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CONSTRUCTION OF SERIES OF PERFECT LATTICES BY

LAYER SUPERPOSITION

SERGUEI VASILIEV AND NIKOLAI TARKHANOV

Abstract. We construct a new series of perfect lattices in n dimensions by

the layer superposition method of Delaunay-Barnes.
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1. Introduction

This paper stems out of our discussions at the beginning of the 1990 s of those
polytopes in R

n whose parallel displacements allow one to form a close partition of
the space without open overlaps. The problem was motivated by constructions of
optimal numerical schemes the first author elaborated at that time. We continued
the discussions in 2009 and prepared a joint project to the German Research Society
(DFG) devoted to construction of perfect lattices in the space. Unfortunately, an
accident with the first author broke off our cooperation in 2012. This paper is
written by the second author and it actually summarises the results of our joint
work.

Construction of lattices by the layer superposition method goes back at least
as far as [Del33], [Bar59]. It consists in the following. Let �n be a lattice in R

n

determined by a frame fn = {e1, . . . , en} of this space. By a Delaunay polytope
of �n is meant any convex polytope with vertices at lattice points, such that there
is a solid ball circumscribed about the polytope whose closure does not contain
any other points of the lattice except for vertices of the polytope. Pick a Delaunay
polytope Pn of �n. Let B(Pn) be a solid ball described around Pn. Denote by c the
centre of B(Pn) and by r its radius. Set en+1 := c+h, where h is a vector of Rn+1

orthogonal to e1, . . . , en and satisfying |h| = √
1− r2. The vectors e1, . . . , en, en+1

constitute a frame fn+1 of Rn+1. The (n + 1) -dimensional lattice determined by
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2 S. B. VASILIEV AND N. TARKHANOV

the frame fn+1 is said to be constructed by the layer superposition method from
�n. It is denoted by �(�n, Pn). Obviously, this procedure goes through only if r < 1.

If the lattice �n is perfect, then so is �(�n, Pn). Even if �n is not perfect, the lattice
�(�n, Pn) may be perfect. The layer superposition method is used successfully for
constructing perfect lattices.

By a series of lattices is usually meant an infinite number of lattices corresponding
to all n beginning with some dimension n = n0. As developed in [Bar91], the
layer superposition method fails to lead to series of perfect lattices, for it does
not explain how to find a Delaunay polytope Pn+1 of the lattice �(�n, Pn) lying
in a ball B(Pn+1) of radius r < 1. The present paper is aimed at finding such a
Delaunay polytope, which allows one to construct series of perfect lattices by the
layer superposition method.

2. Background

As usual, Rn stands for the n -dimensional Euclidean space whose elements are
interpreted as n -columns of real numbers. Choose a system e1, . . . , en of n linearly
independent vectors e1, . . . , en in R

n. It forms a (non-necessarily orthogonal) frame
fn of Rn. We can think of fn as the (n × n) -matrix whose columns just amount
to e1, . . . , en.

The frame fn determines an n -dimensional lattice �n = �(fn) in R
n which

consists of all points (or vectors) of the form v = x1e1 + . . .+ xnen with x1, . . . , xn

being integer numbers. This can be written as v = fnx, where x is the n -column
with entries x1, . . . , xn. By the very definition, the origin 0 =: e0 is a point of each
lattice.

The length of v is evaluated by

|v|2 =
n∑

j,k=1

aj,k x
jxk

where aj,k = (ej , ek) is the inner product of ej and ek in R
n. This associates the

quadratic form

q(x) = ((fn)T fn x, x) = xTAx (2.1)

to fn, where A = (fn)T fn is the Gram matrix of the frame vectors. By con-
struction, the quadratic form q(x) is positive definite and it allows one to recover
the frame fn up to translation and similarity. In that sense one says that q(x)
determines the same lattice �n = �(q).

The convex hull of the vectors e0, e1, . . . , en is called the basic simplex Sn of
the lattice �n. It actually defines the lattice as the set of all points v ∈ R

n whose
barycentric coordinates λ0, λ1, . . . , λn with respect to the simplex Sn are integer,
i.e. v = λ0e0 + λ1e1 + λnen where λ0, λ1, . . . , λn are integer numbers satisfying
λ0+λ1+ . . .+λn = 1. In other words, v = (e0, f

n)λ, where λ is the (n+1) -column
with entries λ0, λ1, . . . , λn.

With the simplex Sn there is associated the quadratic form

Q(λ) = −l0,1λ
0λ1 − l0,2λ

0λ2 − . . .− ln−1,nλ
n−1λn,

where lj,k = |ej−ek|2. The collection ofN = n(n+1)/2 data lj,k with 0 ≤ j < k ≤ n
determines both Sn and �n.

It is known [Bar71] that Q(λ) = d2 − r2, where r is the radius of the ball
circumscribed around S and d is the distance of v and the centre of the ball. Given
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any two vectors v, w ∈ R
n with barycentric coordinates λ and μ, respectively, the

quadrat of the distance of v and w just amounts to Q(μ− λ), see ibid.
There are merely a finite number of vectors in the lattice, for which the square

of the length is equal to the minimal value m of the form q(x). The lattices which
can be obtained from each other by rescaling are said to be equivalent. Hence, one
can assume that m = 1. Among all vectors of the lattice the vectors of length one
have the least length except for the vector e0 = 0. Two lattice vectors of length
one are called equivalent if they differ only in the sign.

Definition 2.1. The quadratic form q(x) and the lattice �(q) are said to be perfect
if the matrix A is uniquely determined by the lattice vectors for which q(x) is
minimal.

This just amounts to saying that the matrix A of the form is uniquely determined
from the system of equations

q(xi) = 1 (2.2)

for i = 1, . . . , I, where xi are lattice vectors of length one.
The lattice �n is called a limit lattice if on �n the density of packing of the space

by equal disjoint balls with centres at lattice points takes on its local maximum.
Each limit lattice is perfect but the inverse is not true, i.e., a perfect lattice is not
necessarily limit.

By a Delaunay polytope of the lattice is meant any convex polytope with vertices
at lattice points which is inscribed in a solid ball whose closure does not contain
any lattice points in the interior but the vertices of the polytope on its boundary
(such a ball is called “empty ball”). The family of all Delaunay polytopes forms
a normal partitioning (Delaunay partitioning) of the space R

n, i.e., a partitioning
with the property that any two Delaunay polytopes of the family meet each other
at most at a common face of some dimension.

3. General description of the method

Construction of lattices by the layer superposition method goes back at least as
far as [Del33], [Bar59]. We follow [Bar91] in presenting it. Let B(Pn) be a solid
ball described around a Delaunay polytope Pn of the lattice �(fn). Write c for the
centre of B(Pn) and r for its radius. Set en+1 := c+h, where h is a vector of Rn+1

orthogonal to e1, . . . , en and satisfying |h| = √
1− r2. It is clear that the vectors

e1, . . . , en, en+1 constitute a frame fn+1 of Rn+1. The (n + 1) -dimensional lattice
�n+1 = �(fn+1) determined by the frame fn+1 is said to be constructed by the
layer superposition method from �(fn). This lattice is also denoted by �(�n, Pn).
Obviously, this procedure goes through only if r < 1.

If the lattice �(fn) is perfect, then so is �(�n, Pn). If �(fn) is a limit lattice, then
�(�n, Pn) might be a limit lattice as well as it may fail to be limit. Even if �(fn)
is not perfect, the lattice �(�n, Pn) may still prove to be perfect and even limit.
The layer superposition method has been used successfully for constructing perfect
lattices.

By a series of lattices is usually meant an infinite number of lattices corresponding
to all n beginning with some dimension. Sometimes the very construction yields
merely one series of perfect lattices. As described above, the layer superposition
method fails to lead to series of perfect lattices, for it does not explain how to find
a Delaunay polytope Pn+1 of the lattice �(�n, Pn) lying in a ball B(Pn+1) of radius
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r < 1. The paper is aimed at finding such a Delaunay polytope, which allows one
to readily construct series of perfect lattices by the layer superposition method.

The convex hull of the point en+1 = c+h and the vertices of the polytope Pn is
an (n+ 1) -dimensional pyramid Cn+1 whose base is Pn. The presence of the ball
B(Pn) gives an evidence to the existence of a ball B(Cn+1). It remains to show
that B(Cn+1) is “empty.”

By construction, the lattice �(�n, Pn) is constituted by the n -dimensional layers
�(fn) + i en+1, for i = 0,±1, . . ., which lie in n -dimensional planes Πi, and so we
get

�(�n, Pn) =

∞⋃
i=−∞

(�(fn) + i en+1) .

The distance between the planes Πi and Πi+1 is equal to |h| = √
1− r2. The lattice

�(fn) just amounts to the layer �(fn) + 0 en+1. The centre of the ball B(Cn+1)
belongs to the line l(t) = c + t h which satifies l(0) = c, l(1) = en+1, l(i) ∈ Πi

and l(t) is orthogonal to Πi for all t and i = 0,±1, . . .. The plane Π1 is tangent to
B(Cn+1) at the point en+1, hence the ball B(Cn+1) has no common points with
layers �(fn) + i en+1, for i ≥ 2, and it has the only common point en+1 with the
layer �(fn) + en+1 lying on the boundary surface of B(Cn+1). The vertices of the
polytope Pn lie in the layer �(fn)+0 en+1 and on the boundary surface of B(Cn+1).
In the interior of B(Cn+1) there is no points of the layer �(fn) + 0 en+1 ⊂ Π0, for
the intersection

B(Cn+1) ∩ Π0 = B(Pn)

is empty. We have thus proved

Lemma 3.1. If there is a point of the lattice �(�n, Pn) in the interior of the ball
B(Cn+1), then this point belongs to a layer �(fn) + i en+1 with i ≤ −1.

Let R be the radius of the ball B(Cn+1). It is easy to show that R is related to
r by

R2 =
1

4

1

1− r2
.

This equality gives rise to the recurrence formula

r0 = r,

r2i =
1

4

1

1− r2i−1

for i = 1, 2, . . .. The sequence {ri} satisfies

r2i < r2i+1 < 0, 5 and lim
i→∞

r2i = 0, 5, if r2 < 0, 5,

r2i = 0, 5 for all i = 1, 2, . . . , if r2 = 0, 5,
(3.1)

and {ri} is not defined for i large enough, if r2 > 0, 5.
Suppose that the Delaunay polytope Pn satisfies not only the condition r < 1

but also the stronger condition r2 < 0, 5. Then from (3.1) it follows that R2 < 0, 5

and
√
1− r2 > R. The diameter 2R of the ball B(Cn+1) is less than the distance

2 |h| between the planes Π1 and Π−1. The ball B(Cn+1) is tangent to the plane
Π1, hence it has no common points with the planes Πi, for i ≤ −1. By Lemma 3.1,
B(Cn+1) is “empty”, i.e. the interior of the ball contains no points of the lattice
�(�n, Pn). It follows that the pyramid Cn+1 is a Delaunay polytope Pn+1 of the
lattice �n+1 := �(�n, Pn) satisfying not only the condition r < 1 but also r2 < 0, 5.
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The layer superposition method can therefore be applied infinitely many times. As
a result we construct an infinite series of lattices �n+m and their Delaunay polytopes
Pn+m, for m = 1, 2, . . ..

Let Pn satisfy r2 = 0, 5. Then (3.1) yields R = |h|. The ball B(Cn+1) is
tangent to the plane Π−1 at the point l(−1) and it has no common points with
the planes Πi for i ≤ −2, i.e., B(Cn+1) is “empty.” If l(−1) �∈ �(fn) − en+1,
then the pyramid Cn+1 is a Delaunay polytope Pn+1 of the lattice �n+1 which
satisfies r2 = 0, 5. In the opposite case Cn+1 is a part of the Delaunay polytope
Pn+1, the vertices of Pn+1 being those of the pyramid Cn+1 and the point l(−1).
Moreover, the balls B(Pn+1) and B(Cn+1) coincide, their common centre c, as the
middle of the segment connecting two lattice points en+1 and l(−1), is a symmetry
centre of the lattice �n+1. Hence, c is a symmetry centre of the Delaunay polytopes
Pn+1 and Pn. The length of Delaunay diagonals of these polytopes through the
centre c satisfies l2 = 2. It is easy to show that these polytopes are actually
cross-polytopes. Recall that by a cross-polytope in R

n is meant the convex hull
of n segments with common middle point which do not belong to any hyperplane.
The layer superposition method can be recurrently applied infinitely many times to
yield a series of lattices and their Delaunay polytopes, the polytopes being either
all pyramids or all cross-polytopes.

If Pn satisfied 0, 5 < r2 < 1, then R > |h|. The ball B(Cn+1) intersects the
plane Π−1 and there may be a point of the lattice �n+1 in the interior of B(Cn+1).
Then the pyramid Cn+1 fails to be a Delaunay polytope or a part of a Delaunay
polytope of the lattice �n+1, in which case no series of lattices �n+1 and their
Delaunay polytopes Pn+1 may occur. Even if one succeeds in constructing a series
of lattices, the series proves to be finite, for by (3.1) the radius of the ball B(Pn+m)
becomes larger than 1 in a finite number m of steps, and so the method no longer
works. In particular, for r2 > 0, 75 no series of lattices exists, for it consists of one
lattice. We thus arrive at the following result.

Theorem 3.2. Assume that the radius r of the ball circumscribed around the De-
launay polytope Pn of the lattice �n = �(fn) satisfies r2 ≤ 0, 5. Then on recurrently
applying the layer superposition method one is led to an infinite series of lattices
�n+m = �(�n+m−1, Pn+m−1) and their Delaunay polytopes Pn+m. If Pn is a cross-
polytope, so are all of Pn+m. Otherwise every Pn+m is a pyramid Cn+m over Pn

for all m = 1, 2, . . .. For r2 > 0, 5 the method does not work to produce infinite
series of lattices.

Corollary 3.3. If the lattice �n of Theorem 3.2 is perfect, then the corresponding
series of lattices is also perfect.

4. Pyramid structure

The structure of the pyramid Cn+m is simple. All its edges emanating from the
vertices en+1, en+2, . . . , en+m have length 1. Moreover, Cn+m is a right pyramid
over the face Pn which is its base. Let (fn+m−1

0 , fn+m−1
1 , . . . , fn+m−1

n+m−2 ) be the

Euler-Poincaré data of the pyramid Cn+m−1. Then Cn+m has the Euler-Poincaré
data (fn+m

0 , fn+m
1 , . . . , fn+m

n+m−1), where

fn+m
0 = fn+m−1

0 + 1,
fn+m
j = fn+m−1

j + fn+m−1
j−1 ,
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for j = 1, . . . , n+m− 2, and fn+m
n+m−1 = 1 + fn+m−1

n+m−2 .
If the Delaunay polytope Pn of the lattice �n is basic or of double, tripled, etc.

volume, then each pyramid Cn+m for m = 1, 2, . . . has the same property with
respect to the corresponding lattice �n+m.

The quadratic forms q(x) of (2.1) which correspond to the lattice series of
Theorem 3.2 are more conveniently constructed in the frame whose elements are
the edges of the pyramid Cn+m emanating from the vertex en+1. Such a frame
f ′n+m = {e′1, . . . , e′n+m} demonstrates rather strikingly common properties of the
lattices of the same series. However, it exists provided that the Delaunay polytope
Pn of �n is basic.

We now consider this case in more detail. Let the vertices v1, . . . , vn+1 of the
basic Delaunay polytope Pn are end points of the vectors e′1, . . . , e

′
n+1, respectively.

The end points of vectors e′n+2, . . . , e
′
n+m are the vertices en+2, . . . , en+m of the

pyramid Cn+m. The matrix of the quadratic form q(x) with respect to the frame
f ′n+m has the entries

aj,j = 1, if j = 1, . . . , n+ i,

aj,k =
1

2
(2− |vj − vk|2), if j, k ≤ n+ 1, j �= k,

aj,k = 0, 5 otherwise.

It is convenient to write such a form as difference qn+m(x) = qn+m
0 (x) − rn+1(x),

where the form

qn+m
0 (x) = (x1)2 + . . .+ (xn+m)2 + x1x2 + . . .+ xn+m−1xn+m

determines the first perfect lattice and the matrix of the quadratic form rn+1(x) has
zero diagonal entries and entries (|vj−vk|2−1)/2 for paarweise different j, k ≤ n+1.
The form rn+1(x) contains information on the length of edges and diagonals of
the polytope Pn connecting the vertices v1, . . . , vn+1 (and so rn+1 describes the
geometry of Pn).

If Pn fails to be a basic Delaunay polytope of the lattice �n, then the frame f ′n+m

determines merely a sublattice of the lattice �n+m. Any frame f ′′n+m determining
the lattice �n+m and maximally close to the frame f ′n+m contains at least one vector
emanating from en+1 to the layer �

n+m, which is not any edge of the pyramid Cn+m.
We now evaluate the number of vectors of the lattice �n+1 which have length

one. We restrict our attention to those vectors of length one which emanate from
the point en+1 ∈ �(fn) + en+1. The only vectors of length one of the lattice �n+1

emanating from en+1 and lying in the layer �(fn)+ en+1 are those of the lattice �n.
Each vector of length one emanating from en+1 and ending in the layer �(fn)+0 en+1

amounts to an edge of the pyramid Cn+1 emanating from the vertex en+1. There
are no vectors of length one which end in a layer �(fn)+ i en+1 with i = −1,−2, . . .,
provided that r2 ≤ 0, 5, for the distance of en+1 ∈ �(fn) + en+1 to the plane Πi is
equal to (1+ |i|)|h|, what is greater than 1. The same is true concerning the vectors
of length one which end in a layer �(fn) + i en+1 with i = 2, 3, . . ., for they differ
only by sign from those already considered. It follows that the number of vectors
of length one of the lattice �n+1 just amounts to N(�n) + f0, where N(�n) is the
number of vectors of length one of the lattice �n and f0 the number of vertices of
the polytope Pn. Hence the number of vectors of length one of the lattice �n+m is
equal to N(�n) + f0 m+ (m− 1)m/2. Note that f0 ≥ n+ 1. We have thus proved
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Lemma 4.1. The lattice �n+m has

N(�n+m) = N(�n)− n(n+ 1)

2
+ (f0 − n− 1)m+

(n+m)(n+m+ 1)

2
vectors of length 1.

It is worth pointing out that for constructing a series of pyramids Cn+m for
m = 1, 2, . . . it suffices to have a Delaunay polytope Pn of the lattice �n with the
property r2 ≤ 0, 5. It gives rise to a pyramid series which can be constructed
independently of the lattice. In this sense the pyramid series is of independent
interest. Moreover, Pn may appear to be a Delaunay polytope simultaneously for
two lattices �′n and �′′n. For one of them Pn may be basic and for the other it
may be, e.g., of double volume. Then the pyramid series Cn+m will be a series
of Delaunay polytopes for two lattice series �′n+m and �′′n+m. For the first series
�′n+m the pyramids will be basic Delaunay polytopes, for the second series �′′n+m

the pyramids will be Delaunay polytopes of double volume. This shows that to a
series of pyramids there may correspond many series of lattices.

When constructing series of perfect lattices and their Delaunay pyramids, the
question on the first pyramid and first lattice series is not treated in a unified way.
If the generating Delaunay polytope Pn of a perfect lattice �n has no vertex v
connected with other its vertices by edges of length one, then the first pyramid of
the series is Cn+1 and the first lattice of the series is �n+1 = �(�n, Pn). If Pn has
several vertices v1, . . . , vk, each of them being connected with all other vertices of
Pn by edges of length one, then the series generating Delaunay polytope is the face
Pn−k of Pn which lies opposite to the vertices v1, . . . , vk. The first pyramid of the
series is the face Cn−k+1 containing the face Pn−k.

If Pn is the basic Delaunay polytope of a perfect lattice �n, then �n can be
constructed from some lattice �n−k and its Delaunay polytope Pn−k by the layer
superposition method over k steps. Under this approach the lattice �n−k need not
be perfect. It suffices that in a finite number j < k of steps the lattice �n−k+j

would become perfect. Then it will be the first lattice of a series of perfect lattices
�n−k+j+m withm = 1, 2, . . .. If Pn fails to be a basic Delaunay polytope of a perfect
series �n, the general approach to the choice of the first lattice of the series still
remains the same. However, one should take into account that lattices of dimension
less than n may fail to exist.

5. Examples

In [Bar91] one described all Delaunay polytopes of perfect lattices in the space
R

n with n ≤ 6. We first consider the case n = 2 in detail.
In R

2 there is only the first perfect lattice �20, which is usually given by the first
quadratic form q20 . All Delaunay polytopes of this lattice are equilateral triangles,
one of these (the convex span of frame vectors) is denoted by P 2

1 . The edges of the
triangle are of length one. The quadrat of the radius of the described circle just
amounts to r2 = 1/3. The lattice has three vectors of length one.

Since r2 < 0, 5, the triangle P 2
1 generates a series of Delaunay polytopes of

perfect lattices P 2+m
1 for m = 1, 2, . . ., each P 2+m being a regular simplex with

edges of length one. Since one-dimensional lattices are hardly of interest, P 2
1 can

be thought of as the first polytope of the series.
The lattice �20 and its Delaunay polytope P 2

1 generate a series of perfect lattices
�n0 determined by the form qn0 . To our best knowledge this quadratic form was first
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studied by G. F. Voronoy and called the first perfect form. The first perfect lattice
�n is known to have n(n+ 1)/2 vectors of length one, as is also seen from Lemma
4.1.

The regular simplex with edges of length one in R
7 is a Delaunay polytope of

double volume (denoted S7) of a perfect lattice �′7 in R
7. This lattice is given by

the frame

f7 =
{
e1, . . . , e6,

1

2
(−e1 − e2 − e3 + e4 + e5 + e6 + e7)

}
,

where e1, . . . , e7 are edges of the simplex S7 emanating from one vertex. To the
frame f7 there corresponds the quadratic form q7(x) = q70(x)−x1x7−x2x7−x3x7.
The number of vectors of length one in the lattice is 63. The lattice �′7 and its
Delaunay polytope S7 generate a series of perfect lattices which are given by the
form

qn(x) = qn0 (x)− x1x7 − x2x7 − x3x7 − 1

2
(x7x8 + . . .+ x7xn)

for n = 8, 9, . . .. The Delaunay polytopes of double volume of lattices of this series
are precisely regular simplices of the corresponding dimension. By Lemma 4.1, the
number of vectors of length one of an n -dimensional lattice is 35 + n(n+ 1)/2.

A Delaunay partitioning of the lattice �′8 contains regular simplices of tripled
volume with edges of length one. Denote by S8 one of them. The lattice can be
determined by the frame f8 = {e1, . . . , e7, e′8}, where

e′8 =
1

3
(−2e1 − 2e2 + e3 + . . .+ e8)

and e1, . . . , e8 are the edges of the simplex S8 emanating from one vertex. To the
frame f8 there corresponds the quadratic form q8(x) = q80(x) − x1x8 − x2x8. The
lattice contains 120 vectors of length one. Together with its Delaunay polytope S8

the lattice determines a series of perfect lattices. The regular simplex Sn is the
Delaunay polytope of tripled volume of the n -dimensional lattice of this series, and
the simplex S8 is the 8 -dimensional face of Sn. The frame of the n -dimensional
lattice is fn = {e1, . . . , e7, e′8, e9, . . . , en}, where e9, . . . , en are the edges of the
simplex Sn emanating from a vertex of S8. To this frame there corresponds the
form

qn(x) = qn0 (x)− x1x8 − x2x8 − 1

3
(x8x9 + . . .+ x8xn)

for n = 9, 10, . . .. By Lemma 4.1 the number of vectors of length one of the n -
dimensional lattice is 84 + n(n+ 1)/2.

On the lattices �′7 and �′8 the density of packing the spaces R
7 and R

8, re-
spectively, by equal disjoint balls with centres at lattice points takes on its global
maximum.

When the dimension of the space increases, one derives always new series of per-
fect lattices whose Delaunay polytopes are regular simplices. Along with finding
new perfect forms, the construction of series of perfect lattices by the layer superpo-
sition method allows one to partially order already existing perfect quadratic forms
and reduce notation.

In the space R3 there is only the first perfect lattice �30 whose partitioning consists
of regular simplices P 3

1 and octahedra P 3
2 . The simplex P 3

1 belongs to the series of
polytopes considered above. The octahedron P 3

2 gives rise to a series of n -cross-
polytopes with edges of length one which are Delaunay polytopes of perfect lattices,
where n ≥ 3.
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The lattice �30 and its Delaunay polytope P 3
2 give rise to a series of perfect lattices

�n1 given by the second perfect form qn1 (x) = qn0 (x)−x1x2, where n ≥ 4. The lattice
�n1 has n2 − n vectors of length one. The n -cross-polytope is a basic Delaunay
polytope of this lattice.

The cross-polytope with edges of length one is a Delaunay polytope of double
volume of the perfect lattice �′8. The frame f8 of this lattice and the corresponding
quadratic form are adduced above. The convex hull of the frame vectors e1, . . . , e7
constitutes the 7 -dimensional face of the partitioning which is a regular simplex.
Along this face the simplex S8 borders on an 8 -cross-polytope which we denote by
P 8. The lattice �′8 and its Delaunay polytope P 8 generate a series of perfect lattices.
The n -dimensional lattice of this series has an n -cross-polytope Pn as a Delaunay
polytope of double volume and it is given by the frame {e1, . . . , e7, e′8, e9, . . . , en}.
The vectors e1, . . . , e7, e9, . . . , en form an (n − 1) -dimensional face of an n -cross-
polytope Pn which is a regular simplex. Only the vector e′8 of the frame does not
belong to the cross-polytope Pn. The distance of the point e′8 to each of the vertices
e9, . . . , en of the cross-polytope Pn just amounts to 3/2. Hence, to the frame of the
lattice of this series there corresponds the quadratic form

qn0 (x)− x1x8 − x2x8 − 1

2
x8(x9 + . . .+ xn),

where n ≥ 9. The number of lattice vectors of length one is equal to n2 − n + 64,
as is easy to see.

In the space R4 there are two perfect lattices �40 and �41. The Delaunay polytopes
of the lattices �n0 and �n1 are well known. All Delaunay polytopes of these lattices,
except for the regular simplex Pn

1 of the lattice �n0 and the n -cross-polytope of
the lattice �n1 , have circumscribed ball of radius greater than 0, 5, and so they give
no rise to any countable series of perfect lattices. Therefore, the first and second
perfect lattices are not considered in the sequel.

In addition to the first and second perfect lattices in R
5 there is also the third

perfect lattice �52. The partitioning of �52 contains Delaunay polytopes of three
types whose representatives are U5, S5 and M5 of [Bar91]. The first polytope has
circumscribed ball of radius exceeding 0, 5. The second one is a basic simplex of
the lattice (r2 = 11/24) and has no vertex connected with other vertices of the
simplex by edges of length one. It gives rise to a series of regular simplices over S5,
which we denote by Sn

1 for n ≥ 6. The lattice �52 and simplex S5 generate a series
of perfect lattices �n3 , for which the simplices Sn

1 are basic Delaunay polytopes. The
vertex of the simplex S6

1 facing S5 is connected with other vertices of the simplex
by edges of length one. On taking these edges as frame we get a quadratic form
q63(x) = q60(x)− 1/2 (x1x2 + x3x4 + x5x6) which gives the first lattice of this series.
Then the entire series of lattices �n3 is determined by the form

qn3 (x) = qn0 (x)−
1

2
(x1x2 + x3x4 + x5x6),

where n ≥ 6. Several of the first forms and lattices given by them are known,
however, they do not bear any common designation let alone name. The number
of vectors of length one in the lattice �52 amounts to 15, and the simplex S5 has
6 vertices. It follows that the number of vectors of length one in the lattice �n3 is
equal to n(n+ 1)/2.

The polytope M5 is a regular pyramid over a polytope V 4
2,2 which is a repar-

titioning body, see [Bar91]. The radius of circumscribed ball of M5 is r =
√
0, 5.
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Therefore, V 4
2,2 gives rise to a series of pyramids Mn, n ≥ 5, which are Delaunay

polytopes of perfect lattices. The polytope V 4
2,2 is a basic Delaunay polytope of a

lattice �4 which is not perfect. However, on applying the layer superposition method
to the lattice �4 and its Delaunay polytope V 4

2,2 one obtains a perfect lattice �52. In

this way �4 and V 4
2,2 generate a series of perfect lattices �n2 and a series of Delaunay

polytopes Mn of these lattices, where n ≥ 5. The lattice �52 is the first lattice of
the series. The body V 4

2,2 has 6 vertices and the number of vectors of length one

in the lattice �4 is equal to 9. Hence, the number of vectors of length one in the
lattice �n2 just amounts to −1 + 1(n− 4) + n(n+ 1)/2 or n(n+ 3)/2− 5, which is
due to Lemma 4.1. Any 5 of the 6 edges of the polytope M5 emanating from the
vertex facing V 4

2,2 can be taken as a frame of �52. To this frame there corresponds

the quadratic form q52(x) = q50(x)−1/2 (x1x2+x3x4+x3x5+x4x5). Then the series
�n2 is determined by

qn2 (x) = qn0 (x)−
1

2
(x1x2 + x3x4 + x3x5 + x4x5),

where n ≥ 5. This series of perfect quadratic forms is known, see [Vas04]. Un-
fortunately, G. F. Voronoy found and called the third perfect form only the first
quadratic form of this series, cf. [Vor09]. It seems to be more logical to think of the
whole series as the third perfect form by analogy with the first and second perfect
forms.

In addition to finding new perfect forms the construction of series of perfect
lattices by the layer superposition method allows one to partially regulate already
known quadratic forms, thus reducing the number of designations in use.
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quadratiques - Deuxième mémoire, J. für reine und angewandte Mathematik 134

(1908), 198–287; 136 (1909), 67–178.

Institute of Non-Ferrous Metals, Siberian Federal University, Av. Krasnoyarskii

Rabochii 95, 660025 Krasnoyarsk, Russia

Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476

Potsdam, Germany

E-mail address: tarkhanov@math.uni-potsdam.de


	Title
	Imprint

	Abstract
	Contents
	1. Introduction
	2. Background
	3. General description of the method
	4. Pyramid structure
	5. Examples
	References

