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The correctness of model transformations is a crucial element for model-driven
engineering of high quality software. In particular, behavior preservation is the
most important correctness property avoiding the introduction of semantic errors
during the model-driven engineering process. Behavior preservation verification
techniques either show that specific properties are preserved, or more generally and
complex, they show some kind of behavioral equivalence or refinement between
source and target model of the transformation. Both kinds of behavior preservation
verification goals have been presented with automatic tool support for the instance
level, i.e. for a given source and target model specified by the model transformation.
However, up until now there is no automatic verification approach available at the
transformation level, i.e. for all source and target models specified by the model
transformation.

In this report, we extend our results presented in [27] and outline a new sophisti-
cated approach for the automatic verification of behavior preservation captured by
bisimulation resp. simulation for model transformations specified by triple graph
grammars and semantic definitions given by graph transformation rules. In partic-
ular, we show that the behavior preservation problem can be reduced to invariant
checking for graph transformation and that the resulting checking problem can
be addressed by our own invariant checker even for a complex example where a
sequence chart is transformed into communicating automata. We further discuss
today’s limitations of invariant checking for graph transformation and motivate
further lines of future work in this direction.
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1. Introduction

1. Introduction

The correctness of model transformations is a crucial element for model-driven
engineering of high quality software. Many quality related activities are obtained
using the source models of the transformations rather than the results of a single
transformation or chains of transformations. Therefore, only if the model transfor-
mations work correctly and introduce no faults, the full benefits of working with
the higher-level source models can be realized.

In this context in particular behavior preservation is the most important correctness
property avoiding the introduction of semantic errors during the model-driven
engineering process. Behavior preservation verification techniques either show that
specific properties are preserved, or more generally and complex, they show some
kind of behavioral equivalence or refinement (e.g., bisimulation or simulation [41])
between source and target model of the transformation.

For both kinds of behavior preservation, verification goals have been presented
with automatic tool support for the instance level [53, 22, 5, 42, 43, 14], i.e. for
a given source and target model specified by the model transformation. Never-
theless, up until now there is no automatic verification approach available at the
transformation level, i.e. for all source and target models specified by the model
transformation. However, as usually the transformation development and the
application development that employs the developed transformation are separate
activities that are addressed by different people or even different organizations,
detecting that the transformation is not correct during application development
time is thus usually too late.

Consequently, ensuring behavior preservation for the transformation in general
already during the development of the transformation is highly desirable, but to our
best knowledge so far no work exists that promises to solve the problem in a fully
automated manner. We presented a first approach [25] attacking this problem on the
transformation level in a semi-automated manner in form of a verification technique
based on interactive theorem proving. Also [36] presented and compared different
proof strategies for manual proofs on the transformation level without solving the
problem of automation. Some first approaches to automating the verification of
behavior preservation for the special case of model refactorings are present [46, 6],
but none of them covers the general case of model transformations.

In this report, we present a first overall approach towards automatic verification
of behavior preservation for the general case of model transformations specified by
triple graph grammars (TGG) and semantic definitions given by graph transforma-
tion systems (GTS). In particular, we show that the behavior preservation problem
can be reduced to invariant checking for GTS, which in restricted cases can be
automatically verified using the existing verification technique [2], similar to [3]
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were we reduced the problem of consistency preservation of refactorings accord-
ingly. Due to a mapping of TGGs on specially typed graph transformations [26, 28]
both the transformation and the semantics are captured in a homogeneous manner,
which greatly facilitates mapping the problem on invariants for GTS. We demon-
strate with the complex example of a model transformation from sequence charts
to communicating automata how sophisticated the presented approach is. Besides
this demonstration for the degree of automation that can be achieved today, we
further discuss today’s limitations of invariant checking for graph transformation
and motivate further lines of future work in this direction.

The report extends the basic first approach presented in [27] (and repeated in
Section 3) in several directions: At first, we support not only behavioral equiva-
lences in form of bisimulation, but also behavioral refinement in form of simulation
(see later Section 5). Secondly, the improved verification scheme covers not only
deterministic semantics but also non-deterministic ones that are necessary to cover
non-deterministic sequential behavior or concurrent behavior (see discussion in
Section 3.4). Furthermore, we have added an extensive evaluation of our approach
as described in Section 7. Finally, compared to the basic first approach in [27]
the required amount of manual specification efforts can be substantially reduced
(see discussion in Section 6). Moreover in [17] we showed already that the basic
verification scheme for relational model transformations presented in [27] and ex-
tended here can be adapted such that it is applicable also to operational model
transformations.

1.1. Behavior Preservation at the Transformation Level

In this section we introduce the notion of behavior preservation at the transforma-
tion level for model transformation in a generic way. We clarify which artefacts are
necessary to describe the problem such that later in Section 2 we can formalize
these artefacts to tackle the corresponding verification problem. In particular, we
need the notions of modeling language, a corresponding semantics for each model
in this language, a notion of model transformations, and some notion for behavior
comparison to describe the problem.

Definition 1 (Modeling Language L). A modeling language L consists of a possibly
infinite set of models.

A modeling language can, for example, be defined by a grammar, or by a meta-
model enriched with constraints.

Definition 2 (Model Semantics, Semantic Domain D, Semantic Mapping sem(·)).
Given a modeling language L and a semantic domain D, a semantic mapping sem :
L → D defines the semantics sem(M) of each model M in L.

10



1. Introduction

A semantic domain can, for example, be a set of labeled transition systems, but
it can also be any other formalism or modeling language, for which the behavior is
well-defined.

Definition 3 (Model Transformation MT, Model Transformation Instance (Ms, Mt)

∈ MT). Given a source and target modeling language LS and LT , respectively, a model
transformation MT is a relation over LS ×LT . Each pair (Ms, Mt) of source and target
models in MT is a model transformation instance of the model transformation MT.

A model transformation can, for example, be defined by operational model trans-
formation techniques [44, 37, 12, 24, 49], relational model transformation techniques
[47, 44, 40], or hybrid model transformation techniques [4, 44]. Such a definition for
a model transformation then implicitly defines all model transformation instances.

In order to be able to compare the semantics of a source and target model, we
first have to map the corresponding source and target semantics to the same seman-
tic domain D by a so-called semantic remapping as introduced in the following
definition.

Definition 4 (Semantic Remapping l). Given a semantic domain D1 and a semantic
domain D2, a semantic remapping l : D1 → D2 is a mapping from semantic domain D1

to semantic domain D2.

If source and target semantics for a pair (Ms, Mt) of source and target models of
modeling language Ls and Lt are mapped to the same semantic domain D, we can
employ several alternative notions for the behavioral equivalence and refinement
(cf. [51, 52] for a plethora of such notions for the case of labeled transition systems).

Definition 5 (Behavioral Equivalence =D, Behavioral Refinement ≤D). Given a
shared semantic domain D, we can distinguish two behavioral relations:

• A behavioral equivalence =D⊆ D ×D is a reflexive, symmetric, and transitive
relation.

• A behavioral refinement ≤D⊆ D ×D is a reflexive and transitive relation (pre-
order).

Remark 1. The inverse of a refinement in form of a behavioral abstraction is also a
reflexive and transitive relation (preorder).

For the in the following outlined notion of behavior preservation for model trans-
formation at the transformation level, we assume that a suitable shared semantic
domain D and a suitable behavioral relation =D or ≤D will be identified.
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Definition 6 (Behavior Preservation – Transformation Level). Given a model transfor-
mation MT ⊆ LS ×LT , semantic mappings semS : LS → DS and semT : LT → DT
for source and target language LS and LT , and semantic remappings ls : DS → D and
lt : DT → D, we say that the model transformation MT is (2.1) behavior preserving
in an equivalent manner if for each pair of source and target models (Ms, Mt) ∈ MT, it
holds that ls(semS (Ms)) =D lt(semT (Mt)). We say that MT is (2.2) behavior preserv-
ing in a refining manner if for each pair of source and target models (Ms, Mt) ∈ MT, it
holds that lt(semT (Mt)) ≤D ls(semS (Ms)).

Remark 2 (Behavior Preservation – Instance Level). In contrast to behavior preserva-
tion at the transformation level applying to the transformation as a whole consisting
in general of infinitely many model transformation instances, for behavior preservation at
the instance level it is enough that condition (2.1) or (2.2) holds for just one such a pair
of source and target models (Ms, Mt) ∈ MT. In this case we say that the model trans-
formation instance (Ms, Mt) is behavior preserving in an equivalent or refining manner,
respectively.

Remark 3 (Abstraction). Since abstraction is the opposite case of refinement, we also
say that a model transformation MT represents an abstraction if its inverse defines a
model transformation, which is behavior preserving in a refining manner. In particular, this
means that for each pair of source and target models (Ms, Mt) ∈ MT it needs to hold that
ls(semS (Ms)) ≤D lt(semT (Mt)).

Figure 1: Behavior Preservation – Transformation Level (see Definition 6)

In Figure 1 it is summarized which general concepts are employed in Def. 6 that
need to be further formalized in some corresponding modeling step Mx such that

12



1. Introduction

a verification technique can be developed on the transformation level. Note that
a model transformation MT is behavior preserving in an equivalent or refining
manner if and only if all model transformation instances (Ms, Mt) ∈ MT are
behavior preserving in an equivalent or refining manner, respectively.

Example 1 (Running example). For the purpose of demonstrating our verification tech-
niques for behavior preservation, we will in the following consider model transformations
(MT) involving different variants of sequence charts as the source modeling language (LS )
and automata as the target modeling language (LT ) as our running examples. We will later
extend this example by concrete definitions for source and target languages LS and LT
(modeling step Mlang), for semantic mappings semS and semT (modeling step Msem), for a
model transformation MT ⊆ LS ×LT (modeling step Mtrans), and for remappings ls and
lt and behavioral equivalence and refinement (modeling step Mpres) such that all concepts
occurring in Definition 6 are explicitly modeled according to our proposed formalization.

1.2. State of the Art

The verification of model transformations is an active area of research and con-
sequently a number of approaches have been developed. As we approach in this
report the case of exogenous model transformations, we will further limit our
discussion mainly to related work for this kind of transformations.

In general the properties that are verified for model transformations could be
of syntactical or semantical nature. Syntactical properties are, for example, well-
formedness constraints that are guaranteed for a transformation result in case other
well-formedness constraints are guaranteed for the input. Semantical properties
refer to the semantics of the source and target model and include as the most
general case behavior preservation as studied in this report.

Finally, we can target the verification of properties at the instance level or at the
transformation level (as in Definition 6). While in the former we study the problem
for a pair of source and target model, in the latter we consider all potentially
infinitely many source and target models that are linked by the transformation at
once.

Ensuring syntactical properties for model transformation instances is usually
rather straight forward, as we can simply check them inspecting the source and
target model.

The correctness of semantical properties for model transformation instances in
contrast is more complicated. The techniques for the verification of model transfor-
mation instances [5, 22, 42, 43, 14, 53] assign the source and target model a formal
semantics and then proof via model checking (cf. [53, 22]) or bisimulation checking
(cf. [5, 42, 43]) the semantic equivalence.
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The verification of properties at the transformation level as in Definition 6 is
more demanding than at the instance level as we have to consider all potentially
infinitely many source and target models that are linked by the transformation at
once.

For syntactical properties there exist, however, already first results: In [9] an
approach for ATL has been developed that based on bounded verifiers check if
constraints on the source and target model can be violated by the transformation.
For constraints in form of OCL invariants [10] permits to check for relational QVT
und TGG based on a bounded verifiers check if constraints on the source and
target model can be violated by the transformation. However, for all approaches
it holds that the results are incomplete in the sense that due to the bounded
search space counter examples may be missed. In our own related work [3] we
developed an approach that preserves a specific kind of graph constraints for
refactorings described by graph transformations that is in contrast complete. For
model transformations with triple graph grammars we also present related results
concerning the preservation of syntactical properties in [35].

For semantical properties including the in this report studied behavior preser-
vation for model transformation at the transformation level (see Definition 6),
only first approaches exist: In [25] we developed an approach to verify behavior
preservation for model transformations specified by TGGs with the theorem prover
Isabelle/HOL where the elements as outlined in Section 1.1 are encoded in the
logic of the theorem prover. In [36] different proof strategies for the verification of
model transformations at the model transformation level are suggested, but these
strategies do no solve the question how to automate the verification.

Some initial ideas for the automation of behavior preservation for refactorings
exist [46, 6], however, these ideas do not cover the more general exogenous model
transformations as studied in this report.

Table 1: Summary of existing fully automated approaches

property \ level instance level transformation level
syntactical trivial [9, 10][3, 35]1

semantical [53, 22, 5, 42, 43, 14] [27]1

The review of the related work revealed as depicted in Table 1 that for verification
of the behavior preservation for model transformations at the transformation level
no fully automatic and sound approach besides our own work for relational model
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1. Introduction

transformations [27] as well as operational model transformations [17] exists so
far. This transformation level approach however is still rather limited compared
to the presented solution for relational model transformations in this report as
outlined on page 10. Not even an incomplete approach that is fully automatic has
been suggested so far, which demonstrates how difficult behavior preservation
verification on the transformation level is.

1.3. Outline

The rest of the report is structured as follows: In Section 2, we introduce the
basic formal notions that we require to tackle the behavior preservation problem
on the transformation level. In particular, for formalizing modeling languages
(modeling step Mlang) and its behavioral semantics (modeling step Msem) as well
as model transformations (modeling step Mtrans) we will rely on so-called (typed)
graph constraints, GTSs and TGGs. Moreover, we will reintroduce the notion of
bisimulation and simulation as a formal notion for behavioral equivalence and
refinement (modeling step Mpres). Modeling steps Mlang, Msem, Mtrans and Mpres

compose into a so-called modeling scheme such that when this scheme is complete
the notion of behavior preservation at the transformation level is formalized in
such a way that a corresponding verification scheme can be developed. Indeed
as described in our previous work [27] already, in Section 3 we present such
a verification scheme. In particular, we describe how the problem of verifying
behavior preservation for relational model transformations at the transformation
level can be reduced to invariant checking GTSs and prove its correctness. We
moreover explain why our previous work [27] can only handle modeling languages
with a deterministic semantics that only distinguishes finitely many labels and what
limitations this implies. In Section 4 we state the problem of behavior preservation
for modeling languages that do not have these limitations on their semantics and
we show how the verification scheme can be generalized. Moreover, in Section 5

we handle the case of model transformations for which behavior is refined by the
model transformation rather than kept equivalent by requiring a simulation relation
between source and target semantics. Afterwards, the automation for a restricted
class of the three introduced variants of the problem is presented in Section 6

and thereafter evaluated in Section 7. In Section 8 we discuss the appropriateness,
applicability, and limitations concerning the automation of the approach. The report
closes with a final conclusion and outlook on future work.

1This particular work is a predecessor of the presented work.
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2. Formalization

In order to formalize the artifacts modeling language (Section 2.1), model semantics
(Section 2.2) and model transformation (Section 2.3) of Definition 6, we reintroduce
graph conditions, graph transformation and TGGs in a compact way and refer to
[32, 19, 28] for more detailed definitions and explanations. We also reintroduce
the notion of labeled transition systems, relabelings of labeled transition systems,
and bisimulation/simulation (Section 2.4), since it will be employed to formalize
the semantic domain and the notion of behavioral equivalence and refinement.
In Section 2.5 we then summarize how to refine Definition 6 with these formal
concepts.

2.1. Modeling Language

To formalize the modeling language according to Definition 1, we will assume
in this report that each model of a modeling language is represented by a graph.
Graphs can be equipped with typing over a given type graph TG as usual [18]
by adding a so-called typing morphism from each graph to TG. Such a typing
morphism is a regular graph morphism from the graph G to be typed into the type
graph TG, expressing to which type node/edge in TG each node/edge in G, resp.,
is being mapped. In the following, we formally define the notions of graphs, graph
morphisms and type graphs.

Definition 7 (Graph [18]). A graph G = (V, E, s, t) consist of a set V of nodes (also
called vertices), a set E of edges, and two mappings s, t : E → V, the source and target
mappings, respectively.

Definition 8 (Graph morphism [18]). Given graphs G1, G2 with Gi = (Vi, Ei, si, ti)

for i = 1, 2, a graph morphism f : G1 → G2, f = ( fV , fE) consists of two mappings
fV : V1 → V2 and fE : E1 → E2 that preserve the source and target mappings, i.e.
fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE.

Definition 9 (Typed graph and typed graph morphism [18]). A type graph is
a distinguished graph TG = (VTG, ETG, sTG, tTG). VTG and ETG are called the vertex
and the edge type alphabets, respectively. A tuple (G, type) of a graph G together with
a graph morphism type : G → TG is then called a typed graph. Given typed graphs
GT

1 = (G1, type1) and GT
2 = (G2, type2), a typed graph morphism f : GT

1 → GT
2 is a

graph morphism f : G1 → G2 such that type2 ◦ f = type1.

With these definitions, a graph language consisting of graphs typed over a
common type graph can be defined.

16



2. Formalization

Definition 10 (Graph language). Given a type graph TG, the graph language L(TG)

denotes the set of all graphs typed over TG, i.e. L(TG) = {G | ∃ type (type : G → TG)}.

In the following, all specific graphs encountered throughout this report will be
typed graphs, unless noted otherwise, and the typing morphism will be omitted.
Likewise, all specific graph morphisms will be typed graph morphisms.

Event 

Send 

first 

pre,post 

Rcv 

pre,post 

Lifeline 

(a) Type graph STT

TS 

src,tgt 

State 

init 

TR 

src,tgt 

Automaton 

(b) Type graph TTT

Figure 2: Type graphs STT and TTT

Event 

Event 

State 

State 

Send TS 
pre 

post 

src 
tgt 

first init 

Event State 

Rcv TR 
pre 

post 

src 

tgt 

S T S T 

Figure 3: S and T in concrete and abstract syntax
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Example 2 (Graph language as modeling language). In Fig. 2(a), a type graph STT is
depicted used to describe the language of message sequence charts with one lifeline being
able to send and receive messages, which is the source modeling language for an example
model transformation introduced later. The graph S in Fig. 3 describes a concrete sequence
chart with one lifeline, depicted on its left-hand side also in concrete syntax. This graph S
is typed over STT via a typing morphism mapping nodes and edges with a specific label in
S to a node type and edge in STT with the same label, respectively.

Analogously, the graph T in Fig. 3, which is typed over TTT (Fig. 2(b)), describes a
specific automaton with three states and two different types TS and TR of transitions. The
language of automata is the target modeling language for the example model transformation.

The language L(STT) of all sequence charts with one lifeline still contains malformed
models. In particular, charts are allowed with events that are connected to more than one
previous message. Instead, we only want to allow charts such that for each event there exists
at most one unique previous (or subsequent) message.

A modeling language could be defined as L(TG) for a given type graph TG, but
as shown in Example 2 we usually need a possibility to further constrain this
set of typed graphs to describe the modeling language more precisely. Graph
constraints, derived from graph conditions as explained in the following, are the
right formalism to further constrain L(TG).

Graph conditions [32, 19] generalize the corresponding notions in [31], where a
negative (positive) application condition, NAC (PAC) for short, over a graph P,
denoted ¬∃a (∃a) is defined in terms of a graph morphism. Informally, a morphism
p : P→ G satisfies ¬∃a (∃a) if there does not exist a morphism q : C → G extending
p (if there exists q extending p). Then, a (nested) graph condition AC is either the
special condition true or a pair of the form ¬∃(a, acC) or ∃(a, acC), where the first
case corresponds to a NAC and the second to a PAC, and in both cases acC is
an additional AC on C. Intuitively, a morphism p : P → G satisfies ∃(a, acC) if p
satisfies a and the corresponding extension q satisfies acC. ACs (and also NACs and
PACs) may be combined with the usual logical connectors. A morphism p : P→ G
satisfies ¬c if p does not satisfy c and satisfies ∧i∈Ici if it satisfies each ci (i ∈ I).

Definition 11 (graph condition [19]). A graph condition, also called nested graph
condition, is inductively defined as follows:

1. For every graph P, true is a graph condition over P.
2. For every morphism a : P→ C and every graph condition acC over C, ∃(a, acC) is

a graph condition over P.
3. For graph conditions ac, aci over P with i in an index set I, ¬ac and

∧
i∈I aci are

graph conditions over P.
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2. Formalization

P

G

C,a

p q
=

acC

�
)∃(

Satisfiability of graph conditions is inductively defined as follows:

1. Every morphism satisfies true.
2. A morphism p : P→ G satisfies ∃(a, acC) over P with a : P→ C if there exists an

injective morphism q : C ↪→ G such that q ◦ a = p and q satisfies acC.
3. A morphism p : P → G satisfies ¬ac over P if p does not satisfy ac and p satisfies∧

i∈I aci over P if p satisfies each aci (i ∈ I).

We write p � ac to denote that the morphism p satisfies ac.
Graph conditions can be equipped with typing over a given type graph TG as usual [18]

by adding typing morphisms from each graph to TG and by requiring type-compatibility
with respect to TG for each graph morphism.

Graph conditions over the empty graph I are also called graph constraints. A graph
G satisfies a graph constraint acI , written G � acI , if the initial morphism iG : I → G
satisfies acI .

Notation. Note that ∃a abbreviates ∃(a, true), ∀(a, acC) abbreviates ¬∃(a,¬acC) and
∃(C, acC) abbreviates ∃(iC, acC) with the initial morphism iC : I → C. More in general,
a graph condition ∃(a, acC) over P with a : P → C, is abbreviated also as ∃(C, acC) if
a denotes an inclusion morphism and if it is clear from the context that ∃(C, acC) is a
condition over P. Moreover, the depiction of specific constraints shown in this report (cf.
Figure 4) takes into account that they may relate specifically to the source or target modeling
language or traceability information of a model transformation. Hence, dashed vertical lines
will be used to separate elements of the respective languages, with elements to the left (right,
middle) being part of the source (target, traceability information), respectively. In particular,
for our formalization of model transformations as triple graph grammars (see Section 2.3),
this traceability information will be represented by correspondence nodes and links between
source and target model elements.

The idea behind graph constraints, as opposed to graph conditions, is to have
a way of describing properties on the level of graphs instead of morphisms. For
example, we can restrict the set of graphs in a graph language L(TG) defined by a
type graph to those graphs also satisfying a constraint C.

Definition 12 (Graph language with constraint). Given a type graph TG and a graph
constraint C typed over TG, the graph language with constraint L(TG, C) denotes the
set of all graphs typed over TG that satisfy C, i.e. L(TG, C) = {G | ∃ type (type : G →
TG) ∧ G � C}.
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Send 

Event 
pre 

Send 

pre 
  … 

CS 

Figure 4: Fragment of CS

Example 3 (Graph language with constraint as modeling language). In Fig. 4,
a graph constraint is depicted expressing that an event is connected with at most one
unique previous Send message. The dashed lines show that the constraint only contains
and concerns elements relevant for the source modeling language. Analogously, we can
define constraints for subsequent as well as Rcv messages. We denote the conjunction
of all these constraints with CS . The language L(STT, CS ) then describes the (source
modeling) language of sequence charts consisting of only one lifeline more accurately than
as introduced without constraint in Example 2.

Likewise, the language L(TTT, CT ) for a similar constraint CT and the type graph TTT

describes the (target modeling) language of automata.

2.2. Model Semantics

In this report, we use graph transformation and induced labeled transition systems
to formalize model semantics according to Definition 2. We start with reintroducing
graph transformation and thereby assume the double-pushout approach (DPO) to
graph transformation with injective matching [18]. In particular, we allow rules to
be equipped with application conditions (AC) [32, 19], allowing to apply a given
rule to a graph G only if the corresponding match morphism satisfies the AC of
the rule.

Definition 13 (graph transformation). A plain graph transformation rule p = 〈L ←↩
I ↪→ R〉 consists of a span of injective graph morphisms. We say that the graphs L and R
are the left-hand side (LHS) and right-hand side (RHS) of the rule, respectively. A graph
transformation rule ρ = 〈p, acL〉 consists of a plain rule p = 〈L ←↩ I ↪→ R〉 and an
application condition acL over L.

L I R

DG G′
m m∗(1) (2)

acL =|
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2. Formalization

A direct graph transformation via rule ρ = 〈p, acL〉 consists of two pushouts (1)
and (2), called DPO, with injective match m and comatch m∗ such that m � acL. If there
exists a direct transformation from G to G′ via rule ρ and match m, we write G ⇒m,ρ G′. If
we are only interested in the rule ρ, we write G ⇒ρ G′. If a rule ρ in a set of rules R exists
such that there exists a direct transformation via rule ρ from G to G′, we write G ⇒R G′.
A graph transformation, denoted as G0 ⇒∗ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of
n ≥ 0 direct graph transformations.

Rules and transformations as described before can be equipped with typing
over a given type graph TG as usual [18] by adding typing morphisms from each
graph to TG and by requiring type-compatibility with respect to TG for each graph
morphism.

Definition 14 (graph transformation system (with constraint), set of reachable
graphs). A graph transformation system (GTS) gts = (R, TG) consists of a set of
rules R typed over a type graph TG. A graph transformation system may be equipped with
an initial graph G0 or a set of initial graphs I being graphs typed over TG. If a rule ρ in
the set of rules R of gts exists such that there exists a typed direct transformation via rule
ρ from G to G′, we write G ⇒gts G′. For a GTS gts = (R, TG) and an initial graph
G0 the set of reachable graphs REACH(gts, G0) is defined as {G | G0

∗⇒gts G}. A GTS
with constraint gtsC = (R, TG, C) consists of a GTS gts = (R, TG) and a constraint C
typed over TG. If a rule ρ in the set of rules R of gtsC exists such that there exists a typed
direct transformation via rule ρ from G to G′ both satisfying C, we write G ⇒gtsC G′. For
a GTS with constraint gtsC = (R, TG, C) and an initial graph G0 satisfying C the set of
reachable graphs REACH(gtsC , G0) is defined as {G | G0

∗⇒gtsC G}.

The satisfaction of graph constraints can be invariant with respect to a GTS.
In particular, in our verification approach, we reduce the problem of behavior
preservation to invariant checking. In Section 6, we explain how and with which
restrictions automatic invariant checking can be performed statically.

Definition 15 (inductive invariant [11]). A graph constraint acI is an inductive invari-
ant of the GTS gts = (R, TG), if for all graphs G in L(TG) such that G � acI ∧ G ⇒gts

G′ it holds that G′ � acI . A graph constraint acI is an inductive invariant of the
GTS with constraint gtsC = (R, TG, C), if for all graphs G in L(TG, C) such that
G � acI ∧ G ⇒gtsC G′ it holds that G′ � acI .

Remark 4. In the latter case it holds that G′ ∈ L(TG, C), since it results as a graph from
a rule application via the GTS with constraint gtsC from a graph G satisfying C.

Analogous to the work of Hülschbusch et al. [36], we will define a semantic
mapping for a modeling language defined by a graph language using graph trans-
formation systems. The basic idea here is to define the semantics by means of an
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interpreter which is described by graph transformation rules, which operate on the
basis of the model and additional runtime information capturing the current state
in the execution of the model. The idea to employ GTS to define some form of
interpreter for diagrams has been also suggested by the dynamic metamodeling
approach [21, 33] and has been used for the instance-level verification in [22]. In
order to be able to encode runtime information into a graph language the accord-
ing type graphs can be enriched with so-called dynamic types allowing to define
dynamic elements and possible changes of dynamic elements in instances of this
runtime type graph. In this context, we say that a type (or corresponding instance
element) is static if it is not a dynamic type (or element), respectively.

Definition 16 (runtime and static type graph, dynamic and static node/edge (type)).
Given a graph language with constraint L(TG, C), then a runtime type graph TG′ with
respect to L(TG, C) is a graph having TG as a subgraph. We say that TG is a static type
graph w.r.t. TG′ and that C is a static constraint w.r.t. TG′. All node and edge types
in TG′ but not in TG are called dynamic node and edge types, respectively. All node
and edge types in TG but not in TG′ are called static node and edge types, respectively.
All nodes/edges typed over a static or dynamic node/edge type, resp., are called static or
dynamic nodes/edges, respectively.

Given a graph language with constraint and a corresponding runtime type graph
we can now define a so-called runtime graph language with dynamic constraint.
Each graph belonging to this language describes a potential runtime state. The
dynamic constraint is thereby used in addition to the runtime type graph and the
static constraint to restrict this language to well-formed potential runtime states.

Definition 17 (runtime graph language, dynamic constraint). Given a graph lan-
guage with constraint L(TG, C), a runtime type graph TG′ w.r.t. L(TG, C) and a graph
constraint Cdyn typed over TG′, but not only typed over TG, then the graph language
with constraint L(TG′, C ∧ Cdyn) is called a runtime graph language with dynamic
constraint Cdyn.

Example 4 (runtime graph language with dynamic constraint). We have runtime type
graphs SRT (TRT) for the source (target) language L(STT, CS ) (L(TTT, CT )) as depicted
in Fig. 5(a) and 5(b), respectively. The dynamic edge types, in particular active and
activated, are denoted with dashed edges. Moreover, they have the dynamic constraints
Cgts

s (Figure 6(a)) and Cgts
t (Figure 6(b)) typed over the runtime type graphs SRT and TRT,

respectively. Summarizing, we have the source and target runtime graph language with
dynamic constraint L(SRT, CS ∧ C

gts
s ) (L(TRT, CT ∧ Cgts

t )), respectively.

Given a graph language and a corresponding runtime graph language, a GTS
typed over the runtime type graph will serve as the basis for the semantics of the
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graph language. We therefore in the following will call the rules of such an GTS
also semantics rules and corresponding rule applications semantics steps. In order
for the semantics to be well-defined we assume some extra conditions on the GTS.
First, it has the property that it does not change elements with static type, since
the GTS merely models the change of runtime information for each graph in the
graph language. Note that this implies that the GTS preserves the satisfaction of the
static constraints of each runtime graph. Moreover, we assume that the GTS with
static constraint has the given dynamic constraint of the runtime graph language
as inductive invariant such that the corresponding graph transformation rules
preserve also the satisfaction of the dynamic constraints of each runtime graph. If
both conditions are fulfilled, we say that a GTS is runtime conform w.r.t. the given
runtime graph language.

Definition 18 (runtime conform GTS). Given a graph language with constraint L(TG, C),
a corresponding runtime graph language L(TG′, C ∧ Cdyn) and a GTS gts = (R, TG′)
typed over the runtime type graph TG′. We say that gts is runtime conform w.r.t. the
runtime graph language L(TG′, C ∧Cdyn) if (1) the rulesR in gts preserve all static types
of TG′ and if (2) the GTS with constraint gtsC = (R, TG′, C) has the dynamic constraint
Cdyn as inductive invariant.

Remark 5. Each GTS with constraint gtsC = (R, TG, C) can be translated into an
equivalent GTS without constraint gts′ = (R′, TG) having C as inductive invariant. In
particular, this means that, as proven in [34, 32], the constraint C can be translated into
LHS application conditions for each rule ρ in R such that such a translated rule ρ′ in R′
is applicable to a graph satisfying C if and only if the resulting graph after application of ρ′

satisfies C as well.

Note that we can assume condition 2 of Def. 18 without loss of generality, because
of the following reasoning: suppose that the GTS with static constraint does not
have the dynamic constraint as inductive invariant. Then, we could consider the
GTS with static and dynamic constraint as a basis for the semantics such that
the satisfaction of the dynamic constraint is trivially always fulfilled. However,
according to Remark 5 the GTS with static and dynamic constraint can be translated
into an equivalent GTS with static constraint – but without dynamic constraint –
that has this dynamic constraint as an inductive invariant.

Example 5 (runtime conform GTS). For the runtime source language L(SRT, Cgts
s ) with

runtime type graph SRT and runtime target language L(TRT, Cgts
t ) with runtime type graph

TRT, we can define a runtime conform source GTS gtss = (Rs = {ρi
s | i ∈ I}, SRT) and

target GTS gtst = (Rt = {ρj
t | j ∈ J}, TRT) as depicted in Fig. 7(a) and 7(b), respectively.

Note that the rules of these GTSs indeed preserve all elements with static type. Moreover,
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Figure 7: runtime conform GTSs for source and target runtime graph language

the corresponding GTSs with constraint gtsCS
s and gtsCT

t have the dynamic constraints
Cgts

s (Figure 6(a)) and Cgts
t (Figure 6(b)) typed over the runtime type graphs SRT and TRT,

respectively, as inductive invariants. The core idea is that an event on (state in) a lifeline
(automaton) cannot be activated twice depicted by the activated edge that is crossed out.
This is enforced by corresponding NACs in initE (initS, respectively). Moreover, the static
constraints take care of the fact that no two first events or initial states can occur in the
first place. Similarly, there cannot be two active events (states) belonging to a single lifeline
(automaton). The GTS gtss = ({initE, send, rcv}, SRT) depicted in Fig. 7(a) typed over
SRT (see Fig. 5(a)) is then the basis for a semantic mapping for the source graphs. We use
a notation marking elements that are created or deleted by the rule with "++" or "- -",
respectively. We depict a NAC by crossing out the elements that it forbids. The rule initE
holds a NAC, which forbids the occurrence of an activated edge. The rule describes that the
first event of the lifeline is made active and marked as activated. The NAC ensures that if
this first event was activated already, then it can’t be activated again. Rule send describes
the sending of a message from the lifeline between two events. Before applying the rule,
the event previous to the message is active and afterwards the event after the message is
active. The rule rcv analogously describes the receiving of a message. For the target graphs
(depicted in Fig. 7(b)) we have gtst = ({initS, f ireTS, f ireTR}, TRT) typed over TRT (see
Fig. 5(b)). Rule initS describes the activation of the initial state of the automaton. The
NAC of this rule describes that if this initial state was activated already, then it cannot be
activated again. Rule f ireTS describes the firing of a transition of type TS. Analogously,
f ireTR describes the firing of a transition of type TR.
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The semantic mapping of a source and target graph language is based on the
previously introduced graph transformation systems being runtime conform w.r.t.
the corresponding runtime graph languages. In particular, each source (or target)
graph is mapped to the labeled transition system that is induced by this graph and
the runtime conform source (or target) GTS, respectively.

Definition 19 (Labeled transition system). A labeled transition system (LTS) lts =
〈i,→, Q, L〉 consists of the initial state i, the labeled transition relation→⊆ Q× L× Q
over the label alphabet L and the set of states Q.

For the formalism of typed graph transformation systems employed here, the
most fine-grained labeling possible for a labeled transition system induced by some
GTS, consists of the rule applied to reach a new state, but also of the match via
which this rule is applied. To not upfront limit the information captured by the
labeling, we thus employ both here for the induced LTS.

Definition 20 (induced LTS(gts, G0)). The labeled transition system LTS(gts, G0)

induced by gts = (R, TG) and the initial graph G0 equals 〈G0,→gts, Qgts,R×M〉 with
→gts= {(G, (ρ, m), G′)|G, G′ ∈ Qgts, ρ ∈ R∧ G ⇒m,ρ G′}, and Qgts = REACH(gts, G0)

andM the set of injective graph morphisms with as domain the LHS of some rule in R.

This definition of induced LTS enables us to refine the definition of model
semantics, semantic domain and semantic mapping (see Definition 2): Given a
modeling language in the form of a graph language with constraint L(TG, C) and
corresponding runtime graph language L(TG′, C ∧ Cdyn) with runtime conform
GTS gts = (R, TG′), then the semantic mapping maps each G in L(TG, C) to the
induced LTS LTS(gts, G), the semantics of G. The semantic domain thereby consists
of the set of all LTSs that are induced from the GTS gts and some graph in L(TG, C).
This is illustrated by the following example.

Example 6 (induced LTS as model semantics). Given the runtime conform graph
transformation systems gtss and gtst as introduced in Example 5, then the induced LTSs
LTS(gtss, S) or LTS(gtst, T), respectively, describe for each graph S or T in L(STT, CS )
or L(TTT, CT ) the corresponding semantics, respectively.

2.3. Model Transformation

In this report, we will formalize model transformations according to Definition 3

using triple graph grammars. Triple graph grammars (TGGs) define model trans-
formations in a relational (declarative) way by combining three conventional graph
grammars for the source, target and correspondence models. The correspondence
model explicitly stores correspondence relationships between source and target
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model elements. A TGG consists of an axiom and several non-deleting graph rules.
This grammar creates all so-called triple graphs describing a valid model transfor-
mation instance. In particular, the source (target) component of such a triple graph
describes the source (target) model of each model transformation instance and the
correspondence component relates them by correspondence relationships. TGGs
are relational model transformations that cannot be executed directly to transform
a given source model to a target model. Instead, operational rules have to be de-
rived for each transformation direction: A forward/backward transformation takes
a source/target model and creates the correspondence and target/source models.
A model integration creates the correspondence model for given source and target
models.

We use [26, 28] a TGG formalization more suitable for the current practice for
TGGs than the one introduced originally in [47]. Thereby, the main idea is to use a
distinguished, fixed graph TRIPLE which all triple graphs, including the type triple
graph STTCTTTTT, are typed over.

TRIPLE s c tecs ectls lt

We say that TRIPLES, TRIPLEC, and TRIPLET, as shown below,

TRIPLES sls
TRIPLEC s c tecs ect

TRIPLET t
lt

are the source, correspondence, and target component of TRIPLE, respectively. Analo-
gously to the aforementioned case, the projection of a graph G typed over TRIPLE to
TRIPLES, TRIPLEC, or TRIPLET selects the corresponding component of this graph.

We denote a triple graph as a combination of three indexed capitals, as for
example G = SGCGTG, where SG denotes the source and TG denotes the target
component of G, while CG denotes the correspondence component, being the smallest
subgraph of G such that all c-nodes as well as all ecs- and ect-edges are included in
CG. Note that CG has to be a proper graph, i.e. all target nodes of ecs and ect-edges
have to be included. The category of triple graphs and triple graph morphisms is
called TripleGraphs.

Analogously to typed graphs, typed triple graphs are triple graphs typed over a
distinguished triple graph STTCTTTTT, called type triple graph. The category of
typed triple graphs and morphisms is called TripleGraphsTT. In the remainder of
this report, we assume every triple graph SGCGTG and triple graph morphism f
to be typed over STTCTTTTT, even if not explicitly mentioned. In particular, this
means that SG is typed over STT, CG is typed over CTT, and T is typed over TTT.
We say that SG (TG or CG) is a source graph (target graph or correspondence graph,
respectively) belonging to the language L(STT) (L(TTT) or L(CTT), respectively).
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Notation. Note that each source graph (target graph) corresponds uniquely to a triple
graph with empty correspondence and target (source and correspondence) components,
respectively. Therefore, if it is clear from the context that we are dealing with triple graphs,
we denote triple graphs SG∅∅ (∅∅TG) with empty correspondence and target components
(source components) also as SG (TG), respectively.

A triple graph rule p : SLCLTL
r→ SRCRTR consists of a triple graph morphism r,

which is an inclusion. A direct triple graph transformation SGCGTG ⇒p,m SHCHTH

from SGCGTG to SHCHTH via p and m consists of the pushout (PO) in TripleGraphsTT.

SLCLTL SRCRTR

SGCGTG SHCHTH

(PO)

r

m n

h

A triple graph transformation, denoted as SG0 CG0 TG0

∗⇒ SGn CGn TGn , is a sequence
SG0 CG0 TG0 ⇒ SG1 CG1 TG1 ⇒ · · · ⇒ SGn CGn TGn of direct triple graph transformations.
As in the context of classical triple graphs, we consider triple graph grammars
(TGGs) with non-deleting rules. Moreover, we allow grammars to be equipped
with a so-called TGG constraint Ctgg typed over STTCTTTTT, restricting the lan-
guage of triple graphs generated by the TGG to those triple graphs generated via
transformations of triple graphs satisfying Ctgg.

Definition 21 (Triple graph grammar, language). A triple graph grammar (TGG)
tgg = (R, STTCTTTTT, SACATA) consists of a set of triple graph rules R typed over
STTCTTTTT and a triple start graph SACATA, called axiom, also typed over STTCTTTTT.
The triple graph language L(tgg) equals REACH((R, STTCTTTTT), SACATA). A triple
graph grammar tgg can be equipped with a so-called TGG constraint Ctgg typed over
STTCTTTTT such that SACATA � Ctgg. The triple graph language L(tgg, Ctgg) equals
REACH((R, STTCTTTTT, Ctgg), SACATA).

The type graph STTCTTTTT enriched with dynamic types for source and target
languages is denoted as SRTCTTTRT. Note that if some graph SGCGTG, morphism m,
rule ρ, or condition ac is typed over a subgraph SSGCSGTSG of SRTCTTTRT, then it is
straightforward to extend the codomain of the corresponding typing morphisms to
SRTCTTTRT such that SGCGTG, m, ac, or ρ are actually typed over SRTCTTTRT. We
therefore do not explicitly mention this anymore in the rest of this report.

Example 7 (Triple Graph Grammar). In Fig. 8, an example TGG tgg is depicted with
an axiom SACATA and two rules typed over the type graph STTCTTTTT. The type graph
STTCTTTTT is the subgraph of the type graph SRTCTTTRT shown in the upper right part
of Fig. 8, obtained by deleting the dynamic node and edge types in the source and target
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component. The TGG rules describe a model transformation between a sequence chart with
one lifeline being able to send and receive messages and an automaton with two different
types of transitions, one for the sending and one for the receiving of messages as described
already in Example 2 and 3. The events before and after a send/receive message on the
lifeline correspond to states before and after send/receive transitions in the automaton. On
the lifeline, there is one first event which corresponds to an initial state of the automaton.
The TGG constraint Ctgg is shown in Figures 27, 28 and 29. A subset is shown in the lower
right part of Fig. 8. It is in particular a constraint for the source language and expresses that
each event should be connected with at most one previous message (subsequent message) of
type Send/Rcv. An analogous condition holds for states and transitions in the automaton.
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Figure 8: tgg with axiom and two rules, type graph SRTCTTTRT, fragment of Ctgg

Analogous to [25, 36], we derive a model transformation over L(STT, CS ) ×
L(TTT, CT ) from a given TGG tgg typed over STTCTTTTT. Additionally, we allow
tgg to be equipped with a TGG constraint Ctgg such that the model transformation
is based on the language L(tgg, Ctgg). Moreover, w.l.o.g. we assume that Ctgg com-
prises the source and target constraints CS and CT of the source and target graph
language L(STT, CS ) and L(TTT, CT ), respectively. In particular, this assumption
ensures that the following definition is well-defined.
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Definition 22 (induced MT(tgg, Ctgg)). Given a source and target graph language
with constraint L(STT, CS ) and L(TTT, CT ) as given in Def. 12 and a TGG tgg with
TGG constraint Ctgg typed over STTCTTTTT such that it comprises the source and tar-
get constraints CS and CT , then the induced model transformation MT(tgg, Ctgg) ⊆
L(STT, CS )× L(TTT, CT ) consists of pairs of source and target graphs (S, T) such that
there exists some triple graph SCT ∈ L(tgg, Ctgg) having S and T as source and target
component, respectively.
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Figure 9: Model transformation instance (S, T) with SCT ∈ MT(tgg, Ctgg) and in-
duced LTSs LTS(gtss, S) and LTS(gtst, T) for runtime conform gtss and gtst such
that SCT ⊆ S2CT2

Example 8 (induced MT(tgg, Ctgg) as model transformation). In Fig. 9, a source
graph S2 and target graph T2 is depicted in abstract as well as concrete syntax describing a
runtime state for the source graph S and target graph T belonging to MT(tgg, Ctgg) with
tgg and Ctgg as described in Example 7 and induced LTSs LTS(gtss, S) and LTS(gtst, T)
for runtime conform gtss and gtst as described in Example 6. A triple graph SCT (depicted
in Figure 3 of Example 2) fulfilling Ctgg can be generated by tgg, being the subgraph of
S2CT2 depicted in Fig. 9 obtained by not considering the dynamic elements (activated
and active loops). The currently active event (state) on the lifeline (in the automaton) is
depicted in orange.

2.4. Behavioral Equivalence and Refinement

In order to adequately compare the induced labeled transition systems of a source
and target model of a model transformation, we introduce a so-called relabeling
such that the different alphabets of the source and target LTSs can be mapped to a
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common one. Note that this relabeling is the concrete realization of the notion of
remapping of semantic domains as introduced in Def. 4.

Definition 23 (Relabeling). Given a modeling language in the form of a graph language
with constraint L(TG, C), a corresponding runtime graph language L(TG′, C ∧ Cdyn)

with runtime conform GTS gts = (R, TG′), an induced LTS LTS(gts, G) with G some
graph in L(TG, C) and label alphabet R×M and a total function l : R×M → L′ to
some label alphabet L′, then the relabeling induced from l maps each LTS LTS(gts, G) to
the LTS where each label (ρ, m) has been replaced by l(ρ, m).

Remark 6. In the rest of the report we do not make a distinction between the total func-
tion l : R×M → L′ and the derived relabeling mapping each given LTS(gts, G) to
l(LTS(gts, G)) as described above if it is clear from the context.

To formalize behavioral equivalence and behavioral refinement according to
Definition 5, we will further employ the notions of bisimulation and simulation [41],
two particular flavors of behavior preservation for a model transformation that
require a relation between the states of different labeled transition systems (cf. [51,
52]). The behavioral equivalence of bisimilarity of two LTSs over the same alphabet
is defined as follows:

Definition 24 (bisimulation relation [41]). A bisimulation relation between two la-
beled transition systems lts1 = 〈i1,→, Q1, A〉, lts2 = 〈i2,→, Q2, A〉 over the same alpha-
bet A is a relation B ⊆ Q1 ×Q2 such that whenever (q1, q2) ∈ B

1. If q1
α→ q′1, then q2

α→ q′2 and (q′1, q′2) ∈ B.

2. If q2
α→ q′2, then q1

α→ q′1 and (q′1, q′2) ∈ B.

We say that lts1 and lts2 are bisimilar and write lts1 =bsim lts2 if there exists a bisimulation
relation B between them such that (i1, i2) ∈ B.

Note that if lts1 =bsim lts2 holds, we can conclude, for example, that all traces of
lts1 can also be found in lts2 and vice versa. Consequently, lts1 =bsim lts2 describes
that lts1 somehow preserves all possible behavior of lts2 (equivalence).

In some cases, behavioral refinement a weaker kind of behavior preservation is
enough and thus we can consider the simulation relation instead of bisimulation
relation.2

2Note that a simulation relation S is also a bisimulation relation if S−1 is a simulation
relation as well.
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Definition 25 (simulation relation [41]). A simulation relation between two labeled
transition systems lts1 = 〈i1,→, Q1, A〉, lts2 = 〈i2,→, Q2, A〉 over the same alphabet A
is a relation S ⊆ Q1 ×Q2 such that whenever (q1, q2) ∈ S

• If q1
α→ q′1, then q2

α→ q′2 and (q′1, q′2) ∈ S.

We say that lts1 is simulated by lts2 (lts2 simulates lts1) and write lts1 ≤sim lts2 if there
exists a simulation relation S between them such that (i1, i2) ∈ S.

Note that if lts1 ≤sim lts2 holds we can conclude, for example, that all traces of
lts1 can also be found in lts2, while the opposite may in general not be the case.
Consequently, lts1 ≤sim lts2 describes that lts1 somehow preserves some of the
possible behavior of lts2 (refinement), but does not preserve all possible behavior
(equivalence). As a consequence, lts2 can also be seen as an abstraction of lts1 since
lts2 still allows more behavior than lts1.

2.5. Behavior Preservation at the Transformation Level: Formalized

Now we have the means to model formally each concept of behavior preservation
at the transformation level as presented generically in Definition 6 using the notions
of graph transformation, triple graph grammars, and labeled transition systems
as summarized in Table 2. In particular, this table shows in a compact way how
to formalize modeling languages in modeling step Mlang, model semantics in
modeling step Msem, and model transformation in modeling step Mtrans. Moreover,
in Tables 3, 4, and 5, an overview is given of these modeling steps for our current
example and subsequent more elaborate examples. In the rest of the report, we will
often need all artefacts involved for the modeling steps Mlang, Msem, and Mtrans as
a basis for further concepts and definitions. Therefore in the following definition,
we first introduce their composition as a formally covered model transformation to
be used in the rest of the report.

Table 2: Generic concepts from Definition 6 and corresponding modeling steps

concept
(modeling

step)

modeling
languages

(Mlang)

model
semantics

(Msem)

model
transformation

(Mtrans)

behavior
preservation

(Mpres)

Def. 6 LS ,LT
semS (·),
semT (·)

MT
equivalence refinement
ls(.) =D lt(.) lt(.) ≤D ls(.)

Def. 27

L(STT , CS),
L(TTT , CT)

LTS(gtss, ·),
LTS(gtst, ·)

MT(tgg, Ctgg) ls(.) =bsim lt(.) lt(.) ≤sim lt(.)
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Definition 26 (Formally Covered Model Transformation). Given source and tar-
get graph language with constraint L(STT, CS ) and L(TTT, CT ) (see Def.12), a corre-
sponding model transformation MT(tgg, Ctgg) : L(STT, CS )× L(TTT, CT ) for a tgg =

((R, STTCTTTTT), SACATA) with TGG constraint Ctgg (see Def. 22), corresponding run-
time source and target graph language with dynamic constraint L(SRT, Cgts

s ) and L(TRT, Cgts
t )

(see Def. 17) together with runtime conform source and target GTSs gtss = (Rs, SRT) and
gtst = (Rt, TRT) (see Def. 18) and the induced LTSs LTS(gtss, .) and LTS(gtst, .) (see
Def. 20) for each element of L(STT, CS ) and L(TTT, CT ), respectively, we say that
(L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) is a formally cov-
ered model transformation.

Based on this formally covered model transformation together with the notion
of relabeling as introduced in the previous section as well as the classical notion
of bisimulation or simulation, we obtain the following formalized definition of
behavior preservation at the transformation level (see also Fig.10 and Table 2). As
illustrated in the figure, the semantics of source and target language is defined by
the induced LTSs of runtime conform GTSs for each source and target model of the
model transformation. Behavior preservation in an equivalent or refining manner
then holds if in between all these pairs of source and target LTSs after some proper
relabeling a bisimulation or simulation relation can be constructed, respectively.

Figure 10: Behavior Preservation – Transformation Level (see Fig. 1) – Formalized
(see Definition 27)

Definition 27 (Behavior Preservation – Transformation Level – Formalized). Given
a formally covered model transformation (i.e., L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg),
LTS(gtss, .), LTS(gtst, .)) as introduced in Def. 26 together with relabelings ls and lt for
LTS(gtss, .) and LTS(gtst, .) into a common alphabet A as given in Def. 23, respectively,
we say that
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3.1 the model transformation MT(tgg, Ctgg) is behavior preserving in an equivalent
manner if for each pair of source and target models (S, T) ∈ MT(tgg, Ctgg) it holds
that ls(LTS(gtss, S)) =bsim lt(LTS(gtst, T)).

3.2 the model transformation MT(tgg, Ctgg) is behavior preserving in a refining
manner if for each pair of source and target models (S, T) ∈ MT(tgg, Ctgg) it holds
that lt(LTS(gtst, T)) ≤sim ls(LTS(gtss, S)).

Example 9 (Behavior Preservation – Transformation Level – Formalized). The exam-
ple for Definition 27 consists of the TGG tgg with TGG constraint Ctgg of Example 7 shown
in Fig. 8, describing a model transformation MT(tgg, Ctgg) : L(STT, CS )× L(TTT, CT )
between sequence charts (source modeling language L(STT, CS )) and automata (target
modeling language L(TTT, CT )). Both source and target language are equipped with a
runtime language with dynamic constraints L(SRT, Cgts

s ) (L(TRT, Cgts
t )) as described in

Example 4 and corresponding runtime conform graph transformation systems gtss =

({initE, send, receive}, SRT) and gtst = ({initS, f ireTS, f ireTR}, TRT) (see Example 5)
describing the possible behavior of sequence charts and automata, respectively. The GTSs
gtsCSs and gtsCTt have as inductive invariants the source dynamic constraint Cgts

s and the
target dynamic constraint Cgts

t , respectively. For source and target models S and T, the se-
mantic mappings assign induced labeled transition systems LTS(gtss, S) and LTS(gtss, T)
to S and T, respectively.

To summarize, we have now established a formalization for the general definition
of behavior preservation (see Definition 6) such that most concepts are at hand. We
have clarified how the modeling language, model semantics, and model transfor-
mation have to be formalized and have defined what we consider as behavioral
equivalence and as behavioral refinement. However, two issues remain still to be
addressed:

• The relabelings ls and lt to establish a shared semantic domain and to be able
to apply bisimulation/simulation remain to be further refined. As we will
see in the following sections, this is not trivial and has great impact on how
behavior preservation can be verified.

• The even more challenging remaining problem is that our mapping to LTSs
and the use of bisimulation and simulation for LTSs would directly enable us
to approach the verification of behavior preservation if we would work at the
instance level. However, we want to address the verification at the transfor-
mation level (see Definition 6) and this cannot be done straight forwardly at
the level of the LTSs as there are potentially infinitely many source and target
models that have to be considered.
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Table 3: Modeling step Mlang

concept modeling language

formalization
source:
L(STT, CS )

target:
L(TTT, CT )

artefact
type graph constraint type graph constraint

STT CS TTT CT
simple

equivalence
(Ex. 9,15)
Section 3

Fig. 2(a), 24 Fig. 4, 27 Fig. 2(b), 24 Fig. 28

equivalence
(Example 23)

Section 4

Fig. 14(a), 35 Fig. 39 Fig. 14(b), 35 Fig. 40

refinement
(Example 25)

Section 5

Fig. 47 Fig. 52 Fig. 47 Fig. 53

Table 4: Modeling step Msem

concept model semantics

formalization
source: LTS(gtss, ·) with runtime

conform gtss = (Rs, SRT) and
dynamic constraint Cgts

s

target: LTS(gtst, ·) with runtime
conform gtst = (Rt, TRT) and

dynamic constraint Cgts
t

artefact
rules type graph dynamic

constraint
rules type graph dynamic

constraint
Rs SRT Cgts

s Rt TRT Cgts
t

simple
equivalence

(Ex. 9,15)
Section 3

Fig. 7(a)
Fig. 5(a),
24

Fig. 6(a),
32

Fig. 7(b)
Fig. 5(b),
24

Fig. 6(b),
33

equivalence
(Example 23)

Section 4

Fig. 15(a),
37

Fig. 14(a),
35

Fig. 42

Fig. 15(b),
37

Fig. 14(b),
35

Fig. 43

refinement
(Example 25)

Section 5

Fig. 51 Fig. 47 Fig. 42 Fig. 57 Fig. 47 Fig. 43
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Table 5: Modeling step Mtrans

concept model transformation

formalization
MT(tgg, Ctgg) with tgg =

((R, STTCTTTTT), SACATA)

artefact
TGG rules type graph TGG constraint
R STTCTTTTT Ctgg

simple
equivalence

(Ex. 9,15)
Section 3

Fig. 8, 25 Fig. 8, 24 Fig. 8, 29

equivalence
(Example 23)

Section 4

Fig. 16, 36 Fig. 14(c), 35 Fig. 41

refinement
(Example 25)

Section 5

Fig. 48, 49, 50 Fig. 47 Fig. 54

To overcome these two issues we will in the following exploit that the semantic
mapping for each model is in fact provided by GTS rules that interpret the models
and are thus the same for all models. Therefore, we can – as we will demonstrate
in the next section – consider behavior preservation verification for all source and
target models at the same time by also defining the relabelings and the bisimula-
tion/simulation relation for all source and target models at once.
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3. Approaching Behavioral Equivalence Verification

We first reintroduce some formal concepts in Section 3.1 that will be important for
verifying behavior preservation. Then, we report on our first approach to tackle
behavioral equivalence presented in [27]: In Section 3.2 we present the particular
relabeling for the source and target labeled transition systems proposed in [27]
and explain how to set up a relation between them that is a predestined candi-
date for expressing the bisimulation between these relabeled transition systems.
In Section 3.3, we present a verification scheme of [27] for showing that this re-
lation indeed defines a bisimulation relation for each source and target model of
the model transformation. Finally, in Section 3.4 we discuss that the relabelings
proposed in [27] and presented in this section with the corresponding predestined
bisimulation relation is too limited for more complex cases.

3.1. Prerequisites

The applicability of a graph transformation rule can be expressed as a graph
constraint. We exploited this feature already in [3, 23] for the consistency preser-
vation verification of rule-based refactorings and for consistency verification of
integrated behavior models, respectively. The rule applicability constraint for a

rule ρ = 〈p, acL〉 with p = 〈L l←↩ I
r
↪→ R〉, expresses that an injective match m

exists such that the application condition acL and the so-called deletable condi-
tion Deletable(p)3, guaranteeing the existence of a PO-complement for m ◦ l, are
fulfilled. Then it is obvious that the rule ρ = 〈p, acL〉 is applicable with injective
matching to a graph G if and only if G fulfills the rule applicability constraint.

Definition 28 (rule applicability constraint). Given a rule ρ = 〈p, acL〉 with plain rule
p = 〈L ←↩ I ↪→ R〉, then App(ρ) = ∃(iL, acL ∧ Deletable(p)) is the rule applicability
constraint of ρ. We moreover write acApp(ρ) to refer to acL ∧ Deletable(p) for ρ.

Example 10 (rule applicability constraint). The applicability of the rule send, depicted
in Fig. 7, can be expressed as graph constraint ∃(iL, true), or abbreviated ∃L, with L the
LHS of send. This is because acL is true and Deletable(p) is true, since the rule does not
delete any nodes. The same holds for the applicability of rule fireTS. In Fig. 11, the graph
constraint App(send) ⇒ App( f ireTS), equivalent to ¬App(send) ∨App( f ireTS), is
depicted.

3In Lemma 5.9 of [45], it is described how to construct Deletable(l) (we write Deletable(p)
instead of Deletable(l)). Basically, it prohibits the existence of additional adjacent edges,
making use of additional NACs, for nodes that are to be deleted.
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According to Definition 27, for showing behavior preservation at the transfor-
mation level we need to find a bisimulation or simulation between the relabeled
source and target transition systems of each source and target model of the model
transformation under consideration. It consists in particular of a relation over
REACH(gtss, S)× REACH(gtst, T) between the respective states of the transition sys-
tems. We know that for each (S, T) in MT(tgg, Ctgg), there exists some SCT in
L(tgg, Ctgg). Then a key idea of our approach is to require that (S, T) belongs
to the relation if the corresponding SCT fulfills some particular constraint C. So
we derive the (bi-)simulation relation from a given graph constraint C typed over
SRTCTTTRT, characterizing all triple graphs for which the source and target compo-
nents belong to the relation. In the following definition we formalize this idea of
deriving a relation over REACH(gtss, S)× REACH(gtst, T) from a constraint C typed
over SRTCTTTRT.

Definition 29 (induced relation R(C, .)). Given a formally covered model transforma-
tion (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced in
Def. 26 and given a graph constraint C typed over SRTCTTTRT, then for each (S, T) in
MT(tgg, Ctgg) and a corresponding SCT in L(tgg, Ctgg) the induced relationR(C, SCT) ⊆
REACH(gtss, S)× REACH(gtst, T) consists of all (S′, T′) such that S′CT′ fulfills C.

The above definition is well-defined, i.e. each S′CT′ is a valid triple graph, be-
cause of the following lemma:

Lemma 1 (induced relationR(C, .) well-defined). Each S′CT′ with S′ ∈ REACH(gtss, S)
and T′ ∈ REACH(gtst, T) as given in Def. 29 is a well-defined triple graph.

Proof. In Def. 18, we required that gtss and gtst are runtime conform such that
the rules preserve elements with static types. Therefore, it holds that S and T is
included in each S′ ∈ REACH(gtss, S) and T′ ∈ REACH(gtst, T), respectively. Moreover,
since the correspondence component C consists of all edges connecting S and T via
correspondence nodes including incident nodes belonging to S and T, also S′CT′

is a well-defined triple graph.

3.2. Modeling Step Mpres

As described after our formalized definition of behavior preservation at the trans-
formation level (see Definition 27) the concrete modeling of the relabelings of
source and target labeled transition systems as well as the concrete modeling of
the bisimulation/simulation relation for each relabeled source and target transition
system realizing a bisimulation/simulation are still two open issues (modeling step
Mpres). In this section, we give a first idea of how to model these two remaining
artefacts.
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3.2.1. Relabeling
We relabel the source and target labeled transition systems by means of bijec-
tive mappings4 from the source and target GTS rules to a common alphabet. In
particular, as a first approach, we discard the match in each label.

Definition 30 (Relabelings ls and lt). Given a formally covered model transformation
(L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as given in Def. 26
together with two bijective mappings lRs : Rs → A and lRt : Rt → A from the source and
target semantics rules into a common alphabet A, then the relabelings ls : Rs×Ms → A
and lt : Rt ×Mt → A for LTS(gtss, .) and LTS(gtst, .), resp., are defined as follows:
ls(ρs, ms) = lRs (ρs) and lt(ρt, mt) = lRt (ρt).

Example 11 (ls(LTS(gtss, .)) and lt(LTS(gtst, .))). For the source and target GTSs gtss
and gtst from Example 5 and the induced LTSs LTS(gtss, .) and LTS(gtst, .) we define
bijective mappings lRs : Rs → A and lRt : Rt → A with A = {init, s, r} and lRs (initE) =
init, lRs (send) = s, lRs (rcv) = r and lRt (initS) = init, lRt ( f ireTS) = s, lRt ( f ireTR) = r.
The application of the respective relabelings to the LTSs of the example source and target
model is depicted in Fig. 9, where the original labels are depicted on the left side of a
transition, while the relabeled labels are depicted on the right side of a transition.

3.2.2. Bisimulation
The question remains how to specify the relation between the state sets of the
relabeled transition systems ls(LTS(gtss, S)) and lt(LTS(gtst, T)) for any (S, T) in
our model transformation MT(tgg, Ctgg). In particular, as described already in
Section 3.1 we will derive it as an induced relation (see Def. 29) from the so-called
bisimulation constraint CBis. In particular the bisimulation constraint CBis equals the
conjunction of a so-called runtime constraint CRT, pair constraint CRule

Pair , the source
and target dynamic constraints Cgts

s and Cgts
t as introduced in Def. 17, the TGG

constraint Ctgg as introduced in Def. 21, and a so-called model transformation
constraint CMan

MT .
First, the pair constraint CRule

Pair = CRule,f
Pair ∧ C

Rule,b
Pair , can be derived automatically

from the source and target GTSs gtss and gtst and the corresponding relabelings
ls and lt. It expresses that the applicability of a rule ρs of the source semantics gtss
implies the applicability of a rule ρt of the target semantics gtst (CRule,f

Pair ) and the
other way round (CRule,b

Pair ), whenever ρs and ρt are mapped by lRs and lRt to the
same label in the common alphabet A. Trivially speaking, rules "with the same

4It is important that the mappings are bijective to guarantee that we get a clear corre-
spondence between source and target rules of the semantics for the source and target
models. See Section 8 for a more detailed discussion of this issue.
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label" should be applicable pairwise, since this is exactly what we need for proving
bisimulation. Rules with the same label are gathered into pairs of rules and their
application is summarized into parallel rules. We call such a parallel rule also pair
rule.

Definition 31 (set of pairs Pair(lRs , lRt ), pair rules P(ls, lt)). Given a formally covered
model transformation
(L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as given in Def. 26
and two relabelings ls and lt for LTS(gtss, .) and LTS(gtst, .) as given in Def. 30 with
bijective mappings lRs : Rs → A and lRt : Rt → A, the set of pairs Pair(lRs , lRt ) =

{(ρs, ρt)|lRs (ρs) = lRt (ρt) ∧ ρs ∈ Rs, ρt ∈ Rt}. We further define P(ls, lt) = {ρs +

ρt|(ρs, ρt) ∈ Pair(lRs , lRt )} with ρs + ρt being the parallel rule of ρs and ρt [20, 19] as the
set of pair rules.

Definition 32 (pair constraint CRule
Pair ). Given a formally covered model transformation

(L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as given in Def. 26
and two relabelings ls and lt for LTS(gtss, .) and LTS(gtst, .) as given in Def. 30 with
bijective mappings lRs : Rs → A and lRt : Rt → A as well as the set of pairs Pair(lRs , lRt )

as given in Def. 31, the pair constraint CRule
Pair is defined as CRule

Pair = CRule,f
Pair ∧ C

Rule,b
Pair with

CRule,f
Pair = (∧(ρs,ρt)∈Pair(lRs ,lRt )(App(ρs)⇒ App(ρt))) and

CRule,b
Pair = (∧(ρs,ρt)∈Pair(lRs ,lRt )(App(ρt)⇒ App(ρs)))

typed over SRTCTTTRT.

Note that as lRs and lRt are bijective mappings, we can conclude that the relation
Pair(lRs , lRt ) in particular represents also a bijective mapping on Rs ×Rt.

Example 12 (Simple Equivalence: CRule
Pair ). For the pair (send, f ireTS) ∈ Pair(lRs , lRt )

of semantics rules of Example 9 the constraint App(send)⇒ App( f ireTS) belonging to
CRule,f

Pair depicted in Fig. 11 results.

  Event 

active 

Send pre 

Event 

post 

State 

active 

TS src 

State 

tgt 

 

(a) App(send)⇒ App( f ireTS) in CRule,f
Pair

  State 

active 

TS src 

State 

tgt 

Event 

active 

Send pre 

Event 

post 

 

(b) App( f ireTS)⇒ App(send) in CRule,b
Pair

Figure 11: Fragment of pair constraint CRule
Pair = CRule,f

Pair ∧ C
Rule,b
Pair for Example 9,15
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Secondly, the runtime constraint CRT is a constraint typed over SRTCTTTRT that
can be specified manually, expressing – in addition to the automatically derived
CRule

Pair – how the runtime structure of source and target language should be related
to each other via the correspondences between them defined by the tgg in each
pair of equivalent source and target states.

Definition 33 (Runtime constraint CRT). Given a formally covered model transforma-
tion (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced in
Def. 26, then the runtime constraint CRT = Cf

RT ∧ Cb
RT is a graph constraint typed over

SRTCTTTRT.

In particular, Cf
RT (Cb

RT) expresses how the runtime structure of the source (tar-
get) language is related to the runtime structure of the target (source) language,
respectively. Thus whereas the pair constraint comprises those source and target
models that at least need to belong to the induced relation to become a bisimulation
relation, the runtime constraint can be used to refine this minimal bisimulation
relation manually according to the intuitive perception of behavioral equivalence
for the specific model transformation.

Example 13 (Simple Equivalence: runtime constraint CRT). The runtime constraint
for our Example 9, as depicted in Fig. 12, expresses that if an active loop on some event in
the sequence chart domain occurs, then this event should be connected to a corresponding
state with active loop in the automaton domain and the other way round. This runtime
constraint is typed over the type graph SRTCTTTRT shown in Fig. 8.

e:Event E2S State 
,  

e:Event 

a:active a:active 

active 

 Event E2S ,  

active 

 s:State 

b:active 

s:State 

b:active 

∧ 

Figure 12: Runtime constraint CRT = Cf
RT ∧ Cb

RT for Example 9,15

Finally, the model transformation constraint CMan
MT is a constraint needed for veri-

fying behavior preservation, but already satisfied by every model transformation
instance. It manifests in the form of a graph constraint instead of in the form
of a grammar which triple graphs belong to the triple graph grammar language
and describe valid forward or backward model transformations w.r.t. behavior
preservation, respectively.
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Definition 34 (Model transformation constraint CMan
MT ). Given a formally covered model

transformation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as in-
troduced in Def. 26, then the model transformation constraint CMan

MT = CMan,f
MT ∧ CMan,b

MT
is a graph constraint typed over STTCTTTTT.

The model transformation constraint should be chosen strong enough in order
to be able to verify successfully behavior preservation as shown in the next section.
There are different potential candidates for the model transformation constraint. In
the following example, we illustrate one of these possibilities.

Example 14 (Simple Equivalence: model transformation constraint CMan
MT ). For the

current example, the model transformation constraint CMan
MT is depicted in Fig. 13. It consists

of a conjunction of constraints of the form ∀(P, ∃C) such that P is the source component
of the RHS of a TGG rule and C is the complete RHS of this TGG rule (in case of CMan,f

MT ).
When verifying the example for behavior preservation, as stated in [27], we interactively
found out that this kind of model transformation constraint is sufficient for verifying
successfully behavior preservation as will be described in Section 3.3.

e2:Event 
E2S 

e1:Event E2S 

State 

State 

s:Send TS 

pr:pre 

po:post 
S2T 

src 
tgt 

e2:Event 

e1:Event 

s:Send 

pr:pre 

po:post 
 ,  

Event 
E2S 

Event E2S 

Send 
pre 

post 
S2T  ,  

s2:State 

s1:State 

t:TS 

sr:src 

tg:tgt 

s2:State 

s1:State 

t:TS 

sr:src 

tg:tgt 

Figure 13: Fragment of model transformation constraint CMan
MT = CMan,f

MT ∧ CMan,b
MT for

Example 9,15

Note that in [27], we did not explicitly mention the model transformation con-
straint. Instead we assumed that the TGG constraint Ctgg is already strong enough
and contains every constraint we need for the verification phase. If this was not
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the case, then we interactively strengthened the regular TGG constraint with a con-
straint that does not modify the set of model transformation instances defined by
MT(tgg, Ctgg). Here, we make this process explicit by distinguishing Ctgg, the con-
straint actually defining the model transformation instances, from the model trans-
formation constraint CMan

MT , the constraint needed for successful behavior preserva-
tion verification satisfied already by any model transformation instance anyway.

Definition 35 (Bisimulation constraint CBis). Given a formally covered model transfor-
mation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced
in Def. 26. Moreover, given relabelings ls : Rs ×Ms → A×M and lt : Rt ×Mt →
A×M for LTS(gtss, .) and LTS(gtst, .) derived from lRs : Rs → A and lRt : Rt → A
as given in Def. 30, then the bisimulation constraint CBis = CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧

Ctgg ∧ CMan
MT with CRT a runtime constraint as given in Def. 33, CRule

Pair the pair constraint
derived from lRs and lRt as given in Def. 32 and CMan

MT a model transformation constraint as
given in Def. 34.

Table 6: Modeling step Mpres for Example 9,15

concept behavioral equivalence

formali-
zation

relabelings ls, lt

induced relation R(CBis, .) with
(bi-)simulation constraint CBis =

CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT

artefact
mappings

lRs , lRt

runtime
constraint
CRT

pair
constraint
CRule

Pair

model
transformation
constraint CMan

MT
depicted in Fig. 9 Fig. 12, 30 Fig. 11, 31 Fig. 13, 34

3.3. Verification Scheme

Now we have all the necessary concepts at hand to describe the problem of verifica-
tion of behavior preservation for model transformations at the transformation level
in the sense of Definition 27, with Tables 3, 4, 5, and 6 listing the specific artefacts
needed and introduced earlier (see Table 2) for modeling steps Mlang,Msem,Mtrans

and Mpres. The following example illustrates in a summarizing way all modeling
steps needed for enabling behavior preservation verification as described in the
subsequent theorem.
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Example 15 (Simple Equivalence). In summary, we can complete the modeling steps
for the running example for Definition 27 as described in Example 9 as follows: The
relabelings ls and lt as described in Example 11 map transitions of the LTS to a com-
mon alphabet A via bijective mappings lRs : Rs → A and lRt : Rt → A, which map
equivalent rules in source and target GTS to the same element. MT(tgg, Ctgg) is then
behavior preserving in an equivalent manner, if for each pair of source and target models
(S, T) ∈ MT(tgg, Ctgg) it holds that ls(LTS(gtss, S)) =bsim lt(LTS(gtst, T)). In par-
ticular, we specify the bisimulation relation as an induced relation R(CBis, .) with the
bisimulation constraint CBis = CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT being the conjunc-
tion of the runtime constraint (see Example 13), pair constraint (see Example 12), source
and target dynamic constraints, TGG constraint and model transformation constraint (see
Example 14).

More informally, we require that for each pair of a sequence chart and an automaton
related by the model transformation, their behavior is equivalent in the sense that each
rule application on the source model (or target model, respectively) can be followed by an
equivalent rule application on an equivalent target model (or source model, respectively)
such that the resulting source and target models are equivalent again.

In the following theorem, we present a verification scheme for showing that
the desired bisimulation relation R(CBis, .) with (bi-)simulation constraint CBis =

CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT as given in the previous section indeed de-
fines a bisimulation between source and target semantics of each source and target
model of the model transformation. In addition, we prove the correctness of the ver-
ification scheme. In particular, it consists of three steps: (Vinit) one simple constraint
satisfaction check on the axiom of the triple graph grammar defining the model
transformation, (Vtrans) one invariant check on the triple graph grammar rules and
(Vsem) one invariant check on pair rules of source and target GTSs defining the
source and target model semantics, respectively.

Theorem 1 (bisimulation verification[27]5). Given a formally covered model transfor-
mation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced
in Def. 26. Moreover, given relabelings ls : Rs ×Ms → A×M and lt : Rt ×Mt →
A×M for LTS(gtss, .) and LTS(gtst, .) derived from lRs : Rs → A and lRt : Rt → A as
given in Def. 30, a bisimulation constraint CBis = CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT

5This theorem is a slightly revised version of Theorem 3 in [27]. In [27], we considered a
bisimulation constraint CBis = CRT ∧ CRule

Pair , which was then interactively strengthened
by additional constraints holding anyway for all model transformation instances, but
necessary for successful verification with our invariant checking tool [2, 15]. Here, our
approach establishes these additional constraints explicitly such that they are considered
directly in the verification theorem.
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typed over SRTCTTTRT as given in Def. 35, then the model transformation MT(tgg, Ctgg)

is behavior preserving in an equivalent manner via the induced bisimulation relation
R(CBis, .) (see Def. 29) in the sense of case 3.1 of Definition 27 if the following conditions
are fulfilled:

Vinit: SACATA � CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ CMan

MT .

Vtrans: CRT ∧ CRule
Pair ∧C

gts
s ∧ Cgts

t ∧ CMan
MT is an inductive invariant (see Def. 15) of

(R, SRTCTTTRT, Ctgg).

Vsem: CRT ∧ CRule
Pair is an inductive invariant (see Def. 15) of

(P(ls, lt), SRTCTTTRT, Ctgg ∧ CMan
MT ∧ C

gts
s ∧ C

gts
t ) with P(ls, lt) as given in Def. 31.

Proof. Given some (S, T) ∈ MT(tgg, Ctgg), then we know that there exists some SCT
in L(tgg, Ctgg) such that it suffices to show that ls(LTS(gtss, S)) and lt(LTS(gtst, T))
are bisimilar via the induced relationR(CRT ∧CRule

Pair ∧C
gts
s ∧C

gts
t ∧Ctgg ∧CMan

MT , SCT).
We therefore prove (1) that the pair of initial states (S, T) of ls(LTS(gtss, S)) and
lt(LTS(gtst, T)) is always in R(CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT , SCT) (2) and
that R(CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT , SCT) is indeed a bisimulation relation
according to conditions 1 and 2 of Def. 25.

(1) (S, T) ∈ R(CRT ∧CRule
Pair ∧C

gts
s ∧C

gts
t ∧Ctgg ∧CMan

MT , SCT): Each triple graph SCT
in L(tgg, Ctgg) fulfills Ctgg by construction. We further prove by induction over the
number of TGG rule applications that each triple graph SCT in L(tgg, Ctgg) fulfills
also CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ CMan

MT such that according to Def. 29 (S, T) ∈ R(CRT ∧
CRule

Pair ∧C
gts
s ∧C

gts
t ∧Ctgg ∧CMan

MT , SCT). The base clause for the axiom SACATA � CRT ∧
CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ CMan

MT follows directly from condition (Vinit) of the Theorem.
Condition (Vtrans) of the Theorem then provides the induction step that for any
TGG rule application SnCnTn ⇒R Sn+1Cn+1Tn+1 it holds that Sn+1Cn+1Tn+1 �
CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ CMan

MT assuming the induction hypothesis that SnCnTn �

CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ CMan

MT .
(2)R(CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT , SCT) is a bisimulation relation: We first
have to show for condition 1 of Def. 25 that for all (S1, T1) ∈ R(CRT ∧ CRule

Pair ∧C
gts
s ∧

Cgts
t ∧Ctgg∧CMan

MT , SCT) (equivalent to S1CT1 � CRT∧CRule
Pair ∧C

gts
s ∧C

gts
t ∧Ctgg∧CMan

MT

according to Def. 29), if S1
α→ S2, then T1

α→ T2 and (S2, T2) ∈ R(CRT ∧CRule
Pair ∧C

gts
s ∧

Cgts
t ∧ Ctgg ∧ CMan

MT , SCT) for ls(LTS(gtss, S)) and lt(LTS(gtst, T)), respectively. This
holds if S1 ⇒(ρs,ms) S2 implies T1 ⇒(ρt,mt) T2 with ls(ρs, ms) = lt(ρt, mt) and

(S2, T2) ∈ R(CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT , SCT) for ρs in gtss and ρt in gtst
and ms and mt a match for ρs and ρt, respectively. We first prove that T1 ⇒(ρt,mt) T2

if S1 ⇒(ρs,ms) S2 with ls(ρs, ms) = lt(ρt, mt). If we have S1 ⇒(ρs,ms) S2, then we also
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have S1CT1 ⇒ρs S2CT1. Because S1CT1 � CRule
Pair , and in particular S1CT1 � CRule

Pair
f
,

applicability of ρs to S1CT1 implies applicability of ρt to S1CT1 such that S1CT1 ⇒ρt

S1CT2 with lRs (ρs) = lRt (ρt). This means, in particular, that T1 ⇒(ρt,mt) T2 via
some match mt such that ls(ρs, ms) = lRs (ρs) = lRt (ρt) = lt(ρt, mt). We still need
to prove that (S2, T2) ∈ R(CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT , SCT). This is be-
cause, as ρs and ρt consist of disjoint types, they can only be applied in a parallel
independent way to S1CT1. Due to the Parallelism Theorem [20], then it follows
that S1CT1 ⇒ρs+ρt S2CT2 with ρs + ρt ∈ P(ls, lt). As gtss and gtst are runtime
conform, they preserve static types, Ctgg ∧ CMan

MT typed over STTCTTTTT are by con-
struction inductive invariants for P(ls, lt) implying S2CT2 � Ctgg ∧ CMan

MT . More-
over, S2CT2 � Cgts

s ∧ C
gts
t by construction as well, since S2CT2 already satisfies CS

and CT (comprised in Ctgg) and again because of runtime conformity of gtss and
gtst the GTSs with constraint gtsCS

s and gtsCS
t have the dynamic constraints Cgts

s

and Cgts
t as inductive invariants, respectively. Since gtss and gtst preserve static

types S2CT2 will in particular also satisfy CS and CT such that it is enough for
the GTSs with constraint to have the dynamic constraints Cgts

s and Cgts
t as in-

ductive invariants, respectively. Because of condition (Vsem) of the Theorem and
the fact that S1CT1 � CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT , then it follows that
S2CT2 � CRT ∧CRule

Pair ∧C
gts
s ∧C

gts
t ∧Ctgg ∧CMan

MT . Thus, according to Def. 29 this means
that (S2, T2) ∈ R(CRT ∧ CRule

Pair ∧C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CMan

MT , SCT). Condition 2 of Def.
25 follows analogously to condition 1 as the roles of S and T are symmetric.

SACATA

∗R

��

SACATA

� CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ CMan

MT (Vinit)

CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ CMan

MT
is an inductive invariant of
(R, SRTCTTTRT, Ctgg) (Vtrans)

SCT

∗P(ls,lt)

��

CRT ∧ CRule
Pair is an inductive invariant

of (P(ls, lt), SRTCTTTRT, · · · ) (Vsem)
S∗CT∗

The sketch above summarizes how the constraints are preserved via the conditions
starting from the TGG axiom, via the TGG rules, and finally also during the exe-
cution of pair rules of the semantics. While condition Vinit and Vtrans are employed
in step (1) of the proof via an induction, condition Vsem allows to show that the
induced relation is indeed a bisimulation in step (2) of the proof.

Example 16 (Simple Equivalence: Verification). The model transformation described in
Example 15 can be shown to be behavior preserving via the bisimulation relation induced
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by the bisimulation constraint CBis, since the conditions Vinit,Vtrans and Vsem as given in
Theorem 1 hold.

Since the correspondence of runtime elements as described in CRT and the applicability
of equivalent rules as expressed in CRule

Pair hold for the axiom of the triple graph grammar
(condition Vinit) and are invariant for each possible application of a triple graph rule
(condition Vtrans) from the example TGG tgg (with TGG constraint Ctgg), each possible
triple graph generated by the triple graph grammar (describing a pair of a sequence chart
and an automaton being a model transformation instance) also satisfies these constraints.

Since the correspondence of runtime elements (CRT) and the applicability of equivalent
rules (CRule

Pair ) remains invariant for each pairwise application of equivalent source and target
semantics rules, all model transformation instances and thus, the model transformation as
such, are behavior preserving. More informally, each rule application on the source model
(or target model, respectively) can be followed by an equivalent rule application on an
equivalent target model (or source model, respectively) such that the resulting source and
target model are equivalent again.

In Section 6 we describe in detail how the checks of conditions Vinit,Vtrans and Vsem can
be automated.

3.4. Limitations

The results of [27] presented so far employ a rather coarse grain approach concern-
ing the labeling. However, if we want to check bisimilarity between a source and
target model different levels of abstraction may be necessary. The check enforced
by CRule

Pair as supported in the presented verification scheme of [27] is quite coarse,
since the derived bisimulation relation defines pairs of transitions as the same if
GTS rules mapped to the same label are realizing it. In particular, the rule matches
leading to the transitions is “forgotten” by the relabeling. Often this is too abstract
since a lower level of abstraction may reflect details that go beyond the information
which semantics rule was executed. E.g., a message name or even message param-
eter values etc, may be important as well. However, the relabeling supported by
[27] excludes such information and we will study in the next section a relabeling
approach that is not limiting us in this respect.

A particular example where the relabeling supported by [27] would be too coarse
grain are when the semantics of a particular LTS is non-deterministic such that
alternative rule applications of the same rule for different matches are possible.
Then, there are multiple combinations of source and target steps mapped to the
same label where some combinations may lead to a combined state, where equiva-
lently labeled steps are applicable again, but at the same time other combinations
may lead also to a combined state, where equivalently labeled steps are not both
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applicable anymore. In the presented verification scheme of [27] this would result
in refusing bisimilarity due to the too coarse grain relabeling when checking the
conditions of Theorem 1, while if a more fine grain relabeling would have been
used bisimilarity could be established.

The following variant of our example shows that a more fine grain relabeling of
the LTS based on the rule and the match is required in some cases.

Example 17 (Complex example: Sequence Chart to Communicating Automata). In
the example of the previous section, the induced labeled transition systems for source and
target semantics were deterministic. In each state only one rule via one particular match
is applicable. However, in general a sequence chart consists of more than one lifeline such
that the communication between different objects can be modeled.

Using a model transformation we can synthesize so-called communicating automata
from these sequence charts, describing this inter-object communication in a state-based
way. Fig. 14(a) depicts the type graph with dynamic types active-e and activated-e of the
sequence chart language. A chart consists of several lifelines on which events occur from
which one of them is the first event and between each pair of subsequent events connected by
a next edge messages are being sent or received. In Fig. 14(b) the type graph with dynamic
types active-s and activated-s of the communicating automata language is depicted. It
consists of several automata that contain states and one of these states is the initial state.
States can be connected via transitions and transitions of different automata are connected
via a node of type Com if they can only be triggered together.

The operational semantics of each sequence chart (communicating automaton) is defined
by the GTS gtss (gtst) as depicted in Fig. 15(a) (15(b)). Thereby gtss consists of the initE
and send rule, whereas gtst consists of the initS and fire rule. Finally, the TGGR depicted
in Fig. 16 defines a model transformation between life sequence charts and communicating
automata. It is typed over SRTCTTTRT as depicted in Fig. 14(c).

In Fig.17, an example source sequence chart S and target communicating automaton T
is shown together with their respective induced labeled transition systems. Note that these
LTSs are non-deterministic. Suppose that we map initE and initS plus send and fire to
the same labels in a common label alphabet. As illustrated in Fig.17, CRule

Pair now would not
represent an inductive invariant for (P(ls, lt), SRTCTTTRT). It is possible to reach state
(S4, T5) with equivalently labeled rules, because the relabeling notion introduced earlier
does not take matches into account. However, in said state (S4, T5) a problem arises, since
in S4 send can be applied, but in T5 the equivalently labeled rule fire is not applicable.
In fact, the real problem w.r.t. behavior preservation arises already during the first parallel
rule application with equivalently labeled rules initE and initS from (S, T) to (S1, T3),
which leads to a violation of our runtime constraint. This is because initE initializes the
first lifeline and initS initializes the automaton corresponding to the last lifeline instead.
More generally, initS (initE) can, at first, be applied at three different lifelines (automata).
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Figure 14: Type graphs for complex example

49



Automatic Verification of Behavior Preservation
at the Transformation Level for Relational Model Transformation

initE 

send 

Event 

first 

Lifeline 

active_e 
++ 

on 

activated_e 
++ 

activated_e 

Lifeline 

Event 

on 
next 

active_e 

Message 

send_m 

rcv_m 

Event 

on 

Lifeline 

Event 

on 

Event 

active_e 

next 
on 

active_e 

active_e 

-- 

-- 

++ 

++ 

(a) gtss

initS 

fire 

State 

init 

Automaton 

in 

active_s 
++ 

activated_s 
++ 

activated_s 

Automaton 

State 

in 

active_s 

Transition 

State 

in 

Automaton 

State 

in 

State 

active_s 

Transition 

tgt src 

src tgt 

Com 

in 

send_c 

rcv_c 

active_s 

active_s 

++ 

++ 

-- 

-- 

(b) gtst

Figure 15: Operational semantics: gtss and gtst for complex example

50



3. Approaching Behavioral Equivalence Verification

Automaton 

State 

in 

Transition 

State 

in 

Automaton 

State 

in 

State 

Transition 

tgt src 

src tgt 

Com 

L2A 

in 

send_c 

rcv_c 

Lifeline 

Event 

on 
next 

Message 

send_m 

rcv_m 

Event 

on 

Lifeline 

Event 

on 

Event 

next 
on 

E2S 

E2S 

L2A 

E2S 

E2S 

M2C 

E2S State 

init 

Event 

first 

Lifeline Automaton 

in 

L2A 

on 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 
++ 

++ 

++ ++ 

++ 
++ 

++ 
++ 

++ 

++ 
++ 

++ ++ 
++ 

++ ++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ 

++ ++ 

++ 
++ 

++ ++ 

++ ++ 

++ 
++ 

Figure 16: TGG rules R for complex example

We can thus observe that the approach to equivalence verification presented in
[27] is only able to handle model transformations from source to target languages
with semantics that do not include non-deterministic behavior w.r.t. the choice of
rule matches.
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lighted traces that have equivalent labels but lead to a state pair that is not
bisimilar
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4. Behavioral Equivalence Verification

As discussed, the results presented for equivalence in the former section are some-
how limited. Therefore, we will in this section consider an approach to overcome
these limitations.

4.1. Modeling Step Mpres

One possibility to solve the problem described in Section 3.4 is to take into account
the rule matches when defining the relabelings in contrast to discarding them
as done by the relabelings defined in Section 3. A first obvious option would be
to relate matches by comparing concrete attribute values for matched elements.
However, to study all pairs of rules including such attribute values requires a
symbolic treatment with attribute conditions (equivalence conditions) as otherwise
all the usually infinitely many possible attributed values would require an explicit
consideration. A less demanding and more straightforward option is to exploit the
correspondence structures generated by the TGG, encoding traceability between
source and target models, which allow a very natural differentiation in contrast
to only externally visible details as present in any kind of labeling. In particular,
we will consider source and target semantics steps to be equivalent if not only
the rules are equivalent, but the corresponding matches are connected via specific
correspondence structures generated by the TGG.

4.1.1. Relabeling
We therefore first describe how the relabelings ls and lt based on correspondence
structures generated by the TGG can be defined. Then we derive the desired
bisimulation relation between relabeled source and target transition systems from a
given graph constraint CCor

Bis typed over SRTCTTTRT, called the bisimulation constraint.
We can relate the rules of source and target semantics using two bijective map-

pings lRs : Rs → A and lRt : Rt → A, mapping source and target rules to the
same alphabet A. In addition we want to compare matches. In particular, two
matches for equivalent rules ρs and ρt will be said to be equivalent, if specific cor-
respondences C(ρs,ρt) can be found in between their co-domains. In general, those
correspondences can be found automatically (see Section 6.1).

Definition 36 (correspondences between source and target rules C(ρs,ρt)). Given a for-
mally covered model transformation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .),
LTS(gtst, .)) as introduced in Def. 26 as well as two bijective mappings lRs : Rs → A and
lRt : Rt → A, then for each source and target rule ρs and ρt belonging to Pair(lRs , lRt ) as
given in Def. 31, the correspondences C(ρs,ρt) between ρs and ρt consist of a fixed number
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of correspondence edges from correspondence nodes to source nodes of static types in the
LHS Ls of ρs and to target nodes of static types in the LHS Lt of ρt such that LsC(ρs,ρt)Lt

is a well-defined triple graph over SRTCTTTRT.

We then require that equivalent source and target semantics rules need to be
applicable together along these correspondence structures. The effect of such a
source and target semantics step can be described using a so-called pair rule with
correspondences.

Definition 37 (ρs ∗RsC(ρs ,ρt)
Lt ρt, P(ls, lt)Cor). Given a formally covered model transforma-

tion (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced in
Def. 26 as well as two bijective mappings lRs : Rs → A and lRt : Rt → A, then for each
source and target rule ρs and ρt belonging to Pair(lRs , lRt ) as given in Def. 31 and C(ρs,ρt)

as given in Def. 36, the pair rule with correspondences ρs ∗RsC(ρs ,ρt)
Lt ρt equals the E-

concurrent rule [20, 19] of ρs and ρt via the E-dependency relation Rs → RsC(ρs,ρt)Lt ← Lt

with underlying plain rule ps ∗RsC(ρs ,ρt)
Lt pt : LsC(ρs,ρt)Lt ← IsC(ρs,ρt) It → RsC(ρs,ρt)Rt as

depicted in the diagram below where all morphisms are inclusions.

Ls

(3)
��

Is

(1)
��

//oo Rs

""

Lt

(2)
}}

It

(4)
��

oo // Rt

��
LsC(ρs,ρt)Lt IsC(ρs,ρt)Ltoo // RsC(ρs,ρt)Lt RsC(ρs,ρt) Itoo // RsC(ρs,ρt)Rt

IsC(ρs,ρt) It

(5)

hh 66

Analogously, the pair rule with correspondences ρt ∗RtC(ρs ,ρt)
Ls ρs equals the E-concurrent

rule [20, 19] of ρt and ρs via the E-dependency relation Rt → RtC(ρs,ρt)Ls ← Ls consisting
of inclusions.
We define P(ls, lt)Cor = {ρs ∗RsC(ρs ,ρt)

Lt ρt|(ρs, ρt) ∈ Pair(lRs , lRt )} as the set of pair
rules with correspondences.

Remark 7. Since C(ρs,ρt) only connects nodes of static types and source and target rules
preserve static types, it follows that all graphs in the concurrent rule construction illustrated
in Def. 37 are well-defined triple graphs.

Example 18 (Equivalence: correspondences between source and target rules C(ρs,ρt)).
For the current example, Fig. 18 depicts the triple graphs RsC(initE,initS)Lt and RsC(send, f ire)Lt

where Rs and Lt are the RHS and LHS of initE and initS or send and f ire, respectively,
and C(initE,initS) and C(send, f ire) (drawn with bold lines) are the correspondences between
the respective source and target rules. Both triple graphs are typed over SRTCTTTRT.
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Remark 8. Following the terminology of [20, 19], we would call the rule ρs ∗RsC(ρs ,ρt)
Lt ρt

actually concurrent rule via the E-dependency relation with E = RsC(ρs,ρt)Lt. However,
since ρs and ρt have disjoint types, we opted to choose the more intuitive name pair rule
with correspondences. It expresses that ρs ∗RsC(ρs ,ρt)

Lt ρt is applicable if and only if ρs

and ρt are actually applicable also in parallel with matchings following the correspondences
expressed in C(ρs,ρt). In other words, ρs ∗RsC(ρs ,ρt)

Lt ρt is isomorphic to ρt ∗RtC(ρs ,ρt)
Ls ρs since

it does not matter if the source/target rule is applied first along the correspondences. As a
consequence, we could have defined P(ls, lt)Cor also as the set {ρt ∗RtC(ρs ,ρt)

Ls ρs|(ρs, ρt) ∈
Pair(lRs , lRt )}, since the respective rules therein would have the same effect.

Example 19 (Equivalence: ρs ∗RsC(ρs ,ρt)
Lt ρt, P(ls, lt)Cor). For the pairs (initE, initS) and

(send, f ire) in Pair(lRs , lRt ), Fig. 38 depicts the resulting set of pair rules with correspon-
dences P(ls, lt)Cor, constructed as initE ∗RsC(initE,initS)Lt initS and send ∗RsC(send, f ire)Lt f ire
via the correspondences described in Example 18.

Now we can define the relabelings ls and lt taking into account correspondence
structures between matches of equivalent source and target rules in source and
target models, respectively.

Definition 38 (relabelings ls and lt). Given a formally covered model transforma-
tion (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced in
Def. 26 as well as two bijective mappings lRs : Rs → A and lRt : Rt → A into some com-
mon label alphabet A with Pair(lRs , lRt ) as given in Def. 31 and C(ρs,ρt) for each source and
target rule ρs and ρt belonging to Pair(lRs , lRt ) as given in Def. 36, then the relabelings
ls : Rs ×Ms → A×M and lt : Rt ×Ms → A×M withM a common alphabet for
matches are defined as follows:

ls(ρs, ms) = (lRs (ρs), m) and lt(ρt, mt) = (lRt (ρt), m′)

with
m = m′

if (1) (ρs, ρt) ∈ Pair(lRs , lRt ) and (2) S1 ⇒ρs,ms S2 in LTS(gtss, S) and T1 ⇒ρt,mt T2

in LTS(gtst, T) for some (S, T) ∈ MT(tgg, Ctgg) because there exists some SCT in
L(tgg, Ctgg) such that a concurrent transformation S1CT1 ⇒ρs∗RsC(ρs ,ρt)

Lt ρt,m S2CT2 via
the extended match m exists with the source and target components of m equal to ms and
mt, resp., and

m 6= m′

otherwise.

By requiring a match for ρs ∗RsC(ρs ,ρt)
Lt ρt (including the correspondences C(ρs,ρt))

for label equivalence, the relabeling functions exploit the correspondence structures
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created by the TGG to compare matches and applications of source and target rules.
This is a fundamental difference to the relabeling functions introduced in Definition
30 of Section 3 ignoring the matches completely.

Example 20 (Equivalence: relabelings ls and lt). For specific source and target models
S and T being the source and target component of a triple graph SCT, Figure 19 depicts
two different example matches ms : Ls → S and mt : Lt → T for rules initE and initS
with lRs (initE) = init = lRt (initS) and left hand sides Ls and Lt, respectively. Figure
20 shows how these matches can be extended to matches for initE ∗RsC(initE,initS)Lt initS
(Example 19) in the triple graph SCT such that we have m = m′ and consequently
ls(initE, ms) = (init, m) = ls(initS, mt).

Note that this inclusion of matches and correspondence structures in the relabelings serves
to avoid the limitation described in Example 17 and Figure 17. The transitions (S, initE, S1)
and (T, initS, T1) were considered equivalent due to the relabeling functions defined in
Definition 30 previously discarding matches, which resulted in ls(initE, ms) = init =

lt(initS, mt). With Definition 38 taking matches into account, the result is ls(initE, ms) 6=
lt(initS, mt) because the required extension of ms and mt along the correspondence struc-
ture C(initE,initS) is not possible.
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Figure 19: Matches for initE and initS
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4.1.2. Bisimulation
Having defined relabelings taking into account correspondences between source
and target models, we now describe the desired bisimulation relation between
the relabeled transition systems. In particular, it is derived as induced relation
(see Def. 29) from the bisimulation constraint CCor

Bis = CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧

Ctgg ∧ CCor
MT . The runtime constraint CRT is as given in Def. 33. Cgts

s and Cgts
t are

the dynamic constraints as introduced in Def. 17 and the TGG constraint Ctgg

is as introduced in Def. 21. The pair constraint with correspondences CCor
Pair =

CCor,f
Pair ∧ C

Cor,b
Pair expresses that the applicability of a source semantics rule implies that

an equivalent target semantics rule is applicable via an extended match that links
the predefined correspondences between equivalent source and target semantics
rules and the other way round.

Definition 39 (pair constraint CCor
Pair with correspondences). Given a formally covered

model transformation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .))
as introduced in Def. 26 as well as two bijective mappings lRs : Rs → A and lRt : Rt → A
with Pair(lRs , lRt ) as given in Def. 31 and corresponding pair rules with correspondences
as given in Def. 37, the pair constraint CCor

Pair with correspondences is defined as
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CCor
Pair = C

Cor,f
Pair ∧ C

Cor,b
Pair with

CCor,f
Pair = ∧(ρs,ρt)∈Pair(lRs ,lRt )(∀(Ls, acApp(ρs) ⇒ ∃(js : Ls → LsC(ρs,ρt)Lt, acApp(ρs∗RsC(ρs ,ρt)

Lt ρt)))

and

CCor,b
Pair = ∧(ρs,ρt)∈Pair(lRs ,lRt )(∀(Lt, acApp(ρt) ⇒ ∃(jt : Lt → LsC(ρs,ρt)Lt, acApp(ρt∗RtC(ρs ,ρt)

Ls ρs)))

typed over SRTCTTTRT with ρs = 〈ps : 〈Ls ←↩ Is ↪→ Rs〉, acLs〉, ρt = 〈pt : 〈Lt ←↩ It ↪→
Rt〉, acLt〉, js and jt inclusion morphisms and acApp(ρ) for a given rule ρ as introduced in
Def. 28.

Example 21 (Equivalence: pair constraint with correspondences). In Fig. 45 the pair
constraint with correspondences for Example 17 is depicted. In particular, for the initE and
initS rules it is required that they are applicable in parallel via the correspondences L2A
and E2S relating the lifeline to the corresponding automaton and the first event to the initial
state. Analogously for rules send and fire it is required that they are applicable in parallel
via the correspondences L2A, E2S and M2C connecting the events in each lifeline with
corresponding states in the corresponding automaton and a message between lifelines with
a corresponding communication in the communicating automaton. Note that the constraint
depicted is simplified already according to the fact that the Deletable condition as given in
Def. 28 is trivially true for each rule, the construction of concurrent rules with application
conditions as explained more in detail in [20, 19] and the following equivalence:

acApp(ρs) ⇒ ∃(js : Ls → LsC(ρs,ρt)Lt, acApp(ρs∗RsC(ρs ,ρt)
Lt ρt))

equivalent to

¬acApp(ρs) ∨ ∃(js : Ls → LsC(ρs,ρt)Lt, acApp(ρs∗RsC(ρs ,ρt)
Lt ρt)).

For Example 17 this means that only the pairs (Si, Ti) with the same index in Fig. 17 fulfill
the pair constraint with correspondences CCor

Pair, whereas pairs such as (S3, T1) only fulfill
the pair constraint CRule

Pair without correspondences.

Finally, we have to specify the model transformation constraint CCor
MT . In general,

we want the static part of the pair constraint with correspondences to be satisfied
by each triple graph of the model transformation under consideration. This is a
prerequisite for the dynamic structures to correspond as required by the pair con-
straint. Therefore, the model transformation constraint CCor

MT is defined as a graph
constraint typed over the static type graph STTCTTTTT. In order to choose a useful
and suitable model transformation constraint that establishes said prerequisite for
the dynamic structures, we propose to impose the following requirement on the
model transformation constraint.
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Definition 40 (Model transformation constraint CCor
MT ). Given a formally covered model

transformation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as in-
troduced in Def. 26 and given static and runtime triple type graphs STTCTTTTT and
SRTCTTTRT, the pair constraint CCor

Pair (Def. 39), and the type restriction operation (here:
to the static triple type graph), denoted |STTCTT TTT

, then the model transformation con-
straint CCor

MT = CCor,f
MT ∧ C

Cor,b
MT is a graph constraint typed over STTCTTTTT such that the

following holds:

∀G( (G ∈ L(STTCTTTTT) ∧ G 6� CCor
MT )

⇒∃G′(G′|STTCTT TTT
= G ∧ G′ ∈ L(SRTCTTTRT) ∧ G′ 6� CCor

Pair) ).

The rationale behind this declarative definition is to eliminate a source of er-
rors leading to non-behavior preserving model transformations by linking the
model transformation constraint to the static part of the pair constraint. All triple
graphs that are a result of the model transformation should satisfy the static re-
striction of the pair constraint. If that is not the case, i.e. if there is a triple graph
violating the respective constraint (G 6� CCor

MT ), the above definition ensures the exis-
tence of a triple graph G′ isomorphic to G except for additional runtime elements
(G′|STTCTT TTT

= G ∧ G′ ∈ L(SRTCTTTRT)) such that G′ violates the pair constraint
(G′ 6� CCor

Pair), which may constitute a non-behavior preserving transformation. In
short, the violation of the model transformation constraint leads to a possible
violation of the pair constraint.

It should be noted that with this definition, the requirement on the model trans-
formation constraint’s validity for all model transformation instances (or rather,
their triple graphs) is an over-approximiation. In some cases, a violation of the
model transformation constraint by a static triple graph from a model transforma-
tion will, by the requirement above, lead to a dynamic triple graph violating the
pair constraint – however, this triple graph may not occur in any execution trace
of the source and target model’s behavior and, hence, may not actually constitute
a violation of the pair constraint and the bisimulation requirement. In those cases,
the source (or) target model contains dead code – the static part required for exe-
cutable behavior is present, but the execution is prevented by additional constraints
or unreachable states.

Example 22 (Equivalence: model transformation constraint CCor
MT ). Fig.46 depicts the

model transformation constraint chosen for our running example. It is the restriction of the
pair constaint with correspondences CCor

Pair to the type graph STTCTTTTT without runtime
elements. Note that both directions are included in the model transformation constraint,
similar to the pair constraints with correspondences. The core idea is that in order for
the pair constraint with correspondences to be satisfied, the triple graphs in question also
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have to satisfy the static parts of the constraints. In contrast to the first notion of a model
transformation constraint CMan

MT as in Example 14, CCor
MT is derived from the pair constraint,

which establishes a more intuitive relation to the model semantics.

Due to the highly variable (for different model transformations) nature of the
pair constraint, which is derived from the semantics rules, and the expressiveness
of nested application conditions, an automatic derivation for the model transforma-
tion constraint in the general case is difficult to establish. We discuss the approach
applied for our example in Sections 6 and 7; particularly in Construction 1 of
Section 7.1.

Definition 41 (Bisimulation constraint CCor
Bis ). Given a formally covered model transfor-

mation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced
in Def. 26. Moreover, given relabelings ls : Rs ×Ms → A×M and lt : Rt ×Mt →
A×M for LTS(gtss, .) and LTS(gtst, .) derived from lRs : Rs → A and lRt : Rt → A
as given in Def. 38, then the bisimulation constraint CCor

Bis = CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧

Ctgg ∧ CCor
MT with CRT a runtime constraint as given in Def. 33, CCor

Pair the pair constraint
with correspondences as given in Def. 39 derived from lRs : Rs → A and lRt : Rt → A
and corresponding pair rules with correspondences as given in Def. 37 and CCor

MT a model
transformation constraint as given in Def. 40.

Example 23 (Equivalence). Similar to Example 15, this example describes the problem of
verification of behavior preservation for model transformations according to Definition 27,
but for the more complex case of more fine-grained notions of relabelings and rule equiv-
alence. In particular, the correspondence extensions with respect to rule equivalence and
parallel rule application allow for the handling of non-deterministic application of semantics
rules. Tables 3, 5, 4 and 7 list the specific elements and their depictions corresponding to
the concepts shown in Table 2.

In summary, the TGG tgg with TGG constraint Ctgg describes a model transformation
MT(tgg, Ctgg) : L(STT, CS )×L(TTT, CT ) between sequence charts with multiple lifelines
(source modeling language L(STT, CS )) and systems of communicating automata (target
modeling language L(TTT, CT )). In contrast to Example 15, this case includes multiple
lifelines and automata.

Both source and target language are equipped with semantic definitions in the form of
runtime conform graph transformation systems gtss = ({initE, send}, SRT) and gtst =

({initS, f ire}, TRT) describing the possible behavior of sequence charts and communicating
automata, respectively. For source and target models S and T, the semantic mappings
semS (S) = LTS(gtss, S) and semT (T) = LTS(gtss, T) assign labeled transition systems
induced by the graph transformation systems gtss and gtst, respectively. In addition,
relabelings ls : Rs ×Ms → A ×M and lt : Rt ×Mt → A ×M map transitions
of the LTS to tuples consisting of elements of common label and match alphabets A andM.
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In contrast to Example 15, the relabelings take matches into account, while still being
based on bijective functions lRs : Rs → A and lRt : Rs → A renaming equivalent rules
in source and target GTS to the same name. In addition, the combination of thusly equiva-
lently renamed rules from gtss and gtst leads to so-called pair rules with correspondences,
which, in contrast to the notion of plain pair rules in Example 15, require the existence
of correspondences between source and target elements. As with other extensions of the
previous concept and example, this represents the correct application of semantics rules
relating source and target matches by respecting correspondences between source and target
elements (see Example 17).

MT(tgg, Ctgg) is then behavior preserving in an equivalent manner, if for each pair of
source and target models (S, T) ∈ MT(tgg, Ctgg) it holds that ls(LTS(gtss, S)) =bsim
lt(LTS(gtst, T)). In particular, we specify the bisimulation relation as an induced relation
R(CCor

Bis , .) with the bisimulation constraint CCor
Bis = CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT
being the conjunction of the runtime constraint, pair constraint, source and target dynamic
constraints, TGG constraint and model transformation constraint. In order to correctly
describe behavioral equivalence by bisimulation for the case of the more fine-grained notion
of rule equivalence, the derived constraints CCor

MT and CCor
Pair also include correspondence

information between the respective source and target elements.
More informally, as in Example 15, we require that for each pair of a sequence chart and

a system of communicating automata related by the model transformation, their behavior
is equivalent in the sense that each rule application on the source model (or target model,
respectively) can be followed by an equivalent and corresponding rule application on the
target model (or source model, respectively) such that after application of the respective pair
rule with correspondences the resulting model states are equivalent again.

Table 7: Modeling step Mpres of Example 23

concept behavioral equivalence

formali-
zation

relabelings ls, lt

(Fig. 19, 20)

induced relation R(CCor
Bis , .) with

bisimulation constraint CCor
Bis =

CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT

artefact
mappings

lRs , lRt
correspon-

dences

runtime
constraint
CRT

pair
constraint
CCor

Pair

model
transformation
constraint CCor

MT
depicted in Fig. 18 Fig. 12, 44 Fig. 45 Fig. 46
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4.2. Verification Scheme

In the following theorem, we present a verification scheme for showing that the
desired bisimulation relation as given in the previous section indeed defines a
bisimulation between source and target semantics of each source and target model
of the model transformation and we proof its correctness. In particular, it consists
of three steps: (Vinit) one simple constraint satisfaction check on the axiom of the
triple graph grammar defining the model transformation, (Vtrans) one invariant
check on the triple graph grammar rules and (Vsem) one invariant check on the pair
rules with correspondences of equivalent rules in source and target GTSs.

Theorem 2 (equivalence verification). Given a formally covered model transforma-
tion (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as introduced in
Def. 26. Moreover, given relabelings ls : Rs ×Ms → A ×M and lt : Rt ×Mt →
A×M for LTS(gtss, .) and LTS(gtst, .) derived from lRs : Rs → A and lRt : Rt → A as
given in Def. 38, a bisimulation constraint CCor

Bis = CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT
typed over SRTCTTTRT as given in Def. 41, then MT(tgg, Ctgg) is behavior preserving
in an equivalent manner (in particular, via the induced bisimulation relation R(CCor

Bis , .))
in the sense of case 3.1 of Definition 27 if the following conditions are fulfilled:

Vinit: SACATA � CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ CCor

MT .

Vtrans: CRT ∧ CCor
Pair ∧ C

gts
s ∧ Cgts

t ∧ CCor
MT is an inductive invariant (see Def. 15) of

(R, SRTCTTTRT, Ctgg).

Vsem: CRT∧CCor
Pair is an inductive invariant (see Def. 15) of (P(ls, lt)Cor, SRTCTTTRT, Ctgg∧

CCor
MT ∧ C

gts
s ∧ C

gts
t ) with P(ls, lt)Cor as given in Def. 37.

Proof. Given some (S, T) ∈ MT(tgg, Ctgg), then we know that there exists some SCT
in L(tgg, Ctgg) such that it suffices to show that ls(LTS(gtss, S)) and lt(LTS(gtst, T))
are bisimilar via the induced relation R(CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT).
We therefore prove (1) that the pair of initial states (S, T) of ls(LTS(gtss, S)) and
lt(LTS(gtst, T)) is always in R(CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT) and (2)
that R(CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT) is indeed a bisimulation relation
according to conditions 1 and 2 of Def. 24.

(1) (S, T) ∈ R(CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT): Each triple graph SCT
in L(tgg, Ctgg) fulfills Ctgg by construction. We further prove by induction over the
number of TGG rule applications that each triple graph SCT in L(tgg, Ctgg) fulfills
also CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ CCor

MT such that according to Def. 29 (S, T) ∈ R(CRT ∧
CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT). The base clause for the axiom SACATA � CRT ∧
CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ CCor

MT follows directly from condition (Vinit) of the Theorem.
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Condition (Vtrans) of the Theorem then provides the induction step that for any
TGG rule application SnCnTn ⇒R Sn+1Cn+1Tn+1 it holds that Sn+1Cn+1Tn+1 �
CRT ∧CCor

Pair ∧C
gts
s ∧C

gts
t ∧CCor

MT assuming the induction hypothesis that SnCnTn � CRT ∧
CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ CCor

MT .
(2) R(CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT) is a bisimulation relation: We first
have to show for condition 1 of Def. 24 that for all (S1, T1) ∈ R(CRT ∧ CCor

Pair ∧ C
gts
s ∧

Cgts
t ∧ Ctgg ∧ CCor

MT , SCT) (equivalent to S1CT1 � CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT

according to Def. 29), if S1
α→ S2, then T1

α→ T2 and (S2, T2) ∈ R(CRT ∧CRule
Pair ∧C

gts
s ∧

Cgts
t ∧ Ctgg ∧ CCor

MT , SCT) for ls(LTS(gtss, S)) and lt(LTS(gtst, T)), respectively. This
holds if S1 ⇒(ρs,ms) S2 implies T1 ⇒(ρt,mt) T2 with ls(ρs, ms) = lt(ρt, mt) and

(S2, T2) ∈ R(CRT ∧ CRule
Pair ∧C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT). If we have S1 ⇒(ρs,ms) S2,
then we also have S1CT1 ⇒(ρs,ms) S2CT1. Because S1CT1 � CCor

Pair, and in partic-
ular S1CT1 � CCor,f

Pair , applicability of ρs to S1CT1 via ms implies applicability of
ρs ∗RsC(ρs ,ρt)

Lt ρt with (ρs, ρt) belonging to P(ls, lt)Cor to S1CT1 via an extended
match m. It then follows that S1CT1 ⇒(ρs∗RsC(ρs ,ρt)

Lt ρt,m) S2CT2 such that because

of the Concurrency Theorem [20] S1CT1 ⇒(ρs,ms) S2CT1 ⇒(ρt,mt) S2CT2. In particu-
lar, we then have that T1 ⇒(ρt,mt) T2 such that ls(ρs, ms) = lt(ρt, mt).We still need to

prove that (S2, T2) ∈ R(CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT , SCT). As gtss and gtst
are runtime conform, they preserve static types, and therefore Ctgg ∧ CCor

MT typed
over STTCTTTTT is by construction an inductive invariant for P(ls, lt)Cor implying
S2CT2 � Ctgg ∧ CCor

MT . Moreover, S2CT2 � Cgts
s ∧ C

gts
t by construction as well, since

S2CT2 already satisfies CS and CT (comprised in Ctgg) and again because of run-
time conformity of gtss and gtst the GTSs with constraint gtsCS

s and gtsCS
t have the

dynamic constraints Cgts
s and Cgts

t as inductive invariants, respectively. Because of
condition (Vsem) of the Theorem and the fact that S1CT1 � CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧

Ctgg ∧ CCor
MT , then it follows that S2CT2 � CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor

MT . Thus,
according to Def. 29, this means that (S2, T2) ∈ R(CRT ∧ CCor

Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧

CCor
MT , SCT). Condition 2 of Def. 24 follows analogously to condition 1 because of

Remark 8 as the roles of S and T are symmetric.
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SACATA

∗R

��

SACATA

� CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ CCor

MT (Vinit)

CRT ∧ CCor
Pair ∧ C

gts
s ∧ C

gts
t ∧ CCor

MT
is an inductive invariant of
(R, SRTCTTTRT, Ctgg) (Vtrans)

SCT

∗P(ls,lt)Cor

��

CRT ∧ CCor
Pair is an inductive invariant

of (P(ls, lt)Cor, SRTCTTTRT, · · · ) (Vsem)
S∗CT∗

The above sketch summarizes how the constraints are preserved via the conditions
starting from the TGG axiom, via the TGG rules, and finally also during the exe-
cution of pair rules of the semantics. While condition Vinit and Vtrans are employed
in step (1) of the proof via an induction, condition Vsem allows to show that the
induced relation is indeed a bisimulation in step (2) of the proof.

Example 24 (Equivalence: Verification). The model transformation described in Example
23 can be shown to be behavior preserving via the bisimulation relation induced by the
bisimulation constraint CBis.

Since the correspondence of runtime elements as described in CRT and the applicability
of equivalent rules as expressed in CCor

Pair hold for the axiom of the triple graph grammar
(Vinit) and are invariant for each possible application of a triple graph rule (Vtrans) from the
example TGG tgg (with TGG constraint Ctgg), each possible triple graph generated by the
triple graph grammar (describing a pair of a sequence chart and a system of communication
automata related by a model transformation instance) also satisfies these constraints.

In contrast to Example 15, due to multiple possibilities to apply two equivalently named
rules on the source and target model in combination, the pair rules with correspondences
P(ls, lt)Cor and the derived constraints CCor

Pair and CCor
MT (which are part of the bisimulation

constraint) include correspondences. For the case of pair rules without correspondences, as
was shown in Example 17, CRT and CCor

Pair would not be inductive invariants.
Since the correspondence of runtime elements (CRT) and the applicability of equivalent

and corresponding rules (CCor
Pair) remains invariant for each pairwise application of equiva-

lent and corresponding source and target semantics rules (Vsem), all model transformation
instances and thus, the model transformation as such, are behavior preserving. More in-
formally, each rule application on the source model (or target model, respectively) can be
followed by an equivalent and corresponding rule application on the target model (or source
model, respectively).
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5. Behavioral Refinement Verification

The results presented for equivalence in the former section can also be adjusted for
the case we only want to ensure behavioral refinement (resp. behavioral abstraction)
instead of behavioral equivalence.

5.1. Modeling Step Mpres

Instead of requiring a behavioral equivalence, for specific model transformations,
it will be sufficient to require a behavioral refinement between the semantics of
each target and source model of a model transformation. As refinement in contrast
to equivalence is not symmetric, we further distinguish refinement for the forward
transformation MT(tgg, Ctgg) and backward transformation MT(tgg, Ctgg)−1.

For showing a behavioral refinement for the forward transformation MT(tgg, Ctgg)

we search for a simulation relation over lt(LTS(gtst, .))× ls(LTS(gtss, .)) between
the semantics of each target T and source model S of the forward transformation
MT(tgg, Ctgg). We will derive it as the inverse relation of the induced relation (see
Def. 29) from the simulation constraint CCor,b

Sim = Cb
RT∧C

Cor,b
Pair ∧C

gts
s ∧C

gts
t ∧Ctgg∧CCor,b

MT
(with CCor,b

MT chosen as the backward direction of the model transformation con-
straint CCor

MT as introduced before), where all single components of this constraint
have been introduced in the previous chapters. In particular, we will show in Theo-
rem 3 that lt(LTS(gtst, .)) is simulated via this induced relation by ls(LTS(gtss, .))
(or lt(LTS(gtst, .)) ≤sim ls(LTS(gtss, .))) for each target T and source model S of the
forward transformation. More informally, all behavior in T can be found in S as
well, but not necessarily vice versa, so that T is a refinement (in terms of behavior)
of S.

If we want to demonstrate a behavioral refinement for the backward transfor-
mation MT(tgg, Ctgg)−1 we search for a simulation relation over ls(LTS(gtss, .))×
lt(LTS(gtst, .)) between the semantics of each source model S and target model T of
the backward transformation MT(tgg, Ctgg)−1. We will derive it as induced relation
(see Def. 29) from the simulation constraint CCor,f

Sim = Cf
RT ∧ C

Cor,f
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧

CCor,f
MT (with CCor,f

MT being the forward part of CCor
MT ) , where all single components of

this constraint have been introduced in the previous chapters. In particular, we will
show in Corollary 1 that ls(LTS(gtss, .)) is simulated via this induced relation by
lt(LTS(gtst, .)) (or ls(LTS(gtss, .)) ≤sim lt(LTS(gtst, .))) for each source S and target
model T of the backward transformation. More informally, all behavior in S can
be found in T as well, but not necessarily vice versa, so that S is a refinement (in
terms of behavior) of T.
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Definition 42 (Simulation constraint CCor,b
Sim and CCor,f

Sim ). Given a formally covered model
transformation (L(STT, CS ),L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .), LTS(gtst, .)) as in-
troduced in Def. 26. Moreover, given relabelings ls : Rs ×Ms → A ×M and lt :
Rt ×Mt → A×M for LTS(gtss, .) and LTS(gtst, .) derived from lRs : Rs → A and
lRt : Rt → A as given in Def. 38, the simulation constraint CCor,b

Sim = Cb
RT ∧ C

Cor,b
Pair ∧

Cgts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,b

MT with Cb
RT a backward runtime constraint as given in Def. 33,

CCor,b
Pair the backward pair constraint with correspondences as given in Def. 39 derived from

lRs : Rs → A and lRt : Rt → A and corresponding pair rules with correspondences
as given in Def. 37 and a backward model transformation constraint CCor,b

MT as given in
Def. 40.

Example 25 (Refinement). This example describes the problem of verification of be-
havior preservation in a refining manner according to case 3.2 (behavioral refinement)
of Definition 27. In particular, we consider a model transformation induced by the
TGG tgg with TGG constraint Ctgg describing a model transformation MT(tgg, Ctgg) :
L(STT, CS )×L(TTT, CT ) between sequence charts with multiple lifelines (modeling lan-
guage L(STT, CS )) and communicating automata with additional internal behavior (model-
ing language L(TTT, CT )) as described in Tables 3, 4, 5 and 8. In particular, we will show
that the backward transformation derived from this TGG represents a refinement such that
all the behavior of the sequence chart model is reflected by the communicating automaton,
but not the other way round.

Both source and target language are equipped with a runtime graph language L(SRT, CS∧
Cgts

s ) and L(TRT, CT ∧ Cgts
t ), respectively, as well as runtime conform graph transforma-

tion systems gtss = ({initE, send}, SRT) and gtst = ({initS, f ire}, TRT), describing
the possible behavior of sequence charts and communicating automata, respectively. For
source and target models S and T, we have induced labeled transition systems LTS(gtss, S)
and LTS(gtss, T), respectively. In addition, relabelings ls : Rs ×Ms → A ×M and
lt : Rt ×Mt → A×M map transitions of the LTS to tuples consisting of elements of
common label and match alphabets A andM.

As before, the relabeling functions take matches into account, while still being based on
bijective mappings lRs : Rs → A and lRt : Rs → A renaming equivalent rules in source
and target GTS to the same name. In addition, the combination of thusly equivalently
renamed rules from gtss and gtst again leads to so-called pair rules with correspondences.
Similar to Example 23, correspondences are required to represent the correct application
of source and target GTS rules relating source and target matches via correspondences
between source and target elements.

The backward model transformation MT(tgg, Ctgg)−1 is then behavior preserving in
a refining manner, if for each pair of models (T, S) ∈ MT(tgg, Ctgg)−1 it holds that
ls(LTS(gtss, S)) ≤sim lt(LTS(gtst, T)). In particular, we specify the simulation relation as
an induced relation of the simulation constraint CCor,f

Sim = Cf
RT ∧C

Cor,f
Pair ∧C

gts
s ∧C

gts
t ∧Ctgg ∧
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CCor,f
MT being the conjunction of the forward part of the runtime constraint, pair constraint,

source and target dynamic constraints, TGG constraint and forward model transformation
constraint (CCor,f

MT ).
More informally, we require that for each pair of a sequence chart and a system of

communicating automata related by the model transformation, the behavior of the sequence
chart refines the behavior of the related communicating automaton in the sense that each rule
application on the sequence chart can be followed by an equivalent and corresponding rule
application on the automaton. In contrast to behavioral equivalence as shown in Example
23, we do not require both directions. Thus, our simulation relation only needs to consider
the forward part of the respective constraints.

Table 8: Modeling step Mpres of Example 25

concept behavioral refinement

formali-
zation

relabelings ls, lt

(Fig. 19, 20)

induced relation R(CCor,f
Sim , .) with

bisimulation constraint CCor,f
Sim =

Cf
RT ∧ C

Cor,f
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,f

MT

artefact
mappings

lRs , lRt
correspon-

dences

runtime
constraint
Cf

RT

pair
constraint
CCor,f

Pair

forward MT
constraint CCor,f

MT

depicted in Fig. 18 Fig. 57 Fig. 58 Fig. 59

5.2. Verification Scheme

In the following theorem, we present a verification scheme for showing that the
desired simulation relation as given in the previous section indeed leads to the
fact that the semantics of each target model is simulated by the semantics of
each source model of the model transformation and we proof the correctness of
the verification scheme. In particular, it consists of three steps: (Vinit) one simple
constraint satisfaction check on the axiom of the triple graph grammar defining
the model transformation, (Vtrans) one invariant check on the triple graph grammar
rules and (Vsem) one invariant check on the pair rules with correspondences of
equivalent rules in source and target GTSs.

68



5. Behavioral Refinement Verification

Theorem 3 (refinement verification for forward transformation). Given a formally
covered model transformation (L(STT, CS ), L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .),
LTS(gtst, .)) as introduced in Def. 26. Moreover, given relabelings ls : Rs ×Ms →
A ×M and lt : Rt ×Mt → A ×M for LTS(gtss, .) and LTS(gtst, .) derived from
lRs : Rs → A and lRt : Rt → A as given in Def. 38, and a simulation constraint
CCor,b

Sim = Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,b

MT typed over SRTCTTTRT as given in
Def. 42, then MT(tgg, Ctgg) is behavior preserving in a refining manner (in particular,
via the induced simulation relation R(CCor,b

Sim , .)−1) in the sense of case 3.2 of Definition 27
if the following conditions are fulfilled:

Vinit: SACATA � Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ C

Cor,b
MT .

Vtrans: Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ C

Cor,b
MT is an inductive invariant (see Def. 15) of

(R, SRTCTTTRT, Ctgg).

Vsem: Cb
RT∧C

Cor,b
Pair is an inductive invariant (see Def. 15) of (P(ls, lt)Cor, SRTCTTTRT, Ctgg∧

CCor,b
MT ∧ Cgts

s ∧ C
gts
t ) with P(ls, lt)Cor as given in Def. 37.

Proof. We have to show that for any (S, T) ∈ MT(tgg, Ctgg), it holds that
lt(LTS(gtst, T)) is simulated by ls(LTS(gtss, S)) via the relation R(CCor,b

Sim , SCT)−1.
We therefore prove (1) that the pair of initial states (T, S) of lt(LTS(gtst, T)) and
ls(LTS(gtss, S)) is always in R(CCor,b

Sim , SCT)−1 and (2) that R(CCor,b
Sim , SCT)−1 is in-

deed a simulation relation according to Def. 25.
(1) (T, S) ∈ R(CCor,b

Sim , SCT)−1: Each triple graph SCT in L(tgg, Ctgg) fulfills Ctgg

by construction. We further prove by induction over the number of TGG rule
applications that each triple graph SCT in L(tgg, Ctgg) fulfills also Cb

RT ∧ C
Cor,b
Pair ∧

Cgts
s ∧ C

gts
t ∧ C

Cor,b
MT such that according to Def. 29 (T, S) ∈ R(Cb

RT ∧ C
Cor,b
Pair ∧ C

gts
s ∧

Cgts
t ∧ Ctgg ∧ CCor,f

MT , SCT)−1. The base clause for the axiom SACATA � Cb
RT ∧ C

Cor,b
Pair ∧

Cgts
s ∧ C

gts
t ∧ C

Cor,b
MT follows directly from condition (Vinit) of the Theorem. Condition

(Vtrans) of the Theorem then provides the induction step that for any TGG rule
application SnCnTn ⇒R Sn+1Cn+1Tn+1 it holds that Sn+1Cn+1Tn+1 � Cb

RT ∧ C
Cor,b
Pair ∧

Cgts
s ∧ C

gts
t ∧ C

Cor,b
MT assuming the induction hypothesis that SnCnTn � Cb

RT ∧ C
Cor,b
Pair ∧

Cgts
s ∧ C

gts
t ∧ C

Cor,b
MT .

(2)R(CCor,b
Sim , SCT)−1 is a simulation relation: We have to show according to Def. 25

that for all (T1, S1) ∈ R(Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,f

MT , SCT)−1 (equivalent
to S1CT1 � Cb

RT ∧ C
Cor,f
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,b

MT according to Def. 29), if T1
α→ T2,

then S1
α→ S2 and (T2, S2) ∈ R(Cb

RT ∧ C
Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,f

MT , SCT)−1

for lt(LTS(gtst, T) and ls(LTS(gtss, S)), respectively. This holds if T1 ⇒(ρt,mt) T2

implies S1 ⇒(ρs,ms) S2 with lt(ρt, mt) = ls(ρs, ms) and (T2, S2) ∈ R(Cb
RT ∧ C

Cor,b
Pair ∧
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Cgts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,f

MT , SCT)−1. If we have T1 ⇒(ρt,mt) T2, then we also have
S1CT1 ⇒(ρt,mt) S1CT2. Because S1CT1 � CCor,b

Pair , applicability of ρt to S1CT1 via mt

implies applicability of ρt ∗RtC(ρs ,ρt)
Ls ρs with (ρs, ρt) belonging to P(ls, lt)Cor to S1CT1

via an extended match m. It then follows that S1CT1 ⇒(ρt∗RtC(ρs ,ρt)
Ls ρs,m) S2CT2 such

that because of the Concurrency Theorem [20] S1CT1 ⇒(ρt,mt) S1CT2 ⇒(ρs,ms) S2CT2.
In particular, we then have that S1 ⇒(ρs,ms) S2 such that ls(ρs, ms) = lt(ρt, mt). We

still need to prove that (T2, S2) ∈ R(Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,f

MT , SCT)−1.
As gtss and gtst are runtime conform they preserve static types. Since Ctgg ∧ CCor,b

MT
are typed over STTCTTTTT, it is by construction an inductive invariant for P(ls, lt)Cor

implying S2CT2 � Ctgg ∧ CCor,b
MT . Moreover, S2CT2 � Cgts

s ∧ C
gts
t by construction as

well, since S2CT2 already satisfies CS and CT (comprised in Ctgg) and again because
of runtime conformity of gtss and gtst the GTSs with constraint gtsCS

s and gtsCS
t

have the dynamic constraints Cgts
s and Cgts

t as inductive invariants, respectively.
Because of condition (Vsem) of the Theorem and the fact that S1CT1 � Cb

RT ∧ C
Cor,b
Pair ∧

Cgts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,b

MT , then it follows that S2CT2 � Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧

Ctgg ∧ CCor,b
MT . Thus, according to Def. 29, this means that (T2, S2) ∈ R(Cb

RT ∧ C
Cor,b
Pair ∧

Cgts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,f

MT , SCT)−1.

SACATA

∗R

��

SACATA

� Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ C

Cor,b
MT (Vinit)

Cb
RT ∧ C

Cor,b
Pair ∧ C

gts
s ∧ C

gts
t ∧ C

Cor,b
MT

is an inductive invariant of
(R, SRTCTTTRT, Ctgg) (Vtrans)

SCT

∗P(ls,lt)Cor

��

Cb
RT ∧ C

Cor,b
Pair is an inductive invariant

of (P(ls, lt)Cor, SRTCTTTRT, · · · ) (Vsem)
S∗CT∗

The above sketch summarizes how the constraints are preserved via the conditions
starting from the TGG axiom, via the TGG rules, and finally also during the exe-
cution of pair rules of the semantics. While condition Vinit and Vtrans are employed
in step (1) of the proof via an induction, condition Vsem allows to show that the
induced relation is indeed a simulation in step (2) of the proof.

Corollary 1 (refinement verification for backward transformation). Given a formally
covered model transformation (L(STT, CS ), L(TTT, CT ), MT(tgg, Ctgg), LTS(gtss, .),
LTS(gtst, .)) as introduced in Def. 26.
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Moreover, given relabelings ls : Rs ×Ms → A×M and lt : Rt ×Mt → A×M
for LTS(gtss, .) and LTS(gtst, .) derived from lRs : Rs → A and lRt : Rt → A as given
in Def. 38, and a simulation constraint CCor,f

Sim = C f
RT ∧ C

Cor,f
Pair ∧ C

gts
s ∧ C

gts
t ∧ Ctgg ∧ CCor,f

MT
typed over SRTCTTTRT as given in Def. 42, then the backward model transformation
MT(tgg, Ctgg)−1 : L(TTT, CT )×L(STT, CS ) is behavior preserving in a refining man-
ner (in particular, via the relation R(CCor,f

Sim , .)) in the sense of case 3.2 of Definition 27 if
the following conditions are fulfilled:

Vinit: SACATA � C f
RT ∧ C

Cor,f
Pair ∧ C

gts
s ∧ C

gts
t ∧ C

Cor,f
MT .

Vtrans: C f
RT ∧ C

Cor,f
Pair ∧ C

gts
s ∧ Cgts

t ∧ CCor,f
MT is an inductive invariant (see Def. 15) of

(R, SRTCTTTRT, Ctgg).

Vsem: C f
RT ∧ C

Cor,f
Pair is an inductive invariant (see Def. 15) of (P(ls, lt)Cor), SRTCTTTRT,

Ctgg ∧ CCor,f
MT ∧ C

gts
s ∧ C

gts
t ) with P(ls, lt)Cor as given in Def. 37.

Proof. The claimed result follows from Theorem 3 and the symmetry of the TGG
and the constructed constraints.

Remark 9 (Abstraction). Since abstraction is the opposite of refinement, for verifying
that a model transformation represents an abstraction, we can just check that the inverse
model transformation is behavior preserving in a refining manner. In particular, this means
that if a forward (backward) transformation derived from some TGG is behavior preserving
in a refining manner, then the corresponding backward (forward) transformation represents
an abstraction.

Example 26 (Refinement verification for backward transformation). The model trans-
formation MT(tgg, Ctgg)−1 described in Example 25 can be shown to be behavior preserving
via the simulation relation induced by the simulation constraint CCor,f

Sim as described in Corol-
lary 1.

Since the correspondence of runtime elements as described in Cf
RT and the applicability

of equivalent rules as expressed in CCor,f
Pair hold for the axiom of the triple graph grammar

(Vinit) and are invariant for each possible application of a triple graph rule (Vtrans) from the
example TGG tgg (with TGG constraint Ctgg), each possible triple graph generated by the
triple graph grammar (describing a pair of a sequence chart and a system of communication
automata related by a model transformation instance) also satisfies these constraints.

Since the correspondence of runtime elements (Cf
RT) and the applicability of equivalent

and corresponding rules (CCor,f
Pair ) remains invariant for each pairwise application of equiva-

lent and corresponding source and target semantics rules (Vsem), all model transformation
instances and thus, the model transformation as such, are behavior preserving in a refining
manner. In contrast to Example 23, the respective constraints Cf

RT and CCor,f
Pair only describe
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implications in a direction from the source model to the target model. More informally, each
rule application on the source model can be followed by an equivalent and corresponding
rule application on the target model, but not vice versa.

In fact, the verification by the above theorem will fail for the forward transformation
MT(tgg, Ctgg); in particular, CCor,b

MT is not an inductive invariant of (R, STTCTTTTT, Ctgg).
Because of two rules in R (Figures 49, 50), MT(tgg, Ctgg) relates source and target models
where the target model contains the static components of additional behavior in the form
of states and communicating transitions without matching components for behavior in the
source model. Hence, there will be model transformation instances (S, T), where a semantics
rule application in the target model cannot be followed by a corresponding rule application
in the source model.

Finally note that since MT(tgg, Ctgg)−1 is a model transformation that is behavior pre-
serving in a refining manner, the corresponding forward transformation MT(tgg, Ctgg)

from sequence charts to automata with additional internal behavior represents an abstrac-
tion.
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6. Automation

This section reiterates over the modeling steps Mlang, Mtrans, Msem, and Mpres of
our modeling scheme and steps Vinit, Vtrans, and Vsem of our verification scheme for
behavior preservation of model transformations and discusses if and how these
steps can be executed automatically and which types of automated tools apply.
Since all three variants of behavior preservation as discussed in Sections 3–5 share
a significant number of common elements, automation is discussed generically for
these steps. The steps of the generic modeling scheme are summarized in Fig. 1

and 10 and the generic verification scheme is summarized in Fig. 21. In the latter
figure only the finite artefacts of the modeled concepts are depicted that can be
automatically processed in the three steps Vinit, Vtrans and Vsem (as in Theorem 1, 2,
and 3) of the verification scheme.

Figure 21: Verification Scheme Vinit, Vtrans, and Vsem for Behavior Preservation on
the Transformation Level

6.1. Automation of Modeling Scheme

In all cases, our modeling scheme consists of the steps following below (as illus-
trated earlier in Fig. 1 and 10 and Table 2).

Mlang (Modeling Language): Source modeling language L(STT, CS) based on type
graph STT and constraint CS and target modeling language L(TTT, CT) based
on type graph TTT and constraint CT.

73



Automatic Verification of Behavior Preservation
at the Transformation Level for Relational Model Transformation

Msem (Model Semantics): LTS(gtss, ·) based on runtime conform gtss = (Rs, SRT)

and dynamic constraint Cgts
s and LTS(gtst, ·) based on runtime conform gtst =

(Rt, TRT) and dynamic constraint Cgts
t .

Mtrans (Model Transformation): Induced model transformation MT(tgg, Ctgg) based
on TGG constraint Ctgg (which comprises CS and CT) and tgg = (R, SRTCTTTRT,
SACATA) with TGG rules R, type graph SRTCTTTRT, and axiom SACATA.

Mpres (Behavior Preservation): Relabelings ls, lr based on mappings lRs and lRt and
correspondences C(ρs,ρt) and induced (bi-)simulation relation R(C��) based

on (bi-)simulation constraint C�� = C�RT ∧ C�Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ C�MT.

The required formalization and artefacts for the first three modeling steps can
be found in Tables 3 (Mlang), 4 (Msem), and 5 (Mtrans). All required artefacts need
to be specified manually. However, there are certain steps, that, depending on the
specific example at hand, might have potential for automation.

First and foremost, our approach relies heavily on type graphs, typed graphs,
and graph languages and GTSs defined by type graphs and graph constraints.
Modeling tools that support these features will provide great help in the respective
modeling steps involved in our approach. In particular, the use of modeling tools
that can automatically check the adherence of a modeled artefact (graph rule, graph
constraints, etc.) to such a modeling language or allow only the specification of
correctly typed artefacts is advantageous. This applies to all steps of the modeling
scheme.

Second, the runtime conformity of gtss and gtss (Msem) with respect to their
runtime graph language can be verified by tools capable to perform the required
checks. Automated type checks of gtss and gtst are able to deduce whether their
rules indeed preserve all static elements (i.e., nodes of types in STT and TTT).
Further, the dynamic constraints must be verified as inductive invariants of gtsCS

s
and gtsCT

t . This capability of performing inductive invariant checks will also be
required for the automation of our verification scheme.

Third, in step (Mtrans), we assume for the TGG constraint Ctgg to comprise both
CS and CT . We can therefore assume that Ctgg is automatically extended with CS
and CT to fulfill this condition.

The generic view for the formalization and artefacts of step (Mpres) and their
specific extensions for the three cases are shown in Tables 9 and 10, respectively.
The relabelings ls and lt are based a) on mappings lRs and lRt of rules in the runtime
GTSs to a common alphabet and b) on correspondences C(ρs,ρt) connecting source
and target rules ρs, ρt assigned to the same element by the remappings (except
for the simple equivalence case, where no correspondences are required). Both
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remappings and correspondences are to be specified manually. In general, those
correspondences could also be found automatically by trying to match the static
part of the LHS of equivalently labeled source and target rules to the RHS of TGG
rules. If the matching is successful, then the discovered correspondence relations
prescribed by the TGG rules can be extracted as C(ρs,ρt).

For the specification of the bisimulation constraint C�� , pair rules P(ls, lt)Cor are
derived from the mappings lRs and lRt . In the case of equivalence and refinement
the pair constraint C�Pair is derived from the mappings lRs and lRt and the corre-
spondences between the equivalently labeled rules. For the model transformation
constraint C�MT there is a difference in the simple equivalence and equivalence (and
refinement) approach: For the former, the constraint is based on the TGG rules as
decribed in Section 3. For the latter cases, we propose to derive it from the static
elements (i.e. in the type graph STTCTTTTT) of the pair constraint C�Pair.

For the equivalence and refinement approaches, we also suggest (in Section 7)
an automatic derivation for the model transformation constraint from the pair
constraint for cases where the semantics rules only have the trivial case true as ap-
plication conditions and do not delete any nodes. In thoses cases, the pair constraint
will always be a conjunction of nested constraints of the form ∀(P, ∃N) without
additional levels of nesting for which we can establish an automatic derivation
fulfilling the requirements of Definition 40.

This approach can possibly be extended to cover more complex cases; in particu-
lar, we believe that there is an automatic derivation for cases with arbitrary nested
application conditions in semantics rules, which would result in more complex
nesting structures in the pair constraint. However, at this point, we cannot provide
a general proof. Thus, automatic derivation of model transformation constraints
from pair constraints as discussed in this report is limited to formally covered
model transformations with the restrictions to semantics rules as described above
and specified in Construction 1 of Section 7 below.

6.2. Automation of Verification Scheme

For all cases discussed in this report, the proposed verification scheme for behav-
ior preservation consists of the three steps described by Theorems 1, 2, and 3,
respectively. While between the different cases, different constraints and rules are
involved, all such elements can be represented in a generic way for demonstration
purposes as follows:

Vinit: SACATA � C�RT ∧ C�Pair ∧ C
gts
s ∧ C

gts
t ∧ C�MT.

Vtrans: C�RT∧C�Pair∧C
gts
s ∧C

gts
t ∧C�MT is an inductive invariant of (R, SRTCTTTRT, Ctgg).
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Table 9: Modeling step Mpres and its specification effort

concept behavior preservation

formali-
zation

relabelings
ls, lt

induced relation R(C�� , .) with
(bi-)simulation constraint

C�� = C�RT ∧ C�Pair ∧ C
gts
s ∧ C

gts
t ∧ Ctgg ∧ C�MT

artefact
mappings

lRs , lRt
correspon-

dences

runtime
constraint
C�RT

pair
constraint
C�Pair

MT constraint
C�MT

specifi-
cation

manual
semi-

automatic
manual automatic

man./autom.,
see text

Table 10: Modeling step Mpres and generic & specific artefacts

case section pair rules runtime
constraint

pair
constraint

model
transformation

constraint
generic Sect. 6 P(ls, lt)� C�RT C�Pair C�MT

simple
equivalence

Sect. 3 P(ls, lt) CRT CRule
Pair CMan

MT

equivalence Sect. 4 P(ls, lt)Cor CRT CCor
Pair CCor

MT

refinement,
backward

Sect. 5 P(ls, lt)Cor Cf
RT CCor,f

Pair CCor,f
MT

refinement,
forward

Sect. 5 P(ls, lt)Cor Cb
RT CCor,b

Pair CCor,b
MT
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Vsem: C�RT ∧ C�Pair is an inductive invariant of (P(ls, lt)�, SRTCTTTRT, Ctgg ∧ C�MT ∧
Cgts

s ∧ C
gts
t ).

For this generic form of the verification steps, Table 10 shows the respective
specific steps. However, for the purpose of automatic verification, the general
procedure remains the same for all cases.

Since the axiom SACATA is just a specifically typed graph, the first check (Vinit)
can be done by most graph transformation tools that support typed graphs and
the checking of graph constraints for a particular typed graph. Checking the valid-
ity of a number of graph constraints is usually not computationally challenging,
especially if the graph in question is rather small, as it is often the case with TGG
axioms. Also, the expressiveness of the graph constraints does not need to be re-
stricted, i.e. the nesting and combination of conditions can be arbitrarily deep and
complex.

For steps Vtrans and Vsem we can employ tools capable of verifying inductive
invariants for graph transformation systems. For the general case of having nested
conditions in rules or constraints, the related verification problem is, in general,
undecidable [32]. While our formalization of steps Vtrans and Vsem does not require
restrictions on the rules or constraints, specific tools automating the corresponding
invariant checks might impose specific restrictions on the structure of these rules
and constraints. Also, depending on the nature, performance, and scalability of the
tool, it may not be feasible to verify rules and constraints beyond a certain number
or degree of complexity.

More specifically, as elaborated in [15], a number of verification tools are not
applicable to our examples because they do not support negative application con-
ditions to the required extent. This includes Uncover [39], Augur [38], RAVEN [7],
and the model checking approaches by Steenken [48] and Boneva et al. [8]. While
the approach of Habel and Pennemann [32, 45] is expressive enough, their corre-
sponding tool does not yield results for our examples in reasonable time. While
our own tool [2, 15] does, it requires special considerations and simplifications
(see Section 7) to specifically cope with a fragment of the pair constraints in our
examples.
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7. Evaluation

After the repetition of the generic modeling and verification steps in the previous
section and their potential for automation, this section now explains and evaluates
the modeling and verification steps of our specific examples for the various cases.
For the verification part, we employ our own invariant checking tool [2, 15].

7.1. Evaluation of Modeling Scheme

Table 11 lists both the results of the verification steps explained below and statistic
information about the elements required for said verification and established in the
steps of our modeling scheme. These numbers are intended to give an overview
over the complexity of the example artefacts to be specified in the modeling scheme,
the resulting effort required for their manual specification and comprehension, and
the effect on verification times.

For all artefacts required for verification, the table lists both the number of con-
tained subcomponents and the size (number of nodes) of the largest component.
For a set of rules, the subcomponents are the contained graph rules. For a constraint,
the subcomponents are the individual graph constraints joined conjunctively to
form the complete constraint. It should be noted that in our examples, the con-
straints listed below always conform to the structure of a logical conjunction; in
general, this does not need to be the case. In both categories, the maximum size is
the maximum number of nodes encountered in such a subcomponent. Nodes in
application conditions in a subcomponent (rule or constraint) also count towards
the size of the subcomponent. For type graphs, there exists only one type graph of
each kind; hence, the maximum size is the number of nodes of the respective type
graph.

While some elements involved in the specification of the model transformation
(e.g. tgg and the TGG constraint Ctgg) grow to a certain size such that manual
handling and analysis may be problematic, most elements concerned with the
specification of behavior preservation itself are either small in size (such as the
runtime constraint C�RT) or can be derived automatically (such as C�MT or C�Pair).
While we did not exploit this potential for automation in our modeled examples, it
would certainly be required for even larger case studies.

However, since a number of constraints and graph rules are quite similar in
structure and content, a lot of otherwise redundant work could be avoided by
copying and adjusting constraints or rules. For instance, in Example 23, CCor

MT and
CCor

Pair only differ in the four additional active edges of CCor
Pair, so our process saw

heavy use of copying of existing elements. Because of the construction of C�Pair from
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P(ls, lt)� (on a general level), this will also apply to other instances of our problem
statements.

Considering all elements in general, it should be noted that different elements
may be specified by different parties in the process of the development of the
source and target modeling languages, the model transformation, model semantics
and behavior preservation. Indeed the specification effort listed in Table 11 will
in practice often be distributed among various developers acting in different roles.
It should also be noted that certain modeling steps will happen independently
of other steps. For example, the specification of a model transformation can be
based on existing source and target modeling languages that were established
independently of an intent to design a model transformation.

For the cases of model transformation constraints in the equivalence (Example
23) and refinement (Example 25) approaches, as mentioned before, we can auto-
matically derive the model transformation constraint CCor

MT from the pair constraint
CCor

Pair for cases where the semantics rules only have the trivial case true as applica-
tion conditions and do not delete any nodes. In those cases, our pair constraints
are conjunctions of nested constraints of the form ∀(P, ∃N) and our automatic
derivation fulfills the requirements of Definition 40, which is proven below. (As
will be explained in Section 7.2 below, this constraint form is also a requirement for
our invariant checking tool [2, 15] to automatically perform the required inductive
invariant checks.)

Construction 1. Given a formally covered model transformation (Def. 26) with source
and target semantics rules (in Rs and Rt) that do not delete any nodes and have true
as application condition, let CCor

Pair = CCor,f
Pair ∧ C

Cor,b
Pair be a pair constraint (Def. 39) with

CCor,f
Pair =

∧
(ρs,ρt)∈Pair(lRs ,lRt ) C(ρs,ρt) where all C(ρs,ρt) are of the form C(ρs,ρt) = ∀(Ls, ∃(js :

Ls → LsC(ρs,ρt)Lt)). CCor,b
Pair is formed analogously.

We define an operation rest f that derives the forward model transformation constraint
from the forward pair constraint, i.e. CCor,f

MT = rest f (CCor,f
Pair ):

rest f (
∧

(ρs,ρt)∈Pair(lRs ,lRt )
C(ρs,ρt)) =

∧
(ρs,ρt)∈Pair(lRs ,lRt )

rest f (C(ρs,ρt))

rest f (∀(Ls, ∃(js : Ls → LsC(ρs,ρt)Lt)))

= ∀(Ls|STTCTT TTT
, ∃(js|STTCTT TTT

: Ls|STTCTT TTT
→ (LsC(ρs,ρt)Lt)|STTCTT TTT

)).

There is an analogous construction restb such that CCor,b
MT = restb(CCor,b

Pair ) and CCor
MT =

rest f (CCor,f
Pair ) ∧ restb(CCor,b

Pair ) fulfills the requirement specified in Definition 40:

Proof. Given CCor
Pair = C

Cor,f
Pair ∧C

Cor,b
Pair as specified above and given CCor

MT = rest f (CCor,f
Pair )∧

restb(CCor,b
Pair ), we have to show that for all graphs G ∈ L(STTCTTTTT) with G 6� CCor

MT ,
there is a graph G′ ∈ L(SRTCTTTRT) such that G′|STTCTT TTT

= G and G′ 6� CCor
Pair.
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Hence, consider a graph G ∈ L(STTCTTTTT) with G 6� CCor
MT . Then, we have

G 6� CCor,f
MT or G 6� CCor,b

MT . Since both cases can be treated analogously, we will
consider G 6� CCor,f

MT here, which leads to the existence of a C(ρs,ρt) = ∀(Ls, ∃(js :
Ls → LsC(ρs,ρt)Lt)) such that G 6� C(ρs,ρt) (where (ρs, ρt) ∈ Pair(lRs , lRt )).

Ls
�

js
//'

x′

**LsC(ρs,ρt)Lt
�

y′
// G′

Ls|STTCTT TTT

?

l

OO

�
js|STT CTT TTT//

�

x

44(LsC(ρs,ρt)Lt)|STTCTT TTT

?

l′
OO

G
?

g

OO

Consequently, there exists a morphism x : Ls|STTCTT TTT
↪→ G, such that there does

not exist a morphism y : (LsC(ρs,ρt)Lt)|STTCTT TTT
↪→ G with y ◦ js|STTCTT TTT

= x.
By constructing the pushout (G′, x′, g) over l and x, we get a graph G′ ∈
L(SRTCTTTRT) with morphisms x′ : Ls ↪→ G′ such that x = x′|STTCTT TTT

and
g : G ↪→ G′ such that G′ \ g(G) will only contain runtime elements and hence,
G′|STTCTT TTT

= G.
We then need to show G′ 6� CCor

Pair and will do so by contradiction: Assume
G′ � CCor

Pair and hence, G′ � CCor,f
Pair , which, given x′ : Ls ↪→ G′ as above, implies

the existence of a morphism y′ : LsC(ρs,ρt)Lt ↪→ G′ with y′ ◦ js = x′. Then, there
exists a morphism y = y′|STTCTT TTT

with y : (LsC(ρs,ρt)Lt)|STTCTT TTT
↪→ G such that

y ◦ js|STTCTT TTT
= x. This is a contradiction (to the non-existence of y as stated above);

thus, we have G′ 6� CCor
Pair, which concludes the proof.

7.2. Evaluation of Verification Scheme

The inductive invariant checks for the TGG rules (Vtrans) and pair rules (Vsem) can
be performed automatically by our invariant checking tool [2, 15], which has also
already been applied for the more restricted case of simple equivalence described
in [27]. Similarly, runtime conformity with respect to dynamic constraints can also
be checked. In particular, we check whether a graph constraint F is an inductive
invariant for a typed GTS with constraint gtsC. However, the rules and constraints
that can be checked are subject to the restrictions imposed by our tool:

1. Left application conditions can only have the form
∧

i∈I ¬∃ni, such that rules
must have the form ρ = (〈L←↩ I ↪→ R, 〉 ,

∧
i∈I ¬∃ni) (for morphisms ni : L ↪→

Ni).
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2. Graph constraints to be verified as inductive invariants (F) or to be part of the
GTS (C) must have the form

∧
i∈I ¬∃(iPi , aci), for morphisms ipi : ∅ ↪→ Pi and

application conditions aci of the general form aci =
∧

j∈J ¬∃xj for morphisms
xj : Pi ↪→ Xj.

The latter restriction leads to a more specific condition for the pair constraint
C�Pair and hence, for the pair rules P(ls, lt)� and for the source and target GTSs gtss
and gtst. Since the nesting level in the pair constraint is restricted, the rules in gtss
and gtst must not have any nested application conditions (except for the trivial
case true). If, however, any unwanted negative application conditions exist and if
these conditions only prohibit the existence of one edge, they can be simulated by
additional constructions as explained in Appendix A. This is, in fact, the case for
the initE and initS rules of all three examples and the scheme is applied for all the
verification steps involved.

Given this restriction and the resulting absence of nested application conditions
in semantics rules, which leads to a simple ∀(P, ∃N) for our pair constraints, we
can apply the automatic derivation (Construction 1) of the model transformation
constraint C�MT from the pair constraint with correspondences C�Pair for the cases of
behavioral equivalence and refinement (Examples 23 and 25).

We also employ a simplification scheme to replace one-to-one correspondence
nodes and accompanying edges by simple edges as explained in Appendix A. This
lowers the size of rules and constraints in our examples considerably and allows
for a verification in reasonable time and memory consumption.

In the special case of Example 15, the pair constraint (before simplification) does
not follow the required structure (see Figures 11 and 31). However, the implication
App(ρs) ⇒ App(ρt) which is part of the forward pair constraint can be written
as ¬(App(ρs) ∧ ¬App(ρt)) and, for rules with a deletable condition that is triv-
ially true, App(ρs) ∧ ¬App(ρt) is equivalent to ∃(Ls, acs ∧ ¬∃(Ls ↪→ Ls + Lt, acs+t)

with Ls and Lt being the LHS of ρs and ρt, respectively, and acs+t the result-
ing application condition for the parallel rule ρs + ρt. After negation, we have
∀(Ls,¬acs ∨ ∃(Ls ↪→ Ls + Lt, acs+t), which, after applying the simplification proce-
dure for simple negative application conditions, has the required structure.

It can easily be seen that verification step Vinit – the satisfiability of the respective
constraints by the respective axiom SACATA – holds, although automatic verifica-
tion of this step would indeed be possible. Table 11 shows the results of the more
elaborate verification processes for the verification steps Vtrans and Vsem in our three
examples: simple equivalence, equivalence, and refinement. Note that these num-
bers correspond to the examples adjusted by the simplification measures explained
above: emulating negative application conditions containing single edges by posi-
tive edges and replacing correspondence nodes by edges. The only exception are
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our examples for approaching behavioral equivalence – here, correspondence nodes
have not been replaced by correspondence edges since the examples’ complexity
does not require it. All cases are behavior preserving in the sense of their respective
problem statements.

We can observe a drastic difference between our examples for simple equivalence
and equivalence/refinement due to the increase in size of rules and constraints.
These differences are owed to the higher complexity of our more elaborate exam-
ples; in particular, the inclusion of correspondence structures leads to a higher
number of entities.

While our tools require certain restrictions on graph rules and constraints and
therefore requires the mentioned simplification step for application conditions in
rules, it is able to yield a correct result in adequate time. On the other hand, more
general tools of higher expressive power may struggle with performance for the
verification of systems as complex as our examples for behavioral equivalence and
refinement (see [15]). In contrast to tools with interactive verification, our tool has
the advantage of running completely automated. Finally, while false negatives are
possible in certain cases, our tool yields meaningful symbolic counterexamples for
failed verification attempts. In case of doubt or to better understand the problem,
these counterexamples can be investigated by hand.
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Table 11: Evaluation data with numbers of subcomponents and maximum node
size for artefacts involved in modeling and verification schemes

simple equivalence
(Example 15)

equivalence
(Example 23)

refinement
(Example 25)

modeling
step/artefact

number of
subcompo-

nents

max.
size

number of
subcompo-

nents

max.
size

number of
subcompo-

nents

max.
size

Mlang

STT 1 3 1 3 1 3
CS 10 3 11 3 11 3

TTT 1 3 1 4 1 4
CT 10 3 8 3 6 3

Msem

Rs 3 3 2 7 2 7
SRT 1 3 1 3 1 3
Cgts

s 5 2 6 3 6 3
Rt 3 3 2 9 2 9
TRT 1 3 1 4 1 4
Cgts

t 5 2 6 3 6 3

Mtrans

R 3 9 2 16 4 16
SRT CTT TRT 1 9 1 7 1 7
Ctgg 32 3 28 3 26 3

Mpres

corres 0 0 2 0 2 0
P(ls, lt)� 3 6 2 16 2 16
C�RT 2 3 2 2 1 2
C�Pair 6 6 4 16 2 16
C�MT 6 9 4 16 2 16

verification step result time result time result time
Vinit true trivial true trivial true trivial
Vtrans true 1.0 s true 43 min true 50 min
Vsem true 5.5 s true 0.9 s true 0.5 s
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8. Discussion

In the following we will discuss whether the results described in this report are
applicable for a large class of cases where we want to verify behavior preservation.

The applicability of our approach for verifying behavior preservation of model
transformations at the transformation level (Definition 6), is mainly related to the
question how well chosen our formalizations for the basic concepts such as the
modeling language (Definition 1), the model semantics (Definition 2), the model
transformation (Definition 3), and the notion for behavioral equivalence or refine-
ment (Definition 5) are. Consequently, we will discuss in the following our choices,
their pros and cons, as well as alternative choices.

To fulfill the needs of Definition 1 concerning the definition of the modeling
languages, we chose typed graphs enriched with a constraint as formalization. As
extensions for typed graphs such as attributes [18], inheritance on the node [13,
29] and edge types [50], and many other extensions exist, this is not really a
limitation concerning the expressiveness and fits well to the usually employed
meta models [1].

A model semantics according to Definition 2 has to be provided in our approach
in form of an extension of the model by dynamic elements and graph transforma-
tion systems that describe how the state can change stepwise (as proposed already
in [21, 33]). Consequently, the required formalization demands conceptually that
an interpreter is defined that describes the behavior by means of a state transition
system. Such a formalization can be done straightforward for most behavioral
models related to software. However, if the considered models include continuous
elements as in case of models of physical processes such a formalization may be
problematic.

In our formalization we require that each static graph satisfy trivially each
dynamic constraint: L(TG, C) ⊆ L(TG′, C ∧ Cdyn). However, the proven verification
scheme can be easily adjusted to cases where this is not true and where some
initialization phase is required to establish the dynamic constraints Cgts

s ∧ C
gts
t by

requiring that Vinit is split into a first check for the outcome of the grammar not
including the dynamic constraints SACATA � C�RT ∧ C�Pair ∧ C�MT and a check that
the initialization phase then preserves all the other constraints SACATA � C�RT ∧
C�Pair ∧ C�MT and guarantees the dynamic constraint Cgts

s ∧ C
gts
t after termination.

For the formalization of model transformations (Definition 3) we chose triple
graph grammars (TGGs). In [26, 35] we showed for TGGs enriched with a constraint
that they are conform with our TGG implementation. Thus we can guarantee for
that implementation that forward and backward transformation implementations
are indeed behavior preserving. It has also been shown that TGGs are to some
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extent similar to relational QVT [30] and thus we can conclude that the results
conceptually cover the core of the class of relational model transformations. Our
results can also be adapted to the case of operational model transformations as
shown in [17]. In this case the verification part for checking bisimulation or simu-
lation (Vsem) can be reused after the establishment of condition C�MT for the model
transformation results by other means. In this context it may be noted also that in
particular the constraints belonging to the bisimulation constraint including run-
time elements might not hold for a source and target model on which no semantics
rule has been applied yet. In particular, this could be the case if the presence of
some runtime elements is required by the respective constraint. In this case a possi-
ble workaround would be to add an initialization phase for the semantics Vsem,init
in which these constraints with runtime elements being part of the bisimulation
constraint are established first. After that the regular verification part as described
in Vsem can be applied.

For modeling language, model semantics, and model transformation holds as
outlined that the limitations of the considered variant of graph transformation
system are not really a limiting factor concerning expressiveness of our approach,
as the results obviously also apply for graph transformation extensions such as
attributes, inheritance on the node and edge types, many other extensions, and
even the general concept of M-adhesive replacement systems [19]. It has to be
noted, however, that the presented results concerning the automated checking are
only feasible for models of rather limited expressiveness.

The choice of a particular behavioral equivalence or refinement (Definition 5)
differs from the former choices as we do not only chose a particular formalization
but also have to select one option from an overwhelming number of alternative
notions of equivalences and refinement for labeled transition systems that have
been studied in the literature (cf. [51, 52]).

The chosen behavioral equivalence bisimulation and behavioral refinement sim-
ulation are the main cases for a class of these alternatives where the comparison is
based on pairs of states. Other notions in contrast look on traces and/or refusals to
consider the comparison on a more abstract level not taking into account the state
space of the two involved models (cf. [51, 52]). However, due to the fact that the two
models are linked to each other via transformation steps (which is encoded in the
correspondence model) the assumption that the state spaces are structurally similar
is very well justified and thus it seems reasonable to limit our considerations to
notions for behavioral equivalence and refinement where the comparison is based
on pairs of states.

Note that our notion of behavioral equivalence and refinement implicitly assumes
that unique correspondences exist between each source and target model of a
model transformation. Otherwise the following exceptional case could arise: for one
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correspondence variant of a model transformation instance a bisimulation relation
or refinement can be found, whereas for another correspondence variant this is not
the case. This exceptional case does not play a significant role within our framework,
since for practical reasons as explained in [26] we assume the correspondence
structure to be unique anyway in our model transformation approach. Moreover,
in our particular verification approach we check the more severe case that for each
correspondence variant a bisimulation/simulation relation can be found.

Within the class of behavioral equivalence and refinement where the comparison
is based on pairs of states a number of alternatives other than bisimulation and
simulation exist. One alternative, for example, would be to consider weak forms
of bisimulation and simulation where internal steps are not taken into account. To
do so we would have to join possibly multiple subsequent silent steps sequentially
with one labeled rule such that bisimulation/simulation of the adjusted GTSs cor-
responds to weak bisimulation/simulation for the original GTSs. This can be done
by gluing rules [18, 19] into so-called concurrent rules in case we have to join only
a small finite number of rules. In particular, as described in our ongoing work on
k-induction [16] the invariant checking approach needs to take into account up to
k steps to establish an invariant. In case the number of silent steps is unbounded
another option could be to allow the silent steps in addition to the usual corre-
sponding pairs of source and target steps such that either the source or target can
do silent steps or joint visible steps. Note however, that in this case an invariant
has to be identified that also holds when applying silent steps on each side.

We can further check simulation also in cases where we do not have a bijective
relabeling such that multiple target rules correspond to one rule ρs of the source
model but to any rule ρt of the target modelonly one rule of the source model
corresponds. We can do so by employing the original definition for the pair con-
straint CCor,b

Pair with correspondences and the original pair rules. As the pair rules only
covering the backward direction each rule in the target model has a unique rule in
the source model and thus they guarantee that each behavior in the target model
is also possible in the source model.

In particular concerning the simulation case holds that it is oftentimes a too
weak refinement. This is because, for example, it does not necessarily preserve
deadlock-freedom when the refined behavior of a target model is substituted for
the refined behavior of the source model in an arbitrary context. The stronger
notion of ready-simulation [51], which in contrast to simulation preserves deadlock-
freedom for substitution, requires that the pair constraints have to be enriched to
not only require that the target is simulated by the source, but also requires in the
opposite direction that if a certain step with an external label is possible in the
source model a step with the same label must be offered by the target model as
well. Like for the above-discussed case for simulation we can support that multiple
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target rules correspond to one rule ρs of the source model but only one source rule
corresponds to any rule ρt of the target model. We can then adjust the definition
for a pair constraint CCor,f

Pair ,rs with correspondences as follows to check ready-simulation

using CCor
Pair = C

Cor,f
Pair ,rs ∧ C

Cor,b
Pair and the original pair rules with

CCor,f
Pair ,rs = ∧ρs∈Rs(∀(Ls, acApp(ρs) ⇒ ∨(ρs,ρt)∈Pair(lRs ,lRt )

∃(js : Ls → LsC(ρs,ρt)Lt, acApp(ρs∗RsC(ρs ,ρt)
Lt ρt)))).

Note that CCor,b
Pair guarantees that each behavior in the target is also possible

in the source. The additional constraint then guarantees that whenever a rule in
the source is enabled at least one corresponding rule in the target is also enabled.
Thus, a transition with the same label in the target always exists, which guarantees
deadlock freedom for substitution.

Concerning the automation of the verification, besides the feasibility of the veri-
fication as such, other issues to be considered are how helpful the tools are in de-
veloping a correct transformation that is indeed behavior preserving. If the model
transformation in question is not behavior preserving according to our verification
scheme, then the currently employed tool outputs specific counter examples that
can be checked to understand why the checking failed. Hence, improvements of
the checking tool yielding more compact or less witnesses (specific or symbolic) in
case of failed verification tasks would be another very useful direction for a model
transformation developer interested in verifying behavior preservation.
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9. Conclusion and Future Work

We present the first fully automated and complete verification approach for behav-
ior preservation of model transformations at the level of the model transformations.
For model transformations specified by TGGs and semantic definitions for the
input models and output models given by GTS rules, we were able to reduce
the behavior preservation problem to an inductive invariant checking problem for
GTSs derived from the TGG rules and semantics rules and constraints encoding of
bisimulation or simulation and the applicability of equivalent steps in the source
and target models. Furthermore, we were able to show that the result is of relevance
for a large class of model transformations and that even for complex examples the
required checks can be done automatically.

In our future work we plan to investigate even larger examples and case studies
and identify which characteristics may prevent to apply our approach. Based on
these insights we want to develop extensions for our approach that cover more
cases. Directions may be more expressive models, different kind of semantics, or
alternative notions for behavior equivalence and refinement. Another direction to
extend the scope of our approach will be to transfer the approach not only to
operational model transformations as presented in [17] but also to hybrid ones.

The results presented in this report also imply that tools for checking inductive
invariants for GTS that support more expressive GTS variants than the employed
invariant checker or can handle more complex rules and constraints would be a
valuable contribution. Thus we plan to investigate such improvements as well.

Finally, we plan to integrate our transformation level verification approach for
behavior preservation into the overall model transformation development process.
In particular, we aim to build debugging support w.r.t. behavior preservation.
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A. Simplification

A. Simplification

Depending on the various specific verification tools that may be employed to con-
duct the more complex verification steps Vtrans and Vsem, the existence of nested
application conditions in rules may pose a challenge. Most importantly, this influ-
ences a tool’s capability to address the verification steps at all. However, even if
a tool’s formalism is expressive enough to support nested application conditions,
the transformation of the verification task at hand into a system without such
conditions may be desirable in terms of feasibility.

A restricted form of nested application conditions often encountered in rules of
model semantics – and, in particular, in our examples – is a negative application
condition prohibiting the existence of a single edge. More formally, given the LHS
L of a rule, such application conditions have the form ¬∃(n : L→ N) with L and
N being isomorphic with the exception of N having exactly one additional edge.
For example, the initE and initS rules in Example 5 (Fig. 7(a) and 7(b)) have such
negative application conditions.

Assuming these negative edges have a uniform edge type, the occurrence of
these very simple NACs in rules or graph constraints can be replaced with positive
elements by replacing it by a new edge type (called here: negative type). This edge
type represents the nonexistence of an edge of the original type (here: positive type)
and hence, the satisfaction of the original NAC. Note that whenever an edge of
the original type is created (deleted) in some rule, then also the rule itself must
be changed such that it deletes (creates) a corresponding edge of the negative
edge type. Then, a constraint C is an inductive invariant of the original GTS gts
if the adapted GTS gts′ has C′ as an inductive invariant, where C′ is C with two
constraints joined conjunctively: one prohibiting the existence of two edges of the
negative type on a node and one prohibiting the existence of edges of both the
negative and positive type on a node.

Example 27. Figure 22 shows the application of this simplification approach to the initE
rule from Example 5, with the original rule depicted in Figure 22(a). Figure 22(b) shows
the modified rule with an edge of type not_activated (the negative type to activated) instead
of a negative application condition. Figures 22(c), 22(d), and 22(e) then show the addition
of the negative type to the typegraph SRT and the additional constraints to be conjunctively
joined to Cgts

s . (Note that Cgts
s already contains a constraint forbidding two activated edges

on one event.) Similarly, the procedure can be applied to the target model semantics.

For the more general case of having a conjunction of such simple NACs, where
single edges of different types are forbidden, the simplification approach can be
applied by repeating the process described above for each such edge type.
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Figure 22: Original and adapted rule initE, runtime type graph SRT and additional
constraint in Cgts

s

96



A. Simplification

Besides the simplification of negative application conditions, there is another
possibility to reduce the artefacts’ complexity. For the purpose of verification, TGG
correspondence nodes with an edge to source and target nodes may be replaced by
single edges. In particular, corresponding source and target nodes are connected
only by such a single edge, which replaces the respective correspondence node
together with its two outgoing edges. This procedure is correct if (for each artefact)
there is exactly one connected source model node and exactly one connected target
model node to which the respective correspondence node is connected. On the type
graph level, for the respective correspondence node type, there must be only one
connected source and target node type with unique connecting edge types. This
conditions can be enforced by the type graph STTCTTTTT and the TGG constraint
Ctgg, which is partly the case for our examples described in this report. More
importantly, all correspondence nodes in our example constraints and rules follow
the required structures. While we could extend this simplification process to a
more general level and weaken the required conditions, this was not necessary for
our examples and the TGG formalism we employ.

Example 28. Figure 23(a) shows the type graph from Example 23, where the correspon-
dence nodes and outgoing edges in the original type graph (Figure 14) have been replaced
by correspondence edges. The TGG constraint Ctgg (Figure 41) restricts the cardinality of
correspondence nodes and corresponding source and target elements as required. For exam-
ple, the constraint fragment of Ctgg in Figure 23(b) enforces that one L2A correspondence
node has at most one connected lifeline and at most one connected automata.
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(b) Type graph constraints

Figure 23: Type graph with correspondence edges instead of nodes and type graph
constraints enforcing cardinality restrictions
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B. Models

B.1. All Figures of Example 15: Simple Equivalence (Tables 3, 4, 5, 6)
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Figure 24: Type graph SRTCTTTRT (also shown in Figure 8)
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Figure 27: CS – source graph constraint
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Figure 28: CT – target graph constraint
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Figure 32: Cgts
s (also shown in Figure 6(a))
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Figure 33: Cgts
t (also shown in Figure 6(b))
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Figure 34: Model transformation constraint CMan
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Figure 35: Type graph SRTCTTTRT for complex example (also shown in Figure 14)
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Figure 36: TGG rules R for complex example (also shown in Figure 16)

107



Automatic Verification of Behavior Preservation
at the Transformation Level for Relational Model Transformation

initE 

send 

initS 

fire 

Event 

first 

Lifeline 

active_e 
++ 

on 

activated_e 
++ 

activated_e 
State 

init 

Automaton 

in 

active_s 
++ 

activated_s 
++ 

activated_s 

Lifeline 

Event 

on 
next 

active_e 

Message 

send_m 

rcv_m 

Event 

on 

Lifeline 

Event 

on 

Event 

active_e 

next 
on 

active_e 

active_e 

-- 

-- 

++ 

++ 

Automaton 

State 

in 

active_s 

Transition 

State 

in 

Automaton 

State 

in 

State 

active_s 

Transition 

tgt src 

src tgt 

Com 

in 

send_c 

rcv_c 

active_s 

active_s 

++ 

++ 

-- 

-- 

Figure 37: Operational semantics: gtss and gtst for complex example (also shown
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Figure 38: Pair rules P(ls, lt)Cor for complex example
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Figure 39: CS – source graph constraint
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Figure 40: CT – target graph constraint
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Figure 41: Fragment of Ctgg
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Figure 47: Type graph SRTCTTTRT for simulation example
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Figure 48: TGG rules R for simulation example, first part
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Figure 51: Pair rules P(ls, lt)Cor for simulation example
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Figure 52: CS – source graph constraint

117



Automatic Verification of Behavior Preservation
at the Transformation Level for Relational Model Transformation

Automaton 

State 

in in 
 

Automaton Automaton 

State 

in in   

Automaton 

init init 

State State 

in in 

State 

Transition 

src 

State 

src   

State 

Transition 

tgt 

State 

tgt 

 
State 

init init 

∧ 

∧ 

∧ ∧ ∧ 

Figure 53: CT – target graph constraint
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Figure 54: Fragment of Ctgg
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Figure 58: Forward pair constraint with correspondences CCor,f
Pair
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Figure 59: Forward model transformation constraint CCor,f
MT
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