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“If the universe is the answer, what is the question?”
L.M. Lederman






Abstract

Change points in time series are perceived as heterogeneities in the statistical or dy-
namical characteristics of the observations. Unraveling such transitions yields essential
information for the understanding of the observed system’s intrinsic evolution and po-
tential external influences. A precise detection of multiple changes is therefore of great
importance for various research disciplines, such as environmental sciences, bioinfor-
matics and economics. The primary purpose of the detection approach introduced in
this thesis is the investigation of transitions underlying direct or indirect climate obser-
vations. In order to develop a diagnostic approach capable to capture such a variety
of natural processes, the generic statistical features in terms of central tendency and
dispersion are employed in the light of Bayesian inversion. In contrast to established
Bayesian approaches to multiple changes, the generic approach proposed in this thesis is
not formulated in the framework of specialized partition models of high dimensionality
requiring prior specification, but as a robust kernel-based approach of low dimensionality
employing least informative prior distributions.

First of all, a local Bayesian inversion approach is developed to robustly infer on
the location and the generic patterns of a single transition. The analysis of synthetic
time series comprising changes of different observational evidence, data loss and outliers
validates the performance, consistency and sensitivity of the inference algorithm. To
systematically investigate time series for multiple changes, the Bayesian inversion is
extended to a kernel-based inference approach. By introducing basic kernel measures,
the weighted kernel inference results are composed into a proxy probability to a posterior
distribution of multiple transitions. The detection approach is applied to environmental
time series from the Nile river in Aswan and the weather station Tuscaloosa, Alabama
comprising documented changes. The method’s performance confirms the approach
as a powerful diagnostic tool to decipher multiple changes underlying direct climate
observations.

Finally, the kernel-based Bayesian inference approach is used to investigate a set of
complex terrigenous dust records interpreted as climate indicators of the African region of
the Plio-Pleistocene period. A detailed inference unravels multiple transitions underlying
the indirect climate observations, that are interpreted as conjoint changes. The identified
conjoint changes coincide with established global climate events. In particular, the
two-step transition associated to the establishment of the modern Walker-Circulation
contributes to the current discussion about the influence of paleoclimate changes on the
environmental conditions in tropical and subtropical Africa at around two million years
ago.






Zusammenfassung

Im Allgemeinen stellen punktuelle Verédnderungen in Zeitreihen (change points) eine Het-
erogenitat in den statistischen oder dynamischen Charakteristika der Observablen dar.
Das Auffinden und die Beschreibung solcher Ubergéinge bietet grundlegende Informa-
tionen iiber das beobachtete System hinsichtlich seiner intrinsischen Entwicklung sowie
potentieller externer Einflilsse. Eine préazise Detektion von Veranderungen ist daher
fiir die verschiedensten Forschungsgebiete, wie den Umweltwissenschaften, der Bioinfor-
matik und den Wirtschaftswissenschaften von groflem Interesse. Die primare Zielsetzung
der in der vorliegenden Doktorarbeit vorgestellten Detektionsmethode ist die Unter-
suchung von direkten als auch indirekten Klimaobservablen auf Veranderungen. Um die
damit verbundene Vielzahl an moglichen natiirlichen Prozessen zu beschreiben, werden
im Rahmen einer Bayes’schen Inversion die generischen statistischen Merkmale Zentral-
tendenz und Dispersion verwendet. Im Gegensatz zu etablierten Bayes’schen Methoden
zur Analyse von multiplen Ubergéngen, die im Rahmen von Partitionsmodellen hoher
Dimensionalitat formuliert sind und die Spezifikation von Priorverteilungen erfordern,
wird in dieser Doktorarbeit ein generischer, Kernel-basierter Ansatz niedriger Dimen-
sionalitdat mit minimal informativen Priorverteilungen vorgestellt.

Zunachst wird ein lokaler Bayes’sche Inversionsansatz entwickelt, der robuste Riick-
schliisse auf die Position und die generischen Charakteristika einer einzelnen Veranderung
erlaubt. Durch die Analyse von synthetischen Zeitreihen die dem Einfluss von Veranderun-
gen unterschiedlicher Signifikanz, Datenverlust und Ausreiffern unterliegen wird die
Leistungsfahigkeit, Konsistenz und Sensitivitat der Inversionmethode begriindet. Um
Zeitreihen auch auf multiple Verdnderungen systematisch untersuchen zu kénnen, wird
die Methode der Bayes’schen Inversion zu einem Kernel-basierten Ansatz erweitert.
Durch die Einfiihrung grundlegender Kernel-Mafle kénnen die Kernel-Resultate zu einer
gewichteten Wahrscheinlichkeit kombiniert werden die als Proxy einer Posterior-Ver-
teilung multipler Veranderungen dient. Der Detektionsalgorithmus wird auf reale Umwelt-
messreihen vom Nil-Fluss in Aswan und von der Wetterstation Tuscaloosa, Alabama,
angewendet, die jeweils dokumentierte Veranderungen enthalten. Das Ergebnis dieser
Analyse bestatigt den entwickelten Ansatz als eine leistungsstarke diagnostische Meth-
ode zur Detektion multipler Ubergénge in Zeitreihen.

Abschliefend wird der generische Kernel-basierte Bayes’sche Ansatz verwendet, um
eine Reihe von komplexen terrigenen Staubdaten zu untersuchen, die als Klimaindika-
toren der afrikanischen Region des Plio-Pleistozan interpretiert werden. Eine detaillierte
Untersuchung deutet auf multiple Verdnderungen in den indirekten Klimaobservablen
hin, von denen einige als gemeinsame Ubergénge interpretiert werden. Diese gemeinsam
auftretenden Ereignisse stimmen mit etablierten globalen Klimaereignissen iiberein. Ins-
besondere der gefundene Zwei-Stufen-Ubergang, der mit der Ausbildung der modernen
Walker-Zirkulation assoziiert wird, liefert einen wichtigen Beitrag zur aktuellen Diskus-
sion liber den Einfluss von paldoklimatischen Veranderungen auf die Umweltbedingungen
im tropischen und subtropischen Afrika vor circa zwei Millionen Jahren.
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1 Introduction

As summarized in the Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change (IPCC) the “evidence has grown [...] that impacts of recent changes in
climate on natural and human systems occur on all continents and across the oceans”
[T]. The scientific studies cited in the IPCC report suggest the attribution of changes
in environmental and ecosystems and in economic and agricultural systems to climate
changes. In consequence, a better understanding of the climate system and its changes
provides a solid basis of decision-making to adapt to anticipated future changes. For
that purpose the investigation of recent climate changes is realized by direct observation
of climate components on decadal and millennial time scales. Different to recent changes
past climate changes on time scales of thousands to millions of years are indicated by
indirect observations in terms of proxy records sensitive to specific climate components.
The past climate periods may not be analogues to modern climate conditions [2], but
offer valuable study cases for the response of the climate system to various forcings and
its potential influences on natural systems [3]. A prominent example of the importance
of paleoclimate transitions on the biosphere is the study of the relationship between
environmental change and human evolution in tropical and subtropical Africa of the
last five million years [4H6]. The presented thesis aims to provide further probabilistic
information about potential changes in the according paleoclimate observations to that
debate. Nevertheless, before any causality explaining a change in the complex climate
system [7] may be formulated or any influence on other natural systems may be at-
tributed to this change, the potential change has to be unraveled from direct or indirect
climate observations.

Climate change is generally defined in terms of variability, frequency, intensity, spa-
tial extent, duration, and occurrence of extreme events [8]. According to the different
domains of possible changes the analysis approaches are as well conceptually different.
To infer on a change of a component within an observed time series advanced analysis
techniques are used to investigate changes of (i) dynamical properties e.g. via recurrence
network analysis [9], (ii) frequency patterns e.g. via wavelet [10] or singular value anal-
ysis [I1] or (iii) regression parameters e.g. via estimation approaches [12, [13], to name
only a few.

The general parametric approach to change point detection, such as regression, as-
sumes a process describing the observed time series and comprising a change in one
or multiple process properties. The process parameters are then estimated from the
observations. By the reformulation of the estimation problem in the light of Bayesian
statistics, each model parameter may be assigned with uncertainty. The performance of
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the Bayesian inversion yields conditional probability densities of each model parameter
given the observations. Besides the parameter estimation on its own, a degree of belief
about the assumed model and about the uncertainties in the employed parameters can be
obtained. In particular, the probability density of the parameter describing the change
point intuitively indicates the degree of belief about a change occurring in the analyzed
time series. However, the number of process parameters increases with the amount of
change points. Thus, the models capable to describe complex paleoclimate observations
potentially comprising multiple changes are of high dimensionality. The according prob-
ability densities can therefore only be derived by advanced sampling strategies [14] or
dynamic programming algorithms [I5]. In contrast to these Bayesian approaches, the
presented thesis elaborates a Bayesian method to detect multiple changes without en-
larging the change point model’s dimensionality and combines the derived probabilistic
information into a comprehensive credibility expression.

The incorporation of uncertainty in geophysical problems, including climate research,
offers new perspectives for analysis approaches since advances in modeling strategies,
computational performance and specific algorithms make Bayesian concepts more and
more feasible [16, [I7]. Despite ongoing debates about the realization of explicit Bayesian
analysis strategies [18], Bayesian approaches have the potential to spark new exciting
discussions to existing scientific problems. Notably, the Bayes principle offers new per-
spectives in the field of climate research, e.g. the inference on detection and attribution
of recent climate changes in a single computational step [19, 20]. Since “the use of
statistics 1s pervasive in the climate sciences, not only for the extraction and quality
control of data, but also for the synthesis of knowledge and information from that data”
[21], Bayesian approaches offers a powerful framework to contribute to that matter. In
paleoclimate research the interest in and application of Bayesian methods is increasing.
Some recent analysis examples illustrate the use of the Bayesian strategy, e.g., to cal-
ibrate age-depth models [22], to unravel uncertainty propagation from age calibration
to proxy records [23], to investigate multiple climate time series up to millennial time
scales [24] and single time series up to a time scale up to millions of years [15]. The
essential aim of the Bayesian inference approach proposed in this thesis is the investi-
gation of complex paleoclimate observations spanning the time scale of a few million
years for multiple changes. The derived probabilistic information can then be used for
detailed comparative studies between observations from different locations interpreted
as indicators of the same climate aspect.

The presented thesis is organized as outlined in the following: In Chap.2 the theo-
retical background of the Bayesian analysis approach to detect changes in climate time
series is elucidated. In principle, climate signals are interpreted as complex observations
assigned with uncertainties due to the variety of the involved generating processes. The
basic formation mechanisms of climate observations are exemplified for the time series
investigated in the course of this thesis, followed by a brief overview of advanced analysis
approaches to climate time series. In contrast to such specialized approaches, the gen-
eral change point problem is formulated and the main approaches to its solution -inter



alia Bayesian model selection- are presented, including an explanation of the Bayesian
theorem to understand the mathematical concept of Bayesian inference. Finally, the
basic components of Bayesian approaches to multi change point problems are described.

Chapter 3 begins with an introduction of a local Bayesian inference approach to a
single transition. The explicit formulation of a generic transition model is motivated
by the aim to at least locally approximate complex observations. Further, the Bayesian
inversion is explained in its analytical and numerical form. In order to validate the ap-
proach as a detection method it is applied on synthetic time series comprising changes
of different observational evidence. Moreover, the empirical convergence of the posterior
distribution and the robustness of the employed estimators are assessed. By investi-
gating environmental time series comprising documented changes the suitability of the
generic transition model as a first order approach to direct climate observations is finally
discussed.

To investigate multiple transitions, the local Bayesian inference approach is extended
to a kernel-based inference approach as elaborated in Chap.4. Basic kernel weights
are proposed to allow the composition of a proxy probability to a hypothetical multi
transition posterior distribution. The extended approach is employed to reanalyze the
environmental time series of the previous chapter.

In Chap. 5 the multi transition inference is used to investigate a set of complex obser-
vations indicating a paleoclimate aspect of the subtropical and tropical African region
of the last five million years. The inferred changes are discussed in the context of previ-
ous studies based on various climate records, simulations or previous advanced analysis
methods. In Chap.6 the main findings of this thesis are summarized and a further
outlook with respect to the introduced Bayesian approach is provided.






2 Climate observations and change
point problems

The aim of this thesis is to develop a diagnostic tool to investigate climate observations
of different types for structural changes over different temporal scales. For that reason,
the presented approach is based on a generic change point model transferable to vari-
ous types of climate observations. To motivate the investigation of changes as generic
features of climate time series, the main aspects of directly and indirectly measurable
climate observations are outlined in the light of uncertainty. The term climate changes
usually describes specific variations in the properties of climate variables. Thus, the
according climate observations are commonly analyzed with methods adapted to the
specific properties of interest as briefly summarized in this chapter.

In contrast to such highly specialized approaches, the theoretical background of the
general change point problem in terms of statistical inhomogeneities is formulated. One
way to analyze such generic changes is accomplished by model selection via Bayesian
inversion. To provide an understanding of the concept of Bayesian inversion guiding
the development of the approach presented in this thesis, the Bayesian theorem and
the components used therein are explained. In this way the Bayesian perception of a
probability as a degree of belief is emphasized. Finally, the basic strategies commonly
employed in Bayesian change point detection approaches are described.

2.1 Uncertainty of climate time series

An important scope of climate research is the inference on the principles guiding the cli-
mate system by analyzing climate sensitive observables. The better understanding of the
climate system, its properties and variations, enables scientists to approach related hy-
potheses, such as predictions of future climate conditions by increasingly precise climate
modelling. The practical strategy to investigate the climate system despite its com-
plexity consists of the decomposition into subsystems or climate components [25, 26].
These climate components are mutually interacting and exhibit various characteristic
properties over a broad range of space [27, 28] and time scales [29] [30] over many orders
of magnitude. Based on acquired climate observables assumed to reflect the evolution
of specific climate components at a given spatio-temporal scale, aspects of the climate
system can be studied (see Fig. 2.1).

Irrespective of the analysis approach, i.e. exploratory (inductive) or confirmatory
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climate system

climate observation
Y inference y

Figure 2.1: The climate aspect may be interpreted in terms of a hypothesis related to climate system.
In principle the inference from the aspect to the system is not possible due to identifiability. By
integrating over the complete system the observations may be used to infer on the aspect.

(deductive), one has to be aware of the fact, that climate observables are inherently
uncertain. The sources of uncertainty are manifold, case-specific and only partly known
for the different types of climate signals. In order to schematically illustrate the main
sources of uncertainties commonly assumed for climate time series, a hierarchical model
approach [31] serves as a basic mathematical framework. Thus the fundamental differ-
ences between the uncertainties assigned to direct and to indirect climate observations
are elucidated. Clearly, a complete and detailed overview about incorporating uncer-
tainty in climate signals is beyond the scope of this thesis. Instead, the following section
aims to exhibit the challenges scientists face by interpreting observables as climate sen-
sitive signals and to motivate the design of a generic change point model within this
thesis.

A generic description of a climate component can be formulated in terms of a latent,
continuous space-time climate process Z

Z={Z(s,t):s€8S,teT}, (2.1)

within the spatial S and temporal 7 domain of interest. The attribute latent refers in
a statistical sense to an unobserved quantity describing the underlying climate process
as deduced from theoretical and empirical studies. The actually measurable climate
variable can be defined as a further stochastic process Y conditional on the climate
process under study Z [31]. For simplicity, the process is specified as a real-valued,
time-discrete process located at a fixed point s’ in space

Y:{Y(Sl,ti) ZSIES,tiGT,izl,...,n}IQ—)R” (22)

describing n real in situ observations. The stochastic process Y defines a probability
model of the climate variable on a probability space (€2, 3, P), determined by the sample
space (2, the o-algebra > and the probability measure P. The sampling path of this
process realizes the acquired climate observations y measured at a fixed location s at
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discrete times t; for i = 1,...,n:
y={y(s' t;):8eSt;eT,i=1,..,n}, (2.3)

that is a univariate time series. Note, that in this thesis only time series at fixed
locations are considered and thus, the spatial variable s’ is neglected for the sake of
convenience. The common assumption of the equivalence between the stochastic process
Y and the associated statistical model M [32], both defined on the same sampling space
) and following the same g-algebra X2, allows to perform the investigation of the climate
variable Y in the appropriate function space

M= {f(9):9 €O} (2.4)

of the family of suitable distributions f(19) parametrized by 9. Hence, based on an
assumed statistical model M, the analysis of the climate signal y enables to infer on
properties of the climate variable Y and provides information for the target climate pro-
cess Z of interest [31], 33]. The investigation of climate variables naturally relies on the
significance and precision of the derived climate observables. The inherent uncertainties
influencing both aspects differ substantially for directly and indirectly observed climate
signals as exemplified in the following.

2.1.1 Direct climate observations

Climate signals that can be directly accessed by physical measurements are referred to
as direct climate observations and exist on a time scale up to 400 years before present
[34]. Given the instrumentation equipment, the acquirement of the climate time series
can be described by the generic scheme in Fig. 2.2. The annual mean temperature series
from the Tuscaloosa weather station [35-37] investigated in Sec. 3.4.2 and 4.3.2 offers
an example of direct climate observations.

e climate variable (e.g. local surface temperature)
The climate variable Y (¢) (e.g. local surface temperature) represents an associated
climate component of interest Z(t, s) (e.g. surface temperature field).

e direct observations (e.g. ground-based daily temperature)
The direct observations (e.g. temperature) are obtained by a physical measure-
ment process given the instrumentation (e.g. ground-based thermometer) as time-
discrete observations y(t;) at known time points ¢; (e.g. daily). The measurement
process is subject to uncertainty caused by a finite resolution, measurement errors
etc.

Therefore, besides the random nature of the climate variable itself, further uncertainties
rise from the measurement process. Moreover, any postprocessing of the observations
(e.g. averaging the daily temperatures to an annual mean) influences the climate signal
(e.g. reduces autocorrelation, see Sec. 3.4.2) as well as the uncertainty assigned to it.
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direct mapping

{Y ()} {y(ta)}
stochastic . .
time series
process
climate measurement direct
variable observations

Figure 2.2: Direct climate observations are accessible via direct physical measurements of the climate
variable of interest. In mathematical terms, a time-continuous stochastic process {Y (t)} is realized as
a time series {y(t;)} measured at known discrete time points t; for i = 1,...,n. Besides the random
nature of the stochastic process, uncertainty is attributed to the measurement process (e.g. resolution,
errors) depending on the instrumentation.

2.1.2 Indirect climate observations

On longer time scales, climate signals are not directly measureable and can be only in-
directly accessed by proxy variables. A proxy variable describes an adequate substitute
observable which is assumed to have systematically responded to a climate variable of
interest. The proxy variable (e.g. treerings, pollen, O oxygen isotopes) is assumed
to be preserved within an archive (e.g. trees, sediment, ice) from which it can be ob-
tained. Based on the characteristic archive stratification (e.g. growth layers, core depth)
a time scale is commonly constructed by gauging the sequence at physically measured
(e.g. radiometric) time reference points. The underlying processes leading to the final
derived measurements are case-specific and usually incompletely understood [23]. Con-
sequently, the interpretation of proxy variables as specific climate indicators is subject
to an increased uncertainty compared to direct climate observations [3§].

The scheme presented in Fig. 2.3 depicts a strong simplification of the set of processes
generating the indirect observations and is adapted to the proxy variable terrigenous
dust [5, B9], analyzed in Sec. 5. Even though exemplified for a specific proxy, the
explanation of the scheme’s components stress the fact, that uncertainties assigned to
indirect observations emerge from various, vaguely known processes.

e climate variable (e.g. humidity)
The climate variable Y'(¢) (e.g. humidity) represents an associated climate compo-
nent of interest Z(t, s) (e.g. environmental conditions in tropical Africa).

e proxy (e.g. terrigenous dust)
The qualitative dependency between the climate variable Y (¢) and proxy variable
Y'(t) (e.g. terrigenous dust) is described by a transfer hypothesis (e.g. more humid-
ity, less available dust in the atmosphere). Note, that the proxy can be sensitive
to multiple climate variables. Moreover, the transport mechanisms of the proxy
from source to archive are an important aspect of the transfer hypothesis. The
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Figure 2.3: Indirect climate observations are not directly accessible, but a result of a set of various
processes. The scheme is simplified and adapted to the proxy terrigenous dust as explained in the
text. By a transfer hypothesis the time-continuous climate variable {Y (t)} of interest can be related to
a proxy variable {Y'(t)}. A recording process describes the embedding of the proxy variable {Y'(t)}
into a continuously stratified archive {Y'(d)}. Given the instrumentation, the recorded proxy variable
{y/(d;)} is physically measured at discrete stratification points d;. A dating process models the mapping
of the observed proxy {y'(t;)} onto an estimated age scale t;. Naturally, all processes enclosed in the
generation of the indirect observations are inherently uncertain and therefore decrease the significance
and precision of the climate sensitive signal.

assumptions leading to the estimated dependency are mainly assessed by analog
empirical studies (e.g. dust transport given modern wind patterns).

e archive (e.g. oceanic sediment core)
The embedding of the proxy variable Y’(¢) into the archive Y’(d) (e.g. oceanic
sediment) is considered as a recording process (e.g. sedimentation over depth d in
the deep sea). Besides natural causes of perturbation within the recording pro-
cess (e.g. bioperturbation), the acquirement of the archive itself can be disrupted
(e.g. mistakes in the core drilling).

e sequence (e.g. terrigenous dust measured over sediment depth)
The recorded proxy y'(d;) is physically measured (e.g. magnetic susceptibility) at
discrete stratification points of the archive (e.g. depth points d;). Note, that the
applied measurement techniques can vary over the archive due to practical reasons.

e indirect observations (e.g. measured terrigenous dust related to age scale)
The indirect climate observation 3/(t}) is the result of a complex dating process.
Based on a synthesis of physically measured time reference points, tuning at pre-
sumably known cycles (e.g. oxygen isotopic stratigraphy) and correlation to pre-
sumably known events (e.g. magnetostratigraphic datums) the depth scale {d;}
can be transformed into a derived age scale {t;}.
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The scheme’s categories are ambiguous and may be allocated differently. Indeed, the
used categories are motivated by approaches that model aspects of the signal derivation
in order to assess the underlying uncertainty structure. The subsets of the scheme’s
processes are investigated separately, e.g. the transfer from climate to proxy variable
[40], aspects of the recording and age scaling process by using age-depth models [22]
41] and the propagation of uncertainties within a depth-age-proxy approach [23] [42].
However, a comprehensive framework enclosing the main aspects of the observation
generating process is not yet accomplished. Generic hierarchical approaches to infer
from observations on the climate component of interest are formulated, but applied so
far on data rich settings, i.e. multiple sequences, spanning time scales smaller than one
million years [31].

A prevalent approach in climate research is to favor specialized models to investigate
climate observations of interest in order to make “scientific progress” [33]. Neverthe-
less, for many processes generating climate observations, in particular indirect climate
observations, a specialized model framework is often not feasible. In order to investigate
changes in few (direct or indirect) climate observation sequences at different time scales a
generic non-hierarchical model is employed in this thesis. Clearly, a generic approach to
climate time series can not substitute a detailed understanding of the specific processes
leading to the measured climate signals. A generic model, however, offers an efficient
diagnostic tool in order to capture a variety of different natural processes generating
climate signals. Furthermore, the resulting generic probabilistic expression of changes
occurring in the data is comparable between different types of climate observations and
has the potential to supplement existing probabilistic analysis methods.

2.1.3 Analysis approaches to climate time series

As outlined in the previous section, climate observations are inherently uncertain but -
for the sake of feasibility of the analysis - the uncertainties are commonly neglected. The
climate time series may be as well irregularly sampled in time or correlated in between
discrete observations. The analysis approaches to climate time series need to take into
account these potential features of climate observations, in particular for the precise
detection of changes. Changes in climate observations are considered as characteristic
variations of associated climate components and are commonly interpreted as structural
dynamical changes or structural statistical changes [34]. Therefore, the main analysis
methods of changes in climate time series are based on one of these interpretations.
On the one hand, climate changes are considered as transitions between dynamical
regimes of an assumed model describing an observed climate variable. The analysis
methods employ descriptive state space parameters of interest in order to elucidate the
domain of changes within the complex model. Based on the characteristics of the inferred
transitions, this approach enables to explore dynamical correlation patterns between
different climate variables. In this way, the dynamical investigation may provide auxiliar
information to study the causality patterns of changes within the climate system. That
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can be accomplished for example by recurrence network analysis approaches [0}, [43].

On the other hand, climate changes are considered as structural changes in the statis-
tical properties of the climate observations, generally referred to as statistical inhomo-
geneities. By formulating a specific statistical model describing the deterministic and
stochastic component of an observed climate variable, the climate time series can be
investigated. The inferred changes may be due to statistical variability of the climate
variable but as well due to changes in the instrumentation process. For clarity, note that
different to the use throughout this work the term inhomogeneities is in climatology pri-
marily restricted to artificial changes due to technical reasons within the measurement
of direct observations [12] 35, 44, [45]. Based on the estimated timing or patterns of
the inferred changes, the approach has the potential to elucidate synchronous changes
between various climate variables, but does not necessarily imply causality [5], [46] [47].
That can be accomplished for example by adapted regression techniques [13, 35], wavelet
based concepts [10, 48], and Bayesian approaches [49-53].

In conclusion, most of the established analysis techniques rely on specific, and thus
often complex, hypotheses adapted to each climate variable of interest. The information
obtained by these approaches needs to be interpreted with respect to the specific model
assumptions (e.g. explicit formulations) and application requirements (e.g. equidistance
in time). Different to that, the analysis approach presented in this thesis is based on a
generic model describing a statistical change. Consequently, the formulated change point
problem is as well generic and may not answer complex hypotheses about specific climate
variables. However, due to its generity, the approach is applicable to a variety of climate
observations. The formulation as a linear model allows to realize processes as commonly
assumed for environmental observations (normal and log-normal). The generic model
design facilitates the explicit Bayesian inference. The method does not rely on temporal
equidistant observations and so far, does not include correlation patterns. The resulting
probabilistic expression indicates the degree of belief about multiple changes within
the observations over different temporal scales and can thereby serve as an intuitive
diagnostic tool for the investigation of climate time series.

2.2 Statistical approaches to change point problems

To understand the investigation of statistical structural changes in the context of change
point problems, the framework of a general change point problem is explained in the
following. Analysis techniques are generally based on the assumption of stochastic struc-
tural stability of the observations under study. Any structural change in the data there-
fore puts the application of techniques requiring stochastic homogeneity under question.
Hence, the solution of change point problems is of fundamental importance for numer-
ous research disciplines, such as climatology [5], [46], ecology [54] [55], bioinformatics
[56H58], economics [59, 60] and many more. Commonly, each scientific discipline ana-
lyzes conceptually different processes characterized by different properties. Therefore,
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the literature provides a variety of potential approaches [61H64]. The essential idea of
all change point detection methods, is to validate the mere existence of changes in the
data and, if present, to estimate the number of changes and the corresponding locations
within the sequence of observations.

2.2.1 Hypothesis test

Traditionally, change point problems are formulated as hypothesis tests [64, [65]. In
order to accept or reject the existence of change points within the observations, the
assumed changes are stated as an alternative hypothesis H;. The null hypothesis H
phrases that no changes of the assumed characteristics occur in the observations. As a
generic example, let the observations consist of a multivariate time series {y(t;)} = {y;}
with y; € R™ measured at discrete time points ¢; with ¢ = 1,...,n. Each independent
random vector y; is assumed to be a sample drawn from a probability density function
f(y:) = f; describing the underlying process. Structural stability or in other words
stochastic homogeneity, as a consequence of the absence of any change is defined in the
null hypothesis as

Hy:fi=fa=..=fa. (2.5)

An unknown number £ of structural changes c; located at the time points ¢; for j =
1, ...,k break the stochastic homogeneity of the time series. These stochastical inhomo-
geneities, are used to formulate the alternative hypothesis as

H1 : f1 = .= fq,l 7£ fcl = .= fc2,1 # fc2 =..= fckfl # fck = .= fn (26)
and divide the time series into k£ 4 1 segments
0j = [te;orteyy, [for j =0,k (2.7)

with the convention t; = t., and t,, = t(,, )-1.

As a reasonable assumption, in particular with respect to a common stochastic process
{Y;} generating the observations {y;}, the distribution functions f; may be considered
as members of a common parametric family f(y;,m;) = f(m;), characterized by the
population parameters 1; € RP. Thus, the change point problem can be reformulated in
terms of structural stability in the population parameters via the null hypothesis as

Ho:m=mn=..=nn, (2.8)
versus changes of the population parameters via the alternative hypothesis as
H m=.=Ng1FNey = oo =Neyg1 F Moy = oo =Nl Ny = oo =M. (2.9)

Adjusted for the unknown change point locations c;, the test statistics are considered as
two-sample tests and are derived by maximum-type procedures. Based on the selected

12



2.2 Statistical approaches to change point problems

significance level «, the critical values for the hypothesis test is obtained by evaluating
the asymptotic properties of the employed test statistics [65]. By rejecting the null
hypothesis Hy, the structural changes are accepted as the alternative hypothesis H;
describing the observations. Next to the mere decision task, the change points c¢; need
then to be estimated from the observations. The standard methods of change point
inference are usually based on the maximum likelihood ratio or asymptotic information
criteria such as the Akaike information criterion (AIC) or Schwarz information criterion
(SIC) [64]. Generally, the combination of hypothesis test and inference approach in the
context of the change point problem is denoted by change point detection.

The detection methods are distinguished as local approaches, capable to describe
the process in a subinterval of the time series at a local scale, or as global approaches
capable to describe the process over the complete time series at a global scale. As a
matter of feasibility, the hypotheses are in practice often formulated for a single change
point, mainly because the number of inhomogeneities k& in the observations are a priori
not known. Therefore, a practicable strategy is necessary to analyze sequences for an
arbitrary number of structural changes. The standard strategy is to employ the single
change point analysis in a binary segmentation procedure as introduced in [66]. For
that purpose, the single change point detection approach is applied on the whole sample
and the sample is divided at the detected change point. The change point detection
approach is then performed iteratively on the resulting two segments until no further
change point is detected.

2.2.2 Model selection

By formulating a model describing the process generating the observations, the task of
hypothesis test can be reformulated as a model test or model selection. The comparison
of distributions from the competing hypotheses in terms of a test statistic can thus be
generalized to a model comparison also taking into account the difference in parametric
complexity [64, 67]. As an example, let the observations constitute a univariate time
series y = {y(t;)} = {v:} with y; € R measured at discrete time points ¢; withi = 1, ..., n.
The random vector y is assumed to be generated by a stochastic process described by
the parameter vector ¥ € RP. Different to the population parameter 1 of the previous
example, the ¥ is a generic parameter vector that may contain parameters describing
random as well as deterministic properties in the parameter space © C RP of finite
dimension p. In this way the assumed underlying process can be defined as a parametric
statistical model My = {f(y,?)} in terms of a family of distributions f(y,?), e.g. a
linear mixed model. Structural stability, as a consequence of the absence of any change
is defined in the null hypothesis as

Hy: Mi—o= {f(y,9): 9€0O, and y={y;} for i=1,...,n} . (2.10)

By assuming k structural changes ¢; within the process, the time series is divided in k+1
subseries y; = {y(d;)}. Here the definition of the segmentation J; is employed. Since
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a common statistical model is assumed, it can be referred to as My = My, solemnly
with respect to the amount of the number of changes k. The alternative hypothesis can
therefore be formulated as

Hy s My = {f(y;,9;) 0 9 #9001, 9; €0 and y; ={y(;)} for j=0,.. k}.

The resulting set of possible segments Ay = {J; : j =0,...,k} has the cardinality (
Based on Aj the set of all possible models can be formulated as

A= {Mk ke [O, 1, ...,n], {5J} € Ak} (211)

and leads to a high dimensional inference task [68]. The general approach to this change
point problem is the successive model comparison in order to infer on the model M,
adequately fitting the observations. Consequently, the final decision rule is not based on
a test statistic but on a model selection process with respect to the employed asymptotic
information criteria such as AIC and SIC. Another approach to achieve the change point
inference is based on Bayesian inversion providing inter alia an exact information crite-
ria, the Bayes factor. With respect to the major aspects of Bayesian statistics employed
in this thesis, the framework of Bayesian inference is introduced in the following.

ki)

2.3 Bayesian inference

The general concept of Bayesian statistics consists of inverting conditional probabilities
in order to derive probabilistic information about certain quantities of interest. An im-
portant application of this concept depicts the inference from given observations on an
underlying process generating these observations. In Bayesian statistics, the observations
are considered as given realizations of a random process. The quantities parameterizing
the assumed underlying process are considered as random variables, i.e. associated with
uncertainty indicated by subjective beliefs about possible parameter values. Thus, a
(high dimensional) joint probability function of the assumed process model given the
observations can be formulated and used to infer on the (low dimensional) probability
functions of each parameter of interest individually. Even though various mathemati-
cians have studied the employed concept based on the product rule of probability theory
[69], it is an established custom to label this principle Bayesian inversion after Thomas
Bayes [70]. Given the observations, the Bayesian inference provides an intuitive quan-
tification of credibility of the assumed underlying model, referred to as degree of belief.
By using the derived probabilistic information, the subjective belief about the model’s
parameters prior to further observations of the same process can be revised [71]. Hence,
the Bayesian approach realizes a concept of learning from the data [69].

2.3.1 Bayes theorem

Let a probabilistic model My describe a process of interest defined by the generic pa-
rameter vector ¥ = (¢4,...,9,) € RP. To infer on the model parameters with respect
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to the observations y = (y1, ..., y,) € R"™ of the process, a joint probability distribution
p(9¥,y) may be formulated to model the uncertainty. In general the explicit formula-
tion of the joint probability distribution is not feasible, but the joint expression can be
decomposed into a product of

e a prior distribution p(¥), that encodes the knowledge about the parameters prior
to any observation, and

e a sampling distribution p(y|d¥) representing the probability of the observations
given the model, respectively its parameters.

By conditioning the unknown parameters 9 on the known observations y and by us-
ing the product rule of probability theory, the probability of the parameters given the
observations can be formulated as

p(9,y)  p(9)-p(ylI)

PO ="y = s (2:12)

This equation represents the fundamental Bayes theorem guiding all Bayesian inference
approaches. The probability of the observations p(y) is a constant containing no fur-
ther information about the underlying process. The complete information about the
parameters 1 is therefore encoded in the posterior distribution

p(dy) = C-p(d) - p(y|d), (2.13)

where C serves as a normalization constant. The probabilistic information with respect
to each model parameter ¥; can be derived from the joint posterior distribution. By
analytical or numerical integration of the posterior distribution over all parameters but
the one of interest, the according probability can be obtained as

p(”l%:l”y> = Cl . / /p(’l?l, ...719p) p(y|191, ...7”[91,) dﬁQdﬂp (214)

This procedure of marginalization is applicable in the Bayesian framework due to the law
of total probability. In frequentistic approaches, the formulation of a similar probability
is usually not feasible since it is not part of the classical concept. The interpretation of
the components of the Bayesian theorem and their potential influence on the posterior
distribution are further explained in detail.

Likelihood function

The sampling distribution p(y|d) is determined by the assumed probability model M.
The term can be regarded as a function f(y; ) of the generic parameter vector 9 given
the observations y and poses the only influence of the observations on the posterior dis-
tribution p(¥|y). In this way, the sampling distribution equates the likelihood function
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L(y;9) [72]. As a consequence, the Bayesian inference satisfies the likelihood principle.
This principle states that the information about the parameters 9 derived by the obser-
vations y is completely contained in the likelihood function £(y;). Additionally, let
y and ¥y’ be different observations with respect to the same assumed model My, such
that there exists a constant C' satisfying

L(y;9)=C Ly 9) (2.15)

for every parameter vector 1. The observations then contain the same information and
must yield identical inferences on 9. Different to Bayesian approaches which obey the
likelihood principle per definition, frequentistic approaches may violate this principle
due to the dependence of the estimator on the methodological procedure employed [73].

Prior distribution

The prior distribution p(¥) = p(¥y,...,9,) encodes the subjective belief about the
model’s parameters prior to any observation. In general, prior distributions aim to
describe either knowledge or ignorance about parameters and are therefore specified as
either informative or non-informative. However, as soon as the analyst formulates a prior
distribution it contains information of some kind and, thus, is not truly non-informative
anymore [74], [75]. The main - historical and recent - critics about the Bayesian concept
address the subjective choice of the prior distribution. This argument is justified to
a certain extent since there is no unique way of choosing a prior distribution, thereby
affecting the resulting inference [73]. Instead of distinguishing between those restric-
tive prior categories, a conceptual overview on common prior specification and the basic
assumptions leading to these prior choices are discussed in the following. The princi-
ples employed to construct specific prior distributions are explained with respect to the
commonly used prior types and prior types referred to in this thesis. For the sake of
convenience, the model’s parameters 9 are assumed as independent from each other,
leading to the factorization of the joint prior distribution into independent prior distri-
butions for each individual parameter p(¥) = p(1) - ...- (¥,). Thus, in the following the
prior distribution is mainly considered as an univariate distribution p(1}).

Informative prior distributions describe elicited information from experts’ opinion
or previous analyses. The aim is to let the prior knowledge influence the posterior
distribution. The simplest approach to generate an informative prior p(d) is to restrict
considerations on a feasible set of reasonable parameter values {¥7} with i = 1,...,m.
Each value ¥ is assigned with a probability mass such that the relative contributions
reflect the prior belief and that the probability mass sum to a constant. Alternatively,
the parameter ¥ can be assumed to follow a parametric distributional family f(¢,n*).
The population parameter n* is chosen such that the resulting distribution adequately
maps the prior beliefs [70].
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A further approach to generate informative prior distributions is commonly accom-
plished via Bayesian hierarchical models. In hierarchical models, the observations y are
modeled conditionally on the model parameter ¥, which itself is given a probabilistic
specification via a further hyperparameter ¢, which is not directly observable. Thus, the
joint prior distribution is defined by

p(¢,7) = p(9) - p(9]¢) (2.16)

enclosing the hyperprior distribution p(¢). Consequently, the posterior distribution is
reformulated with respect to the hyperparameter as

p(o,0y) = C-p(,9) - p(y|s, )
= C-p(o) p(W¢) - p(yld), (2.17)

where p(y|¢,¥) can be simplified to p(y|?¥) due to the independence of the observations
from the hyperparameter. The hyperprior can be estimated from elicited information
from previous analyses or from the observations of the same analysis. For example, by
computing the probability of the hyperparameter given the observations as

pély) = C- / p(6) - p(9]6) - p(yl9)do (2.15)

an estimate quS of the hyperparameter can be obtained and used to construct an empirical
prior distribution as p(ﬁ]gﬁ) This empirical Bayes approach is a simplification to prac-
tically generate informative prior distributions. However, since the prior distribution is
constructed given the observations and not prior to any observation, it is not a strict
Bayesian approach anymore. Therefore, strict Bayesian analysts commonly prefer the
hierarchical Bayes approach without this simplification to construct informative prior
distributions [72].

Weakly informative prior distributions are employed to prevent results that con-
tradict the common knowledge or potential algorithm failure. The aim is to use enough
information to ensure reqularization and stabilization of the computations, but no further
information. The common strategy to computationally benefit from the prior choice is
the construction of a conjugate prior distribution [77]. The property of conjugacy is
achieved in case the prior distribution p(J) has the same parametric form as the pos-
terior distribution p(J|y). In this way the prior distribution is a conjugate family of
probability distributions for the likelihood function p(y|¢) and therefore closed under
sampling [73]. By employing the corresponding likelihood function, the computation of
the posterior distribution is basically a transparent update of the prior distribution and
facilitates the computations considerably. For this reason, the prior distribution is often
chosen to follow the same distributional family as the posterior distribution.

However, for all mentioned approaches to construct prior distributions encoding in-
formation the analyst always needs to ensure that the outcome does not contradict the
prior belief. In case it does, the prior distribution needs to be revised accordingly.
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Least informative prior distributions avoid the preference of any specific parame-
ter value and are often referred to as non-informative. The aim is “to let the data speak
for themselves”, with the intention that the prior has minimal influence on the posterior
distribution. A simple approach to encode as least information as possible realizes a flat
prior distribution. By assigning every reasonable parameter value with equal probabil-
ity no explicit value is preferred. This can be accomplished by a uniform distribution
U(a,b), restricted to the interval [a, b]. The concrete restriction of the parameter space of
prior distributions is mainly determined by the principal assumptions required to ensure
the model’s identifiability.

Another approach is the modification of the conjugate prior. By increasing the scale
parameter of the conjugate prior distribution to a very high value, the distribution
converges against a flat prior distribution and is called a vague prior distribution.

The general concern of constructing prior distributions is the dependency between the
model parametrization and the representation of beliefs. In other words, a prior may be
flat under one parametrization ¥ but this may not hold under a different parametrization
¢. The invariance principle of Jeffreys [78] demands the equivalence of priors under
parameter transformation and provides a further approach to derive least informative
prior distributions. Note, in order to discuss the major aspects of the Jeffreys prior,
the joint prior distribution p() = p(;) - ...- (J,) is taken into account. Let a process be
described by a model parameterized with the vector 1. The Fisher information matrix
J () of the process, indicates the expected value of the observed information

2

0
Jij(9) = —E 50,00,

In(p(Yy))| , (2.19)

for the parameter vector 9 and the natural logarithm of the likelihood function In (p(d|y)).
The determinant of the Fisher information matrix is used to obtain a prior distribution
of the model’s parameters as

[N

p(9) o [T (9)]2 . (2.20)

It can be shown that the prior density yields an equivalent result,

dd
dg

if applied to a transformed representation of the model ¢ = h(#) generated via a one-
to-one transformation h as illustrated in Fig.2.4. However, the computation of the
Jeffreys’ prior for models of multiple parameters is expensive. Furthermore, it is under
debate whether it still holds the invariance [79]. Therefore, it is a common approach to
assume the independence of the model’s parameters and derive the Jeffreys’ priors for
each parameter individually, in particular for the scale and location parameter.

As a consequence of the flatness of the least informative prior distributions, the ac-
cording prior distributions are often improper. That means that they do not integrate

p(®) = p(9) ' , (2.21)
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Figure 2.4: A process may be modeled by the parameter 9. Under another parametrization the
process may be represented by the transformed parameter ¢ = h(¥). By computing the Jeffreys’
prior distributions p(-) with the according Fisher information matrix J(-), the resulting distributions
represent the same beliefs, i.e. are equivalent under reparametrization (based on [67]).

to a constant as required for every probability distribution. Nevertheless, in many set-
tings the resulting posterior distribution remains proper due to the convergence of the
likelihood function. Therefore, as soon as a least informative prior distribution is used
the convergence of the posterior distribution has to be critically investigated.

2.3.2 Bayes factor

A fundamental feature of the Bayesian theorem is the formulation of an exact information
criterion [80], in contrast to common asymptotic information criteria AIC and SIC (see
Sec. 2.2). By using the Bayesian formula of Eq. 2.12, the probability of a scientific theory
phrased as a statistical model M; given the observations y € R™ can be derived. For this
purpose, the sampling distribution p(y|M;) of the model is decomposed with respect to
the model’s parameters 9¥; € ©; as

pMily) = C-p(y| M) - p(M;)
= O [ po M) @MY pM). 22

into an integral over the complete parameter space ©; C RPi. Under the model hypothe-
sis M, the parameters’ likelihood function p(y|9;, M;) and prior distribution p(¥;|M;)
are employed to compute the sampling distribution p(y|M;). This probability repre-
sents the evidence of the model provided by the observations irrespective of the assumed
prior probability of the model p(M;). By taking into account another statistical model
M parametrized by ¥; € ©; with ©; C R?/ and of different complexity p;, the evidence
is employed as a comparative measure of different model assumptions. Such a measure
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Figure 2.5: The Bayes factor BF;; is interpreted as a weight of evidence between two scientific theories
in terms of stochastic models M; ;. Based on the value of the Bayes factor, the support for one of the
assumed models is commonly categorized into substantial, strong and decisive evidence [67, [80]. Note,
the Bayes factor is consistently presented in the unit deciban (dB) throughout this thesis.

is accomplished by the ratio of the models evidences

plylMy)  Jo, Py, M) - p(9:| M) dY;

BE: - 9
TopyIMy) o, p(yl95, My) - p(951M;) d;

(2.23)

referred to as the Bayes factor BF;;. As a convention, the Bayes factor is commonly
defined with the more complex model in the denominator, i.e. p; > p; [80]. The in-
terpretation of the Bayes factor with respect to certain categories of evidence is based
on [81] and is described in Fig. 2.5. An accomplishment of the Bayes factor with re-
spect to ordinary hypothesis tests poses its ability to favor each assumed model, in
contrast to common test capable to favor only the alternative hypothesis. In this way,
the Bayes factor offers a descriptive measure for the evidence of competing statistical
model assumptions.

2.3.3 Bayesian approaches to change point detection

As discussed in Sec. 2.2.2, the change point problem can be formulated as a model selec-
tion approach in the light of Bayesian inference. Under the assumption of a statistical
model M or model family {M(j)}, the aim is to derive a degree of belief about the
number k and locations ¢ = (cg, ..., ¢x) of changes occurring in the observations. Note
that all employed variables follow the definitions of Sec. 2.2.2. One of the first Bayesian
change point problems was designed as a Markov process to detect random shifts in the
model’s parameters [82], 83]. Further Bayesian approaches were formulated for single
or multiple change point models describing inter alia Markov models with time-varying

20



2.3 Bayesian inference

transition matrices [84] 85], Poisson processes with varying rate parameter [57, [86] and
various linear regression models comprising parametric changes [12], 87].

With respect to multi change point problems, the inference task is high dimensional
and requires sophisticated computational strategies. Even though the explicit formula-
tion of the posterior distributions and applied computational algorithms vary, there are
basic assumptions and techniques common to most approaches. These main concepts of
Bayesian multi change point approaches are briefly outlined in the following.

Sampling distribution: product partition model

The product partition model yields a conditional independence property that facilitates
the formulation of multi change point problems [88][89]. For this purpose, let a sequence
of observations y be partitioned into k 4+ 1 segments. The observations y; of the ith
segment §; are assumed as independent to the observations y; with j # i of the other
segments. Within each segment d; the model is defined by the parameter vector 99;. Thus,
the segmentation c¢g.; determines the change point locations ¢. Due to the independence
between segments, the likelihood function can be formulated as the product

p(ylk, cor, Vo) = Hp(yzwz) . (2.24)

1=0

Consequently, the computation of the posterior distribution p(k, co.k, Fo.x|y) of the multi
change point problem is considerably simplified. The product partition model is com-
monly employed as a multi change point model concept [68] [90].

Prior distributions: empirical Bayes estimator or intrinsic Bayes factor

Generally, in single change point problems least informative prior distribution p(c) are
used to describe the lack of knowledge about the change point location ¢. In multi change
point problems, suitable prior distributions p(k, co.) of the change specific variables are
difficult to accomplish and often require the introduction of additional hyperparame-
ters. Commonly, the joint prior distribution is considered to be of hierarchical nature,
independently for each parameter [91] or as

p(k, coe) = p(coxrlk) - p(k), (2.25)

with the change point locations cg.; conditioned on the change point number & [87].
Based on the assumed model, the hierarchical approach employs different hyperparame-
ters in order to derive adequate and consistent prior beliefs. By using subjective beliefs
or empirical Bayes estimators [92], the prior distributions are constructed conditionally
on the provided information or derived estimators, e.g. the number of changes k. Alter-
natively, the SIC [68] or the intrinsic Bayes factor [93] can be derived from the posterior
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2 Climate observations and change point problems

distributions computed in the course of the model selection. Based on one of these in-
formation criteria, intrinsic prior distributions can be constructed [87, 04]. In general,
however, no closed formulation of the intrinsic prior distributions can be accomplished
and their computation is complicated, in particular with regard to complex statistical
models.

Computation: reversible jump Markov chain Monte Carlo algorithm

In order to compute high dimensional probability distributions, as typical for Bayesian
multi change point approaches, Markov chain Monte Carlo (MCMC) methods are ap-
plied. For a known number of change points k the inference algorithm is performed with
MCMC techniques [05-97]. In case the number of changes k is unknown, a common tech-
nique offers the reversible jump MCMC (rjMCMC) algorithm [14]. Let {M}} be a set of
models where each member incorporates a different number of changes £ = 0, ..., m. The
rjMCMC algorithm is used to explore the joint space of models {M;} and parameters
{k, co.r, Do }. At each iteration step, the MCMC algorithm either

e deletes a change point, i.e. merges consecutive segments,
e adds a change point, i.e. splits consecutive segments,
e modifies the change point location,

whereby the decision criteria are derived from the posterior distributions obtained via
Metropolis-Hasting algorithms. The main concern of the rjMCMC algorithm is the
diagnosis of the convergence behavior. For example, a dynamic programming algorithm
for exactly computing the posterior distribution p(k, ¢1.x|y) of the number k& and positions
1.5 of change points is proposed in Ref. [90].

In conclusion, most Bayesian multi change point approaches rely on the construc-
tion of complex prior distributions, to correctly formulate prior beliefs and to ensure
stabilization and regularization of the algorithm. Another challenge is the appropriate
formulation and efficient computation of high dimensional posterior distributions of the
assumed models. The common computational strategies additionally require the diag-
nose of the numerical convergence of the algorithm against the formulated distributions.
In contrast to these methods, the presented thesis introduces a Bayesian kernel-based
approach employing a low dimensional, generic transition model to robustly infer on the
change point location. By constructing a proxy expression to the multi change point pos-
terior distribution a degree of belief about multiple changes is achieved, thereby avoiding
complex prior distributions and expensive computational algorithms.
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3 Detection of a single transition in
time series

Unraveling changes in time series yields essential information about the system under
observation. Such a transition may occur, and therefore be detected, in different domains
such as statistical characteristics, frequency patterns or dynamical properties. For the
purpose of developing an investigation approach capable to capture a variety of natural
processes, generic features of time series are employed. The proposed formulation of a
generic change point problem is thereby motivated from, but not restricted to complex
climate observations. As a basic assumption the evolution of the statistical character-
istics, in terms of central tendency and dispersion, are considered as generic features of
time series comprising a transition. Both aspects are combined into a low-dimensional
linear model with Gaussian noise, whereas heteroscedasticity gives rise to the non-linear
part of the change point problem. Within the scope of climate research, the stochastic
process generating the observations is not known with certainty and may lie outside
the family of processes defined by the proposed generic change point model. In order
to accept a generic approach appropriate to the investigation of a transition in climate
observations, the robustness of the inference algorithm needs to be critically assessed in
the presence of model errors and when applied to real world data.

As outlined in Chap. 2, the Bayesian inference offers a mathematical framework to
derive an intuitive degree of belief about the transition location given an adequate sta-
tistical model. The beneficial model design and the choice of least informative prior
distributions presented here, enable the separation of the Gaussian from the intrinsic
non-linear part of the inference task. Besides clarifying the structure of the model, the
approach speeds up the computational process considerably. As a result of the inference,
the approach allows to derive the probability of the change point location over the time
series. Moreover, by estimating the complete set of model parameters, the most likely
shape of the underlying generic transition can be visualized. In practice, varying obser-
vational evidence, sparse data and outlier hamper the detection of transitions in time
series. The performance and robustness of the proposed approach is therefore examined
with respect to these difficulties. Finally, the introduced Bayesian method is applied to
direct environmental observations comprising documented transition events: a hydro-
logical time series of the Nile river in Egypt and a temperature series from the weather
station in Tuscaloosa, Alabama. By investigating real world data, the suitability and
limitation of the generic approach is critically discussed.
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3 Detection of a single transition in time series

3.1 Formulation of the generic transition model

The design of the statistical model M introduced in the following aims to parametrize a
generic transition and to facilitate the formulation of the model’s sampling distribution,
i.e. the likelihood function. Commonly, a transition is associated with a sudden change
of local trend in the observations. This may be induced by a transition between regimes
governed by different internal dynamics or external influences. Let a time series {y(¢;)} =
{yi} be acquired at discrete time points ¢; for i = 1, ..., n and comprise a change at time 6.
At least locally, the time series can be described by a first order approach O(1) prior and
after the change point. The assumption essentially corresponds to the approximation
of the signal with the Taylor series expansion of order O(2). In this way, such a model
depicts a specific subclass of models locally parameterizing the time series. For this
purpose, a set of basis functions is used to model a transition in terms of a continuous
break or a discontinuous shift as illustrated in Fig.3.1. The employed piecewise linear
basis functions [98] [99], also referred to as ramp functions, simulating a break transition
are defined as

0 —t, if t; <9,

(€)= ¢t = { ;

ti— 0 if t; >0,

0 else.

and (¢2), = CU(t) = {

else,

(3.1)
By combining these ramp functions with piecewise constant basis functions, also referred
to as Heaviside functions, defined as

1if t; <0,

($1), = (0) = { ;

a shift transition is modeled in form of a break and horizontal offset. Consequently, the
basic types of signal y(¢;) at time ¢; undergoing a change at time 6 can be expressed as

Mopear = y(t:) = Bo+ b1 - (&) + Ba - (L (1) + e(t), (3.3)
Mapige s y(t) = Bo- @ () + Br- C(t) + Ba - @ () + Bs - CL(ta) +e(ts),  (3.4)

with the parameters 3; determining the signal’s mean behavior.

However, natural observations can in general not be modeled by such simple mean
behavior as given by these functions. Therefore, some random fluctuations e(¢;) are
added around the mean signal. These random fluctuations may be due to measurement
noise as well as to some intrinsic variability, which is not captured by the low dimensional
mean dynamics on both sides of the change point #. For this fluctuating part of the
signal it is supposed that the intensity is constant around the transition. The intrinsic
variability may - like the mean behavior of the system itself - undergo a sudden change
in its amplitude. Hence, the intensity of the stochastic fluctuations e(¢;) at time t; is
considered to comprise a break transition at time 6 according to

1if ¢, >0,

3.2
0 else, (3:2)

wd (), = A lt) = {

else,
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Figure 3.1: The piecewise linear basis functions Ci and ‘Pft are used to parametrize generic transition
events around the change point 0 in terms of a break defined in the transition model Mpy,eqr (A) and
in terms of a shift defined in the transition model Mgp;si (B).

The scale factor 0 may be the level of the measurement noise or some background level of
the intrinsic fluctuations, whereas the parameters s; » describe the systematic evolution
of the model’s intrinsic variability prior and after the change point measured in units
of o. Although the fluctuating component may naturally contain coherent parts, it is
assumed that the fluctuations are Gaussian random variables, which are uncorrelated at
different time points,

Ele(t)e(t;)] =0, Vi #t;. (3.6)

Clearly, this is an approximation and its validity has to be questioned in concrete ap-
plications.! This assumption, however, allows the implementation of highly efficient
algorithms for the inference on the model parameters. In order to minimize the number
of parameters that can only be estimated by intensive numerical computations, the noise
e(t;) is assumed to undergo a transition solely in form of a break. Thus, the name of
the statistical model M; is induced by the specific approach j = [break, shift] to the
mean behavior, whereas the noise term may simultaneously undergo a break transition.
Synthetic observations derived from simulations of the introduced models My, and
M it are presented in Fig. 3.2. The proposed models are by design capable to describe
all functions locally differentiable up to the first order prior and after the change point
and therefore, may be interpreted as generic transition models approximately describing
a variety of natural signals.

IThe assumption is particularly insufficient for climate time series with autocorrelation patterns
[33]. The approximations used to design the generic transition models are discussed in the course of
the application to real climate observations in Sec. 3.4.
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Figure 3.2: Based on the generic transition models Mpyeqr (A) and Mgp; s (B) synthetic observations
are generated that comprise a break or shift in mean and simultaneously a break in the deviation. The
95% quantiles of the random fluctuations illustrate the simulated variability and heteroscedasticity,
respectively.

Linear model approach

For convenience of the computations in the course of the Bayesian inversion, the generic
transition models M, with j = [break, shift] are formulated in terms of a linear model
[100]. At least locally, the models are supposed to be approximations to the observation
vector y = [y(t;)]T € R" obtained at the time points t; € T = [t1,...,t,]. Hence, the
generic models may sufficiently describe the observations only within some sub-interval
T =1t),...,t.,] with t; <} and t/, < t,, of the considered time series. The observations
yr = lyt)]" € R™ enclosed by this sub-interval are referred to as the local observation
vector and may be expressed as a linear model

M;: yr = FYB+es with j = [break, shift] (3.7)

as the sum of the fized effects F(,(j),B and the random effect €. Here, the index 6 aims
to highlight the model components dependent on the change point parameter. Due to
the assumption of a local approach, the transition parameter 6 € T” is explicitly defined
within the sub-interval of the local observations y,7.

The distinction between the generic transition models M; is given by the mean evo-
lution, i.e. in the linear model formulation by the fixed effects. The fixed effect vector
B = (Bo, B1, B2)T € R? with p = 3 corresponds to the coefficients of the linear combina-
tion of the basis functions modeling the mean behavior of the transition model My,.cqk.
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3.1 Formulation of the generic transition model

The according system matrix Fe(bwak) € R"*3 is given by the sampling of the basis

functions ¢{ defined in Eq. 3.1 at the observation points ¢,
(), (),
Flrek — | : : . (3.8)

By additionally using the piecewise constant basis functions ¢’ from Eq.3.2 at the
observation points #; the system matrix Fe(s’”f D ¢ R"*? with p = 4 can be formulated

N @), (@) (@), ()
= : : : : , (3.9)
), (@), (@, @),

with the coefficient vector B = (B, B1, B2, f3)T € R™L
The random effect g5 = [£(#})]” € R is defined as a Gaussian random vector with
zero mean, scale parameter ¢ € Rt and covariance matrix Qg € R"*" | that is

gg ~ N (0,0%Qy) . (3.10)

Fg(shift)

The covariance itself is structured noise, which is parametrized by the deviation’s slope
parameters s = (s1, 52) € Oy, 5, prior and after the transition. Due to the assumption of
uncorrelated noise, the resulting covariance matrix is of diagonal form and is given by

(€20); = ([1 +s1(¢0), + 52 (Ci>j] 2) - 0ij (3.11)

using the Kronecker delta d;;. The generic transition model is well defined and identi-
fiable for s € (R*)Q. However, the parametrization becomes ambiguous for any s; < 0,
since different parameter values +s; may give rise to the same values of the likelihood
function. Moreover, for s € (R™)* the deviation may become negative prior and after the
transition and may be falsely interpreted as two additional changes in the variability of
the signal. As a consequence, the transition parameter ¢ is not identifiable anymore. By
adequately restricting the parameter space Oy, 5, of the deviation parameters the iden-
tifiability of the transition parameter can be accomplished. A negative deviation, i.e. a
falsely interpreted change in the variability, is avoided in case each diagonal element of
the covariance matrix holds

()65 =14s1- (), +52-(¢1), >0 Vi=1,...n". (3.12)

As an important side effect, the covariance remains non-singular and therefore allows
the application of the QR decomposition for the practical computation of the likelihood
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Figure 3.3: To ensure the identifiability of the transition parameter 6 the parameter spaces O, g (A)
and O, ¢ (B) of the slope parameters need to be restricted. The shaded areas indicate the parameter
spaces as given by Eq. 3.13 and Eq. 3.14. The dashed lines are not part of the parameter space O, s, 9,
such that the parameter space is the open inside of the polygon illustrated by the dashed lines.

function, as explained in the next section. In this way, the parameter spaces of the
deviation parameters s; and s; yield a lower limit dependent on the transition parameter
6 and an open upper limit:

(3.13)

The parameter space of the change point parameter has to be restricted accordingly,
such that 6,,;, > t] and 0,,,, < t/, is ensured by

@0 - ]tlly t,/n/ [ - [‘gmin7 Hmaac] ) (314)
in order to avoid a division by zero in the lower limits of Oy, ,,. Hence, to reliably identity
a generic transition, the joint parameter space Og, of the change point and deviation
parameters is defined as the open inside of the polygon given by the lower limits of O
and the limits of ©y as illustrated in Fig. 3.3.

In conclusion, the generic transition model M; with j = [break, shift] is determined by
the joint parameter vector ¥ = (3, 0, s,6) and defined within the according parameter
spaces Oy to provide an estimable model approach. Based on the formulation as a linear
model, the probability distribution of the local observations y7+ for fixed parameters 9
is given by

Y ~N(F§j)[3,0299> , (3.15)
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3.1 Formulation of the generic transition model

and represents the statistical model of a generic transition event. The probability distri-
bution of the local observations is defined with respect to the parametric model M;. Nev-
ertheless, the formulation is independent of the explicit transition type j = [break, shift].
For the sake of clarity, the distinction between the transition types is only referred to if
necessary in the following.

Likelihood function

The likelihood function can be formulated as the probability of the local observations
y7 under the generic transition model M in form of

L(yr:B,0,8,0) = "2 W FO) Y yr—Fab) (3.16)

S| =

(2mo?)

V1%

Thereby, the functional dependency of the fixed effects 3 € RP7 is a Gaussian density.
The dimension of the fixed effects p; is determined by the transition type 7, i.e. Ppreak = 3
and psp;pe = 4. Clearly, in the exponent 3 is of a quadratic form and since Z = F} O, Fy
is positive definite the exponent can be rewritten as

]_ 2 * — *
;C(y‘T’v ﬁ? 0,8, 6) = n ) 6_% ) e_ﬁ(ﬁ_ﬁ yTEB-AT) ’ (317)
2

(2m02)2 4/ |Qp|

where the mode of the Gaussian in 3 is the best linear unbiased predictor (BLUP) [101]
of the fixed effects derived as

B = argmin(y; — F8)" Q" (yir — Fa3)
BeRPI

= (Fy Q' Fy) " Fy Q5 yyr (3.18)

In the course of the practical computation of the likelihood function, the QR decom-
position is performed to obtain inter alia the BLUP numerically more efficient. To
derive an unique QR factorization the system matrix Fy is required to be of full rank
rank(Fy) = n’. That is true in case the transition parameter lies within the sub-series
of the local observations ¥y, as already ensured by its parameter space ©¢. The appli-
cation of the QR decomposition is explained in App. A.

The BLUP is used to reformulate the likelihood function and thus to facilitate the
analytical integration over the fixed effects B in the course of marginalization of the
joint posterior distribution. A further useful reformulation is achieved by defining the
residuum R measured in the Mahalanobis distance [102, 103] and induced by the co-
variance matrix {2y, as

R* = min (yr — F8)"Q  (yir — FoB3)

BeRPI

= (yr — FoB*)"Qy (yj — Fo3*) . (3.19)
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3 Detection of a single transition in time series

Moreover, the BLUP is employed to obtain the profiled likelihood function
L(yir;B*,0,s,0) and in this way the profiled likelihood estimator (PLH) of the scale
parameter as

oL " *7 ) 0 * R?
WriB0.96) Ly 2y . (3.20)
do n —pj
The estimator of the scale parameter ¢* is inter alia beneficial for the computation of
the maximum of the likelihood function employed in the kernel-based extensions of the

detection algorithm introduced in the Chap. 4.

3.2 Implementation of the Bayesian inversion

In the light of the Bayesian theorem (Eq. 2.13), the probability distribution of the
transition model’s parameters 9 = (3,0, s,0) given the local observations y+ can be
formulated. For this purpose, the explicit likelihood function £(y77;49) under the as-
sumed transition model M as well as the prior distribution of the parameters p(19) need
to be specified to compute the posterior distribution of interest as

p(ﬁ? 0,8, 9|y|7’) X ‘C(y|7—/;:37 0,8, 9) ’ p(ﬁ, g, S, 9) : (321)

The likelihood function and useful reformulations thereof are provided in the previous
section. The prior distribution, however, needs to be specified to adequately encode the
belief about each model parameter prior to any observation. Usually for change point
problems, there is no a prior: information about the model’s parameters 9 available.
The assumptions made so far in the design of the generic transition model M enclose the
regression model (partly linear) and the noise distribution (Gaussian). The intention is
to formulate the posterior distribution as general as possible by including no subjective
assumptions on the model’s parameter. But since the accurate use of the term objective
Bayesian analysis is under debate [69] [75], it is reasonable to speak of an approach
transparent in all employed hypotheses. By specification of the prior distributions, the
joint posterior distribution can be factorized into a family of parametrized Gaussians.
The factorization favorably mirrors the separation of the linear from the non-linear parts
and thus, facilitates the explicit computation of the marginal distributions considerably.

Prior distributions

A common strategy to construct least informative prior distributions offers the Jeffreys
prior defined in Eq. 2.20. Besides the transformation invariance, the Jeffreys prior is not
affected by restrictions of the parameter space. Nevertheless, for high dimensional mod-
els the Jeffreys prior is cumbersome to compute and leads to complex prior expressions
(see for example App.A). The performance of the Jeffreys prior for high dimensional
models is even controversial [72, [104]. Alternatively, a practical approach is to assume
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3.2 Implementation of the Bayesian inversion

a priori no correlations between the parameters, in order to factorize the joint prior
distribution into independent parts

p(B,0,5,0) = p(B) - p(o) - p(s,0) (3.22)

and to assign to each parameter a prior distribution individually [76]. The specification of
a prior distributions needs to be considered always in tandem with dependencies between
different parameters and with restrictions on the corresponding parameter spaces. In
particular for the location and scale parameter of the Gaussian sampling distribution,
i.e. B and o, the according Jeffreys priors 78], [104] are commonly used and are derived
as

p(B) ~ 1 with 8 € RV, (3.23)
1
plo) ~ p with o € R". (3.24)

The computation of the Jeffreys priors of the transition parameter # and deviation
parameters s is not feasible. Another least informative prior function is a flat prior
distribution such that every parameter may uniformly take every value within the joint
parameter space,

0 669: [emin79ma1‘]7

s €04=[Snn(0), col. (3:25)

p(s,0) = p(s|0) - p(0) ~ 1 with {

The resulting prior is flat in the open inside of the polygon defined by the constraints
of the parameter space O in Eq.3.13 and 3.14. Note, that the decomposition of the
prior distribution p(s, #) allows the kernel-based reformulation of the inference approach
in Chap.4. Even though these prior distributions are improper, the resulting posterior
distribution can be numerically normalized and is convergent due to the shape of the
likelihood function and the restriction of the prior distribution of the transition param-
eter.

Joint and marginal posterior distributions

Based on the specified likelihood function (Eq. 3.17) and the prior distributions (Eq. 3.23
- 3.25), the joint posterior distribution of the transition model’s parameters given the
local observations g7 can be explicitly formulated as

1
p(/6707879|y|7’) =C- ;"C(y\T’;/670—7379)' (326)
The normalization constant C' ensures that the right hand side actually defines a normal-

ized probability distribution. The main purpose of the inference approach depicts the
marginal posterior distribution of the transition parameter p(f|y ;) by integrating the
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3 Detection of a single transition in time series

joint posterior distribution over all but the parameter of interest. Since each marginal
distribution may be useful for the estimation of the underlying transition model, all
distributions are provided in the following. It turns out, that only the integrals over the
transition parameter # and the deviation parameters s can not be carried out analyti-
cally. Due to the Gaussian nature of the 3 dependency the marginal distribution of the

scale parameter o,
O.pjfnfl 12
p(U, S, 9’y|7") X e 20277, (327)
VIl Ly

and the marginal distribution of the fixed effect parameter 3,

n

[y — FoB) Y (yir — FoB)] ®

p(,&&e‘y\’ﬁ) (08 ) (328)
V€]
can be analytically computed. Further marginalization is performed to yield
R —(n—=pj)
p(s, blyr) o — . (3.29)
VIl 95 |

Based on this marginal, the posterior distribution of the transition parameter 6 can be
computed by numerical evaluation of the integral

o0

p(Olyr) = C'- /“dsMaMywx (3.30)

over the parameter space ©;. In the same way, the posterior distribution of the deviation
parameters s can be obtained by numerical evaluation of the integral

amaz
Mﬂmw>—CW~/cwp@ﬁwT» (3.31)

gmin

over the parameter space ©y. The normalization constants C’ and C” ensure that the
derived expressions are normalized probability distributions. Each marginal distribution
provides a degree of belief about the enclosed parameter given the local observations.
Moreover, the distributions may be used to estimate the corresponding parameters and
thus obtain an estimate of the complete generic transition with respect to the local
observations as described in the following.
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3.3 Performance of the detection approach

By assuming the generic transition model as an adequate approximation to a time series
of interest, the Bayesian inversion may be used as a change point detection approach.
To explain the application and the technical aspects of the algorithm, a set of synthetic
time series is analyzed. For this purpose, temporal equidistant observations are gener-
ated for different change geometries of the transition model My, qr, that are interpreted
as changes of different observational evidence. Besides the investigation of potential
dependencies between the change geometry and the inference performance, different es-
timator approaches are compared to validate the balance between the accuracy and the
computational costs of the inference. Given the set of optimal estimators, the sensitiv-
ity of the approach to data loss is studied in order to evaluate the minimal number of
observations required for a reliable inference on the underlying transition. As a generic
approach to complex time series, the method needs to be robust with respect to model
errors. On the one hand, model errors may be due to an insufficient distribution assump-
tion of the noise term, resulting in outliers. On the other hand, model errors may be due
to process patterns that are too complex to be approximated by the low dimensional
mean dynamics, resulting in divergent higher statistical moments. The robustness to
outlier is evaluated for synthetic observations. However, the investigation of the higher
statistical moments is done for real world observations in Sec.3.4. The critical assess-
ment of the inference performance aims to demonstrate the robustness of the proposed
generic change point approach in order to justify its expansion to a multiple change
point approach, as introduced in Chap. 4.

3.3.1 Transitions of different observational evidence

Depending on the change geometry, the transitions are more or less significant within the
observations and thus, may be interpreted as changes of different observational evidence.
For the exploratory analysis of real world time series, the influence of observational
evidence on the efficiency of the applied inference approach depicts a crucial concern
and needs to be understood in order to appropriately interpret the analysis results.
Therefore, the main modifications of the generic transition model My, are simulated
to study the inference performance in the light of varying observational evidence. The
introduced Bayesian inversion is applied to synthetic time series of n = 100 temporally
equidistant observations y at the time points 7 = [0,...,99] generated for different
geometries of the underlying change as presented in Fig. 3.4 and defined by the models’
true parameter setting ¥ = (3,0,s,0) provided in Tab.C.1 (shaded columns). For
clarity, the modifications may be grouped based on similar transition patterns in the
properties subject to the change, i.e. mean and deviation:

e uncorrelated or correlated transitions, that are changes in one or simultane-
ously in both changing properties, and
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Figure 3.4: To systematically investigate the inference performance with respect to transitions of differ-
ent observational evidence, artificial observations with different change geometries are generated. Each
true parameter setting of the underlying generic transition model My,cqi is listed in Tab. C.1. Thereby,
the geometries are ordered based on the patterns of the changing properties mean and deviation. On
the one hand, the changing properties may be correlated ((A), (B)) or uncorrelated ((C) - (F)). On the
other hand, the evolution of the properties may undergo a minimum ((A), (C), (E)) or a maximum at
the transition ((B), (D), (F)).
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Figure 3.5: FEach marginal posterior distribution p(6|ys) of the transition parameter 6 indicates the
degree of belief about at what times a generic change occurs in the corresponding synthetic observations
y7 presented in Fig.3.4. The MAP estimate is considered as the point estimator 0 of the transition
parameter while the confidence interval Cly g5 marks the time period, in which the event occurs with
95% certainty. Even though the simulated transitions are of different observational evidence, the mode
of the distributions is close to the true value 6 and all but one indicate a change in approximately the
same time interval [35, 50] ((A) - (E)). Only for the transition realized as an uncorrelated deviation
maximum (F), the approach yields a weak inference result in terms of a considerably broader posterior

distribution.
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3 Detection of a single transition in time series

e minimum or maximum in the evolution of each changing property at the
transition.

In other words, a transition is not only characterized by what property is changing, but
also by how a changing property is evolving at the singularity. Naturally, the evolution
of the deviation and the variability of the observations, respectively, is expected to
have an influence on the observational evidence of the transition. Irrespective of a
correlated or uncorrelated change, a minimum/maximum of the deviation results in a
more/less distinct transition occurring in the data (see Fig. 3.4 (A), (E)). The influence
of the evolution of mean is not expected to have a comparable influence. For the critical
assessment of the inference performance, it is reasonable to employ the generic transition
model My, qr, comprising a continuous change instead of the M, s with a discontinuous
and thus more distinct change.

Practical application of the inference

Due to the fact that the observations are generated by the generic transition model
Mrear, the model approaches the time series over the complete interval 7. Hence,
the inference on the transition model can be carried out with respect to the complete
observation vector indicated by yjr. The inference can be accomplished based on the
joint posterior distribution as

p('ﬁlyr/-) = p(,@,O', 8,9|y‘7-) with 9 € @,9 = @g X @U X @s X @9 (332)

explicitly given in Eq.3.26 and defined in the seven dimensional parameter space Og.
The computation and investigation of the full posterior distribution is not feasible.?
Therefore, the inference on the model parameters 9 can be accomplished by the in-
vestigation of the marginal posterior distributions. In order to visualize the estimated
transition models point estimators can be constructed.

The marginal posterior distribution p(¥;|y7) of each model parameter ¥; is obtained
by integration of the full posterior distribution as implemented in Sec.3.2. The mode
of the marginal posterior distribution, referred to as maximum a posteriori estimate
(MAP), can then be used as a point estimator,

¥; = argmax p(Vilyir) = [p(ilyi7)] .. (3.33)

max
4 €@19i

for the corresponding model parameter ;. The marginal posterior distribution of lowest
dimensionality derived by analytical integration is defined in Eq. 3.29 as

p(s,0ly;r) with 0 € Oy, 51 € O, 55 € Oy, (3.34)

2 As explained in Sec. 2.3.3, there are MCMC approaches to approximate high dimensional posterior
distributions. However, these techniques require further studies to ensure the convergence against the
target distribution. With regard to the expansion of the Bayesian detection approach to multiple
changes, the implementation of compute intensive techniques in the course of the basic inference task
is deliberately avoided.
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3.3 Performance of the detection approach

Table 3.1: The sampling spaces for the numerical computation of the posterior distribution p(s,0|yr).

681 = [Sl,miTL(e)a OO[ — Asl = [Sl,min(e)a Sl,max] = [Sl,min(6)7 05] ) 551 = 0.01
@sz = [52,m'm(9)7 OO[ — ASQ = [32,min(9)7 52,max] = [52,min(0>7 05] ) (552 = 0.01

of the deviation’s slope parameters s and the change point parameter 6 and is defined
on the parameter space Oy, 5, as given in Eq. 3.13 - 3.14. The explicit distribution can
be computed on numerical grids, each defined within the range Ay, = [¥; min, Vi maa] and
sampled by the step size dy,. The best choice of such a sampling space is the parameter
space Oy, itself. However, for the generic transition models this is only applicable for
the transition parameter 6. As a reasonable approach the sampling step of the transition
parameter dy is generally chosen as the half of the average distance between consecutive
observations. In Tab.3.1 the sampling spaces are listed as used in the course of this
section.

For each sampling space A;, of the deviation parameters s; for ¢ = 1,2 the lower limit
Simin(f) of the parameter spaces ©;, can be used. By introducing a reasonable upper
limit s; 4. the sampling space can be bounded, and by choosing a sampling step d,,the
sampling grid can be constructed. These initial sampling spaces Ay, eventually need
to be adjusted in case the marginal distribution p(si, s2|yjr) is influenced by artificial
cutoffs or a too coarse sampling.

The marginal posterior distribution p(s1, s2,6|y;7) can then be computed on the ex-
plicit sampling space Ay x A;, X Ag,. By numerical integration of the deviation param-
eters, the marginal posterior distribution of the transition parameter can be obtained
as

S1,max 52, max

pOlyr)=C- > > p(siis;, 0lyir) - sy - Oy s (3.35)

ile,nLin (9) j:52,min (9)

and normalized afterwards by a numerical factor C'. The posterior distributions p(8|yr)
derived for each generated time series of Fig. 3.4 are presented in Fig.3.5. Due to the
random nature of the observations, the posterior distribution also depends randomly
on the actual realization. It is therefore not surprising, that the mode’s location 0 =
[p(@\y‘frﬂmaz does not exactly agree with the true parameter value . However, the

MAP estimate 6 is within a certain quantile of the according probability distribution.
By considering the shortest level interval, that encloses the highest posterior values
covering at least 1 — o percentage of the total probability weight, a confidence interval
CI,_, for the MAP estimate is automatically obtained. This yields a natural way of
uncertainty quantification.

In the same way, by numerical integration of the change point parameter 6, the
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Figure 3.6: The marginal posterior distribution p(s1, s2|yy) of the slope parameters sy, Sy represents
the degree of belief about the scedastic behavior of the observations yr from Fig.3.4(A). Non-zero
parameter values (s, s2) indicate a heteroscedastic behavior, whereas any deviation of the posterior
distribution from the diagonal of the sampling space A, ,, indicates a change in the scedasticity of
the observations. The confidence area CAg.g5 encloses the parameter combinations inferred with 95%
certainty from the times series. Alongside are presented the further marginalized posterior distributions
p(silyr) for i = 1,2 providing the MAP estimates §; and the according confidence intervals Cly.gs.

marginal posterior distribution of the deviation parameters can be computed as

0ma:17

plst, salyr) = C" Y p(s1, s2,0:lypr) - o (3.36)

i:‘gmin
and normalized by the factor C’. As an example the resulting posterior distribution

derived for the observations (A) in Fig.3.4 is presented in Fig.3.6. Based on the multi-

variate distribution the MAP estimate § = (s1, 52) = [p(sl, 32‘y|7-):|ma:1: can be assessed,
whereas the isoline enclosing the highest posterior values covering at least 1 —a percent-
age of the total probability weight mark the confidence area CA;_,. Further integration
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Figure 3.7: Two optional point estimators for the scale parameter o can be computed for the ob-
servations of Fig. 3.4 (A). Based on the marginal posterior distribution p(c|yy), the MAP estimate &
and the corresponding confidence interval Cly 95 can be obtained. Another estimate provides the PLH
estimator *. By comparing the deviation of the estimates from the true value o the accuracy of the
estimation approaches can be assessed.

is carried out to derive the univariate posterior distributions p(s;|yr) for ¢ = 1,2 and
the corresponding MAP estimates §; = [p(si\yw)]mam and confidence intervals CI;_,.

The inference on the remaining model parameters, fixed effects 3 and scale o, can be
achieved by marginalization of the posterior distributions p(83, s, 0|yr) given by Eq. 3.28
and p(o,s,0ly;r) given by Eq.3.27. A rational strategy to construct the parameter
spaces Ag and A, is shortly outlined in App.B.1. The estimated generic transition
event can therefore be obtained as a set of MAP estimates

D= <B,&,§,é) . (3.37)

An alternative approach to construct point estimators offers the minimization of an
adequate cost function, such as the likelihood function. For the designed transition
model My,.q.x, the approach is only feasible for the fixed effects 3 in terms of the BLUP
(Eq.3.18) and for the scale parameter o in terms of the PLH estimate (Eq.3.20). The
explicit estimators can be calculated numerically on the sampling space Ay x Ay, X Ag,.
The estimated generic transition event can therefore be also obtained as a set of MAP,
BLUP and PLH estimates

9 — (5*,0*,§,é) . (3.38)
To compare the efficiency between the estimation approaches all introduced estimators
are computed for all synthetic time series of varying observational evidence. The derived

estimates are compared based on their accuracy, as exemplified in Fig.3.7, and the
required computational costs.
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3 Detection of a single transition in time series

Interpretation of the marginal posterior distributions

Given the observations, the Bayesian inference provides a degree of belief about each
parameter of the transition model over the investigated sampling spaces. Most impor-
tantly, the derived marginal posterior distribution p(f|yjr) represents a degree of belief
that a transition 6 occurs at a time point ¢; € Ay (see Fig. 3.5). The unimodal shape of
the distribution supports the model assumption of a single transition within the time se-
ries.® The position of the distribution’s mode, the MAP estimator é, lies in the smallest
interval enclosing 95% of the complete probability weight. In this way, the location of
a probable transition within the observations may be reduced with a confidence of 95%
to the corresponding sub-interval Clygs. The quality of the inference performance is
assessed by the width of the posterior distribution p(f|y)7), that means the sharper the
distribution the better the inference performance. A good performance enables a reliable
inference on the transition patterns and is the essential requirement for the expansion
of the generic transition model approach to a multi change point approach.

The marginal posterior distribution of the deviation parameters p(si,ss|yj7) repre-
sents a degree of belief about the deviation slope parameters s; and sy prior and after
the transition (see Fig.3.6). Thus, the distribution indicates the temporal dependency
of the variability underlying the observations and the scedastic behavior, respectively.
The continuous confidence area CAg g5 contains the mode of the unimodal distribution
and 95% of the total probability weight. Based on the enclosed parameter combinations
the posterior distribution reveals the underlying variability evolution across the poten-
tial transition. As a general pattern, non-zero parameter values, i.e. s; # 0 for i = 1,2,
indicate a heteroscedastic behavior and zero parameter values indicate a homoscedastic
behavior. Non-equal values s; # s5, apparent due to their deviation from the diagonal of
the sampling space A;, X A,,, indicate a change in the scedasticity of the observations.
In this way, the choice of a symmetric sampling space for the deviation parameters offers
an intuitive visualization of the variability evolution of the investigated time series.

For concrete applications it might be of interest to study the marginal posterior distri-
bution p(S1, B2|yjr) of the mean slopes 3, and [, on the joint sampling space Ag, x Ag,
in a similar manner. Any change of the mean evolution across the transition becomes
obvious within a symmetric sampling space.

Performance with respect to observational evidence

The numerical results derived from the Bayesian inference on transitions of different
observational evidence are summarized in Tab. C.1. The generic approach reproduces
the true underlying generic transition models convincingly as reasoned in the following.

31t is important to stress the fact that the reverse conclusion is in general not valid. More precisely,
a multimodal posterior distribution p(f|y;7) does not directly indicate multiple transitions. The only
conclusion that can be drawn from a multimodal distribution is that the chosen generic model may not
be correct, but not how an adequate model approach may look like.
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3.3 Performance of the detection approach

On the one hand, the set of estimates parameterizing the underlying transition are all in
good agreement with the true model settings, that is the relative errors of each estimator
are of comparable order for the different realizations. On the other hand, the marginal
posterior distributions correctly mirror the general behavior of the mean and deviation
evolution in the corresponding sampling spaces. Additionally, the absolute errors of the
BLUP B* and the PLH o* estimates are of the same order as the absolute errors of the
MAP estimates ,é' and 6. Therefore, the estimation approaches are considered to have
approximately the same estimation accuracy. The above findings hold for all change
geometries and for time series comprising transitions of different observational evidence,
respectively. In particular the occurrence of a transition € is in average localized on a
sub-interval of about 17% of the complete time series T, as indicated by the confidence
intervals Cly g5 of the posterior distributions p(|y;r). However, a considerable loss of
inference quality is evident for an uncorrelated change in the deviation in form of a
maximum at the transition (see Fig.3.5 (F)).

In conclusion, the performance of the inference validates the capability of the intro-
duced Bayesian approach to convincingly localize a change point and to infer on the
underlying transition patterns. Thus, the approach enables to detect and to describe
a generic transition underlying the investigated time series. The findings justify that,
without loss of estimation accuracy, the time expensive computation of the MAP esti-
mates based on the high-dimensional posterior densities p(o, s, 0|y;7) and p(3, s, 0]yr)
can be avoided by employing instead the BLUP and PLH estimates. Consequently, the
highlighted estimates in Tab. C.1 represent the optimal set of estimators, from now on
referred to as the estimated generic transition event as

My: yr = FPB" + 5 with g5~ N (0,00 25, .. ) - (3.39)

given the transition type indexed by j = [break, shift]. Nevertheless, the performance
quality of the approach is not completely independent of the observational evidence. An
effect on the performance can be observed for a change of the deviation, uncorrelated to
the mean behavior and of maximal value at the singularity. The resulting broadening of
the posterior distribution has to be taken into account, when interpreting the inference
results of the transition detection approach.
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3 Detection of a single transition in time series

3.3.2 Sensitivity to data loss

In real time series, analysts have to deal with sparse and irregularly sampled observa-
tions. The implemented Bayesian inference does not require uniformly sampled obser-
vations since from the beginning it employs only the available data. Consequently, no
preprocessing of the time series, such as interpolation techniques, is required to apply
the introduced detection approach. Nevertheless, the inference performance is affected
by the amount of observations provided to the algorithm. The efficiency of the detection
approach essentially depends on the posterior distribution of the transition parameter
used to reveal the degree of belief about the transition location, and on the point es-
timators used to visualize the most likely underlying transition pattern. In order to
evaluate the sensitivity of the inference to data loss, the obtained results are investi-
gated with respect to the number of observations. Thereby, the sensitivity is deduced
from the convergence of the posterior distribution p(si, s2,0|y;7) (Eq.3.29) and from

~

the bias of the employed estimators 9* = (8*,0%,8,0) (Eq.3.38) derived with respect
to this distribution.

For this purpose, a generic transition model My, is defined in Tab. B.2 and is used to
generate sets of basic time series y; € R" of n = 200 temporally equidistant observations
acquired at time points t; € T in the course of j = 1, ..., 100 random realizations. Based
on a uniform distribution the basic time series are resampled by randomly ignoring a
given portion of the data points in each set. In this way, time series with random gaps
and irregular sampling steps are simulated. Note, each synthetic time series is analyzed
over the complete interval of the basic time series 7. Therefore, the index indicating
the local observations as |7 is avoided here for convenience. For each of the synthetic

observations y'-n consisting of n = 10,12, ...,200 data points, the posterior distribution

j
p(s1, 32,9|yj‘~n) of the transition parameter # and the deviation parameters s;, and all

point estimators (1‘}']-”)* are computed given the realization j.

Convergence of the posterior distribution

To investigate the mean convergence of the marginal posterior distribution employed in
the detection approach, the computed distributions are averaged over the realizations

100
1 n
(p(s1,52,01y")) = 155 D_p(s1, 52, 01y]") (3.40)
j=1

Figure 3.8 (facing page): The sensitivity of the inference performance to the number of observations
n is deduced from the convergence of the marginals of the mean posterior distribution (p(9|y™)) of the
parameter 9, i.e. the transition 6 and the deviation parameters s1, so, averaged over j = 100 realizations
(left column). The confidence intervals Cly g5 indicate a divergence for n < 40 for the transition and
n < 70 for the deviation parameters. The individual estimates 9™ of each realization j support the
assumption of consistency of the MAP estimators (right column).
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3 Detection of a single transition in time series

for constant sample sizes n of the observations yl»n . By numerical integration, the

J
marginal distributions <p(19|y|”)> for each parameter 9, i.e. the transition parameter
0 and the deviation parameters s; for ¢ = 1,2, are derived over the sample size n as
presented in Fig. 3.8 (left column). Apparently, the mode Jin = [<p(19|y|”)>]max of each
mean distribution remains close to the corresponding true value ¢ irrespective of the
sample size. The 95% credibility intervals Cl g5 indicate the width of each mean distri-
bution and may be interpreted as the uncertainty of the inference on the corresponding
parameter. A general assessment of the dependency between the inference performance
and the sampling size can be conducted in the light of the asymptotic theory and under
some regularity conditions [72]. Thus, it can be shown, that the posterior distribution
of some parameter 9 converges towards normality for increasing sample size n and can

be approximated as
lim p(dly"™) = N (¢, (n- T(@)7) - (3.41)

Here, the parameter value 9 minimizes the Kullback-Leibler information and the vari-
ance is formulated based on the Fisher information J(9) (Eq.2.19). Hence, the width
of the posterior distribution depends inversely proportional on the square root of the

sample size n, that is
1

; In —

width [{p(d]y"™))] o Nk (3.42)
The broadening of the posterior distribution for n < 200 is therefore the natural conse-
quence of the information loss induced by the decreased number of observations provided
to the algorithm. For large numbers of observations the posterior distribution converges
towards a delta distribution located at the true parameter value . In any case, even
for sparse time series of about n = 20, the non-flatness of the transition posterior distri-
bution (p(f|y'™)) presented in Fig.3.8 (A) clearly hints towards one distinct transition
time within the time series. More precisely, the efficiency of the detection approach is
determined by its ability to localize the credibility of a change within the time series.
The degree of belief about a change is given by the transition posterior distribution.
Hence, the smaller the distribution width is relative to the length 7 of the total time
series, the less uncertain is the inferred transition location. The empirical divergence of
the transition posterior <p(0|y|”)> significantly increases for n < 40 such that the distri-
bution encloses more than the half of the investigated time series 7 /2. For this reason
the sample size n = 40 may be considered as a practical minimum amount of observa-
tions required to obtain in average a transition posterior distribution of moderate width.
This requirement is of particular importance for the resolution of multiple changes in
the kernel-based expansion of the detection approach, as discussed in Chap. 4.

The posterior distributions of the deviation parameters <p(si|y‘”)> for i = 1,2 pre-
sented in Fig. 3.8 (B) and (C) exhibit a considerable divergence for sample sizes of n < 70.
In addition, the distributions are skewed for all numbers of observations as a consequence
of the restrictions on the sample space Ay, x Ay, (see Tab.3.1) required to ensure the

44



3.3 Performance of the detection approach

identifiability of the generic model approach. Therefore, the skewness of the deviation
parameters posterior distributions is an inherent feature of the detection approach. How-
ever, except for the transition parameter 6, the model’s parameters are primarily used as
point estimators to infer on the estimated underlying transition pattern. For this reason
the sensitivity of the inference to data loss is further evaluated based on the quality of
the derived point estimators.

Bias of the estimators

The efficiency of the algorithm is also determined by its ability to reliably infer on the
explicit location of a transition for every single time series and on the complete set of
model parameters, respectively. Commonly, the dependency of an estimator 1§|Jn on the
sample size n may be assessed in terms of the consistency as

lim p(|9f" — 9] >¢) =0 Ve >0 (3.43)
n—o0

with respect to the true parameter value 9. Thus, a MAP estimator @Ln = [p(19|y]‘<n)}

max
is convergent in case the weight of the posterior distribution concentrates in decreasing

neighborhoods ¢ of the true value for an increasing amount of observations n. In other
words, the distance between estimate and true value approaches zero. The individual
MAP estimates 1§|]" for each realization j are presented in Fig.3.8 (right column) and
in general support the assumption of consistency. Nevertheless, even for sample sizes
n > 100 the individual MAP estimates do occasionally not correctly reproduce the
true underlying generic process patterns due to stochastic errors. In order to compare
the quality of all employed estimators over the sample size n the systematic difference
between the estimator ¥ and the true value ¥ offers a suitable measure and denotes
the bias, defined as

100

bias(@") = E [9'”] 9= ﬁ g, (3.44)

Jj=1

Here, the expected value of the estimator may be derived as the arithmetic mean of the
estimates 19‘3-" over the realizations 7. To provide a comprehensive illustration of the bias

of all estimators parameterizing the estimated generic transition model /\;l‘b?,eak, each
bias is computed relative to the corresponding true parameter value as
- bias(J
bias'(J") = bias(V") (3.45)

19 )
and is presented over the sample size n in Fig. 3.9.

As expected from the skewness of the marginal posterior distributions <p(si]y|”)>,
the estimators of the deviation parameters s; for ¢ = 1,2 are in average biased of about
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Figure 3.9: The sensitivity of the inference performance to the number of observations n is further de-
duced from the relative bias of each estimator (9%)I" = ((8*)!", (¢*)I, 8", ") employed in the generic
transition model. The relative biases of the estimators describing the deviation, that are deviation
slopes s; for i = 1,2 and scale o, exhibit a similar behavior due to the required restriction of the sam-
pling space and increase for n < 70 (A). The relative biases of the estimators of the transition 6 and
the mean parameters 3; for i = 0,1,2 are much smaller and considered as negligible for n > 40 (B).

—8% (see Fig. 3.9 (A)). The bias increases considerably for n < 70. Besides the deviation
parameters, the scale parameter o describes the variability of the generic transition as
the non-linear part of the inference task. Thus, the relative bias of the estimator of the
scale o exhibits a synchronous increase for n < 70, but for considerably smaller values of
around —3% in average. Clearly, the biases are resulting from the necessary restriction
on the sample space Ag, X A, (see Tab.3.1). In order to avoid further inaccuracy by the
discrete sampling in the course of the numerical computations, the resolution within the
sampling space has to be carefully chosen. For this reason, it is considered as essential to
the performance of the detection approach to iteratively adapt the numerical sampling
of the deviation parameters after a first inference based on an initial sampling grid and,
if necessary, to perform the inference based on this refined sampling grid accordingly.

The relative biases of the estimator of the transition parameter ¢ and the estimators
describing the mean of the generic transition, that are the coefficients g; for « = 0,1, 2
vary between £2% and are therefore in general not considered as biased for sample sizes
n > 40 (see Fig. 3.9 (B)). In summary, the detection approach infers in average convinc-
ingly on the transition parameter even for sample sizes n < 50. However, the biases
of the remaining model parameters indicate that the underlying transition patterns are
not reliably estimated from the observations anymore. Moreover, to a certain extent a
bias of the deviation parameters can not be avoided due to the specific design of the
generic transition model. As a pragmatic approach to the detection of transition events
in real time series, the amount of required observations is suggested as n > 50 in order
to reliably infer on all features of the generic transition model.
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3.3.3 Robustness in the presence of outliers

Another challenge to the investigation of real time series are occasionally unusual obser-
vations. Such outliers may occur by chance in the random fluctuations of any stochastic
process or may emerge from individual measurement errors in the course of data ac-
quirement. The vulnerability of an analysis approach to outliers is a crucial concern
and has to be studied in order to justify the application of the method on real ob-
servations. Commonly, outliers are described by heavy-tailed distributions and can in
principle be incorporated in a robust parametric model of a stochastic process [105], [106].
The proposed generic transition model, however, is designed based on the assumption
of normally distributed random fluctuations and the explicit implementation of the in-
ference is carried out accordingly. Hence, the application of the detection approach to
real observations may lead to model errors, since outliers may not be captured by the
assumed random behavior of the generic transition model. In order to assess the influ-
ence of such model errors on the inference performance, the robustness of the approach
to synthetic outliers are investigated. Thereby, the robustness is deduced from the com-
parison between the inference results obtained for observations without outliers and for
observations with outliers.

To generate synthetic time series with approximately the same statistical character-
istics as the assumed normal distribution but with additional outliers, a symmetric
distribution with long tails is required. An adequate behavior offers the family of ¢-
distributions ¢, (u, ¥) [93] characterized by the location vector p € R™, the scale matrix
U € R™" and the shape parameter v € R™, referred to as degree of freedom. The
corresponding multivariate probability distribution of the observation vector x € R" is
defined as

F v4n _ T\ijl _ _u-&2-n
ple;p, W, v) = —— ( 22) : (1 + (= (@ H)> , (3.46)
I (%) (7v)2 /|| v
with the Gamma function I'(-) given by
(k)= /zk_l ce % dz with ke RT . (3.47)

0

The dependence of the distributional shape on the degree of freedom v is illustrated
for the standard normal ¢-distribution ¢, (0,1) in Fig.3.10. In the lower limit case
v = 1 the t-distribution is equivalent to the Cauchy distribution, whereas in the upper
limit case v — oo the t-distribution approaches the Gaussian distribution N(0,1). For
approximately v < 30 the tails of the ¢-distribution are longer than that of a normal
distribution and result in the occurrence of outliers [72]. Thus, a stochastic process
comprising a transition as well as outliers can be simulated by the generic transition
model (Eq.3.7) with a modified random term & as

My = FYB 4+ ¢ with € ~1t, (0,0%Q) . (3.48)
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Figure 3.10: The family of standard centralized t-distribution t,,(0,1) with a degree of freedom v < 30
can be used to simulate outliers. For v — oo the t-distribution converges into a Gaussian distribution
N(0,1) and for v = 1 the i-distribution describes a Cauchy distribution. As a practical approach to
avoid unrealistic outliers, the long tails of the Cauchy distribution can be truncated at some truncation
limit I. The grey shaded area illustrates the redistribution of the probability weight of the Gaussian
relative to the truncated Cauchy distribution C5| for the truncation limit | = +5.

Consequently, the synthetic observations |7 follow a multivariate ¢-distribution
yir ~t, (F9B,0°Q) (3.49)

over the time interval 7. The degree of freedom v is practically chosen with respect
to the required amount and magnitude of simulated outliers. The Cauchy distribution
contains the most probability weight of all ¢,-distributions in its tails and thus simulates
the most outliers. But the observations resulting from the far tails of the distribution are
usually not realistic for real time series. In order to avoid extreme outliers two strategies
may be applied to reduce the weight in the long tails of the employed distribution:

e using a higher degree of freedom (1 < v < 30),*

e symmetrically truncating the Cauchy distribution (v = 1) using a truncation limit
[, such that
Cy=1(0,1) with =l <az; <l Vi=1,..,n. (3.50)

Here, the truncated Cauchy distribution is employed to challenge the inference approach
in the presence of multiple outliers. The corresponding random behavior of the generic
transition & (Eq.3.48) is derived by the linear transformation

5 = O'LQ.’E, with x ~ C|l| , (351)

4A characteristic property of the Cauchy distribution is, that the mean and variance are infinite.
By choosing a higher degree of freedom the derived distribution obtains a finite mean (for » > 1) and
variance (for v > 2).
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3.3 Performance of the detection approach

using the scale parameter o and the Cholesky decomposition of the covariance matrix
Q = LoLl. The difference in the probability weights between the Gaussian and the
truncated Cauchy distribution is exemplified for C5 in Fig. 3.10.

For the purpose of evaluating the influence of outliers on the inference performance,
time series yj‘g € R” consisting of n = 100 temporally equidistant observations are gen-
erated for different random behavior £ in the course of 7 = 300 random realizations. The
synthetic observations are simulated based on a joint transition model My, .. 1 specified
in Tab. B.3, but for different random terms £ as listed in the following:

Y

y; : reference data without outliers generated by a Gaussian distribution,

yj‘%‘: data with outliers generated by a Cauchy distribution truncated at [ = £5,
yf‘w‘: data with outliers generated by a Cauchy distribution truncated at [ = £10,
y;c: data with (extreme) outliers generated by a Cauchy distribution .

The amount and magnitude of outliers increase with the truncation limit applied
to the Cauchy distribution, i.e. Cp5 generates less outliers than Cjjo;, which generates
less outliers than Cj; = C. Even though the assumption is unrealistic, the Cauchy
distribution is employed to identify model estimators that are most affected by the
presence of outliers. The Bayesian approach, essentially designed for Gaussian random
behavior, is then applied on the synthetic observations yl-E. By comparing the inference
performance given the reference data with the performance given the data containing
outliers, the relative robustness of the detection approach in the presence of outliers is

deduced.

The mean posterior distributions <p(9|y|5 )> of the transition parameter € is computed
and presented for each simulated random behavior £ in Fig. 3.11. The averaged distribu-
tions indicate the derived degree of belief about the transition location and indicate the
efficiency of the approach to localize the underlying transition. In comparison to the ref-
erence posterior distribution (p(f|y*)) the width of the posterior distribution increases
for an increasing amount and magnitude of outlier due to the increase of uncertainty in
the observations. The posterior distributions for data generated by truncated Cauchy
distributions are unimodal with approximately the same confidence intervals Clg g5 as
the reference distribution, and yield correct MAP estimates 01¢ of the underlying tran-
sition location. The posterior distribution {(p(6|y!®)) is multimodal and fails to localize
the transition, since its confidence interval Clg g5 nearly equates to the length of the time
series.

Furthermore, the model estimates (19"‘)L?£ = ((B")%, (o), é"s,é‘ﬁ)j are computed for
each realization j of the simulated random behavior &. The influence of outliers on the
estimation accuracy of the underlying transition patterns is assessed by investigating

49



3 Detection of a single transition in time series

MAP estimate 4° with
95% confidence interval

(p(6]y%)) [arb.units]

outliers

Figure 3.11: The robustness of the inference performance in the presence of outliers is deduced from
the convergence of the mean posterior distribution (p(|y!¢)) of the transition parameter § for different

random behavior €. Similar to the reference posterior distribution <p(¢9|yw )>, the underlying transition
can be convincingly localized by the posterior distributions given observations generated by truncated
Cauchy distributions C|5| and C|1o|. The posterior distribution derived from observations generated by
the Cauchy distribution C is multimodal and is not able to localize the underlying transition.

the relative error for each estimate 1§|f as

error’ (U’ (3.52)
The comprehensive histograms of the relative errors are presented in Fig. 3.12. The es-
timates given the Cauchy random behavior exhibit extreme errors and are not discussed
here for the sake of convenience. In general, there is no significant difference between the

relative errors for the estimates 1§le of the reference observations and the estimates 1§\jc\5\
of the observations generated from the truncated Cauchy distribution. Apparently, the
scedasticity estimators scale (0*)¢ and deviation slopes §|1£ and §|2£ are most affected by

. . c .
the presence of outliers, to a small extent for the observations y; ®l"and more distinct for

the observations C-‘lo‘. Since the scale parameter o directly depends on the dispersion of
Y; p y dep p

the observations, that is basically the width of the employed distribution, its estimator
is most affected by the presence of outliers. The systematic overestimation of the scale
mirrors the high uncertainty in the observations. As a consequence the deviation slope
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3.3 Performance of the detection approach

Table 3.3: The relative bias of the model estimates 19‘35 is derived from j = 300 realizations of the

synthetic observations y}s for the random behavior & simulated by a Gaussian (without outliers) or by
Cauchy distributions (with outliers). The inference performance is robust against moderate outliers
as generated by Cj5|. The model estimators most affected by unusual observations are the scedasticity
estimators scale c* and deviation slopes §; and Ss.

bias'(01€) for modeled random term
estimator | & ~ Gauss & ~ Cauchy
Dl¢ N Cps) Cluo| c
6l€ —4.0-107% —8.7-107%* 3.1-1073 5.6-1072
gl 24-107'  33-1071  55-1001 1.0
§l¢ 28-1071  39.1071 65-1071 21
(c*))€ | -8.0-1072 83-107% 41-107%  31.5
Bl | -1.7-107% —6.0-1073 —4.8-1073 2.8-107"
(B7)le 7.7-107%  22-1072  7.0-107% 2.5-107!
(B5)1€ 62-107% 1.7-1072 1.3-1072 —20.9

parameters are also systematically overestimated, though of a smaller order.

In order to derive a measure suitable to compare the effect of the simulated random
behavior £ on the estimators the relative bias as defined in Eq. 3.45 is computed. The
results are listed in Tab. 3.3. The relative biases support the finding, that the estimators
Jl%s1 are of approximately the same accuracy as the reference estimators JIW. The
relative biases of the estimators 9/ is of comparable order, but differs particularly
for the scale estimator (o*)I¢. The relative biases of the estimators JI° substantiate the
conclusion, that outliers primarily affect the estimators of parameters describing the
scedasticity of the observations, that are the scale o and deviation parameters s; and
So.

Therefore, the inference approach is considered as robust for outliers, albeit only for
moderate outliers as simulated by the truncated Cauchy distribution Cp5. So far, the
robustness of the inference performance to outliers is assessed by taking into account
symmetrical distributions. Indeed, outliers in real time series may be asymmetric or
singular, and may not be characterized by any distribution at all. To facilitate a robust
inference, two common approaches may be employed to better meet the basic assumption
of a Gaussian random behavior. In some cases of asymmetric outliers, the observations
can be log-transformed to better satisfy the requirement of a symmetric distribution
[TO7]. The aspect of distributional asymmetry is discussed for real observations in the
course of measurement processes in Sec. 5.3. In case of singular outliers, an effect analysis
can be performed to identify potential extreme observations. By computing the Cook’s
distance [I08], 109] from the standardized time series a measure of influence of each
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Figure 3.12: The robustness of the inference performance in the presence of outliers is further deduced
from the relative error of the transition model estimates (19*)|jg = ((B)€, (0*)I¢,51¢,01¢), for different
random behavior §. The relative errors of the reference estimates W and the estimates 051 are of
the same order. The relative errors increase for the estimates 9/€110 and exhibit a significant influence

of the outliers particularly on the scedasticity estimators scale (¢*)!¢ (D) and deviation slopes §‘1€ (B)
and 8 (C)
5 .

52



3.3 Performance of the detection approach

data point on the employed estimators is derived. The observations that show extreme
distances relative to the majority of the remaining observations may be interpreted as
outliers and excluded from the original time series for the further inference process.
Clearly, since the introduced Bayesian approach is based on a generic transition model
it may not capture the complexity of the real underlying process. Thus, model errors
are expected but shall not be solved by manipulating individual data points, such as
simply ignoring unusual observations. For the sake of transparency, any local time series
y7 that comprises outliers is deliberately not taken into account within the proposed
inference process, since under this conditions the generic transition model is considered
as invalid. This aspect is systematically incorporated in the expansion of the detection
approach to a kernel-based inference approach explained in Sec.4.2 by introducing a
normality indicator function. The assessment whether the assumed stochastic process
hold for a time series is discussed for the application of the approach to real observations
in the following section.
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3 Detection of a single transition in time series

3.4 Application on direct climate observations

The introduced Bayesian inference approach is applied to direct environmental obser-
vations comprising documented transition events: a hydrological time series of the Nile
river in Egypt and a temperature series from the weather station in Tuscaloosa, Al-
abama. The meta data of the measurement stations report on specific events directly
influencing the measurand. Each time series consists of 100 observations and since the
transitions are known to be rather abrupt than gradual, the generic shift transition
model My is assumed as defined in Eq.3.7. Given the information about the true
transition time, the efficiency of the inference approach to detect the underlying change
can be tested. More importantly, in contrast to the performance studies on synthetic
observations the validity of the generic transition model as an adequate approximation
to a real world process can be investigated.

Consideration of the generic model assumptions

The Bayesian inference approach is carried out with respect to the assumptions of the
generic transition model. The derived estimates 9* = (8%, 0%, §,0) of the model param-
eters can be used to transform the investigated observations y;7+ into

vir =\ (°9,) (i — F387) ~ N(0.1), (3.53)

such that the obtained time series y|'T, is standard normally distributed. However, this
holds only if the real random process is sufficiently close to a normal distribution. Due
to the generic formulation of the model as a robust first order approach, any departure
from normality is assumed to be primarily attributed to a differing random behavior of
the observed process. Therefore, the suitability of the generic transition model as an
adequate approximation to the underlying process can be assessed by considering the
validity of the normality assumption for yllT"

A common approach to validate the assumption of normality, offers the Shapiro-Wilk
hypothesis test (SWT) [110].° Compared to other normality tests, the SWT performs
with constant quality over a wide range of sample sizes [I11] which is a crucial concern
for the kernel-based expansion of the inference approach (see Sec.4). For large sample
sizes, however, the SWT becomes very sensitive to outliers. An alternative strategy to
assess departures from normality yields the direct investigation of the higher statistical
moments m; of order ¢ as defined in App.A.3. Instead of using test statistics that
generally employ two statistical moments, the aim is to use the moments m; for i =
1,...,4 as qualitative measures for departures from normality. The theoretical moments
for a standard, central normal distribution and the interpretation thereof are summarized

5The general advantage of the SWT is, that due to the general formulation of the null hypoth-
esis the approach does not require the observations to be of an explicitly parametrized distribution.
Nevertheless, the mean and deviation are required to be constant over time.
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3.4 Application on direct climate observations

Table 3.4: The higher statistical moments can be used to deduce the actual characteristics of a given
distribution. By comparing the theoretical statistical moments of the standard normal distribution
with the empirical moments derived from the standardized observations of the Nile (Fig.3.13(C)) and
the Tuscaloosa (Fig. 3.14 (C)) time series, the validity of the normality assumption can be assessed and
relative differences described.

statistical | theoretical empirical value L L
descriptive characteristics
moment value Nile Tusc.
mi 0 8.10716 —g.1071° mean
mo 1 0.97 0.97 variance
< 0: left-skewed
m3 0 0.02 -0.31 skewness )
> 0: right-skewed
< 3: d k, thin tail
my 3 3.32 4.12 kurtosis Foua peatk, T 'als
> 3: sharp peak, fat tails

in Tab.3.4. Any deviation of the empirical from the theoretical statistical moments
indicates a departure from normality. Furthermore, the values of the empirical moments
provide valuable information about the kind of difference of the observations’ random
behavior relative to the standard normal distribution. In this way, the set of empirical
statistical moments serve as a diagnostic tool to justify the application of the generic
transition model to a specific real world times series.

3.4.1 Annual Nile river flow (1871-1970) from Aswan, Egypt

A prominent time series to study changes within environmental data depicts the annual
water discharge of the Nile river measured at the Aswan dam in Egypt. Based on
Nile river observations, Harold Edwin Hurst for example formulated an environmental
memory process parametrized by the Hurst coefficient in order to predict maximal river
levels. Here, the Nile river flow between the years 1871 to 1970 is investigated (see
Fig.3.13(B)). Historical records provide the fact, that in the year 1899 a shift in the
flow levels is attributed partly to weather changes and partly to the start of construction
work for a new dam at Aswan. Several investigation methods have verified a change
underlying the observed flow levels in 1899 [55, T12HIT4]. Thus, the observations offer
an established study case for the proposed detection approach.

The Bayesian inference is applied by computing the posterior distribution p(6, s|yr)
in the sampling space defined in Tab.3.5 given the complete time series y)7 for T =
[1871, 1970]. The marginal posterior distribution p(6|yr) of the transition parameter 6
is presented in Fig. 3.13 (A). The MAP estimate 6 indicates the most probable transition
year as 6 =1898. The confidence interval Clg g5 of the posterior distribution localize the
occurrence of the transition into a time interval of about four years between 1896 and
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3 Detection of a single transition in time series

Table 3.5: The parameters of the generic transition model Myp;f: are estimated from the annual Nile
river flow (Fig.3.13) by performing the inference approach in the sampling space Ag X Ag, X Ag,.

parameter MAP PLH/BLUP sampling space

¥ estimate Cly.o5 estimate range Ay, step dy,
0 1898.0a [1896.0,1899.5] a - [1875.0,1965.0]a  0.5a
s1 0.007 [-0.014,0.042] - [-0.030, 0.070] 0.001
59 -0.001 [-0.006, 0.007] - [-0.030, 0.070] 0.001
o - - 0.128 - -

5o - - 1.119 - -

51 - - -0.002 - -

Ba - - 0.001 - -

B3 - - 0.825 - -

~

1900. Based on the derived point estimates ¥* = (3%, 0%, 8, 0) of the model parameters
(see Tab.3.5) the estimated transition model ./\;ls;n-ft is visualized in Fig.3.13 (B). The
inferred model reveals a correlated transition in mean and variability, meanwhile the
confidence area CAq g5 of the posterior distribution p(si, sa|y7) of the deviation slopes
also encloses homoscedastic behavior, i.e. the combination s; = s, = 0.

The assumption of a generic transition approach needs to be justified. To study the
investigated time series for potential departures from normality, the Nile observations
are standardized and centralized by the linear transformation given in Eq.3.53 (see
Fig.3.13(C)). At a significance level of a = 0.05, the SWT yields the p-value = 0.82
such that the assumption of a normal distribution can not be rejected for the trans-
formed observations y|’T. Thus, the generic transition model apparently captures the
underlying evolution of the stochastic process sufficiently. In addition, the empirical
higher statistical moments of the transformed observations are compared to the theo-
retical values of a standard, central normal distribution (see Tab.3.4). The deviation
in mean m; is practically zero whereas the variance msy apparently reflects the inherent
bias of the scedasticity parameters discussed in Sec.3.3.2. Due to the finding of the
SWT, the deviations in skewness ms3 and kurtosis my is considered as insignificant.

In conclusion, the Bayesian approach correctly infers on the true transition year at
1899 and localizes the transition occurrence between the years 1896 and 1900. The
considerations of normality confirm the generic transition model as an adequate approx-
imation to the underlying process patterns of the Nile river flow.
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Figure 3.13: The annual Nile river flow (B) comprises a documented flow shift in the year 1899. (A)
The posterior distribution p(6|y|7) of the transition parameter 6 given the observations y|1 localizes
the change with 95% uncertainty within the period [1896, 1900]. (B) The estimated underlying model
reveals a significant shift in the mean and a minor change in the scedastic behavior of the data. (C)
The standardized time series yI’T is used to investigate the validity of the assumed generic transition
model. (D) The departure from normality is qualitatively compared to a standard normal distribution
N(0,1) and quantitatively assessed by the empirical statistical moments in Tab. 3.4. Both approaches
support the assumption of normality.
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3 Detection of a single transition in time series

3.4.2 Annual average temperature (1901-2000) from
Tuscaloosa, Alabama

The investigation of trends in direct climate observations often requires a preliminary
homogenization of the time series to assess discontinuities potentially affecting the anal-
ysis [I15]. On this account, change point detection techniques are employed to locate
inhomogeneities. Thereby, a suitable study case offers the time series of the annual
mean temperature measured at the weather station in Tuscaloosa, Alabama [35H37] (see
Fig.3.14 (B)). Based on the meta data of the measurement station the time series com-
prises multiple transitions as a consequence of station relocations or modifications of
the measurement instrumentation documented for the years 1921, 1939, 1956 and 1987.
Despite the fact that more events underlie the observations than assumed by the generic
transition model, the proposed detection approach is applied to the time series in order
to investigate its performance.

The Bayesian inference is applied by computing the posterior distribution p(, s|yr)
in the sampling space defined in Tab.3.6 given the complete time series y|7 for T =
[1901, 2000]. The derived marginal posterior distribution p(|y;7) of the transition
parameter 6 (see Fig.3.14 (A)) is of unimodal shape and localizes the change within a
narrow interval of about one year. The MAP estimate 0 =1957 confirms previous studies,
all inferring on a significant change in the year 1957 and interpreting the outcome as
the documented transition in the year 1956 [35H37]. The estimated transition model
Mz (see Fig.3.13(B)) is obtained from the point estimates 9* = (8%, 0%, 8,0) of
the model parameters (see Tab.3.6) and reveals a distinct shift in the mean as well
as in the variability of the time series. The confidence area CAgg5 of the posterior

Table 3.6: The parameters of the generic transition model Mgp;¢; are estimated from the annual
temperature in Tuscaloosa (Fig.3.14) by performing the inference approach in the sampling space
Ap X Ay, X Ag,.

parameter MAP PLH/BLUP sampling space

¥ estimate Clp.os estimate range Ay, step dy,
0 1957.5a [1957.0,1957.5] a - [1905.0,1995.0]a  0.5a
S1 0.032 [0.008,0.082] - [-0.020, 0,180] 0.002
52 0.026 [0.002,0.072] - [-0.020, 0,180] 0.002
o - - 0.331 - -

5o - - 18.022 - -

51 - - -0.006 - -

Ba - - 0.031 - _

53 - - 16.629 - -
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Figure 3.14: The annual temperature measured in Tuscaloosa (B) comprises multiple documented
changes in the years 1921, 1939, 1956 and 1987, but is investigated here with respect to a single transition
model. (A) The posterior distribution p(6|y 1) of the transition parameter 6 given the observations y 1
localizes the change with 95% uncertainty within the period [1956 , 1957]. (B) The estimated underlying
model reveals a significant transition in the mean as well as in the scedastic behavior of the data. (C)
The standardized time series yI’T is used to investigate the validity of the assumed generic transition
model. (D) The departure from normality is qualitatively compared to a standard normal distribution
N(0,1) and quantitatively assessed by the empirical statistical moments in Tab. 3.4. Both approaches
indicate a left-skewed distribution with a long tail and the applied SW'T rejects the assumption of
normality.

distribution p(s1, s2|yj7) of the deviation slopes only includes combinations that lead to
a heteroscedastic behavior, i.e. s; # 0 for i = 1, 2.

The standardized observations yl’T are presented in Fig. 3.14 (C). The SWT yields the
p-value = 0.02 such that the assumption of normality is rejected at a significance level
of a = 0.05. Therefore, the assumption of normality and consequently the assumed
generic transition model, does not sufficiently capture the underlying process patterns
of the annual temperature.

Furthermore, the empirical higher statistical moments are computed for the trans-
formed observations (see Tab. 3.4). The deviation in mean m, is practically zero, whereas
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3 Detection of a single transition in time series

the variance mo has the exact same value as for the Nile observations. As discussed in
Sec. 3.3.2 the extent of the inherent bias of the scedasticity parameters depends on the
sample size of the data, which are similar for both investigated time series. The devia-
tions in skewness ms and kurtosis my reflect the shape of the count data, i.e. left-skewed
with a long tail. In this way, the explicit deviation from the theoretical moments may
help to characterize the random behavior of the observations relative to the standard
normal distribution.

In conclusion, the approach infers correctly on one of the four underlying transitions
in the year 1957 interpreted similar to previous studies as the documented change in the
year 1956. As expected and as indicated by the departure from normality, the generic
transition model does not capture the real underlying process of multiple changes as
documented in the meta data of the Tuscaloosa weather station.

3.5 Discussion and Summary

In this chapter, a generic transition model is designed to locally approximate a change in
complex natural observations. Based on the introduced first order approach a Bayesian
inference is implemented to derive the degree of belief about the transition location and
to estimate the underlying transition patterns. In order to investigate the performance
of the approach, synthetic time series of different change geometries are analyzed. Ir-
respective of the underlying geometry, that is irrespective of the observational evidence
of the change, the approach convincingly reproduces the transition patterns. However,
for an increasing variability at the transition, the efficiency of the approach to local-
ize the change decreases. In general, the approximation of real complex observations
by a generic transition model is only reasonable, if the inference performance is robust
for sparse sampling and in the presence of model errors. By studying the convergence
of the posterior distribution and the sensitivity of the estimators for varying sample
sizes a minimal required amount of 50 observations is assessed. Moreover, the inference
performance is robust against symmetric outliers as simulated by truncated Cauchy dis-
tributions. Common to all performed inference studies, the estimator of the transition
parameter shows to be most robust, whereas the scedasticity estimators of scale and
deviation show to be most sensitive of all employed model estimators.

The introduced approach is finally applied to real time series comprising documented
transitions. To justify the approximation of the actual observations with the generic
model, the empirical higher statistical moments are used to characterize the random
behavior of the observations relative to the assumed normal behavior. For the annual
Nile river flow, the approach correctly infers on the underlying change and the statis-
tical moments indicate minor departures from the assumed normality. For the annual
temperature measured at Tuscaloosa, the approach infers on one out of four underlying
changes. The observations reveal a departure from the model assumptions and hence, the
approximation by the generic transition model is correctly considered as not adequate
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3.5 Discussion and Summary

to the temperature series.

Based on these findings, the introduced Bayesian inference is proposed as a practical
and robust transition detection approach to real time series comprising a single change.
Despite its simplicity the generic transition model yields valuable information on the un-
derlying transition patterns and random behavior. Nevertheless, to investigate complex
observations the local inference approach needs to be generalized in order to capture
multiple transitions in a time series. Therefore, in the following chapter a kernel-based
extension of the proposed local detection approach is introduced in principle capable to
investigate a variety of natural processes.
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4 Detection of multiple transitions
in time series

The major challenge of change point detection is, that for real world observations nei-
ther number nor location of the underlying transitions are a priori known. A stochastic
process describing multiple changes is naturally high dimensional and based on specific
assumptions on the number and scale of the transitions. Instead of defining a speci-
fied and complex process model to infer on multiple events, the introduced detection
approach based on a generic transition model is extended. Applying the inference ap-
proach globally on the complete time series may not be justified. However, locally the
generic model assumption may still be valid as a first order approach. For this reason,
the generic inference is systematically applied to investigate local sub series of the obser-
vations in terms of a kernel-based approach. By employing specific information criteria,
the derived local posterior distributions may be combined into a global proxy distribution
expressing the credibility of a transition for each investigated time point. Clearly, the
kernel-based approach does not yield an estimate of a closed global stochastic model of
arbitrary transitions, respectively arbitrary complexity. Nevertheless, it offers a power-
ful tool to reveal the degree of belief about multiple changes and to visualize the locally
inferred generic transition patterns. As a beneficial side effect a kernel-based approach
proves to be numerically more efficient compared to a global inference approach.

In order to localize the transition detection on a general time grid, a kernel-based re-
formulation of the inference approach introduced in Chap. 3 is elaborated. To adequately
assemble the individual posterior distributions, an information criterion is proposed that
indicates the existence of a transition within each kernel. By using the criterion as a
kernel weight a credibility expression is derived that is considered as a proxy probability
of transitions occurring at the employed kernel scale. The scale dependent investigation
of synthetic time series demonstrates, that a further kernel weight indicating the local
suitability of the generic model facilitates the inference on multiple transitions. Hence,
the extended approach provides a proxy probability indicating multiple transitions and
their inferred patterns for observations investigated at a given kernel scale. Finally, the
introduced kernel-based Bayesian method is applied to direct environmental observations
comprising documented transition events: a hydrological time series of the Nile river in
Egypt and a temperature series from the weather station in Tuscaloosa, Alabama. The
inference results are compared to the previous analysis in Sec. 3.4 and the applicability
and limitation of the kernel-based approach is critically discussed.
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4 Detection of multiple transitions in time series

4.1 Kernel-based inference approach

The previously introduced detection approach locally infers on a generic transition model
M yans Within a given central sub interval 77 of the complete time series of length 7.1 For
the purpose of exploring real observations for an unknown transition, the approach needs
to be generalized to flexibly investigate different sub series of the observations. Therefore,
a global time grid ©; spanning the whole time series y is defined. Around each of these
time grid points ¢ a time window Z; = [t — ,¢ + 3] of length \ is constructed. Inside
the corresponding data window ¥z, the prior distribution of the transition parameter
0 is taken as a flat prior distribution

)\/

with 0 <X < A, (4.1)
0 else

Lofor t—X<p<t4 X
pt(0>:{ 2 — — 2

inside some sub interval of length X centered around the query time ¢. Note, that
the ratio A/\" is constant throughout the investigation of a time series. The resulting
local observations yz, may be interpreted as kernels of neighborhood Z; with the kernel
support p;() # 0 (based on Ref. [98]). Hence, the joint posterior distribution p(¥|yz,)
of the generic transition model given by Eq.3.26 is localized with respect to a query
time ¢ at a temporal scale A as

p(IB70'7 870|y|It) X ‘C(y\lt;ﬁvo-a 870) p(ﬁ) p(a‘) p(8|€) pt(g) . (42)

The kernel posterior distribution yields the kernel marginal distribution p(6|yz,) of the
transition parameter as given by Eq.3.30 and the estimated kernel transition model
given by the set of estimators ¥ = (8%, 0%, 8, é)t as summarized in Eq. 3.38.

However, for real world observations neither the kernel location ¢ nor the scale A,
at which the time series may be locally approximated by the generic transition model,
are known. As a pragmatic approach, the inference is systematically applied within
kernels sampled across the complete time grid and with respect to multiple scales. For
each scale, the individual kernel results are then combined to comprehensively deduce
on multiple transitions and their local generic transition patterns as explained in the
following.

Synthesis of the kernel posterior distributions p(6|yz,)

In the kernel-based approach the Bayesian inference is applied in an automated way on
each kernel observations yz,. To combine the individual kernel results, a kernel weight
f(t) is required to quantify the credibility of the existence of a transition 6 within

'Here, the generic transition models M; with j = [break, shift] defined in Sec.3.1 are generally
referred to as Myrans-
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4.1 Kernel-based inference approach

the kernel support p;(6) # 0. The kernel posterior distributions p(f|yz,) can then be
integrated over the complete time grid ©; as a weighted superposition

p({8}yP) = C- / £t - p(6lyz, )t (4.3)
(Sh

whereas the constant C' ensures the normalization to a probability density. The derived
probability expression is interpreted as a proxy probability of the transitions {0} =
(61,05, ...) underlying the time series y!* at the scale of investigation A. The proxy
probability does not provide an estimator for the number k of inferred transitions but
assigns a degree of belief about a generic transition to each investigated time point ¢.
To elucidate the interpretation of Eq.4.3 as a proxy probability, let a time series y
be described by a stochastic model My _;.qns containing k transitions and be locally
differentiable up to the first order prior and after each transition ;. Moreover, for a
local scale \ let maximal one transition 6; be in the inner prior support p;(0) of each
kernel observations yz,. In the limit of the kernel scale A against the local scale A

k
)1\111%\]?({0}|y|>\, Mtrans) — Zp(ez|y, Mk—trans) ) (44)
—

=1

the proxy probability based on the generic transition model My, is assumed to con-
verge towards the sum of posterior distributions of the individual transitions €; based
on the high dimensional k-transition model Mj_4.4ns. In this way, the proxy probability
p({6}|y™) may be used as a diagnostic tool to investigate complex signals y, that may
be locally approximated by the generic transition model at the scale A\, for multiple
changes {0}.

Nevertheless, the assumed proxy convergence is only reasonable, if an efficient kernel
measure f(t) is employed. In order to illustrate the need of a kernel weight, a schematic
example of the kernel-based approach is presented in Fig. 4.1 for a synthetic time series
comprising a single transition. The explicit setting is provided in Tab.B.4. The naive
integration over the kernel posterior distributions p(f|yz,) yields a multimodal proba-
bility expression. Even though the scale A encloses maximal one transition per kernel
support, the underlying transition can not be efficiently detected. To precisely infer on
the underlying transition a kernel weight is required that quantifies the credibility that
a transition actually exists within a kernel support.

The maximum likelihood function L,,..(t) indicates the goodness of fit of the
generic transition model My,q,, to the kernel observations yz,. For kernels that do not
enclose a transition in their support p;() # 0, the goodness of fit is very low and the
maximum of the likelihood function is of very small value as shown in Fig. 4.2 (A). Thus,
L0:(t) may be interpreted as an approximate measure for the existence of a generic
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4 Detection of multiple transitions in time series
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Figure 4.1: In the kernel-based approach the transition inference is systematically applied on sub series
of the complete time series to locally investigate the observations for an unknown transition. (A) The
synthetic time series y comprises a transition at § = 80 as defined in Tab. B.4. (B) The kernels are of
length A = 50 and centered at a query time t. The kernel support of length X' = 30 is given by a time
dependent flat prior distribution p:(0) of the transition parameter 6 as defined in Eq.4.1. (C) Based on
the kernel data y,z,, the kernel posterior distributions p(0|y,z,) are computed. The plain sum over all
kernel posterior distributions fails to localize the underlying transition 0y,.,., since the basic assumption
that a transition actually exists is not true for every kernel y|z, .

transition ¢ within the kernel yjz,. Based on Eq.3.17, the maximum of the likelihood
function can be obtained as

ft) = max L(yiz,;8",0",8,0) = Linaz(t) (4.5)

! /
O€[t—2 t+2-],5€[Smin (0),00]

by using the BLUP 8* (Eq.3.20) and the PLH ¢* estimators (Eq.3.18). In this way,
the derived proxy probability in Eq.4.3 may be interpreted as

p({0}|y™) = Z (goodness of Myyans fit in kernel) - p(f|trans. in kernel) , (4.6)
kernels

that is the product of the goodness of transition fit on the kernel observations yz, and
the probability of the transition location p(f|yz,) under the assumption that a transition
occurs in the kernel support p,(6) # 0. The efficiency of L,,..(t) as a kernel weight is
demonstrated in Fig.4.2 (C). In general, each continuous interval, in which the proxy
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4.1 Kernel-based inference approach
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Figure 4.2: To precisely infer on the underlying transition in Fig.4.1 (A) kernel weights are proposed
in order to account for the credibility that a transition occurs within a kernel support p;(6) # 0. The
kernel weights f(t) are presented over the kernel query points t of the employed time grid ©,. (A) The
maximum of the kernel likelihood function L. (t) indicates the goodness of fit of the generic transition
model Mrqns to the kernel observations yjz,. (B) The kernel Bayes factor BF (t) indicates the support
for either a generic transition model Myyqns or a model My;, without any transition. (C) By weighting
each kernel posterior distribution p(6|yz,) with the proposed quantities f(t) = [Liaz (1), e~ BF®)] the
derived proxy probabilities accomplish to localize the underlying transition 0y.,..

probability p({6}|y*) is non-zero, indicates the occurrence of an individual transition
event. The resulting proxy probability therefore localizes a transition within the interval
[78,121] enclosing the true underlying event. As a consequence of the artificial synthesis
of the kernel posterior distributions, the assessment of confidence intervals CI;_,, for the
proxy probability is not feasible anymore.

The Bayes factor BF(t) indicates the goodness of fit and the complexity of the
generic transition model My,.q,s With respect to the kernel observations yjz, and a com-
peting model M;,, without any transition. Based on Eq.2.23, the Bayes factor realizes
a model test between Mj;, and My,.4ns as

P(Miinlyiz,) ) (4.7)
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4 Detection of multiple transitions in time series

here formulated in deciban. Both model assumptions are considered a priori as equally
probable with p(¥| Miyans) = p(¥|Myin). Thus, the kernel Bayes factor BF(t) indicates
the credibility of the generic transition model My, .,.s as a suitable local approach to the
kernel observations yz, by its actual value [80]:

>5 supports M,
BF(t) < —5 supports My ans, (4.8)

else no substantial support.

The dependency of the Bayes factor from the kernel location ¢ is presented in Fig. 4.2 (B).
In all kernels, for which the true transition 6;,,. is in the support of the inner prior dis-
tribution p,(0) # 0, the Bayes factor BF'(t) favors the transition model My;.q,s over the
linear model M;,,. Hence, the kernel Bayes factor itself can be used as a diagnostic tool
like the likelihood weighted proxy probability, but the techniques may be also combined
by using the Bayes factor as a kernel weighting function in Eq. (4.3) by setting

f(t) =e BFO (4.9)

In this form the proxy probability of transitions corresponds essentially to the total
probability decomposition of the transition by

p({0}y") = Z p(trans. exists in kernel) - p(6|trans. in kernel) (4.10)
kernels

into the probability of the existence of a transition in the kernel support p;(6) # 0 and
the probability of the transition location p(6|yz,) under the assumption that a transi-
tion occurs in the kernel support. The efficiency of the kernel weight based on BF(t)
is demonstrated in Fig.4.2 (C). The resulting proxy probability indicates a transition
within the interval [78,89], an apparently more precise localization than for the likeli-
hood weighted probability. A detailed comparison of the influence of the proposed kernel
weights on the localization of an underlying transition is discussed in the next section
for multiple changes.

Computational costs

A major advantage of the introduced kernel-based approach, even in a single transition
context, is the considerable speed-up of the computational process. The generic ap-
proach allows to treat long time series numerically more efficient since the computation
scales with the complexity of the algorithm. A qualitative order of the complexity may
be estimated by the most time consuming computational step incorporated and thus
dominating the performance. In the introduced algorithm a matrix inversion is the most
expensive step scaling approximately with the third power O(n?) of the number of ob-

servations n; within a kernel yl’\. To further speed up the computations, the individual
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4.2 Extension of the kernel-based approach to infer on multiple transitions

kernel inferences may be executed as independent processes and thus easily distributed
on a computer cluster.

For instance, for a time series with n = 2000 observations the global computation
of the posterior distribution p(s,8|y7s) in 3h 41 min 40s pass to local computations of
p(s,0|y|z,) in 40 overlapping kernels with njz, = 100 kernel observations in 7min 44s.
In average, this leads to a reduction in computational time of about 95% [116]. The
example is performed using Python 2.6.5 on a Supermicro Intel(R) Core(TM)i7 CPU 920
@ 2.68 GHz with 12 GB RAM. In the context of complex multiple transition scenarios,
as real time series mostly are, the proxy probability p({0}|y'*) realizes a powerful tool
to investigate observations for local generic transition events {6} at different temporal
scales A, as implemented in the following.

4.2 Extension of the kernel-based approach to infer
on multiple transitions

The assumed convergence of the proxy probability in Eq.4.4 elucidates the condition
on the kernel-based detection approach required to infer on multiple transitions: Each
kernel should enclose maximal one transition event. In principle, consecutive transitions
0; and 6,1 may be resolved, if separated by at least one kernel size A. The kernel scale
A in turn determines the kernel observations yz,, i.e. the number of observations n,
per kernel, to which the generic transition model M4, is assumed an approximation.
As discussed in Sec. 3.3.2, a minimal amount of observations n; > 50 is necessary to
reliably infer on the generic transition, thus inducing a minimal kernel scale A. Since for
real observations neither number nor location nor distance between the transitions are
known, the kernel-based inference approach essentially needs to be applied at multiple
scales. To adequately interpret the scale-resolved inference, the dependency between
the performance of the kernel-based approach and the employed kernel scale needs to
be understood. Thereby, the performance of the kernel-based approach is deduced from
the method’s ability to localize individual and resolve multiple underlying transitions.
The general influence of the kernel scale on the kernel-based inference performance
substantiates the demand of a further kernel weight. Let a local scale A enclose maximal
one transition event that may be approached by a generic transition model M, qps.
And let the employed scale A of investigation result in kernels that contain at least
ny = 50 observations. For A > X and in comparison to the underlying event, the
estimated transition patterns ¥; = (8%, 0%, 8, é)t exhibit a small variance due to averaged
random behavior but a high bias since the linear approximation may not be suitable. For
A < ), the estimated transition patterns 1Y} may exhibit a high variance due to random
fluctuations but a small bias since the generic model offers an adequate approximation.
For A — 5\, the estimated transition patterns 1, are expected to have the best trade-
off between bias and variance from the underlying event (based on Ref. [98]). The
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4 Detection of multiple transitions in time series

introduced kernel weights f(t) = [Lpaz(t), e PF®] are used to take into account the
existence of a transition. The resulting proxy probability is expected to be unimodal
and hence, to clearly localize the underlying transition. However, to indicate the trade-
off between bias and variance at each scale of investigation, a further kernel weight
f'(t) is required. By additionally penalizing the kernel inference in this way, the derived
proxy probabilities p({6}|y*) indicate the suitability of the generic transition assumption
Mrans With respect to the scale of investigation \.

For the purpose of elaborating efficient kernel weights, the inference performance of
the kernel-based approach is applied in a multiple transition scenario for varying kernel
scales. A synthetic time series y of n = 200 observations is generated as defined in
Tab. B.5 comprising three transition events 6 = (6,69, 03) as presented in Fig.4.3 (A).
The time points tq, ..., t, are used as the global time grid ©,, respectively as the kernel
query points. The employed kernel scales A are defined within the range A, and sampled
by the step size d,. A constant ratio between the kernel size A and kernel support X,
i.e. the actual applied sampling range Ay of the transition parameter 6, allows to reveal
potential scale influences on the inference results. The complete computational setting
of the kernel-based inference approach is given by

A, = [20, 200], Oy = 10,
A)\’ == Ag - §>\, 6t - 69 - 1,
A, = [-0.08, 0.44], 4, = 0.005.

Note, that the sampling step of the transition parameter dy is taken as the time step d;
of the kernel sampling. The sampling range A, of the deviation parameters s is used
as defined in Eq.3.13. Based on Eq.3.30, the proxy probability of transitions {6} is
computed at different kernel scales A and for different kernel weights f as

A
th—%5

pr{OYyN) =C - Y P polyl), (4.11)

i=t1+%

In this way, the optimal kernel weight may be deduced from its influence on the weighted
sum of kernel posterior distributions p(9|yll-k) of the transition parameter 6.

Kernel weight with respect to transition existence

As proposed in Sec. 4.1, the existence of a transition in a kernel support p;(6) # 0 may
be indicated by the maximum of the kernel likelihood function EL;\LGM or by the kernel
Bayes factor BFtl/\. The kernel quantities obtained for the synthetic observations are
presented with respect to the employed kernel scales A\ in Fig.4.3(B) and (C). The
desired effect of these quantities is the minimization of the proxy probability in between
consecutive transitions such that individual events are clearly resolved. This may be
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Figure 4.3: The kernel-based inference approach is applied to a multiple transitions scenario to inves-
tigate its performance with respect to the kernel scale. (A) The synthetic time series comprises three
transitions at @ = (40,100, 160) as defined in Tab.B.5. (B) For each employed kernel scale A\ € Ay,

the proposed kernel weight maximum likelihood El,ia_w is presented over the kernel query points t. (C)
Another kernel weight is based on the Bayes factor BFt‘/\ as a measure for the credibility of a transition.

. A Lo . .
In comparison to Elmz and for a constant scale, the BF'* varies significantly across the time series as
desired for an effective resolution of consecutive transitions.

achieved by strong variations of the kernel weights between kernels containing and kernels
not containing a transition. At a constant kernel scale A, the maximum likelihood
function does not vary significantly across the times series, whereas the Bayes factors
considerably increases at the underlying transitions. Even though the Bayes factor favors
in every kernel a transition M., over a linear model M,;,,, its variation across the time
series clearly mirrors the underlying events. Therefore, the quantity may still be used as
a kernel weight, but not in the exponential form e~ 5% t‘k, since the kernel credibility for
all transitions except the most dominant one is eliminated due to the strong difference
in magnitude. In order to obtain a moderate kernel weight b ftl’\, the Bayes factor may

be used as

PR . A
bftM _ —BFt‘ if Myans supported in yl , (4.12)

0 else.
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Figure 4.4: Based on the kernel weights f = [bf 1A LL’)M] indicating the existence of a transition,

the proxy probability p;({0}|y!*) of transitions {6} is computed for the synthetic time series y (A) at
multiple kernel scales \. (B) The modes of the proxy probability derived with the kernel weight bf A
indicate the three underlying transitions correctly over most kernel scales. (C) The proxy difference

Apyi—r,,.. ({0} |y!*) represents the relative effect of the kernel weights bf!* to Lirax on the resulting
proxy probability. As desired for the resolution of multiple transitions, the Bayes factor kernel weight
favorably assigns more credibility to the modes of the proxy probability and less credibility to the
intervals between consecutive transitions.

By using one of the kernel weights f1* = [bf1*, Elﬁm], the proxy probability p({6}|y")
of transitions {6} is derived.

In Fig. 4.4 (B), the proxy probability p,s({6}|y'*) is presented over the kernel scales .
For most scales the underlying transitions are indicated correctly by the three dominant
modes of the proxy probability. At small scales A < 50, the approach infers on multiple
events causing a diffuse broadening of the proxy probability. In the presented example,
the number of kernel observations n; equates the employed kernel scale A. Thus, random
fluctuations may falsify the inference since the kernel observations y,'t)‘ do not comply
with the minimal required number of observations n; > 50 (see Sec.3.3.2). In order
to compare the relative influence of the kernel weights f* = [bf1*, £|7§az] on the proxy
probability p;({#}|y") the difference in terms of

Apos- L0 ({O}HY) = 2o ({0} Y™) = D2, ({0} 1y™) (4.13)
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Figure 4.5: Based on the binary kernel weight x| indicating the normality assumption in a kernel as
valid or not, the proxy probability py., ({0}|y!*) of transitions {0} is computed for the synthetic time
series y (A) over multiple kernel scales A. (B) For A < 170, the derived proxy probability indicates
the three underlying transitions correctly. At larger scales the proxy probability does not significantly
indicate a transition. (C) The difference between the proxy probability here and with respect the
simple bf weighting of Fig. 4.4 (B) illustrate the ignores kernels at larger scales. Moreover, to visualize
the inferred transition patterns at a particular scale A = 80 (marked white in (B)), the kernel estimates

(19*)1580 for kernels with X\tso =1 are shown in (A).

is shown over the kernel scales A in Fig.4.4 (C). The weight of the proxy probability at
the transitions (6y, 62) = (40, 100) is bigger for the quantity bf!*, whereas the transition
03 = 160 gains more weight for the quantity Lee. The decisive advantage provides the
kernel weight bf1* by decreasing the proxy probability at the borders of the modes faster
against zero and in between the modes closer to zero, particularly at scales A < 100. In
consequence, the kernel Bayes factor weight b ftp‘ is proposed as the more efficient kernel
weight to convincingly resolve multiple transitions.

Kernel weight with respect to generic model assumptions

However, an important issue concerns the visualization of the inferred transition pat-
terns (19*)'3‘. In principle, the estimated transition models are only presented for kernels,

in which the generic transition model My, 4, is supported by BFt|’\. Here, the approach
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4 Detection of multiple transitions in time series

supports the transition model in every kernel, respectively the inferred transition pat-
terns are presented for each kernel. Moreover, even at large scales A > 170 the proxy
probability py;({0}|y*) indicates two out of three transitions correctly, though per def-
inition the generic transition model Mj,q,s can not capture multiple events. These
findings indicate, that the suitability of the assumed model as an adequate approxima-
tion to the kernel observations yl’\ might not be sufficiently considered in the approach.
Based on Sec. 3.4, the kernel observations can be standardized with respect to the es-
timated kernel transition patterns (9*)] as defined in Eq.3.53. Any deviation of the
observations to the generic model is therefore mapped on the deviation of the trans-
formed kernel observations (y’ )ltA from normality. This strategy may be used to define a
further kernel measure (f/)1*.

In the presented example, the validation of normality is approached via the Shapiro-
Wilk test (SWT) [I10]. The assumption of normality is considered to be true for p-values
greater than an a-level of 0.05. Instead of employing the p-value itself as a kernel weight
the consideration of normality is expressed in terms of a binary indicator function X‘t)\

defined as
(4.14)

: =

N 1 if () ~ N(0,1) considered as valid,
0 else.

Hence, the normality indicator function either accepts the kernel posterior distribution
p(s,0|ylk) and all corresponding estimates (19*)‘3‘ or rejects the complete kernel out-
come. In this way, the kernel weight XL’\ essentially realizes a removal strategy of kernels

enclosing outliers. The cumulative acceptance X* per kernel scale A defined as

xP =37 (4.15)

i=t1+%

that is the amount of kernels for which the normality assumption is considered to be
valid, is summarized in Tab.4.1. The maximal cumulative acceptance occurs for 60 <
A < 90 and indicates the scales at which the underlying transition patterns may be
best approximated by the generic transition model My,,s.> Larger kernel scales A > 90
successively contain more than one transition and the generic transition model becomes
less suitable as mirrored by the decreasing cumulative acceptance X*. At smaller kernel
scales A < 60 the cumulative acceptance decreases only slightly and does not achieve a
more accurate resolution of consecutive transitions. As already stated before, for n, < 50
the robustness of the inference approach can not be guaranteed anymore.

Additionally, the amount of observations n, generally affects the performance of the
normality validation. In particular for the SWT, the performance is considered to be

2Similar to real observations there actually is no true scale to the synthetic time series, since the

observations are generated by a different model approach (Tab.B.5). Nevertheless, the kernel weight

xL)‘ correctly indicates the kernel scale A, at which only one transition is in the kernel support p;(6).
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4.2 Extension of the kernel-based approach to infer on multiple transitions

weak for n; < 30, since not enough observations are available for the test statistics [111].
Up to ny < 5000, the SWT infers relatively robust but the test is extremely sensitive to
outliers, such that a single outlier may lead to a false decision. To better understand
the real observations, the kernel-based approach may eventually use another strategy to
validate the normality assumption in a more transparent way, e.g., by higher statistical
moments as suggested in Sec.2.1.1.

In conclusion, the complete proxy probability of transitions {6} analyzed at the kernel
scale A may be formulated as

A
th—3

Pop ({0} 1Y) = bf X poly)) (4.16)

i=t1+%

and is presented for the analyzed synthetic time series in Fig. 4.5 (B). To illustrate the

impact of the additional kernel weight X'f on the proxy probability the difference

Apypr—or ({0HY™) = popa ({03HY") — pop ({6} 1Y) (4.17)

is shown in Fig.4.5(C). The most significant effect occurs for kernel scales A > 150
enclosing more than one transition per kernel. At each scale A, the inferred transi-
tion patterns may be visualized by the derived kernel estimates (19,‘;\)* for kernels yl)‘
with XL’\ = 1 as exemplified for A = 80 in Fig.4.5(A). In this way, the proposed proxy
probability pys., ({6}|y!*) offers a powerful diagnostic tool to investigate observations for
multiple generic transition events {0} at different temporal scales A. Although none of
the estimated kernel models is ignored (X/* = 100%), the underlying transition pat-
terns, respectively the observations, are convincingly approached. This is possible since
in the presented synthetic example the transition events (61,62, 603) = (40,100, 160) are
equidistant. For real observations, the transitions are most likely unevenly distributed
over the time series and consequently the cumulative acceptance might never reach 100%
for a specific scale A. It is more likely, that the transitions occur at a different scales and
hence, the locations of X‘t)\ = 1 might be more useful to address. To demonstrate the use
of the extended kernel-based approach, it is applied on real time series in the following.
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4 Detection of multiple transitions in time series

Table 4.1: The binary kernel weight XL)\ indicates whether the normality assumption of the transformed

kernel observations (yl’\)’ is considered as valid or not. Based in the SWT, the cumulative acceptance
per kernel scale \ are listed for the synthetic time series, the Nile and the Tuscaloosa data. Note, that
the kernel scale \ equates the number of kernel observations n;. The highlighted values mark the scale,

at which the observations may be best approximated by the generic transition model Myqns.

cumulative acceptance X [%]
kernel scale A | synthetic data Nile data Tuscaloosa data
Fig. 4.4 Fig. 4.6 Fig.4.7

20 98.9 92.5 83.8
30 98.8 87.1 77.1
40 99.4 96.7 88.3
50 99.3 96.0 80.0
60 100 100 67.5
70 100 100 43.3
80 100 100 35.0
90 100 100 10.0
100 98.0 - -
110 93.4 - -
120 83.5 - -
130 70.4 - -
140 68.9 - -
150 51.0 - -
160 14.6 - -
170 6.5 - -
180 0.0 - -
190 0.0 - -
200 0.0 - -
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4.3 Application on direct climate observations

The introduced kernel-based inference approach is applied to direct environmental ob-
servations comprising documented transition events. In Sec. 3.4 the observations have
already been investigated by using the single transition approach. The kernel-based
approach realizes a consistent extension thereof, designed to detect multiple changes
within a given time series. As previously assumed, the shift model Mg, is used as the
generic transition model. The time series are sampled equidistant in time, thus directly
providing a reasonable global time grid Oy, respectively the kernel query points t. The
numerical setting is similarly taken for both time series and defines the kernel scale X in
years [a], and the sampling range of the transition parameter  in years [a] and of the
deviation parameters s as

Ay = [20, 80] a, N = 104,
Ay =247y = X, 6 =0 = la, (4.18)
A, = [-0.25,0,25], & = 0.005.

Due to the fact, that both time series consist of temporally equidistant observations,

the investigated kernel scales A € Ay equate the number n; of the corresponding kernel
: A i : : )

observations y,”. By analyzing real time series, the inference performance of the kernel-

based approach may be deduced from the localization of individual and the resolution

of multiple underlying transitions documented in the meta data.

4.3.1 Annual Nile river flow (1871-1970) from Aswan, Egypt

Given the numerical setting, the kernel-based inference approach is applied on the annual
Nile river flow measured at a dam in Aswan. The employed kernel observations yl’\ are
centered at the query time ¢ and are of kernel width A € A,. For each kernel at each
scale, the kernel posterior distribution p(9|yl’\) (Eq. 3.30) of the transition 6, the kernel
estimates (19*)1'5A = (ﬁ*,a*,é,é)l‘/A (Eq. 3.38) of the transition patterns and the kernel
weight b fl!A (Eq.4.12) based on the Bayes factor BFtIA are computed.

The derived Bayes factors only support the transition model Mgp;f over the non-

transition model My;,,. Therefore, the kernel estimators (19*)1{\ of the transition model

are used to standardize the kernel observations into (y’ )LA as defined in Eq.3.53. By

applying the SWT, the binary kernel weight X,If)‘ (Eq.4.14) indicating the validity of
the generic transition model Mg;¢; within each kernel is obtained. The cumulative
acceptance X (Eq.4.15) is summarized in Tab.4.1 and is maximal, i.e. X = 100%,
for A > 60 a. Hence, the generic transition model convincingly captures the time series
at scales enclosing at least 60% of the observations. Thus, the findings point towards a
single underlying transition event within the Nile river observations.

The proxy probability pys., ({6}|y!*) of transitions {6} defined in Eq. 4.16 is presented

over the kernel scales A in Fig. 4.6 (A). The major mode of the proxy probability remains
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Figure 4.6: The annual Nile river flow (B) comprises a documented flow shift in the year 1899. (A)
By applying the kernel-based inference approach, the proxy probability pys., ({0}|y*) of transitions
{0} is derived over the kernel scale A. The major mode indicates a transition at 0, = 1898, in good
agreement with the documented event. (B) To visualize the inferred transition patterns, the estimated
kernel models are presented for A = 60 a (marked white in (A)), the smallest kernel scale, at which the
cumulative acceptance is maximal, i.e. X* = 100% (see Tab4.1). The major transition 6; = 1898 is
characterized by a sharp shift in mean and a slightly declining variability after the change.

dominant and within a small time interval around the year 6, = 1898 for all kernel
scales. A minor mode appears on scales A < 60a around the year 0y = 1939. At scales
k < 60a the proxy probability broadens mainly around 6, and 6,. The broadening
for A < 50a is essentially attributed to the fact, that the kernel observations yl’\ fall
below the minimal recommended number of observations n; = 50 required for a robust
inference (see Sec. 3.3.2).

To comprehensively visualize the inferred transition patterns, the estimated kernel
transition models are presented at the kernel scale A = 60 a in Fig. 4.6 (B). Obviously,
the major event 6, is characterized by a sharp shift in the mean, similar to the esti-
mated characteristics of the previous analysis in Sec. 3.4.1. Different to the previously
estimated minor change of the observational variability, the kernel-based approach infers
on a more significant decline of the variability. Moreover, a second minor event 0y is
induced by an apparent shift in mean and an approximately constant variability after
the event. Therefore, the kernel-based approach correctly detects the documented un-
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derlying change taking place in the year 1899 and the major characteristics induced by
the net effect of the associated changes, i.e. an abrupt water level shift [55, TT2HTT4].

4.3.2 Annual average temperature (1901-2000) from
Tuscaloosa, Alabama

Based on the numerical setting of Eq.4.18, the kernel-based inference approach is ap-
plied on the annual temperature measured at the weather station in Tuscaloosa. The
computational steps are performed in accordance to the investigation of the Nile river
observations in the previous section. The obtained kernel Bayes factors BFtIA favor a
non-transition model M;;,, over a transition model Mg, s for only few kernels. For
the remaining kernels with bft|’\ > 0, the kernel estimators (19*)|t/\ = (B*, 0% 8, HA)‘X‘ are
used to standardize the corresponding kernel observations in order to apply the SWT.
In comparison to the Nile observations, the derived cumulative acceptance X is listed
in Tab.4.1 and does for none of the employed kernel scales A\ € A, reach 100%. The
highest cumulative acceptances occur for scales A < 50a, with the maximal value of
X = 88.3% for A = 40a. The proxy probability pys.,({0}/y"*) of the transitions {6}
is presented over the kernel scale A in Fig.4.7 (A) and confirms a dominant change at
65 = 1957 for all scales of investigation. Moreover, the kernel-based approach reveals
two minor modes at scales A < 50a at él = 1939 and at ég = 1975. However, these ker-
nel scales contain less than the minimal recommended number of observations n; = 50
required for a robust inference.

Besides the documented change in the year 1956 also detected with the previous
single transition detection (see Sec.3.4.2), the kernel-based approach accomplishes to
additionally infer on the documented change in the year 1939. Given the meta data
of the measurements, the modes of the proxy probability at the smallest scale of in-
vestigation A = 20a may each be associated to one of the documented changes. But
clearly, the average distance between consecutive changes is about 22 a and the inference
performance of the approach is generally not considered to be reliable for such sparse
observations. Noteworthy is the investigation of the Tuscaloosa temperature data at
a monthly scale [37], hence providing sufficient observations to the introduced kernel-
based approach. Even in this data rich situation, the applied minimum description
length approach does not achieve to detect more changes than the presented Bayesian
approach. On the contrary, the monthly data raises even more difficulties to the analysis
strategy. The analysis approach has to explicitly incorporate autocorrelation in order to
appropriately describe the underlying process. Furthermore, a reference series based on
the measurements from neighboring weather stations is required to adjust the monthly
observations to the seasonal impact [37].

To comprehensively visualize the inferred transition patterns, the estimated kernel
transition models are presented at the kernel scale A = 40¢a in Fig. 4.7 (B). The domi-
nant event 6, = 1957 is characterized by a sharp shift in the mean and an increase in
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Figure 4.7: The annual temperature measured in Tuscaloosa (B) comprises multiple documented
changes in the years 1921, 1939, 1956 and 1987. (A) By applying the kernel-based inference approach,
the proxy probability pyf. ({0}|y'*) of transitions {0} is derived over the kernel scale \. The dominating
transition in 1957 confirms the global event already inferred in the global detection approach. At smaller
scales further events are indicated (marked by the isoline pys., ({0}|y*) = 0.04) inter alia at the known
transition in 1939 and one additional transition in 1975. (B) To visualize the characteristics of the
underlying change, the estimated kernel models are displayed for the scale A = 40 a, the scale with the
maximum amount of kernels in which normality is not rejected.

the variability prior and after the change. Moreover, the event 0, = 1939 describes as a
sharp shift in the mean, whereas the variability is difficult to interpret, since one extreme
observations apparently affects the inference due to small number of data points. The
event 03 = 1975 describes a rather continuous change in the mean but no considerable
change in the increasing variability. In conclusion, the kernel-based approach accom-
plishes to infer on two transitions in the years out of four transitions convincingly, albeit
at kernel scales containing less observations than recommended for a robust inference.
Although the investigated observations do not comply with all requirements, the kernel-
based approach serves as a useful diagnostic tool and unravels valuable information from
the time series.
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4.4 Discussion and Summary

In this chapter, the Bayesian transition detection introduced in Chap. 3 is extended
to a kernel-based inference approach in order to investigate time series for multiple
changes. By defining a time dependent prior distribution for the transition parameter,
the inference approach can be systematically applied on kernel observations sampled
across the complete time series. Thus, the kernel-based approach achieves a considerable
computational speed-up, since the inference task is sub-divided into a set of smaller
kernel computations. As demonstrated for a synthetic time series comprising a single
change, the derived kernel posterior distributions of the transition parameter can be
combined into a comprehensive credibility expression, interpreted as a proxy probability
of transitions underlying the time series at a particular scale. Thereby, the kernel Bayes
factor is used to construct a kernel weight taking into account the existence of a transition
in order to precisely localize individual and resolve multiple transitions. Moreover, to
take into account the suitability of the generic transition model depending on the kernel
scale of investigation an additional binary kernel weight is proposed. The inference
performance of the proxy probability over the kernel scales confirms the desired influence
of each kernel weight for a synthetic time series comprising multiple changes. The
inferred transition patterns are visualized at a particular scale by presenting all local
estimates for kernels in which the product of both kernel weights is non-zero.

The kernel-based approach is finally applied to the real time series comprising doc-
umented transitions and investigated in Sec.3.4. For the annual Nile river flow, the
approach correctly infers on one underlying change dominating over all kernel scales and
thus confirming the result of the previous analysis. For the annual temperature mea-
sured at Tuscaloosa, the approach infers on two out of four underlying changes correctly
for kernel scales enclosing enough observations for a robust inference. Despite the sparse
data situation at small kernel scales, the inferred transition patterns reveal multiple of
the underlying changes.

In conclusion, the introduced kernel-based Bayesian inference is proposed as a power-
ful diagnostic tool to investigate real time series for multiple transitions. The assumed
generic transition model is thereby designed to approximate signals that are locally dif-
ferentiable up to the first order prior and after each transition. Hence, the model captures
a variety of natural processes. In case complex kernel observations do not comply with
the generic assumptions the corresponding kernel results are ignored for the composition
of the proxy probability and the visualization of the inferred transition patterns. There-
fore, the kernel-based inference approach is considered as an appropriate diagnostic tool
to investigate complex indirect climate observations for multiple transitions as intended
in the following chapter.
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5 Bayesian inference about
Plio-Pleistocene climate
transitions in Africa

During the last 5 Ma the Earth’s ocean-atmosphere system passed through several major
transitions, many of which were tectonically induced, such as the intensification of the
Northern Hemisphere Glaciations through the closure of the Panama seaway and the
onset of the monsoon system through the uplift of the Tibetian plateau. Many of these
transitions may have had an impact on the evolution of humans and animals. A popular
explanation for the first appearance of the genus Homo is (or was) the aridification of
Africa in the course of the Northern Hemisphere glaciation. Apart from the fact that the
correlation does not necessarily imply causality, many attempts to establish a relation-
ship between climate and evolution fail because of the complexity of the climate records.
The kernel-based Bayesian inference approach used here helps to detect multiple transi-
tions in established records of Plio-Pleistocene African climate. The generic changes in
central tendency and dispersion identified in marine records of terrestrial dust coincide
with established global climate events: (i) the closure of the Central American Seaway
around (3.95-3.70) Ma, (ii) the change of the Indonesian throughflow at (3.25-3.15) Ma,
(iii) the intensification of the Northern Hemisphere Glaciation between (2.90-2.80) Ma,
(iv) the two-step establishment of the zonal sea-surface temperature gradient in the
tropics at (2.35-2.10) Ma and (1.70-1.50) Ma, associated with the reorganization of the
Hadley-Walker-Circulation, and (v) the Middle Pleistocene transition at (0.95-0.85) Ma.
These transitions towards a more arid and more variable climate in Africa coincide with
important steps in the evolution of humans and other mammals, and therefore provide
an important basis for the current discussion on climate-evolution linkages.

5.1 Introduction

Abrupt climate transitions provide an important insight into the dynamics of the climate
system of the Earth. Since such transitions possibly have dramatic consequences for the
biosphere, their investigation is of particular importance. On time scales of thousands
or millions of years, detecting and deciphering the causes of such climate transitions is
essentially difficult. The available observations are generally interpreted as the result
of multiple stochastic processes each describing a specific aspect of the Earth’s climate
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system or the data acquirement. Hence, their investigation requires the use of powerful
statistical methods in order to detect and understand underlying climate transitions.

A prominent example of the importance of climate transitions on the biosphere is the
study of the relationship between environmental change and human evolution in the Plio-
Pleistocene Africa. A popular hypothesis of such a relationship that has been proposed
in the past was about the intensification of the Northern Hemisphere Glaciations near
2.5 Ma causing a rapid burst of speciation in Africa (e.g., [I17,118]). Elisabeth Vrba used
the temporal coincidence of the intensification of the Northern Hemisphere Glaciations,
a shift towards a drier climate in Africa, and the replacement of forest antilopes by
species that graze only in dry, open savannas. Others have made this climate transition
responsible for the first appearance of the genus Homo [4],[39], an interpretation that has
recently been superseded by the discovery of the correlation of major speciation events
and the establishment of the Hadley-Walker-Circulation at around 2 Ma ago [5], [119].

Apart from the fact that the correlation does not necessarily imply causality, many
attempts to establish a relationship between climate and evolution fail due to the com-
plexity of the climate records. Therefore, an objective criteria is needed to study conjoint
events potentially imprinted in a set of paleoclimate records. We propose here the use
of a kernel-based Bayesian inference approach to accomplish a precise detection, generic
characterization and mutual comparison of multiple changes in Plio-Pleistocene African
climate [I16]. The method is applied to records of terrigenous dust fluxes to the oceans
around the African continent from the Ocean Drilling Programme (ODP) sites 659 [120],
721/722 [4, 39, 121] and 967 [122] presented in Fig. 5.1. The amount of dust eroded and
transported from the continent to the oceans is an established measure for wind strength
and aridity of the tropical and subtropical African region [4] [5].

The method used to analyze these proxy records is based on the stochastic modeling
of a generic transition, such as a break or a shift of the statistical moments of the data.
The assumption of a generic transition model allows to at least locally approximate
complex changes for a variety of natural processes. In our case, the generic model is
parametrized by the mean value (as a measure of central tendency) and the variance (as
a measure of variability). To investigate complex time series for an unknown number
of transitions, we define a window (also called the kernel) of a certain size (the scale of
the analysis), which we shift along the complete time series with a certain delay. For
each of these kernels, we perform a Bayesian inference to compute the probability of a
transition for every time point within the kernel. The mode of the resulting probability
indicates the transition location within the individual kernel and its width enables us to
derive an associated confidence interval at a given significance level (e.g. 95%).

The individual kernel probabilities are integrated over the complete time series in order
to derive a proxy probability of multiple transitions'. Thereby, the kernel probabilities

IFor the sake of clarity, the term prozy probability of transitions denotes a practical substitute
to a multi-transition posterior distribution (cf. Sec.4.1). The term prozy record denotes a practical
substitute to a direct climate observation (cf. Sec2.1.2).
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Figure 5.1: The map shows the locations of the studied ODP sites 659 in the Atlantic Ocean [120)],
721/722 in the Arabian Sea [4, [39] and 967 in the Mediterranean Sea [122] used as archives of Plio-
Pleistocene African climate and the Fast African Rift System (EARS). The wind patterns between
high (H) and low (L) pressure regions, presented for summer (JJA) and winter (DJF) conditions, are
considered as the major transport mechansims of the investigated terrigenous dust from the continent
to the deposit sites.

are weighted by kernel measures in order to precisely localize individual and distinctly
resolve multiple transitions. By comparing the proxy probability of transitions derived
for each proxy record, we search for conjoint changes characterized by the synchronicity
of the estimated transition locations and the congruence of the estimated transition
patterns. Furthermore, we distinguish between short-term and long-range changes by
computing the proxy probability of transitions for various kernel scales to study the
dependency of the detected transition events on the size of the window.
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5.2 Terrigenous dust as climate indicator

We investigate a representative set of marine records of terrigenous dust flux from the
African continent spanning the Plio-Pleistocene period. Dust flux in marine sediments
is an established proxy for aridity on the adjacent continent but also for the strength of
the wind transporting dust particles from the source on land to the sink in the ocean
[5]. The records are derived from the ODP sites shown in Fig. 5.1 off subtropical West
Africa (ODP site 659 [120]), the eastern Mediterranean Sea (ODP site 956 [122]) and the
Arabian Sea (ODP site 721/722 [4,39]), and enable us to investigate multiple time series
enclosing an integrated climate signal of Northern Africa over the last 5 Ma. Detecting
and quantifying dominant changes in the trends and the variability of these proxy records
yields potential correlations with global tectonic and climate shifts and supports the
identification of important linkages to the African climate.

Even though the measurement methods may not be similar between different ODP
records nor within one ODP record ([4], 39 120H122], discussion in [5]) and the age cali-
bration may not be optimal due to orbital tuning or relatively sparse age control points
[123], we consider the time scale as given. The measurement errors of the terrigenous
dust flux are indirectly incorporated in our Bayesian approach by the assumption of
additive Gaussian noise as the sum of intrinsic and external random fluctuations.

5.3 Bayesian transition detection

Paleoclimatic observations may be considered as a convolution of the actual climate sig-
nal (e.g. aridity on the African continent), the recording process (e.g. weathering, mo-
bilization, transportation and deposition of terrestrial dust in the ocean) and the data
reconstruction (e.g. whole-core measurements of magnetic susceptibility of sediments). A
schematic illustration of the basic processes underlying the generation of indirect climate
observations is provided in Fig.2.3. The deconvolution of the climate signal requires a
solid knowledge of these processes including their particular noise structure induced
by different factors such as uncertain age-depth relationship of paleoclimate archives
(e.g. [41 124, 125]), misinterpretation or miscalibration of climate proxies (e.g. ignor-
ing wind strength as an important factor controlling the flux of terrestrial dust to the
ocean in addition to aridity [122]), sediment mixing or bioturbation (e.g. [126-129]) and
analytical errors [28, 130} [131], that all together complicate the detection of important
climate transitions. In our study, we consider the climate signal as the primary com-
ponent of the time series. Since the noise may also contain important information on
climate variability, we will include it in our investigation of climate transitions. As a
general approach we assume a Gaussian model for the noise with a linearly varying mean
and standard deviation (i.e. heteroscedastic behavior) through time. Consequently, the
transition events are generically defined as a mutual break in the linear evolution of both
mean and variance.
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Table 5.1: To derive the kernel weight XLA, thresholds for the statistical kernel moments mllﬁ 44 are
assumed. Thus, the normality assumption in a kernel is considered to be valid in case the empirical
moments do not exceed these limits.

statistical | theoretical descriptive
threshold o
moment value characteristics
my 0 +0.01 mean
Mo 1 +0.06 deviation
ms 0 +1 skewness
My 3 +2 kurtosis

Established methods of transition detection in climate time series address adapted re-
gression techniques [13] 35], wavelet based concepts [10, 48], recurrence network analysis
[6] and Bayesian approaches [51) 00]. Different to these techniques our method, intro-
duced in [116] and further developed in this thesis, provides a probabilistic quantification
and a diagnostic visualization of multiple underlying generic transitions. Based on a lo-
cally linear, heteroscedastic transition model, we compute a proxy probability of generic
transitions given the proxy record, by employing a kernel-based (i.e. basically a sliding
window approach) Bayesian inference approach. In this way we are able to infer on
multiple transitions within complex time series while avoiding high computational costs.
Moreover, we are able to provide associated credibility measures about the location and
the existence of such events, as objective criteria to evaluate the detected transitions.
Additionally, we obtain in a natural way local model estimates to supportingly visualize
the evolution of mean and variability over the record and support our understanding of
the inferred transition characteristics.

5.3.1 Formulation of the proxy probability of transitions

The terrigenous dust records are sparsely sampled relative to the long time range they
span. For instance, from all records the ODP 659 signal exhibits the minimal average
time step of about 4.1ka over a time scale of 5Ma. Therefore, we assume that the
underlying events may be adequately approximated by the continuous generic transition
model My,cqr as defined in Egs. 3.7, 3.8 and illustrated in Fig.3.2 (A). As elaborated
in Chap. 4, the kernel-based approach is constructed on a global equidistant time grid
©; = [t1, ..., t,], thus providing a common grid of investigation to the three diversely

sampled ODP records. Given the kernel observations yl’\ of length A\ centered at time
point ¢ of the global time grid, the kernel posterior distribution p(9|ylk) of the transition

parameter 6 (Eq. 3.30) and the kernel estimates (19*)!5’\ = (B*, 0%, 8, é),'t’\ of the transition
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patterns (Eq.3.38) are computed. Moreover, the kernel Bayes factor BFt‘)‘ as defined
in Eq.4.7 is computed to construct the kernel weight b ft|’\ formulated in Eq.4.12. The
binary kernel weight XL)\ is given by Eq.4.14, whereas the normality assumption used
therein is verified by the higher statistical moments m‘l’\%?t as discussed in Sec. 3.4. The
normality assumption is considered to be valid in case all kernel moments are within the
corresponding thresholds given in Tab.5.1. Based on these kernel quantities, the proxy
probability of transitions {#} can be calculated at different kernel scales A as

Popr ({0} 1Y) = Z b XD p(Oly)) . (5.1)

i:tl'f‘%

Hence, for every terrigenous dust record a degree of belief about a generic transition is
assigned to each investigated time point t over the conjoint time grid ©;. A schematic

illustration of the computational steps of the kernel-based inference approach is presented
in Fig.5.2.

5.3.2 Specification of the kernel-based approach

In order to systematically investigate the terrigenous dust flux from the ODP sites 659,
721/722 and 967 for multiple transitions, we perform the inference approach at kernel
scales A between 0.25 and 1.25Ma with a sampling step 9, of 0.25Ma. The average
number of kernel observations <n|tA) vary with respect to the kernel scale A\ as well as
to the ODP records as summarized in Tab.5.2. The lowest considered kernel scale is
determined by the minimal number of kernel observations n; = 50 required to ensure
a robust inference performance (cf. Sec.3.3.2). The upper kernel scale is particularly
chosen to resolve at least two consecutive transitions in the shortest, 3 Ma-long record
of ODP site 967. For this reason, the scale of investigation should not exceed the half
of the smallest considered record. In order to reveal potential scale dependencies of the
changes, we consider the ratio between the kernel scale A\ and the sampling range Ay
of the transition parameter # as constant. The numerical resolution of the transition

Figure 5.2 (facing page): The schematic flow diagram describes the computational steps of the kernel-
based inference approach. (A) Here, the terrigenous dust flux of ODP site 721/722 is investigated
at the kernel scale A\ =1.0Ma. (B) Based on a model without and with a transition, we infer via
Bayesian inversion on the local mean (green), variance (red, represented as 95% quantile) and transition
0 (purple) of the kernel centered at t =1.50Ma. (C) The kernel probability of transition p(0|yl’\)
(blue) yield the MAP estimator 0, (purple) within its 90% confidence interval. To generate the kernel
weighting functions, the Bayes factor BFt"\ and the statistical moments mlf‘_ 4, are computed. (D) By
repeating the computations for kernels t € [1.50, 2.15] Ma, the sum of the weighted kernel probabilities
of transition (blue shaded) provide the proxy probability of transitions pys. ({0}|y!*) (blue line). Thus,
two transitions (purple shaded) at around 0, =(1.50-1.65) Ma and 0y =(2.10-2.25) Ma, are indicated by
the intervals enclosing at least 90% of the proxy credibility weight associated to each inferred event.
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5 Bayesian inference about Plio-Pleistocene climate transitions in Africa

Table 5.2: Depending on the considered kernel scale X\, the terrigenous dust records from the ODP
sites 659, 721/722 and 967 have in average a different number <n|t)‘> of kernel observations.

average number of kernel observations (nb:
kernel scale A [Ma]
ODP 659 ODP 721/722 ODP 967
0.25 61 139 679
0.50 121 279 1345
0.75 180 417 2020
1.00 240 553 2704
1.25 299 686 3356
total signal 1221 2757 8417
time range [Ma]: 5.0 5.0 3.0

parameter is given by the step size of the global time grid as 9 = 6; =b ka. The complete
numerical sampling of the kernel-based approach can be summarized as

Ay = [0.25, 1.25] Ma, 0y = 0.25Ma
A)\/—Ag = g)\, 5,5:59 = bka (52)
A, = [-0.5,1.0], S = 0.125.

Thereby, the sampling space Ag of the deviation parameters s is dynamically adapted
to the location specific restrictions defined in Eq. 3.13 during the computational process.

Since measurement techniques of climate proxies influence the distributional shape of
the resulting record y (e.g. the dust flux is naturally bounded at zero), it is a common
approach to additionally investigate the log-transformed signal In(y) to better meet the
model’s assumption of normality [107]. The kernel weight XLA ensures that departures
from normality for both, the original and the log-transformed signal, are of comparable

. L . A .
magnitude. Moreover, variation patterns of statistical kernel moments m;”,, provide
valuable information about the local signal noise and may be used to develop models with
more specialized distributional assumptions. Note, even though the log-transformation
weakens the influence of outliers, it also reduces the sensitivity of the method to detect
changes in the variability domain. A comparative study of both, the original and the
log-transformed record, is therefore not negligible but essential for a comprehensive

investigation.
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5.4 Results of the Bayesian inference

Based on the numerical sampling spaces defined in Sec. 5.3.2 the kernel quantities sum-
marized in Sec.5.3.1 are computed for each original and for each log-transformed ODP
record. The derived kernel quantities are interpreted and compared for all investigated
signals before composed to the final proxy probabilities of transitions. The proxy prob-
abilities are investigated for changes occurring in all ODP records within a common
time interval. In order to substantiate the interpretation of these events as conjoint
transitions, the corresponding inferred transition patterns are compared. The analysis
results of the ODP 659 signals for the smallest and largest kernel scales A=[0.25, 1.25] Ma
are exemplarily shown in Fig.5.3. The results of all ODP records are provided for all
investigated kernel scales in Fig. C.2-C.4.

5.4.1 Higher statistical moments - departures from normality

To derive the indicator function of normality XL)‘, we use the kernel estimators (19*),'5A to

standardize the kernel observations (Eq.3.53) in order to compute the statistical kernel
moments m'l’\_47t (Eq. A.9). In this way, the generic transition model is considered a
suitable local approximation to the kernel observations if none of the empirical kernel
moments exceeds the predefined thresholds from Tab.5.1. The kernel indicator func-
tion is presented over the global time grid ©; at the smallest and largest kernel scales
A=[0.25, 1.25] Ma for all investigated ODP signals in Fig. C.1. Apart from some isolated
departures, the kernel mean m'l’?t and variance m‘;"t are relatively close to the theoretical
values of a standard normal distribution, indicating that the normality assumption is
considered to be true for most signals. General deviations from the theoretical values
are obvious in the values of the kernel skewness mg)‘t and kurtosis m‘ﬁt, indicating more
asymmetric, long-tailed kernel distributions. On the one hand, however, these effects
are compensated by the log-transformation of the record, e.g. in the ODP 659 record
since around 2.5 Ma. On the other hand, these effects are locally enhanced by the log-
transformation, e.g. in the ODP 721/722 record at around 1.7 Ma. Irrespective of the
specific scale or the deviating moment, the maximal attained amount of kernels not con-
sidered to be suitably approximated by the generic transition model (XL)‘ = 0) is listed
in Tab. 5.3 for each ODP signal.

An explanation for gradually increasing deviations from normality, which appear on
all scales A\, may be due to possible changes of measurement techniques of the terrigenous
dust flux within an individual ODP record. Moreover, in particular singular deviations
from normality may be attributed to complex patterns, which are not sufficiently ap-
proximated by the assumed generic transition model. These two effects presumably
explain the deviation from normality in the log-transformed ODP 967 record, where the
kernel m'l’?t and variance m‘;:t differ significantly from the theoretical values of a standard

normal distribution (cf. Tab.5.3). Also the original ODP 721/722 record is better ap-
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Table 5.3: The maximal attained number of kernels for which the assumption of normality ( le‘ =0),

the existence of a transition (b ftp‘ = 0) or both are considered as not to be true for the investigated
signals of the ODP records 659, 721/722 and 967, irrespective of the specific kernel scale \.

) maximal attained number of kernels with:

signal N0 %] bR =0 %] P-bfr =0 [%]

X 0 o] X 0
Y659 52 20 57
In(yeso) 2 19 19
Y721/722 4 2 5
In(Yra1/722) 18 4 19
Yoe7 10 2 12
In(yosr) 61 0 61

proximated by the generic transition model than the log-transformed signal. In contrast
to that, the normality indicator function accepts more kernels for the log-transformed
ODP 659 record than for the original signal.

5.4.2 Bayes factor - evidence for the existence of a transition

In order to derive the kernel weight b ft|’\ indicating the existence of a transition, we
compute the kernel Bayes factor BF, (see Fig.5.3(C,D)). The obtained BF)* values
are marked as empty circles in case the normality assumption is not considered as to be
true in the same kernel (X;':/\ = 0). The shaded area —5 < BFJ’\ < 5 includes the values
that support none of the assumed models, while the values underneath that area favor
the transition model over the no-transition model, and vice versa (cf. Sec.4.1). In all
ODP records, we observe a change in the evidence of the transitions with varying kernel
scale A. The most dominant transitions occur after 3.0 Ma, including the most obvious
two-step transition at around 2.2 Ma and 1.6 Ma. The kernel Bayes factors BFJ’\ that are
discarded due to the normality indicator function XLA = 0, are often captured by the other
transformation of the signal, for instance the two-step event in the ODP 967 record as well
as the entire ODP 659 record since 3.0 Ma. Hence, the investigation of the original and
log-transformed signals prove to be supportive by providing complementary information
to the transition detection analysis. The kernels in which a no-transition or none of the
proposed models is favored by the Bayes factor help us to resolve consecutive transition
events by ignoring the complete kernel result via the weight b ft"\ =0 (cf. Eq.4.12). In
our analysis, however, only a small number of kernels suggest a no-transition model as
indicated in Tab. 5.3.
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Figure 5.3: The inference results are exemplarily presented at the smallest and largest kernel scale
A =[0.25,1.25] Ma for (A) the ODP 659 record and (B) the log-transformed signal. (C,D) The kernel

Bayes factors BFt"\ indicate the existence of a transition for values underneath the shaded area. In
case the generic transition model is considered not to adequately approximate the kernel observations
( xL)‘ = 0), the corresponding BFt‘)‘ is marked as an empty circle. (E,F) The derived proxy probability of
transitions (blue) indicates the final degree of belief about underlying transitions. The proxy probability
only weighted with respect to the Bayes factor (grey) illustrates the concept of our kernel-based inference
approach: inference results are removed from the analysis in case the generic transition model does not
sufficiently describe the complex observations. (G,H) The estimated kernel mean (green) and variability
in terms of the 95% quantiles (red) visualize the transition patterns for kernels complying with the basic

assumptions of the approach, i.e. Xt)\ - bft‘/\ # 0.

5.4.3 Proxy probability of transitions - location and credibility
of transitions

The primary purpose of our analysis is the composition of the proxy probability of

transitions p({0}|y*) as defined in Eq.5.1 and elaborated in Sec.4.1. This probability

represents our degree of belief about the estimated transition events actually existing in
the terrigenous dust records. The analysis results of the ODP 659 record for the smallest
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and largest scale A are exemplarily shown in Fig. 5.3. The results for all investigated ODP
signals at all employed kernel scales are provided in Fig. C.2-C.4. In general, consecutive
transitions are successfully resolved if the proxy probability of transitions approaches
zero between adjacent modes, provided the number of data points between those modes
is sufficiently large. This numerical fact explains the occurrence of relatively broad local
modes in the proxy probability of the ODP 659 record, whereas the ODP 967 record
exhibits well-defined local modes. In order to discard spurious transitions caused by
random fluctuations rather than by a deterministic cause, e.g. a climatic event, we only
consider transition events that occur on multiple scales. And more precisely, the term
transition event refers the time interval enclosing at least 90% of the credibility weight
of the corresponding probability mode. Hereby, the relative amplitudes of the proxy
probability of transitions may be interpreted as indicators for the relative dominance of
the detected events at a constant scale. Using this criteria, multiple dominant transition
events occur in the dust records at around (3.95-3.70) Ma, (3.35-3.15) Ma, (3.10-3.00) Ma,
(2.90-2.80) Ma, (2.35-1.50) Ma, (1.00-0.80) Ma and (0.70-0.60) Ma.

To better understand the consequences of ignoring kernels that do not satisfy the
normality criterion XL)‘, the probabilities of transitions weighted only with the transition
existence criterion b ft‘A are additionally presented in Fig.5.3 (E,F). Even though the
proxy probability weighted only by b ftl’\ clearly resolves multiple events reoccurring in
the fully weighted proxy probability of the log-transformed signal, these findings are
ignored within our inference approach. This is due to the fact that the generic transition
model does not adequately capture the corresponding changes for this signal type.

Since not all indicated events may be properly resolved, in particular for the ODP 659
record, we survey the inferred transition patterns. In this way we aim to better under-
stand the performance of the kernel-based inference approach, to further substantiate
the resolution of pronounced events and to reasonably interpret synchronous events as
conjoint transitions.

5.4.4 Estimated transition patterns - structures of transitions

In addition to the synchronicity of inferred changes in the terrigenous dust records,
we compare the structure of the synchronous events as an additional criterion for the
significance of conjoint transitions. As an example, the temporal variation of the mean
(green) and variance (red dashed) of the ODP 659 record is show in Fig.5.3 (G,H). The
estimated models are only displayed for kernels satisfying the normality assumption
and the existence of a transition, i.e. XL/\ - b ft|’\ > (. The estimated kernel models
reveal significant changes in mean or the variance at the detected transitions in all ODP
records as presented in Fig. C.2-C.4. Therefore, the structures of the transition events
in the dust records exhibit patterns that we can use to identify distinct events within
a signal, to compare the distinct events between different signals and to understand

the shape of the corresponding proxy probability modes. Note, that each comparative
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conclusion between the ODP signals has logically to be drawn at the same kernel scale of
investigation. For instance, we find events comprising a local minimum in the variance,
e.g. at around 2.8 Ma in ODP 659 and 721/722 signals causing a relatively narrow proxy
probability mode. In contrast, a rather gradual transition in the mean, such as at around
1.6 Ma in the ODP 659 record, causes a rather broad proxy probability mode.

Correlating the estimated transition patterns within the interval (2.35-1.50) Ma across
the ODP records 659 and 721/722 enables us to resolve two distinct transitions around
(2.35-2.10) Ma and (1.70-1.50) Ma. Comparing the estimated structure of the transitions
provide evidence to correlate events which are slightly different in their incidence. Hence,
we correlate the events at around (2.10-2.00) Ma and (1.85-1.70) Ma in the ODP 967
record with the events at around (2.35-2.10) Ma and (1.70-1.50) Ma of the ODP 659
and 721/722 records. By employing these and other inferred transitions, we are able
to identify conjoint events occurring in the terrigenous dust records and discuss their
significance in Plio-Pleistocene African climate based on the comprehensive overview
presented in Fig.5.4.

5.5 Discussion of the identified conjoint transitions

Our Bayesian algorithm identifies multiple significant transition events in the terrigenous
dust records of the OPD sites 659, 721/722 and 967 documenting tropical and subtrop-
ical African Plio-Pleistocene climate. Based on the synchronicity of these events, the
similarity of their scale dependencies and the congruence of their estimated transition
patterns, we conclude that these transitions are continent-wide climate events.

The first criterion to classify these transitions, the synchronicity of their occurrence,
helps to recognize events which are representative for the climate of the entire African
continent. We regard a transition to be synchronous if the transition emerges in all
records independently from the scale of analysis within a constant time interval based
on a given significance. According to this criterion, we find synchronous transition
events at around (3.95-3.70)Ma, (3.35-3.15) Ma, (3.10-3.00) Ma, (2.90-2.80) Ma, (2.35-
2.10) Ma, (1.70-1.50) Ma, (1.00-0.80) Ma and (0.70-0.60) Ma. For the second criterion
to characterize these transitions, we survey the scale dependency of these events. In
climatological terms, we distinguish between short-term events from those which occur
at long time scales. For example, the transition at around (2.90-2.80) Ma looses its
relative importance on larger scales, indicating a short-term effect of the event. In
contrast, the event at around (2.35-2.10) Ma becomes more important on longer time
scales. Using the third criterion, the congruence of the estimated transition patterns, we
compare the temporal variation of the statistical parameters mean and variance through
the synchronous events of all records. In climatological terms, we search for those events
characterized by similar structures of transitions indicating a similar effect on the African
climate. As an example, at around (3.35-3.15) Ma both the mean and the variance in the
dust records of ODP 659 and 721/722 are increasing, remembering the dust record of
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ODP 967 has no data before 3 Ma. A comprehensive summary of all important findings
of the kernel-based inference approach is presented in Fig.5.4.

While comparing the congruence and the scale dependencies of the events for the
different records, we claim synchronous transitions even if they are slightly out of phase.
We believe that this approach is feasible in the light of the uncertainties of the dust
records, both in their age models and the interpretation of the dust flux as a climate
proxy itself (e.g. [5]). We therefore correlate the transitions at (2.35-2.10) Ma and (1.70-
1.50) Ma documented in the dust records of ODP 659 and 721/722 with the congruent
transitions at (2.10-2.00) Ma and (1.85-1.70) Ma identified in the dust record of ODP
967. The transitions initiate a decline of mean and variance followed by a pronounced
long-term increase of both properties persisting until about 1.0 Ma.

The multiple transitions identified in the dust records of the OPD sites 659, 721/722
and 967 coincide with established transitions in proxy records of Plio-Pleistocene African
climate. The transition 6 at around (3.95-3.70) Ma, which is dominant in the Atlantic
record of ODP 659, and the transition 65 around (3.35-3.15) Ma, which is dominant in
the Arabian Sea record of ODP 721/722, correlate with important paleo-environmental
shifts between (4.0-3.0) Ma in Eastern Africa towards more arid climate, accompanied
by a transition from predominant C3 (woodland) to Cy (grassland) vegetation [132], [133].
Furthermore, the pronounced transition g in the Atlantic Ocean coincides with a cooling
event punctuating the upwelling at the South African margin associated with the grad-
ual closure of the Central American Seaway (CAS) [134]. Even though the importance
of the CAS for continental African climate is under debate [135], simulation studies sup-
port a CAS induced large-scale thermal redistribution in the Atlantic Ocean leading to
modified upwelling patterns [I36] and a shallowing of the tropical thermocline [I37]. The
resulting change of tropical, coastal Atlantic SSTs are considered as a determining factor
of African environmental conditions [4, I38] due to modified local climate conditions.
From 3.50 to 2.95Ma, including the event 65, planktonic foraminifera records reveal a
gradual decrease of Indian Ocean SSTs [I39], potentially influencing the coastal Atlantic

Figure 5.4 (facing page): For the terrigenous dust fluxes of the ODP sites 659, 721/722 and 967
(black) the kernel-based inference approach yields the proxy probabilities of transitions for multiple
kernel scales (blue shaded). By integrating these probabilities over the kernel scales a cumulative
credibility expression (purple line) is derived enhancing the modes of the identified conjoint transitions
016 (purple shaded). For each conjoint event 0; the inferred transition patterns, i.e. mean (green)
and variability (red), are presented at a particular scale \;. These changes coincide with established
climate events and are associated to: 0 at (3.95-3.70) Ma to the closure of the Central American Seaway
(A¢ =0.50Ma), 05 at (3.35-3.15) Ma to the change of the Indonesian throughflow (A5 =0.25Ma), 04 at
(2.90-2.80) Ma to the intensification of the Northern Hemisphere Glaciation (A4 =0.50 Ma), 632 at
(2.35-2.10) Ma and (1.70-1.50) Ma (A3 .2 =0.75 Ma) to the step-wise establishment of the modern state
tropical SST gradients, associated with the reorganization of the Hadley-Walker-Circulation, and 0,
at (1.00-0.80) Ma to the Middle Pleistocene transition (A\; =1.00Ma). Based on the congruence of the
transition patterns, we correlate the ODP 967 events 6} 5 at (2.10-2.00) Ma and (1.85-1.70) Ma with the
double transition 03 ». l
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SST patterns [140}, 141]. Simulation studies support this shift in the thermal balance
via a shallowing of the Indonesian seaway and hence the reduction of the Indonesian
throughflow (ITF) as a major cause for the East African aridification [132]. Our find-
ings of an important climate transition is corroborated by a recurrence network study on
the same dust records, suggesting a dynamical transition at around (3.35-3.15) Ma, also
interpreted as a consequence of the reduction of the ITF [6]. The authors of this study
argued that the reduced ITF had an effect on the convective precipitation patterns over
subtropical and tropical Africa.

In the early Pliocene, we detect a synchronous small-scale (short-term) event 6, at
around (2.90-2.80) Ma. This event occurred within the time period of the gradual initi-
ation of the Northern Hemisphere Glaciations between (3.15 -2.85) Ma as inferred from
ice-rafted debris [142], 143] and the global ice volume [144]. The impact of the Intensi-
fication of the Northern Hemisphere Glaciation (INHG) at around 2.75Ma on African
climate is debated [4] 5, [39], with a weak tendency towards a more arid climate in West
Africa rather than in East Africa at around 2.75 Ma, as pollen data suggest [145], [146].
In contrast to the small-scale event ¢, at around (2.90-2.80) Ma, our analysis reveals
two prominent events 03 and fy at around (2.35-2.10) Ma and (1.70-1.50) Ma in the
Atlantic Ocean (ODP 659) and the Arabian Sea (ODP 721/722), respectively, and at
around (2.10-2.00) Ma and (1.85-1.70) Ma in the Eastern Mediterranean Sea (ODP 967).
Previous studies have already identified an important climate transition between (2.25-
1.60) Ma [4H6] and associated these with the establishment of the Walker-Circulation
(WC) increasing environmental variability in the tropics [3]. In contrast with these
earlier studies, however, our results clearly suggest a two-step transition rather than a
single event.

While trying to understand the effect of the establishment of the WC on Plio-Pleistocene
African climate, the relative importance of meridional and zonal SST gradients are the
most dominant factors. During the Pliocene, tropical climate was characterized by pre-
vailing El Nino-like conditions indicated by relatively symmetric zonal and significantly
reduced meridional SST gradients [147HI50]. At around 3.6 Ma, the increase of low-
latitudinal SST gradients begins [I51] and intensifies between (2.2-2.0) Ma [I52]. The
modern meridional SST patterns established around (2.2-2.0) Ma [150, 152, [153]. The in-
crease of the meriodional gradient strengthened the Hadley-Circulation causing stronger
trade winds [I50} 152, 154, 155]. Moreover, the zonal SST contrast over the Indian
Ocean may have contributed to the gradual strengthening of the Asian monsoon [150],
supported by a dynamic transition in the Indian monsoon patterns around (1.9-1.5) Ma
[43].

Simulation studies of atmospheric general circulation models demonstrate the effect
of the zonal and meridional SST gradient changes on aridification of Plio-Pleistocene
African climate [153, 154]. On shorter (Milankovitch) time scales, the two-step re-
organization of the ocean-atmosphere system causes rapid fluctuations between wet
and dry conditions, as suggested by lake-level records in the East African Rift Sys-
tem (EARS) with pronounced humid periods between (2.1-1.6) Ma [156], and complex
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paleo-vegetation patterns linked inter alia to oscillating precipitation [I57].

The most recent conjoint event ¢, at around (1.00-0.80) Ma coincides with the Middle
Pleistocene transition (MPT) around (1.2 - 0.7) Ma. The MPT marks a profound shift of
glacial-interglacial sequences from low-amplitude 41ka to large-amplitude 100 ka cycles
[4, 158]. At this time, the tropical SST patterns experienced a resembling variability
shift [I58], [159], which is reflected in both the time and frequency domain of terrestrial
dust records [4] 39], again accompanied by another episode of high but fluctuating lakes
in the EARS between (1.1-0.9) Ma [156], [160].

5.6 Conclusion

We used a kernel-based Bayesian inference approach to detect generic transitions in the
mean and variability of terrigenous dust records from the ODP sites 659, 721/722 and
967. The estimated conjoint transition events are interpreted as major shifts towards a
more arid and more variable climate in Plio-Pleistocene Africa. The most remarkable
finding of this study is the establishment of the Walker-Circulation and its influence
on African climate as a two-step event centered at (2.35-2.10) Ma and (1.70-1.50) Ma,
which has not yet been resolved by other studies. The well-constrained chronology of
the two-step increase in aridity and variability contributes to the current discussion on
climate-evolution linkages at around 2 Ma ago, which has recently shifted away from
the outdated correlation of the first appearance of the genus Homo near the onset of the
high-latitude glaciations [161].
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6 Summary

In this thesis a kernel-based Bayesian inference approach is developed to decipher changes
in complex climate observations. For the purpose of investigating direct as well as
indirect climate observations a generic transition model is proposed. Moreover, a degree
of belief about multiple transitions is formulated in order to facilitate the comparison of
the inference results between different time series.

The first step towards the intended approach is the design of a generic transition model
as a first order approximation to the statistical moments of complex observations. In
principle every time series that is at least locally differentiable up to the first order prior
and after the change may be approximated by the generic model. The beneficial model
design and the choice of least informative prior distributions enables the separation of
the Gaussian from the intrinsic non-linear part of the inference task. Besides clarifying
the structure of the model, the formulation speeds up the computations considerably.
The basic inference approach proves to convincingly infer on an underlying change,
independent of the specific transition geometry. In particular the transition parameter
proves to be robust even for sparse data situations and in the presence of outliers. Based
on the analysis of synthetic time series a minimal empirical threshold of 50 observations
is recommended to ensure a reliable inference on the complete transition patterns.

The suitability of the generic transition model is investigated for direct climate obser-
vations of the annual Nile river level in Aswan, Egypt, and the annual mean temperature
measured at a weather station in Tuscaloosa, Alabama, both comprising documented
changes. For the Nile observations, the approach correctly infers on a single underlying
transition. For the temperature observations, the approach correctly infers on one out
of four underlying transitions. The consideration of the normality assumption clearly
indicates that the generic transition model does not sufficiently capture the time series
comprising more than one change and motivates the generalization of the approach in
order to investigate time series for an unknown number of changes.

By introducing a time dependent prior distribution for the transition parameter the
basic Bayesian inference is extended to a flexible kernel-based approach. For the purpose
of adequately combining the kernel posterior distributions of the transition parameter
the kernel Bayes factor is used to formulate a kernel weight indicating the existence of
a transition within the kernel. Hence, the composition of the weighted kernel posterior
distributions yields a proxy probability to a multiple transition posterior distribution
given that each kernel comprises maximal one underlying transition. Since for climate
observations neither number nor location of the changes are a priori known the inference
approach essentially needs to be applied at multiple kernel scales. Thereby, a further
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kernel weight is introduced indicating the suitability of the generic transition model as
an approximation to the data at a particular scale.

The previously investigated direct observations are reanalyzed with the extended infer-
ence approach. For the Nile observations, the approach confirms one underlying change.
For the temperature observations, the approach infers on two out of four changes cor-
rectly. Here, the limitation of the approach with respect to the number of available
observations per kernel is revealed. To resolve the underlying changes kernel scales are
required that contain less observations than the recommended minimal amount for a ro-
bust inference. The proposed kernel weights achieve to remove the kernel distributions
from the analysis for kernels observations that do not comply to the basic model as-
sumptions. On the one hand, the kernel measures thus offer an essential outlier removal
and on the other hand, provide further insight into the specific deviations, in terms of
statistical moments, from the basic model assumptions.

Based on the acquired understanding of the performance and requirements of the
introduced kernel-based Bayesian inference, the approach is proposed as a powerful
diagnostic tool to investigate real time series for multiple transitions. For this reason,
the approach is used to investigate a set of terrigenous dust fluxes obtained from the
ODP sites 659, 721/722 and 967 of the last 5Ma. The terrigenous dust is considered
as an indicator of the tropical and subtropical African climate and thus offers indirect
climate observations of the Plio-Pleistocene period. By investigating the synchronicity
of the inferred transitions, the congruence of the corresponding transition patterns and
the scale dependency of these events, conjoint changes are identified that are interpreted
as continent-wide climate events.

Based on findings from previous analysis approaches on various proxy records and
simulation studies the conjoint changes are associated to established climate events:
(i) the closure of the Central American Seaway around (3.95-3.70) Ma, (ii) the change
of the Indonesian throughflow at (3.25-3.15) Ma, (iii) the intensification of the North-
ern Hemisphere Glaciation between (2.90-2.80) Ma, (iv) the two-step establishment of
the zonal sea-surface temperature gradient in the tropics at (2.35-2.10) Ma and (1.70-
1.50) Ma, associated with the reorganization of the Hadley-Walker-Circulation, and (v)
the Middle Pleistocene transition at (0.95-0.85) Ma. The most remarkable finding is
the well-constrained two step increase in aridity and variability associated to the estab-
lishment of the Walker-Circulation. Thus, the investigation contributes to the current
discussion on climate-evolution linkages in tropical and subtropical Africa at around
2 Ma ago.

In conclusion, the introduced kernel-based Bayesian inference approach realizes a pow-
erful diagnostic tool to investigate direct and indirect climate observations for multiple
generic transitions. In principle a variety of natural processes can be investigated, how-
ever, it might be reasonable to provide a set of generic transition models in order to
take as well into account specific process properties, e.g. generic correlation patterns.
An appropriate way to select the most suitable generic process model to an individual
transition may then be accomplished by a kernel measure based on the Bayes factor.

102



By unraveling the locations, patterns and scale dependencies of generic transition events
the introduced Bayesian approach offers an important insight into multiple changes po-
tentially underlying direct and indirect climate observations.
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A Computations and definitions

A.1 Computational steps used within the program

Cholesky decomposition of the covariance matrix

Every symmetric and positive-definite matrix may be factorized into the product of a
unique lower triangular matrix and its transpose. Thus we may decompose the inverse
covariance matrix Q71 as

Q' = Lo L, (A1)

to speed up our numerical computations. The exponent of the likelihood function £
defined in Eq.(3.16) may be rewritten as the quadratic norm

(y = FB)" Q7 (y — FB) = | Lo (y — FB)|, (A.2)

from which we benefit in the computation of the BLUP.

QR decomposition to obtain the BLUP

To solve the linear least square problem in Eq.(3.18) we use the common strategy of
the QR decomposition. Any matrix A € R™*" with m > n and rank(A) = n may be
factorized into a product of an orthogonal matrix () € R™*™ and an upper triangular
matrix R € R"™*"

A=QR=[Q1, Q]

]"31 (A.3)

The matrices may be further partitioned into the orthogonal submatrices (); € R™*"™ and
Q) € R™ (™= with orthogonal columns and the upper triangular matrix R, € R™*"
and the zero matrix O € R(™™*"  Since the orthogonal matrix does not change a
norm, we may rewrite Eq.(A.2) as

QLo (y = FB)IIP = Q" Ly — Q" Lo FBI* =

= |Q"Lyy — Q"QRB| =
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Ry

o |2

T T
H [ ng ] L1y — [ ng ] [Q1, Q2]
2 2

= ||QTLE vy — RiB| + ||QF LE-1y||* = min (A4)

by using the QR decomposition of
2 _
|LG- F|| = |Q1’i|]> = R{ Ry = FTQ7'F.

The minimum condition in Eq.(A.4) may be used to determine an alternative formulation
of the BLUP as defined Eq.(3.18) within the framework of the employed decompositions,

B =R'QTLL 1y . (A.5)
A.2 Supplementary computations

Jeffreys prior of the liner model

The Fisher information matrix for the parameter vector ¥ = (3, 0,6, s) and the likeli-
hood function £ defined in Eq.(3.16) can be written as:

[/ PI(L@]y) PIn(L@y) *n(LB¥y)) *n(L(Yy) \ ]
021 9B0c 0B00 9B0s
PIn(LWy)  PIn(L(Wy))  P*In(L(I]y))
0%c Bl 0o 0s
J() =-E (A.6)
PIn(LWy)  PIn(L(Iy))
520 900s
: 2In(L(D]y))
i : o o s |
The derived diagonal elements are
[0°In (L(I]y)) ] o1
—E _T_ = ;F Q'F = J11
[0%In (L(Y|y))] n o
Bl | T T
[9%In (L(9]y))] 1 R) o0 00 1 (0F \" . OF
—E|—— X = o (Q e -l 0 = == Ol —pB=j
26| 27"( 526 26 89>+02(89'B> op" 7
[0%In (L(Fy))] 1 0?Q o0 00
I 0%s | 2" ( 0%s Js 8s> Jaa




and the non-zero, symmetric off-diagonal elements are

o [ EO] g [P G L <(6F B)TQ_1F+FTQ_18_FB)

0300 0003 202 \ \ 00 00
= le - j31
P?ln (L(Yy)) 0%In (L(Fy)) 1 | 0%Q L0 09
) A ad GAL 20 R AL 22N e O S g e
[ 2005 } [ 9500 } 2! < 9500 Os 89)
= J34 = Ja3-

The determinant of the Fisher information matrix may be written as

N

|T(9)|2 = (joo - (J11733744 — J11J34743 — J13J31J44)) (A.7)

and therefore leading to a rather complex expression dependent on all parameters of the
model.

A.3 Supplementary definitions

Higher statistical moments
The statistical moment m; of order ¢ about a value ¢ and of the probability density
function p(z) is generally defined as

—+o00

m;(c) = /(:p —¢) - p(x)dz =E [(z — ¢)'] . (A.8)

—0o0

Based on these formula we derive the theoretical m; and empirical m/ higher centralized
and standardized statistical moments of a normal distribution:
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B Numerical settings

To achieve a convenient text flow all employed numerical settings for generating artificial
observations (model setting) and, if performed, for inferring on the underlying model
(computational setting) are listed in the following. Besides the model’s parameters
9 = (B,0,0,s), we summarize the number of observation points n.s, the numerical
sampling ranges Ad and sampling step size 09.

B.1 Strategy to obtain the numerical sampling
spaces

The marginal posterior density p(6, s|y) of Eq. (3.29) can be derived by pure analytical
integration. This probability distribution depicts the most objective marginalization
of the joint posterior density since so far no numerical approaches need to be used
to evaluate the integration. Consequently, we begin the inference by estimating the
transition parameter # and the deviation parameters s of the deviation. The numerical
sampling range Ay of the transition 6 is chosen as maximal, namely we assume all time
points t; of the series as possible locations of the transition, except the first and last
one. To avoid side effects we additionally ignore the first and last ten data points.
The chosen sampling step 06 defines the resolution of our Bayesian inference. For the
deviation parameters the common sampling range A, = A, = A and reasonable
sampling steps ds; = sy = ds may be roughly estimated from the obvious variability
of the observations. It is noteworthy, that the choice of a common sampling range of
the deviation slope parameters prior s; and after sy the transition event is motivated
by its intuitive interpretation. Any deviation from the diagonal of the parameter space
A, points to a variability change at the transition. To ensure the subjective choice of
the deviation sampling as reasonable, the derived marginal posterior p(s|y) has to be
checked for artificial cutoffs and the sampling grid needs to be adjusted if necessary.

In order to minimize the computational costs for the higher-dimensional marginal
posterior densities p(0, s, o|y) and p(0, s, B|y) we use the gained information about the
transition and deviation parameters. The sampling range Ay is reduced to the 95%
confidence interval Clygs of the MAP estimate 0. The sampling range A, is reduced
to the minimal lower and maximal upper limit of the Cljgs of the MAP estimates §;
and 8. The numerical sampling ranges of the scale A, and the mean parameters Ag,
with 7 = 0,1,2 are centered at the PLH and BLUP estimates ¢* and 8*, derived from
p(0, s|y). The remaining information of the numerical setting, that is the extension of
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Table B.1: General strategy to evaluate the numerical sampling grids, i.e. the range A and step 9,
necessary for the computation of the marginal posterior densities. Based on the confidence intervals
Clo.g5 of the MAP estimates 6, §, and 35 and the PLH o* and BLUP B* estimates derived from (0, s|y)
the adjusted sampling grids may be constructed. The variables z(.y and ¢(.y may be chosen with respect
to the obvious behavior of the time series.

step 1: initial numerical setting to compute p(0, s|y):

parameter 0 (s1,582) o 5o (51, B2)
sampling range A | [10.0,90.0] [0.00, 0.50] - - -
sampling step § 0.5 0.01 - - -
derived estimates 6 (81, 82) o* B B, B35
step 2: adapted setting to compute p(0, s,o|y) and p(0, s, B|y):
parameter 0 (s1,82) o Bo (51, B2)
/ 5| [min("), max(")] ; . \
adapted range A’ | Clg g5 of 6 ; . 1 [0.0,0" + 5] | B5 £ wg, | Bio T2,
Clp.g5 of 81 and §9
adapted step ¢’ 0.5 0.01 0g 95 981,
derived estimates 0’ (8}, 85) o' Bh 3, B,

the sampling ranges and steps, may be chosen with respect to the obvious behavior of
the time series. Similar to the common sampling of the deviation slopes we choose a
common sampling grid for the mean slopes Ag, = Ag, = Ag ,. Thus, any deviation
from the diagonal of the parameter space Ag, , points towards a trend change at the
transition. Again, the marginal posteriors have to be checked for artificial cutoffs and the
sampling grids need to be adjusted if necessary. The numerical setting to compute the
marginal posterior density p(6, s|y) given the observations y of Fig3.2 and the strategy
to obtain the adapted setting to sample the high-dimensional marginal posterior densities
p(0,s,0ly) and p(6, s, Bly) are exemplified in Tab. B.1.



B.2 Numerical settings of investigated synthetic
time series

Table B.2: Setting of the transition model My, cq analyzed in Sec. 3.3.2 over the numbers of observa-
tions n = 10,12, ..., 200 within the sampling space given below.

parameter sampling space
value

Y, range Ay, step dy,
0 100 [10.0,190.0] 1.0
1 -0.003 | [-0.03,0.03] 0.005
So -0.005 | [-0.03,0.03] 0.005
o 14 - -
Bo 4.00 |- -
B -0.14 |- -
B 0.10 |- -

Table B.3: Setting of the transition model My,.qr analyzed in Sec.3.3.3 within the sampling space
given below.

parameter sampling space
value
9, range Ay, step dy,
0 50 [5.0,95.0] 0.5

s1 0.15 |[-0.10,0.40] 0.05
S 0.05 |[-0.10,0.40] 0.05

o 1.5 - -
5o 10.0 |- -
b1 0.6 - -

Ba 0.3 - -




Table B.4: Setting of the transition model My,¢qr, analyzed in Sec. 4.1 within the sampling space given
below.

parameter sampling space
value
9, range Ay, step Oy,
0 80 given by p,(0) 1
S1 0.18 |[-0.20,0.50]  0.05
So 0.04 |[-0.20,0.50]  0.05
o 1.2 - -
Bo 12.0 |- -
51 024 |- -
B2 0.02 |- -

Table B.5: Setting of the transition model with the mean is defined as F3 = 1440.2-¢2° 4+ 0.1- ¢} —

0.25-¢4%°40.3-¢1%0 and the variance as 0*Q = [1.6(1 + 0.2 - ¢*0 4 0.03 - ¢1° — 0.05 - {1%° + 0.1 - C}_GO)]Z,
analyzed in Sec. 4.2 within the sampling space given below.

parameter sampling space
value
¥, range Ay, step Oy,
0 - given by p(0) 1
S1 - [-0.20,0.50]  0.05
So - [-0.20,0.50]  0.05




C Results and Figures
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Figure C.1 (facing page): The empirical kernel moments mll)‘_ 4+ computed for the dust signals from

the ODP sites 659, 721/722 and 967 exemplarily presented for each kernel center t at the smallest and
largest kernel scales A =[0.25,1.25] Ma. The black dashed lines mark the theoretical statistical moments
of normally distributed observations (cf. Tab. 3.4). The shaded areas indicate the predefined thresholds
for which departures from normality are considered as negligible (cf. Tab5.1).
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Figure C.2 (facing page): The complete analysis results for (A) the ODP 659 record and (B) the
log-transformed signal for all investigated kernel scales . (C,D) The kernel Bayes factors BFt‘)‘ indicate
the existence of a transition for values underneath the shaded area. In case the generic transition model
is considered not to adequately approximate the kernel observations ( Xlt)\ = 0), the corresponding BFt‘”\
is marked as an empty circle. (E,F) The derived proxy probability of transitions (blue) indicates the
degree of belief about underlying transitions. (G,H) The estimated kernel mean (green) and variability
in terms of the 95% quantiles (red) visualize the transition patterns for kernels complying with the basic

assumptions of the approach, i.e. XtA - bft‘A # 0.
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Figure C.3 (facing page): The complete analysis results for (A) the ODP 721/722 record and (B) the
log-transformed signal for all investigated kernel scales . (C,D) The kernel Bayes factors BFt‘)‘ indicate
the existence of a transition for values underneath the shaded area. In case the generic transition model
is considered not to adequately approximate the kernel observations ( Xlt)\ = 0), the corresponding BFt‘”\
is marked as an empty circle. (E,F) The derived proxy probability of transitions (blue) indicates the
degree of belief about underlying transitions. (G,H) The estimated kernel mean (green) and variability
in terms of the 95% quantiles (red) visualize the transition patterns for kernels complying with the basic

assumptions of the approach, i.e. XtA - bft‘A # 0.
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Figure C.4 (facing page): The complete analysis results for (A) the ODP 967 record and (B) the
log-transformed signal for all investigated kernel scales . (C,D) The kernel Bayes factors BFt‘)‘ indicate
the existence of a transition for values underneath the shaded area. In case the generic transition model
is considered not to adequately approximate the kernel observations ( Xlt)\ = 0), the corresponding BFt‘”\
is marked as an empty circle. (E,F) The derived proxy probability of transitions (blue) indicates the
degree of belief about underlying transitions. (G,H) The estimated kernel mean (green) and variability
in terms of the 95% quantiles (red) visualize the transition patterns for kernels complying with the basic

assumptions of the approach, i.e. XtA - bft‘A # 0.
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Table C.1: Numerical results of the inference on the parameters of the transition model My eqr, given
the synthetic time series of different observational evidence presented in Fig. 3.4. The true parameter
settings generating the different change geometries are presented in the shaded columns. For each
model parameter the maximum a posteriori (MAP) estimate with according confidence interval of
95% significance (Cly.g5) is computed. To compare the estimation performance alternative estimators
in terms of the BLUP for the mean 3 and in terms of the PLH for the scale o are calculated. The
accuracy is comparable for both approaches. The computational cost, however, are considerably smaller
for the BLUP and the PLH estimators. Therefore, the highlighted estimates represent the optimal set
of estimators to infer on the underlying transition.

% minima at transition maxima at transition g
% MAP PLH/BLUP MAP PLH/BLUP g’
2| true estimate Clp.95 estimate true estimate Clp.o5 estimate =)
0 | 40.0 40.5 [36.5,44.0] - 40.0 39.5 [37.5,42.0] - ch
s1 | 0.20 0.17 [0.07,0.40] - -0.02 -0.021 [-0.024,-0.017] - g
s9 | 0.10 0.08 [0.04,0.19] - -0.01 -0.011 [-0.014,-0.006] - g
o | 1.60 1.50 [0.95,2.45] 1.74 1.60 1.50 [1.25,1.80] 1.52 g
Bo | 5.00 4.25 [3.25,5.45] 4.30 5.00 5.10 [4.80,5.60] 5.17 2
B1| 0.22 0.20 [0.08,0.36] 0.21 -0.22  -0.23 [-0.22,-0.24] -0.23 g
B2 | 0.08 0.08 [0.04,0.16] 0.09 -0.08  -0.08 [-0.07,-0.09] -0.08 8
0 | 40.0 39.5 [36.0,43.5] - 40.0 42.5 [38.5,47.0] -

s1 | 0.00 -0.01 [-0.02,0.01] - 0.00 -0.01 [-0.02,-0.00] -

so | 0.00 0.00 [-0.01,0.01] - 0.00 -0.01 [-0.01,0.00] - 5
o | 1.60 1.50 [1.20,1.90] 1.58 1.60 1.95 [1.55,2.50] 2.03 e
Bo | 5.00 4.85 [4.40,5.45] 4.91 5.00 5.15 [4.55,5.75] 5.17 =
61| 0.22 0.22 [0.19,0.25] 0.23 -0.22  -0.19 [-0.21,-0.16] -0.19

B2 | 0.08 0.08 [0.07,0.10] 0.08 -0.08  -0.10 [-0.11,-0.08] -0.10

6 | 40.0 40.0 [36.5,45.5] - 40.0 40.0 [19.0, 52.0] -

s1 | 0.20 0.17 [0.07,0.40] - -0.02 -0.022 [-0.043,-0.012] -

so | 0.10 0.09 [0.03,0.20] - -0.01 -0.007 [-0.012,0.001] - g
o | 1.60 1.20 [0.75,1.95] 1.40 1.60 1.40 [1.15,1.70] 1.40 ‘E’;
Bo | 5.00 4.85 [3.95,5.75] 4.78 5.00 5.00 [3.65,5.90] 5.18 g'
£1]-0.08  -0.06 [-0.18,0.05] -0.06 -0.08  -0.09 [-0.11,-0.08] -0.09

B2 | 0.08 0.08 [0.02,0.12] 0.07 0.08 0.07 [0.07,0.08] 0.07
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