life corresponds to the time it takes for half of the protein molecules present

at steady state to be degraded (see Materials and Methods). Importantly, this led to



4. Protein Degradation 88

better overall agreement with the dynamic SILAC data (Figure 4.3C and D). Collec-

tively, these findings indicate that the AHA p-c data is reliable and that our modeling

approach is meaningful.

Next, we wanted to directly validate our classification of proteins as ED or NED. To

this end, we designed a novel SILAC-based strategy (Figure 4.3E and 4.6). First, we

pulse labeled light cells with heavy SILAC medium for 4 hours. At this time point,

the proteome consists of two populations of protein molecules: Light protein molecules,

which are older than 4 hours, and heavy proteins with an age between 0 and 4 hours.

We harvested half of the cells to quantify the ratio of both populations at this time

point. Our model predicts that NED proteins become more stable when they are older.

Consequently, we expect that the heavy to light ratio for these proteins should decrease

over time, since the younger heavy proteins should degrade faster than the older light

proteins. To test this prediction, we cultivated the other half of the cells on medium-

heavy growth medium for 8 additional hours before analyzing them. During this time

the heavy and light proteins can only decrease in abundance (barring re-usage of la-

beled amino acids). When comparing both samples we indeed observed the predicted

decrease in the heavy to light ratio for NED but not for ED proteins (Figure 4.3F-H

and Supplementary Figure 4.6). Thus, our classification of proteins as ED or NED can

be validated by an independent approach that does not depend on non-natural amino

acids or protein enrichment.

4.2.4 Non-exponential degradation is mostly mediated by the ubiqui-

tin proteasome system

Having shown that a sizable number of proteins are non-exponentially degraded, we next

asked how degradation occurs. The two major cellular protein degradation systems are

the proteasome and the lysosome. While the proteasome specifically degrades ubiqui-

tinated proteins, the lysosome can further degrade a wide range of proteins and even

entire organelles during autophagy [198]. We therefore used drugs, MG132 or Wort-

mannin in combination with Bafilomycin A1, to inhibit the proteasome or the lysosome,

respectively. To assess non-exponential degradation we performed AHA p-c experiments

with 4 and 8 h chase times in the presence of the inhibitor or carrier controls (DMSO).

The impact of both inhibitors on NED was quantified by measuring their impact on

the ∆-score (Figure 4.4A). Proteasome inhibition reduced NED of most 2-state proteins

(Figure 4.4B and Supplementary Figure 4.7A). In contrast, inhibition of the lysosome did

not have an observable impact on NED (Figure 4.4C and Supplementary Figure 4.7B).

We conclude that the ubiquitin proteasome system is involved in the initial degradation

of most NED proteins.
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Figure 4.4: A) To quantify the impact of inhibitors on non-exponential degrada-
tion we compared the ∆-score in treated and control cells. B-C) Distribution of netto
∆-scores for NED proteins (turquoise) and other proteins (grey). The proteasome in-
hibitor MG132 significantly reduced ∆-scores of NED proteins (B) while the autophagy
inhibitors wortmannin and bafilomycin A had no significant impact (C). Controls for
inhibitors are displayed in Supplementary Figure 4.7. The numbers of proteins in each
group and the p-values derived from a two-sided Kolmogorov-Smirnov test are depicted.

4.2.5 Protein degradation kinetics and complex formation

Next, we sought to characterize features that distinguish ED and NED proteins (Supple-

mentary Figure 4.8, Materials and Methods). This analysis revealed that NED proteins

are on average more abundant and have a higher degree of secondary structure. Con-

versely, ED proteins tend to be more disordered. A particularly interesting finding is

that NED proteins are more likely to be members of heteromeric complexes as defined

by a recent manually curated database [199] (Supplementary Figure 4.8 and 4.9). To

confirm this finding we also mapped our data to published structures of protein com-

plexes (Figure 4.5A, Supplementary Figure 4.10 and 4.11). Again, NED proteins were

significantly enriched in complexes relative to ED proteins, with 70% of NED proteins

belonging to a heteromeric protein complex.

A long-standing hypothesis is that proteins are stabilized by complex formation [200,

201]. While data for several individual examples supports this idea [202–207] it has, to

the best of our knowledge, not yet been investigated systematically. Complex formation

could explain non-exponential degradation (Figure 4.5E): If NED proteins were pro-

duced in excess relative to ED proteins, the degradation of the non-assembled subunits

would lead to non-exponential decay. We therefore analyzed the abundance of newly

synthesized proteins directly after the pulse. To compare the relative abundance of pro-

teins in each complex we normalized the data in a complex-centric manner (Figure 4.5F,

see Materials and Methods). Indeed, we found that NED proteins are over-synthesized
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Figure 4.5: A) NED proteins are significantly overrepresented in heteromeric protein
complexes. P-values (in italics) were calculated using Fisher’s exact test, comparing
the number of heteromeric subunits to monomeric or homomeric subunits in each decay
class. Numbers within each bar represent raw subunit counts. This trend also holds
when ribosomal proteins are excluded (Supplementary Figure 4.10). B) NED proteins
tend to form larger interfaces in complexes than ED proteins. To control for the fact that
NED proteins are also more likely to be members of larger complexes (Supplementary
Figure 4.11), we binned subunits by the number of unique subunits per complex. P-
values were calculated using Wilcoxon rank-sum tests, comparing NED to ED. Subunit
counts in each bin are given along the bottom of the plot. C) NED subunits of large
complexes (¿5 unique subunits) tend to assemble earlier than ED subunits. Normalized
assembly scores of 0-to-1 indicate the first-to-last steps of a given (dis)assembly pathway.
P-values were calculated using Wilcoxon rank-sum tests and raw subunit counts are
given within each box. The difference in normalized assembly order was not significant
for smaller complexes, although this is in part limited by the size of the dataset. D) NED
proteins show stronger coexpression at the mRNA level. For each subunit, the average
coexpression correlation coefficient is calculated with all other subunits within the same
complex. P-value is calculated with the Wilcoxon rank-sum test comparing NED to
ED. This observation also holds when controlling for complex size (Supplementary
Figure 4.12-4.13). E) A simple model could explain non-exponential degradation: NED
proteins (turquoise) are synthesized in super-stoichiometric amounts relative to ED
proteins (red). Only a fraction of the NED protein molecules is stabilized by complex
formation whilst the excess is degraded. F) NED proteins tend to be produced in super-
stoichiometric amounts. Protein abundances after the pulse (t = 0h) were normalized
in a complex centered manner. Boxplot distributions were normalized relative to the
median abundance of ED proteins. The displayed p-value was derived from a two-sided

Kolmogorov-Smirnov test (ED vs NED distribution).
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relative to other members of the same complex. Moreover, while the initial degradation

rates (i.e. the degradation rates of state A) of NED proteins within a complex varied

considerably, their second (state B) degradation rates were more similar and close to

the degradation rates of the ED subunits (Supplementary Figure 4.14). In summary,

these data show that many NED proteins are core components of heteromeric protein

complexes that are produced in super-stoichiometric amounts relative to their ED coun-

terparts.

4.2.6 Protein degradation profiles are evolutionarily conserved

All data presented so far are based on the analysis of mouse fibroblasts (NIH 3T3). We

therefore asked if our findings are due to specific features of this model system. For

example, even though NIH 3T3 cells are derived from primary cells, a recent cytogenetic

study revealed a complex rearranged karyotype [208]. It is therefore possible that the

super-stoichiometric synthesis of NED proteins is due to genomic amplification of the

corresponding genes. In this scenario, protein overproduction would simply be a conse-

quence of the rearranged karyotype. In this case, our data would have little relevance

for other model systems.

To test this possibility, we analyzed the diploid human retinal pigmented epithelial cell

line RPE-1. Low coverage whole genome sequencing of this cell line confirmed that,

with the exception of partial trisomies for chromosome 10 and 12, it is mostly diploid

(Supplementary Figure 4.15). We performed three independent large AHA p-c experi-

ments to obtain degradation profiles for 4079 proteins (Supplemental Table 2). 47% and

9.4% of the human proteins that passed the quality filters (n=3133) were classified as

ED and NED, respectively (Figure 4.6A, left bar). These fractions are overall similar to

the mouse fibroblast data. To compare the RPE-1 and the NIH 3T3 data we grouped

the human proteins according to the degradation profiles of their mouse orthologues

(Figure 4.6A). Human orthologues of mouse NED proteins were highly enriched in NED

proteins. Conversely, human orthologues of mouse ED proteins were highly enriched in

ED proteins. In addition, the ∆-scores of the human proteins and their mouse ortho-

logues were well correlated (Figure 4.6B). To illustrate this we depict two complexes

colored according to their decay profiles in mouse and human (Figure 4.6C-F).

Together, these data show that non-exponential degradation is not mainly due to “erro-

neous” protein overproduction caused by genomic rearrangements. Instead, our findings

show that (i) protein degradation kinetics are conserved between mouse and human and

(ii) at least partially independent of the cell type (fibroblasts and epithelial cells).
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Figure 4.6: A) Relative fractions of NED (turquoise), ED (red) and undefined (grey)
proteins in the diploid human epithelial cell line RPE-1. We mapped human proteins
to their mouse orthologues and grouped them according to their degradation profile
in mouse fibroblasts. Human proteins with ED mouse orthologues are enriched in ED
proteins. Similarly, human proteins with NED mouse orthologues are enriched in NED
proteins. P-values are based on a hypergeometric test. B) Orthologous human and
mouse proteins show highly correlated ∆-scores. Pearson’s correlation coefficient (R)
is derived from all plotted ∆-score pairs. 3D models of the CCT chaperonin (PDB ID:
4B2T) (C and D) and Kdm1a in a complex with CoREST (PDB ID: 4BAY) (E and F)
are shown with coloring based on the degradation profile in mouse (C and E) and in

human (D and F).

4.2.7 NED and aneuploidy

Based on our findings we propose a simple model that explains the relationship between

protein degradation kinetics and complex formation (Figure 4.7A). According to this
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model, NED proteins are overproduced relative to the ED proteins in the same com-

plex. Therefore, only a fraction of the overproduced proteins are stabilized by complex

formation while the rest are degraded. Importantly, the RPE-1 data show that this over-

production occurs in disomic cells and is thus not generally due to aneuploidy. However,

we reasoned that aneuploid cells would allow us to test our model: Genomic ampli-

fication of NED proteins should increase their over-production and thus their initial

degradation (Figure 4.7A). Consequently, amplification of genes encoding NED proteins

should not lead to correspondingly increased protein levels. Thus, NED proteins should

be attenuated.

To test this prediction we took advantage of RPE-1 cells that were engineered to carry

one additional copy of specific chromosomes [209]. Low coverage genome sequencing

verified that these cells are trisomic for chromosome 5 and part of chromosome 11 (Sup-

plementary Figure 4.15). This was further confirmed by chromosome painting (Supple-

mentary Figure 4.16). We therefore went on and performed three independent AHA-pc

experiments with these “RPE-1 trisomic” cells (Supplemental Table 3). First, we com-

pared protein production in RPE-1 and RPE-1 trisomic cells using abundance levels

after the pulse as a proxy. As expected, proteins encoded by trisomic regions were

up-regulated in trisomic cells (Figure 4.7B). Note that chromosome 10 and 12 were

also partially trisomic in the parental cell line and therefore excluded from subsequent

analyses.

We compared the extent of non-exponential degradation in RPE-1 and RPE-1 trisomic

cells using the ∆-score. Proteins encoded in disomic regions of the genome had similar

∆-scores in both cell lines (Figure 4.7C). However, consistent with our prediction, NED

proteins in trisomic regions displayed significantly increased non-exponential degradation

as measured by the change in their ∆-scores. Importantly, this behavior was specific

for NED proteins and not observed for ED proteins. We conclude that increasing the

over-production of NED proteins indeed increases their initial degradation.

Aneuploidy has severe developmental effects, it is the leading cause of mental retarda-

tion and spontaneous abortions, as well as a hallmark of cancer [210, 211]. However, the

functional consequences of aneuploidy are only beginning to emerge. Studies in yeast

and mammalian cell lines have shown that mRNA levels generally scale with gene copy

numbers. However, protein levels are sometimes attenuated towards the euploid state.

It has also been noted that most attenuated proteins are members of multiprotein com-

plexes [209, 212, 213]. Interestingly, however, not all proteins in multiprotein complexes

are attenuated. Conversely, not all proteins that are attenuated are part of (known)

multiprotein complexes.
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Figure 4.7: A) A model depicting the expected impact of gene amplification on pro-
tein synthesis and degradation. In normal (that is, disomic) cells NED proteins are
over-synthesized relative to ED proteins in the same complex. Degradation of the
excess molecules gives rise to their NED profile. Genomic amplification of NED pro-
teins further increases over-production and thus their initial degradation. B) Log2 fold
changes of protein abundances after pulse in RPE-1 cells and RPE-1 cells carrying ex-
tra copies of specific chromosomes (sorted by chromosome and genomic position). The
data was divided into disomic (black), trisomic (orange) and ambiguous regions (grey)
based on genome sequencing data (Supplementary Figure 4.15). Moving averages for
each chromosome display the trend of local chromosome expression (red line). Shaded
areas show the corresponding moving standard deviations for disomic (blue), trisomic
(orange) and ambiguous regions (grey). Chromosomes with significantly different pro-
tein abundance in comparison to the diploid chromosome set are marked with asterisks
(Kolmogorov-Smirnov test, α = 0.01; ***: p < 0.0001). C) NED proteins show in-
creased initial degradation (∆-scores) when the corresponding genes are in trisomic
regions. Degradation of ED proteins is not affected. D-F) NED predicts protein level
attenuation. We compared steady-state protein levels in RPE-1 and RPE-1 trisomic
cells using standard SILAC. Boxplots show log2 fold changes for ED and NED proteins
in trisomic regions and compared to proteins from disomic regions. This analysis is
shown for all proteins (D), proteins that are part of complexes (E) and proteins that
are not part of complexes (F). In all cases, NED proteins show stronger attenuation
than ED proteins. The number of analyzable protein pairs is displayed below each
boxplot. All distributions were tested for equality against the corresponding disomic
protein subset using the Kolmogorov-Smirnov test. P-values are displayed on top for

significantly different distributions (α = 0.05).

Our model predicts that NED proteins should be attenuated. To test this idea, we

quantified relative changes in steady-state protein levels in RPE-1 and RPE-1 trisomic

cells using standard SILAC. For proteins encoded in trisomic regions we then compared

relative changes in protein levels (Figure 4.7D). Consistent with our model, we found that

NED proteins were more attenuated than ED proteins. Importantly, we also observed
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this effect in the subset of proteins that are part of annotated complexes (Figure 4.7E).

Hence, protein degradation kinetics can explain why some proteins in complexes show

more attenuation (NED proteins) than others (ED proteins). Moreover, even for the

subset of proteins that are not part of an annotated complex, NED proteins showed

more attenuation than ED proteins (Figure 4.7F). Collectively, these data show that

NED is overall a better predictor of protein level attenuation than complex formation.

4.3 Discussion

Quantifying the kinetics of cellular protein degradation is key to understanding the

protein life cycle. So far, available methods only allowed analysis of either individual

proteins or proteins in bulk. Here, we developed AHA-pc as a method to quantify

protein degradation kinetics globally. We provide the first proteome-wide survey of

decay profiles. Using a Markov chain-based modeling approach we find that over 10%

of all proteins are most parsimoniously described by a 2-state model, which implies

non-exponential degradation. Interestingly, all NED proteins become more stable over

time. We find that protein degradation kinetics are similar in two different cell types

and conserved between mouse and humans. More than half of the NED proteins are

subunits of annotated heteromeric complexes. These subunits tend to be produced in

super-stoichiometric amounts relative to other members of the same complex. Based on

these findings, we propose a simple model where only a fraction of the newly synthesized

NED proteins is stabilized by complex formation while the rest is degraded. Consistent

with this model, we observe that up-regulating NED proteins increases their initial

degradation. Finally, we show that our data predicts changes in steady-state protein

levels during aneuploidy.

While the AHA-pc method has many advantages, it is also important to keep its lim-

itations in mind. For example, due to the technical challenges of AHA-pc our data is

less comprehensive and only covers ∼5000 proteins. We do not know how our findings

extrapolate to the uncovered part of the proteome. Also, the pulse time of 1 h is too

long to capture events on the timescale of minutes. Therefore, our data cannot be used

to estimate the extent of co- or peri-translational degradation [7, 181, 214]. Moreover,

since our longest chase time is 32 h, we cannot tell what happens to older proteins. It is

possible that longer chase times would reveal age-dependent destabilization. Addition-

ally, the seven time points we covered allowed us to distinguish between a 1-state and a

2-state model, more complex multi-stage models would require measurements at more

time points. Increasing the number of data points per profile would also decrease the

number of proteins we could not classify. Finally, even though we validated our data
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with independent methods, we cannot rule out that AHA incorporation might affect

degradation of specific proteins.

One of our most surprising findings is that mammalian cells seem to overproduce specific

subunits of multiprotein complexes. This is in marked contrast to E. coli where subunits

were reported to be made in precise proportion to their stoichiometry [68]. Why are

mammalian cells producing excess amounts of specific proteins? We would like to discuss

four potential answers to this question:

1. It is possible that only a fraction of newly synthesized proteins adopt a functional

state while the rest are terminally misfolded and thus degraded [215]. However,

since NED proteins tend to be relatively short and well-structured (Supplementary

Figure 4.8) this explanation does not seem to generally hold.

2. The observation that that ED proteins tend to be disordered (Supplementary Fig-

ure 4.8) suggests an alternative explanation: It has been shown that disordered

proteins are often harmful when overexpressed, which is probably due to their ten-

dency to make promiscuous molecular interactions [216]. Overproduction of NED

proteins may thus have evolved to ensure that potentially harmful ED proteins

are never alone: The super-stoichiometric synthesis of “benign” NED subunits at

baseline would be a failsafe mechanism against deleterious effects of unbalanced

production of the more harmful ED proteins. Accordingly, NED proteins would

have a chaperone-like function towards their cognate ED proteins.

3. The third possibility is that ED proteins evolved as limiting factors to facilitate

the coordinated regulation of protein complex abundance: Up-regulating an ED

protein would stabilize interacting NED proteins and thus increase the abundance

of the entire complex. Conversely, reducing the expression of the limiting ED

protein would decrease complex abundance. This explanation resonates well with

the finding that mRNAs encoding ED proteins show less co-expression with mR-

NAs encoding other subunits and have longer 5’ and 3’ UTRs (Figure 4.5D and

data not shown). It also fits to data from yeast that most complexes consist of

both constitutive and periodically expressed subunits [217] and to the finding that

complex stoichiometry can vary across tissues in mammals [199].

4. Overproduction of NED proteins may be important for ordered complex assembly

[218, 219]: Since the formation of protein-protein interactions depends on protein

concentration, the relative abundance of multimeric complex may in part deter-

mine the assembly order. This explanation is consistent with our observation that

NED proteins tend to assemble earlier (Figure 4.5C).
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Which (if any) of these four possibilities explains protein overproduction and NED re-

mains to be investigated. It is likely that different reasons are relevant for different pro-

teins. It also important to note that not all NED proteins are components of (known)

multiprotein complexes. NED of monomers could be due to many different molecu-

lar mechanisms. For example, NED of CFTR and basigin appears to be due to failed

protein folding in the ER [177, 178]. Whatever the case may be, our observation that

proteins show consistent behavior between mouse fibroblasts and human cells suggests

that protein overproduction and NED is a conserved feature of mammalian cells and

thus functionally important.

Our results have significant implications for aneuploidy. First, we confirm the previ-

ous observation that amplified genes encoding members of multiprotein complexes are

often attenuated at the protein level [209, 212, 213]. This finding was interpreted in

the light of the longstanding idea that unassembled subunits of complexes are unstable

[200, 201]. Accordingly, overproduction caused by gene amplification is attenuated for

proteins in complexes. Our findings considerably extend this concept. The difference is

that we already observe unbalanced subunit production at baseline (Figure 4.5F). Con-

sequently, our model can explain why only some subunits of complexes show attenuation

(Figure 4.7E). More broadly, our data helps to understand how protein levels change

in response to altered gene dosage. We expect that this will turn out to be useful for

understanding the complex cellular phenotypes of aneuploidy and other types of gene

copy number changes. For example, our data might help in understanding the functional

significance of somatic copy number alterations in cancer.
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Abstract

Pulse-chase experiments are often used to study the degradation of macro-

molecules such as proteins or mRNA. Considerations for the choice of pulse

length include the toxicity of the pulse to the cell and maximization of la-

beling. In the general case of non-exponential decay, varying the length of

the pulse results in decay patterns that look different. Analysis of these

patterns without consideration to pulse length would yield incorrect degra-

dation parameters. Here we propose a method that constructively includes

pulse length in the analysis of decay patterns and extracts the parameters

of the underlying degradation process. We also show how to extract decay

parameters reliably from measurements taken during the pulse phase.

5.1 Introduction

The degradation of macromolecules such as mRNA and proteins is a complex biochem-

ical process that is usually carried out by a series of subsequent biochemical reactions.

Various experimental techniques can be used to study the decay of macromolecules over

time; one of the most widespread methods to measure decay is pulse-chase experiments.

A pulse-chase experiment consists of two phases: first, in the pulse phase, cells are ex-

posed to a labeling compound that is integrated into newly synthesized macromolecules

of interest. For example, if one wants to follow the fate of proteins or mRNA radio or

isotope labeled amino acids[185, 220–223] or nucleotides[224, 225] can be introduced in

the culture medium. In the second phase, the chase phase, the same compound in the

unlabeled form is added in excess, replacing the labeled form. Any macromolecules syn-

thesized during the chase phase will not be labeled. Throughout the chase, the amount

of macromolecules that were synthesized during the pulse diminish due to degradation

processes (Fig 5.1a). Tracking their amount over time delivers a curve that we call the

decay pattern. Alternative methods, such as stopping synthesis of the macromolecule

and measuring the amount left over time, also provide decay patterns. For example,

chloramphenicol is often used to stop protein synthesis in bacterial cells. However,

such methods may be very stressful for the cell, potentially resulting in measurements

not indicative of normal cell conditions. Ultimately, the process of stopping synthesis

corresponds in general to a pulse of infinite duration. From the point of view of data

analysis, decay patterns obtained upon stopping the synthesis are a limit case of patterns

generated with pulse-chase experiments.

Decay patterns are said to be exponential, if they look like straight lines in a plot

linear in time and logarithmic in the (relative) abundance of the molecule. This makes
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Figure 5.1: Age distribution of molecules during pulse chase experiments
(a) Depiction of molecules in a cell during a pulse chase experiment with pulse duration
of 70 in arbitrary units (a.u.). For the purpose of illustration we show four snapshots
of the experiment. In snapshot I (30 a.u.), pulse has just begun. The white dots
depict the population of molecules already existing in the cell before the pulse. All
newly synthesized molecules (red dots) are labeled by the pulse and measurable by
the experimentalist. As the pulse continues in snapshot II (60 a.u.) we see more
labeled molecules appear. Meanwhile, both labeled and unlabeled molecules degrade.
In snapshot III (90 a.u.), the pulse has ended since some time. Newly synthesized
molecules from this moment on are unlabeled. Again, both labeled and unlabeled
molecules degrade. In snapshot IV (200 a.u.), all labeled molecules have degraded.
Unlabeled molecules continue to be synthesized and degraded. (b) Age distribution of
the labeled molecules, each curve corresponds to one phase in panel (a). In snapshot I,
the pulse has just begun, and all molecules that are labeled by the pulse are no older
than the time elapsed since the pulse has begun. In snapshot II, the pulse has been
applied for some time; some labeled molecules may be quite old. In snapshot III the
molecules cannot be younger than the time elapsed since pulse has been stopped. By

snapshot IV, if there were molecules left, they would have that age distribution.

fitting a single exponential to the decay pattern especially convenient – so much so that

it is often used as the default procedure for analysis of decay curves. Unfortunately

this procedure is often overused; one can tell when a quick look at the plot clearly

indicates that the pattern is not as straight as it ought to be. As a way out of this

cumbersome situation, many research studies use the half-time as a measure of the

stability of the molecule because it can be estimated even without any fit of the data.

For exponentially decaying molecules, there is a simple algebraic relationship between

half-time and average lifetime of the molecules, but this relationship does not hold for

non-exponentially decaying molecules. Thus, half-time is not a good measure of stability

for non-exponential decay[74]. A further complication is that apparently, for some decay

patterns, the pulse length affects the half-time [7]. This happens because the half-time is

measured by simply extracting it from the data without taking pulse length into account.

Thus, the half-time of the resultant population is actually not a quantity representative

of the molecule’s decay alone, but also of the pulse length. The choice of the function
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used for the analysis of decay curves makes critical assumptions about the biochemistry

of the degradation process at the single molecule level. As we shall see, the choice of

the exponential function may lead to achieve incorrect information about the underlying

biochemical processes and the stability of the macromolecules.

Another common approach to analyze non-exponential (sometimes called nonlinear)

decay patterns is to fit them with a double exponential. Although this certainly improves

the fit, it is not yet immediately obvious how the two characteristic timescales from the

two exponentials depend on the length of the pulse or on other possible choices of the

experimental design.

One fundamental question is: What is the process behind the decay pattern? We know

that behind the decay pattern there is a degradation process. When we think about

the degradation process, we think at the level of single molecules. Namely, we think at

the processes (biochemical networks, perhaps competing against each other) that will

eventually lead to the disappearance of the molecule. Taking into account that we are

talking about biochemical interactions, the fate of each single molecule can be described

quantitatively only in probabilistic terms, with the basic quantity of this description

being the probability distribution of the molecule’s lifetime. The decay pattern, however,

is not a single molecule measurement. Rather, it is the result of billions of molecules,

each randomly decaying during and after the pulse.

When pulse-chase experiments are used to follow the macromolecules degradation, a

bias may be introduced into the measurements through the pulse length. In this paper

we will show that the length of the pulse affects the shape of the decay patterns. If this

effect is not taken into consideration, the biochemical information we extract from the

decay pattern would be biased. Unfortunately, this effect is usually not considered when

choosing the pulse length. The connection between the single molecule perspective and

the decay pattern requires an abstract view of the degradation process. Here we present

an approach that allows us to correctly bridge the gap between the single molecule

perspective and the population level for a wide range of decay patterns. Notably, our

method provides a simple recipe that allows us to incorporate the pulse length in the

fitting procedure when decay patterns are derived from pulse-chase experiments. The

method does not rely on any a priori knowledge of the lifetime of the molecule and can be

used independently of whether the pulse length is short or long compared to the lifetime

of the molecules. First, we recapitulate the general theory providing a new derivation of

the required mathematics and then we provide a simple recipe to incorporate the pulse

length in the fitting procedure. Our results should be applied to refine the protocols for

the design of decay assay experiments.
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5.1.1 Aging of molecules

It is rather strange that an apparently simple concept like aging becomes so intriguing

when applied to molecules. Molecules, at least complex molecules like proteins and

mRNA, age in a fashion which is very similar to what we know based on our daily

experience. Damage, shortening or lengthening, the attachment of other molecules (e.g.

miRISC complex that attaches to the mRNA[15, 77]) are common phenomena that make

the target molecule older. In fact, some processes could even make the target molecule

younger, e.g. when damage is repaired or a bound molecule detaches. What does it

actually mean when a molecule becomes older, or ages? How can we characterize this

phenomenon? Acutally, what best characterizes the effect of aging is not how much time

has passed since birth or synthesis but the amount of time left until the end of life.

Let us look at this matter closely. Suppose for a moment that the lifetime distribution

of an hypothetical molecule is exponential – as we shall see later, this implies that also

the decay pattern is exponential – and we know that in this precise moment the age

of the molecule is a, i.e. this molecule has been synthesized a time units ago. What

is the distribution of its residual lifetime? As a consequence of the assumption of an

exponential lifetime distribution, the answer is that the residual lifetime is independent

of a and is the same as if the molecule had been synthesized right now. This answer

means that the molecule does not age. However, if we know or suspect that molecules

like mRNA and proteins must undergo a series of biochemical reactions[226–228] until

we consider them as degraded, each step in the biochemical reaction network makes the

molecule older, i.e. closer to its final end. When the molecule ages in the “complex” way

just described, its residual lifetime becomes shorter. Therefore, its lifetime distribution

cannot be exponential and so also the decay pattern cannot be an exponential.

Once we accept that molecules age — i.e. do not have an exponential lifetime distribution

– there is another effect of aging related to the duration of the pulse. Imagine a pulse of

a very short duration. The molecules synthesized during the pulse will all have quite the

same residual lifetime, since they are likely to be all in exactly the same biochemical state.

When the pulse becomes longer, some of the molecules synthesized at the beginning of

the pulse may have been already degraded, some are definitively older but still there,

and others will be just newly synthesized. In short, we have a mixture of ages in the

population, and the composition of the population depends on the pulse length (Fig

5.1b). This is an important point for what follows: the initial condition at the time

point of chase depends on the mixture of ages in the population of molecules, which

depends on the length of the pulse. Therefore, fitting the decay pattern requires a

knowledge of the age distribution at the beginning of the chase, which can be computed

only if one knows the effect of the pulse on the age distribution. The effect of the pulse
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on the age distribution can only be known if one has a good model to describe how the

molecules age, and has already calibrated the model. A priori, it is not possible to know

if a pulse of a given length is long or short compared to the lifetime of the molecules,

but as we shall see, this apparent circularity can be solved to provide a unique formula

that takes pulse, chase and aging into account.

5.1.2 Degradation processes modeled with Markov chains

Macromolecules are degraded through a number of different pathways. While some can

be approximated as exponentially decaying, many of these pathways are multi-step path-

ways with several complex biochemical stages [185, 226–229]. The biochemical stages

are connected to each other to form a network of biochemical states [74, 230–232]. When

we describe the dynamics of degradation of a single molecule, we think of this molecule

as moving on this network of biochemical states in a stochastic fashion until degrada-

tion eventually happens. We will use the term “single step degradation” for pathways

with only one measurable rate limiting step (i.e. exponentially decaying), and the term

“multi-step degradation” for more complex pathways, which necessarily includes the

“single step” degradation as a limiting case[74]. The rates of the transitions between

the biochemical states would depend on the concentration of the ligands and on their

affinity to the target molecule, details rarely available on a large scale. It is therefore con-

venient to model this process as a Markov chain, which is a simple and mathematically

treatable tool to describe stochastic process on discrete states[1, 74, 86, 120, 230, 231].

From this we can model the decay as a single molecule stochastic process, and then

solve the equations to derive the lifetime distribution, the age-dependent degradation

rate, and the steady state distribution of the fraction of molecules in each state.

Methods

If T is the random variable describing the lifetime of a molecule, we define fT (t) its

probability density function. This definition means that

Pr{T ≤ t} =

∫ t

0
fT (u)du ≡ FT (t) , (5.1)

with FT being the probability distribution. For later use, we state here also the equation

for the average lifetime

T =

∫ ∞
0

ufT (u)du =

∫ ∞
0

(1− FT (u)) du . (5.2)
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The age-dependent degradation rate δ(a) is defined as the probability that a molecule

of age a is degraded in the next unit of time. Formally, it is related to the lifetime

probability density fT by means of a relationship known in the literature as the definition

of hazard rate:

δ(a) =
fT (a)

1− FT (a)
, (5.3)

which is a tool commonly employed in survival analysis[233]. When T is exponentially

distributed with rate µ, then δ(a) is a constant equal to µ. When, however, fT is not

exponential then δ(a) can take many different forms, the most common of which are the

monotonously decreasing to a constant larger than zero (molecules stabilize with age)

and increasing (molecules destabilize with age). The results presented in this manuscript

concern with the derivation of fT from a model and the fit of this model with the available

data, i.e. the decay patterns. In some cases, however, it is possible to first formulate a

specific form of the age-dependent degradation rate δ(a), based on some specific model

of degradation, and then derive the lifetime density as

fT (t) = δ(a) exp

(
−
∫ t

0
δ(a)da

)
, (5.4)

and its probability distribution as

FT (t) = 1 − exp

(
−
∫ t

0
δ(a)da

)
. (5.5)

An example of a derivation that starts with the hazard rate was given in Ref. [74].

5.1.3 Decay after a pulse

Consider a system that starts with zero molecules, so that N(0) = 0. Through the

process of synthesis with constant rate and through a generic complex degradation pro-

cess, the average number of molecules N(t) will first increase in time and eventually

reach a steady state. To derive the full pattern N(t) consider dividing the time t into

k small intervals each of duration τ so that kτ = t. Given a constant synthesis rate

ω, we have that N(τ) = ωτ(1 − FT (τ)). At the next time interval, we have that

N(2τ) = ωτ(1−FT (2τ))+ωτ(1−FT (τ)), where the first term gives the probability that

the molecules synthesized in the first interval survive until the end of the second interval.

Proceeding in this way one can verify that N(kτ) = N(kτ−τ)+ωτ(1−FT (kτ)). Letting

now k →∞ and τ → 0 while keeping kτ = t, leads to the differential equation

dN(t)

dt
= ω (1− FT (t)) , (5.6)



Chapter 5. Degradation Parameters from Pulse-Chase Experiments 106

from which it follows that

N(t) = ω

∫ t

0
(1− FT (u)) du . (5.7)

N(t) is thus the amount of molecules present at time t when their origination time

was between 0 and t. Therefore, if pulse or synthesis is not stopped, when t goes to

infinity the average number of molecules reaches a steady state value where synthesis

and degradation balance each other.

At any time, the number of new molecules delivered after an interval ∆t of synthesis is

thus given by N(∆t). Consider now the quantity N(t+ ∆t)−N(t). If synthesis works

normally, this quantity must be non negative and has two contributions: the molecules

delivered at time t that survived until t+ ∆t plus the newly synthesized molecules that

have been delivered after an interval ∆t, which is given by N(∆t). Therefore, if N(t)

is the number of molecules at time t, after an interval ∆t the number at t+ ∆t will be

N(t) + (N(t+ ∆t)−N(t)) = N(t+ ∆t). If synthesis is stopped after a pulse of length

tp, the number of labeled molecules that can be found at tp is given by N(tp). Let us

define N ′(tp+∆t) as the number of molecules at tp+∆t, if we stop synthesis at tp. This

quantity is different from N(tp + ∆t), which is the number of molecules one would have

had if labeling had not stopped at time tp. Thus, N ′(tp + ∆t) is given by

N ′(tp + ∆t) = N(tp) + [(N(tp + ∆t)−N(tp))−N(∆t)] , (5.8)

because the molecules N(∆t) that would have been delivered are simply missing. During

the chase phase, thus, the relative amount of labeled molecules must decrease according

to

C(tp + ∆t) =
N ′(tp + ∆t)

N(tp)
=

N(tp + ∆t)−N(∆t)

N(tp)
. (5.9)

If labeling is stopped at steady state, the relative amount of labeled molecules is obtained

by Eq. (5.9) by setting tp →∞. An explicit formulation of Eq. (5.9) is finally obtained

substituting Eq. (5.7)

C(∆t) =
1

N(tp)

∫ tp+∆t

∆t
(1− FT (u)) du , (5.10)

where the denominator just ensures that C(0) = 1 and ∆t represents the time of mea-

surement after the end of the pulse. If fT is an exponential probability density, C(∆t)

decays also exponentially with the same rate independently of the pulse length.
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5.1.4 Data analysis

Once FT is known, the decay pattern during the chase phase is given by C(∆t) from

Eq. (5.9). In most of the cases, however, only the experimental values of C̃ at different

time points ∆t = ∆1,∆2, . . . ,∆n are available. Thus one defines a parametric form of

FT and uses the data to fit the parameters that minimize the function

M =
n∑
j=1

(
ln(C(∆j))− ln(C̃(∆j))

)2
, (5.11)

the reason for the log being that one can generally assume a lognormal distribution of

the measurement error. When data from m experiments on the same molecule using

different pulse durations tp = t1, . . . , tm are available, the function to minimize becomes

M =

m∑
p=1

n∑
j=1

(
ln(C(∆j))− ln(C̃(∆j))

)2
, (5.12)

where in principle, the ∆j might also be different from one experiment with one pulse

length and another experiment with a different pulse length.

Model calibration (parameter estimation)

We use several functions in MATLAB® to calibrate the models. To minimize the

objective function, we use fmincon (bounds: κ10 , κ12 , κ20 ∈ [0.000001, 1]). We also used

GlobalSearch (with the default settings) and MultiStart (1000 start points) to better

sample the available parameter space.

5.2 Results and Discussion

Most mRNA and protein decay patterns can be fit with one of two simple models: A

two-stage model (Fig 5.2a) always results in a better fit than a one-stage (exponential

decay) model, but many patterns are sufficiently described by the simpler one-stage

model. The decision of whether a two-stage model or the exponential fit should be

adopted depends on the balance between accuracy of the fit and number of parameters.

The Akaike Information Criterion (AIC) is one such measure that can be used to select

the better model [6]. In this paper, we concentrate on the use of the two-stage model.

The motivation for this is two fold – firstly, for decay patterns from one-stage models

(exponential decay), one does not need to take the pulse length into account. The decay

curve of the system with exponential decay is independent of the pulse. Secondly, in the
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examples that we will later present, the one-stage model does not adequately capture the

dynamics of the system (Fig 5.2b). Through the AIC, we find that one-stage models are

too simplistic, and three stage models are not adequately identifiable. For other systems

with degradation patterns not well described by a two-stage Markov state model, Eq.

(5.10) can be used to derive the appropriate expression. The two-stage model applied

to the data of Ref. [7] has an RSS of 0.0011 (Fig. 5.2b). To evaluate the goodness of

fit, we apply the chi-squared test with three d.o.f. and find that we can not reject the

null hypothesis which is that the two-stage model is a good fit (p-value < 10−5).

Figure 5.2: Markov chain representation of a Markov process and 2-state
model fit to a decay curve (a) Markov chain representation of a degradation process.
Biochemical pathways (such as degradation) can be readily translated into Markov
chain models: each biochemical entity is represented as a Markov state (circles) and
the reaction speeds are represented as fluxes between the states (arrows). Here we
show a possible Markov model of degradation containing two states. Newly synthesized
molecules are in state 1. From state 1, there are two possible paths, either to state 2
with rate κ12 or degraded with rate κ10 . For those molecules that reach state 2, they are
degraded with rate κ

20
. The rates κ

10
and κ

20
are necessarily different, otherwise the

model collapses into a 1 state model. (b) 2-state model fit (black line) and exponential
fit (red line) to sample data with 1 minute pulse (data from [7], blue spots). Note that in
the log(abundance)-linear(time) scale, the data does not resemble a straight line, thus
necessitating a model more complicated than a single exponential. The best fit using
Eq. (5.11) with C(∆t) from Eq. (5.16) gives the following parameters: κ

10
= 0.0109

min−1, κ
20

= 0.002 min−1, κ
12

= 0.0189 min−1, and pulse = 1 min. κ
exp

= 0.0029.
The decision in favor of the two-stage model is made on the basis of the AIC criterion

thanks to its very small RSS.

The general mathematical methodology to describe the decay (see Methods) requires a

specific form of the lifetime distribution in order to become practically useful. Ideas from

biochemical networks indicate that a Markov chain is a useful and flexible framework to

develop the basic models of molecular degradation [1, 74]. In terms of a Markov chain

the two-stage model consists of two states, say state 1 and state 2, and a degraded state

called state 0 connected to each other (Fig 5.2a). The rates κ12 , κ10 , and κ20 govern
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the transitions from state 1 to state 2, from state 1 to state 0, and from state 2 to state

0, respectively. In addition, the rates κ10 , and κ20 are composed of the degradation rates

from each state and the basal dilution rate due to cell division and population growth;

the basal dilution rate can have a negligible effect if the timescale of the experiment is

shorter than the doubling time of the cell culture.

Using this network we model the life of a single molecule as follows. The molecule is

synthesized to be in biochemical state 1 (or it moves very quickly through a series of

biochemical steps until it reaches a biochemical state that we call state 1). The molecule

dwells for a random amount of time in state 1. The average amount of time spent in

state 1 is τ1 = 1/(κ10 + κ12). The molecule then leaves state 1 and is either degraded,

i.e. it jumps to state 0 with probability P10 = τ1κ10 , or it jumps into biochemical state

2 with probability P12 = τ1κ12 . If the molecule attains state 2, it will dwell in this state

for a random amount of time with average τ2 = 1/κ20 until it is eventually degraded

(i.e. P20 = 1). The two-stage model does not mean that there are only two biochemical

states for a molecule, it says that all other states are visited very quickly and that, at the

end, two compound states are sufficient to describe the decay pattern for that molecule.

The lifetime of the molecule is now just the random time required to move from state 1

to state 0, taking into account the possibility to visit state 2 before degradation. Techni-

cally, this is the absorption time in 0 starting from state 1 and its probability density is

the lifetime probability density fT (t). The equivalence of lifetime and absorption time is

useful because there are plenty of mathematical tools to compute the probability density

of the time to absorption. Once the probability density fT (t) is computed in terms of

the (yet unknown) rates κ10 , κ12 and κ20 , and of the pulse length tp, it can be used

to compute the relative abundance C(∆t) (Eq. 5.10). Fitting the data will then finally

deliver the appropriate values of the rates (Fig 5.2b).

The beauty of the two-stage model is that finding the distribution of the lifetime T is

simple. If ρ1(t) and ρ2(t) are the dwell time distributions on states 1 and 2, respectively,

then it results that

FT (t) = P10

∫ t

0
ρ1(τ)dτ + P12

∫ t

0
ρ1(τ)

∫ t−τ

0
ρ2(u)dudτ , (5.13)

with P10 and P12 defined earlier. In a Markov chain, the distributions are explicitly

given by

ρ1(t) = (κ10 + κ12) exp (−(κ10 + κ12)t)

ρ2(t) = κ20 exp (−κ20t) .

(5.14)
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Working through the formulas to obtain C(∆t) is now a simple matter of calculus (see

Eq. 5.10 and S1 Supporting Information). The final result is a formula depending on

three unknown parameters (κ10 , κ12 and κ20) and the known parameter tp to be used to

fit any decay curve.

After defining the two factors

Ac =
κ10 − κ20

κ10 + κ12

[1− exp (−(κ10 + κ12)tp)]

Bc =
κ12

κ20

[1− exp (−κ20tp)] ,

(5.15)

we obtain the relative abundance

C(∆t) =
Ac

Ac +Bc
exp (−(κ10 + κ12)∆t) +

Bc
Ac +Bc

exp (−κ20∆t) , (5.16)

which is a single formula to fit the data for any pulse duration tp. At steady state,

when tp → ∞, the two exponential functions in Eq. (5.15) disappear. For a finite tp,

instead, the two factors Ac and Bc get rescaled in a asymmetric fashion by the effect

of the pulse. In the ideal case of a pulse of zero duration, i.e. tp → 0, we would have

C(∆t) = 1 − FT (∆t). In the limit when decay is exponential, instead, C(∆t) is an

exponential function independent of tp.

5.2.1 Examples

With Eq. (5.16) we have been able to determine a single mathematical formula that

describes the whole decay pattern. The next challenge is to show that the fitting pro-

cedure (Methods) works. To show this, we proceed as follows. We have first extracted

the decay patterns from Ref. [7], where the decay of proteins content of HeLa cells

was monitored after pulse of duration 1, 5, 30, 120, 1200 minutes. We have taken the

decay pattern corresponding to a 1 minute pulse and found the best fit for the three

rates, κ10 = 0.0109 min−1, κ20 = 0.0002 min−1 and κ12 = 0.0189 min−1 (Fig 5.2), which

correspond to an average lifetime T of more than 53 hours, see Eq. E in S1 Support-

ing Information. We have then plugged these rates in Eq. (5.16) to fabricate artificial

datasets corresponding to 1, 5, 30, 120, 1200 minutes pulse and fit them to prove that

the fit gives back the same rates used to fabricate the data. Contrary to the fits to the

experimental data 5.2, the result of the fit (Fig 5.3a) gives rates that are identical to

those used to generate the data (Table 5.1). This is good news because we want to be

sure that the procedure is self-consistent. We have also added some noise in the form of

C(noise)(∆t) = C(∆t) exp(εζ) , (5.17)
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Figure 5.3: Model calibration with fabricated data (a) Verification of fitting
procedure using simulated data separately. Using the parameters obtained from the
best fit model to the data from [7] for pulse = 1 min, we fabricate sample data by
calculating the abundance over time (dots) for different pulse lengths (1, 5, 30, 120,
1200 minutes) using the function that gives the decay pattern of the relative abundance
C(∆t), Eq. (5.16), as function of the measurement time ∆t. We then fit resultant
decay patterns with our fitting routine. We get back the same rates that were used to
simulated the data for each experiment (Table 5.1). This shows that if the system
in the background is unchanging, we can reliably extract the parameters of the system
by fitting the decay patterns individually. κ

10
= 0.0109 min−1, κ

20
= 0.002 min−1,

and κ
12

= 0.0189 min−1. (b) Simultaneous fit of pooled simulated data. Here the
simulated data is augmented with a small amount of multiplicative noise, Eq. (5.17).
We fit the whole collection of data simultaneously (see Methods). Values very close to
our original simulation parameters are obtained (Table 5.1 last row). This shows that
under steady experimental conditions, we can reliably extract the parameters of the

system by fitting the decay patterns simultaneously.

for ∆t > 0, ε = 0.01, and ζ ∈ [0, 1) is a uniformly distributed random number which

is drawn independently for each ∆t. Adding the noise is important to demonstrate the

robustness of the fitting procedure and the sensitivity of the fitting function to small

perturbations. In fact, the fit of the single fabricated decay patterns deteriorates as

the pulse length increases depending on the amount of noise, probably because at long

pulses state 2 dominates the behavior of the decay pattern. If the most populated state

is state 2, as we have in our example, it becomes more and more difficult to detect

events occurring in state 1 from the measurements as the pulse duration increases. This

indicates that pulses of short duration should be preferred. Nevertheless, when we search

for the three parameters to fit all pulsed curves at once, the procedure becomes quite

reliable and the fit quality is very high (Fig 5.3b and Table 5.1 last row).

As a next step, we have fit the individual experimental decay patterns as provided in
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pulse κ10 (min−1) κ20 (min−1) κ12 (min−1)

simulation values 0.0109 0.0002 0.0189

1 min 0.0109 0.0002 0.0189

5 min 0.0109 0.0002 0.0189

30 min 0.0109 0.0002 0.0189

120 min 0.0108 0.0002 0.0189

1200 min 0.0139 0.0002 0.0221
whole collection
of data + noise 0.0050 0.0003 0.0254

Table 5.1: Model parameters for simulated data with different pulse lengths.
Parameters from the best fit to the data simulated with different pulse lengths and the 2-
state model as found by Multistart (MATLAB®) with 1000 start points. Minimization
by fmincon (bounds κ

10
, κ

20
, κ

12
∈ [0.000001, 1]). Notice that the fits yield results

identical to those used to generate the data. This proves the self-consistency of the
procedure. Conversely in Table 2, the parameter values are not stable; suggesting

different degradation system dynamics in each experiment.

Ref. [7] (Fig 5.4a) and compared the rates with each other (Table 5.2). We find that

the rates depart from each other much more than those found with the fabricated data.

With the proviso that we have extracted the data from an old low-definition figure in

semilogarithmic scale, the differences in the rates definitively increase with the duration

of the pulse. Also the search for a unique set of rates that allow fitting the various pulsed

curves all together gives a poor result (Fig 5.4b). The most likely explanation of the

wrong fit is that the labeling has affected the cells and has thus contributed to change

its internal environment so that protein degradation after a long pulse is different than

protein degradation after a short pulse, an effect that may certainly depend also on the

labeling technique.

pulse κ10 (min−1) κ20 (min−1) κ12 (min−1)

1 min 0.0109 0.0002 0.0189

5 min 0.0091 0.0004 0.0294

30 min 0.0139 0.0004 0.0610

120 min 0.0172 0.0003 0.0434

1200 min 0.0759 0.0002 0.0451

Table 5.2: Model parameters for data from Ref. [7]. Parameters from the best
fit to the 2-state model as found by Multistart (MATLAB®) with 1000 start points.
Minimization by fmincon (bounds κ

10
, κ

20
, κ

12
∈ [0.000001, 1] min−1). Notice that each

fit yields different parameters. This suggests that the degradation system dynamics in
each experiment is different. In contrast Table 1 shows that the fits to simulated data
with consistent parameters return the same rates. Data are reported in Table A in S1

Supporting Information
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Figure 5.4: Model calibration with data from Ref. [7] (a) Decay patterns from
Ref. [7] fit individually. Each decay pattern from Ref. [7] is fit with the 2-state model
using Eq. (5.11) with C(∆t) from Eq. (5.16). We find that for some of the decay
patterns, the parameters obtained from the fitting are different from the others (Table
5.2). This implies that the underlying system has changed in the different experiments.
Possibly the labeling procedure has affected the cells and contributed to a change in the
internal environment. (b) Simultaneous fit of pooled real data with Eq. (5.12). Here
we pool the decay patterns and fit them simultaneously with the 2-state model. No
good fits were found, despite using global and multistart techniques in the parameter
search process. This implies that the underlying systems across the experiments can
not be described by one unified model, at least not the two state model that we have
considered. Possibly the labeling procedure has affected the cells and contributed to a

change in the internal environment.

5.2.2 Just pulse, no chase

So far, we have focused our derivations on experiments where marked molecules are

synthesized during a pulse of synthesis, and measurements of the marked molecules are

taken after the chasing period. Another experimental set up is to have the pulse period

up until the time of measurement, without “chase” [234, 235]. The steady state value,

N (st), is a convenient value to use for normalizing the measurements. Thus, the ratio

P (∆t) =
N(t)

N (st)
, (5.18)

is a convenient quantity for the relative abundance of labeled molecules. Here, ∆t is the

time of measurement from the start of labeling. Using the same framework, from Eqs.

(5.7) and Eq. D in S1 Supporting Information we obtain

P (∆t) =
Ap

Ap +Bp
(1− exp(−(κ10 + κ12)∆t)) +

Bp
Ap +Bp

(1− exp(−κ20∆t)) , (5.19)
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where the two factors Ap and Bp are given by

Ap = κ20(κ10 − κ20)

Bp = κ12(κ10 + κ12) ,

(5.20)

as the expression for P according to a two-stage model.

If the steady state measurement of molecules is not available, any other time point can

also be used. With other time points used as normalization, the expression for P is more

complicated, but still solvable by hand for the two-stage model.

Figure 5.5: Simulation of pulse no chase experiments Simulation of pulse no
chase experiments, where the pulse is applied up until the time of measurement. Data
is produced with rates κ10 = 0.0109 min−1, κ20 = 0.0002 min−1 and κ12 = 0.0189 min−1

using (5.19). Traces show the results of several fits, each fitting taking into consideration
one additional data point (Table 5.1).

κ10 (min−1) κ20 (min−1) κ12 (min−1)

simulation values 0.0109 0.0002 0.0189

3 points 0.0104 0.0002 0.0240

4 points 0.0119 0.0002 0.0402

5 points 0.0109 0.0002 0.0189

6 points 0.0109 0.0002 0.0190

7 points 0.0109 0.0002 0.0189

Table 5.3: Model parameters for simulated pulse no chase data. Parameters
from the best fit to the 2-state model as found by Multistart (MATLAB®) with 100
start points. Minimization by fmincon (bounds κ

10
, κ

20
, κ

12
∈ [0.000001, 1] min−1 ).

The first row is the best fit for the data as if the experimentalist only took 3 mea-
surements at t = 1, 2, 3 minutes. The 2nd row takes one more measurement (t = 10

minutes) into consideration.
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One might assume that with more data, we would see an improvement in the determina-

tion of the model parameters. Initially we see this is true, but once we have taken data

up to t = 20-40 minutes (4-5 points), additional sampling does not significantly improve

the fit (Fig 5.5 and Table 5.1). This can be explained by examining the sensitivities

of the output to the parameters. We define the sensitivity of the output to parameter

κi as

vκi(κi, t) =
dP (t)

dκi
(5.21)

This equation describes the amount that the output should change if the values of κi

and time change. The expressions are quite lengthy, but we can write them for each of

the parameters in the system in closed form. By plugging in the “true” values for κj 6=i

we can plot the sensitivities as a function of time and κi.

Figure 5.6: Sensitivity of P (∆t) to the parameters κ
10

, κ
20

and κ
12

We plot
the sensitivities of the measurements in a pulse no chase experiment assuming a 2-state
model with κ10 = 0.0109 min−1, κ20 = 0.0002 min−1 and κ12 = 0.0189 min−1. (a)
Output is only sensitive to small values of κ10 . (b) Output is sensitive to a range of
κ

20
. (c) Output is only sensitive to small values of κ

12
. For all parameters, taking more

measurements at later timepoints does not help the parameter estimation because the
output is not sensitive to deviations in the parameters at late times.

We discover that the output at late time points are insensitive to the parameters. Fur-

thermore, the output is only sensitive to small values of κ10 and κ12 (Fig 5.6). Note that

here we have calculated the local sensitivities – the result is likely to differ for different

ranges of κ’s.

5.2.3 Dynamical properties

The half-time t1/2 is traditionally used as a quantity to measure the stability of the

molecules. Unfortunately, this quantity is meaningful only when the decay is exponential

because in that case there is a universal relationship between the half-time, the rate of

degradation and the average lifetime. In a non-exponential decay, the universality of

the relationship is lost. For these systems, the average lifetime T is a more meaningful
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quantity. Indeed, the steady state quantity of molecules (assuming stationary growth

conditions and non-synchronized cells) is given by

N (st) = ωT , (5.22)

(Methods) thus allowing, at least in principle, to estimate the synthesis rate ω once the

steady state amount of molecules per cell has been determined.

Once the rates κij have been estimated, a number of other properties can be easily

computed. The average time spent on state 1 is given by ν1 = 1/(κ10 +κ12). The fraction

of molecules able to pass from state 1 to state 2 is given by κ12ν1. The molecules able to

reach state 2 will occupy this state for an average amount of time given by ν2 = 1/κ20 .

Finally, the fractions π1 and π2 of molecules found in states 1 and 2 is given by

π1 =
κ20

κ12 + κ20

and π2 = 1− π1 . (5.23)

Furthermore, if for any reason the half-time t1/2 is sought, it can be computed numeri-

cally by inverting the equation

C∞(t1/2) =
1

2
, (5.24)

where C∞ is the expression given in Eq. (5.16) when tp → ∞. Notice that the use of

Eq. (5.24) for any finite tp <∞ would lead to an apparent the half-time different from

the true value t1/2 thus making the apparent half-time dependent on the length of the

pulse.

5.3 Conclusion

Even if steady state expression levels of molecules depend only on their average life-

time, non-exponential decay has an effect concerning timing and dynamics of cellular

response[120, 232, 236], and cell-to-cell variation in cellular content when cultures are

subject to stochastic effects [237]. For this reason, it is an aspect of regulation that has

to be taken into account if one wants to understand the reaction of cells to stress or to

environmental changes. Furthermore, disentangling various hypotheses concerning the

nature and the structure of biochemical pathways responsible for degradation[1, 15, 77]

is possible only when models take the complexity of the pathways into account. Nev-

ertheless, the derivation of the average lifetime required to compute the steady state

properties (and the synthesis rate, if an independent measurement of the steady state

abundance is available) requires the correct mathematics, which in most of the cases is

not given by the exponential fit.
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In this manuscript we focused on the two-stage model as a good approximation that

describes most of the non-exponential decay patterns. This generalization is based on

extensive experience from fitting thousands of mRNA and protein decay patterns. Nev-

ertheless, there is no reason in principle to restrict the number of states to two, since the

number of biochemical steps related to the destabilization of molecules is conceivably

much larger. While it is not difficult to draw and mathematically describe larger net-

works with more states and alternative pathways, there is rarely enough data available

to fix all the parameters [6]. A lucky exception is provided by sets of experiments where

measurements are taken with different parts of the biochemical network deactivated

[1, 15].

Pulse-chase experimental techniques offer the advantage of a low impact on the metabolism

and well-being of the cells. Yet, little attention has been devoted to the fact that the

pulse has an effect on the decay pattern if the decay pattern is not exponential. By

working through the mathematics of single molecule decay, we derive and demonstrate

in a novel approach a series of equations that anyone can use to fit complex decay pat-

terns. The values of the rates would then finally provide a valuable tool to compute

other dynamic quantities.

When assessing the nature of the decay pattern we recommend to compare the fit of the

two-stage model with the simpler exponential model to ensure that the data supports the

more complex model. As a guideline, long pulses (and thus steady state measurements)

tend to obfuscate short term dynamics and thus appear as exponential decay, as this

catches the long term dynamics of the degradation process. We recommend the use of the

shortest pulse as possible in order to detect short time effects. More pulses of different

lengths increase the robustness and our confidence in the model and its calibration. As a

byproduct, fitting curves generated from pulses of different lengths may allow discovery

of perturbing effects from labeling, when the fits of the individual curves reveal very

different rates beyond what one would expect from noise. One caveat to the current

approach outlined here is the assumption that the quantities measured are reflective of

synthesis and degradation only. However, in in vivo systems, each cell division results in

a dilution effect of the molecules. Thus for such experiments it is imperative to choose

experimental times well within the cell division time, or take cell division into account.
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plementary calculations and the table with the experimental data extracted from Ref.
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Discussion and Summary

The central dogma of molecular biology proposes that the flow of genetic information

starts at the level of DNA which is copied into RNA and then translated into proteins [9].

This system of information transfer provides for two very natural checkpoints where gene

expression can be adjusted – either at the level of mRNA (i.e. controlling transcription

or mRNA degradation processes) or the level of proteins (i.e. controlling translation

or protein degradation processes). Within each checkpoint, there are a multitude of

processes simultaneously active, adjusting and fine-tuning the concentrations of mRNAs

and proteins. Some of these processes are specific to a particular subset of genes, while

others are non-specific. In concert, all these processes contribute in some way to maintain

cell homeostasis, keeping the cell alive and adaptable to different environments.

In the previous sections, we have examined several aspects of post-transcriptional gene

expression control (Chapter 1-4). Chapter 2 and Chapter 4 are -omics type experiments

to study patterns of gene expression across the genome (or proteome, in the case of

Chapter 4). In Chapter 2, RNA-Seq coupled with ribosome profiling allows us to evaluate

the transcriptional and translational state in E. coli under different conditions: LB

(normal), minimal media, acute heat stress and acute osmotic stress. In Chapter 4,

shotgun proteomics yields protein degradation curves of the mouse proteome. In both

of these -omics type studies, identification of gene subgroups is integral reducing the

complexity of the big picture to understand trends and patterns in the system.

Chapter 1 and Chapter 3 deal with specific aspects of gene expression control. In

general, the abundance of mRNA correlates directly with the level of protein synthesis;

more mRNA copies allow more proteins to be made simultaneously. In Chapter 1, we

study the biochemical pathway of miRISC mediated degradation, a major pathway of

mRNA degradation[1]. Chapter 3 explores the frequency of ribosome dropoff. In the

process of protein synthesis, ribosomes move along the mRNA chain to translate the

119
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genetic sequences into amino acid sequences. Premature ribosome dropoff results in

production of incomplete proteins; thus, elevated rates of ribosome dropoff reduce the

rate of protein synthesis[3].

The work completed in this PhD is in the direction of data analysis and mathematical

modeling. In Chapter 2, 3 and 4, development of analysis techniques appropriate to

the experiments and the scientific question is the main part of our contributions to the

work.

Mathematical modeling is a powerful tool for describing, understanding and predicting

biological systems. In Chapter 1 and 4, simple Markov Chain models are used to validate

hypotheses regarding the biochemical networks underlying the process of degradation.

Chapter 5 focuses the analysis of data from pulse-chase experiments, which are widely

used to study degradation of macromolecules due to low impact on metabolism and

the well-being of cells. Additionally, mathematical models allow us to evaluate systems

for parameter sensitivities and make inferences to optimal experimental design. These

concepts are touched upon in Chapter 1 and 5 and the supplementary section B.

Our work in the intersection of mathematics and biology showcases the power of statis-

tical data analysis and mathematical modeling for validation and discovery of biological

phenomena.

In the following sections, I review the main results of the manuscripts included in the

thesis and I show how the research results presented in this dissertation have advanced

our understanding of post-transcriptional control of gene expression.

6.1 Overview of main results

6.1.1 mRNA degradation through the miRISC pathway

One major pathway of mRNA degradation is through the action of microRNA and the

miRISC complex. While many of the important proteins in the pathway have been

identified, the order of protein recruitment and biochemical pathway are unknown. In

[10], it was hypothesized that miRISC finds the target mRNA and forms a complex.

According to that hypothesis, the protein complexes associated with NOT1 and PAN3

are recruited, triggering deadenylation of the target mRNA and subsequent degradation.

This hypothesis can be translated into a network topology (Figure 6.1), which guided

the experimental work of [10].
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Figure 6.1: miRISC hypothesis as presented in [10]

This experimental work provided a measurement of the decay curves of an mRNA tar-

geted by miR-9b with systematic depletion of miR-9b, NOT1 and PAN3. In each ex-

periment, the absence of the factors miR-9b, NOT1 and/or PAN3 corresponds to the

network with certain transitions inactivated, thus resulting in a reduced network. Our

work consisted of evaluating the biochemical network by means of a Markov chain model.

We started with the experiment corresponding to the most reduced network (absence

of miR-9b) and found the most parsimonious model that can capture the dynamics in

the experiment. We calibrated our model using the data and solved for the unknown

transition rates. From here, we immediately found that the hypothesis presented in [10]

must be complemented by additional pathways in order to capture the dynamics found

in the experimental data.

Next, we considered the experiment corresponding to the next most reduced network.

The previously defined transitions were kept constant, and we solved for the newly acti-

vated transitions. Following this strategy of network reactivation and model calibration,

we reached a point where we are unable to find suitable parameters to capture the dy-

namics of the corresponding experiment. That is, we found that the data cannot support

the hypothesis proposed in [10]. In fact, we find that if the hypothesized network was
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correct, only ∼ 7% of the target mRNA would be regulated by the miRISC mechanism,

contrary to the belief that miRISC is a major contributor to mRNA degradation. Thus

we proposed an alternative hypothesis: the complex of miRISC and NOT1/PAN3 occurs

before interaction with the target mRNA.

Additionally, we discovered that the data provides some more insights into the dynamics

of the network. In the case where NOT1 and PAN3 are absent, the mRNA is more

stable, degrading slower. Perhaps the miRNA stabilizes the target mRNA, protecting it

from the action of an alternative miRNA-independent pathway. Here we have assumed

that the interactions in the system are irreversible. However, this assumption is not

obligatory, and with the present data, it is not possible to distinguish between reversible

and irreversible interactions.

Our model also supports the conclusions in [10] regarding the contributions of PAN3.

PAN3 alone does not enhance the destabalization of the mRNA. However, we saw a

strong cooperative effect between PAN3 and NOT1: the degradation system is enhanced

when both factors are present. To verify our findings experimentally, one could look for

the presence of miRISC+NOT1 complexes in the absence of target mRNA. Moreover,

steady state relative amounts of mRNA in the different biochemical states can provide

further validation data for our networks and additional information to unveil further

details of the miRNA-mediated mRNA degradation. We believe that these aspects are

not limited to the special miRNA-mRNA pair studied in [10] and are therefore a new

general mechanism of mRNA control.

6.1.2 Bacteria differently regulate mRNA abundance to specifically

respond to various stresses

Ribosomal profiling is an experimental technique that produces a high resolution, genome-

wide snapshot of translation [101]. When coupled with RNA-seq experiments, a genome-

wide description of the translational and transcriptional state is obtained. While E. coli

has been extensively studied, the translational/transcriptional response to acute stress

has not been captured by existing studies. In this paper we study the effects of acute

heat stress and acute osmotic stress on the transcription and translational state of the

cell.

In agreement with past studies [45], we found that mRNA abundance is highly correlated

to the number of ribosomes translating the gene for most genes. Additionally, we found

that the response to stress was also well correlated for most genes: that is, increases

in mRNA abundance were often paired with increases in ribosome protected fragments
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(and the inverse). However, for each type of stress, a small subset of genes emerged,

seemingly only to be regulated at the level of translation.

In heat stress, the mechanism for translational upregulation may be facilitated by sec-

ondary structure (or lack thereof). The subset of translationally upregulated genes in

heat stress tended to have secondary structure in the initiation regions that melted at

higher temperatures.

In contrast, the translational response to osmotic stress seems to be the result of a more

opportunistic mechanism. Under normal conditions more than 90% of the ribosomes

are involved in translation [136, 137], leaving little capacity to reallocate ribosomes to

new mRNAs [138]. With osmotic stress, there is a 33% reduction of mRNA transcripts

(minimal media ∼2400 mRNA copies/cell, osmotic stress ∼1600 mRNA copies/cell).

Compare this to heat stress, where there is only a 7.6% reduction of transcripts (LB

∼7800 mRNA copies/cell, Heat ∼7200 mRNA copies/cell). Transcript reduction in

response to osmotic stress was also found in yeast [140], implying conserved features of

response across the species. Potentially, the massive reduction of mRNA transcripts in

response to osmotic stress frees up translational resources to translate mRNA that is

newly synthesized or existing mRNA that survive through the stress.

Notably, five major transporters were upregulated in response to osmotic stress. The

copy numbers for proV, proP, proX, proW and otsA increased from < 0.5 copies/cell in

normal conditions to > 2 copies/cell upon osmotic stress. Other osmotic stress-related

genes were upregulated from ∼1 mRNA copy/cell in minimal media to >2 copies/cell

upon osmotic stress. As reference, genes involved in key physiological processes, trans-

lation and energy metabolism during normal conditions are expressed at >2 copies/cell.

Ultimately, gene expression must be adjusted to ensure cell adaptability and survival

under stress. Unicellular organisms lack the internal homeostatic buffering capacity of

multicellular species, and for survival under acute stress they need to quickly reprogram

their cellular activities. For the two stress conditions studied, changes in the mRNA level

correspond to the translation level for the majority of genes. Outside of these genes,

a unique fraction of genes are regulated only at the level of translation. Adjusting the

cellular program by translating existing mRNAs should be much faster than a response

shaped by de novo transcription followed by translation, potentially allowing the cell to

respond more rapidly to changing environments.
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6.1.3 Quantitative assessment of ribosome drop-off in E. coli

The ribosome is the molecular machine for protein synthesis. Ribosomes assemble on

mRNA, initiating translation. The ribosome then moves along the mRNA reading one

codon at a time, catalyzing the aminotransferase reaction elongating the growing protein.

At each elongation step, there is a chance that the ribosome can drop off, resulting in

incomplete translation of the gene. If the ribosome successfully completes the amino acid

sequence, it must terminate the process, releasing the amino acid chain and dissociate

from the mRNA. The rates of initiation, elongation, drop-off and termination determine

the rate of protein synthesis.

The phenomenon of ribosome drop-off has been known since at least the 1970s. Several

groups have measured the rate of drop-off both in vitro and in vivo [63, 65, 66]. In

[63], the rate of ribosome drop-off was measured in vivo by measuring the accumulation

of incomplete protein products in a system where the pathway for incomplete protein

degradation was disabled. From these experiments, drop-off in E. coli was estimated to

be approximately 10−4 per elongation step [63].

Figure 6.2: Contradictory evidence of ribosome drop-off

Ribosome profiling is a new experimental technique which maps the current locations

of the ribosomes on the mRNA. If the ribosomes are indeed dropping off, one would

expect that ribosome density at the end of genes should be lower than at the beginning

of genes. Surprisingly, ribosome drop-off appeared to be undetectable in Ribo-Seq data

[68]. In [3], we presented a method that can detect the drop-off rate from Ribo-Seq data.

We show that analytical approaches reported in literature thus far were unsuccessful

because they utilized a binning strategy that obscured the relatively low rate of ribosome

drop-off. These approaches typically divide each ORF into two halves and compare the

number of reads that map onto each half [68]. If there are ribosomes dropping off before

successfully completing translation, there would be a reduction of reads in the second

half. This metric can be illustrated in a scatterplot where the ribosome density in the first
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half is plotted against the ribosome density in the second half (Figure 3.3, Supplementary

Section 3.1.3). When there is no significant difference between the densities of the two

halves, the points will cluster around y = x. For an ORF where the density of the

second half is lower than the first half, the corresponding point would be below the line

y = x. In principle, this approach is mathematically sound. However, the sensitivity of

this approach to drop-off depends critically on the ORF length. When the frequency of

drop-off events is not large enough with respect to length of the ORFs, the difference in

ribosome density between the two halves of the ORF are too small to be detected in a

log-log scatterplot. As a consequence, if the genome of interest prevalently contains short

genes, the scatterplot-method is not sensitive enough to detect the drop-off, leading to

the wrong conclusion that the ribosome drop-off rate is not measurable in the genome

scale.

Figure 6.3: Preliminary approaches to detect ribosome density from ribosome posi-
tions. Scatterplot from [68].

We introduced an approach not affected by the length of the ORFs. The current con-

sensus of ribosome drop-off is that the rate is per elongation step. Thus, instead of

binning the ribosome positions by the 1st half vs the 2nd half of the gene, we bin the

positions such that the width of each bin is equal (Figure 6.4). That is, we calculate

the density of ribosomes per nucleotide. We used our method to analyze various E. coli

datasets cultured in different experimental conditions, all of which were found in the

GEO database. We found drop-off rates ranging from 1.4 · 10−4 to 5.6 · 10−4 events

per codon. For a drop-off rate of 4 · 10−4 per codon and an ORF length of 300 codons

(approximately the average ORF length for E. coli), 10 out of every 100 ribosomes will

fail to complete the translation of the messenger on average.

Taking into account the speed of ribosomes and the number of ribosomes actively in-

volved in translation [53], and assuming a drop-off rate of 4· 10−4 per codon in all growth

conditions, the number of premature ribosome drop-off ranges from 1400 per minute per

cell at slow growth conditions to 29000 per minute per cell at fast growth conditions.

Considering the lifetime of a cell [53], the total number of drop-off events in a slowly
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Figure 6.4: Binning strategy to detect ribosome drop-off from riboSeq experiments

growing population is about 14 · 104 events per cell cycle at slow growth (doubling time

100 minutes) and 75 · 104 at fast growth conditions (doubling time 25 minutes).

Furthermore, we come to a more general result relating drop-off rate and the length

of genes. For a given drop-off rate, there is a limiting gene length above which the

translation process becomes ineffective due to the high number of expected drop-off

events. In the case of low drop-off rate, this threshold length is usually higher than the

maximum gene length of E. coli. However, in those cases where ribosomes drop off with

a higher frequency, the completion of translation is only reliable for shorter mRNAs.

This suggests that when living organisms face conditions leading to increased drop-off

rate (e.g. amino acids starvation) only a subset of genes can be effectively expressed.

Since the probability of a ribosome to complete translation decreases exponentially with

the ORF length, the magnitude of ribosome drop-off becomes an important evolutionary

constraint of ORF length. If the genome of an organism is composed of ORFs that are

too long relative to the drop-off rate, the reliability of translation may not support cell

viability.

Contrary to previous Ribo-seq analysis results, we have shown that the magnitude of

ribosome drop-off is highly variable and dependent on case-specific factors, including

experimental conditions and the protocol used to collect Ribo-Seq data. Since the es-

timation of translation rates from Ribo-seq data assumes negligible ribosome drop-off,

these estimations should be reevaluated to correct for possible biases due to drop-off
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events. In fact, we speculate that ribosome drop-off could be a possible explanation for

the ubiquitous negative correlation between gene length and protein synthesis rate.

6.1.4 Global quantification of cellular protein degradation kinetics

Protein degradation is an important part of cell homeostasis. It allows the regulation of

cellular processes (through deactivation of enzymes, transcription factors or receptors),

recycling of protein precursors (amino acids), and removal of malformed or abnormal

proteins.

In general, the literature on the degradation of biological molecules (such as proteins,

mRNA) assumes exponential decay. Historically, this may have been the case because

many experiments only measured 1-2 data points, and were thus unable to justify the

implementation of more complex models. However, it is known that proteins are de-

graded through a number of different pathways; many of these pathways are multi-step

processes with several complex biochemical stages. For these pathways, the widely ac-

cepted assumption of exponential decay is often not sufficient to describe the degradation

of the target proteins.

Improvements in experimental technique and equipment have enabled experimentalists

to generate higher resolution data, both qualitatively and temporally.

Here, the degradation profiles over several time points (t = 1, 2, 4, 8, 16 and 32 hours)

for over 5000 proteins were measured by mass spectrometry. One of the early aims

of our study was to overturn the long standing assumptions of exponential decay (1-

stage model). Using a Markov Chain modeling approach, we found that over 10% of all

proteins have degradation dynamics warranting at least a 2-stage model. Biochemically,

one possible interpretation on of the 2-state model is that the protein can reach a second

configuration (i.e. through folding or post translational modifications) which has a

different lifetime expectancy as compared to the first state. All of these proteins were

found to become more stable over time, namely their degradation rate becomes smaller

with the age of the molecule. The degradation kinetics were found to be similar in two

different cell types and conserved between mouse and human.

More than half of the proteins categorized to the 2-stage model are subunits of annotated

heteromeric complexes. These subunits tend to be produced in super-stoichiometric

amounts relative to the other members of the same complex. Based on these findings, we

propose a simple model where only a fraction of the newly synthesized non-exponentially
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decaying proteins is stabilized by complex formation while the rest is degraded. Consis-

tent with this model, we find that upregulation of non-exponentially decaying proteins

increases the initial degradation.

6.1.5 Degradation Parameters from Pulse-Chase Experiments

Pulse chase experiments are often used to measure decay of macromolecules such as

proteins or mRNA. However, depending on the dynamics of the target system being

measured, the choice of the pulse may affect what dynamics can be derived from the

measurements. For some experiments the length of the pulse can be chosen to be suffi-

ciently long to bring the system to steady state, however for others, the toxicity involved

with the pulse may limit the time that the pulse can be applied.

For exponentially decaying molecules, there is a simple algebraic relationship between

half-time and average lifetime of the molecules, but this relationship does not hold for

non-exponentially decaying molecules. Thus, half-time is not a good measure of stability

for non-exponential decay [86]. In Chapter 4 we found that at least 10% of the mouse

proteome decays in a non-exponentially decaying pattern. In [7], it was observed that

the pulse length seems to have an effect on the half-time. In both of these cases, the

assumption of exponential decay is inappropriate – the dynamics governing the system

being measured can not be described by exponential decay.

Degradation can be modeled as a Markov chain process: each state represents a biochem-

ical state of the degradation process, and the transfer or reaction rates between entities

are represented as fluxes between Markov states. Exponentially decaying molecules can

be modeled as a 1-state Markov Chain model, while the degradation patterns in Chapter

4 and reference [7] were well described by 2-state models. From this we can model the

decay as a single molecule stochastic process and transform them to predictions on the

population average (which can be measured with biochemical experiments).

We then use the framework to evaluate parameter sensitivity and optimal experimental

design for the two simple degradation models. By working through the mathematics of

single molecule decay, we derive and demonstrate in a novel approach a series of equations

that anyone can use to fit complex decay patterns. The values of the rates would then

finally provide a valuable tool to compute other dynamic quantities. Combined with

prior knowledge of the system at hand, this framework can assist in choosing the optimal

pulse length for experimentation.

As a guideline, long pulses (and thus steady state measurements) tend to obfuscate

short term dynamics and thus appear as exponential decay, as this catches the long
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term dynamics of the degradation process. We recommend the use of the shortest pulse

as possible in order to detect short time effects. More pulses of different lengths increase

the robustness and our confidence in the model and its calibration.

6.2 Outlook

This cumulative dissertation probes several aspects of gene expression control, statistical

data analysis and mathematical modeling. Thus the future extensions of this work are

in several directions.

From a theoretical point of view, I have presented a model building approach (Chapter 1)

and a mathematical framework (Chapter 5) that can be applied to study other systems.

The model building approach is particularly useful to study biochemical networks where

key players (e.g. enzymes or substrates) can be switched off. The mathematical frame-

work around degradation patterns extended to pulse-chase experiments allows analysis

of complex degradation systems (i.e. not single exponential). Both studies facilitate

further development of optimal experimental design. Together with a hypothesis of the

biochemical network, the model building approach in Chapter 1 allows experimentalists

to design experiments to test different network topologies. The mathematical framework

in Chapter 5 can be used to find the optimal pulse times depending on the degradation

network and the parameters to be measured.

From an analysis point of view, the work in Chapter 2 and 3 presents several metrics and

methods of analysis for ribosome profiling experiments. Notably Chapter 3 quantifies

a basal rate of ribosome drop-off. This rate can be used as a benchmark for ribosome

drop-off, thus providing a reference point to evaluate drop-off in specific genes.

6.3 Summary

In this dissertation I have presented several projects to elucidate some part of the gene

expression control process or the magnitude of gene expression in different environments.

To do this, we have utilized careful statistical data analysis, custom metrics and a

robust mathematical framework to study decaying quantities. Chapter 2 and 4 deal

with whole genomic / proteomic data sets to study patterns of gene expression in the

cell. Chapter 1 and 3 deal with specific aspects of gene expression control. Chapter 1

and 4 utilize simple Markov Chain models to model degradation processes and validate

hypotheses about the biochemical networks underlying the degradation. In addition to

the predicative and validation power, mathematical modeling can also guide optimal
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experimental design. This work showcases the power of statistical data analysis and

math modeling for validation and discovery of biological phenomena.

There are many more mechanisms and components to the system of gene expression

control, all working in concert to adjust and fine-tune the expression level. The number

of scientific questions is large, and the level of complexity is near infinite... and so we

go on!

Figure 6.5: Future directions
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1.1 From single-molecule pathways to decay patterns

We model the mRNA decay as a single molecule stochastic process. The process starts

from an initial state σ0, which represents the mRNA in its initial condition, and termi-

nates in the degradation state σn. The initial and the degradation states are defined here

based on the time point from which the mRNA is experimentally detected until it is not

detected anymore, respectively, in the context of the experimental technique used in [10].

Each realization of the stochastic process, which starts from σ0 to the degradation state

through the network of states represents the life of a single mRNA molecule. Therefore,

the distribution of the random time T elapsing from σ0 to the degradation state σn can

be identified with the distribution of the lifetimes of the mRNA molecules. The state

space σ is thus made of n transient states and 1 absorbing state σn (a generalization to

more absorbing states is straightforward, see [90]).

In our modeling framework each state transition describes the occurrence of what we

define a first-order biochemical event. This definition includes three possible biochemical

scenarios:

1. an elementary first-order chemical reaction

2. a pseudo-first order biochemical reaction: the actual reaction order is > 1 but the

concentration all of the reactants except for one are at the steady state level. As

a result, this reaction behaves as a “true” first order reaction

3. an apparent first-order reaction: a complex chain of reactions with a single rate

limiting step, thus exhibiting first-order behavior

In the context of the mRNA degradation pathway we consider the two latter cases only,

due to the complexity of the involved biochemical reactions. If we assume that the

probability of occurrence of each biochemical event depends only on the current state

(Markov property), then we can model the stochastic processes describing the life of

mRNA molecules as Markov chains.

Thus, following [86, 88–90], we can write the lifetime probability density φ as

φ(t) = ~e0 [exp (S0t)SA] , (1.1)

where S0 is a square n×n matrix. The off-diagonal elements of S0 are the transition rates

between the transient states, and the diagonal elements are composed of the negative

sum over all outgoing transition rates from each transient state. The column vector

SA contains all the transition rates regarding transitions from the transient into the
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absorbing state. The row vector of length n ~e0 has a one in the position corresponding

to the initial condition and zeros elsewhere.

Initial state

ω

nn−1210

2ω nω

Degraded state

1

Figure 1.1: A generic chain made of n irreversible transitions. The probability density
of the random time T from the initial to the degraded state is given by φn(t) derived

in Eq. (1.5).

Similar to [86], we must take into consideration that at the beginning of the experiment,

the expression of mRNA is at the steady state. Thus, not all mRNA molecules are at

the initial state; some of them will be in other states because they are older. If the

transcription of mRNAs was ongoing long before the beginning of the decay experiment,

one can assume that the age distribution of the population of mRNA is at steady state1.

In [86] it was shown that when the age distribution is at steady state, the fraction of

mRNA remaining ∆t time units after the stop of transcription is given by the function

Λ(∆t) =
1

E(T )

∫ ∞
∆t

dt (1− Φ(t)) , (1.2)

where E(T ) is the average lifetime, namely the average value of T given by

E(T ) =

∫ ∞
0

dt (1− Φ(t)) , (1.3)

and Φ is the probability function of T given by

Φ(t) =

∫ t

0
dτ φ(τ) . (1.4)

An important technical point for the computation of Λ is that in Equation (1.2), E(T )

is just the normalization factor in order to have Λ(0) = 1. The networks used in the

main article are sufficiently simple, so that the calculation of φ can be done easily (see

below), without recurring to the relatively complex formulation given in Equation (1.1).

Nevertheless, Equation (1.1) is the general form of the function, which depends on

the values of the rates in the matrix S0. When Equation (1.2) has been written in

terms of the rates, the rates can be determined by means of a nonlinear fitting of the

log of Λ(∆t) with the log of the data. The use of the logged data is justified by the

common assumption that the experimental noise is multiplicative. Equation (1.1) and

1Short transcription pulses instead generate an age distribution away from steady state. This inter-
esting extension of the theory will not be considered here because it is not relevant in this context.
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(1.2) include the case when there is just one transient state. This is the case when the

decay pattern follows an exponential function whose parameter is the rate of degradation,

and also the inverse of the average lifetime.

1.1.1 Fitting functions: General aspects

All our fits were performed for two or three parameters and compared, where it made

sense, with the exponential fit. Based on the Akaike Information Criterion (AIC) cor-

rected for small sample sizes, we found that the fits with the exponential function did

not perform sufficiently well to be considered in this study.

Since all our networks are comprised of irreversible transitions only, the computation

of Λ can be split in the sub-tasks of computing the contribution of chains of 1, 2, . . . , n

transitions such as the one in Supplementary Figure 1.1. For each of these chains,

the probability density φn for the absorption time in state n can be computed as the

convolution of n independent exponential functions, and it is given as

φn(t) =

(
n∏
k=1

ωk

)
·

 n∑
j=1

exp(−ωjt)∏
k 6=j(ωk − ωj)

 , (1.5)

if all the ωj are different from one another. In the networks considered in this work we

just need the two cases corresponding to n = 1, i.e. the exponential function, and n = 2.

The cumulative functions associated to the φn are thus given by

Φn(t) = 1 −
n∑
j=1

∏
k 6=j

ωk
ωk − ωj

 exp(−ωjt) , (1.6)

again under the assumption that all rates are different. As we have seen after fitting the

data, this assumption is never violated.

Assume now that a given network has, say, three possible paths from the initial state to

the absorbing state made of only irreversible transitions. Let us call these three paths a,

b, and c and let us assume that these three paths are characterized each by its own set of

ω’s and that the probability of each path to be taken is pa, pb and pc, respectively. Let

φa, φb and φc be the probability densities conditioned on each of the paths separately.

Then, the total probability density φ is given by

φ = paφa + pbφb + pcφc , (1.7)
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and the cumulative probability function is given by

Φ = paΦa + pbΦb + pcΦc , (1.8)

so the decay function Λ from Equation (1.2) reads

Λ(∆t) ∝
∫ ∞

∆t
dt

(
1−

∑
x

pxΦx(t)

)
, (1.9)

where x = a, b, c, and the proportionality constant must be fixed so that Λ(0) = 1. If

we now write the Φx as Φx + 1− 1 and we substitute, we obtain

Λ(∆t) ∝
∑
x

pxOx(∆t; ~ωx) , (1.10)

where we have defined

Ox(∆t; ~ωx) =

∫ ∞
∆t

dt (1− Φx(t)) . (1.11)

The formulation in Equation (1.10) turns out to be a quite useful, since our Φn expressed

in Equation (1.6) take an explicit relatively simple form once put in (Equation (1.11)).

The vector ~ωx is the set of all ω’s along the path x. Upon simple explicit integration we

have thus, for n = 1 and n = 2 the two functions

O1(∆t;ω1) =
exp(−ω1∆t)

ω1
, (1.12)

and

O2(∆t;ω1, ω2) =
ω2 exp(−ω1∆t)

ω1(ω2 − ω1)
+
ω1 exp(−ω2∆t)

ω2(ω1 − ω2)
, (1.13)

to be used in the explicit calculations that follow.

1.1.2 Fitting functions: Specific forms

This section delivers the explicit form of the functions used in the fitting of the data.

• The generic two-state network in Figure 3 in the main article has

Λ(∆t) ∝ µ

µ+ λ
O1(∆t;ω1 = λ+ µ)

+
λ

µ+ λ
O2(∆t;ω1 = λ+ µ, ω2 = ν) ,

(1.14)
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where in both cases ω1 = λ+ µ takes into account that the dwell time on state A

is exponential with parameter λ+µ. This function was used to fit the data of the

negative control (green line) and therefore to fix the rates λ, µ and ν. These three

rates are kept fixed in all other networks.

• The networks in Figures 6, 8, 10 in the main article share the same structure and

lead to

Λ(∆t) ∝ λ

λ+ µ+ λ′
O2(∆t;ω1 = λ+ µ+ λ′, ω2 = ν)

+
µ

λ+ µ+ λ′
O1(∆t;ω1 = λ+ µ+ λ′)

+
λ′

λ+ µ+ λ′
O2(∆t;ω1 = λ+ µ+ λ′, ω2 = µ′) ,

(1.15)

where λ′ = λR, λRN , λRNP and µ′ = µR, µRN , µRNP in Figures 6, 8, 10, respec-

tively. To fit the data, as was done in Figures 7, 9, and 11 in the main article, we

have kept the three rates λ, µ and ν fixed as they have been determined in the fit

of the negative control. This means that the Λ(∆t) given in Eq. (1.15) was used

to fit the two additional rates λ′ and µ′ for each of the following three data sets.

∆t (-) R RP RN RNP

0 1 1 1 1 1

15 0.6899 0.6720 0.6722 0.5641 0.4885

30 0.5588 0.6238 0.6322 0.3206 0.2263

60 0.3375 0.4806 0.4184 0.1919 0.1272

180 0.1462 0.2262 0.2182 0.0766 0.0388

360 0.0857 0.1112 0.1035 0.0397 0.0217

Table 1.1: Experimental data as extracted from the plot published in [10]. The
various experimental conditions are given in the first row: (-) = negative control, when
the miRNA is not expressed; R = when only miRNA is expressed but both NOT1 and
PAN3 are not expressed; RP = data when NOT1 is knocked down; RN = data when

PAN3 is knocked down; RNP = all factors are present, no knock downs.

1.1.3 Data used in the study

The experimental data used in this study have been extracted from [10]. We report

the numerical values in Supplementary Table 1.1: the first column is the measurement

time expressed in minutes; the second column is the data for the negative control, when

the miRNA is not expressed, which was fitted with Eq. (1.14); the third column is the

data when both NOT1 and PAN3 are knocked down (only miRNA is expressed) and
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rate 10−3min−1 10−3min−1 95% CI

λ 0.8 [0.2, 1.3]

µ 27.6 [22.9, 32.4]

ν 2.8 [1.8, 3.8]

λR 2.3 [0.0, 5.2]

µR 5.2 [3.0, 7.4]

λRN 46.0 [30.5, 68.7]

µRN 46.1 [31.9, 60.2]

λRNP 150.1 [90.8, 209.4]

µRNP 49.3 [37.3, 61.2]

Table 1.2: Values of the rates as they arise from the fitting of the experimental data.
By using our derived functions Λ, Eqs. (1.14) or (1.15), we can perform a non-linear
fit of the data listed in table 1.2. The values of the rates are given together with their

95% confidence interval (CI).

was fitted with Equation (1.15); the fourth column is the data when NOT1 is knocked

down: since this data is very close to the data in the third column, an additional fit

of it was not performed as these two sets of data cannot be distinguished from each

other; the fifth column is the data when PAN3 is knocked down and was fitted with

Equation (1.15); the last column is the positive control, when all factors are expressed

and was fitted with Equation (1.15).

1.1.4 Fitting procedure and algorithm

Our fitting procedure consisted in finding the set of parameters ~ω that minimized the

square deviation of the logarithm of the data, as

RSS =
∑
{∆t}

(log(data(∆t))− log(Λ(∆t)))2 , (1.16)

where “data” is any of the columns in the table above and Λ is either Equation (1.14)

or Equation (1.15) as explained above. The choice of the logarithm is dictated by

the assumption that the noise is multiplicative. The minimization was done by using

standard MATLAB routines (“lsqnonlin” and “nlinfit”) leading to the same results.

By using “nlinfit” we were able to estimate also the 95% confidence interval, reported

together with the estimated values in Supplementary Table 1.2:

Since the data concerns averages whereas the biochemical model for the degradation

pathway is based on a single molecule perspective, it is to be expected that the confidence

intervals are relatively large. In addition, the data used had to be extracted graphically

from the plots published in [10] and thus are expected to contain random errors related to

reading the data from the plots. Despite these shortcomings, any other of the alternative
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condition E[T ] min % via miRISC 100π0 100π1 100π2

(-) 44.7 0.0 78.8 21.2 0

R 55.6 7.4 58.6 15.7 25.6

RP 52.7 5.5 63.1 16.9 19.9

RN 30.1 63.6 42.7 11.4 45.9

RNP 24.2 84.1 23.2 6.2 70.6

Table 1.3: Steady state properties. For each condition we compute the average lifetime
of the mRNA (second column), the percent of molecules that are degraded via miRISC
(third column) and the distribution of mRNA among the three main biochemical states

of Supplementary Figure 1.2.

models we have tested were not able to fit the data (not shown), thus indicating that

the networks proposed in this study are structurally correct.

1.1.5 Steady state properties and statistics

We can associate to each path of the type drawn in Supplementary Figure 1.1 its average

absorption time given by

E[Tn] =

n∑
j=1

ω−1
j , (1.17)

which allows us to compute the average lifetime associated to each of the networks

discussed in our paper. Therefore, the average lifetime associated to the decay pattern

described by Equation (1.14) is given by

E[T (−)] =
ν + λ

ν(λ+ µ)
, (1.18)

where the upper index (-) indicates that this average lifetime refers only to the negative

control decay data. Conversely, the average lifetime associated to the decay patterns

described by Equation (1.15) is given by

E[T (RX)] =
λµ′ + λ′ν + µ′ν

µ′ν(λ+ µ+ λ′)
, (1.19)

where the upper index (RX) indicates that this refers to all analyzed networks where

miRNA is involved together with none, one or both factors PAN3 and NOT1. When

the rates are known one can compute the percent of target mRNA that are involved in

miRNA mediated degradation, shown in the third column of Table 1.3. Notice that the

halftimes computed in [10] are very similar in value to our average lifetimes. The average

lifetimes, however, have a clear meaning here because the steady state amount of mRNA

is proportional to the average lifetime, whereas the halftimes only have a meaning in

the framework of the exponential decay.



Supplementary 1. miRISC-mediated Degradation 141

0
’

’

1 2
λ

ν µ µ

λ

Figure 1.2: The network studied in this contribution is made of three states, 0, 1 and
2, whereas state 2 cannot be reached when λ′ = 0 as in the case of the negative control.
Using the rates and the Master equation we can compute the stationary distribution of

the mRNA’s in the three states for all models considered.

Another quantity of biological interest is the percent of mRNA in the different biochem-

ical states of our network at steady state. The three states of the network are drawn in

Supplementary Figure 1.2 and the stationary probabilities π0, π1 and π2 can be com-

puted from the Master equation by redirecting the arrows with rates µ, ν and µ′ towards

the initial state 0. This leads to the stationary distribution

π0 = νµ′/(νµ′ + λµ′ + λ′ν)

π1 = λµ′/(νµ′ + λµ′ + λ′ν)

π2 = νλ′/(νµ′ + λµ′ + λ′ν)

(1.20)

which have a clear limit when λ′ → 0 for the negative control case. The values of the

probability distribution can be used to estimate how many mRNA should be found in

the cell in the three different biochemical states, 0, 1 and 2 in Figure 1.2. Notice that

the % of mRNA degraded through miRNA targeting can also be computed in terms of

normalized fluxes:

% via miRISC =
π2µ

′

π0µ+ π1ν + π2µ′
, (1.21)

consistent with the values computed earlier, given in the third column of Supplementary

Table 1.3

1.2 Why the originally hypothesized pathway is not con-

sistent with the experimental data

There are several reasons why the biochemical network proposed in [10] is not an ade-

quate model for miRNA-mediated mRNA degradation:
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Figure 1.3: Fit of the data of the decay pattern when PAN3 has been knocked down.
The model used here is the one of [10] complemented with a pathways for alternative
routes to degradation. In our interpretation this means that λ′ = λR in Supplementary
Figure 1.2 is fixed with the data of the experiment with both PAN3 and NOT1 knocked
down, while also λ, µ and ν are kept fixed. The only parameter left free to be fixed
with this set of data is therefore µ′. However, since too few mRNAs are targeted by

miRISC alone, the extra parameter µ′ is not sufficient to fit the data.

1. The network proposed in [10] does not contain all the state transitions that are

necessary for fitting both the negative control data and the data where the miRNA

is knocked-down.

2. Through the action of miRISC alone, only about 7% of the target mRNA are

degraded via the action of the miRNA (see second row, third column in Supple-

mentary Table 1.3)

3. The hypothesis formulated by [10] foresees that NOT1 and PAN3 bind to the

mRNA after the binding of miRISC. To mimic this scenario, we can thus impose

λ′ = λR in Supplementary Figure 1.2, thereby implying that only one degree of

freedom, namely the parameter µ′, remains available for being tuned through the

data fitting procedure. As seen in Supplementary Figure 1.3 and 1.4, the model

proposed with this assumption does not provide a good fit to the data.
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Figure 1.4: Fit of the data of the decay pattern when all factors are expressed (no
knock downs). The model used here is the one proposed in [10] complemented with a
pathway for alternative routes to degradation. In our interpretation this means that
λ′ = λR in Supplementary Figure 1.2 is fixed with the data of the experiment with
both PAN3 and NOT1 knocked down, while also λ, µ and ν are kept fixed. The only
parameter left free to be fixed with this new set of data is therefore µ′. However, since
too few mRNAs are targeted by miRISC alone, the extra parameter µ′ turns out to be

not sufficient to fit the data.
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Figure 2.1: Optimization of the conditions for data generation, reproducibility and
GO analysis. (a) Optimization of the time for mRNA random fragmentation using
GAPDH mRNA. The optimal time for alkaline fragmentation is 40 min; a symmetric
peak is formed indicative of a relatively uniform distribution of the digested mRNA
with fragment maximum length of around 30 nt; this length corresponds to the length
of RPFs. Upon longer incubation the intensity of the peak decreased and the maxi-
mum shifted to smaller lengths of the fragments. (b, c) Reproducibility of randomly
fragmented mRNAs (b) and RD (c) of two biological replicates of E. coli grown in
LB medium. The histogram of log2-change of each gene between the two replicates
is plotted. Red line delineates 99th percentile and green line 95th percentile overlap
between the log2-distibutions of the two biological replicates. 95th percentile was used
as a statistical threshold for the log2-fold change analysis between different conditions.
The log2-fold change at 95% for mRNA (b) equals to 1.6928 and for RD (c) 2.0653.
For the replicates the Spearman correlation coefficients of the normalized read counts
(rpkMd) are: 0.85 (b) and 0.9 (c). The Spearman correlation coefficients indicate that
the ribosomal profiling and RNA-Seq analyses are reproducible. (d) GO terms with
significant enrichment among the genes with high copy numbers (>2 copies/cell) and

mRNA with ∼1 copy/cell of bacteria grown in LB (white) and MM (blue).
***, p<0.001, **, p<0.01, *, p<0.05.
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Figure 2.2: Differences in the expression under stress. The mRNA levels of specific
stress-related genes were quantified under thermal (a) and osmotic (b) stress by real-
time qRT-PCR (white bars) and compared to the RNA-Seq data set (gray bars). The
values are presented as a fold change (log2; mean ± SEM) compared to the control cells
grown in the corresponding control medium (i.e., heat stress vs. LB (a) and osmotic
stress vs. MM (b)). (c,d) Cumulative plots of the copy number changes upon osmotic
stress exposure compared to growth in MM (c) and upon heat shock compared to
LB (d). Dashed vertical lines correspond to the gene groups defined in Figure 2.1c,d,
respectively. (e) Percentage of genes with mRNA copy number changes within each
group (the three expression groups are defined as in Figure 2.1b). Cells exposed to
heat stress were compared to growth in LB and cells subjected to osmotic upshift were
compared to growth in MM. (f) Scatter plot of the normalized RPFs of each gene with
the sequencing reads from the normalized reads of the randomly fragmented mRNAs
from cells grown in MM (as in Figure 2.2b). Spearman correlation coefficient is 0.91.
Blue dots depict the genes in the expression group of >2 copies/cell with significant

mRNA copy number change between MM and osmotic upshift.
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Figure 2.3: Secondary structure analysis. (a) Average folding energy of translationally
upregulated genes under heat (red) compared to all protein-coding genes in E. coli
(black). Zero is the first nucleotide of the start codon in each ORF. This figure is
similar to Figure 2.4b; however it shows the folding energy for the whole gene length.
The highly scattered area at sequence positions >1300 nt is due to the lower number of
genes with length larger than 1300 nt. (b) Boxplot analysis of the log2-changes of the
RD values from LB to heat stress of different protein-coding gene groups starting with
the genes with the lowest propensity to form secondary structure at the initiation start
(1-500 genes) to the gene group with the highest propensity to form secondary structure
(3001-4245 genes). “All genes” comprises of all the protein-coding genes in E. coli. The
group of the translationally upregulated genes under heat stress (red) comprises 94
genes. For comparison, a gene group of the same size, the 94 least structured genes
(1-94 genes), is included in the boxplot. The distribution of RD values of the heat
upregulated group differs significantly from that of all genes (Kolmogorov-Smirnov-

test: p< 10−15).
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3.1 Downstream Analysis

Figure 3.1: Illustration of the core steps of our analysis method to measure ribosome
drop-off rates in Ribo-seq data. a) The ORFs are divided in bins of equal length; b)
For each bin, the total number of RPFs mapping on it is reported in the RPF matrix;
c) The elements in each line of the RPF matrix are divided by the average amount
of RNA-seq reads mapping in each bin of the corresponding ORF, thus obtaining the
NRPF matrix; d) The logarithm of the average value of each column of the NRPF

matrix, ln(Y ), is plotted against the bin number X.

3.1.1 Bootstrap approach

To obtain an accurate estimate of RBS and of its associated error without making any

assumptions on the distribution of the number of RPFs, we implemented a bootstrap

approach:

(i) We counted the number of elements EX in each column of the NRPF matrix, i.e.

the number of elements contributing to each bin (equal to the number of ORFs

with at least X bins). As suggested by Figure 1 of the main text, the number EX

is not constant for all the columns, due to heterogeneous ORF length of the genes

in the study.

(ii) From each column X of the NRPF matrix, we sampled a combination of EX

elements randomly with replacement, thus obtaining a matrix (call it BootStrap -

BS - Matrix) that has the same dimensions of the NRPF matrix and contains the

sampled elements in each column;
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(iii) We computed the average for each column of the BS matrix, obtaining the vector

Yi

(iv) Given that the exponential relationship:

Y = A e−RX (3.1)

holds also for Yi and X, we computed the rate Ri as the slope of the weighted

linear regression of ln(Yi) against X.

For each of the studied datasets (listed in Table 1 of the main text), we repeated the se-

quence of steps described above 105 times, thus obtaining 105 values for Ri (R1, . . . , R105)

for each dataset. Each distribution of the obtained values for Ri seems to follow a Gaus-

sian distribution (Pearson’s χ2 test with P-value < 0.01); therefore, we assumed that

the average value of each Ri distribution is representative of RBS for the corresponding

dataset. Supplementary Figure 3.2 provides an example of an Ri distribution.
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Figure 3.2: Sample of a Ri distribution obtained from 105 iterations of the bootstrap-
ping process. The superimposed curve represents the best fitting Gaussian function.
The data used for this plot come from the analysis of dataset 17 (see Table 1 of the

main text).

3.1.2 Evaluation of the error

Here we review the technical details of how we estimate the errors for R. Due to the

heterogeneous distribution of E. coli ORF lengths, the number of elements contribution

to each bin is not constant through the bins; in particular, in both the NRPF and BS



Supplementary 3. Ribosome Drop-off 152

matrices, EX becomes progressively small as X increases (see Figure 3.1, Chapter 3).

Thus, the variance associated to the average of the EX elements becomes progressively

large and the bin average becomes a bad estimator of the correspondent element of the

vector Y . On one hand, these arguments motivate us to compute the linear regression

of ln(Y ) vs. X by weighting each average by its associated variance (weighted linear

regression). On the other hand, from the same arguments, it turns out that the reliability

of our estimate of R depends both on the number of bins (i.e. the length of the Y vector)

we consider for the linear regression and on the bin size.

To select the optimal bin size and the optimal Y length needed to obtain the best

estimate of R and the associated error, we analyzed a set of simulated data for each

of the 17 databases we considered. In each case, we generated a simulated dataset

by redistributing the reads of each ORF according to an exponential distribution with

parameter equal to a preselected nominal value. This value was chosen equal to the rate

R that, for each dataset, can be obtained by applying the bootstrap approach described

above. Thus, in the simulations we performed, we preserved some of the features of the

original datasets, namely the total number of reads per ORF and the gene lengths.

For each one of the original datasets we considered different bin sizes ranging from 10

to 130 nucleotides and, for each bin size, we generated 1000 simulated sets of ribosome

positions. For each simulated data set, we estimated the value of R 47 times, taking

into account a different number of bins each time. The minimum number of bins was 2

(the minimum required for linear regression), and the maximum number of bins is 49.

In each case, we obtained the best estimate of R for a bin size of 100 nucleotides and a

length of the Y vector of 39.

This data, combined with the results of the bootstrap procedure, allowed us to evalu-

ate the systematic error associated to our estimate of R. From these simulations, we

conclude that the correct value of R can be obtained by adding an offset ∆ from the

estimate RBS provided by the bootstrap procedure. The standard deviation associated

to the value of R (SR) can be computed from the square root of the sum of the variance

associated to the bootstrap process (SBS) and the variance associated to the offset (S∆

) by the formula:

SR =
√
S2
BS + S2

∆ (3.2)

The values of ∆ and S∆ we obtained for each dataset, are reported in Supplementary

Table 3.1.

As described in the text, the value of R is obtained from the RBS after a correction by

∆, according to the equation:

R = RBS + ∆ (3.3)
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Dataset ID RBS SBS ∆ S∆

(10−4) (10−4) (10−4) (10−4)

1 112.9 8.7 16.2 3.98

2 88.5 11.7 16.2 3.84

3 96.3 7.3 16.7 3.78

4 80.2 10.0 16.1 3.61

5 39.6 8.0 16.7 3.80

6 n.a. n.a. n.a. n.a.

7 79.2 6.9 16.0 3.64

8 n.a. n.a. n.a. n.a

9 97.6 17.0 16.7 3.81

10 89.1 22.1 16.7 3.80

11 184.8 12.1 16.9 3.65

12 201.5 10.0 16.9 3.89

13 94.2 7.8 16.2 3.76

14 91.3 8.0 16.5 3.63

15 116.7 9.2 16.8 3.70

16 0.00 12.7 16.2 3.72

17 63.0 7.0 16.5 3.75

Table 3.1: Parameters RBS , SBS , ∆ and S∆ used for the evaluation of the error in
the estimation of the drop-off rate. Column 1: Dataset ID. Column 2: the value RBS

estimated through the bootstrap approach. Column 3: the standard deviation SBS

associated to RBS . Columns 4 and 5: results of the simulations performed to evaluate
the error ∆ and the associated standard deviation S∆. Column 4: Offset ∆. Column

5: Standard deviation S∆.

3.1.3 Comparison with other methods

Even though strikingly simple in principle, our binning strategy represents the Colum-

bus’ egg that allowed us to detect the signal of ribosome drop-off in Ribo-seq data. The

other analytical approaches reported so far in the literature failed to reach this goal,

essentially because the proposed binning strategy was not sensitive enough. As outlined
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in the main text, the usual way of evaluating ribosome drop-off in Ribo-seq data (for an

example, see [68]) is by looking for a difference between the number of reads that map

to two subsequent halves of each ORF. A significant difference between the two halves

(fewer reads in the second half) reveals that a certain number of ribosomes has not

successfully completed translation. The results of this analysis are typically illustrated

through scatterplots similar to the one reported in Supplementary Figure 3.3, where

the number of reads (expressed in terms of ribosome density, i.e. number of reads per

nucleotide or per codon) mapping in the first half is plotted against the number of reads

mapping in the second half. If there is no significant difference between the quantities

reported in the two axes, the plotted points will cluster around a straight line having

the slope equal to 1, as it happens in the case reported in Supplementary Figure 3.3. If

fewer reads map in the second half with respect to the first half, the point corresponding

to that ORF will plot below the line mentioned above.
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Figure 3.3: Typical scatterplot obtained from the drop-off analysis method proposed
in [68]. The ribosome density (number of RPFs per codon) of the first half of each gene
is plotted against the ribosome density of the second half. The clustering of the plotted
points along the dashed line indicates that the ribosome drop-off rate is negligible. Data

taken from [68].

While this method is mathematically sound, it has a major drawback – the sensitivity

of this approach depends critically on the ORF length. When the frequency of drop-

off events is not large enough with respect to length of the ORFs, the difference in

ribosome density between the two halves of the ORF are too small to be detected by eye

and cannot influence the correlation coefficient in a log-log scatterplot. Supplementary

Figure 3.4 provides an illustration of this phenomenon.

As a consequence, if the genome of interest prevalently contains short genes, the method

may not be sensitive enough to detect the drop-off in the shorter genes. Then, the
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Figure 3.4: Simulation for illustrating how a relatively low drop-off rate is not detected
by the analysis method proposed in [68]. (a): histogram describing the simulated
decrease in the number of RPFs mapping on the ORFs. This decrease is generated
as an exponential decay with rate 4 × 10−4 per codon, corresponding to the E. coli
drop-off rate estimated in [63]. The drawing below the histogram depicts three ORFs
of different lengths: 1000 nucleotides (close to the average ORF length in E. E. coli),
7077 nucleotides (the maximum gene length in E. coli) and 3500 nucleotides, a length
about 5 times longer than the maximum ORF length in E. coli. The numbers above the
three depicted ORFs report the number of RPFs mapping on the two halves according
to the distribution above. (b): Scatterplot obtained plotting the the number of RPFs
mapping on the two halves of the sample ORFs depicted in Figure (a); square: ORF
length = 1000; solid circle: ORF length = 7077; triangle ORF length = 35000; empty
circle: ORF length = 100000 (not depicted in (a) ). Note that a significant deviation
from the dashed line is obtained only when non-biologically possible ORFs lengths are

considered .

conclusion would necessarily be that, at the genome scale, the ribosome drop-off rate is

not measurable. It turns out that the sensitivity of this method is too low to measure

ribosome drop off on a global level if the drop off is occurring in a biologically viable

cell; we discuss the specifics of this argument later.

Conversely, our analysis is not affected by the length of the ORFs. We can illustrate

this scenario at the genome-wide level: Supplementary Figure 3.5 reports the results of

a simulation where we spatially redistributed the RPFs associated to each ORF in the

dataset of Ref. [68]. The RPFs are distributed according to an exponential distribution

with parameter r equal to 1.40 × 10−4, which corresponds to the drop-off rate per codon

that we estimated for this dataset. In this way, we generated an artificial dataset very

similar to the one from [68] except we have tailored the distribution of the RPFs on the

ORFs to explicitly mimic the presence of ribosome drop-off.

We then used this dataset as a benchmark to test the capabilities of our method and

the one proposed in [68] to detect the drop-off. As shown in Supplementary Figure 3.5a,
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the scatterplot reporting on the differences of the number of RPFs in the two halves

of each ORFs shows a clustering around the straight line with slope equal to 1, which

would deceptively suggest that no drop-off events occurred. The plot resulting from our

analysis (Supplementary Figure 3.5b) is correctly consistent with the presence of drop-

off, even when it occurs at a low rate. Interestingly, if we repeat the simulation described
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Figure 3.5: Results of a simulation in which the distribution of the RPFs on the E.
coli ORFs was artificially set with a drop-off rate of 1.40 × 10−4 per codon. (a) using
the method proposed in [68] the drop-off is not detected (the plotted points cluster
along the dashed line); (b) our method allows the measurement of the drop-off rate
corresponding to the slope of the dashed line, obtained through the approach described
in the text. The ORFs length is measured in number of bins of 100 nucleotides. The
plot includes only the first 39 bins that we considered in our analysis. To facilitate the
comparison with the similar graphs present in the paper we shifted the plot so that the

y-intercepts of all plots will match.

above in the case of an hypothetical genome with genes whose length is markedly longer

than those in E. coli, the method proposed in [68] successfully detects the signals of drop

off.

Thus, it turns out that the sensitivity of the method proposed in [68] suffices only

when the average gene length goes beyond a biologically reasonable threshold. Indeed

it is important to notice that for a given drop-off rate, the translation process remains

reliable only if the gene lengths remain bounded within certain limits, roughly by 1/r.

If we assume a drop-off rate (or, analogously, a drop-off probability) which is constant

along the whole length of the various mRNAs, the distribution of the RPFs density will

decrease along the messengers according to an exponential distribution. In this case, the

probability PS that a ribosome will reach the stop codon located L codons away from

the start codon (technically the survival probability) is:

PS = (1− r)L ∼ exp(−rL) , (3.4)
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where r is the drop-off rate per codon, with r � 1. Thus, the probability for a ribosome

to successfully complete the translation process sharply decreases with the gene length.

If we set r at the value of 4 · 10−4 per codon, as estimated in [63], this probability

falls under 50% for genes longer than 1700 codons, meaning that, on average one ribo-

some over two will drop-off the mRNA. In other words, the magnitude of the drop-off

rate represents an important constraint for the possible genes lengths in living organ-

isms, because exceptionally long genes would never be reliably translated. This scenario

is consistent with the experimental results presented in [66], where the translation ef-

ficiency was observed to markedly decrease when progressively longer β-galactosidase

gene constructs were assayed to detect ribosome drop-off.

3.2 Statistical tests

3.2.1 Computing the Confidence Interval

The 99.9% confidence interval (CI) was computed through the equation:

CI = r ± Z0.005 · Sr (3.5)

where Sr is the standard deviation associated to the estimation of r and Z0.005 is the

Z-score corresponding to 1− 0.999
2 . The values we obtained for the confidence intervals

provide us with two important clues about the accuracy of our estimate and the features

of r. First, the relatively small value of Z0.005 × Sr, often referred to as the margin of

error, indicates that our approach yields accurate estimate of r. Moreover, the definition

of CI tells us that the ”true value” of r (i.e. the average of the population of all possible

r) lies between the boundaries of the CI with a probability of 99.9 %; there is only a

0.1 % probability that the values outside of the CI are a reliable estimate of r. The 4th

column of Table 2 of the main text shows that in all the cases but one (dataset 16) the

values close to 0 are not in the range of the CI. This suggests that, in these cases, the

drop-off rate r is significantly different from 0.

3.2.2 Z-test for the mean

To check whether the values we obtained for the drop-off rate per codon (r) were sig-

nificantly different from 0, we performed a series of Z-tests for the mean. In particular,

we evaluated the probability that r belongs to the normal distribution H0 having the

average µ0 = 0 and the same standard deviation Sr associated to r. In other words,

we verified whether we can reject the null hypothesis (H0 : r = 0), which would indicate
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that the alternative hypothesis (H1 : r 6= 0) is more likely to be true. To do this, we

computed the Z-score for each r hypothesizing that it belongs to H0 (Zr|H0
) through the

equation:

Zr|H0
=

r − 0

Sr
(3.6)

and we compared it to Z0.01 which is the Z-score corresponding to the significance level

0.01 (probability of type 1 error or false positive rate). To check whether the significance

level we chosen was meaningful for our purposes, we evaluated the type 2 error (false

negative rate) and the power of the test, considering the alternative hypothesis in which

r belongs to a normal distribution with average µa = r and Sr. The detailed results of

these tests are reported in Supplementary Table 3.2.

3.2.3 The ANOVA test

To detect any possible significant difference between the values of r we measured, we

considered all the values of r significantly different from 0 and, through the ANOVA test,

we checked the null hypothesis that all of them are approximately equal, against the al-

ternative hypothesis that there are at least two values of r that are significantly different.

For the ANOVA test, we considered 13 groups (one for each estimated r significantly

different from 0) each composed by 105 elements, i.e. , the number of elements compos-

ing each ri distribution. Thus, the degrees of freedom “between” turned out to be 12

while the degrees of freedom “within” resulted to be 12999987. We set the significance

level to 0.001 and the test indicates that we should reject the null hypothesis.

3.3 Drop-off rate and growth medium

According to [149], the kinetic properties of ribosomes are influenced by the growth

medium. In particular, cells cultured in the same media should be characterized by

ribosomes with very similar features. To check whether this holds for ribosome drop-off

rate, we used a two-tailed Z-test to compare the values of r we obtained from samples

coming from different series (i.e. from different laboratories) referring to experiments

in which the bacteria were grown in the same medium in non-stressed conditions (con-

trol cultures). For the Z tests, we choose a significance level of 0.005. Supplementary

Table 3.3 reports the results of the comparisons between samples referring to the rich

medium (MOPS) culturing conditions.

By comparing columns 2, 3 and 4, in two of three cases the Z-score falls into the rejection

area (i.e. the Z-score is out of the boundaries delimited by the Bonferroni-corrected

significance levels). Hence, in spite of the fact that the cell cultures are grown in the
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Dataset ID Drop-off rate Z0.01 Zr|H0
Power

(Ref. Table 1) Per codon π
(×10−4)

1 2.89 2.33 10.2 0.97

2 2.16 2.33 6.12 0.96

3 2.40 2.33 9.80 0.98

4 1.91 2.33 5.95 0.93

5 0.69 2.33 2.61 0.83

6 n.a. 2.33 n.a. n.a.

7 1.88 2.33 8.00 0.90

8 n.a. 2.33 n.a n.a.

9 2.43 2.33 4.65 0.96

10 2.18 2.33 3.24 0.91

11 5.05 2.33 13.3 0.98

12 5.56 2.33 17.4 0.99

13 2.33 2.33 8.93 0.98

14 2.24 2.33 8.48 0.96

15 3.01 2.33 10.2 0.94

16 0.00 2.33 1.22 0.82

17 1.40 2.33 5.88 0.98

Table 3.2: Results of the (right tail) Z-tests to assess whether the drop-off rates
are significantly different from 0. Columns 1 and 2: GEO coordinates of the datasets
(Series, Ribo-seq sample, RNA sample). Column 3: Drop-off rate per codon. Column 4:
percentile of the standard normal distribution corresponding to a rejection area (right)
of 0.01. Column 5: Z-score associated to the comparison between the distribution with
average r and standard deviation Sr versus the null distribution with average 0 and the

same standard deviation Sr. Column 6: power of the corresponding Z-test.

same medium, the basal drop-off rate turns out to be different sometimes, implying that

the experimental variability or some differences in the experimental protocols may have

affected the value of the ribosome drop-off rate, at least in some cases.

In Supplementary Table 3.4 we report the results of the comparison between samples

referring to bacteria grown in the minimal medium.

In this case the Z-score is consistent with the hypothesis of significantly equal drop-off

rates.
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Compared samples Z score Significance level ZB

(Sample ID) ( ±Z0.0025 )

15 vs. 17 4.24 ± 2.81 ± 3.14

5 vs. 17 2.00 ± 2.81 ± 3.14

5 vs.15 5.85 ± 2.81 ± 3.14

Table 3.3: Results of the Z-tests for comparing the drop-off rates of samples coming
from different GEO Series (different laboratories), referring to cultures in Rich (MOPS)
Medium. Column 1: Samples ID, referring to Table 1 of the main text. Column 2:
Z-score computed from the comparison of the drop-off rates. Column 3: percentiles
of the standard normal distribution corresponding to a total rejection area of 0.005.
Column 4: percentiles of the standard normal distribution corresponding to a total

rejection area of 0.005, corrected according to the Bonferroni method.

Compared samples Z score Significance level ZB

(Sample ID) ( ±Z0.0025 )

9 vs. 3 0.05 ± 2.81 n.a.

Table 3.4: Results of the Z-tests for comparing the drop-off rates of samples com-
ing from different GEO Series, referring to cultures in Minimal Medium. Column 1:
Samples ID, referring to Table 1 of the main text. Column 2: Z-score computed from
the comparison of the drop-off rates. Column 3: percentiles of the standard normal
distribution corresponding to a total rejection area of 0.005. Column 4: percentiles
of the standard normal distribution corresponding to a total rejection area of 0.005,

corrected according to the Bonferroni method.

Summing up, the outcomes of our tests do not provide us a clear response about possible

correlations between the ribosome drop-off rate and the growth medium. Nevertheless,

given the variability we observed, our analysis reveals an important information: even

though cells are cultured on the same medium, the data coming from different labora-

tories might unpredictably be significantly different in terms of ribosome drop-off rates,

possibly due to differences in the experimental protocols.

3.4 Complete plots

In this Section we report all the plots referring to the databases we analyzed. For the

sake of readability, the plots reported in the main text are cut at the 39th bin and

shifted vertically by a value corresponding to the intercept of the fitting line. These

modifications are not present in the plots reported hereafter.
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3.4.1 Datasets 9, 11 and 13 : Ethanol-induced stress
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Figure 3.6: Plot of the vector Y vs. the number of bins (X). The slopes of the dashed
lines correspond to the drop-off rate r reported in Table 1 of the main text. a): Dataset
9 - Control (T0). b): Dataset 11 - T1, after 10’ of ethanol stress. c): Dataset 13 - T2,

after 70’ of ethanol stress.
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3.4.2 Datasets 5, 6, 7, 8: Amino acids starvation
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Figure 3.7: Plot of the vector Y vs. the number of bins (X). The slope of the dashed
line corresponds to the drop-off rate r reported in Table 1 of the main text. a) Dataset
5 - Control (MOPS - Rich medium) b) Dataset 6 - Leucine starvation. In this case,
due to the poor fit with a single exponential model, we could not compute r. Thus, the

regression line is not represented here.

●

● ●
●

● ●
● ●

●
● ● ●

● ● ●
●

●
● ●

● ● ●
●

● ●
●

● ●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

0 10 20 30 40 50 60 70

0.
0

0.
5

1.
0

1.
5

2.
0

Bin number (X)

ln
(Y

)

Control

a)

● ●

●

●

●

●

● ● ● ● ●
● ● ●

● ●
●

●

●
● ● ●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

0.
5

1.
0

1.
5

2.
0

Bin number (X)

ln
(Y

)

− Serine

b)

Figure 3.8: Plot of the vector Y vs. the number of bins (X). The slope of the dashed
line corresponds to the drop-off rate r reported in Table 1 of the main text. a) Dataset
7 - Control (MOPS - Rich medium) b) Dataset 8 - Serine starvation. In this case, due
to the poor fit with a single exponential model, we could not compute r. Thus, the

regression line is not represented here.
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3.4.3 Datasets 15 and 16: a novel σE -induced sRNA
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Figure 3.9: Plot of the vector Y vs. the number of bins (X). The slope of the dashed
lines correspond to the drop-off rates r reported in TTable 1 of the main text. a):
Dataset 15 - Control (T0). b): Dataset 16 - T1, after 20 minutes of σE over expression

induction.
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3.4.4 Datasets 1, 2, 3 and 4: Heat and Osmotic stress.
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Figure 3.10: Plot of the vector Y vs. the number of bins (X). The slope of the
dashed line corresponds to the drop-off rate r reported in Table 1 of the main text. a)
Dataset 1 - Control (MOPS - Rich medium) b) Dataset 2 - Acute heat stress (47◦C

for 7’)
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Figure 3.11: Plot of the vector Y vs. the number of bins (X). The slope of the
dashed line corresponds to the drop-off rate r reported in Table 1 of the main text. a)
Dataset 3 - Control (Minimal medium) b) Dataset 4 - Osmotic stress (NaCl 0.3M for

20’ at 37◦C).
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4.1 35S cysteine pulse-chase in combination with AHA or

methionine

NIH 3T3 mouse fibroblast cells (ATCC) were grown in SILAC DMEM (life technolo-

gies) complemented with glutamine (Glutamax, life technologies) and 1% Penicillin and

Streptomycin (life technologies), 10% dialyzed fetal calf serum (Pan-Biotech), light L-

arginine (Arg0, Sigma-Aldrich) and light L-lysine (Lys0, Sigma-Aldrich) referred to as

Light SILAC DMEM [238]. Confluent cells in 6-well plate wells were washed in pre-

warmed PBS before being starved of methionine and cysteine for 45 min in DMEM

(Invitrogen) prepared as above. Cells were then pulsed for 1h with 80 µCi final concen-

tration of 35S-Cysteine (Perkin Elmer) in combination with either 1mM AHA or 1mM

methionine (Dieterich et al., 2006). Cells were then washed twice in SILAC DMEM

before either being directly lyzed or chased for 6 or 24 h in cold medium with either 50

µM cycloheximide (Sigma Aldrich) or 10 fold cysteine (Sigma Aldrich) added to prevent

re-incorporation of the radiolabeled amino acids. After chase, cells were scraped and

lyzed in modified radio-immunoprecipitation buffer (50 mM Tris HCl (pH 7.4), 1mM

EDTA, 150mM NaCl, 1 % Nonidet P-40, 0.25% Na-deoxycholate and 0.1% SDS) con-

taining 2 fold protease inhibitor cocktail (Roche). All samples were frozen at -80 °C

before being thawed on ice for 30 min in the presence of an endonuclease (Benzonase,

Merck). Samples were spun down to clear cell debris. The resulting supernatant was

diluted in LDS sample buffer (Invitrogen) complemented with DL-Dithiothreitol (DTT,

Sigma Aldrich) before being boiled at 95°C for 5 min. Proteins were resolved by SDS-

PAGE using a 10% polyacrylamide gel. Proteins were fixed on the gel by 5% Acetic

acid and 50% methanol and then stained by Commassie (colloid blue stain kit, Novex).

The gel was vacuum dried for 2 h using a gel drying system (Bio Rad) at 75°C. Vacuum

dried gels were scanned using a scanner (Cannon) for quantification of total loaded pro-

tein amount. The radioisotope signal was measured by exposing the gel to a magnetic

photostimulable phosphor plate overnight. The plate was then scanned on a phospho-

rimager (Typhoon FLA 9500, GE Healthcare). Radioactive and Coommassie images

were quantified using the ImageQuant software (GE Healthcare). Each lane was quanti-

fied separately and background signal was estimated by marking a lane with no proteins

loaded. The measured background was subtracted from the signal. The radioactive

signal was then further normalized to total protein input estimated by the Coommassie

staining. The experiment was repeated three times with technical triplicates for each

biological replicate. Statistics and plotting was performed in Excel (Microsoft).
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4.2 Enrichment efficacy of AHA labeled proteins

NIH 3T3 mouse fibroblasts were cultured in a 10 cm plate in heavy SILAC DMEM

(life technologies) prepared as above but with heavy L-arginine (Arg10, Sigma-Aldrich)

and heavy L-lysine (Lys8, Sigma-Aldrich) instead of their light counterparts. Cells were

washed twice in pre-warmed heavy SILAC DMEM depleted of methionine (Biosera) be-

fore being starved of methionine in the same for 1h. The starvation was followed by a

3 h incubation with 1mM AHA. The AHA-labeled heavy cells were washed in ice cold

PBS and then scraped in ice cold Urea lysis buffer (Click-iT protein enrichment-kit,

Invitrogen), and two fold protease inhibitors (Roche) and mixed 1:1 with cells grown in

Light SILAC DMEM. The lysate was treated with benzonase on ice for 20 min before

being sonicated in an ice bath. Samples were spun down at 20,000 rcf and supernatant

was transferred to a new tube containing alkyne agarose beads and the click reaction was

performed overnight following the “Click-iT protein enrichment kit”-protocol (Invitro-

gen) as described earlier [239]. Proteins were reduced by heating to 70°C in the presence

of 10mM DTT in SDS buffer and later alkylated by the addition of 40 mM iodoacetamide

(Sigma) final concentration. Beads were sequentially washed in SDS buffer, 8 M Urea in

100mM Tris (pH8) and 80% acetonitrile by centrifugation and decanting supernatant.

Proteins were digested “on bead” in 5% acetonitrile in ABC buffer first 3 h by LysC

and then over night with trypsin. The peptide solution was acidified by addition of

TFA before peptides were desalted and stored on StageTips as described in [240]. In

short, C18 material (3M) was put in 200 µL pipette tips and activated by methanol.

Organic solvents were washed away by Buffer A (5% acetonitrile and 0.1% formic acid)

before peptides were loaded onto the stageTip. Salts were washed away by washing the

retained peptides in Buffer A. Peptides were eluted using Buffer B (80% Acetonitrile and

0.1% formic acids) and organic solvent was evaporated using a speedvac (Eppendorf).

Samples were diluted in Buffer A (5% acetonitrile and 0.1% formic acid) before peptides

were separated on a 150 mm long column with an inner diameter of 75 µm packed in

house with ReproSil-Pur 120 C18-AQ 3µm resin (Dr. Maisch GmbH) (referred to as

“15 cm column” from now) using a 4 h linear gradient with 250 nl/min flow rate of

increasing Buffer B concentration on a High Pressure Liquid Chromatography (HPLC)

system (ThermoScientific). Peptides were ionized using an electrospray ionization (ESI)

source (ThermoScientific) and analyzed on a Q Exactive mass spectrometer (Thermo-

Scientific). The mass spectrometer was run in data dependent mode selecting the top

10 most intense ions in the MS full scans (Orbitrap resolution: 70,000; target value:

3,000,000 ions; maximum injection time of 20 ms) for higher energy collision induced

dissociation. The resulting MS/MS spectra from the Orbitrap had a resolution of 17,500

after a maximum ion collection time of 60 ms with a target of reaching 1,000,000 ions.

For one of the three replicates the peptides were pre-fractionated into 4 fractions on IPG
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strips using iso-electric focusing as previously described [241]. These four fractions were

analyzed using 2 h HPLC-gradients.

Figure 4.1: A) SILAC labeled heavy mouse fibroblasts were labeled for 3 h with AHA.
The cells were lyzed and mixed 1:1 with Light unlabeled proteins. The AHA labeled
proteins were enriched and the samples were analyzed using LC-MS/MS. In theory, only
heavy labeled proteins should be enriched. B) The vast majority of proteins show up
only in the heavy form (infinite ratio (Inf.), n=1535) with very few exceptions that were
exclusively identified in the light form (-Inf., n=7). Light proteins included proteins
with very few peptides identified and extra cellular proteins (e.g. Keratin) probably
representing contaminants. A number of highly abundant proteins (n=299) showed
up in both channels with a mean ratio 1:14 (green dotted line). H-intensity only was
used when plotting proteins which showed up in both channels not to exaggerate their

relative abundance. Shown is one representative experiment of three.

The resulting raw files were analyzed using MaxQuant software version 1.4.1.2 [73].

Default settings were kept except that ‘reQuantify‘ was deactivated and ‘match between

runs‘ was turned on. Lys8 and Arg10 were set as labels and oxidation of methionines, n-

terminal acetylation and deamidation of aspargine and glutamine residues were defined

as variable modifications. Carbamidomethyl of c-termini was set as fixed modification.
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The in silico digests of the mouse Uniprot database (2013-01) and a database containing

common contaminants were done with Trypsin/P. The false discovery rate was set to

1% at both the peptide and protein level and was assessed by in parallel searching a

data base containing the reversed sequences from the Uniprot database. Plotting was

done using R version 2.15.1 (R Foundation for Statistical Computing, Vienna, Austria)

and figures were modified in Illustrator (Adobe).

4.3 AHA pulse-chase of SILAC labelled NIH 3T3 mouse

fibroblasts

Fully triple SILAC (Light: Lys0, Arg0; Medium: Lys4, Arg6; Heavy: Lys8, Arg10)

labelled mouse fibroblast were grown as in the “enrichment efficacy experiment”. Ex-

periments were performed when cells reached ∼25% cell density so that full confluency

would not be reached during the 32 hours of chase time. For the first two replicates two

10cm plates were used per time point and for the third replicate two 15cm plates were

used to increase the starting material. Cells were labeled with 1mM AHA after 1h of

methionine starvation. After the 1h pulse Medium and Light cells were washed in first

PBS then SILAC DMEM before being chased in the same medium. The Heavy cells that

were used for time point 0 h were instead washed in ice cold PBS before being scraped in

the same, spun down, supernatant was decanted before the cell pellet was frozen. After

the chase the medium and light cells were also scraped and frozen. The frozen pellets

were thawed and lyzed as described for “enrichment efficacy experiment”. Also, the click

reaction and washing of beads, denaturation, alkylation and digestion was performed as

above. In one, out of the three experiments, the peptides were pre-fractionated by IEF

into 12 fractions as described above. In two experiments the peptides were separated us-

ing strong anion exchange (SAX). The SAX protocol was performed as in [242]. In short

SAX material (3M) was put in 200 µL pipette tips and activated by methanol. The SAX

tip was then washed by high pH buffer (20 mM Acetic acid, 20 mM phosphoric acid,

20mM boric acid, pH was adjusted to 11 by titrating in 1M sodium hydroxide) before

peptides were loaded onto the tip. The peptides were then eluted stepwise by decreasing

the pH of the buffer in discrete steps (pH of 11 (flow though), 8, 5 and 3 all prepares as

above with the addition of 0.25 M NaCl to the pH 3 buffer). The eluted peptides were

stored on stageTips. IEF and SAX fractionated peptides were separated on a HPLC

system as described above by either 4 or 2 h gradients with a 250 nl/min flow rate on a

15 cm column packed in house with C18 material. Peptides were ionized using an ESI

source and analyzed on a Q-exactive with the above described settings. The acquired

raw-files were analyzed using MaxQuant version 1.4.1.2 [73]. Default settings were kept

except that ‘reQuantify‘ was deactivated and ‘match between runs‘ was turned on. Lys8
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and Arg10 were set as heavy labels and Lys4 and Arg6 as medium heavy labels. Oxida-

tion of methionines, n-terminal acetylation and deamidation of aspargine and glutamine

residues were defined as variable modifications. Carbamidomethyl of c-termini was set

as a fixed modification. The in silico digests of the mouse Uniprot database (2014-10)

and a database containing common contaminants were done with Trypsin/P. The false

discovery rate was set to 1% at both the peptide and protein level and was assessed by

in parallel searching of a data base containing the reversed sequences from the Uniprot

database. For all downstream analysis we used non-normalized SILAC ratios (see below

for normalization procedure) with a minimum of 2 SILAC counts. Reverse database

hits, potential contaminants and proteins only identified by site were all excluded. In

addition, based on the enrichment efficacy experiments described above we applied a

stringent cut-off excluding all data points smaller than 10% protein remaining.

4.4 Data normalization

Normalization is a common challenge for experiments measuring abundances – differ-

ences in starting material, labeling efficiency, instrument sensitivity, etc. are all contrib-

utors to deviations in the scale of measurements. A common normalization strategy is to

normalize the data to the median value in each experiment or replicate, assuming that

the median values should not change through the series of experiments. However, for

pulse chase experiments, we expect the measured quantities (and thus also the median)

to decay over time, thus this strategy cannot be used. In our data, we expect each time

point to have an unknown and potentially different multiplicative factor which affects

all measurements at that time point. Thus, we aim to estimate the average value of

the multiplicative factor that affects the real data at each time point without assuming

any protein degradation rates a priori while being robust to experimental errors. Our

normalization scheme is based on the assumption that there are stable proteins within

the pool of proteins measured, whose amounts decay very little during the time course of

the experiment (Figure 4.4) [72, 207]. Without noise, the signals corresponding to these

proteins would remain unchanged and equal to 100% left throughout the experiment.

With noise, we can identify these very stable proteins because the Medium/Heavy and

Light/Heavy SILAC ratios of these proteins should be among the highest. Using this

method, we identify the most stable proteins, and then calculate the multiplication fac-

tor necessary to normalize the data for each time point such that the geometric mean

of the measurements of these very stable proteins will have a signal of 100%. To find

the most stable proteins, we consider proteins with data at all time points in all replica

– one reason for this is that it ensures that all the potential candidates are able to

contribute to the normalization factor. Furthermore, being in this subset suggests that
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Figure 4.2: A) NIH 3T3 mouse fibroblasts were starved for methionine and cysteine
for 45 min before being pulsed with 35S Cysteine in combination with either Methion-
ine or Azidohomoalanine for 1h. Cells were then washed before being chased in either
excess of Cysteine (10x) or cycloheximide (50 µM). Proteins were resolved on a SDS-
PAGE gel before being fixed and the gel dried. B) Radioactivity was measured by a
phosphorImager and total protein was assessed by coomassie blue staining. Quantifi-
cation of protein degradation using C) Cysteine chase (n=3) and D) Cycloheximide

(n=3). Error bars: SE, n.s.: not significant two sided t-test.
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Figure 4.3: All proteins in the mouse Uniprot database were split in half resulting
in a C-terminal and N-terminal part of each protein. All peptides detected in one
AHA p-c experiment were matched back to the new database and sorted in the two
categories N or C-terminal (peptides matching to the middle were excluded). Plotted
is the distribution of heavy intensity (∼abundance after the pulse) for the detected
peptides. If AHA labeling would induce premature Ribosomal fall off we expected
to see a high N to C-terminal ratio in the number of detected peptides and a higher

abundance of N-terminal peptides.

these proteins are reliably measurable. For each of these proteins, we assign a score,

defined as

scorei =
∑

t∈{8,16,32}

Percentile Ranki(t) (4.1)

Where the index i denotes the protein and PercentileRanki(t) maps the rank of each

protein’s signal strength (from smallest to largest, at time t) to the interval (0, 1). Pro-

teins with higher signals at each time point will have higher scores. Thus for a protein

who has the highest signal at all time points would have a score equal to the number of

time points, which we call maxScore (i.e. the range of scores is (0,maxScore]). Each

protein has up to 3 scores, one from each replica. From the three scores, we calculate



Supplementary 4. Global quantification of cellular protein degradation kinetics 173

the deviation of the score from the maximum score:

devi =
∑

j∈#replicas

(maxScore− scorei,j)
2 (4.2)

Candidates for normalization are those proteins with the lowest deviations. This nor-

malization scheme is based on 4 key assumptions:

1. All groups of cells (heavy/medium/light) produce and degrade proteins equally.

2. Proteins degrade at different rates, which can be differentiated in the time scale

of our experiments)

3. Proteins degrading the slowest have the highest Medium and Light to Heavy ratios

(and thus lowest deviations)

4. The slowest degrading proteins do not degrade at all (in the time scale of our

experiment) From the data, we find the population of proteins with the lowest

score deviations (n = 200, < 5% of total population) and deem these to be the

stable proteins. This set is chosen intentionally large in order to mitigate the

effects of outlying data points.

4.5 Parameter fitting

In this study, we consider two simple models: a 1-state model (exponential decay) and

a 2-state model (non-exponential decay). In the 1-state model, proteins are in state

A just after synthesis. From state A, they are degraded at the rate kA. The system

is memoryless, meaning that the life expectancy for any single protein molecule does

not change as the molecules age. For true exponential decay, the data should resemble

a straight line when plotted in a log-linear plot. While the one-state model is a good

approximation for some decay patterns, other decay patterns have dynamics that are

not well described by a one-state model [86].

In the two-state model, proteins are in state A after synthesis. From state A, the

molecule can immediately degrade at the rate of kA, or it can transition to state B with

the rate kAB. Molecules that reach state B are degraded with rate kB. From the analysis

point of view, one important distinction between the 1-state and 2-state models is that

we lose the property of memorylessness; for 2-state models, the history of a specific

molecule (which determines whether the molecule is in state A or state B) changes the

life expectancy of the molecule. In short, the life expectancy of the molecule depends

on the age of the molecule. In pulse-chase experiments, the duration of the pulse affects
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the composition of molecule ages at the beginning of the chase – for a very short pulse,

the molecules synthesized in the pulse are likely to have the same age. However, for a

longer pulse, molecules synthesized at the beginning of the pulse are “older”) while there

are some molecules which are just newly synthesized. In short, the length of the pulse

must be taken into account for the calculations to accurately uncover the dynamics of

degradation.

The derivation of the mathematical description consists of two steps: First is to translate

the single molecule dynamics model (e.g. the one-state or two-state model) into the

degradation from steady state at the level of population averages. The translation of

single molecule dynamics to population averages has been covered in [86]. The second

step takes the pulse into account and returns the degradation curve of the population

averages (e.g. the measurements from the experiments). Calculation of the response of

the system resulting from a pulse has been covered in [5].

In our formalism, the function Λ(t) defines the theoretical decay pattern, namely the

fraction of molecules left after a decay of t time units. This function is expressed in terms

of parameters defined through the underlying degradation model. In our degradation

model, we have assumed that the proteins follow either a 1-state model, in which there

is only one degradation parameter, or a 2-state model, where there are three parameters.

The equations used for fitting are as follows:

Λ(t) = e−kAt for the 1-state model (4.3)

Λ(tp + t) =
G(t)−G(tp + t)

G(0)−G(tp)
for the 2-state model (4.4)

whereG(t) = kAB(kAB + kA)e−k20t + kB(kA − kB)e(−kAB+kA)t and t is the measurement

time after the end of the pulse.

Parameter estimation is performed by MATLAB through nonlinear fitting by minimizing

the square deviation from the logarithm of the experimental data and the logarithm of

the theoretical function. The routine employed for the nonlinear fit is fmincon.

After parameter fitting we applied two quality criteria for selection of proteins for down-

stream analysis. First, only proteins which had measurements for more than three data

points were kept. Second, profiles with RSS > 0.05 were not considered for downstream

analysis.
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Figure 4.4: The raw data required normalization due to input differences (due to
pipetting errors, cell density variation, and so forth). Plot A) displays the non-
normalized raw data from one biological replicate. For normalization an assumption
of non-changing data points over time or conditions are required (e.g. median normal-
ization). In our case we look for very stable proteins. We defined the most stabile
proteins over all biological replicates as proteins with the consistently lowest (H/L or
H/M) ratios at all time points (LSD proteins, see Material and Methods). Example
LSD proteins for mouse are shown in the left grey arrow. Each time point was then
independently normalized by setting the geometric means for the LSD proteins (red
points in B)) to 100% (i.e. no degradation). The resulting shift in the data can be seen

in C) with new median values for LSD protein as red dots.

4.6 Model selection by the Akaike Information Criterion

[6]

The Akaike Information Criterion indicates the quality of the model for a given set

of data. Based on information theory, the AIC aims to find the model with minimal

Kullback-Leibler distance between the proposed model and the “true” model (as assessed

from the data). Models with more parameters have more degrees of freedom during the

parameter estimation process, and can often deliver a more accurate fit to the data.

However, there is the danger of over-fitting – that is the model could be approximating

not only the system’s dynamics, but also quantities not related to the degradation,

such as measurement noise. To decide which model we should adapt for each protein,

we calculate the AIC for each model. The model resulting in the lowest AIC is the

preferred model. We use the AIC with correction for small sample sizes to evaluate each

of the two models fitted to each protein degradation pattern:

AIC = 2k + n ln
RSS

n
+

2k(k + 1)

n− k − 1
(4.5)

where n is the number of data points, k is the number of parameters, and RSS is the

residual sum of squares. The AIC penalizes models with more parameters, worse fits,
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Figure 4.5: Plot of the coefficient of variation (CV), i.e. the standard deviation (SD)
divided by the mean in log space, over all time points. The CV was calculated for each
time point and for each decay profile individually (see Figure 4.1D for examples of the
multiple means and SDs per profile). Within the outermost grey area in the plot 90%
of the decay profiles resides. The second outermost area contains 70% of decay profiles
and so forth. The CV increases with the chase time indicating the increased spread in
data points at later time points. Overall 90% of the profiles were within a CV of 11%

after 32h of chase.

and less data. That is, the AIC quantifies the tradeoff between fit accuracy and model

complexity.

Furthermore, we can calculate the probability that a particular model is the preferred

one (relative to the other models we consider) by:

ΠAICi =
exp(AICmin−AICi

2 )∑
j exp(

AICmin−AICj

2 )
(4.6)

4.7 ∆-score calculations

If a protein is exponential degradation one can draw a straight line in a semi log plot

between time point 0 h (100% protein left) and the measured value for another time

point and derive the relative protein abundance at any other time point. However, if a

measurement for another time point is not on the line, allowing for measurement and
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quantification errors, the protein is non-exponentially degraded. We used this fact to

estimate the size and direction (increased or decreased stability with age of the molecule)

of the non-exponentiality of degraded proteins. We used the median log “percent pro-

tein left” at time point 8 h (tp8) after chase to calculate the expected relative protein

abundance at time point 4h assuming exponential degradation. For this we solved the

straight line equation (y = mx + c) for x = 4h, where the intercept c is log(100%), and

the slope m is calculated using the value at tp8:

y(4h) = − log(100%)− tp8
8h

4h+ log(100%) (4.7)

Finally, we calculated the distance from the measured median log “percent protein left”

at time point 4 h (tp4), to the expected value, y(4h):

∆− score = y(4h)− tp4 (4.8)

This calculation was repeated for all proteins. The time points 4 and 8h were selected

because of the observation that most of the initial degradation of NED proteins had

happened by 4 h chase. Thereby we expected to be able to catch age-dependent sta-

bilization (or destabilization) by comparing these two time points. Also, few proteins

(see Supplemental Table 1) had a half-life shorter than 2.5h and could thereby theoret-

ically not be detected at the 8 h time point. In addition, these were almost exclusively

exponentially degraded according to the AIC call.

4.8 SILAC p-c (confirmation experiment)

To exclude issues related to using non-natural amino acids and to the enrichment process

(e.g. background binders) we performed a pulse-chase experiment using only Stable

isotopes labeled amino acids. Mouse fibroblasts were grown to 80% confluency in 15cm

plates in Light SILAC DMEM. Cells were washed three times in PBS before being

pulsed in Heavy SILAC DMEM for 4h (or as annotated in Figure 4.7). Cells were then

washed in PBS before being trypsinated for 2 min at 37°C. Cells were resuspended in

PBS before half of the cells being transferred to a 10cm plate containing Medium SILAC

DMEM and the other half spun down and pellet then frozen. After the Medium chase

(see Figure 4.4 and Supplementary Figure 4.7, for different chase length) cells were spun

down and frozen. In addition, “label-swap” experiments were also performed in this

fashion. However, in the label-swap experiments the cells were pulsed with Medium and

chased in Heavy amino acids. Cell pellets were lyzed and proteins denatured in 0.2%
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SDS, 0.1M DTT and 50mM ABC (pH8) by boiling for 10 min at 95°C. After cooling,

Benzonase was added for 10min before cell lysates were spun down and supernatants were

transferred to fresh tubes. Proteins were alkylated by adding iodoacteamide to a 0.25 M

final concentration, in the dark, for 20 min. Proteins were precipitated by Wessel-Flügge

precipitation as previously described [243]. In short proteins were precipitated, to get rid

of SDS, by sequentially adding, methanol, chloroform and finally water before spinning

down the samples at 10,000 rcf [244]. The retrieved protein pellet was resuspended in

6 M Urea, 2 M Thiourea in 10 mM Hepes (pH8). Proteins were digested with LysC

before being diluted in ABC buffer and trypsinated overnight. The resulting peptide

solution was desalted on StageTips before being eluted in buffer B as described above.

The peptides were resolved on a 4 m long monolithic column using a 12h gradient of

increasing buffer B concentration and a flow rate of 500 nl/min. Peptides were ionized

by ESI and analyzed on a Q-exactive orbitrap. Resulting rawfiles were analyzed on

MaxQuant with the same parameter settings as above. Plotting and statistics were

performed using R and figures were modified in Illustrator.

4.9 Inhibitor treatments + controls

Inhibitor treatment experiments were performed as the AHA p-c experiments but only

with three time points (0, 4 and 8h). In addition to pulsing the cells with 1mM AHA

different inhibitors or vector control dimethyl sulfoxide (DMSO, Biomol) were added.

Proteasomes were blocked using 20 µM MG132 (Cayman chemical) and a robust inhibi-

tion of autophagy was secured by a combination of 250 nM Bafilomycin A1 (Invivogen)

and 500 nM wortmannin (Calbiochem) both treatments were added only during the

chase. Inhibition of autophagy by Bafilomycin/Wortmannin was monitored by in paral-

lel taking samples for western blotting as previously described [245]. In short, scraped

cells were spun down and directly lyzed in LDS sample buffer supplemented with DTT.

Samples were run on 4-12% Bis-Tris gradient gels (NuPAGE, Invitrogen) before being

blotted onto PVDF membrane (Immobilion-P, Millipore) using a wet blotting contrap-

tion (Invitrogen). The Autophagy blocked cells were probed against LC3 (Novus NB100-

2220) and afterwards the membrane was stripped at 37°C for 15min in stripping buffer

(2% SDS (Roth), 2% β-mercaptoethanol in 65mM Tris Base (pH6,7, Roth)) before being

re-blotted using an anti-β-actin antibody (Sigma-Aldrich A5441). Treated cells for mass

spec analysis were scraped, lyzed, and had their AHA labeled proteins clicked to alkyne-

agarose beads as described above. Proteins were reduced with DTT and alkylated before

beads were washed all as in the main AHA p-c experiment. Proteins were digested “on

bead” by LysC and then trypsinated overnight. Peptide solution were put on 4mm/1ml

C18 columns (Empore, 3M) and washed in buffer A. Peptides were eluted in buffer B
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Figure 4.6: Confirmation experiments as shown in Figure 3. The differences from
the experimental procedure used for the main figure is highlighted in red before each
corresponding plot. A) A label swap experiment in where the Heavy medium used for
the pulse was swapped with the Medium-heavy used for the pulse. B) The chase time
was limited to 4h. C) Also with 4 h chase but with the same label-swap as in A). P-
values from a one sided Kolmogorov-Smirnov test are displayed on top for significantly

different distributions (α = 0.05).
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and vacuum dried. MG132 treated samples were separated using an online SCX/WAX

approach. Samples were loaded on a column packed first with C18 material “trap” and

then with a 2:1 mixture of WAX 3µm beads (PolyLC Inc. PolyWAX LP) and 3µm SCX

beads (PolyLC Inc. PolyWAX LP) [246]. The peptides were subsequently eluted with

increasing salt concentration (ammonium acetate in 4, 8, 16, 32, 64 and 500mM steps)

onto the C18 trap part of the pre-column. Each fraction eluted from the SAX/SCX

material where then separated as normal on a 15cm C18 column with 2h gradients of

increasing buffer B concentration with a 250nl/min flow rate. Wortmannin/Bafilomycin

A1 treated samples were put on SCX tips and washed in no salt buffer, as described

above, to minimize polymer contamination. Samples were then eluted with 500mM am-

monium acetate before being desalted on stageTips. Samples were elute from stageTips

by Buffer B, vacuum dried, re-suspended in Buffer A and then separated on a HPLC

system using an 8h gradient as previously described [239]. In brief, increasing buffer

B concentration on a 2,000 mm monolithic column with a 100-µm inner diameter filled

with C18 material that were kindly provided by Yasushi Ishihama (Kyoto University)

(from now on referred to as “2 m monolithic column”) with a flow rate of 300nl/min.

Peptides were ionized using an ESI source and analyzed on a Q-exactive with the above

described settings. ESI and mass spectrometer setting were, for all samples, as described

above. The resulting raw files were analyzed as the standard AHA p-c experiment with

MaxQuant. Timelines were reassembled from non-normalized protein ratios, resulting

into three time points (0, 4 and 8 h) for each inhibitor treatment and the corresponding

DMSO control. Proteins were filtered for being represented by at least two peptide

identification events. Each time point was normalized to the geometric mean of the

identified intersection of the LSD proteins that were identified in the mouse dataset

used for the mathematical modeling. From this normalized dataset ∆-Scores were cal-

culated for each, treatment and control, as described above. The difference of the Delta

Scores between treatment and DMSO control was compared for the two protein subsets

identified as NED and identified as not NED (others). Both distributions were tested

for equality using the Kolmogorov-Smirnov test. The corresponding p value is reported

in the figure legend for each treatment.

4.10 Degradation profile prediction from different protein

features

The following features were selected to test each for prediction power of protein degra-

dation profiles. The “Part of a Complex” feature distinguished proteins that are part

of a complex from proteins that are not part of a complex [199]. Proteins were defined

as being part of a complex, if they are listed in a published manually curated protein
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Figure 4.7: A) We estimated the effect of MG132 on protein degradation by plotting
“% protein left” for all proteins with or without treatment. MG132 clearly stabilized the
majority of the measured proteins. B) To control that autophagy was indeed inhibited,
cells were treated with 250 nM bafilomycin A1 and 500 nM Wortmannin (“Autophagy”
in figure) in parallel with the experiment for LC-MS/MS analysis. After 8 h chase,
cells were lyzed and the samples were run on a SDS-PAGE. Samples were subsequently
western blotted before being probed against the autophagy marker LC3 (Novus NB100-

2220) and after stripping re-blotted using anti-Beta-actin (Sigma-Aldrich A5441).

complex database (unfiltered version; [199]). Protein Length refers to the protein se-

quence length and was taken from the Uniprot fasta table (version 10.2011). “Protein

abundances in steady state” refer to average protein copy numbers per cell [72] mapped

by Uniprot accessions and gene names if the Uniprot accession was not mapped. The

feature “Low Complexity Region” were obtained from the “mmusculus gene ensembl”

dataset from the biomart database (status 14.10.2015). Listed lengths of Low Complex-

ity regions were summed up per protein. Disordered, Helix and Beta Sheet fractions

per protein were taken from secondary structure predictions using the s2d method [247].

All structural features (“Low complexity”, “Disorder”, “Helix” and “Beta Sheet”) were

normalized to protein length. For each feature a ROC-curve was generated and the

area under the curve calculated using the pracma R-package. The robustness of the

calculated AUCs was tested by running 200 bootstrap repetitions. The 90% confidence

intervals of the resulting AUCs are shown as error bars in the corresponding bar plot.

Each feature was additionally randomized resulting in a real AUC and a random AUC

population. Each feature prediction was tested for being absent or present by revers-

ing the sorting vector. In each case the positive AUC was reported and labeled with
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Figure 4.8: Protein features were tested to predict either exponential (ED) or non-
exponential degradation (NED) in mouse by calculating the area under the curve (AUC)
of a receiver operating characteristic (ROC) curve. Error bars were derived from 200
bootstrap repetitions and indicate the 90% confidence interval of the corresponding
calculated AUCs. Features were additionally categorized in being present (blue) or
absent (grey) in the tested protein fraction. For example, the bar for “protein length”
is colored grey for NED proteins, indicating that NED proteins tend to be shorter than

ED and undefined proteins.

“absence” or “presence” of the corresponding feature.

4.11 Protein structural dataset

Starting from the entire set of protein structures in the Protein Data Bank on 2016-02-

24, we searched for all polypeptide chains with >70% sequence identity to a human or

mouse gene. For genes that map to multiple chains, we selecting a single chain sorting by

sequence identity, then number of unique subunits in the complex, and then the number

of atoms present in the chain. Pairwise interfaces were calculated between all pairs

of subunits using AREAIMOL [248]. The normalized assembly order was calculated

for all complexes, excluding those containing nucleic acid chains, by first predicting the

(dis)assembly pathway as previously described using all the pairwise interfaces from each

heteromeric complex [218] and implemented in the assembly-prediction package [249].

For subunits with multiple copies within a single complex, the average assembly order of

each subunit type was considered. The normalized assembly order was defined so that
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Figure 4.9: Fraction of proteins listed in a manually curated protein complex database
(Ori et al 2016). Fractions are shown for all, exponentially degraded (ED), non-
exponentially degraded (NED) and undefined (UN) proteins. The p-value is derived

from a hypergeometric test testing for enrichment against all proteins.

Figure 4.10: Due to the very large size of ribosomes, they can significantly skew
small datasets. Here we show that the observed tendency of NED proteins to form
heteromeric complexes is independent of their enrichment in ribosomes (equivalent to

Fig. 5A).

the first subunit to assemble has a value of 0, the last has a value of 1, and the average

value for all unique subunits in a complex is equal to 0.5.
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4.12 Non-structural dataset

To complement the analysis of protein complexes of known structure, we also performed

analyses on the perform coexpression analyses on the non-redundant “core” set of mam-

malian complexes was downloaded from CORUM [250] (downloaded 2015-10-20). As

CORUM preferentially uses human complexes in its non-redundant set, homologous

mouse versions of each complex were generated by replacing each subunit/gene with

its mouse counterpart, provided sequence identity was at least 70%. Sequence identities

were calculated by collecting all mouse sequences for which NED/ED classifications were

available and running BLAST on these against all genes in the CORUM core set. In

cases where the identity of a subunit was ambiguous (as defined by CORUM), the first

possible subunit for which homology data was available was selected.

Figure 4.11: The distribution of subunits from heteromeric complexes of different sizes
shows that NED proteins are significantly enriched in large complexes. P-values are
comparing NED vs. ED subunit distributions, and were calculated using a modified
Kolmogorov-Smirnov test to account for the discrete distribution of subunit counts
(Arnold, 2011) (see R-package “dgof”). The top panel includes ribosomal subunits and

the bottom panel excludes them.
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Figure 4.12: To control for the possibility that the observation in Fig. 5D is due to
the fact that NED subunits typically form larger complexes, we binned subunits by the
size of the complex from which their coexpression was calculated. Controlling for this,
we find that the tendency for NED proteins to be more highly coexpressed still holds.
Numbers in the top row of each facet describe the size range of complexes in each bin,
measured by number of unique subunits, e.g “3-4” includes all subunits from complexes

with between 3 and 4 unique subunits.

4.13 Coexpression analyses

Coexpression data was downloaded from CoexpressDB [251] (mouse dataset: Mmu.v13-

01.G20959-S31479; human dataset: Hsa.v13-01.G20280-S73083). For each complex, the

mean coexpression of each available subunit was calculated, using all other subunits in

the complex. Cases where fewer than three subunits were present in the complex were

discarded, due to calculations of average coexpression being superficially identical.
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Figure 4.13: In order to confirm that the observations displayed in Fig. 5 are not an
artifact of the structural data, we replicated the procedure using data from the “core”
(i.e. non-redundant) set of CORUM complexes (Ruep et al. 2009). To maximize avail-
able data, non-mouse protein complex subunits were mapped to mouse genes wherever
sequence identity was at least 70% (see Methods). Mean, per-complex subunit coex-
pression was then calculated using as before for each subunit in the inferred mouse
homologs. The upper panel display coexpression data from the full set of CORUM
complexes, whilst lower panels are binned by the size of the complex, with facet titles

representing the size range of each bin (see Supplementary Fig. 12).

4.14 Estimation of relative protein abundance after pulse

(iBAQ)

To estimate the protein abundance after the pulse (i.e. the relative amount of newly

synthesized proteins) we used intensity based absolute quantification (iBAQ, [72]. First,

all the intensities reported directly after the pulse, i.e. the H-intensities, for each protein
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group were divided by the number of observable peptides to correct for observability

biases. Second, all the corrected H-intensities were normalized by using the median

H-intensities for the LSD-proteins (see Section 4.4). This allowed the combination of

experiments. Finally, we reported the median H-Intensity from all experiments as the

relative abundance. The median was used to avoid counting highly abundant proteins

which show up in all replicates multiple times. For a complex centered analysis of

the relative protein abundances after pulse, identified proteins from the mouse dataset

were mapped to a filtered version of PDB (see previous section) using gene names.

Protein abundances were normalized in a complex centered manner: First all proteins

that mapped to a complex were extracted. Second, stoichiometric differences between

subunits within a complex were normalized out by dividing each protein abundance

against the listed stoichiometry in the PDB database. Third, abundances of all proteins

of a complex were normalized to the average abundance of each complex. The resulting

complex centered abundances were compared between the protein subsets ED, NED

and UN. Only proteins from complexes with at least one ED and one NED subunit were

considered for the analysis. The distributions between the ED and NED fraction were

tested for equality applying a Kolmogorov-Smirnov test as is implemented in R.

4.15 Human cell lines

The cell line RPE-1 hTERT (referred to as RPE-1) was a kind gift from Stephen Taylor

(University of Manchester, UK). The derivative cell line RPE-1 5/3 11/3 12/3 (referred

to as RPE-1 trisomic) was generated using microcell-mediated chromosome transfer as

described below. The donor mouse A9 cell line was purchased from the Health Science

Research Resources Bank (HSRRB), Osaka 590-0535, Japan. Cell lines were maintained

at 37°C with 5% CO2 in DMEM GlutaMax (Gibco) containing 10% fetal bovine serum

(FBS), 100U penicillin and 100U streptomycin.

4.16 Microcell-mediated chromosome transfer (MMCT)

Microcell fusion was utilized to generate aneuploid RPE-1 from the parental RPE-1 [209].

Briefly, murine donor cells containing an additional human chromosome with a resistance

gene were treated for 48h with colchicine (60ng/ml). Cells were then trypsinized and

seeded on plastic bullets. The cells were allowed to attach to the surface, and were

subsequently centrifuged at 27000rcf for 30min at 30-34°C in DMEM supplemented

with 10µg/ml cytochalasin B. Cell pellets were resuspended in serum-free DMEM and

filtered to avoid contamination with mouse cells. Filtered microcells were then mixed
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with phytohemagglutinin (PHA-P) and added to the RPE-1 recipient cell line. The

fusion of microcells with the recipient cells was facilitated by polyethylene glycol 1500

(PEG 1500) treatment. Cells containing the additional human chromosome were selected

for in medium supplemented with 400µg/ml G418. Chromosomes 11 and 12 carry no

genes coding for resistance as the chromosomes were gained spontaneously after the

transfer of chromosome 5. Clonal populations arising from a single cell after the MMCT

were isolated and further expanded. Subsequently, chromosome spreads combined with

chromosome painting were performed (see below).

4.17 Preparation of chromosome spreads and chromosome

painting

Cells were grown to 70-80% confluency before treatment with 50 ng/ml colchicine for

3-5h. Subsequently, cells were collected by trypsinization and centrifuged at 250rcf

for 10min. Pellets were then resuspended in 75mM KCl and incubated for 10-15min

at 37°C. After centrifugation at 150rcf for 10min, cell pellets were resuspended in 3:1

methanol/acetic acid for fixation. Finally, cell pellets were washed several times in 3:1

methanol/acetic acid, spread on a wet glass slide and air-dried at 42°C for 5min. Each

sample was labeled with probes for two different chromosomes. Probes (Chrombios

GmbH, Raubling, Germany) for chromosome 5, 11 and 12 were tagged with FITC and

TAMRA, respectively. The chromosomes were labeled according to the manufacturer’s

instructions and counterstained with DAPI. Images were obtained by a fully automated

Zeiss inverted microscope.

4.18 Genomic DNA sequencing and copy number estima-

tion of RPE-1 and RPE-1 trisomic cells

DNA was isolated using the Blood and Cell Culture DNA kit (Qiagen) according to

the manufacturer’s recommendations. 1µg genomic DNA was sheared following the

protocol from the SureSelectXT Target Enrichment System Kit for Illumina Multiplexed

Sequencing (Agilent Technologies). Genomic DNA sequencing library was prepared with

100ng sheared genomic DNA using TruSeq ChIP Library Prep Kit according to the

manufacturer’s guidance (Illumina). The libraries were sequenced in 1x 100nt manner on

HiSeq 2000 platform with a depth of∼30 million reads per library (Illumina). Sequencing

reads were aligned to the human reference genome (hg19) using Bowtie (version 2.1.0)

with default parameters, and only uniquely mapped reads were kept for downstream
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analysis. With a sliding window of size 100Kb and a step size of 50-Kb, mapped reads

in each window were then counted and used for copy number estimation. With the

assumption that most genomic regions for the cells were diploid, we took Ci given by

the following formula as the copy number estimates for genomic location at the ith

window:

Ci = 2 · Ri
median(j ∈ I)Rj

(4.9)

where Ri is the read counts of the ith window. To avoid underestimating copy numbers

for regions with multi-aligned reads, we adjusted for mapability based on mfapping of

simulated reads with uniform coverage across the genome. The original read counts were

divided by the read counts in the same window obtained from the simulation data, and

the adjusted read counts were instead used for copy number estimation.

4.19 AHA pulse chase of SILAC labeled RPE-1 and RPE-

1 trisomic cells

RPE-1 and RPE-1 trisomic cells were grown, methionine starved, AHA pulsed, chased

and lyzed as described for the mouse fibroblast. Experiments were started when cells

reach ∼30% confluency and two 15cm plates were used per time point. Click chemistry,

denaturation, alkylation, washing and digestion were performed as described for the

mouse cells. Peptides were stageTipped on 4mm/1ml C18 columns (3M). Peptides were

eluted using 500µl buffer B and speed vacced until a few µl liquid was left. For two of the

samples Buffer A was added to 10µl final volume. 5µl of sample was loaded onto a 15cm

column and 5µl onto a 2m monolithic column using a HPLC system. The 15cm column

and 2m monolithic column samples were analyzed on a Q-Eactive orbitrap system, as

described above, deploying 4 and 6h gradient of increasing Buffer B, respectively. For

one sample the peptides were further SCX fractionated into 2 fraction 125mM and

500mM ammonium acetate as described above. These samples were analyzed using 4h

gradients of increasing Buffer B concentration over a 15cm column. The resulting raw

files were analyzed using MaxQuant with the previously described parameter settings

with the exception that Andromeda search engine was matching the MS/MS to the

human Uniprot database (2014-10). 3 biological replicates were performed per cell line.

Normalization, fitting of models, ∆-score and abundance after pulse calculations were

performed as for the mouse fibroblasts. For all downstream analysis proteins derived

from genes located on autosomes were used except when from chromosome 10 (fully

trisomic in both parental and trisomic cell line) and chromosome 12 (clonal expansion

of trisomic cells among control cells).
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4.20 Relative protein levels at steady state in RPE-1 and

RPE-1 trisomic cells

Fully Heavy SILAC labeled RPE-1 and Light labeled RPE-1 trisomic cells were grown

to 70% confluency in 10cm plates. Cells were scraped in ice cold PBS before being spun

down at 1000rcf and PBS decanted. Cell pellets were lyzed in 1.3% SDS, 0.1M DTT

in 50mM ammonium bicarbonate solution. Samples were heated to 95°C for 10min.

After cooling the samples, Benzonase was added for another 10min. The samples from

the two cell lines were then mixed 1:1 and spun down at 20,000 rcf to clear cell debris.

Proteins in supernatant were alkylated by the addition of 0.25M iodoacetamide, final

concentration, and left in the dark at room temperature for 20min. After alkylation

samples were directly precipitated, to get rid of SDS, by sequentially adding, methanol,

chloroform and finally water before spinning down the samples at 10,000 rcf as previously

described [243, 244]. The upper water phase was discarded and more methanol was

added to the precipitated proteins and the samples were spun down again. Supernatant

was discarded and pellet air dried. The pellet was solubilized by shaking the sample in

6M Urea/2M thiourea in 10mM Hepes (ph8). Proteins were digested “on pellet” by Lys-

C for 3h at room temperature before the sample was diluted in ABC buffer and Trypsin

was added overnight. Peptides were acidified by triflouroacetic acid before being stored

on stageTips. Peptides were prepared for HPLC as described above and analyzed using

a 6h gradient on a 15cm column packed with C18 material as described above. The

Q-exactive was run with standard setting and the raw files were analyzed as described

for the AHA p-c experiments. MaxQuant output was filtered as described above but

this time normalized SILAC ratios were used for downstream analysis. A label swap

experiment was also performed in where RPE-1 cells were grown in light SILAC medium

and RPE-1 trisomic cells were grown in heavy SILAC medium.

4.21 Bioinformatics of RPE-1 cells

Delta Scores and abundances after pulse were calculated for the datasets of the RPE-1

and the RPE-1 trisomic cell line as described in the previous sections. For the conser-

vation analysis proteins identified in RPE-1 were mapped to proteins from the mouse

data using always the first entry in the gene name column from both protein-groups

tables (proteinGroups.txt, as provided by MaxQuant). Mapped proteins from mouse

that fell into the categories ED, UN and NED were compared to the fraction of mapped

proteins identified in RPE-1: RPE-1 proteins that mapped to the mouse dataset (all,

mapped to mouse orthologues), RPE-1 proteins that mapped to the ED subset of mouse
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(ED in mouse), and RPE-1 proteins that mapped to the NED subset (NED in mouse).

Enrichment of RPE-1 ED or NED definitions in the fraction ED or NED in mouse

against the corresponding fraction of all mapped proteins was tested applying a hyper-

geometric test (phyper function as implemented in R setting lower.tail to False). Delta

Scores of mapped RPE-1 and Mouse Genes were compared and Pearson correlation of

all available data points was calculated (using cor.test function as implemented in R).

The corresponding p-value indicating the significance of the observed correlation coeffi-

cient is given in figure legend (Figure 4.5). Complex structures were modeled using the

PyMOL Molecular Graphics System, Version 1.7.6.0. Schrödinger, LLC. ED, NED and

UN definitions from RPE-1 and mouse were mapped to subunits of each complex using

gene names. Protein categories ED, UN and NED were colored red, grey and turquoise

respectively for mouse (Figure 4.5C and E) and RPE-1 definitions (Figure 4.5D and F).

RPE-1 and RPE-1 trisomic datasets were merged using the leading protein ID in each

protein-group. Proteins were linked to chromosome positions using the human reference

genome (hg19). Proteins were first mapped to chromosome positions based on Uniprot

IDs. Remaining unmapped proteins were mapped using gene name entries as provided

in the uniprot fasta file. Proteins were further grouped into the categories disomic,

trisomic or ambiguous. Disomic proteins included all proteins that mapped to disomic

chromosomes as identified by genome sequencing (see previous section). Trisomic regions

included proteins mapping to chromosome 5 and chromosome 11 downstream from po-

sition 62 650 000. Chromosome 12 and 10 starting from nucleotide position 62 500 000

were considered to be ambiguous since they show partial aneuploidy already in the RPE-

1 cell line. Only autosomes were considered for the subsequent analysis. Distributions

of the Delta-Score and Steady-State protein levels were compared between proteins from

disomic and trisomic regions and tested for equality applying a two-sided Kolmogorov-

Smirnov-test (ks.test as implemented in R). Steady State protein levels were further split

into two subsets: proteins in a complex (listed in the manually curated protein complex

database from [199] and proteins not in a complex (not listed in the protein complex

database).
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Figure 4.14: A) NED proteins have two degradation rates (see Supplemental Table
1). The initial one (kA) is in our model related to the free subunit or subunits in
partially assembled protein complexes. The second degradation rate (kB) is associated
to the subunits in the holoenzyme. In addition, the ED proteins we hypothesize are
quickly incorporated into complexes and thereby only have one degradation rate which
is equivalent to the degradation rate of the complex. To see if this is the case we plotted
bar plots of the degradation rate A and B and the ED degradation rate (B-H). In all
cases probed degradation rate B is more similar to the ED degradation rates of protein
in the same complex (lower). Displayed are the degradation rates of all NED and ED

proteins belonging to each complex.
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Figure 4.15: Gene copy number estimates based on sequencing of genomic DNA
from RPE-1 parental and RPE-1 trisomic cells. Copy number estimates are based on
mappability corrected read counts (see Materials and Methods) and ordered over the
chromosomes. A) RPE-1 parental cell-line is trisomic for chromosome 10 and displays
clonal expansion of a population of cells also trisomic for chromosome 12. B) The
trisomic RPE-1 cells are fully trisomic for chromosome 5, 10 and 12 and a region of
chromosome 11. For the downstream analysis only chromosome 5 and part of 11 where

used while chromosomes 10 and 12 where ignored.

Figure 4.16: Chromosome paintings labeling chromosome 11 (magenta) and 5 (green).
A) RPE-1 parental cell line is disomic for chromosome 5 and 11. B) RPE-1 trisomic
cells are trisomic for chromosome 5 and part of 11. The trisomic part of chromosome

11 has fused to an unidentified chromosome.





Supplementary 5

Degradation Parameters from

Pulse-Chase Experiments

5.1 Integrals

For the two-stage model introduced in section Results there are a few minor integrals,

that may become interesting in certain applications. Using FT from Eq. (13) and the

ρi(t) from Eqs. (14) we obtain

FT (t) = 1− (κ10 − κ20)e−(κ10+κ12 )t + κ12e
−κ20 t

κ10 + κ12 − κ20

, (5.1)

from which the probability density is given by

fT (t) =
(κ10 − κ20)(κ10 + κ12)e−(κ10+κ12 )t + κ12κ20e

−κ20 t

κ10 + κ12 − κ20

, (5.2)

and the age-dependent degradation rate is also given by

δ(a) =
(κ10 − κ20)(κ10 + κ12)e−(κ10+κ12 )a + κ12κ20e

−κ20a

(κ10 − κ20)e−(κ10+κ12 )a + κ12e
−κ20a

. (5.3)

Notice that δ(a) becomes a constant in the limit of an exponential decay, obtained either

when κ12 → 0 or when κ10 = κ20 . Central to the derivation of C(∆t) and P (∆t) is the

following integral∫ tp+∆t

∆t
(1− FT (t)) dt =

Ace
−(κ10+κ12 )∆t +Bce

−κ20∆t

κ10 + κ12 − κ20

, (5.4)
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where Ac and Bc, given in Eqs. (15), contain the dependence on the pulse duration tp.

This integral, allows us to finally derive the average lifetime of the degrading molecules

T =
κ12 + κ20

κ20(κ10 + κ12)
. (5.5)
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5.2 Experimental data from Ref. [7]

PPPPPPPPPPPPPP

Measurement
time

Pulse
duration

1 min 5 min 30 min 120 min 1200 min

0 min 100 100 100 100 100

20 min 84.9067 87.7513 93.0551 95.8508 98.525

40 min 74.9383 82.043 90.6058 94.4322 98.1468

60 min 67.8501 79.6414 89.7735 93.4221 97.5927

80 min 65.8373 76.7611 89.0894 92.8671 97.0384

120 min 64.5597 75.0701 87.871 91.9931 96.8331

240 min 60.44 71.1759 83.5673 89.0805 94.6325

Table 5.1: Data from Ref. [7] Each column shows the time course measurements
after pulse time of 1, 5, 30, 120, 1200 minutes. Measurements are taken at t = 0, 20,

40, 60, 80, 120 minutes.
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Appendix A

Model Discrimination

In general, models with more parameters will result in a better fit to data, due to the

more degrees of freedom available. The important question here is whether or not a

more parameterized model (i.e. a more complex model) provides a significantly better

fit to the data and whether or not the available data justifies the inclusion of extra

parameters.

A.1 Akaike Information Criterion (AIC) [6]

The Akaike Information Criterion indicates the quality of the model for a given set

of data. Based on information theory, the AIC aims to find the model with minimal

Kullback-Leibler distance between the proposed model and the “true” model (as assessed

from the data). Models with more parameters have more degrees of freedom during the

parameter estimation process, and can often deliver a more accurate fit to the data.

However, there is the danger of over-fitting – that is the model could be approximating

not only the system’s dynamics, but also quantities not related to the degradation,

such as measurement noise. To decide which model we should adapt for each protein,

we calculate the AIC for each model. The model resulting in the lowest AIC is the

preferred model. We use the AIC with correction for small sample sizes1 to evaluate

each of the two models fitted to each protein degradation pattern:

AIC = 2k + n ln
RSS

n
+

2k(k + 1)

n− k − 1
(A.1)

where n is the number of data points, k is the number of parameters, and RSS is the

residual sum of squares. The AIC penalizes models with more parameters, worse fits,

1There a few ways to calculate the AIC, see [6] for more information.
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and less data. That is, the AIC quantifies the tradeoff between fit accuracy and model

complexity.

Furthermore, we can calculate the probability that a particular model is the preferred

one (relative to the other models we consider) by:

ΠAICi =
exp(AICmin−AICi

2 )∑
j exp(

AICmin−AICj

2 )
(A.2)

A.2 F-test for nested models [8]

In cases where there are two models under consideration and one of the models is nested

within the other, the F-test is another method that can be used to evaluate model

suitability. Like the AIC, this method balances the trade off between goodness of fit,

the amount of data available and the complexity of the model. We start by calculating

the F-statistic:

F =

RSS1−RSS2
p2−p1
RSS2
n−p2

(A.3)

where the subscript 1 refers to the more simple nested model, and subscript 2 refers to

the more complex model. This tests the null hypothesis that the difference between the

simpler and the more complex model is just noise. In particular, the null hypothesis

states that

p is the number of parameters

n is the number of data points

RSS is the residual sum of squares

Then we calculate the probability that a single observation from an F distribution with

degrees of freedom p2 − p1, n − p2 will fall between [0, F ]. To compute this, quantity

we have used standard routines in MATLAB.



Appendix B

Sensitivity Analysis

Parameter sensitivity refers to the sensitivity of particular model variables to variations

in the parameters [8]. The goal is to quantify how sensitive particular model variables are

to variations in parameters. In other words, what happens to the output xi if we change

ever-so-slightly, the parameter θj? An output is “more sensitive” to a parameter if

perturbations to the parameter have larger effects on the output and it is “less sensitive”

if perturbations of the parameter results in an indiscernible change in the output [252,

253].

For a system with state variable xi, and parameter θj , we can write:

sij(t) =
∂xi(t)

∂θj
(B.1)

If a model is more sensitive to a certain parameter, that parameter is said to be more

identifiable [8, 254].
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Appendix C

FPexp: A class for analysis of

data from ribosome footprinting

experiments

FPexp is a structure implemented in MATLAB designed for easy analysis and manipula-

tion for data from ribosomal footprinting experiments. It contains methods for calcula-

tions pertinent to gene expression analysis. Using these calculations, FPexp can return

subsets of genes with user defined specifications and generate graphical representations

of the data (or subsets of the data).

C.1 Data input

FPexp can handle mapped read data without restriction to organism (number or types

of genes). Data about the organism, names of the genes and lengths of the genes is

stored in a separate structure, geneLib. In addition to specifying the geneLib, each data

set should contain the following:

• for each gene, the number of mapped mRNA reads

• for each gene, the number of mapped footprint reads

• the total number of mapped mRNA reads

• the total number of mapped FP reads

• the length of the transcriptome, T (See Section 2.2.6)

205



Appendix D. Code documentation: FPexp 206

A FPexp object is created by using the built-in constructor:

FPexp(geneLib, transcriptome, mRNARRD, fpRRD,mRNAtMRC, fptMRC)

A new object should be created for each footprinting experiment (i.e. for LB 2012 1,

LB 2012 2, Heat47, one should create 3 objects)

C.2 Calculations

C.2.1 Number of mRNA copies

This describes the transcriptional program of the cell. It reflects the process of tran-

scription as well as degradation.

# of mRNA copies per cell =
normalized mRNA reads

gene length
T (C.1)

C.2.2 Ribosome density

This describes the translational program of the cell. It reflects the process of translation

initiation and elongation. However, it does not reflect on the effects of termination and

protein degradation.

Ribosome DensitymRNA =
normalized ribosome reads

# mRNA copies
(C.2)

Ribosome Densitygene =
normalized ribosome reads

normalized mRNA reads
(C.3)

C.2.3 Transcriptional intensity

This is a proxy for copy number when T (the transcriptome number) is not available.

Transcriptional intensity =
normalized mRNA reads

gene length
(C.4)
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C.2.4 Translational burden

This describes potentially how much “work” a particular gene has on the translational

machinery – that is, a gene that has many copies or is very long can keep many ribosomes

busy.

Transcriptional intensity = normalized mRNA reads · gene length (C.5)

C.3 Manipulations and Subset selectors

C.3.1 Upgrade/Ignore genes that have a low number of reads

As with all experiments, there is a considerable amount of error in the data. This is

especially a problem for low-valued data because when we take the error into account,

these low-valued data could in reality be 0 or several fold larger. This is especially a

problem when we are calculating the fold change of mRNA or FP reads between two

experiments. Thus, to avoid false positives, we define a threshold (60 reads) and use

this threshold to adjust our calculations in the following way:

• If the # of reads from both data sets are <60, ignore.

• If the # of read for one data set is <60 (and the other is >60), upgrade the <60

to 60.

This way, we reduce the number of false positives.

The inputs to this method are two FPexp objects and the desired threshold. It returns

two new FPexp objects with the appropriate reads upgraded and the indices of the genes

that should be ignored.

[Temp1, Temp2, ignore] = applyThreshold(FPexp1, FPexp2, threshold) % for mRNA reads

[Temp1, Temp2, ignore] = applyThresholdFP(FPexp1, FPexp2, threshold) % for FP reads

C.3.2 Finding the largest fold changes between two data sets, for

mRNA and footprints

For differential gene expression analysis, we would like to identify the genes which have

dramatic changes between different conditions. We provide two methods to isolate these

genes:
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Return the X genes which have largest fold changes

Here we simply calculate the fold changes between the two conditions, and return the

X genes that result in the largest fold change.

[index, names, values] = largestFoldChanges(FPexp1, FPexp2, threshold, numGenesDesired)

[index, names, values] = largestFoldChangesFP(FPexp1, FPexp2, numGenesDesired)

A limitation of this method is that it does not account for the biological variation that

may occur (i.e. this method might return more genes than those with statistically

relevant fold changes.

Use the biological replicates as a null model generator

Assuming that the fold changes between the two biological replicates (in our example,

LB 2012 1 and LB 2012 2) is representative of the random changes and measurement

errors inherent in the experiments, we use the distribution of fold changes between the

two sets to generate the upper limit of statistically relevant fold change.

[index, names, values] = fcAboveNull(std1, std2, exp1, exp2, threshold, percentile)

[index, names, values] = fcAboveNullFP(std1, std2, exp1, exp2, threshold, percentile)

C.3.3 Sorting by ribosome density

We also have a method for sorting genes into 4 or 10 pools based on their ribosome

density. These functions return the indices of the genes in each quartile (or tentile).

[q1index q2index q3index q4index] = riboDenseQuart(FPexp)

[t1i t2i t3i t4i t5i t6i t7i t8i t9i t10i] = riboDenseTenth(FPexp)

Similar functions exist for sorting by any of the earlier defined calculations (copy number,

gene length, translational burden, etc.)

C.3.4 Returning a random subset of genes

Used for generating bootstrapped data sets.

index = randIndex(FPexp, numberDesired)
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EMinhib: A class for analysis of

data from MaxQuant files

EMinhib is a structure implemented in MATLAB designed for analysis and manipulation

for protein degradation data from MaxQuant. It contains methods for data manipula-

tion, filtering and normalization.

D.1 Data input

An EMinhib object should be created for each experiment (or replica). Each data set

should contain the following properties:

properties

ogData % source description

dataDesc % + data processing, etc

protein % protein identifier

fullUniP

geneName

inhibRatio

inhibCount

cntlRatio

cntlCount

dataTime

isIDbySite % 1 if protein is only ID by site

isReverse % 1 if protein is reverse

isContaminant % 1 if protein is contaminant
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A EMinhib object can be created by declaring an empty object and defining the prop-

erties:

myObject = EMinhib();

myObject.ogData = ...

A new object should be created for each experiment or replica.

D.2 Data access

Two lookup functions:

whatsIndex(EMinhib, proteinID)

Both functions take inputs of a EMinhib object and a UniPro name. The first returns

the index number of the protein in the object and the second returns the measurement

ratios.

D.3 Data filtering

The following functions are for removing data that is unusable.

Filtering for IDbySite / reverse / contaminants:

newEMinhib = removeFakes(EMinhib)

Filtering for data by number quantification counts (low counts means less reliable data):

newEMinhib = filterBelowMinCts(EMinhib, minCounts, flag)

newEMinhib = aboveMinCts(EMinhib, minCounts, flag)

Filtering for data below a certain threshold:

newEMinhib = applyThreshold(EMinhib, lowLimitRatio)

newEMinhib = applyThresholdForward(EMinhib, lowLimitRatio)
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Both functions replace data below threshold with NaN. The second function replaces

the data that is below threshold plus every future measurement.

Filtering for proteins that have data at each time point measured:

newEMinhib = completeDataOnly(EMinhib, minDataPts, flag)

D.4 Data standardization

Standardization of naming:

newEMinhib = firstProID(EMinhib)

alphaObj = sortAlpha(oldObj)

The first function reduces long UniPro groups to the first name. The second function

sorts the proteins in the object alphabetically.

Return a new object that only contains proteins that are defined by the user. The input

list is defined by the index number of the protein. This can be generated by function

whatsIndex().

uiProOnly(EMinhib, where, description)

In an array of EMinhib objects, return a new array only containing proteins that are

found in all objects.

newArray = olArray(arrayObjs)

D.5 Functions for data normalization

To find the most stable proteins across all three replicas, we need a measure that tells

us which proteins have consistently high signals. To do this, we assign a ”score” to each

protein, defined as

scorei =
∑

t∈{1,2,4,8,16,32}

PercentileRanki(t) , (D.1)

where i = 1, 2, · · · is the index of the protein and PercentileRanki(t) maps the rank of

each protein’s signal strength (from smallest to largest, at time t) to the interval (0,1].
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For example, a percentile rank of 0.75 means that the signal for protein i is greater or

equal to 75% of the other proteins’ signals at time t. The max score is 6 because there

are six time points in the experiment and the maximum percentile rank for any protein

at a certain time point is 1. Each protein has 3 scores, one from each replica.

In EMinhib, this is implemented through the following functions:

calcPCTL(EMinhib, flag)

topAVscorers(EMinhib, numProDesired, flag)

The first calculates the percentile rank for each protein within one replica. The second

takes all the replica into account and calculates the score.

From the three scores, we calculate the deviation of the score from the maximum score:

devi = (6− scorei,rep1)2 + (6− scorei,rep2)2 + (6− scorei,rep3)2 . (D.2)

Candidates for normalization are those proteins with the lowest deviations. Notice that

this measure penalizes proteins that score well in only one or two replicas and badly in

the remaining replica(s).

In EMinhib, this is implemented through the following function:

[proteinIDs, deviations] = lowestScoreDev(arrayObjs, numDesired)

While our normalization scheme is independent of prior information and other experi-

ments, it is based on several key assumptions:

1. All groups of cells (heavy/medium/light) produce and degrade proteins equally.

2. Proteins degrade at different rates (which can be differentiated in the time scale

of our experiment)

3. Proteins degrading the slowest have the highest ratios (and thus will have the

lowest deviations)

4. Slowest proteins don’t degrade at all (at least in the time scale of our experiment)

The fourth assumption can be eliminated if we have outside knowledge about the degra-

dation pattern of that specific protein through an additional experiment, such as ra-

dioactive labeling.

The final normalization step is implemented through two functions
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calcMultFactors(EMinhib, proteinIDs, flag)

userIPnorm(EMinhib, multipliers, flag)

The first calculates the normalization factors from a list of proteins that are deemed to

be the normalization candidates (proteinIDs). The output of the first function goes into

the second function, which normalizes the data in the object.
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