
 

University of Potsdam 

Institute of Earth and Environmental Science 

 

 

Turning a problem into a solution: 

heterogeneities in soil hydrology 
 

 

Cumulative dissertation  

for the degree of “doctor rerum naturalium“ (Dr. rer. nat.)  

in Geoecology/Hydrology 

 

 

submitted to the  

Faculty of Mathematics and Natural Sciences  

at the University of Potsdam, Germany 

 

by 

Tobias Ludwig Hohenbrink 

 

 

Potsdam, March 17th, 2016 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published online at the 
Institutional Repository of the University of Potsdam: 
URN urn:nbn:de:kobv:517-opus4-101485 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101485 



 

i 

 

 

Turning a problem into a solution: heterogeneities in soil hydrology 

 

Dissertation submitted to the Faculty of Mathematics and Natural Sciences at the University of 

Potsdam, Germany, for the degree of Doctor of Natural Sciences (Dr. rer. nat.) in 

Geoecology/Hydrology 

 

 

 

 

 

 

 

 

 

 Potsdam, March 17th, 2016 
 

Author: Tobias Ludwig Hohenbrink 
University of Potsdam, Institute of Earth and Environmental Science, Germany 
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape 
Hydrology, Eberswalder Str. 84, 10567 Müncheberg, Germany 
Email: hohenbrink@zalf.de 
 

Supervisor: 
1. Referee 

Prof. Dr. Gunnar Lischeid 
University of Potsdam, Institute of Earth and Environmental Science, Germany 
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape 
Hydrology, Eberswalder Str. 84, 10567 Müncheberg, Germany 
 

2. Referee: Prof. Dr. Hannes Flühler 
Swiss Federal Institute of Technology in Zurich (ETH Zürich) 
Institute of Terrestrial Ecosystems, Switzerland 
 

3. Referee Prof. Dr. Sascha Oswald 
University of Potsdam, Institute of Earth and Environmental Science, Germany 
 



ii 

  



 

iii 

Acknowledgements 
First of all, I would like to thank my supervisor Gunnar Lischeid who encouraged me to use 

unconventional approaches to answer soil hydrological questions. He opened my mind for an 

extended perspective on the meaning of data, processes and modelling. 

Thanks to my colleagues at the Institute of Landscape Hydrology at ZALF for the pleasant work-

ing atmosphere and for supporting me scientifically and organizationally. I thank Uwe 

Schindler for acquiring funding for my position and for inspiring conversations. Especially, I 

thank my colleagues Björn Thomas, Christian Lehr, Gabriela Onandia, Florian Reverey, Helene 

Rieckh, Marcus Fahle, Miaomiao Ma, Philipp Rauneker and Steven Böttcher for helpful discus-

sions and proofreading my manuscripts. I am still amazed about the team spirit and openness. 

It was a great fun to spend time with you.  

I greatly thank my family and my friends for mental support and taking my mind off things. My 

parents always encouraged me to follow my own way. Finally, I thank my partner Anne and 

our son Anton for being there for me. 

  



iv 

  



 

v 

Summary 

It is commonly recognized that soil moisture exhibits spatial heterogeneities occurring in a 

wide range of scales. These heterogeneities are caused by different factors ranging from soil 

structure at the plot scale to land use at the landscape scale. There is an urgent need for effi-

cient approaches to deal with soil moisture heterogeneity at large scales, where management 

decisions are usually made. The aim of this dissertation was to test innovative approaches for 

making efficient use of standard soil hydrological data in order to assess seepage rates and 

main controls on observed hydrological behavior, including the role of soil heterogeneities. 

As a first step, the applicability of a simplified Buckingham-Darcy method to estimate deep 

seepage fluxes from point information of soil moisture dynamics was assessed. This was done 

in a numerical experiment considering a broad range of soil textures and textural heterogenei-

ties. The method performed well for most soil texture classes. However, in pure sand where 

seepage fluxes were dominated by heterogeneous flow fields it turned out to be not applica-

ble, because it simply neglects the effect of water flow heterogeneity. In this study a need for 

new efficient approaches to handle heterogeneities in one-dimensional water flux models was 

identified. 

As a further step, an approach to turn the problem of soil moisture heterogeneity into a solu-

tion was presented: Principal component analysis was applied to make use of the variability 

among soil moisture time series for analyzing apparently complex soil hydrological systems. It 

can be used for identifying the main controls on the hydrological behavior, quantifying their 

relevance, and describing their particular effects by functional averaged time series. The ap-

proach was firstly tested with soil moisture time series simulated for different texture classes 

in homogeneous and heterogeneous model domains. Afterwards, it was applied to 57 mois-

ture time series measured in a multifactorial long term field experiment in Northeast Germa-

ny. 

The dimensionality of both data sets was rather low, because more than 85 % of the total 

moisture variance could already be explained by the hydrological input signal and by signal 

transformation with soil depth. The perspective of signal transformation, i.e. analyzing how 

hydrological input signals (e.g., rainfall, snow melt) propagate through the vadose zone, turned 
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out to be a valuable supplement to the common mass flux considerations. Neither different 

textures nor spatial heterogeneities affected the general kind of signal transformation showing 

that complex spatial structures do not necessarily evoke a complex hydrological behavior. In 

case of the field measured data another 3.6% of the total variance was unambiguously ex-

plained by different cropping systems. Additionally, it was shown that different soil tillage 

practices did not affect the soil moisture dynamics at all. 

The presented approach does not require a priori assumptions about the nature of physical 

processes, and it is not restricted to specific scales. Thus, it opens various possibilities to incor-

porate the key information from monitoring data sets into the modeling exercise and thereby 

reduce model uncertainties. 
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Zusammenfassung 

Es ist allgemein anerkannt, dass Bodenfeuchte auf verschiedenen Raumskalen räumliche Hete-

rogenitäten aufweist. Diese Heterogenitäten werden durch verschiedene Faktoren verursacht, 

die auf den unterschiedlichen Skalen wirken. Dies können z.B. die Bodenstruktur auf Plotskala 

oder die Landnutzung auf Landschaftsskala sein. Es werden dringend effiziente Ansätze benö-

tigt, um mit den Heterogenitäten der Bodenfeuchte umzugehen. Dies gilt besonders für große 

Skalen, auf denen in der Regel weitreichende Managemententscheidungen getroffen werden. 

Das Ziel dieser Dissertation war es, effiziente Methoden zu testen, die es ermöglichen auf Basis 

bodenhydrologischer Daten sowohl Sickerwasserraten als auch die Haupteinflussfaktoren der 

Bodenfeuchtedynamik zu bestimmen. Dies bezieht Effekte von Bodenheterogenitäten mit ein. 

In einem ersten Schritt wurde die Eignung einer vereinfachten Buckingham-Darcy Methode zur 

Abschätzung von Sickerwasserflüssen auf Grundlage punktuell gemessener Zeitreihen der Bo-

denfeuchte untersucht. Hierzu wurde eine Simulationsstudie durchgeführt, in der ein breites 

Spektrum an Bodentexturen und Texturheterogenitäten berücksichtigt wurde. Die Methode 

lieferte gute Ergebnisse für die meisten Texturklassen. In reinem Sand jedoch stellte sie sich als 

nicht anwendbar heraus, da hier Sickerwasserflüsse von heterogenen Fließfeldern dominiert 

wurden. In dieser Studie wurde ein Bedarf an neuen effizienten Ansätzen für den Umgang mit 

Heterogenitäten in eindimensionalen Wasserflussmodellen identifiziert. 

In einem weiteren Schritt wurde ein Ansatz vorgestellt, um aus dem Problem der Bodenfeuch-

teheterogenität eine Lösung zu machen: In einer Hauptkomponentenanalyse wurde die Varia-

bilität zwischen Bodenfeuchtezeitreihen genutzt, um die wahre Komplexität bodenhydrologi-

scher Systeme zu analysieren. Auf diesem Weg ist es möglich die Haupteinflussfaktoren des 

hydrologischen Verhaltens zu identifizieren, ihre Relevanz zu quantifizieren und ihre jeweiligen 

Effekte als funktional gemittelte Zeitreihen zu beschreiben. Der Ansatz wurde zunächst mit 

simulierten Bodenfeuchtezeitreihen für unterschiedliche Texturklassen im homogenen und 

heterogenen Fall getestet. Anschließend wurde die Methode auf 57 Bodenfeuchtezeitreihen 

angewendet, die in einem Langzeitfeldexperiment in Nordostdeutschland gemessen wurden. 

Die Dimensionalität beider Datensätze war gering, da mehr als 85 % der gesamten Boden-

feuchtevarianz bereits durch das hydrologische Eingangssignal und die Transformation dieses 
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Signals mit zunehmender Bodentiefe erklärt werden konnten. Analysen der Signaltransforma-

tion haben sich als wertvolle Ergänzung zu den weit verbreiteten Massenflussbetrachtungen 

herausgestellt. Hierbei wird untersucht, wie sich hydrologische Eingangssignale (z.B. Nieder-

schlag oder Schneeschmelze) in der vadosen Zone fortpflanzen. Die generellen Muster der 

Signaltransformation wurden weder durch verschiedene Bodentexturen noch durch räumliche 

Heterogeneitäten beeinfluss. Dies zeigt, dass komplexe räumliche Strukturen nicht zwangsläu-

fig ein komplexes hydrologisches Verhalten hervorrufen. Im Fall der Felddaten wurden weitere 

3,6 % der Gesamtvarianz durch verschiedene Fruchtfolgen erklärt. Darüber hinaus konnte ge-

zeigt werden, dass die Bodenbearbeitung keinen Einfluss auf die Bodenfeuchtedynamik hatte. 

Der vorgestellte Ansatz erfordert keine Vorannahmen über physikalische Prozesse und ist nicht 

auf eine bestimmte Skala begrenzt. Dadurch ergeben sich viele Möglichkeiten, wichtige Infor-

mationen aus Monitoringdatensätzen in die Modellbildung einzubeziehen und damit Modell-

unsicherheiten zu verringern. 
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1. Introduction

1.1. Motivation and central objective 

Soil moisture is a key variable for ecosystem functioning in the earth’s critical zone, i.e. the 

near-surface environment where rock, soil, water, air, and life interact (Brooks et al., 2015). 

Soil moisture dynamics, for example, regulate nutrition (Rodriguez-Iturbe and Porporato, 

2004) and transpiration of plants (Wu et al., 2011). Moreover, they affect habitat conditions 

for soil biota (Lavelle, 2013) and control any kind of redox processes in the soil (Dutta et al., 

2015). Based on this, soil moisture dynamics play an important role for the provision of nu-

merous ecosystem services (Adhikari and Hartemink, 2016; Calzolari et al., 2016). Agricultural 

food production strongly depends on plant available soil water. This is reflected by the fact 

that enormous efforts are spent on irrigation in many parts of the world (Siebert et al., 2015; 

Thenkabail et al., 2009). The agricultural sector accounts for 69% of the global water with-

drawal amount of 3,763 km3 y-1 (FAO, 2014). The quantity and quality of groundwater available 

for freshwater production is also affected by soil moisture because processes like groundwater 

recharge (de Vries and Simmers, 2002) and filtering of seepage water (Keesstra et al., 2012) 

depend on soil moisture states. Soil moisture is also a key variable for the climatic system 

(Seneviratne et al., 2010). It controls, for example, processes of energy exchange between land 

and atmosphere, such as latent heat fluxes (Jung et al., 2010). Furthermore, the emission of 

greenhouse gases like carbon dioxide (Mi et al., 2015) and nitrous oxide (Ciarlo et al., 2007; 

Rubol et al., 2012) from soils is strongly associated with soil moisture states (Jaeger and 

Seneviratne, 2011; le Roux et al., 2013). 

The importance of soil moisture for most environmental processes makes it an interface varia-

ble linking disciplines such as pedology, hydrology, ecology and meteorology (Legates et al., 

2011). However, soil moisture exhibits great spatial heterogeneities at various scales 

(Vereecken et al., 2014). Thus, it is often difficult to break down the large amount of moisture 
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information resulting from intensive monitoring campaigns to a concise and manageable de-

scription of the most relevant soil moisture dynamics. 

At small scales soil heterogeneities can explicitly be considered to model soil moisture dynam-

ics (e.g. Abdou and Flury, 2004; Schlüter et al., 2012; Vogel et al., 2006), but it is still a great 

challenge to consider the effects of heterogeneities at the field scale or at larger scales. There 

is an urgent need for efficient approaches to deal with soil moisture variability at large scales, 

where management decisions are usually made. 

Common approaches to investigate the effects of heterogeneities on soil moisture dynamics 

follow the concept of using explicit descriptions of spatial heterogeneities to simulate time 

series of soil hydrological variables, e.g. soil moisture or matric head. However, the inverse 

approach, i.e. identifying and quantifying the determining factors by analyzing observed soil 

hydrological time series, has not been considered so far. This approach is promising, since it is 

applicable at the scale of interest of water resources management (Lischeid et al., 2010), and it 

is even applicable if the controls on observed moisture dynamics occur in a continuum of sev-

eral scales. For that reasons the central aim of this dissertation was: to introduce and test in-

verse data-based approaches to make more efficient use of field soil hydrological time series at 

the scale of management. 

1.2. Scientific background 

1.2.1. Spatial heterogeneities of soil moisture 

It is commonly recognized that soil moisture exhibits spatial heterogeneities occurring in a 

wide range of scales (Vereecken et al., 2014). A large variety of controls on the spatial soil 

moisture distribution exist at different scales. Typical examples from the plot scale are soil 

structure due to, e.g. drying, freezing or burrowing of soil organisms (Bastardie et al., 2005; 

Bronick and Lal, 2005) and the distribution of plant roots (Moradi et al., 2011). At the field 

scale soil types with different horizon sequences can be observed (Rieckh et al., 2012). At the 

landscape scale the topography or rainfall variability can affect the soil moisture distribution 

(Qiu et al., 2014). However, single factors cannot always be assigned to one specific scale. For 

example, spatial heterogeneities of soil texture have been observed at several scales (e.g. 

Delbari et al., 2011; Heil and Schmidhalter, 2012; Liu et al., 2012). It is rather the case that the 
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factors controlling the spatial soil moisture distribution occur in a continuum of scales. Thus, 

soil moisture distributions observed at any scale can substantially be affected by factors having 

their origin at smaller scales. For example, the hydraulic conductivity of soils is determined by 

the subscale structure (Samouelian et al., 2007; Vogel and Roth, 2003). 

The effects of single controls on soil moisture dynamics can be investigated by soil physical 

approaches at small scales.  At the plot scale, for instance, it is possible to explicitly consider 

detailed descriptions of soil heterogeneities or plant root distributions as an input for two- or 

three-dimensional process based water flux models (e.g. Dunbabin et al., 2013; Schlüter et al., 

2012; Vogel et al., 2006). This approach requires a high spatial model discretization to meet 

the conditions under which the physically based model equations, e.g. the Richards Equation, 

can be applied (Vogel and Ippisch, 2008). Thus, it is not applicable at larger scales where de-

tailed information about soil heterogeneity are not accessible (Beven, 2001). 

At larger scales hydrological response units are usually derived from spatial information about 

land use, management, topography, and soil characteristics (Flügel, 1996). Single units are 

then treated as homogeneous in spatially distributed hydrological models, e.g. the SWAT 

model (e.g. Arnold et al., 2012). This way it is assumed that the spatial distribution of the hy-

drological response units determines the spatial soil moisture variability. This approach, there-

fore, ignores that small scale heterogeneities can substantially affect the hydraulic behavior at 

larger scales. A pragmatic approach to generalize the effects of small scale heterogeneities at 

larger scale is treating the physical flux equations (e.g. the Darcy law and the Richards Equa-

tion) as conceptual models at larger scale and estimating effective soil hydraulic parameters 

through model calibration. However many authors doubted the predictive performance of 

such models (e.g. Beven, 2001; Kirchner, 2006), not least because of the equifinality problem. 

Despite the spatial variability of absolute soil moisture values, it has been frequently observed 

that the relative spatial soil moisture patterns are often stable in time (Vachaud et al., 1985; 

Vanderlinden et al., 2012). This phenomenon is called temporal stability or rank stability of soil 

moisture patterns. Continuous efforts have been spent on characterizing, interpolating  and 

mapping spatial soil moisture patterns by a variety of geostatistical approaches such as vario-

grams (e.g. Baroni et al., 2013; Joshi and Mohanty, 2010), wavelet analyses (e.g. Biswas, 2014; 

Peng et al., 2013) or fractal analysis (Korres et al., 2015).  With regard to the large number of 

geostatistical articles published since the late 1970s, Baveye and Laba (2015) recently argued 

that “insensibly, this application of geostatistics appears to have become an end in itself, and 
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the reasons why one should be concerned about the spatial heterogeneity of soil properties 

are rarely, if ever made clear anymore”. According to that, heterogeneities only have to be 

taken into account, if they really affect the hydrological behavior in a manner that is relevant 

for one’s individual research question. Therefore, it is useful to identify the main controls on 

soil moisture dynamics in the first steps of data evaluation. 

1.2.2. Analyzing the hydrological behavior of soils 

The hydrological behavior of soils determines the way how changes of system state variables 

are processed within the vadose zone between the soil surface and the groundwater table. 

Central state variables of soil hydrological systems are for example soil water pressure head, 

soil temperature or soil moisture. The latter was exclusively considered in this dissertation. 

Thus, the hydrological behavior of soils is reflected by the characteristics of soil moisture time 

series observed at different locations in the vadose zone. Two opposite approaches exist to 

examine and model hydrological behavior: the reductionist bottom-up approach and the em-

pirical top-down approach (Sivapalan et al., 2003). 

 The basic idea of the bottom-up approach is to model single processes that can be de-

scribed by universal physical laws and are expected to be deterministic for the system 

behavior. By combining several of such physically based model components the sys-

tem behavior is modeled at the scale of interest. Usually the scale of interest is larger 

than the scale of the physical process descriptions. A soil hydrological example is the 

coupling of the Richards Equation and the advection dispersion equation at the con-

tinuum scale in order to simultaneously model water flow and solute leaching through 

a porous medium at the pedon scale (e.g. van Genuchten et al., 2014). Such physically 

based modelling approaches have been recently prevalent in the field of soil hydrology 

because they are expected to be suitable for making predictions for unobserved sys-

tem states. The scaleway approach to predict flow and transport in structured materi-

als (Vogel and Roth, 2003) illustrates very well the principles of the bottom-up idea be-

cause it provides a consistent transition from one scale to the next larger scale. In this 

study, effective parameters to solve the Richards Equation at the continuum scale 

have been predicted by explicitly considering the structure at the smaller pore scale. 

By this, an effective process model at the scale of observation was not needed. How-

ever, examples for such consequent applications of the bottom-up principles are very 
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rare. From the bottom-up perspective the consequences of soil moisture variability 

can be described by a causal chain: local variability of soil moisture cause spatial gradi-

ents in the soil water energy status, which are compensated by transient water fluxes 

(Jury and Horton, 2004). In the case of textural heterogeneities the spatial variation of 

soil hydraulic properties causes heterogeneous water flow fields (Roth, 1995; Schlüter 

et al., 2012). 

 The top down approach was introduced to the hydrological community by Klemes 

(1983). Thus, it is a relatively new phenomenon in this discipline, although it is based 

on long established principles of empirical research, i.e. systematic learning from ob-

served data. Sivapalan et al. (2003) emphasized that in the sense of the top-down idea 

learning from data does not mean deriving simple input-output relationships in a most 

efficient manner by ignoring any kind of underlying physical processes. On the contra-

ry, it is the primary aim of the top-down approach to derive information about the 

governing processes from observed data.  

In the last three decades especially catchment hydrologists showed growing interest in 

the top-down idea.  As a first step towards analyzing hydrological system behavior by 

the top-down approach patterns in data observed at the scale of interest are identi-

fied. Descriptions of lower scale processes contributing to the system behavior at the 

scale of interest are then deduced from the results. Usually, for this purpose parsimo-

nious models with only few parameters are used (Sivapalan et al., 2003). In several 

opinion papers the top-down approach was suggested as a promising way to deal with 

spatial heterogeneities (Savenije, 2009) and to overcome shortcomings of the estab-

lished bottom-up approach, such as the lack of physically based process descriptions at 

larger scales or the equifinality problem due to over-parameterization of complex 

models (e.g. Kirchner, 2006; McDonnell et al., 2007). Strongly related to the top-down 

approach is the dominant processes concept, where only the most important process-

es determining main features of the system behavior are considered (Grayson and 

Blöschl, 2000). 

Although the introduction of the top-down idea was often accompanied by criticism about the 

bottom-up approach, Sivapalan et al. (2003) emphasized that both approaches should be con-

sidered as complementary and not competing. Various authors stated that largest benefit 

could be gained from combining both approaches (e.g. Savenije, 2009; Sivapalan et al., 2003). 
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Examples can be found in the field of modelling complex ecological systems by the pattern-

oriented modelling approach (Grimm et al., 2005). However, examples from hydrology are 

scare. 

1.2.3. Challenges and opportunities: turning a problem into a solution 

Predicting the hydrological behavior of soils using the common model approaches is still very 

difficult due to the effects of spatial heterogeneities (cf. Vereecken et al., 2007). Hence, effi-

cient ways to account for spatial heterogeneities of the controls on water fluxes across differ-

ent scales are needed (Asbjornsen et al., 2011). Adapting the top-down approach to typical soil 

hydrological problems might open up new possibilities to handle soil moisture heterogeneities. 

The variability among observed soil moisture time series can be used to identify and quantify 

the dominant factors and processes controlling soil moisture dynamics. This way advantage 

could be taken of the heterogeneous nature of soil moisture, which is usually seen as the main 

problem. Adapting the top-down idea to soil hydrological problems would primarily require (i) 

large soil hydrological monitoring data sets, (ii) powerful tools for data analyses, and (iii) crea-

tive approaches to grasp the hydrological behavior of soils from new perspectives. 

The first mentioned large soil moisture data sets exist today and are mostly accessible for re-

searchers, since numerous extensive soil water monitoring projects have been established in 

recent years to gather data sets about spatial distribution and temporal dynamics of soil hy-

drological variables at different scales (e.g. Bogena et al., 2010; Dorigo et al., 2011; Zacharias 

et al., 2011). Vereecken et al. (2014) proclaimed that we have now entered the ‘‘big data’’ era 

in the field of soil moisture sensing providing unique opportunities to study soil water dynam-

ics. At the same time it was pointed out that this opportunity is naturally associated with chal-

lenges in managing, sharing, analyzing, and visualizing soil moisture data. 

Concerning the need for powerful tools, Romano (2014) reported about an upcoming trend in 

the soil hydrological community to set-up interpretative and forecasting techniques that “let 

the data speak for themselves”. Some innovative multivariate data analyzing techniques such 

as artificial neural networks (Selle et al., 2008) and information and complexity measures (Pan 

et al., 2011) have been successfully applied for soil hydrological purposes in recent years. 

However, these promising approaches are not yet established in the soil hydrological commu-

nity, and there is still a need for robustly and easily applicable tools that allow a wide range of 

applications at different scales. 
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The last mentioned demand of new creative approaches that are suitable to elucidate the 

overall system behavior at the field scale or larger has been raised many times (e.g. Kirchner, 

2006; McDonnell et al., 2007). But the demand still maintains since new methodological con-

cepts are rare and do not belong to the standard toolkit of most soil hydrologists. Soil hydrolo-

gy could strongly benefit from new methodological concepts supplementing to the common 

perspective of mass flux considerations. 

1.3. Objectives and methodological approaches 

The aim of this dissertation was to test innovative approaches for making efficient use of 

standard soil hydrological data in order to assess seepage rates and main controls on observed 

hydrological behavior, including the role of soil textural heterogeneities. For this purpose the 

following three objectives were defined that build on each other: 

1. Investigating the effects of soil texture and textural heterogeneities on the applicabil-

ity of one-dimensional approaches for water flux quantification by the example of a 

simple method based on the Buckingham-Darcy law. 

2. Testing a theoretical concept of low-dimensional transformation of hydrological signals 

(e.g. rainfall, snow melt) propagating through heterogeneous soils and a related effi-

cient method to describe these dynamics. 

3. Applying principal component analysis (PCA) for identifying the main controls on soil 

moisture dynamics observed in a multifactorial long-term field experiment and de-

scribing their particular contributions to these dynamics. 

The following concepts and assumptions were used throughout the whole dissertation to 

achieve these objectives. 

Relative spatiotemporal dynamics of soil moisture were investigated. Each single time series 

was scaled to zero mean and unit variance (z-transformation). It is worth noting that no con-

clusions about the absolute levels and amplitudes of soil moisture fluctuations can be drawn in 

this way. 

It was assumed that temporal dynamics are the result of various soil processes and effects. 

Each of these controls (e.g. textural heterogeneity) specifically contributes to the hydrological 

behavior of soils. The time series of a monitoring data set were considered to be composed by 
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superposition of uncorrelated temporal patterns. The spatial variability among single soil mois-

ture time series from different sites is termed functional heterogeneity in this dissertation (cf. 

Basu et al., 2010; Lischeid et al., 2010). The functional heterogeneity of soil moisture time se-

ries was analyzed by (i) running two-dimensional distributed water flux models with a large 

number of possible soil heterogeneity realizations and by (ii) analyzing soil moisture time se-

ries with dimensionality reduction techniques in terms of principal component analysis. The 

latter approach enables to identify temporal patterns in monitoring data sets, which can then 

be traced back to their specific causes.  

The perspective of signal transformation followed in this dissertation can be considered as a 

valuable supplement to the common mass flux investigations. 

Several methods and concepts of data analysis suggested in this dissertation have not been 

used for soil hydrological questions, yet. Consequently, there was a lack of practical experienc-

es and it was thus necessary to assess the methods’ performances theoretically before apply-

ing them to measured field data. For this purpose numerical experiments were performed, i.e. 

testing a method with theoretical data sets simulated exclusively with a process based model. 

This has the advantage that all factors controlling the modeled system behavior are known 

exactly. The transferability of these theoretically achieved results and the applicability of the 

respective methodological approach to real world situations was tested using an extensive 

field data set. 

1.4. Outline of the thesis 

This dissertation is structured into five Chapters. The general introduction (Chapter 1) gives a 

thematic and methodological overview about the current state of research on soil moisture 

heterogeneity and the hydrological behavior of soils. Additionally, the main objectives of this 

dissertation are introduced. The following three chapters address these objectives successive-

ly. They contain single studies that have been published in scientific journals. Their contents 

build on each other in the following way: 

 “Texture-depending performance of an in situ method assessing deep seepage” 

(Hohenbrink and Lischeid, 2014, Chapter 2): This study aimed at investigating the ap-

plicability of a simplified Buckingham-Darcy method to estimate deep seepage fluxes 

in heterogeneous soils, which are generally difficult to determine in situ. Schindler and 
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Müller (1998) introduced that method as a promising approach requiring low monitor-

ing costs. However, it has only been tested with data from a small number of lysime-

ters (Schindler et al., 2008; Schindler and Müller, 2005). The applicability of that meth-

od was investigated by a numerical experiment explicitly considering the whole range 

of soil textures and different intensities of textural heterogeneities. A key issue was 

the transferability of soil moisture dynamics measured at a distinct position in a soil 

profile to a larger area. In this publication a need for new efficient approaches to han-

dle soil textural heterogeneities in one-dimensional water flux models was identified. 

 “Does textural heterogeneity matter? Quantifying transformation of hydrological 

signals in soils” (Hohenbrink and Lischeid, 2015, Chapter 3): A data-based approach to 

analyze and handle the effects of textural heterogeneity on soil moisture dynamics 

was introduced to the field of soil hydrology. It was illustrated and tested by simulated 

time series from a numerical experiment. The basic idea of that approach was to de-

scribe and quantify the transformation characteristics of hydrological signals propagat-

ing through a vadose zone. A central question was if heterogeneous water flow induc-

es specific temporal moisture patterns that could not occur under uniform flow condi-

tions. 

 “Disentangling the Effects of Land Management and Soil Heterogeneity on Soil Mois-

ture Dynamics” (Hohenbrink et al., 2016, Chapter 4): The previously introduced ap-

proach was applied for the first time on measured soil moisture time series and thus 

tested for measured “real world” data. The main objective was to disentangle and de-

scribe the specific contributions of soil heterogeneity and land management practices 

to the observed temporal soil moisture dynamics. 

In Chapter 5 general conclusions are drawn. The theoretical and methodological achievements 

are discussed with regard to possible scientific and practical applications. Additionally, further 

research needs are identified. 
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2. Texture-depending performance 

of an in situ method assessing 

deep seepage1 

Summary 

Deep seepage estimation is important for water balance investigations of groundwater and the 

vadose zone. A simplified Buckingham-Darcy method to assess time series of deep seepage 

fluxes was proposed by Schindler and Müller [Schindler, U., Müller, L., 1998. Calculating deep 

seepage from water content and tension measurements in the vadose zone at sandy and loamy 

soils in North‐East Germany. Archives of Agronomy and Soil Science 43(3): 233-243]. In the 

method dynamics of water fluxes are calculated by a soil hydraulic conductivity function. 

Measured soil moistures and matric heads are used as input data. Resulting time series of flux 

dynamics are scaled to realistic absolute levels by calibration with the areal water balance. An 

assumption of the method is that water fluxes at different positions exhibit identical dynamics 

although their absolute values can differ. The aim of this study was to investigate uncertainties 

of that method depending on the particle size distribution and textural heterogeneity in non-

layered soils. We performed a numerical experiment using the two-dimensional Richards 

Equation. A basic model of transient water fluxes beneath the root and capillary zone was set 

up and used to simulate time series of soil moisture, matric head, and seepage fluxes for 4221 

different cases of particle size distribution and intensities of textural heterogeneity. Soil hy-

draulic parameters were predicted by the pedotransfer function Rosetta. Textural heterogene-

ity was modeled with Miller & Miller scaling factors arranged in spatial random fields. Seepage 

fluxes were calculated with the Buckingham-Darcy method from simulated soil moisture and 

matric head time series and compared with simulated reference fluxes. The median of Root 

Mean Square Error was about 0.026 cm d-1 and the median of maximum cross correlation was 

0.96 when the method was calibrated adequately. The method’s performance was mainly in-

fluenced by (i) the soil textural class and (ii) the time period used for flux calibration. It per-
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formed best in sandy loam while hotspots of errors occurred in case of sand and silty texture. 

Calibrating the method with time periods that exhibit high variance of seepage fluxes yielded 

the best performance. The geostatistical properties of the Miller & Miller scaling field influ-

enced the performance only slightly. However, the Miller & Miller scaling procedure generated 

heterogeneous flow fields that were addressed as main reason for mismatches of simulated 

reference fluxes and fluxes obtained with the Buckingham-Darcy method. 

 

Keywords: Vadose zone, Deep percolation flux, Buckingham-Darcy law, Soil heterogeneity, 

Temporal stability of soil water fluxes, Numerical experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 An article with equivalent content has been published as: 

Hohenbrink, T.L., Lischeid, G., 2014. Texture-depending performance of an in situ method as-

sessing deep seepage. Journal of Hydrology, 511: 61-71. DOI: 10.1016/j.jhydrol.2014.01.011. 
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2.1. Introduction 

Assessment of groundwater recharge is important for sustainable use of groundwater re-

sources. Overviews of numerous studies on determining groundwater recharge are given by de 

Vries and Simmers (2002) and Scanlon et al. (2002). Groundwater recharge can result from 

different processes like infiltration from rivers or lateral inflows from other regions but it is 

often dominated by deep seepage. Deep seepage comprises all downward water fluxes in the 

vadose zone that reach the groundwater table. 

Many methods to estimate deep seepage such as direct measurements with drainage lysime-

ters (Meissner et al., 2010a) and passive wick-samplers (Gee et al., 2009; Meissner et al., 

2010b), conceptual (Bethune et al., 2008), mechanistic (Jimenez-Martinez et al., 2009; Lu et al., 

2011) and empirical (Selle et al., 2008; Wessolek et al., 2008) modeling approaches and tracer 

balance calculations (Fragala and Parkin, 2010; Perkins et al., 2011) have been developed and 

applied at different scales. However, in many cases it is still a challenge to quantify deep seep-

age with adequate time and effort (cf. Sanford, 2002). 

Schindler and Müller (1998) introduced a simplified method to obtain deep seepage fluxes 

from measured soil moisture and matric head time series at sites with a large distance to 

groundwater. Their method is based on the Buckingham-Darcy law. In contrast to complex 

monitoring and modeling procedures the simplified method can be applied with low effort in 

measuring and data evaluation. Schindler et al. (2008) tested the method with lysimeter data 

from Northeast Germany and Southeast Austria and showed that it performed properly in 

loamy and sandy soils. Obtained seepage fluxes were in close agreement with measured ly-

simeter outflow data. However, these conclusions have been drawn from only few example 

cases. Further research regarding a more widespread range of soil texture and soil heterogene-

ity is needed to obtain more general information about the method’s benefits and limitations. 

When flux dynamics from point locations are related to larger scales of interest like the field 

scale, it is assumed that water flux time series at different locations are synchronous and might 

differ with respect to absolute values. This assumption called temporal stability of spatial pat-

terns of soil water dynamics is a crucial point when the Buckingham-Darcy method – and also 

many other methods – are applied. A large body of literature on the characterization of tem-

poral stability of soil moisture patterns exists (e.g. Mittelbach and Seneviratne, 2012; 



Chapter 2 

18 

Pachepsky et al., 2005; Vachaud et al., 1985; Vanderlinden et al., 2012). Guber et al. (2008b) 

showed that temporal stability can hold for soil water flux patterns as well. 

Numerical experiments allow the analysis of a method’s performance with respect to different 

influencing factors. Any combination of influencing factors can be tested in a consistent way 

(Mirus et al., 2011). Such approaches have been applied to water flux problems at the soil core 

scale (Peters and Durner, 2008), at the scale of several meters (Schelle et al., 2013; Schlüter et 

al., 2012), at the hillslope scale (Weiler and McDonnell, 2004), and at the catchment scale 

(Mirus et al., 2011).  

The aim of this study was to identify conditions of particle size distribution and textural heter-

ogeneity under which the simplified Buckingham-Darcy method can be used to obtain deep 

seepage fluxes. This also comprises the question which texture conditions facilitate the occur-

rence of temporal stability in water flux patterns. In a numerical experiment we simulated time 

series of soil moisture θ(t) [L3 L-3], matric head h(t) [L] and water fluxes q(t) [L T-1] considering a 

wide range of soil properties and applied the Buckingham-Darcy method to this data. After-

wards, we evaluated the performance of the Buckingham-Darcy method with respect to single 

textural classes. In this study we concentrated on non-layered soils at a scale that would also 

be represented by a lysimeter. 

2.2. Methods 

2.2.1. Buckingham-Darcy method to estimate deep seepage 

Required data 

The Buckingham-Darcy method aims at assessing seepage fluxes at a soil depth z1 [L] far be-

neath the rooting zone and far above the groundwater table. The horizontal plane in this ob-

servation depth is defined as the plane of interest. The plane of interest must be located be-

neath the root and capillary zone where upward water fluxes never occur. In this permanent 

seepage zone processes like evaporation or root water uptake that are difficult to control do 

not occur (Fig. 2.1). Thus, soil moisture changes are caused only by deep seepage fluxes. Time 

series of soil moisture θz1(t) and matric head hz1(t) measured in the plane of interest are re-

quired. As a rule of thumb for Central Europe it is suggested to install the probes at a depth of 

z1 = 3 m at arable sites and pasture and in z1 = 5 m at forest sites (Schindler et al., 2008; 
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Schindler and Müller, 2005). However, an adequate installation depth depends on climatic, 

edaphic, and vegetational conditions of each specific site. The sign of the hydraulic gradient i(t) 

[L L-1] must be monitored to ensure that measurements are performed deep enough where 

only downward flux occurs. This requires a second matric head time series hz2(t) measured at 

another depth z2. Schindler et al. (2008) suggested using daily data. The Buckingham-Darcy 

method involves a calibration procedure (see next section). For that issue the total amount of 

groundwater recharge Qcal [L] at the investigation site must be estimated with an independent 

method for a representative calibration period. This can, for instance, be done by water bal-

ance calculations during winter periods when evapotranspiration can be assumed to be negli-

gible. 

Data evaluation 

Relative fluxes qr describing the flux dynamics can be computed from the measured water 

content data θz1 for each time interval T by the Buckingham-Darcy law 

Tzrr ikq
TT
 )( 1 . (2.1) 

The relative hydraulic conductivity kr(θ) [L T−1] is the quotient of the actual conductivity k(θ) 

depending on θ and the conductivity of the saturated soil ks. Schindler and Müller (1998) sug-

gested to assume a unit gradient I = 1 in Eq. 2.1 so that qr is only controlled by kr(θz1). They 

Figure 2.1. Positions of sensors (x) to measure time series of soil moisture θ(t) and matric head h(t) in 

the permanent seepage zone underneath the root and capillary zone. 
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argue that assuming a unit gradient affects qr less strongly than calculating i(t) from measured 

matric head data because of measuring inaccuracies of hz1(t) and hz2(t) that cannot be avoided. 

The relation between kr and θ can be described by van Genuchten (1980) and Mualem (1976) 

  2111)(
mm

rk   . (2.2) 

The effective saturation Θ [-] is defined as Θ = (θ-θr)/(θs-θr). In the Buckingham-Darcy method 

the tortuosity parameter τ [-] is assumed to be 0.5. The parameters saturated and residual 

water content θs and θr, and the shape parameter m [-] can be determined by fitting the pa-

rameters of the van Genuchten model of soil water retention (van Genuchten, 1980) to the 

measured time series θz1(t) and hz1(t) 
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(2.3) 

The parameter α [L-1] denotes the inverse of the matric head at the air entry point and n [-] is a 

shape-parameter. Parameter fitting of soil hydraulic properties can be performed with specific 

software like RETC (van Genuchten et al., 1991) or SHYPFIT (Peters and Durner, 2006). It is also 

possible to describe kr(θ) by other models (e.g. Brooks and Corey, 1964; Kosugi, 1996). Result-

ing time series of qr reflect relative changes of seepage fluxes at the position where the soil 

moisture probe is installed. Hence, temporal stability of spatial soil water flux patterns must be 

assumed in order to assign qr to the whole investigation site. Time series of qr are then con-

verted to realistic absolute values by linear scaling. The scaling factor βcal can be calculated 

from the independently derived groundwater recharge amount during the calibration period 

Qcal and the obtained cumulative relative seepage amount Qr = ∑qrT during the same period 

r

cal
cal

Q

Q
 . (2.4) 

Absolute seepage fluxes at the investigation site qobt can then be calculated as follows 

rcalobt qq   . (2.5) 

The application scale of the Buckingham-Darcy method depends on (i) site conditions influenc-

ing validity of the temporal stability assumption and on (ii) the method used to estimate Qcal. 
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2.2.2. Generating model data 

A test data set comprising simulated time series for 4221 cases of different particle size distri-

bution and intensities of textural heterogeneity was generated by a simulation model. For 

each case the simulated variables were θz1(t), hz1(t) and the reference flux rates through the 

entire plane of interest qref(t). For this purpose we (i) defined one basic model set up and (ii) 

ran this basic model for all 4221 cases, varying the soil hydraulic properties and the geostatisti-

cal properties characterizing textural heterogeneity. 

Basic model setup 

The basic model set up represented a boundary and initial value problem defining the follow-

ing general water flux scenario. Gravity driven flow through one soil layer located in the un-

saturated seepage zone was modeled with the two-dimensional Richards Equation. The latter 

was solved numerically with the Hydrus-2D code (Simunek et al., 2011). 

Figure 2.2. Model domain. Gray colors indicate spatial correlated Miller & Miller scaling factors from 

an example realization. Scaling factors were always 1 beneath 1.2 m depth. The observation point 

OPz defines the location where time series of θ, h, and qref were simulated. 
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The model domain represented a rectangular section of a non-layered soil profile that was 

fully located in the permanent seepage zone (Fig. 2.2). Hence, the upper boundary did not 

represent the soil surface. The model domain was 1 m wide and 4 m deep. Dye tracer experi-

ments showed that correlation lengths of water pathways were much smaller than 1 m 

(Bogner et al., 2008; van Schaik, 2009; Weiler and Flühler, 2004). This demonstrates that the 

actual range of flux rates was covered by a 1 m wide model domain. Spatial discretization was 

achieved by 3157 nodes arranged in a rectangular grid. In the upper 1.2 m node spacing was 

0.025 m in both directions. Between -1.2 m and -4 m node spacing in z-direction was set to 

0.1 m. The plane of interest was defined at -1 m depth of the model domain. An observation 

point OPz1 was inserted at the depth of the plane of interest (z1) corresponding to the sensor 

locations for matric head and water content measurements. Time series of the output varia-

bles θz1(t), hz1(t), and qref(t) were generated at this position. It was not necessary to simulate 

hz2(t) at a second position to monitor hydraulic gradients because the model scenario did not 

include upward water fluxes at all. Hence, it was ensured in the simulations that the plain of 

interest was always located in the permanent seepage zone. Time series of lysimeter discharge 

measured during the hydrologic years 2002 and 2003 at a Research Station in Dedelow (Feder-

al State of Brandenburg, Germany) were used to define a 730 days inflow scenario at the up-

per boundary of the model domain. The inflow scenario included time periods with both large 

and small seepage flux rates as well as abrupt changes in flux intensity (Fig. 2.3). The variable 

inflow was implemented by a flux boundary condition. It was not necessary to consider pro-

cesses like evapotranspiration and root water up take because the model domain did not in-

clude the root and capillary zone. Realistic initial conditions of matric head were achieved by 

modeling the seepage scenario from 2003 as spin-up period.  

Figure 2.3. Seepage fluxes at the upper boundary. 
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At the lower boundary free drainage conditions were modeled with a unit gradient boundary 

condition as recommended by McCord (1991). We previously conducted test simulations to 

investigate possible effects of this boundary condition on time series simulated at the plane of 

interest. Therefore time series of soil moisture and actual hydraulic gradients from model do-

mains with different vertical extents were compared to those from a reference case with a 

large distant to the groundwater. The reference case was simulated with a 21 m deep model 

domain. A constant groundwater level in 21 m depth was modeled by a first type lower 

boundary condition (constant head) with h = 0. All texture classes were considered. Mean Per-

cent Errors (MPE) of soil moisture (MPE < 0.4 %) and actual hydraulic gradients (MPE < 3.75 %) 

were small when the distance between the plane of interest and the lower boundary was at 

least 3 m. For that reason a 4 m deep model domain was used although only the upper 1 m 

was of interest (Fig. 2.2). 

Modeling spatial heterogeneities of soil texture 

The soil water retention curve θ(h) and the hydraulic conductivity curve k(h) that are needed 

to solve the Richards Equation were parameterized by the models of Mualem (1976) and van 

Genuchten (1980). The formulation of θ(h) is described by Eq. 2.3. The k(h) value arises from 

Eq. 2.2 and Eq. 2.3 scaled by ks. In this way hydraulic characteristics of different soil textures 

were expressed by the six soil hydraulic parameters θs, θr, α, n, τ and ks. 

The texture triangle was discretized by a grid with a resolution of 1 % texture fraction in each 

of the three directions resulting in 4221 different combinations of soil texture fractions 

(Fig. 2.4). The points represent all investigated cases of particle size distribution. For each 

combination the fractions of sand, silt, and clay were used to predict soil hydraulic parameters 

by the pedotransfer function Rosetta (Schaap et al., 2001). Rosetta involves an artificial neural 

network that was trained to a large data set of soil hydraulic parameters measured in the la-

boratory. Soil textures with more than 40 % of clay along with a silt content less than 30 % 

were not considered because (i) they are rarely found in natural soils (cf. Schindler and Müller, 

2010; Twarakavi et al., 2009; Woesten et al., 1998) and (ii) we did not trust in the estimated 

parameters in this part of the texture triangle because the data set underlying Rosetta con-

tains only few data points in this texture range (Schaap et al., 2001). 

Textural heterogeneity was implemented in the upper 1.2 m of the model domain where the 

observation point was located (Fig. 2.2). The scaling approach of Miller and Miller (1956) was 
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used to define spatially variable soil hydraulic properties. Relationships of soil hydraulic prop-

erties of two porous media with similar internal geometry but different scales are described in 

this theory. Thus, it is possible to predict soil hydraulic properties of a porous medium from a 

Miller similar reference medium. This is done by scaling the soil hydraulic functions of the ref-

erence medium h*(θ) and k*(θ) with specific scaling factors φθ, φh and φk [-]. Accordingly to 

Abdou and Flury (2004) and Vogel et al. (1991) the scaling factors for matric head and hydrau-

lic conductivity were related φh = φk
-0.5, and soil moisture was not scaled φθ = 1. Using this rela-

tionship it is possible to consider spatial heterogeneity in soil water dynamics by defining one 

single scaling parameter φxy for each node in the model domain. Thereby, the reference soil 

hydraulic properties h*(θ) and k*(h) are modified locally by 

zx
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In this study the reference soil hydraulic properties were given by the Rosetta outputs as de-

scribed above. In each of the 4221 cases different spatial distributions of all φxy in a scaling 

field Φ were defined and Φ was assigned to the upper 1.2 m of the model domain (Fig. 2.2). 

We arranged all φx,z in Φ to be log-normally distributed. The distribution of scaling factors φ 

Figure 2.4. Textural fractions considered in the model study. Each dot symbol represents one of 4221 

different texture realizations. 
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can then be described by φ = 10b with normally distributed exponents b. The mean of b was 

kept constant 0b  so the median of φ in a realization of Φ was zero ( 0~  ). Within Φ all 

bx,z were arranged to be spatially correlated. The spatial correlation between any two values 

bx1,z1 and bx2,z2 with a distance of l [L] was defined by an exponential covariance function C 

range

l

eblC


 )()( 2 . 
(2.8) 

The variance σ2(b) is termed sill [-] in this paper. The parameter range [L] describes the 

strength of the decrease of covariance with increasing distance between two positions of bx1,z1 

and bx2,z2. Detailed descriptions of the geostatistical concepts are given by Burgess and 

Webster (1980) and Goovaerts (1999). For each of the 4221 texture realizations sill and range 

were drawn independently from uniform distributions. The bounds of these two geostatistical 

parameters were set to 0.1 and 1.65 (sill), and 2.3 cm and 27.5 cm (range). Gaussian random 

fields of b were generated using the R packages geoR (Paulo et al., 2001) and RandomFields 

(Schlather, 2011). 

2.2.3. Assessing the performance of the Buckingham-Darcy method 

For each of the 4221 model runs the seepage flux passing the plane of interest was calculated 

with the Buckingham-Darcy method. The simulated time series of θz1(t), hz1(t), hz2(t) were 

treated as measured data with daily resolution and evaluated (see section 2.1): 

 The software SHYPFIT 2.0 (Peters and Durner, 2006) was used to fit the parameters θr, 1.

θs, α and n in Eq. 2.3 to simulated water retention data θ(h). 

 Relative seepage fluxes qr during the two years were computed by Eq. 2.1 with the 2.

simulated time series θz1(t) assuming a constant unit gradient I = 1. 

 Simulated cumulative fluxes through the entire plane of interest were assigned to Qcal 3.

(Eq. 2.4) in order to calibrate local water fluxes by Eq. 2.5. Data from three different 

periods were used for calibration: (i) both years of the total simulation time, (ii) the 

first year and (iii) the second year (Fig. 2.3). In the first year large water fluxes oc-

curred, whereas the second year was much dryer. 

The performance of the Buckingham-Darcy method was evaluated with three quality criteri-

ons. The Root Mean Square Error RMSE [L T-1] was used to evaluate the accuracy of obtained 

flux rates qobt 
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It measures the mean deviation of q at defined positions on the time-axis. Large deviations are 

weighted more strongly due to the square. Secondly, the similarity of the shapes of qref and qobt 

was measured by the maximum value of the cross correlation function CCmax [-] 
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The cross correlation function describes the Pearson correlation of two time series that are 

shifted relatively to each other by different time lags. The time lag Lag [T] that corresponds to 

CCmax was used as third quality criterion measuring the extent of time shift between qref and 

qobt. The R software (R Development Core Team, 2010) was used to arrange all simulation runs 

automatically, to calculate water fluxes with the Darcy-Buckingham method for each scenario 

and to compute the quality criterions. 

2.3. Results 

2.3.1. Performance of the Buckingham-Darcy method 

Each of the 4221 simulations generated specific seepage dynamics due to different fractions of 

sand, silt and clay (soil hydraulic parameters) and different geostatistical properties of the scal-

ing factor distribution (sill and range). The Miller & Miller scaling of soil hydraulic properties 

resulted in a specific heterogeneous flow field for each simulated case. The flow fields were 

generally characterized by a few vertical water pathways surrounded by more passive regions. 

It is not possible to illustrate them here due to their large number. Simulated cumulative ref-

erence fluxes Qref increased mainly between the days 100 and 200 and, although less strongly, 

between the days 500 and 600 (Fig. 2.5a). The majority of time series ran close to the median 

curve. Only in the upper range between the 90th and 100th percentiles (p90 and p100) Qref dif-

fered more strongly from the median in times of high flux rates. Simulated reference flux rates 

qref were maximal (maximum of median curve: 0.4 cm d-1) and varied in the widest range (be-

tween 0.28 and 0.75 cm d-1) during the main peak between the days 100 and 150 (Fig. 2.5b). 

High flux intensities at the plane of interest were related to high inflows through the upper 

boundary condition (see Fig. 2.3).Relative time series qr(t) had to be scaled with βcal to match 
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the order of magnitude of qref. The median p50 of βcal was about 31. In less than 10 % of all cas-

es qr(t) had to be reduced by βcal smaller than 1 (p10: about 1.4). Large βcal values occurred in 

sandy textures (p90: about 4000). The RMSE distribution differed when the different calibration 

periods both years, first year, and second year were used (Fig. 2.6). The smallest deviations 

Figure 2.5. Global reference time series of cumulative fluxes Qref (a) and flux rates qref (b). Time series 

of deviations between qref and obtained fluxes qobt (residuals) calibrated with data from both years 

(c), first year (d), and second year (e). Red lines display the median. Gray areas indicate different 

percentiles of all 4221 time series. The spin-up period is not included. 
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between qref and qobt were achieved by calibrating with data from the first year when highest 

seepage fluxes occurred. Here, the median p50 of RMSE was 0.025 cm d-1 and in 10 % of all 

cases RMSE exceeded 0.039 cm d-1 (p90). Calibration with data from both years increased RMSE 

(p50: 0.026 cm d-1, p90: 0.043 cm d-1) and expanded their range. Using the last year for calibra-

tion resulted in high RMSE indicating poor accordance of qref and qobt (p50: 0.032 cm d-1, 

p90: 0.06 cm d-1). All three distributions were positively skewed, i.e. asymmetrical with higher 

variability for large percentiles. The other two quality criterions CCmax and Lag were not affect-

ed by the calibration period because linear scaling of qr (Eq. 2.5) influenced not the shape of 

qobt. The distribution of CCmax was slightly negatively skewed. The median of CCmax was 0.964 

and p10 was 0.908 (Fig. 2.6). In every case qobt lagged behind qref. Time shifts Lag varied be-

tween 0 d and 10 d and were nearly normal distributed (p50: 4 d, p90: 6 d). 

Residuals calculated as difference between qobt and qref varied with time. For most realizations 

of particle size distribution and textural heterogeneity seepage fluxes qobt were underestimat-

ed during the first seepage phase between the days 100 and 140 when actual seepage fluxes 

were high. The maximum deviation between qobt and qref occurred at day 124 when the medi-

an of the residuals was -0.2 cm d-1 in all calibration cases. This accounts for 50 % of qref 

(Fig. 2.5c-e). In the following period reference fluxes were slightly overestimated with maxi-

mum residuals around day 170 (both years calibration: 0.017 cm d-1, first year: 0.015 cm d-1, 

Figure 2.6. Distribution of Root Mean Square Error evaluating mismatches of obtained flux rates qobt 

(RMSE, lightblue). Distribution of maximum cross correlation of obtained fluxes qobt and reference 

fluxes qref (CCmax, darkblue). Boxes confine the 25
th

 and 75
th

 percentiles and whiskers indicate the 

10
th

 and 90
th

 percentiles. 
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second year: 0.021 cm d−1) that converge to 0 cm d-1 until the next seepage event started. The 

magnitude of residuals for all 4221 cases varied for the different calibration periods even when 

their median values were very similar (Fig. 2.5c−e). Analogous to the RMSE distributions 

(Fig. 2.6) the smallest range of residuals was found for the first year calibration where 80 % of 

all residual time series (between p10 and p90) did not differ by more than 0.21 cm d-1 from the 

median. Wider distributions of residuals resulted from the second year calibration. The second 

seepage event (starting at day 480) showed the same pattern of under- and overestimation of 

qref as the first seepage event. However, seepage fluxes and residuals were much smaller due 

to smaller input fluxes at the upper boundary of the model domain (cf. Fig. 2.3). 

2.3.2. Influence of particle size distribution and textural heterogeneity 

The influence of particle size distribution and textural heterogeneity on the performance of 

the Buckingham-Darcy method is only presented for the case of first year calibration. Findings 

for both years calibration hardly differed. 

Both RMSE and CCmax varied in dependence of the particle size distribution. They were corre-

lated inversely (r = -0.76) and showed similar spatial distributions in the texture triangle 

(Fig. 2.7a-c). By far the largest RMSE arose from time series that were simulated for sandy soils 

(up to 0.123 cm d-1). In the textural class sand 95 % of all realizations yielded RMSE located in 

the upper quartile of all RMSE (in the following called: poor RMSE quartile). Large RMSE also 

occurred in the region of silty loam and silt with 61 % and 32 % in the poor RMSE quartile. 

Around sandy clay both large and small RMSE occurred. In the remaining parts of the texture 

triangle smaller RMSE dominated. Smallest CCmax were located in silty loam and silt with 69 % 

and 55 % in the lower poor CCmax quartile. In contrast to RMSE poor CCmax did not prevail in 

sandy soils. 

Regions in the texture triangle where more than 25 % of model realizations were located in the 

poor quartiles of either RMSE or CCmax were defined as hotspots of errors with poor perfor-

mance of the Buckingham-Darcy method. Two hotspots of errors were detected in the texture 

classes (i) sand as well as (ii) silty loam and silt (Fig. 2.8). The best performance of the Bucking-

ham-Darcy method could be achieved in sandy loam. Here only 5.9 % (RMSE) and 6.5 % (CCmax) 

were part of the poor quartiles. 

The third quality criterion Lag was not used to define the hotspot of errors because time lags 

were small (p50 = 4 d). The spatial distribution of Lag differed from those of RMSE and CCmax 



Chapter 2 

30 

(Fig. 2.7d). Largest Lag occurred in the right part of the texture triangle (silt and loam soils) 

including the second hotspot of errors. Smallest Lag prevailed in the first hotspot of errors 

(sand) and around sandy clay. 

Figure 2.7. Soil texture triangles colored after Root Mean Square Error RMSE (b), the maximum cross 

correlation CCmax (c) at the time shift Lag (d), the standard deviation σθ of θz1(t) (e), and its quotient 

σθ/σh with the standard deviation σh of hz1 (f), and the soil hydraulic parameters θr, θs, α, n, ks, and 

τ arising from the Rosetta pedotransfer function (g - l). Panel (a) shows the USDA texture classes 

for orientation. 
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Two variables arising from the input time series were closely related to RMSE and CCmax (i) the 

standard deviation σθ of the simulated input time series θz1(t) and, (ii) its quotient σθ/σh with 

the standard deviation σh of the simulated input time series hz1(t) (Fig. 2.7e-f). Small temporal 

variance of θz1(t) caused poor performance of the Buckingham-Darcy method because small 

values of σθ prevailed in the hotspots of uncertainties. The correlation between σθ and RMSE 

was r = -0.47 and between σθ and CCmax was r = 0.31. The relation σθ/σh is used to assess the 

steepness of the retention curve in the range of values which was effective in each simulation. 

The spatial distribution of σθ/σh in the texture triangle was similar to the global patterns of 

RMSE and CCmax. Both quality criterions were correlated with σθ/σh (RMSE: r = -0.52, CCmax: 

r = 0.56).  Small values of σθ/σh prevailed in the hotspots of errors. This shows that shallow 

sections of the retention curves were active in cases with poor performance of the Bucking-

ham-Darcy method. 

The influence of soil texture on RMSE and CCmax can also be investigated by means of the six 

soil hydraulic parameters. They implicitly contain the same information like the texture be-

cause they have been predicted from texture fractions by the pedotransfer function Rosetta. 

The nonlinear structure of the artificial neural network underlying Rosetta becomes apparent 

when the texture triangle is colored according to each single parameter (Fig. 2.7g-l). The RMSE 

was correlated with the parameters n (r = 0.60) and Ks (r = 0.50). Large values of n predomi-

nated in both hotspots of uncertainties. The criterion CCmax was mainly affected by the param-

eters τ (r = -0.58) and α (r = 0.55).  

Figure 2.8. Texture of model realizations laying in the poor quartile of RMSE (lightblue dots), CCmax 

(darkblue stars) or both (black circles). Texture classes with more than 25 % in the poor quartile of 

RMSE or CCmax are defined as hotspots of errors (marked by red polygons). 
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The geostatistical parameter sill characterizing the spatial variance of the Miller and Miller 

scaling factors influenced Lag significantly (confidence level: 0.95). Strongest negative correla-

tions were found in silty clay (r = -0.76) and silty clay loam (r = -0.64) (Tab. 2.1). Significant cor-

relations between sill and RMSE occurred in six textural classes. Maximal correlation was 

found in sandy clay loam (r = 0.32). Correlations between sill and CCmax were significant in only 

three texture classes. In sandy clay the correlation was strongest (r = -0.28). The parameter 

range was not correlated with the three quality criterions at all. 

2.4. Discussion 

2.4.1. Using simulated data to test the Buckingham-Darcy method 

We followed a numerical modeling approach because theoretical approaches with simulated 

data enable drawing more general conclusions than case studies with real measured data that 

are only valid for a few specific cases. It is worth noting that transferability of theoretically 

obtained results to field conditions is limited due to model simplifications.  

Our strategy to investigate a couple of first order control parameters describing particle size 

distribution and textural heterogeneity simultaneously minimized the risk to miss basic pat-

terns in systems behavior that result from interactions of parameters. However, working with 

simulated data required a couple of simplifications about the investigated processes a priori. 

This involves the risk to neglect processes that are critical in real field situations. To simulate 

time series of soil moisture, matric head, and reference water fluxes we made the following 

assumptions: (i) transient water fluxes in an unsaturated soil can be modeled adequately using 

the Richards Equation, (ii) soil hydraulic properties can be modeled with the van Genuch-

ten/Mualem model in a proper way, (iii) textural heterogeneity can be reproduced by varying 

Table 2.1. Pearson correlation r between the geostatistical parameter sill and the quality criterions 

Root Mean Square Error (RMSE), maximum of the cross correlation function CCmax, and time lag 

Lag for the global range of textures (All) and for each specific texture class. Only significant correla-

tions (significance level: 0.95) are shown. 
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reference soil hydraulic properties with Miller & Miller scaling factors that are arranged in a 

Gaussian random field. Numerous more advanced physically based approaches exist to model 

water flow through structured soils with the Richards Equation (cf. Köhne et al., 2009). Most of 

them highlight one specific aspect like multimodal pore size distribution (eg. Durner, 1994), 

nonequilibrium between θ and h (Ross and Smettem, 2000), macropore flow (eg. Gerke and 

van Genuchten, 1993; Jarvis et al., 1991) or hysteresis (Kool and Parker, 1987). There are also 

more sophisticated geostatistical approaches to predict spatial heterogeneity in soils: Schlüter 

and Vogel (2011) for example used different morphological descriptors like Minkowski func-

tions and chord length distributions in order to generate random fields that exhibit more real-

istic pore connectivity. Fleckenstein and Fogg (2008) used geostatistical indicator simulations 

based on transition probabilities and Markov chains to characterize alluvial hydrofacies. We 

concentrated on non-layered soils and adopted less complex but commonly accepted and veri-

fied models to cope with acceptable computation times and adequate numbers of model pa-

rameters. 

The results are only valid for magnitudes of seepage fluxes occurring in the simulations. How-

ever, the implemented upper boundary condition was composed of measured seepage fluxes 

from both a wet and a dry year (cf. section 2.2). Thus, a wide range of realistic seepage flux 

dynamics was covered. 

2.4.2. Performance of the Buckingham-Darcy method 

Comparing global reference fluxes qref and calibrated local fluxes qobt revealed that the Buck-

ingham-Darcy method is valid in many cases. Overall RMSE amounted to approximately 7.5 % 

of the maximal median flow rate of 0.4 cm d-1. Absolute values of qref and qobt were in the same 

order of magnitude due to the calibration procedure where the integral of qobt was set to be 

identical to the integral of qref. The dynamics of qref(t) and qobt(t) were very similar. The median 

of CCmax was 0.964. This means that 93 % (CCmax
2 = 0.93) of the temporal variance of qref could 

be reproduced when qobt was shifted in time by Lag. Time lags of about 4 d (median of Lag) are 

mostly negligible when groundwater recharge is monitored for years or decades. 

Nevertheless, the Buckingham-Darcy method showed also limited performance in the hotspot 

of errors. The reasons might be as follows. Poor performance occurred in the model when flux 

dynamics obtained from one single position were not synchronous with fluxes through the 

entire plane of interest. In the model heterogeneous flow fields were dominated by preferen-
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tial funneled flow (Kung, 1990) through a network of distinct pathways. Water fluxes in such 

pathways were not only higher than those in more passive regions but also differed with re-

spect to temporal dynamics. In the latter case actual flux dynamics through the entire plane of 

interest resulted from a non-linear interplay of various local fluxes. Under these conditions 

spatial patterns of water fluxes were not stable in time. In the calibration procedure flux dy-

namics obtained at one single position qr were scaled linearly to match the overall flux dynam-

ics through the plane of interest qref. In the hotspots of errors qr and qref were not linearly re-

lated. This yielded errors in determining flux rates with the Buckingham-Darcy method. In lit-

erature there are hardly any studies about temporal stability that were referred explicitly to 

the permanent seepage zone. It was discussed that processes in the root zone like root water 

uptake decrease temporal stability (Cassel et al., 2000; Hupet and Vanclooster, 2002). Many 

other authors also found that spatial homogeneity of soil water dynamics increased with depth 

(e.g. Guber et al., 2008a; Kamgar et al., 1993). This confirms the findings of Schindler and 

Müller (1998) who suggested concentrating on the permanent seepage zone where relative 

soil moisture dynamics are not influenced by root zone processes and less variable in space. In 

a recent, but still unpublished study, we use soil moisture time series measured with many 

spatial replicates to investigate the spatial synchronicity of seepage fluxes obtained with the 

Buckingham-Darcy method. 

The shape of the median time series of residuals followed a systematical pattern (Fig. 2.5c-e). 

The strong underestimation during the flux peak and the slight overestimation in the following 

350 days corresponds to our findings that qobt lagged behind qref. A systematical time shift be-

tween qobt and qref contributes to the high residuals during the main peak. Two possible rea-

sons can explain this pattern. Firstly, dynamics of flux through the plane of interest were dom-

inated by high flow rates that occurred only at very view locations in the model domain. These 

preferred pathways are rarely matched by sampling points. Thus, it is likely that θz1(t) was sim-

ulated in a region of the profile where water fluxes were delayed. This would cause systematic 

underestimation of the flow dynamics. Secondly, the unit gradient assumption of the Bucking-

ham-Darcy method can be a reason for the dynamics of residuals. At a seepage front during 

the wetting phase it can be expected that the actual hydraulic gradient is underestimated by 

assuming unit gradient conditions. This would cause an underestimation of seepage fluxes. In 

the drainage phase actual gradients are expected to be smaller than 1 cm cm-1 which would 

cause an overestimation of seepage fluxes. 
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The selection of the calibration period impacts RMSE strongly. In the simulated flow scenarios 

71 % of total seepage occurred in the first year (Fig. 2.5a). The main flux peak with maximal 

residuals also took place in the same year. Thus, calibrating with data from the most important 

first year resulted in smallest RMSE whereas calibrating with the second year data yielded 

maximal RMSE. In the second case the variance of the water flux data was smaller during the 

calibration period than during the whole observed period. Thus, the essential range of system 

status was not fully considered in the calibration procedure which yielded large uncertainties.  

Schindler and Müller (2005) tested the Buckingham-Darcy method with time series measured 

in lysimeters at the ZALF Research Station, Dedelow in the year 2002. The plane of interest (at 

1.85 m depth) was in a sand layer under a 1.15 m thick layer of sandy loam. Their study was 

conducted under identical meteorological boundary conditions like in the first year input data 

of our model study. In a second study they applied the method to data measured in the same 

lysimeter in the years 2001 to 2008 (Schindler et al., 2008). They used only one winter season 

of 3.5 months for calibration. In both studies they found even smaller flux residuals than we 

would expect from the background of our theoretical findings. A possible explanation could be 

that the flow field in their lysimeters could have been less heterogeneous than those in our 

simulations.  

Da Silva et al. (2007) compared deep seepage flux data, obtained from a water balance equa-

tion, with those calculated by the Buckingham-Darcy equation without calibration. They 

claimed that using the Buckingham-Darcy equation does not yield consistent results under 

field conditions and that errors of estimated fluxes can be in the range of several orders of 

magnitudes if no calibration is applied. This corresponds to our findings that especially in sandy 

substrates large βcal were needed to transform the observed flux dynamics to a realistic abso-

lute level. By calibrating calculated seepage fluxes with the water balance as suggested by 

Schindler and Müller (1998), both methods that da Silva et al. (2007) investigated are merged. 

In this way both magnitudes and dynamics of water fluxes could be obtained. 

2.4.3. Influence of particle size distribution and textural heterogeneity 

The most important influencing factors σθ and σθ/σh are known when the Buckingham-Darcy 

method is applied to field data. Our findings about the distributions of resulting RMSE, CCmax, 

and Lag can be used to evaluate the reliability of obtained seepage time series under specific 

site conditions. Reliable results can be expected for instance at investigation sites with sandy 
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loam where measured water content data exhibit large standard deviations and the relation 

σθ/σh is large. 

Both hotspots of errors were located in regions of the texture triangle where n was large. 

Large values of n involve steep slopes of kr(θ). In such cases small errors resulting from tem-

poral and spatial averaging of soil moisture data can lead to large uncertainties in determining 

kr(θ). These uncertainties affect flux calculations directly because q(θ) is linearly related to kr(θ) 

when unit gradients are assumed (Eq. 2.1). Several authors have shown that Darcy-flux meth-

ods can be highly sensitive to measurement errors due to strong non-linear characteristics of 

kr(θ) (da Silva et al., 2007; Ghiberto et al., 2011; Reichardt et al., 1998). The parameters Ks, α, 

and τ were correlated with single quality criterions but showed no general tendency in both 

hotspots of errors. Rocha et al. (2006) analyzed the sensitivity of soil hydraulic parameters on 

subsurface water flows under furrows in a numerical experiment. They also found that the 

parameter n has the largest impact on soil water fluxes. 

Mohanty and Skaggs (2001) investigated spatio-temporal patterns of near surface soil mois-

ture by air-borne passive microwave remote sensing at a scale of 0.5 km2. Consistent with our 

findings at smaller scale they found that soil moisture patterns were more stable in time in 

sandy loam than in silty loam. With regard to the Buckingham-Darcy method which requires 

temporal stability, we also allocated silty loam to the hotspot of errors and found the best 

performance in sandy loams. 

Influences of soil hydraulic parameters on RMSE, CCmax and Lag were analyzed in a bivariate 

and linear way. This entailed that correlations among influencing factors were not considered 

when effects of each single influencing factor were evaluated. In most texture classes large sill 

values yielded small Lags (Tab. 2.1). It can only be speculated that this phenomenon arises 

from flow fields that are more variable in space and time when sill is large. Both parameters sill 

and range could not be used to predict the applicability of the Buckingham-Darcy method in 

field situations because in real soils they cannot be assessed easily. 

The occurrence of poor performance could not be explained fully by the variables we investi-

gated in this study. There was still an irregular component in the distribution of the quality 

criterions in the texture triangle (Fig. 2.7b-d). This fraction of RMSE variance could also not be 

explained fully by sill and range. We assume that the individual characteristics of each scaling 

field at the positions of the observation point also have an impact on the performance (cf. 
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Fig. 2.2). It happened randomly if the time series θz1(t), hz1(t), and qref were taken from a more 

or less passive region of the flow domain. The facts, that qref never lagged behind qobt and that 

less than 10 % of βcal were larger than 1, indicates that passive regions were more extensive in 

the flow domain than the preferred water pathways. We suppose that time series measured in 

situ at adjacent positions could yield quite different performances of the Buckingham-Darcy 

method. 

Even though we showed that the Darcy-Buckingham method is valid under different edaphic 

and atmospheric conditions there is still research need concerning this method. The method’s 

sensitivity to measurement errors of soil moisture should be investigated additionally. Another 

issue is the more general question of representing spatial heterogeneous water fluxes in effec-

tive one-dimensional calculations. In addition bridging the gap between the scale of flux ob-

servation and larger scales of interest is of major concern when the Buckingham-Darcy method 

is applied. This is a major issue of actual soil hydrological research (Lin, 2011). 

2.5. Conclusions 

The aim of this study was to identify conditions of particle size distribution and textural heter-

ogeneity under which the simplified Buckingham-Darcy method of Schindler and Müller (1998) 

can be used to obtain deep seepage dynamics on the basis of measured soil moisture and ma-

tric head time series. Our approach to test the method in a numerical experiment was success-

ful in so far that we could show that the method´s performance is influenced mainly by (i) the 

soil textural class and (ii) the time period used for flux calibration. The performance of the 

method was poor in sand and silty texture. Such textural classes were addressed as hotspots of 

errors. Best performance could be found in sandy loam. The most sensitive van Genuchten 

parameter was n. It exhibited high values in both hotpots of errors. In addition the selection of 

an adequate calibration period is crucial. Using a period with high variance in seepage fluxes 

for calibration yielded the best performance. Our findings can also be interpreted in terms of 

the occurrence of temporally stable soil water flux patterns, which is a precondition for suc-

cessful calibration of obtained fluxes. This implies that soil texture conditions yielding good 

performance of the Buckingham-Darcy method did also enhance temporal stability. 
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3. Does textural heterogeneity mat-

ter? Quantifying transformation 

of hydrological signals in soils2 

Summary 

Textural heterogeneity causes complex water flow patterns and soil moisture dynamics in soils 

that hamper monitoring and modeling soil hydrological processes. These patterns can be gen-

erated by process based models considering soil texture heterogeneities. However, there is 

urgent need for tools for the inverse approach, that is, to analyze observed dynamics in a 

quantitative way independent from any model approach in order to identify effects of soil 

texture heterogeneity. Here, studying the transformation of hydrological input signals (e.g., 

rainfall, snow melt) propagating through the vadose zone is a promising supplement to the 

common perspective of mass flux considerations. In this study we applied a recently developed 

new approach for quantitative analysis of hydrological time series (i) to investigate the effect 

of soil texture on the signal transformation behavior and (ii) to analyze to what degree soil 

moisture dynamics from a heterogeneous profile can be reproduced by a corresponding ho-

mogenous substrate. We used simulation models to generate three data sets of soil moisture 

time series considering homogeneous substrates (HOM), homogeneous substrates with noise 

added (NOISE), and heterogeneous substrates (HET). The soil texture classes sand, loamy sand, 

clay loam and silt were considered. We applied a principal component analysis (also called 

empirical orthogonal functions) to identify predominant functional patterns and to measure 

the degree of signal transformation of single time series. For the HOM case 86.7 % of the soil 

moisture dynamics were reproduced by the first two principal components. Based on these 

results a quantitative measure for the degree of transformation of the input signal was de-

rived. The general nature of signal transformation was nearly identical in all textures, but the 

intensity of signal damping per depth interval decreased from fine to coarse textures. The 
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same functional patterns occurred in the HET data set. However, here the signal damping of 

time series did not increase monotonically with soil depth. The analysis succeeded in extract-

ing the same signal transformation behavior from the NOISE data set compared to that of the 

HOM case in spite of being blurred by random noise. Thus, principal component analysis 

proved to be a very robust tool to disentangle between independent effects and to measure 

the degree of transformation of the input signal. The suggested approach can be used for (i) 

data processing, including subtracting measurement noise (ii) identification of factors control-

ling soil water dynamics, (iii) assessing the mean signal transformation in heterogeneous soils 

based on observed soil moisture time series, and (iv) model building, calibration and evalua-

tion. 

 

Keywords: Soil heterogeneity, Soil moisture time series, Principal component analysis, Trans-

formation of hydrological signals, Functional averaging, Numerical experiment 

 

 

 

 

 

 

 

 

 

 

 

2 An article with equivalent content has been published as: 

Hohenbrink, T.L., Lischeid, G., 2015. Does textural heterogeneity matter? Quantifying 
transformation of hydrological signals in soils. Journal of Hydrology, 523: 725-738. DOI: 
10.1016/j.jhydrol.2015.02.009. 



3.1 Introduction 

47 

3.1. Introduction 

Textural heterogeneity of soils is a widespread phenomenon occurring at almost every location 

of the subsurface (Schulz et al., 2006). An important consequence is that water fluxes in the 

vadose zone occur in heterogeneous flow fields. This substantially complicates predicting sub-

surface fluxes by simulation models. No generally accepted model approach to easily simulate 

heterogeneous flow fields recently exist (cf.Vereecken et al., 2007). Inherent non-linearities of 

soil hydrological processes complicate modeling of soil water dynamics. Consequently, spatial-

ly aggregating of soil structural properties usually yields different model results than consider-

ing explicit small scale soil structure heterogeneities. However, considering such heterogenei-

ties in high spatial resolution is feasible only at very small scales and with great effort. Hence, it 

is necessary to investigate inherent characteristics of soil moisture time series from heteroge-

neous flow fields in order to find new efficient ways to consider textural heterogeneity in simu-

lation models.  

Effects of soil structure heterogeneity on soil water flow fields has often been studied by phys-

ically based models, i.e., generating time series of soil hydrological behavior (e.g. soil water 

flux q [L T-1] or soil moisture θ [L3 L-3]) as a function of soil structure and input fluxes (Köhne et 

al., 2009; Vereecken et al., 2007). However, the reverse approach, i.e., assessing effects of soil 

structure heterogeneities based on analysis of observed behavior is hardly feasible due to pos-

sible equifinality. Moreover, this approach has scarcely been investigated before. Overcoming 

this obstacle would allow to determine (i) to what degree properties of soil structure impose 

characteristic patterns on observed behavior, (ii) to what degree any observed behavior of 

heterogeneous soils could be modeled using a corresponding homogeneous substrate, and (iii) 

how the latter could be identified based on observed soil hydrological behavior. 

In soil hydrology, soil water dynamics are usually regarded from the aspect of mass fluxes that 

can be modeled with flow and transport equations (van Genuchten et al., 2014). Here we sug-

gest focusing on the aspect of transformation of a hydrological input signal (e.g. rainfall, snow 

melt) as it propagates through the soil. We define hydrological signals as spatiotemporal 

changes of state variables (e.g. pressure head, water level) that are propagated through a se-

quence of hydrological subsystems (e.g. aquifers or streams). In the vadose zone hydrological 

signals are processed by a change of soil moisture over time and space. In a homogeneous soil, 
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an input signal becomes increasingly smoothed (Pan et al., 2011) and delayed (Mahmood et 

al., 2012) with soil depth.  

In contrast, soil moisture dynamics emerging from heterogeneous flow fields are not only de-

termined by soil depth and texture. They are also controlled by the usually randomly chosen 

position in a network of flow channels surrounded by regions with less mobile water (Schelle 

et al., 2013). Heterogeneous flow fields or non-uniform water fluxes can occur under various 

conditions. The most prominent reasons for such preferential flow patterns are macropore 

flow (Jarvis, 2007; Köhne et al., 2009), finger flow induced by water repellency (Diamantopou-

los et al., 2013; Hendrickx et al., 1993; Ritsema and Dekker, 2000), and textural heterogeneity. 

The latter was investigated by Kung (1990a) and Kung (1990b) who described distinct water 

pathways emerging from flow concentration at the top of inclined sand layers underlying finer 

textured substrates. This phenomenon called funneled flow was related to the occurrence of 

capillary barriers. It was intensively studied in the field (Heilig et al., 2003), in the laboratory 

(Kung, 1993; Walter et al., 2000) and by means of numerical experiments (Schlüter et al., 

2012b). Roth (1995) performed numerical simulations of steady state flow through a Miller-

similar medium (Miller and Miller, 1956). He showed that local heterogeneities of soil hydrau-

lic properties in macroscopic homogeneous substrates can also evoke complex networks of 

flow channels. This approach was frequently used to represent heterogeneous flow fields in 

numerical models (e.g. Hohenbrink and Lischeid, 2014; Peters and Durner, 2009; Vogel et al., 

2010). 

Soil moisture dynamics at a specific location depend on the interplay of preceding local fluxes. 

An interesting question is whether non-linear interaction of preceding fluxes causes dynamics 

of soil moisture that could not occur in a homogeneous flow field. This would mean that non-

linearity increases the complexity of soil moisture patterns. This question is of particular im-

portance for upscaling purposes: 

 If this would be the case, seepage fluxes at investigation sites could only be predicted 

on the basis of detailed information about spatial soil texture distributions. In the last 

decades great efforts have been made to map soil structures by non-invasive geophys-

ical methods (e.g. Haarder et al., 2011; Koszinski et al., 2013). Resulting structural in-

formation has been included to inverse soil hydrological modeling (e.g. Busch et al., 

2013; Hinnell et al., 2010; Kowalsky et al., 2004). Vogel et al. (2006) performed a dye 

tracer experiment in a structured soil and reconstructed geometry of observed struc-
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tural components in a three dimensional model domain. They considered soil horizons, 

mesoscopic heterogeneity and macropores. Afterwards, they simulated water flow 

and tracer transport using the Richards Equation. Such analyses require much effort 

that can only be done in single studies at very small spatial scales. 

 If this would not be the case, it would be rather possible to replace heterogeneous 

profiles in models by homogeneous surrogates (e.g. Greco et al., 2013) paving the way 

for upscaling approaches. Soil profiles showing similar response to input events (simi-

lar functional properties) could be aggregated to functional units (Lin et al., 2006). A 

large number of scientific papers deals with finding effective soil hydraulic properties 

(e.g. Bayer et al., 2005; Durner et al., 2008) and averaging vadose zone variables (e.g. 

De Lannoy et al., 2007; Schlüter et al., 2012a; Vogel et al., 2010). Most of these studies 

aimed at modeling heterogeneous soil water fluxes effectively with the one-

dimensional Richards Equation. 

Several authors stressed a common need for robust tools to identify and predict spatiotem-

poral patterns in soil science and hydrology (Grayson et al., 2002; Lin et al., 2006; Schröder, 

2006). This includes functional patterns, i.e. principal characteristics of system behavior that 

can be identified by intrinsic properties of measured time series. A promising way to evaluate 

functional patterns is to investigate how hydrological input signals propagate through a soil 

profile. It might be expected that the signal transformation behavior is a function of various 

processes related to soil properties, their heterogeneities, and soil depth. Transformation of 

soil moisture signals was more often studied in a meteorological context of atmos-

phere/subsurface interactions (Mahmood et al., 2012; Oudin et al., 2004; Wu et al., 2002) than 

with respect to soil hydrological questions like deep seepage (Wu et al., 1997). Lischeid et al. 

(2010) used a principal component analysis (PCA) to identify basic patterns of water signal 

transformation in unconfined aquifers and to quantify the intensity of signal damping in meas-

ured time series. 

The aim of this study was to (i) investigate the effect of soil texture on the signal transfor-

mation behavior of homogeneous profiles and to (ii) analyze to what degree soil moisture dy-

namics simulated at any location of a heterogeneous profile can be reproduced by a corre-

sponding homogenous substrate. For this purpose we performed numerical experiments to 

investigate and compare transformation characteristics of hydrological signals propagating 

homogeneous and heterogeneous profiles. In addition, we studied the effect of measurement 
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errors trying to distinguish these effects from those of soil structure heterogeneities. We only 

considered flow processes occurring in the soil matrix that can conceptually be modeled by the 

Richards Equation. This includes uniform flow, finger flow, funneled flow and flow affected by 

local heterogeneities. Our intention was to investigate signal damping characteristics emerging 

from purely gravity driven flow without considering effects like root water uptake, capillary 

rise from groundwater or evaporation. We followed the approach that has recently been in-

troduced by Lischeid et al. (2010). Thus, we used time series simulated for simple model sce-

narios instead of complex monitoring data in order to avoid confusion introduced by uncertain 

variables like evapotranspiration. In this paper we used the term functional heterogeneity to 

describe the variability in signal transformation behavior of soil profiles. Functional heteroge-

neity can be a function of different soil properties like heterogeneity in texture or soil struc-

ture. 

3.2. Methods 

The propagation of hydrological signals through soil profiles was analyzed by means of mod-

eled data sets of daily soil moisture time series that can be expected at sites with large dis-

tance to groundwater. The soil system’s reaction on water input signals was simulated by 

modeling gravity driven water fluxes with the mixed form of the Richards Equation (cf. Celia et 

al., 1990). Soil moisture time series were simulated at daily time resolution. Different data sets 

comprising three model scenarios were generated: (i) water flow through a homogeneous soil 

profile (data set HOM), (ii) water flow through a homogeneous soil profile mimicking meas-

Figure 3.1. Measured precipitation defining the upper flux boundary condition to simulate soil moisture 

time series. The first two years were used as model spin-up and were not considered in data evalua-

tion. 
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urement errors of soil moisture (data set NOISE), and (iii) water flow through a heterogeneous 

soil profile (data set HET). All scenarios were simulated for the USDA texture classes sand (S), 

loamy sand (LS), clay loam (CL), and silt (Si). A Principal component analysis (PCA) was applied 

to all time series following the approach of Lischeid et al. (2010) in order to assess the signal 

transformation behavior of the soil profiles. Results were compared with commonly used 

measures of signal transformation based on autocorrelation, cross-correlation and the power 

spectrum of time series. Generation of noise data and statistical analyses were performed with 

the R software package (R Development Core Team, 2010). 

3.2.1. Simulating soil moisture time series 

Basic model set up 

The basic model set up defined all model specifications the three model scenarios HOM, HET 

and NOISE had in common. Specific features of each model scenario are described in the fol-

lowing sections. A time series of precipitation measured in the years 2007 to 2011 in the Fed-

eral State of Brandenburg, Germany was implemented as upper flux boundary condition 

(Fig. 3.1 and file UpperBC.txt of supplementary material). The first two years served as model 

spin-up time (cf. Ajami et al., 2014). They were simulated only to generate realistic spatial soil 

moisture distributions over the soil profiles at the beginning of the evaluated time period. Ini-

tial conditions at the beginning of the spin-up period were defined by a constant soil water 

pressure head h = -100 cm at each node of the model domain. Note that the water potential is 

defined as energy per weight and termed pressure head h [L] in this paper (cf. Durner et al., 

2014). 

Free drainage conditions were implemented by defining a unit hydraulic gradient I = 1 at the 

lower boundary as recommended by McCord (1991). We previously analyzed possible influ-

ences of the free drainage boundary condition on simulated soil moisture time series (cf. 

Hohenbrink and Lischeid, 2014). In that pre-study soil moisture time series were simulated in 

model domains with different vertical extent. They were compared to those from a reference 

simulation with constant groundwater level at 21 m soil depth (constant head boundary condi-

tion). All texture classes were considered. The results of this pre-study showed that the mean 

percent errors of simulated soil moisture did not exceed 0.5 % when the distance between the 

observation points and the lower boundary was at least 3 m. Thus, we used 7.5 m deep model 

domains in this study even if only the upper 4.5 m were of interest. Solving the Richards Equa-
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tion requires information about the soil water characteristics defined by the soil water reten-

tion function θ(h) and the function of hydraulic conductivity of the unsaturated soil k(h). We 

used the models of van Genuchten (1980) and Mualem (1976) to describe both functions by 

means of the six soil hydraulic parameters: residual and saturated soil water content θr and θs, 

the inverse of the pressure head at the air entry point α [L-1], a shape-parameter n [-] related 

to the width of the pore size distribution, the hydraulic conductivity of the saturated soil ks 

[L T-1], and the tortuosity parameter τ [-]. An overview about the characterization of unsaturat-

ed soil hydraulic properties is given by Durner et al. (2014). The different texture classes S, LS, 

CL, and Si were considered in the model by four realizations of θ(h) and k(h) (Fig. 3.2). The tex-

ture specific soil hydraulic parameters θs, θr, α, n and Ks (Tab. 3.1) were predicted by the first 

model of the pedotransfer function Rosetta (Schaap et al., 2001). This model provides aver-

aged hydraulic parameters for each USDA texture class based on 2134 soil samples for water 

retention, 1306 samples for saturated hydraulic conductivity and 235 soil samples for unsatu-

rated hydraulic conductivity. The tortuosity parameter τ was assumed to be 0.5 as it is com-

mon practice (Mualem, 1976). Observation points were inserted at 15 depths between 0.3 m 

and 4.5 m with a distance of 0.3 m each. At these positions soil moisture time series were sim-

ulated at daily time resolution. 

Figure 3.2. Soil hydraulic properties of substrates sand (S), loamy sand (LS), clay loam (CL) and silt (Si) 

used for simulation of soil moisture time series. Soil water retention curve θ(h) (a) and hydraulic 

conductivity of the unsaturated soil k(h) (b). Note that the soil water pressure head h is expressed in 

the unit cm of equivalent water column which equals the pressure unit hPa. 



3.2 Methods 

53 

Data set HOM 

The data set HOM (DataSetHOM.txt of supplementary material) comprised 60 soil moisture 

time series representing 15 depths between 0.3 m and 4.5 m for four soils with homogeneous 

but different texture classes each (Tab. 3.2). Water flux and soil moisture were modeled with 

the software package Hydrus 1D (Simunek et al., 2008). The 7.5 m deep one dimensional mod-

el domain was spatially discretized by 0.05 m spaced nodes. The total number of nodes was 

151. In Fig. 3.3 time series simulated for S and CL are shown for 0.3 m, 2.4 m, and 4.5 m depth. 

A clear response to rainfall events around day 550 and day 950 became apparent by increasing 

soil moisture. In both soils peaks exhibited increasingly smaller amplitudes, smoother shape 

and greater time lags with increasing soil depth. The same signal transformation behavior with 

increasing soil depth could be observed in cases of the other texture classes Ls and Si (not 

shown). However, the intensity of signal transformation per depth unit varied between the 

different textures. This becomes clear with the example of the time series simulated in 4.5 m 

Table 3.1. Soil hydraulic parameters of the four different USDA texture classes predicted by the pedo-

transfer function Rosetta (Schaap et al., 2001). 

Table 3.2. Properties of three data sets of soil moisture used to investigate the signal transformation 

behavior in soil profiles. The time series were generated with simulation models. 
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soil depth where the time series from CL was more smoothed and shifted in time than that 

from S. 

Data set NOISE 

The data set NOISE (DataSetNOISE.txt of supplementary material) aimed at mimicking uncorre-

lated measurement errors. This was realized by adding random numbers to the time series 

from data set HOM. Each set of random numbers was normally distributed (mean: 0 % soil 

moisture; standard deviation σ: 1 % soil moisture) in order to mimic realistic measurement 

noise where large deviations are less likely than small ones. The standard deviation was set to 

σ = 1 % soil moisture because measurement errors of dielectric-based techniques to determine 

soil moisture can be less than 1.5 % soil moisture in mineral soils (Romano, 2014). Each time 

series from data set HOM was blurred four times yielding four replicates of noise realization. 

Overall data set NOISE comprised 240 time series (Tab. 3.2). Sets of random numbers were 

generated independently to assure that noise components of single time series were not cor-

related. The generated time series exhibited clear reactions of soil moisture to input signals 

(Fig. 3.4), although they were substantially blurred by the random fluctuations. 

Figure 3.3. Soil moisture time series simulated for the homogeneous case (HOM). Time series at soil 

depths 0.3 m, 2.4 m and 4.5 m are shown for sand and clay loam. The soil moisture axes (left) are 

scaled in the same range although the values differ. The bars showing precipitation inputs (P) refer 

to the right axis. 
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Data set HET 

In the data set HET (DataSetHET.txt of supplementary material) the influence of soil textural 

heterogeneity was considered. The software package Hydrus 2D (Simunek et al., 2011) was 

used to simulate two dimensional heterogeneous flow fields (Fig. 3.5). The model domain was 

x = 4 m wide and z = 7.5 m deep. Node spacing was 0.05 m in both directions and the total 

number of nodes was 12,231. 

Textural heterogeneity was considered in the upper 5 m of the model domain based on the 

scaling theory of Miller and Miller (1956). This theory describes a relation between soil hydrau-

lic properties from two pore systems with similar internal geometry but different scales. The 

soil water retention curve h(θ) and the soil hydraulic conductivity curve k(h) of a porous medi-

um can be derived from corresponding curves h*(θ) and k*(h) of a Miller similar reference me-

dium. Fields of spatial variable soil hydraulic properties can be generated by scaling the refer-

ence curves differently at each position of a two dimensional model domain. This concept was 

frequently used to model spatial variable water fluxes through soils (e.g. Hohenbrink and 

Lischeid, 2014; Roth, 1995; Schlüter et al., 2012b). We used the soil water retention curves and 

the soil hydraulic conductivity curves of S, LS, CL, and Si (Fig. 3.2) as reference functions h*(θ) 

and k*(h). They were manipulated at each node by a scaling factor φx,z. In consequence each 

Figure 3.4. Soil moisture time series simulated for the homogeneous case and manipulated by random 

noise (NOISE). Time series at soil depths 0.3 m, 2.4 m and 4.5 m are shown for sand and clay loam. 

The soil moisture axes are scaled in the same range although the values differ. 
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Figure 3.5. Heterogeneous flow field emerging from Miller scaling of the soil hydraulic parameters 

shown for the loamy sand under wet conditions. White dots show positions where soil moisture time 

series were generated. Note that a snapshot in time after an input flux through the upper boundary 

is shown. The peak of the seepage water was located in a soil depth around 3 m at that time. 

location was characterized by individual soil hydraulic functions. Scaling factors for the reten-

tion curve φh and the hydraulic conductivity curve φk were related via φh = φk
-0.5 and θ was not 

scaled φθ = 1. Thus it was possible to scale both hydraulic functions with one set of φ (cf. 

Abdou and Flury, 2004; Vogel et al., 1991) 
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We defined φ to be log-normal distributed (median: 0~  , variance: σ2(log10(φ)) = 1) accord-

ing to the observation, that pore size distributions are typically log-normal (cf. Schlüter and 

Vogel, 2011). The spatial distribution of φ was defined by an exponential covariance function 

(cf. Abdou and Flury, 2004; Peters and Durner, 2009) with a range parameter of l = 0.325 m. 

We used the R routine grf() from the package geoR (Paulo et al., 2001) to generate spatial 

Gaussian random fields of φ.  

Observation points were inserted to the model domain on four vertical transects with a lateral 

distance of 1 m (Fig. 3.5). This distance was set fairly large, so the four transects could be 

treated as quasi replicates. Spacing within each transect was 0.3 m. Soil moisture time series 

were simulated at these positions. Thus data set HET comprised 240 time series including four 

heterogeneous profiles in each model domain (Tab. 3.2). The simulated water contents varied 

spatially in the model domain. Water infiltrating homogeneously through the upper boundary 

was concentrated in vertical flow channels (Fig. 3.5). This corresponds with flow patterns ob-

served in field by dye tracer experiments (e.g. van Schaik, 2009). The HET time series also 

showed a reaction of soil moisture to precipitation inputs. However, a relation between signal 

transformation and soil depth was less obvious than for the HOM data. 

3.2.2. Functional analysis of simulated soil moisture time series 

Autocorrelation, cross-correlation and power spectrum 

Various tools to characterize and compare functional properties of hydrological time series 

exist that are more common than applying a PCA to time series. We computed different 

measures of signal transformation based on autocorrelation, cross-correlation and power 

spectrum for the HOM data set and compared them with our results from a PCA. The autocor-

relation function ρac(k) describes the correlation between an equidistant time series θ(t) and 

replications θ(t+k) shifted by time lags of k time steps (c.f. Shumway and Stoffer, 2011) 
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The smoothness of a time series is quantified by ρac(k) (e.g. Thomas et al., 2012). We character-

ized the signal damping behavior of the HOM profile by comparing autocorrelation functions 

of soil moisture time series from different depths. Time series from two different depths can 

be compared directly by the cross-correlation function ρcc(k) (c.f. Mahmood et al., 2012; 

Shumway and Stoffer, 2011) 
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The time series θz1(t) and θz2(t+k) are shifted relatively to each other in both directions, be-

cause k can be either positive or negative. The time lag where ρcc(k) is maximal measures the 

time shift between two time series (c.f. Hohenbrink and Lischeid, 2014). We used the time 

series from 30 cm soil depth as references and computed their cross-correlations with time 

series from every depth of the HOM profile. 

Another common way to investigate the degree of signal damping is based on the power spec-

trum of time series. It is a tool of spectral analysis to characterize the low-pass filtering behav-

ior of hydrological systems (e.g. Gall et al., 2013; Katul et al., 2007; Kirchner et al., 2010) rather 

than analyzing specific frequencies (e.g. annual cycle). The power spectrum describes the dis-

tribution of frequencies of oscillations occurring in a time series. It is computed by a Fourier 

transformation of ρac(k). When the power is drawn against frequency in a log-log plot, the 

slope β of the high frequency part (in this study >0.025 d−1) characterizes the strength of low-

pass filtering. We computed β for all time series of the HOM data set and used it as a measure 

of signal damping. 

Principal Component Analysis of time series 

The idea of a PCA is to identify prevailing patterns by aggregating most relevant information in 

a multivariate data set, e.g., a matrix of time series. This is done by decomposing the total var-

iance of an n-dimensional data set containing all time series into few linearly independent 

principal components that explain most of the variance. 

To achieve equal weighing of the single time series they are scaled separately to zero mean θ̅  

= 0 and unit variance σθz
2 = 1 (z-transformation) prior the analysis 
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Thus, information about absolute values and amplitudes of fluctuations is not considered. The 

z-transformed time series are organized in one matrix Θ where the variables are arranged in 

columns and the values for single dates in rows. 

The PCA performs a multivariate ordination that aims at finding an orthonormal basis for the 

multidimensional data space spanned by all time series where maximal fraction of total vari-

ance 𝜎𝑒𝑥𝑝𝑙
2  is covered by a minimum number of axes. This is done by linear transformation of Θ 

into a matrix P containing independent components ordered by the fraction of variance they 

explain (cf. Jolliffe, 2002) 

 TP . (3.6) 

The matrix Λ contains the eigenvectors of the correlation matrix of Θ ordered by their corre-

sponding eigenvalues which represent the fraction of variance explained by the specific com-

ponents. The similarity between single time series and a component of the kth order can be 

evaluated by their correlations that are called loadings Lk. The loadings can be used to calcu-

late the fraction of variance 𝜎𝑒𝑥𝑝𝑙
2  of a time series explained by the m first components (cf. 

Lischeid et al., 2012)    

1
1
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A PCA performs a bijective transformation of a data set that is fully reversible when all compo-

nents are considered (k = n). We refer to Jolliffe (2002) for detailed information, examples and 

discussions about principal component analyses. That textbook also contains a chapter about 

PCA for time series. Algorithms to perform a PCA are implemented in most statistical software 

packages.  

Every component can be interpreted as a time series describing an independent temporal pat-

tern occurring in the dataset. The loadings provide a basis for identifying specific controls that 

provoke the patterns described by single components. If the input time series share a large 

fraction of variance only few principal components are needed to represent a major part of the 

total information content. The PCA can only detect linear structures in the data space. It over-

estimates the dimensionality of data sets exhibiting non-linear patterns (Lee and Verleysen, 

2007). Thus, a nonlinear structure could only be represented by piece-wise approximation by a 
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set of linear components. In that case single principal components would underestimate the 

fraction of variance explained by a single effect.  

In this study we used the R routine princomp() to apply a PCA to the z-transformed simulated 

soil moisture series. It is recommended to apply a PCA only to normally distributed data (cf. 

Jolliffe, 2002). A Shapiro-Wilk test showed that the simulated moisture time series were not 

normal distributed. But, it is almost impossible to proof normal distribution for such big data 

sets, because the common tests are very selective in terms of large samples. Moreover, Jolliffe 

(2002) argued that the precondition of normally distributed input data is much less relevant 

when a PCA is considered as a mainly descriptive technique. 

Assessing signal transformation behavior by PCA 

Lischeid et al. (2010) applied a PCA to a set of time series of groundwater head data. They 

found that the first component described the mean behavior of all time series. The second 

component reflected the effect of thickness of the overlying vadose zone. They assessed the 

relative damping of the input signal in each time series from the relation of their loadings with 

both principal components. Each symbol in a plot showing L1 on the x-axis and L2 on the y-axis 

represents a single time series. In such a plot all symbols usually form a curved trajectory. The 

position on that one-dimensional trajectory indicates the damping status of a time series. 

Hence, a damping coefficient D [-] quantifying the intensity of signal damping can be defined 

(Lischeid et al., 2010) 

)arctan(D . (3.8) 

The angle α between the x-axis and the line from the origin to the symbol of a time series is 

defined in radians. Note that D is a relative measure that can only be interpreted in the context 

of the specific data set analyzed by the PCA. This approach to determine D considers infor-

mation from the first two components only. The effects described by the remaining compo-

nents are neglected. 
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3.3. Results 

3.3.1. Autocorrelation, cross-correlation and power spectrum 

The depth profiles of autocorrelation (ρac) at time lags of k = 1 d and k = 10 d for sand and clay 

loam (Fig. 3.6a) show an increase of ρac with depth. Hence, soil moisture time series appeared 

to be more strongly damped in greater depths of homogeneous soils. In fine textured soils this 

Figure 3.6. Depth profiles of autocorrelation at time lags of 1 d and 10 d shown for sand and clay loam 

(a). Depth profiles of time lags at the maximum of the cross-correlation function (b) and values of 

maximum cross-correlation (c). The moisture time series in 30 cm depth were used as reference in 

all cross-correlation analyses. Depth profiles of the slope β of the power spectrum (d). 
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effect was stronger than in coarse substrates as shown exemplarily for CL and S (Fig. 3.6a). All 

depth profiles of ρac showed monotonous but non-linear shapes. 

The cross-correlation analyses showed that all moisture time series from the HOM data set 

were increasingly time delayed with larger soil depth. This was clearly reflected by the depth 

profiles of time lags at maximum cross-correlation between the reference time series 

(z = 30 cm) and time series from all other depths (shown for CL and S in Fig. 3.6b). The time 

delay per depth unit increased from coarse to fine textures. Lags of time series simulated in 

the deepest depth (z = 450 cm) were less than 15 d for S and more than 40 d for CL. The depth 

profiles of time lags were approximately linear but exhibited irregular steps, although the time 

series were simulated in homogeneous substrates. Values of maximum cross-correlation de-

creased with soil depth (Fig. 3.6c). This showed that besides time delaying also other ways of 

signal transformation exist. 

The slopes β of the power spectrum were always negative in the HOM case. Hence, all time 

series exhibited stronger prevalence of low frequencies compared to high frequencies. The 

values of β decreased with soil depth (Fig. 3.6d) showing that the soil profiles act as low-pass 

filters yielding more strongly damped time series with increasing depth. Similar to the autocor-

relation (Fig. 3.6a) the intensity of signal damping increased from coarse to fine textures. The 

depth profiles of β showed both non-linear shapes and irregular steps.  

3.3.2. Principal Components 

The principal component analysis aimed at a quantitative description of soil hydrological be-

havior in order to disentangle between different effects. When PCAs were applied separately 

on the data sets HOM, NOISE, and HET the resulting 1st components were very similar 

(r2 > 0.99 in any combination). The same appeared for the 2nd components where correlations 

were always larger than r2 = 0.98. Hence, neither textural heterogeneity nor measurement 

errors influenced the two most dominant patterns of moisture dynamics, even if the relevance 

of these patterns differed between the three data sets. For that reason there was no benefit 

for applying PCAs separately on each data set. Hence, we present in the following the first two 

components of a merged data set MERGED containing all 540 time series of the data sets 

HOM, HET and NOISE. 
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The first component explained 64.9 % of the total variance of the HOM data and the 2nd com-

ponent another 21.8 % (Tab. 3.3). Thus, data set HOM could be summarized by two repre-

sentative time series maintaining 𝜎𝑒𝑥𝑝𝑙
2  = 86.7 % of the total information content. Consequent-

ly, the time series of data set HOM exhibited a large share of common temporal patterns, alt-

hough they were simulated in different soil depths with a wide range of soil hydraulic proper-

ties (Fig. 3.2). This was different for the NOISE data where only 𝜎𝑒𝑥𝑝𝑙
2  = 57.9 % could be ex-

pressed by the first two components due to the uncorrelated random noise added to the time 

series from data set HOM. Correspondingly, the noisy time series shared a smaller fraction of 

common dynamics that could be detected by a PCA. In the case of the HET data 𝜎𝑒𝑥𝑝𝑙
2  was 

88.7 %. Data set HET could be represented by the first two principal components to a similar 

Table 3.3. Fraction of variance 𝜎𝑒𝑥𝑝𝑙
2  explained by the first two principal components (PC) for each of the 

three data sets HOM, NOISE and HET and the entire data set MERGED. Note that the number of time 

series was 60 in data set HOM but 240 in data sets NOISE and HET. 

Figure 3.7. First two principal components (PC) shown as time series. Red and blue lines display different 

combinations of the 1
st

 and 2
nd

 component. 
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extent like data set HOM, although the number of time series was four times larger and they 

were simulated in a heterogeneous model domain. 

The 1st component represented a time series that was highly correlated with a time series of 

the arithmetic mean values for each date of all 540 time series (r2>0.99). Each moisture time 

series loaded positively on the 1st component. Thus, this component represented an averaged 

time series reflecting the mean temporal dynamics (Fig. 3.7). 

About a half of the moisture time series from data set HOM loaded positively on the 2nd com-

ponent and the others negatively. The loadings increased with increasing soil depth within 

each texture class. Correlation between loadings and soil depth was r2 = 0.76 (S) and r2>0.96 

(LS, Cl, and Si). Thus, the 2nd component obviously captures the effect of increasing damping 

and delay with soil depth in a homogeneous profile. More precisely, it describes the corre-

sponding deviations from the mean soil moisture dynamics (1st component). This in turn 

means that any measured time series, irrespective of soil depth, can be approximated by linear 

regression with the 1st and 2nd components. The regression coefficients are equal to the load-

ings as long as normalized data are used. Combining both components yields time series that 

reflect only those temporal patterns described by the components. In this way temporal pat-

terns caused by single factors can be extracted from entire data sets. The ratio used to com-

bine the components determines the weighting of both patterns in the constructed time se-

ries. In the two examples in Fig. 3.7 the 1st and the 2nd component were combined in a ratio of 

70:30 according to Eq. 3.7. Adding the 2nd component to the 1st component in this ratio (red 

line in Fig. 3.7) resulted a time series smoother than the mean temporal dynamics (1st compo-

nent). It also clearly lagged behind the mean dynamics. Such strongly damped moisture time 

series can be expected in large depths of homogeneous profiles. Subtracting the 2nd compo-

nent from the mean dynamics yielded a less strongly damped time series (blue line in Fig. 3.7). 

The peaks preceded those from the 1st component. This temporal pattern can be expected in 

shallow depths. 
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3.3.3. Signal transformation behavior assessed by PCA 

In the previous section the first two principal components were used to reproduce time series 

with different degrees of damping. Conversely, the damping intensity of a time series can be 

measured by the loadings on the first two components. In Fig. 3.8a each symbol represents 

one specific time series. The closer a symbol is to the unit circle, the larger is the fraction of 

variance explained by the first two components 𝜎𝑒𝑥𝑝𝑙
2 . The distance to the unit circle indicates 

the fraction of variance 1-𝜎𝑒𝑥𝑝𝑙
2  that is not covered by the first two components and thus ex-

plained by components of higher order. Symbols of each texture class plot along curved lines 

with increasing soil depth in anticlockwise direction. They are all close to a single common 

trajectory. This trajectory describes the evolution of hydrological input signals. Symbols of time 

series from equal depths but different textures are located at different positions on the trajec-

tory. Time series from S were concentrated in the lower left part of the trajectory, whereas 

those from Si were arranged more in the upper part. Within each texture class of the HOM 

data set the damping coefficient D (Eq. 3.8) increased with increasing soil depth. Resulting 

damping profiles were slightly s-shaped (Fig. 3.8b). They can be used to characterize the signal 

transformation behavior of the different substrates. Their slopes decreased in the order S, LS, 

Cl, and Si, showing that signal transformation per depth interval is by far weakest in S and 

strongest in Si. 

Figure 3.8. Loadings on the first two principal components for all HOM time series (a). Symbols repre-

sent single moisture time series. Gray circles denote the fraction of variance 𝜎𝑒𝑥𝑝𝑙
2  explained by both 

components. Resulting depth profiles of signal damping for the different texture classes (b). 
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Loadings on the 1st and 2nd component for the NOISE data set show a similar pattern (Fig. 3.9). 

However, compared to the HOM data they were more distant from the unit circle, which is 

consistent with the smaller values of 𝜎𝑒𝑥𝑝𝑙
2  (Tab. 3.3). Especially for moisture series from S the 

explained fraction of variance was low (𝜎𝑒𝑥𝑝𝑙
2  slightly larger than 0.25). Consequently, symbols 

of the S time series were arranged on a separate curve parallel to the trajectory of the symbols 

from the other texture classes. Symbols from both sandy substrates S and LS scattered in the 

direction orthogonal to their trajectory. Damping coefficients from the four NOISE realizations 

scattered slightly within each texture class (Fig. 3.10). The damping profiles were highly corre-

Figure 3.9. Loadings on the first two principal components for all NOISE time series. Each panel corre-

sponds to one noise realization. Symbols represent single moisture time series. Gray circles denote 

the fraction of variance 𝜎𝑒𝑥𝑝𝑙
2  explained by both components. 
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lated (r2 > 0.975) with those obtained from the HOM data within each texture group. A Wil-

coxon signed-rank test (cf. Hollander et al., 2014) showed that the median values of D differed 

in only two out of 16 cases significantly from the HOM case (significance level: 0.05).  

Loadings on the first two components of the HET data set plotted close to the unit circle 

(Fig. 3.11). They also plotted close to a common trajectory, very similar to the HOM case. 

However, the distances between adjacent symbols within the texture classes of single profiles 

were more irregular than in the HOM case. This resulted in less clear damping profiles for sin-

gle texture classes. Correlations of single damping profiles with the HOM reference profiles 

were r2 > 92.4 for S and r2 > 99.2 for the other texture classes. The absolute values of D dif-

fered in 12 out of 16 cases significantly from those of the HOM reference profiles (Wilcoxon 

signed-rank test, significance level: 0.05). Especially in the sand substrate D scattered substan-

tially with increasing variability at greater depths (Fig. 3.12). The extent of signal damping was 

not increasing monotonically with soil depth in the heterogeneous flow field. The two time 

series marked with “a” in Fig. 3.12 exhibited the same degree of damping, although they cor-

respond to different depths of 300 cm and 420 cm, respectively. Conversely, the time series 

marked with “b” were simulated at the same depth of 360 cm but exhibited different damping 

degrees of D = -0.42 and D = 0.04, respectively. 

Figure 3.10. Depth profiles of signal damping for the different texture classes of the NOISE data set. 
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3.4. Discussion 

3.4.1. Analyzing simulated soil moisture time series by PCA 

We introduced and tested a method to evaluate hydrological signal transformation in a soil 

profile by means of simulated data. This had the advantages that (i) the investigated scenarios 

could be defined to be very simple, (ii) purely gravity driven water flux could be considered 

without unknown influences like evaporation or root water uptake, (iii) all properties of gener-

Figure 3.11. Loadings on the first two principal components for all HET time series. Each panel corre-

sponds to one profile. Symbols represent single moisture time series. Gray circles denote the fraction 

of variance 𝜎𝑒𝑥𝑝𝑙
2  explained by both components. 
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ated textural heterogeneity and generated random noise were known, and (iv) the precipita-

tion was identical for all data sets. However, these advantages are accompanied by the ques-

tion about transferability of results from a “simulated world” to the “real world”. The models 

we used to generate time series are based on various assumptions such as rigid pore systems 

or unimodal pore distributions. Several processes like macropore flow or hysteresis were ig-

nored. However, these constraints correspond to those of most soil hydrological models for 

deep seepage flux below the rooting zone. In this study it was not the intention to simulate 

specific scenarios observed in field, but rather to set up a data set with certain spatial hetero-

geneity. Nevertheless it remains indispensable to test the method with soil moisture time se-

ries measured under filed conditions like inclined soil surfaces or spatially heterogeneous pre-

cipitation inputs. For more detailed discussions about advantages and limitations of numerical 

experiments in the fields of hydrology and soil physics we refer to Schlüter et al. (2012b) and 

Weiler and McDonnell (2004). 

We characterized the soil system behavior by analyzing soil moisture time series and interpret-

ing the results in terms of soil water fluxes. In a numerical study it would also be possible to 

analyze flux dynamics directly. We decided for the indirect way because soil moisture is likely 

the most predominant variable in existing soil water monitoring programs and it can be ex-

pected that researchers will have better access to such data resources in future (Vereecken et 

al., 2008). The approach presented in this paper can be directly applied to such monitoring 

data sets in order to identify first order controls. 

Figure 3.12. Depth profiles of signal damping for the different texture classes of the HET data set. 
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The phenomenon of macropore flow was not considered in this study. In contrast to matrix 

flow many different approaches exist to model macropore flow in structured soils (Köhne et 

al., 2009). A PCA would probably detect functional differences between time series simulated 

by different macropore flow models. This would further complicate disentangling between all 

emerging effects and would require much more comprehensive efforts. On the other hand, 

our results suggest that macropore flow would merely reduce the damping intensity per depth 

unit in a soil profile rather than generating a completely different kind of transformation of the 

input signal. This should be further investigated in a separate study. 

3.4.2. Signal transformation in homogeneous soils with different textures 

Two independent functional patterns detected by a PCA sufficed to explain 𝜎𝑒𝑥𝑝𝑙
2  = 86.7 % of 

the total variance of the HOM data set comprising soils of quite different textures. Most of the 

soil moisture dynamics at any depth and any texture could be reconstructed by simply combin-

ing two principal components. Both patterns did not occur in random combination spread over 

the profile. Their ratios were strictly ordered by soil depth as it could be described by one sin-

gle trajectory in the vector space of the loadings. Hydrological signals can only be transformed 

to a more damped status with reduced variance while they are processed through the system. 

Consequently, the modeled soil systems possess only one degree of freedom to transform 

hydrological input signals. The only difference between textures was the damping intensity per 

depth unit indicated by the slopes of the damping profiles in Fig. 3.8b. As a consequence the 

moisture series in 120 cm (Si), 150 cm (CL), 180 cm (LS), and 450 cm (S) were equally damped 

although they were simulated at different depths. 

All of the remaining components together accounted for another 13.3 % of the HOM variance. 

As stated above, non-linearities of the signal transformation might be hidden in some of the 

remaining components. Non-linear patterns could be detected by single components when a 

non-linear ordination method like Isometric Feature Mapping (Tenenbaum et al., 2000) is 

used, but this was beyond the scope of this study. On the other hand, a Kruskal-Wallis test (cf. 

Hollander et al., 2014) showed that there were several of the remaining components where 

the loadings from at least one texture group differed significantly from the others. In total 

these components accounted for 3.4 % (significance level: 0.05) or 0.9 % (significance level: 

0.01) of HOM variance, respectively. That numbers represent an upper limit of the variance 

that could be ascribed to substrate-specific kind of transformation of the input signal. 
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Hauhs and Lange (1996) concluded from thermodynamic considerations that the information 

content of input fluxes is lowered during the passage through ecosystems. They further stated 

that ecosystems act as filters smoothing input data, increasing with depth. Our results showed 

that the vadose zone can also be seen as a low-pass filter for soil moisture signals where the 

characteristics of filtering are almost identical but the intensity of filtering strongly depends on 

soil texture. 

Both alternative damping measures autocorrelation ρac and low-pass damping β assessed by 

power spectrum analysis yielded strong non-linear depth profiles. Hence, both measures are 

very sensitive in shallow sections of a soil, but fail in describing signal transformation in larger 

depths. The cross-correlation ρcc measuring time lags is linearly scaled over the whole range of 

soil depth. However, ρcc represents a non-monotonous measure due to irregular steps in the 

depth profile. In contrast to all three presented alternative measures the PCA makes full use of 

the shape of the time series, including both time lags as well as smoothing effects. Resulting 

depth profiles of D are adequate to describe signal transformation in soils, because D increases 

almost linearly and monotonously with soil depth. 

Soils with homogeneous textures occur very rarely in nature. Usually soil profiles exhibit hori-

zontal layers. If layered profiles are assumed to be comprised of several homogeneous layers 

with different textures, it can be expected on the basis of our results that no new independent 

functional patterns of soil moisture would emerge. Hence, all time series occurring in a layered 

profile could also be described by the same trajectory. However, the damping profiles would 

exhibit abrupt changes in slopes at the layer boundaries. 

Pressure head conditions typical for sites with large distance to groundwater (free drainage 

lower boundary condition) were considered in this study. However, sites with shallow depths 

of groundwater tables also occur frequently in nature. In such cases water content profiles are 

imposed to reach saturation above the groundwater table. It can be supposed that different 

signal transformation intensities between the four textural classes would also be observed 

under very wet or even saturated conditions, because hydraulic conductivities do also vary 

between soil textures under wet conditions. However, this should explicitly be analyzed in a 

separate study. 
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3.4.3. Effects of random noise and textural heterogeneity 

In the NOISE and HET data sets time series were manipulated in different ways. The NOISE 

data were blurred by adding independent random noise producing larger variance among the 

moisture series. This consequently yielded more functional heterogeneity. But it is worth not-

ing that the first two components and the resulting damping profiles were nearly identical to 

the HOM case, although the fraction of explained variance was much smaller. This showed that 

D is a very robust measure of the signal damping status.  

In contrast, for the HET data spatial variance in texture distribution was generated firstly and 

then considered in each simulation run. Hence, the HET data set contained information about 

the system response to textural heterogeneity. The explained variance 𝜎𝑒𝑥𝑝𝑙
2  was similar to the 

HOM case and input signals were also transformed in only one direction along a common tra-

jectory. This means that random patterns in soil texture did not yield random patterns in soil 

moisture dynamics. In other words, textural heterogeneity did not cause functional heteroge-

neity, because no additional functional patterns occurred in the HET time series. This is con-

sistent with Basu et al. (2010) who stated for the catchment scale that structural heterogeneity 

does not necessarily translate to functional heterogeneity. In contrast to the HOM case the 

damping status of time series did not change monotonically with depth. The distances be-

tween adjacent symbols on the trajectory were less regular yielding less distinct damping pro-

files (Fig. 3.12). Obviously, water fluxes occur along various pathways with different signal 

damping intensities. The damping status of a time series at any position of the profile results 

from the superposition of effects along the respective flow paths. This implies that the damp-

ing status at any position could be used to assess characteristics of the flow field above. Con-

sequently, a heterogeneous flow field can be analyzed by means of time series measured at 

different positions. In the best case, the spatial distribution of soil texture could be predicted 

on the basis of such functional analyses.  

Roth (1995) showed by means of numerical simulations that low-flux regions can become high-

flux regions and vice versa when a threshold of effective saturation is exceeded. This effect 

was not considered in this study because a PCA represents a global measure of signal trans-

formation behavior that does not distinguish between different states of a soil system. It is 

worth analyzing if time series simulated at identical positions in a heterogeneous soil but un-

der different degrees of saturation would be located at identical positions on the trajectory. 

However, this was beyond the scope of this study. 
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3.4.4. Potential fields of application 

The vadose zone plays a preeminent role for transformation of the input signal given by pre-

cipitation or snowmelt. It is usually the first link in a sequence of hydrological subsystems like 

aquifers, the riparian zone or streams where hydrological signals are propagated and trans-

formed. In addition, signal transformation in the vadose zone is far more intensive than in sat-

urated substrates due to the large water displacement space in the unsaturated pore system. 

It is likely that the vadose zone determines signal propagation through the whole hydrological 

system (Lischeid et al., 2010). Thus, investigating the signal transformation behavior of the 

vadose zone is of outermost importance for various application fields like groundwater balance 

calculation or even flood forecasting. The presented approach allows analyzing and quantifying 

this function of the vadose zone within the hydrological cycle. It is worth investigating if similar 

patterns can be found in observed data where additional influences like evaporation, root wa-

ter uptake or capillary rise occur. This could be done by means of moisture time series meas-

ured in different soils that are exposed to identical atmospheric conditions like it was done in 

the TERENO-SOILCan project (Zacharias et al., 2011). Some fields of application are outlined in 

the following. 

First, the presented approach can be used performing data plausibility tests, gap filling and 

identification of potential outliers. It is a powerful and robust tool to distinguish valuable in-

formation from uncorrelated background noise as it was shown for the NOISE case. Systematic 

and correlated errors might be summarized by single components that can then be eliminated 

from the data set easily. 

Second, the approach might be used to assess the mean damping per depth in heterogeneous 

soils. This “functional averaging” might then be used to define a corresponding homogeneous 

substrate that could easily be used to simulate mean damping per depth at a larger scale ra-

ther than aiming at mimicking the observed heterogeneity to a full extent. Thus an effective 1D 

model representation of heterogeneous flow fields could be achieved. Parameters of such a 

1D model could be fitted to the mean damping behavior rather than trying to mimic any single 

observed time series. We feel that this is a very promising approach for upscaling from small-

scale observations. This approach would circumvent the problems known to be ascribed to the 

wide-spread approach to average properties of the soils prior to inputting them into a model 

(e.g. Ahuja et al., 2010; Vereecken et al., 2007; Zhu and Mohanty, 2002).  The resulting func-

tional averaged time series could then be used both for model calibration and model testing. 
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Third, the approach can easily be extended to identify additional causes of heterogeneity in 

observed data. In contrast to process based modeling approaches the PCA does not require 

any prior assumptions about underlying processes. Instead, processes identified by PCA help to 

constrain the structure of process based models right from the beginning of the modeling pro-

cess. In fact, that approach has been successful in analyzing groundwater head data (Böttcher 

et al., 2014; Lewandowski et al., 2009) as well as discharge data (Thomas et al., 2012). 

3.5. Conclusions 

This study presents and tests an approach to determine the kind and degree of transformation 

of a hydrological input signal in soils. Soil moisture time series simulated at different depths 

and for different soil textures were analyzed in a quantitative way. The results provide strong 

evidence that different soils differ only with respect to the degree of damping per depth inter-

val rather than with respect to the kind of transformation of the input signal. Consequently, for 

any heterogeneous soil a corresponding homogeneous soil can be defined that yields exactly 

the same mean behavior for a given depth. Thus observed data from heterogeneous soils can 

be used for performing a “functional averaging”. Functional averaged time series can be used 

for calibration and testing large scale models with regard to upscaling from small scale obser-

vations.  

This study was restricted to simulated data that presumably reflect only part of the variance 

inherent in observed data. In a next step it will be applied to observed data. However, our 

results give at least strong evidence that the models based on the Richards equation exhibit 

only very limited degrees of freedom with respect to the kind of transformation of hydrological 

signals in soils. Thus, for this type of models at least there is no need to account for different 

soil textures as long as only mean behavior at a certain depth is of interest. 

In contrast to other approaches, the PCA makes full use of the information provided by ob-

served time series. Thus it seems to be a very powerful approach for efficient extraction of 

information from observed data, and to describe hydrological behavior in heterogeneous sys-

tems in a quantitative way. We feel that this approach could yield much information supple-

menting the usual modeling approaches. 
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4. Disentangling the effects of land 

management and soil heteroge-

neity on soil moisture dynamics3 

Summary 

Soil moisture is the essential control of water and energy dynamics at arable sites. Time series 

of soil moisture reflect the interplay of various processes, each of which influences the overall 

soil moisture dynamics. In this study we tested an approach to break down observed soil mois-

ture behavior into the respective contributions of individual processes. We applied a principal 

component analysis to soil moisture time series from a field experiment comprising two crop 

rotation systems and two different soil tillage practices. We concentrated on 57 soil moisture 

time series measured over nearly four years at 12 plots and five soil depths, down to 1.5 m. 

About 77.9 % of the variance was reflected by the first component being almost identical to a 

time series of averaged soil moisture. It described the effect of the meteorological boundary 

conditions. The second component described the effect of the input signal damping increasing 

with soil depth and accounted for 7.8 % of total variance. The signal transformation over depth 

proved to be more or less uniform throughout the test site, despite considerable soil hetero-

geneity. Another 3.6 % of the total variance (third component) was unambiguously explained 

by the different cropping systems. On the contrary, different soil tillage practices had no signif-

icant effect. The suggested approach opens up many possibilities to analyze and better under-

stand complex soil system behavior. The data-based approach of time series analysis provides 

model-independent, quantitative information about the key factors and processes controlling 

soil-water dynamics. Hence, it is especially valuable for model building, calibration and evalua-

tion. 
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3 An article with equivalent content has been published as: 

Hohenbrink, T.L., Lischeid, G., Schindler, U., Hufnagel, J., 2016. Disentangling the Effects of 
Land Management and Soil Heterogeneity on Soil Moisture Dynamics. Vadose Zone Journal, 
15(1). DOI: 10.2136/vzj2015.07.0107.
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4.1. Introduction 

Soil moisture θ [L3 L-3] is probably the most important measurable status variable to evaluate 

the water and energy budgets of arable sites (Vereecken et al., 2008). However, soil moisture 

usually exhibits considerable spatial heterogeneity (Corradini, 2014; Vereecken et al., 2014), 

making all means of data evaluation more complicated. This heterogeneity can be caused by 

natural effects, e.g. the spatial variability of soil texture (e.g. Hohenbrink and Lischeid, 2014; 

Jawson and Niemann, 2007; Schlüter et al., 2012) as well as by different land use practices, 

such as soil tillage techniques (e.g. Perfect and Caron, 2002; Schwen et al., 2011). The impacts 

of land use practices on soil moisture dynamics must be quantified in order to evaluate the 

efficacy of specific management decisions. Interactions between different land management 

effects are usually investigated using simulation models (an overview of which is provided by 

Boote et al., 2013). However, this always requires a priori knowledge or assumptions about the 

governing processes. Therefore, model-independent diagnostic tools to disentangle the differ-

ent sources of soil moisture heterogeneity are urgently needed to analyze existing monitoring 

data sets. Such tools could even be used to reduce uncertainty in numerical models. 

There are several approaches to determine the patterns hidden in moisture data sets (for an 

overview see Vereecken et al., 2014), each emphasizing different features of soil moisture 

patterns. Classical geostatistical methods are used to characterize the spatial distribution of 

soil moisture. The spatial covariance of soil moisture from different locations is usually ex-

pressed as a function of distance illustrated by variograms (e.g. Baroni et al., 2013; Joshi and 

Mohanty, 2010; Korres et al., 2015). More recently, more sophisticated methods such as wave-

let analysis (e.g. Biswas, 2014; Peng et al., 2013; Rivera et al., 2014), self-organizing maps (e.g. 

Zou et al., 2012) or fractal analysis (Korres et al., 2015) were used to investigate the spatial 

distribution of soil moisture. Temporal stability analyses of soil moisture patterns (Vachaud et 

al., 1985) are designed to identify locations with soil moisture dynamics representative of the 

whole observation site. This approach is based on the observation that the ranks of soil mois-

ture values from different locations remain almost constant over time (see the overview by 

Vanderlinden et al., 2012). Standard methods of time series analysis, such as autocorrelation 

and cross-correlation analyses, have been used to compare soil moisture dynamics from vari-

ous depths (De Lannoy et al., 2006; Hohenbrink and Lischeid, 2015; Mahmood and Hubbard, 

2007) and relate them to other variables such as precipitation and temperature (Mahmood et 

al., 2012). Low-pass filtering behavior, i.e. changing periodicity of soil moisture oscillations, 



Chapter 4 

86 

was investigated for vadose zones (Hohenbrink and Lischeid, 2015; Katul et al., 2007) and en-

tire catchments (Gall et al., 2013). Slopes of the power-spectra were used to characterize and 

compare the periodicity distributions of time series from different locations. Principal compo-

nent analysis (PCA), also known as empirical orthogonal functions analysis (cf. Vereecken et al., 

2014), was frequently used to decompose the variance in soil moisture data sets from arable 

fields into uncorrelated patterns and relate them to specific explanatory variables (e.g. Baroni 

et al., 2013; Korres et al., 2010; Qiu et al., 2014). 

Applying the presented methods to monitoring data sets from various investigation sites re-

vealed that soil moisture patterns can be controlled by topography (e.g. Qiu et al., 2014; Yoo 

and Kim, 2004), soil textural properties (e.g. Baroni et al., 2013; Jawson and Niemann, 2007; 

Yoo and Kim, 2004), soil organic carbon content (Korres et al., 2010), vegetation (e.g. Baroni et 

al., 2013; Korres et al., 2015), land management (e.g. Korres et al., 2010; Korres et al., 2015) 

and meteorological conditions (e.g. Joshi and Mohanty, 2010; Qiu et al., 2014). However, most 

researchers only investigated spatiotemporal moisture patterns from a shallow soil depth on a 

few selected dates. Hupet and Vanclooster (2002) stressed the importance of using measure-

ments from the entire hydrologically active zone to investigate soil moisture spatial variability. 

However, few studies analyze long-term soil moisture dynamics in vertical profiles deeper than 

one meter (De Lannoy et al., 2006; Hu and Si, 2014). Hohenbrink and Lischeid (2015) proposed 

to apply a PCA on soil moisture time series from different locations in vertical soil profiles. 

They investigated the effects of textural heterogeneity on the transformation of hydrological 

signals (e.g. rainfall, snow melt) propagating through the vadose zone. Furthermore, they stat-

ed that the approach has great potential to distinguish independent effects contributing to 

hydrological behavior observed in soil systems. Their approach was introduced with the exam-

ple of simulated time series resulting from a numerical experiment. However, the transferabil-

ity of their results from a “simulated world” to the “real world” still has to be proven based on 

soil moisture time series measured under field conditions. In fact, that approach has already 

been successfully applied to groundwater head time series (Böttcher et al., 2014; Lehr et al., 

2015; Lischeid et al., 2010; Page et al., 2012). 

Our objectives were to identify and describe the specific effects of soil heterogeneity and land 

management practices on soil moisture dynamics. To achieve this, we decomposed the total 

variance of measured soil moisture time series by PCA as suggested by Hohenbrink and 

Lischeid (2015). An adequate monitoring data set of soil moisture time series was required to 
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apply the approach. We used a monitoring data set from a multifactorial field experiment in 

Northeast Germany as it had the following features: (i) intensive instrumentation, (ii) large 

number of replicates, (iii) different well documented soil treatments, (iv) spatially homogene-

ous precipitation inputs due to the small size of the test site and (v) large soil heterogeneity 

spatially uncorrelated with the experimental set-up. In this paper the term “hydrological sig-

nal” designates spatiotemporal changes in the soil moisture which are propagated through the 

vadose zone (cf. Hohenbrink and Lischeid, 2015). We use the term “functional heterogeneity” 

to express the variability among measured time series (cf. Basu et al., 2010; Hohenbrink and 

Lischeid, 2015) bearing information about the hydrological system behavior of the soils inves-

tigated. 

4.2. Methods 

4.2.1. Field experiment 

The experimental test site (52° 31´ 01´´ N, 14° 07´ 27´´ E, 62 m a.s.l.) was situated in the low-

lands of Northeastern Germany close to the city of Müncheberg. It is located in the transition 

area between a maritime climate and a continental climate. Between 1981/01/01 and 

2012/01/01, the annual sums of precipitation and potential evaporation were 529 mm and 

659 mm and the mean annual temperature was 9.1°C (DWD, 2014). The experimental site is 

covered by a layer of sediment from the Late Pleistocene, with a flat surface. Sand layers alter-

nate at short distances with glacial till containing clay and marl, resulting in large textural het-

erogeneity. More information about the depth distribution of soil texture at the experimental 

site can be found in a data set published by Mirschel et al. (2010). The predominant FAO soil 

type at the test site is Orthic Luvisol. 

Twelve experimental plots with an area of 788 m2 each were arranged on an experimental 

field (Fig. 4.1). Six plots were managed using a cultivation system designed to stabilize the or-

ganic carbon content of the soil. This featured a four-year crop rotation system of winter rye 

(Secale cereale), forage sorghum (Sorghum bicolor), winter triticale (xTriticale), a mixture of 

alfalfa, clover and grass (Medicago sativa, Trifolium pretense and Lolium perenne), and maize 

(Zea mays) each harvested as whole plants. This system is hereafter referred to as "CropRo4". 

The other six plots were cultivated using a one-year crop rotation system of maize and winter 
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rye designed to maximize the yield of biomass (hereafter referred to as  

"CropRo1"). The maize was harvested as a whole plant. The winter rye was only grown for 

erosion protection in the winter (as a cover crop) and was removed at an early stage of 

growth. Thus, its soil water consumption was marginal. Half of the plots were managed by 

plowing and the others were not tilled (direct seeding). Thus, each combination of cultivation 

system and tillage practices was carried out in three replicates. Each experimental plot was 

equipped with seven FDR soil moisture sensors (ThetaProbe ML2x, Delta-T Devices, England) at 

depths of 0.3 m, 0.6 m, 0.9 m, 1.2 m, 1.5 m, 2.0 m, and 3.0 m. All devices and cables were in-

stalled at least 30 cm below the ground to ensure that the upper 25 cm of the soil could be 

plowed. The soil moisture was measured for nearly four years between 2008/05/01 and 

2012/04/23 with an hourly time resolution and aggregated to daily data.  

4.2.2. Data preparation 

The measured time series were initially plotted in a diagram and checked visually for plausibil-

ity. They cannot be shown here, due to their large number. Time periods with frozen soil water 

had to be omitted from the data set, because the FDR probes were calibrated for non-frozen 

soils only. Thus, an exclusion criterion was defined on the basis of soil temperature time series 

measured by DWD (2014). Soil moisture values were not considered when the soil tempera-

ture at either 0.2 m or 0.5 m was smaller than 1°C, yielding four data gaps during the winter. 

Figure 4.1. Experimental design of the long-term field experiment in Northeast Germany comprising two 

crop rotation systems and two different soil tillage practices. At each plot, soil moisture time series 

were measured at different soil depths. 
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Two additional time periods of 30 d (from 2009/05/20 to 2009/06/18) and 41 d (from 

2011/07/14 to 2011/08/23) were omitted due to data gaps in several time series caused by 

malfunctioning data loggers. The time series measured at 150 cm at Plot 03, Plot 06 and 

Plot 10, and at 200 cm at Plot 11, had to be omitted totally as those sensors malfunctioned. 

Any measurement gaps in all the remaining time series were smaller than 6 d. An autocorrela-

Figure 4.2. Z-transformed soil moisture time series shown as an example for three soil depths at four 

experimental plots. Time shifts in two local soil moisture minima between shallow and great depths 

are highlighted with an “a” and a “b”. 
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tion analysis of all time series showed that the minimum autocorrelation for time lags of 6 d 

was 0.80. This means that missing values can be predicted by existing with an accuracy of at 

least 80 %. Thus, all gaps smaller than 6 d were interpolated linearly. The fraction of interpo-

lated data points considered in the analysis was 1.24 %. 

Each individual moisture time series θ(t) was scaled to zero mean and unit variance (z-

transformation) 






)()(
)(* tt

t


 . (4.1) 

Information about the absolute values and amplitudes of θ(t) are lost during z-transformation, 

but it makes the scaled moisture time series θ*(t) comparable and they are weighed equally. In 

the first step, only data from the upper five depths (z≤150cm) were considered for detailed 

analyses and discussion, because plant effects were presumably more significant here com-

pared to greater depths. The z-transformed moisture series exhibited annual fluctuations with 

maxima in winter and minima in summer (Fig. 4.2). As the soil depth increased, the time series 

became smoother and lagged in time. However, time lags varied between different time peri-

ods. In Fig. 4.2 time shifts between the shallow and great depths are highlighted for two local 

minima. Time lags of soil moisture time series were much larger in the autumn of 2008 

(marked with an “a”) compared to the summer of 2010 (marked with a “b”), although they 

were measured at identical positions. All z-transformed time series were organized in an input 

matrix Θ where each column represented a time series and each row a date. 

4.2.3. Principal component analysis of time series 

A PCA was applied to the input matrix of time series. This is an ordination method to analyze 

the structure of a multivariate data set and to identify common temporal patterns among time 

series. A PCA finds a new orthonormal basis for the multivariate data space spanned by all 

input time series. The total variance of the input data is decomposed into independent frac-

tions. This results a set of uncorrelated principal components (PCs). Here, the target is to iden-

tify a first component which explains most of the total variance, a second component which 

explains most of the remaining variance and so on. All the resulting PCs are summarized in a 

matrix P in the order of the fraction of variance they explain. The transformation of the input 

matrix Θ into P can be computed by 
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 TP . (4.2) 

The matrix Λ contains the eigenvectors of the correlation matrix of Θ ordered by their corre-

sponding eigenvalues. The fraction of total variance explained by a PC can be calculated by 

dividing the corresponding eigenvalue by the sum of all eigenvalues. Often only few PCs are 

needed to explain much of the total variance. We refer to Jolliffe (2002) for a detailed mathe-

matical description of PCA. One important limitation of PCA is that only linear patterns are 

detected. Nonlinear patterns in a data set can only be approximated by gradually superposing 

several linear PCs (cf. Lee and Verleysen, 2007). The input time series should ideally be normal-

ly distributed but this condition is less important when PCA is considered a mainly descriptive 

technique (Jolliffe, 2002). 

The PCs represent time series describing uncorrelated temporal patterns which presumably 

reflect different effects on the observed dynamics. Pearson correlation coefficients among PCs 

and the measured time series are known as loadings, L. The fraction of variance 𝜎𝑒𝑥𝑝𝑙
2  of indi-

vidual time series explained by the m first components can be calculated by the loadings 

1
1

22

exp  

m

k kl L  (4.3) 

We calculated the arithmetic mean values 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ of the explained variances 𝜎𝑒𝑥𝑝𝑙

2  of all individ-

ual time series from each measuring plot. The means of explained variances 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ were used 

to quantify the prevalence of temporal patterns described by single or several PCs at the indi-

vidual measuring plots. On the basis of 𝜎𝑒𝑥𝑝𝑙
2 , 𝜎𝑒𝑥𝑝𝑙

2̅̅ ̅̅ ̅̅ ̅, L, and additional information (e.g. the 

measuring depth of the moisture time series), the temporal patterns described by individual 

components can be related to specific factors causing the observed patterns. We systematical-

ly tested whether all PCs were associated with effects of the following factors (significance 

level: 0.01):  

1. Mean soil moisture behavior: the Pearson correlation was calculated between the dai-

ly arithmetic mean values of all input time series and the scores of each PC. A t-test 

was performed to see whether the resulting correlation coefficients r differed from 0. 

2. Soil depth: the Pearson correlation was calculated between the installation depth of 

single sensors and the loadings of the corresponding time series for each PC. A t-test 

was performed to see whether the resulting correlation coefficients r differed from 0. 
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3. Cropping system: a Wilcoxon-Mann-Whitney test was performed for each PC to see 

whether the loadings from the CropRo1 and CropRo4 plots differ. 

4. Soil tillage: a Wilcoxon-Mann-Whitney test was performed for each PC to see whether 

the loadings from the tilled and non-tilled plots differed. 

In cases where the first component describes the mean course of all the considered soil mois-

ture time series and another component represents an effect of soil depth, Hohenbrink and 

Lischeid (2015) suggested evaluating the input signal transformation behavior of the vadose 

zone on the basis of both components. A signal damping coefficient D [-] quantifying the ex-

tent of smoothing and time lagging in each moisture series can be derived from the ratio of the 

loadings L1 and L2 as described by Hohenbrink and Lischeid (2015) and Lischeid et al. (2010). 

The damping coefficient D represents a dimensionless relative measure that can only be inter-

preted in the context of the data set evaluated by the PCA. Temporal dynamics explained by 

components of a higher order are neglected by D because it is only based on the first two 

components. In this study all calculations and statistical analyses were performed with the R 

software package (R Development Core Team, 2010). 

Table 4.1. Arithmetic mean values 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅  of the explained variances of all individual time series from each 

measuring plot. The mean values 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅  provide a measure of the prevalence of temporal patterns 

described by the principal components (PCs) at each measuring plot. 
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4.3. Results 

4.3.1. Mean behavior of soil moisture and effect of soil depth 

First principal component 

The first PC explained 77.9 % of the data set’s total variance. The mean values of explained 

variances ranged from 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ = 0.653 at Plot 09 to 𝜎𝑒𝑥𝑝𝑙

2̅̅ ̅̅ ̅̅ ̅ = 0.841 at Plot 06 (Tab. 4.1). All load-

ings were positive (Fig. 4.3a). The absolute values of the loadings were between 0.697 and 

0.960. Thus, the first PC described a temporal pattern that was apparent in every single time 

series. At each plot, the largest loadings appeared at medium depths, showing that the pattern 

described by the first PC was most predominant in the center of the soil profiles. The first PC 

was nearly identical (r2>0.999, p-value≪0.01) to a time series representing the daily arithmetic 

mean values of all input time series. Thus, the first PC described the mean behavior of soil 

moisture, which was strongly influenced by atmospheric controls. 

Figure 4.3. Loadings of all time series on the first (a) and second (b) principal components. Bars repre-

sent individual time series grouped by measuring plot. Plots are ordered by the management options 

CropRo1/tillage (grey), CropRo1/no tillage (reddish colors), CropRo4/tillage (green) and CropRo4/no 

tillage (blue). Within each plot, the time series are sorted by measuring depth, which increases from 

left to right. 
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Second principal component 

The fraction of total variance explained by the second PC was 7.8 %. The loadings of the time 

series on the second PC varied between -0.446 and 0.439 and were correlated (r2 = 0.884, p-

value≪0.01) with soil depth. Loadings increased with the depth, from negative values in the 

topsoil to positive values at greater depths (Fig. 4.3b). Thus, the second PC reflected deviations 

from the mean behavior (first component) depending on the soil depth. Combining the first 

two PCs by linear combination according to the principle of superposition resulted in recon-

structed time series. They represented approximations of moisture dynamics that could be 

expected if soil depth were the only influencing factor. Different desired soil depths were spec-

ified using the ratio of combination. Adding the second PC to the first one yielded a time series 

(blue line in Fig. 4.4) that was more strongly damped (smoother) and time lagged compared to 

the mean behavior (black line). Temporal patterns of this kind were observed at large soil 

depths, where loadings of the second PC were positive. On the contrary, subtracting the sec-

ond PC from the first one yielded a more weakly damped time series (orange line) with tempo-

rally preceding dynamics compared to the mean behavior. Such moisture time series were 

observed at shallow depths and loaded positively on the second PC. The variances of the first 

and second component were combined in the ratio 70:30 to construct the moisture dynamics 

shown in Fig. 4.4. Following Eq. 4.3 this corresponds to the loadings L1 = √0.7 = 0.83 and 

L2 = √0.3 = ±0.54. Soil depth had a slightly stronger effect in the constructed time series than in 

the observed ones, since the absolute values of L2 were slightly larger than those of the time 

series measured at shallow and great depths (Fig. 4.3). 

Figure 4.4. Time series showing the scores of the first two principal components (PCs) superposed in 

different ratios. Time shifts in two local minima are highlighted with an “a” and a “b”. 
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Time shifts between the moisture dynamics reconstructed for shallow and great soil depths 

varied between different time periods similarly to the measured moisture series. In Fig. 4.4, 

different time lags of local minima in the autumn of 2008 and the summer of 2010 are high-

lighted with “a” and “b” as in Fig. 4.2. 

Signal damping 

It was possible to calculate signal damping coefficients D quantifying the damping status of 

each measured time series, since the loadings on the second PC were correlated with the soil 

depth. The calculation of D was based on the loadings of the first two components only. Thus, 

the determination of D made use of 85.7 % of the data set’s total variance. The mean value of 

Figure 4.5. Depth profiles of the signal damping coefficient D for each measuring plot. The panels are 

ordered into columns based on the management options CropRo1/tillage (grey), CropRo1/no tillage 

(reddish colors), CropRo4/tillage (green) and CropRo4/no tillage (blue). The black lines describe the 

averaged damping behavior of the vadose zone. The three quality criteria indicate the mean value of 

variances explained by the first two components (𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ), as well as the mean absolute error (MAE) 

and correlation (R
2
) between the individual and averaged damping profiles. 
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variances explained by the first two PCs used to calculate D varied between 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ = 0.743 at 

Plot 09 and 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ = 0.910 at Plot 02 (Tab. 4.1). At each plot D increased along with the soil 

depth; in other words, time series measured at a greater soil depth were more strongly 

damped compared to those from shallow depths (Fig. 4.5). The relation between D and soil 

depth was almost linear. A regression line (intersect: -84.5 cm, slope: -129.4 cm per unit of D, 

r2 = 0.88) described the field-averaged signal damping status of the measured time series. Its 

slope indicated the averaged signal transformation intensity and thus characterized the signal 

transformation behavior of the vadose zone. Moisture dynamics showing the averaged damp-

ing state can be reconstructed for any soil depth by combining the first two components. That 

way, the measured soil moisture time series can be functionally averaged. This means averag-

ing the signal transformation behavior of the vadose zone at the experimental site (cf. Hohen-

brink and Lischeid, 2015). The damping coefficients of individual time series differed only 

slightly from the field average, showing that hydrological signals were similarly transformed at 

all plots. Mean absolute errors (MAEs) and correlation coefficients (R2) between individual and 

averaged damping profiles were used to evaluate deviations from the averaged behavior. 

Plot 12 (MAE = 0.031, R2 = 0.989) and Plot 03 (MAE = 0.040, R2 = 0.994) behaved most similarly 

to the average while the largest deviations from the mean behavior occurred at Plot 10 

(MAE = 0.147, R2 = 0.990) and Plot 05 (MAE = 0.132, R2 = 0.815). All time series from Plot 10 

were more strongly damped than the field average. Hence, the damping profile ran parallel to 

the averaged one. Note that the mean values of explained variances  𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ were correlated 

neither with MAE (r2 < 0.005) nor with R2 (r2 < 0.04). This shows that moisture dynamics deviat-

ing from the field-averaged damping status can be approximated by the first two components 

to the same extent as those representing the average behavior.  

4.3.2. Effect of cropping system 

The third PC covered 3.6 % of the data set’s total variance. In contrast to the first two compo-

nents, the mean value of explained variances (Tab. 4.1) was largest at Plot 09 (𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ = 0.094) 

and smallest at Plot 02 (𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅ = 0.009). The loadings were clustered in two groups (Wilcoxon-

Mann-Whitney Test, p-value≪0.01). The time series measured at the CropRo1 plots were posi-

tively correlated with the third PC (Fig. 4.6), and those measured at the CropRo4 plots were 

negatively correlated. In consequence, the third PC discriminated between the cropping sys-

tems with respect to differences in the soil moisture dynamics between the CropRo4 and the 
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CropRo1 plots (Fig. 4.7). Positive scores of the third PC indicate that the z-transformed soil 

moisture values were greater at the CropRo1 plots than at the CropRo4 plots. The opposite 

was true during time periods with negative scores. Color bars at the top and bottom of Fig. 4.7 

indicate the plants grown at the CropRo1 (top) and CropRo4 (bottom) plots during different 

time periods. In May 2008 the rye plants at the CropRo4 plots consumed more water than the 

very young maize plants at theCropRo1 plots. Hence, soil moisture at the CropRo4 plots de-

creased compared to the CropRo1 plots, as indicated by increasing scores of this component. 

This development promptly reversed after the rye harvest (marked with an “a” in Fig. 4.7). The 

scores decreased until the maize was harvested at the CropRo1 plots (marked with a “b”). Dur-

ing this time period, the maize plants built up much of their biomass, consuming more water 

than the millet plants at the CropRo4 plots. The same interplay of plant growth and water con-

sumption was observed in the following year, 2009 (turning points marked “c” and “d”). The 

course of the third PC also showed a response to the alfalfa-clover-grass mixture being mowed 

(marked “e” and “f”). The scores increased before the mowing dates, showing that water con-

sumption was higher at the CropRo4 plots. After mowing, the water consumption of the alfal-

fa-clover-grass mixture was reduced, leading to decreasing scores. This effect was not clearly 

visible when the mowing date was shortly before or after maize harvesting at the CropRo1 

Figure 4.6. Loadings on the third component. Bars represent individual time series grouped by measur-

ing plot. Plots are ordered based on the management options CropRo1/tillage (grey), CropRo1/no 

tillage (reddish colors), CropRo4/tillage (green) and CropRo4/no tillage (blue). Within each plot, the 

time series are sorted by measuring depth, which increases from left to right. 
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plots (marked “d” and “g”). In the last observed season in 2011 and 2012, all plots were uni-

formly cultivated with maize followed by rye in the winter. During this time span, the scores of 

the third component were close to zero. Thus, there were no major differences in soil moisture 

dynamics between the CropRo4 and CropRo1 plots. It is worth mentioning that the third com-

ponent described relative soil moisture dynamics instead of providing information about abso-

lute soil moisture values, since each input time series was z-transformed (Eq. 4.1). 

The first three PCs can be combined to reconstruct time series approximating the soil moisture 

dynamics that could be expected if only the soil depth and cropping system affected soil mois-

ture. Such reconstructed time series aggregate the most pronounced effects of soil depth and 

the cropping system. They can be used both for (i) detailed analyses of the specific effects and 

(ii) upscaling purposes. The time series shown in Fig. 4.8 were composed by superposing the 

first three PCs. The third PC was considered both positively (CropRo1) and negatively (Cro-

pRo4). The ratios for combination were determined by their fraction of explained total vari-

ance, where the sum of explained total variance of 89.2% was set to 100 %. Thus, the third PC 

accounted for 4.03 %. The remaining 95.97% were then assigned to the first (95.80 %) and 

second PC (0.17 %) in a ratio determined by the field-averaged value of D for a depth of 90 cm. 

Note that the second PC only accounted for 0.17 %, because the pattern represented by this 

Figure 4.7. Scores of the third component shown as time series. Color bars indicate plants grown in the 

different cropping systems CropRo1 (top) and CropRo4 (bottom). Black dots indicate the dates when 

the alfalfa-clover-grass mixture was mowed. 



4.3 Results 

99 

PC was almost non-existent in the middle of the soil profile (cf. Fig. 4.3b). The time series show 

reconstructed soil moisture dynamics that can be expected for both cropping systems at a soil 

depth of 90 cm. The temporal patterns emerging from mean behavior, soil depth and cropping 

system were functionally averaged for the whole experimental field. The moisture dynamics 

are controlled by precipitation and plant transpiration. The most significant differences be-

tween the cropping systems appeared in the summer months when transpiration rates were 

highest and soil moisture deficits were not rapidly compensated by precipitation. 

4.3.3. Effect of soil tillage 

The design of the field experiment included two soil tillage options (Fig. 4.1). The loadings of 

the time series from tilled and non-tilled plots differed significantly for the 27th component 

(Wilcoxon-Mann-Whitney Test, p-value≪0.01) indicating that it provides information about 

soil tillage effects. However, it only accounted for 0.046 % of the total variance. This fraction is 

too small for reasonable process interpretations. Nevertheless, it provides an estimation of the 

maximal fraction of total soil moisture variance below the plowing zone that could be caused 

by soil tillage effects.  

Figure 4 8. Functional averaged time series at a medium depth of 90 cm reconstructed for CropRo4 and 

CropRo1 plots. The time series are composed by superposing the first (95.80%), second (0.17%) and 

third component (4.03%). Color bars indicate plants grown in the different cropping systems Cro-

pRo1 (top) and CropRo4 (bottom). Black dots indicate the dates when the alfalfa-clover-grass mix-

ture was mowed. 
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4.3.4. Considering data from different soil depths 

The previous sections showed the results from analyses of the upper five measuring depths 

between 30 cm and 150 cm. The described effects of mean behavior, signal damping, and 

plant water consumption were also detected using PCA when different numbers of measuring 

depths were considered. However, their relevance differed. The fraction of variance explained 

by the mean behavior decreased from 84.9 % (upper three depths) to 72.0 % (all seven depths) 

when time series from more soil depths were considered (Tab. 4.2). Conversely, the effect of 

signal damping was strongest (explained total variance: 9.0 %) when all measuring depths 

were considered. The effect of water consumption of plants slightly became weaker with in-

creasing number of considered measuring depths. The total amount of variance that could 

clearly be assigned to specific influencing factors decreased from 93.9 % (upper three depths) 

to 84.0 % (all seven depths). 

4.4. Discussion 

4.4.1. Decomposing the soil moisture variance 

Applying PCA to the z-transformed input data set yielded three meaningful components ac-

counting for 89.3 % of the total variance in the upper five soil depths. A large share of the ob-

served temporal dynamics recurs in each time series, showing that soil moisture dynamics 

exhibited only a small degree of functional heterogeneity at the experimental site. This be-

comes particularly obvious when looking at the first component. More than three quarters of 

Table 4.2. Effect of the number of soil depths considered on the fraction of total variance explained by 

the first three principal components (PCs). 
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the total variance could already be aggregated by one single temporal pattern that was almost 

identical to a time series of mean values from all measuring locations. These findings are in 

good agreement with the results of Korres et al. (2010), who analyzed spatiotemporal soil 

moisture patterns at shallow soil depths using empirical orthogonal functions. They also found 

a PC reflecting the mean soil moisture dynamics at a pasture site and an arable field. Similarly 

to our results, this main pattern explained more than 70 % of soil moisture variance from the 

arable site, although Korres et al. (2010) considered only ten measuring dates. 

The explanatory power of a PCA to identify specific effects strongly depends on the infor-

mation content of the analyzed data set. Thus, the experimental design already determines 

the applicability of a PCA. Our results have shown that the fraction of variance explained by 

specific effects was determined by the number of soil depths considered. However, the nature 

of the resulting PCs and, thus, the specific effects identified by the PCA were similar for all the 

numbers of soil depths considered. This underlines how robustly PCA identifies first-order con-

trols. 

A PCA is often used as a dimensionality reduction tool. In that case it is necessary to test how 

many components contain significant information and can thus be considered for interpreta-

tion (Peres-Neto et al., 2005). Our purpose, however, was to identify and extract the effects of 

specific factors known beforehand. Thus, we systematically tested whether each PC contained 

information about the factor of interest, notwithstanding the fraction of variance it explained. 

4.4.2. Signal transformation behavior 

The second component described the part of the deviation from the mean behavior (first PC) 

that can be explained by effects of soil depth. The fraction of total variance explained by the 

first two components (85.7 %) was very similar to the results of Hohenbrink and Lischeid 

(2015). In their study both components explained 88.7 % of soil moisture dynamics simulated 

in a heterogeneous soil profile. It is noteworthy that the measured dynamics are no more 

complex than the simulated ones, although the latter were generated for strongly idealized 

and simplified model cases. However, it is worth mentioning that Hohenbrink and Lischeid 

(2015) considered model cases covering nearly the whole range of possible soil textures, while 

the soils at the monitoring site were dominated by sandy textures. 

Time series with different degrees of signal transformation were reconstructed by combining 

the scores of the first two components (Fig. 4.4) as proposed by Hohenbrink and Lischeid 
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(2015). This was a prerequisite to derive D from the loadings of the first two components. The 

depth profiles of D (Fig. 4.5) provided evidence that hydrological input signals were continu-

ously transformed into a more strongly damped status while propagating through the soil pro-

files. This might be a trivial result known before (e.g. Mahmood et al., 2012; Pan et al., 2011), 

but the novelty of this approach is that D represents a robust measure to quantify the signal 

transformation behavior of soil systems. The fact that D mostly increased linearly with the soil 

depth easily enables the functional averaging of soil moisture dynamics, i.e. averaging the sig-

nal transformation behavior irrespective of small scale heterogeneities. 

The damping coefficients of single time series only deviated slightly from the field-averaged 

damping profile. Furthermore, the slopes of the damping profiles from all measuring plots 

were very similar. Thus it can be concluded that the general signal transformation behavior of 

the vadose zone proceeds relatively homogeneously at the field scale. Similarly to temporal 

stability analyses (cf. Vachaud et al., 1985; Vanderlinden et al., 2012) the concept of signal 

transformation analysis can be used to identify measuring locations which reflect the mean 

behavior of the whole investigation site. 

At some plots, D increased linearly with the soil depth, indicating that water flow was relatively 

uniform. At other plots, D was scattered around the mean damping profile, as indicated by 

larger values of the mean absolute errors MAE and the correlation coefficients R2 between the 

individual and averaged damping profiles (Fig. 4.5). This shows that heterogeneous water flow 

fields occurred at plot scale, i.e. hydrological signals were preferentially propagated along dis-

tinct water pathways. This effect can be caused by small-scale textural heterogeneity. In het-

erogeneous flow fields, the signal transformation along preferred water pathways is less inten-

sive than in surrounding regions with a reduced water flow (Hohenbrink and Lischeid, 2015). 

Thus, time series measured at a certain depth can be less strongly damped than others from 

shallower depths. However, the prevalence of both temporal patterns captured by D was not 

reduced upon the occurrence of heterogeneous flow fields, since 𝜎𝑒𝑥𝑝𝑙
2̅̅ ̅̅ ̅̅ ̅  was neither correlated 

with MAE nor with the correlation coefficients R2. Soil moisture dynamics emerging in hetero-

geneous flow fields were still composed of the first two components to the same extent as 

under uniform flow conditions. Similarly to Hohenbrink and Lischeid (2015), this shows that 

textural heterogeneity does not necessarily cause functional heterogeneity, since no addition-

al, more complex temporal patterns were generated by heterogeneous water flow. Soil heter-

ogeneity merely caused different signal transformation intensities per depth unit instead of 
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inducing completely different kinds of signal transformation. Thus, the effect of textural heter-

ogeneity is much more systematic than e.g. random noise added to the data (cf. Hohenbrink 

and Lischeid, 2015). 

Effects of local heterogeneities, i.e. different intensities of signal transformation, can balance 

each other out. This can be visualized using the example of layered soil profiles. Input signals 

entering any soil layer correspond to the output signal of the layer above. An input signal en-

tering the soil surface is propagated in this way through several layers with different thick-

nesses, textures and small-scale heterogeneities. Given that (i) the general kind of signal trans-

formation does not differ between different layers and that (ii) signals can only be transformed 

to a more strongly damped status, it is possible to find a corresponding homogeneous soil with 

the same average signal transformation behavior as the layered soil. This is a basic condition 

for applying the concept of temporal averaging for different purposes, e.g., upscaling soil mois-

ture dynamics by averaging the signal transformation behavior of the vadose zone.  

The calculation of D makes use of the first two PCs, representing linear approximations of the 

two most prevalent uncorrelated temporal patterns, that is, the mean soil moisture behavior 

and the effect of soil depth. If all depth effects occurring cannot fully be described by the sec-

ond principal component, there is a risk of neglecting some parts of relevant variance which 

are also induced by soil depth. This typically happens if signal transformation induces nonlinear 

structures that can only be approximated by stepwise superposition of several linear compo-

nents (Hohenbrink and Lischeid, 2015). There is further need for research into the nonlinear 

behavior of signal transformation. We could not find Pearson correlations between the soil 

depth and the loadings on higher-order PCs. However, loadings of the fourth component (data 

not shown) seemed to have a curve-shaped dependency on depth. Thus, more sophisticated 

measures for nonlinear dependence, such as mutual information (as defined by Shannon 

(1948), for its estimation see Fraser and Swinney (1986) or Kraskov et al. (2004)), would be 

needed to detect further non-linear relations between loadings and soil depth. However this 

would go beyond the scope of our study. 

4.4.3. Effects of cropping system and soil tillage 

The effect of the cropping systems represented by the third PC accounted for 3.6 % of the total 

variance. This fraction was smaller than we would have expected beforehand, since both crop-

ping systems comprised plants with different water demands, varying harvest times and non-



Chapter 4 

104 

parallel growing seasons. The third component nevertheless described a clear and unambigu-

ously interpretable temporal pattern. This holds true for both (i) the clustering of loadings in 

the two groups of CropRo1 and CropRo4 and (ii) the interpretation of the temporal dynamics 

described by the scores of the third component. The clarity of these results highlights the great 

potential of PCA in detecting minimal but significant patterns hidden in data sets of time series 

(cf. Thomas et al., 2012). Soil moisture temporal patterns accounting for only small fractions of 

variance can still be interesting and can even have important impacts on dominant soil water 

processes. This can be illustrated by the example of threshold-controlled processes such as 

macropore flow occurring under particular moisture conditions. It can be the main reason for 

solute leaching (reviewed by Jarvis, 2007), although it often accounts for only small fractions of 

the total soil moisture variance. 

Korres et al. (2015) used various analyzing tools to reveal spatio-temporal soil moisture pat-

terns emerging under different land uses. With regard to arable sites they found large spatial 

soil moisture variability among neighboring fields. They explained this effect by strongly vary-

ing evaporation rates due to shifted periods of maximum water uptake by different crops and 

different agricultural management (e.g. planting dates, harvesting dates, field sizes). It is worth 

noting that we identified very similar effects of crops on soil moisture patterns by time series 

analysis such as Korres et al. (2015) found by spatial analysis. Baroni et al. (2013) performed a 

PCA on a data set containing soil moisture measured at a shallow depth in an agricultural field. 

Among other PCs they identified a component describing a plant effect. It was spatially corre-

lated with the crop factors leaf area index and plant height. This vegetation-controlled pattern 

prevailed when the soil became dryer. Our third component also revealed that soil moisture 

differences between the cropping systems were the greatest in dry conditions, because the 

scores showed the highest absolute values during the dry summer months (Fig. 4.7). 

There is agreement in the literature that in comparison to plowing, non-tillage causes (i) great-

er bulk density, (ii) more stable soil aggregates, (iii) increased soil biota abundance generating 

macropores, and (iv) higher soil carbon contents (e.g. Arai et al., 2014; Holland, 2004; Soane et 

al., 2012). Tillage-induced alterations of these substantial soil characteristics can have various 

effects on soil hydraulic properties (e.g. Schwen et al., 2011; Strudley et al., 2008). Thus, it 

might be expected that soil moisture dynamics would also differ between different tillage 

practices. However, we could not detect significant differences between tilled and non-tilled 

plots. Some authors reported tillage effects on spatial soil moisture patterns at shallow soil 
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depths (e.g. Korres et al., 2010; Perfect and Caron, 2002). Similar effects could possibly also be 

found at very shallow depths at our investigation site. However, we only analyzed time series 

from greater soil depths, since it is not possible to measure long-term data with sensors placed 

at fixed positions when the surrounding soil is regularly tilled. 

4.5. Conclusions 

By applying a principal component analysis to measured soil moisture time series, we achieved 

our objectives of identifying, describing and evaluating the specific effects of soil heterogeneity 

and land management on soil moisture dynamics. The method turned out to be powerful as 

long as relative temporal dynamics are of interest rather than absolute values. Based on the 

results that three meaningful components accounted for 89.2 % of the total soil moisture vari-

ance, we can draw the following conclusions.  

Firstly, contrary to common assumption, the interactions of infiltration, soil heterogeneity, and 

different land management practices do not necessarily induce complex soil moisture dynam-

ics in deeper soil layers. Nearly 78 % of the observed soil moisture variance was identical at all 

measuring locations. Thus, functional heterogeneity, i.e. variability among all soil moisture 

time series, only accounted for the remaining 22 % of variance. About 35 % of that was unam-

biguously attributed to the deterministic effect of input signal transformation with increasing 

soil depth. The large textural heterogeneities at the test site had no effect on the general na-

ture of signal transformation, but did affect its intensity, which varied at different sites. Land 

management only slightly affected soil moisture dynamics, since the different cropping sys-

tems induced 16.3 % of functional heterogeneity. Soil tillage was not found to have any signifi-

cant effect. 

Secondly, the suggested approach opens up new possibilities to analyze and better understand 

complex soil system behavior. Functional averaging, i.e. averaging the signal transformation 

behavior of the vadose zone, provides time series representing the most relevant characteris-

tics of the system behavior. The approach does not require a priori assumptions about the 

nature of physical processes, since it is solely based on information provided by the data. Thus, 

it provides model-independent information on how individual effects contribute to the ob-

served dynamics, making it especially valuable for model building, calibration and evaluation. 
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5. Synthesis

5.1. Achievements of the thesis 

In this section the main achievements of this dissertation are evaluated with regard to effi-

ciently describing and making use of the spatial heterogeneities in field data. It is structured 

into three subsections summarizing the contributions of the single studies to achieve the main 

objectives introduced in Chapter 1 and discussing their limitations. 

5.1.1. Using point information of moisture dynamics for seepage estimation 

The Buckingham-Darcy method provides a simple approach to estimate deep seepage fluxes 

from one soil moisture time series measured in the permanent seepage zone where only 

downward fluxes occur (Schindler and Müller, 1998). This way, the complex interactions of 

root-zone processes taking place above can be neglected, since soil moisture dynamics at large 

depths represent an integrative result of these processes. However, ignoring spatial heteroge-

neities of subsoil texture might induce substantial errors. Thus, the first study of this disserta-

tion aimed at investigating the effects of soil texture and textural heterogeneity in the deep 

vadose zone on the performance of that method. 

The study presented in Chapter 2 showed that the Buckingham-Darcy method performed well 

for most soil texture classes. Especially in sandy loam the seepage dynamics obtained from 

point information could be considered representative for larger scales of interest, indicating 

that moisture dynamics from different locations were very similar. However, the method was 

imprecise in pure sand where heterogeneous flow fields were particularly pronounced. The 

method strictly follows the bottom-up approach, since observations made at the small scale 

are transferred to larger scales. Additionally, the physically based Buckingham-Darcy law is a 

priori chosen for water flux description. The results from that study clearly demonstrate the 

advantages and disadvantages of bottom-up approaches. On the one hand, the Buckingham-

Darcy law allows for deterministically linking soil moisture dynamics to soil water fluxes. This is 
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helpful for many purposes, since local soil moisture dynamics can be measured much easier in 

the field (Robinson et al., 2008) than seepage fluxes (e.g. Meissner et al., 2010). The latter is an 

important target variable for many purposes such as estimating groundwater recharge 

(Scanlon et al., 2002) or solute leaching (van Genuchten et al., 2014). On the other hand, there 

is the risk of neglecting important controls on the target variable by using a predefined process 

description (e.g. Kirchner, 2006; Savenije, 2009). In pure sand where seepage fluxes were dom-

inated by heterogeneous flow fields the Buckingham-Darcy method turned out to be not appli-

cable, because it simply neglects the effect of water flow heterogeneity. This problem does not 

only concern the performance of the specific Buckingham-Darcy method presented in Chapter 

2, but also the general applicability of one-dimensional process models to simulate the inte-

grative dynamics of heterogeneous flow fields (cf. Durner et al., 2008; Schlüter et al., 2012). 

Results from the numerical study were limited to a strongly conceptualized description of tex-

tural heterogeneity. Under field conditions various additional factors and processes, e.g. 

macropore flow, might control the seepage dynamics. This has been the motivation to investi-

gate soil water dynamics in heterogeneous soils from a top-down perspective in the following 

studies. That way the first order controls on soil moisture dynamics and seepage fluxes can be 

identified in order to constrain a respective parsimonious seepage flux model. 

5.1.2. Analyzing the signal transformation behavior of soils 

The second objective of this dissertation was to test the concept of low-dimensional transfor-

mation of hydrological signals in heterogeneous soils and to test an efficient approach for 

grasping and quantifying that transformation behavior. This means analyzing how hydrological 

signals (e.g. rainfall, snow melt) are transformed while they are propagated through the va-

dose zone. In Chapter 3 the idea behind that approach was introduced, and the general char-

acteristics of signal transformation in heterogeneous soils were derived from simulated soil 

moisture time series. Chapter 4 contains an example for its application to monitoring data 

from a long term field experiment. 

It is commonly known that input signals become increasingly smoothed (Pan et al., 2011) and 

delayed (Mahmood et al., 2012) with soil depth for which the somehow simplifying term 

“damping” was coined. In this dissertation the approach to derive the damping status of single 

time series from the loadings on the first two principal components (Lischeid et al., 2010) was 

applied for the first time in a soil hydrological context. It has already successfully been used in 
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a few studies dealing with groundwater dynamics (Lehr et al., 2015; Lischeid et al., 2012). Prov-

ing the applicability of the damping coefficient D as a robust measure to quantify the trans-

formation status of soil moisture time series in the vadose zone is an achievement of this dis-

sertation. 

Chapter 3 showed that the moisture time series simulated in different homogeneous soils 

were very similar. This indicated that the kind of signal transformation is nearly identical in all 

textures. The only difference between the textures was the intensity of signal damping per 

depth interval. In fine textured soils the hydrological signals were transformed much  more 

strongly per depth interval than in coarse substrates. In Chapter 3 it was shown that hydrologi-

cal signals are progressing in a uni-directional way a common trajectory of possible damping 

states irrespective of soil texture. In contrast to spectral analysis of time series investigating 

the low pass filtering behavior of the vadose zone (e.g. Katul et al., 2007), PCA additionally 

considers the time delaying and smoothing of single peaks. In Chapter 3 it was also shown that 

D increased almost linearly over the whole profile, whereas the intensity of low-pass filtering 

strongly decreased with soil depth. This demonstrated that D is an adequate and applicable 

measure of signal transformation. 

Applying a PCA on time series simulated in both homogeneous and heterogeneous model do-

mains yielded the same principal components, showing that the interplay of various local wa-

ter fluxes in heterogeneous flow fields does not induce totally new temporal soil moisture 

patterns. This is an important basis for the applicability of one-dimensional models to estimate 

water fluxes in heterogeneous soils. It implies that moisture dynamics observed in heteroge-

neous flow fields can generally be simulated with effective soil hydraulic parameters without 

considering the explicit textural heterogeneity. However, another important finding from 

Chapter 3 was that in contrast to homogeneous soils the transformation state of time series 

did not increase monotonically with soil depth. For example, time series simulated at locations 

along preferential pathways were less strongly transformed than others from adjacent regions. 

This would suggest that even pronounced preferential flow phenomena only reduce mean 

damping per depth interval rather than induce completely new features, thus paving the way 

for efficient modelling mean behavior at larger scales. On the other hand, it is not assured, as 

assumed by the Buckingham-Darcy method, that soil moisture dynamics observed at one posi-

tion in a heterogeneous flow field are generally representative for all locations at the same soil 

depth. The correlation between D and soil depth was weakest in sand where the performance 
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of the Buckingham-Darcy method was also poor (chapter 2). Thus, this more theoretical study 

helped to better understand the results of the preceding study. 

The perspective of signal transformation provides a conceptual framework to investigate the 

effects of various interacting soil hydrological processes. No a priori assumptions about deter-

mining processes are required since D is based on information provided by observed moisture 

time series. Indeed, that approach cannot be used to exactly quantify soil water fluxes, but it is 

well suited to compare soil moisture dynamics observed at different locations. For that reason, 

it rather provides a valuable supplement to the common mass flux considerations. Additional-

ly, it is neither restricted to the vadose zone nor to a specific scale. Hydrological signals passing 

the vadose zone are subsequently propagated through other subsystems of the hydrological 

cycle, such as aquifers or the riparian zones of streams (Hauhs and Lange, 1996; Lischeid et al., 

2016; Loik et al., 2004). Therefore, the concept of signal transformation is suitable to bring 

together observations from different scales and disciplines. It has been stated many times 

before that there is an urgent need for such approaches linking various disciplines (e.g. 

Asbjornsen et al., 2011; Lin et al., 2015; Lin, 2003).  Although the signal transformation con-

cepts is very suitable for this purpose it is, however, worth mentioning that D represents a 

relative measure that can only be interpreted and compared within the context of the ob-

served data set. 

The signal transformation described by the second principal component is only one out of 

many potential processes and factors determining soil moisture dynamics. The finding from 

this study that the effects of soil heterogeneity are very low dimensional, increases the chance 

of additionally identifying effects of other controls accounting for very small fractions of total 

variance. 

5.1.3. Identifying the controls on observed soil moisture dynamics 

In this section the third objective of this dissertation is addressed, i.e. identifying and describ-

ing the main controls on soil moisture dynamics observed in a real-world data set. For this 

purpose an extensive data set from a multifactorial long-term field experiment was used. Addi-

tionally, the applicability of the followed approach to break down the information contents of 

large soil moisture datasets to a concise and manageable description is discussed based on the 

findings from Chapter 3 and 4. 
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The soil moisture dynamics analyzed in this study were mainly composed of one common 

temporal pattern described by the scores of the first component. It accounted for more than 

three quarters of the total variance and could be assigned to atmospheric controls that were 

assumed to be identical for all measuring plots. It is common knowledge that atmospheric 

conditions control temporal soil moisture dynamics (e.g. Korres et al., 2010; Mahmood et al., 

2012). But the large proportion of the variance that all time series had in common was surpris-

ing. 

The second component explained additionally 7.8 % of variance and described the effect of 

signal transformation with increasing soil depth, which has been discussed intensively in the 

previous section. All measuring plots showed a very similar signal transformation behavior 

despite of large textural heterogeneities. This showed that large spatial heterogeneities do not 

necessarily cause large functional heterogeneities, which is in line with the observations made 

by Basu et al. (2010) at the catchment scale. It furthermore provides experimental evidence 

for the statement of Baveye and Laba (2015) that it is not always reasonable to concentrate on 

detailed investigation of spatial structural heterogeneities when the interest is primarily on 

functional aspects. 

The third component of the study in chapter 4 could unambiguously be assigned to the differ-

ent cropping systems, although it accounted for only 3.6 % of the total variance. A time series 

of the component scores clearly described the differences in the soil moisture dynamics 

caused by the cropping systems. Effects of different cropping systems or vegetation covers on 

soil moisture dynamics have been detected several times before (e.g. Baroni et al., 2013; 

Korres et al., 2015). However, these studies usually aimed at investigating spatial patterns of 

near surface soil moisture with large spatial but very low temporal resolutions. The functional-

ly averaged time series presented in Chapter 4 provided valuable detailed descriptions of the 

cropping system effects in a high temporal resolution. 

In addition to the cropping system two different soil tillage practices were explicitly considered 

in the field experiment. In Chapter 4 it was shown that the fraction of total soil moisture vari-

ance caused by soil tillage did not exceed 0.05 %. The information that soil tillage in fact had 

no considerable effect on soil moisture dynamics below the plowing zone at the investigated 

site was a surprising result. It implies that tillage effects can be neglected in models predicting 

deep seepage fluxes for the particular field experiment. Please note that this would not neces-
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sarily hold for steep topographical gradients where surface runoff might play a much larger 

role. 

In this dissertation PCA proved to be a powerful tool to systematically learn from soil moisture 

data in the sense of the top-down approach. It has been used to break down the information 

content of large data sets of moisture time series to a concise and manageable description of 

the most relevant dynamics. This applied equally to both investigated cases, the numerically 

simulated data set (Chapter 3) as well as the monitoring data from a long term field experi-

ment (Chapter 4). Particular objectives that can be achieved by PCA are (i) identifying the main 

controls on the hydrological behavior of soils, (ii) quantifying their relevance by the fraction of 

total variance they explain, and (iii) providing explicit descriptions of their specific effects in 

the form of functionally averaged time series. 

An important limitation of PCA is that only relative soil moisture dynamics can be analyzed. 

However, practical soil hydrological questions often aim at quantifying absolute values of dif-

ferent water balance components, such as deep drainage rates (Scanlon et al., 2002; Silburn et 

al., 2013) or amounts of root water uptake (Green et al., 2006). For that reason, it might be 

useful for many purposes to combine PCA with common methods of mass flux considerations, 

e.g. process based modeling. 

Principal component analysis identifies only linear structures in datasets (Jolliffe, 2002). The 

fact that the variance of soil moisture time series from data in Chapter 3 and 4 could be ex-

plained by only three distinct controls underlines the low complexity in these particular da-

tasets. If several principal components are related to one factor or if one of the main principal 

components is correlated to several factors, nonlinearities must be considered (Lee and 

Verleysen, 2007). For example, isometric feature mapping (Tenenbaum et al., 2000), a nonlin-

ear dimensionality reduction method, was successfully applied in a large-scale hydrological 

study (Böttcher et al., 2014). 

It is remarkable that in the study presented in Chapter 4 almost 90 % of the variance of 57 soil 

moisture time series was caused by only three independent temporal patterns that could be 

assigned to first order controls. The particular temporal patterns described by functionally 

averaged time series represent the integral effects of various factors and processes interacting 

in a continuum of scales. Hence, PCA enables to grasp the relevant hydrological behavior of 
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soils at a given scale without explicitly considering all subscale controls and their heterogenei-

ties. This has great potential for large-scale modeling. 

5.2. Implications for modeling and further re-

search needs 

5.2.1. Reducing uncertainties in large scale modeling 

In large-scale models spatial heterogeneities are commonly represented by hydrological re-

sponse units. These are defined by combining spatial information about presumed controls, 

such as land use and soil texture (e.g. Arnold et al., 2012; Flügel, 1996). The hydrological be-

havior of single units is determined by upscaled information about the effects of single con-

trols. For example, hydraulic conductivity for a certain soil type is usually predicted by pedo-

transfer functions (Vereecken et al., 2010). The relations between hydrological behavior and 

single controls like soil texture, vegetation or land management are based on correlations pub-

lished in literature (e.g. Baroni et al., 2013; Korres et al., 2010; Yoo and Kim, 2004). However, 

these correlations are often low. Additionally, it can be expected that the “file drawer prob-

lem”, i.e. a preference of positive and significant results for publication (Rosenthal, 1979), 

leads to an overestimation of these controls in literature. This implies that there is a consider-

able risk of largely overestimating the effects of these controls by such a model approach. Ad-

ditionally, using only these controls for large-scale hydrological modelling might primarily re-

flect the sharply delineated patterns provided by the spatial model input information. An ex-

plicit verification of the relevance of the presumed controls in a given case is not possible. In-

stead, PCA makes full use of the integral soil moisture dynamics observed in field to identify 

the controls being relevant for a particular question. This approach does not require assump-

tions about the correlations between controls and hydrological behavior because it is purely 

data-based. The information provided by PCA is of outermost importance with regard to con-

straining respective models and thus to reduce model uncertainty right from the beginning of 

the modelling exercise. 

An adequate model structure can be determined by comparing principal components of mod-

eled time-series with those of observed data. Furthermore, the fractions of variance explained 

by the principal components provide valuable information for the weighting between different 
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sub-models. This approach allows for rigorously testing if a model is generally suitable to simu-

late an observed hydrological behavior and if the actual controls on that behavior are consid-

ered correctly. The model structure has to be adapted iteratively until principal component 

scores and their explained variances from modeled and observed data achieve minimum dif-

ferences. 

Model calibration can also be done with PCA outputs. Principal component scores and ex-

plained variances can be used to define an objective function for a parameter optimization 

algorithm. By this, simulation of the general hydrological system behavior is targeted instead 

of trying to reproduce time-series observed at a few locations. 

Obviously, the suggested approaches require large data sets of moisture dynamics that have 

not been accessible in the past. However, it can be expected that they will be increasingly 

available in the near future (Vereecken et al., 2014). 

5.2.2. Experimental evidence for signal transformation characteristics 

 In the study presented in Chapter 3 conclusions about the low dimensional nature of signal 

transformation in heterogeneous soils were drawn from the results of a numerical experiment. 

In the following study (Chapter 4) it was also shown that the concept of signal transformation 

has large potential to grasp moisture dynamics observed at the field scale. However, up to now 

no experimental evidence for the particular findings from Chapter 3 has been provided. Thus, 

there is a need for further research aiming at rigorously investigating the effects of soil texture 

and different types of heterogeneities on signal transformation characteristics in controlled 

experimental set ups. 

This could, for instance, be achieved by percolation experiments with soil columns in laborato-

ry. The kind and intensity of signal transformation in various well defined soil textures could 

systematically be determined. Additionally, signal transformation characteristics could also be 

related to explicit descriptions of soil structure including macropores. In the laboratory envi-

ronment it is also possible to examine if damping profiles determined by PCA are sensitive to 

the degree of saturation. However, it should always be critically questioned if the findings from 

such a small scale provide reliable implications for field applications. 

Weighing lysimeters filled with different soils but exposed to identical atmospheric conditions 

(e.g. Zacharias et al., 2011) provide many options to investigate signal transformation charac-
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teristics at the pedon scale. They also allow for exploring the relation between signal propaga-

tion derived from moisture dynamics and seepage fluxes determined in situ. 

5.3. Conclusions 

Soil moisture is controlled by various factors and processes occurring across a broad continu-

um of scales. The resulting variability among soil moisture dynamics observed at different loca-

tions was in the focus of this dissertation. It was shown that deep seepage estimation using 

the Buckingham-Darcy law was weak for pure sand because of this variability. The main 

achievement of this dissertation was to present an approach to turn this problem into a solu-

tion: Principal component analysis was applied to make use of the variability among soil mois-

ture time series for analyzing apparently complex soil hydrological systems. The method 

turned out to be a powerful approach to identify the main controls, quantify their relevance, 

and describe their particular effects by functionally averaged time series. It clearly showed that 

both simulated and observed soil moisture dynamics were rather low dimensional. This means 

they were composed of only a few clear temporal patterns that could furthermore be traced 

back to their specific causes. 

The first two principal components allow for characterizing the transformation of hydrological 

input signals (e.g., rainfall, snow melt) propagating through the vadose zone. This perspective 

is a valuable supplement to common mass flux considerations. Neither different textures nor 

spatial heterogeneities affected the general kind of signal transformation showing that com-

plex spatial heterogeneities do not necessarily evoke a complex hydrological behavior. 

The approach presented in this dissertation provides model free information about the main 

controls on soil hydrological behavior, since it does not require a priori assumptions about 

physical processes. This allows for efficiently considering spatial heterogeneities in large scale 

modeling. It also offers great opportunities to reduce model uncertainties by constraining the 

model structure right from the beginning of the model exercise and defining meaningful crite-

ria for model calibration. These are necessary next steps for soil hydrology to solve real-world 

problems, e.g. efficient soil moisture management for field crop production. 
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