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Zusammenfassung

Gegenstand der Arbeit ist die Möglichkeit der Synchronisierung von nichtlinearen Systemen durch kor-

reliertes Rauschen und automatische Kontrolle. Die Arbeit gliedert sich in zwei Teile. Der erste Teil

ist motiviert durch Feldstudien an wilden Schafspopulationen auf zwei Inseln des St. Kilda Archipels,

die starke Korrelationen aufgrund von Umwelteinflüssen zeigen. In einem linearen System entspricht

die Korrelation der beiden Populationen genau der Rauschkorrelation (Moran-Effekt). Es existiert aber

noch keine systematische Untersuchung des Verhaltens nichtlinearer Abbildungen unter dem Einfluss

korrelierten Rauschens. Deshalb wird im ersten Teils dieser Arbeit systematisch die rauschinduzierte

Korrelation zweier logistischer Abbildungen in den verschiedenen dynamischen Bereichen untersucht.

Für kleine Rauschintensitäten wird analytisch gezeigt, dass die Korrelation von quadratischen Abbil-

dungen im Fixpunktbereich immer kleiner oder gleich der Rauschkorrelation ist. Im Periode-2 Bereich

beschreibt ein Markov-Modell qualitativ die wichtigsten dynamischen Eigenschaften. Weiterhin wer-

den zwei unterschiedliche Mechanismen vorgestellt, die dazu führen, dass die beiden ungekoppelten

Systeme stärker als ihre Umwelt korreliert sein können. Dabei wird der neue Effekt der “correlation

resonance” aufgezeigt, d. h. es ergibt sich eine Resonanzkurve der Korrelation in Abbhängkeit von der

Rauschstärke. Im zweiten Teil der Arbeit wird eine automatische Kontroll-Methode präsentiert, die es

ermöglicht sehr unterschiedliche Systeme auf robuste Weise in Phase zu synchronisieren. Die Methode

ist angelehnt an Phase-locked-Loops und basiert auf einer Rückkopplungsschleife durch einen speziellen

Regler, der es erlaubt die Phasen der kontrollierten Systeme zu ändern. Die Effektivität dieser Methode

zur Kontrolle der Phasensynchronisierung wird an regulären Oszillatoren und an Nahrungskettenmo-

dellen demonstriert.

Abstract

Subject of this work is the possibility to synchronize nonlinear systems via correlated noise and au-

tomatic control. The thesis is divided into two parts. The first part is motivated by field studies on

feral sheep populations on two islands of the St. Kilda archipelago, which revealed strong correlations

due to environmental noise. For a linear system the population correlation equals the noise correlation

(Moran effect). But there exists no systematic examination of the properties of nonlinear maps under

the influence of correlated noise. Therefore, in the first part of this thesis the noise-induced correlation

of logistic maps is systematically examined. For small noise intensities it can be shown analytically that

the correlation of quadratic maps in the fixed-point regime is always smaller than or equal to the noise

correlation. In the period-2 regime a Markov model explains qualitatively the main dynamical charac-

teristics. Furthermore, two different mechanisms are introduced which lead to a higher correlation of

the systems than the environmental correlation. The new effect of “correlation resonance” is described,

i. e. the correlation yields a maximum depending on the noise intensity. In the second part of the thesis

an automatic control method is presented which synchronizes different systems in a robust way. This

method is inspired by phase-locked loops and is based on a feedback loop with a differential control

scheme, which allows to change the phases of the controlled systems. The effectiveness of the approach

is demonstrated for controlled phase synchronization of regular oscillators and foodweb models.
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Introduction

The spontaneous onset of synchronization is one of the most remarkable phenomena found in
biological systems and relies on the coordination and interaction among two or more scattered
organisms [93]. Synchronization arises in a large class of systems of various origins, ranging
from physics and chemistry to biology and social sciences. Examples include swarms of fireflies
that flash in unison [119, 130], synchronization in arrays of Josephson junctions [47], the exci-
tation of the Millenium bridge by pedestrians [120] and synchronous firing cardiac pacemaker
cells [130]. In ecology, fluctuations of population numbers, such as the classical 10-year Cana-
dian hare-lynx cycle [31], are known to synchronize to a collective rhythm that manifests over
millions of square kilometers. The presence, absence or degree of synchronization can be an
important part of the function or malfunction of a biological system. For example, epileptic
seizures are associated with a state of the brain in which too many neurons are synchronized
for the brain to function correctly [83]. In ecology, the synchronization of populations is often
seen as detrimental to spatially structured populations [29, 53]. This is because asynchrony
enhances the global persistence of a population through rescue effects, even when there are
local extinctions.

Synchronization of population dynamics is a very active field of research and there are still
open questions. Important questions concern the mechanisms which induce or control synchro-
nization. The central aim of this study is to show new possibilities to synchronize nonlinear
systems. This work is divided into two parts.

Synchrony in population fluctuations may arise from three primary mechanisms: migration,
interspecies interaction and climatic factors [72]. In general a mixture of two or three of the
mechanisms may be the synchronizing factor. In isolated habitats such as islands the climatic
fluctuations might be the main reason to synchronize spatially distinct populations, because
migration is not possible. Field studies on feral sheep populations on two islands of the St. Kilda
archipelago revealed strong correlations due to environmental noise. For a linear system the
population correlation equals the noise correlation (Moran effect). The Moran effect played an
important role in ecology in the recent years. But there exists no systematic examination of the
properties of nonlinear maps under the influence of correlated noise. Therefore, in the first part
of this thesis we investigate systematically the sole influence of correlated noise on nonlinear
systems.
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In the second part of the thesis an automatic control method is presented which synchronizes
different systems in a robust way. This method is inspired by phase-locked loops and is based
on a feedback loop with a differential control scheme, which allows to change the phases of the
controlled systems. The effectiveness of the approach is demonstrated for phase synchronization
of regular oscillators and predator-prey systems. For the predator-prey systems, the coupling
might be interpreted as a third species which is in symbiosis with the predator.

At the end of each part a summary of our results is given and possible directions of further
research are shown.
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Part I

The Moran effect in nonlinear

maps

3





Chapter 1

Noise-correlated dynamical

systems: The Moran effect

This chapter gives an introduction into synchronization of population dynamics. It reports the
experimental and theoretical evidence of synchronization processes in ecology. Especially it
focuses on the role of environmental fluctuations in synchronization and summarizes a number
of studies that have been published in this context. Finally, the chapter states the specific aims
of this work and gives an outline of part I of this thesis.

1.1 Synchronization in ecology

For a century or more ecologists have been greatly interested in studying long-term population
cycles. Some of the more remarkable population cycles have periods extending over many years
and are thus difficult to explain in terms of simple seasonal patterns. Furthermore, many popu-
lations are able to synchronize their oscillations over wide geographical areas. Thus populations
that may appear spatially separated are able to rise and fall in abundance (population size)
in an unusually synchrony. The 10-year Canadian hare-lynx cycle is one of the better known
examples [31], but similar synchronization phenomena are also known for a large number of
taxa in different locations: such as fish [123], trees [59], mammals [19, 36, 43, 52, 58, 95, 100],
birds [20, 60] and insects [88]. As the geographical distance separating the habitats of the
populations increases, synchrony typically decreases.

The study of synchronization in ecology is of considerable importance since it helps to explain
interactions between population dynamics and extrinsic environmental variation [57]. This
addresses the long debate in ecology if population growth is bounded by endogenous density-
dependent processes and/or extrinsic environmental factors [25, 35, 36]. Synchrony between
fluctuations in population numbers in different regions has important implications for the persis-
tence of populations. Asynchrony is said to allow for global persistence of a population through
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1 Noise-correlated dynamical systems: The Moran effect

(a)

YX

(b)

Ω

YX

(c)

η

r

YX

∼ε

Figure 1.1: Interaction scheme of two systems X, Y with (a) direct or diffusive coupling, e. g. by
migration, (b) external forcing with frequency Ω, e. g. a mobile top predator or an external
seasonal influence, and (c) noise ε, η which has a correlation coefficient of r.

rescue effects due to migration, even when there are local extinctions. On the other hand, mi-
gration may increase the synchrony between populations which increases the global extinction
risk [29, 53]. A natural way of examining synchronization in periodic systems is by analyzing
the relationship between the phases of oscillators [93, 107]. But phase synchronization need
not be dendrimental to population persistence, the complex spatio-temporal structures that
can arise might be important for maintaining species persistence [13]. So the synchrony of
populations is not only of concern in ecology but also in conservation biology.

In principle, one may differentiate between three main mechanisms, which are able to cause
synchrony in population numbers [72], compare Fig. 1.1. Namely these are: (a) Dispersal among
(spatially disjunct) populations, (b) interactions with other species that are themselves either
synchronized or mobile and (c) environmental stochasticity, often referred to as the Moran effect
or the Moran theorem.

The role of dispersal in synchronizing populations has been studied using both autoregressive
(linear) models and a variety of nonlinear population models [61]. These studies indicate that
fluctuations of any two populations that are governed by the same density-dependent process
can be synchronized via the exchange of a small number of individuals each generation. There
are further studies addressing the interplay between dispersal and environmental stochasticity
[12, 51, 88, 104].

On the other hand, there are also exogenous factors that are able to synchronize populations.
Some species may be synchronized by synchronous fluctuations of population species at either
higher or lower trophic levels. For example mobile predators may synchronize oscillations in
spatially disjunct populations [58]. Synchronous dynamics of herbivorous insects due to El
Niño/La Niña climate patterns have been suggested to cause partial synchrony in insectivorous
birds [60]. Also parasites are known to synchronize populations [19, 55].

Finally, the Moran effect [82, 108] suggests that if two populations have the same density-
dependent structure, they will be correlated due to the influence of common environmental
variation. Discussed examples are spatial synchrony in West-African fishes [123], cross species
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1.1 Synchronization in ecology

synchronization of ungulates in Greenland [95, 125] and probably the best known example,
the Soay sheep on St. Kilda [16, 22, 43, 122]. Experiments have been conducted with soil
mites [9, 8] and rotifers [34]. This environmental variation may include high levels of spatially
correlated fluctuations in the physical environment such as temperature, rainfall and wind
speed as well as food or some other resource. Population synchrony typically declines with the
distance between the populations and most climatic variables exhibit comparable patterns of
synchrony as a function of distance [64]. Determining which climate variable may be a driving
factor in producing population synchrony is nonetheless complicated and certainly different for
various populations. Even different weather variables appear to influence different vital rates
of a population [24, 25]. There is evidence that changes in large scale global climate patterns in
a multidecadal time scale, such as the North Atlantic Oscillation (NAO) or El Niño Southern
Oscillation (ENSO), may affect the levels of observed spatial synchrony in animal populations
[21, 49, 95, 117].

In recent years, temporally autocorrelated (‘colored’) noise has received a lot of attention, be-
cause it is believed to be a more accurate description of the actual environmental variability
[124, 105, 115]. There are two different approaches to temporally correlated noise: autoregres-
sive (AR) models and 1/fβ noise [28, 41]. In 1985 Steele suggested that terrestrial noise should
be white, while marine noise should be reddened, based upon a few empirical records and simple
forcing models [115]. Reddened noise has positive temporal autocorrelation, that is successive
values are more similar than expected by chance. The population subjected to noise can be
regarded as a filter of the noise signal [70]. The exact nature of the environmental noise can be
crucial for population persistence [28, 90, 126]. Experimental investigations showed that ciliate
populations growing in aquatic microcosms are sensitive to the ‘color’ of their environmental
noise [89]. Concluding, the extinction risk is a subtle interplay between the nature of the noise,
the density-dependent structure of the population and the spatial structure of the environment.

In the physical literature synchronization means adjustment of the rhythm of two self-sustained
oscillators, i. e. systems capable of generating their own rhythm, due to coupling [93]. That
is not true at all for the Moran effect of noise induced correlation, because there is no cou-
pling. However, one can talk of synchronization of two (or many) population cycles which are
weakly interacting via migrating animals, e. g. the snowshoe hare-Canada lynx cycle [31]. In
ecology, synchronization is often used as a synonym for strong (cross-)correlation of population
abundance (or changes in abundance), e. g. in [39, 43]. We use both phrases interchangeably.

There exist various measures of synchrony in ecology. An obvious measure is the correlation
between two time series of abundance. Correlation is here usually measured by Pearson’s corre-
lation coefficient. Several investigations use the coefficient of variation in density as indicators
of synchrony [10, 51]. An overview is given in [18]. Other measures of correlation have also
been employed: Blasius and Stone [13] introduced the methods of phase analysis [93] to study
spatio-temporal fluctuations of animal populations and to detect synchrony. Cazelles and Stone
[21] confirmed with phase analysis the results of Forchhammer et al. [35] and captured more
details on the cause of synchrony of the mentioned Soay sheep populations. Buonaccorsi et al.
give a nice comparison [18] of several measures of and tests for correlation. They compare the
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1 Noise-correlated dynamical systems: The Moran effect

linear correlation coefficient with a modified Kendall’s tau and Spearman’s rank correlation. In
contrast to the linear correlation these measures are invariant under monotonic transformations
of the data such as taking logarithms. The correlation coefficient of the logarithms is somewhat
higher than the correlation coefficient of the untransformed variables. Buonaccorsi et al. sum-
marize that the linear correlation may not capture the concept of synchrony of two populations
in an ecologically meaningful way nor easily provide the cause of synchrony: For example, the
linear correlation can be low while measures of movement together are high, in particular for
cyclic populations. But for most cases in the tested data, the linear correlation coefficient proves
to be a sufficient measure for capturing synchrony. Furthermore, the common standard statis-
tical tests for zero correlation, assuming N independent different pairs (xi, yi), (i = 1, . . . , N)
is invalid, because often population time series xi and yi are serially correlated. That means,
the value xt+1 is much more likely to be near xt than any other xt+j of the series, as Moran
noted in 1949 [80]. So other tests like bootstrapping should be used, see [18] for details.

1.2 The Moran effect

In 1953 Patrick Moran wrote two articles [81, 82] about the statistical analysis of the well
known trapping records of the Canadian lynx [31]. In [82] he investigated the relation of the
lynx population cycles to weather conditions. Suppose we can describe the dynamics of two
populations in different regions with autoregressive (AR) processes

xt+1 = axt + bxt−1 + εt

yt+1 = ayt + byt−1 + ηt, (1.1)

with different, but correlated random noise sources εt, ηt and where xt, yt represent the loga-
rithm of the annual abundance of the two populations. In this seminal article Moran stated
that the “two processes, {xt}, {yt}, generated by the same relationship of form Eq. (1.1) with
the random elements εt and ηt, the expected correlation between xt and yt will be equal to the
correlation between εt and ηt” [82]. Further supposing that the terms εt and ηt are caused by
or correlated with the local meteorological conditions at the sites of the two populations (and
the latter in the two regions are correlated) we have a plausible explanation for the correlation
between the two populations. Later this phenomenon was highlighted by Royama in his syn-
thesis of population dynamics [108] and coined the term ’Moran effect’. Note that this effect
holds only for identical systems: If the coefficients a, b of the two populations in Eq. (1.1) are
not identical, then this result does no longer hold exactly [18, 106, 109]. Instead, the population
correlation will always be smaller than the environmental correlation.

The most common measure of correlation used in ecology is the linear Pearson’s correlation
coefficient [96]

C(X, Y ) =
〈XY 〉 − 〈X〉〈Y 〉√

〈X2〉 − 〈X〉2
√
〈Y 2〉 − 〈Y 〉2

. (1.2)

8



1.3 Case study of feral sheep populations

Using this coefficient Moran’s statement can be expressed as

rp ≡ C(X, Y ) = C(ε, η) ≡ r. (1.3)

In a linear model the population correlation, rp, equals the correlation of the noisy environment,
r.

1.3 Case study of feral sheep populations

In order to verify different ecological hypotheses, case studies play an important role. Therefore,
ecologists set out to find examples, where the Moran effect could be shown to play a dominant
role. Maybe, the most important case for the Moran effect was found the Soay sheep populations
of St. Kilda. Feral sheep populations on islands in the uninhabited St. Kilda archipelago in
the Outer Hebrids have been monitored since 1955. The Outer Hebrids are a region with high
humidity and harsh winds. The most complete series of annual records exist for Soay sheep on
the main island Hirta and for Blackface sheep on Boreray, which are depicted in Fig. 1.2(a).
Both time series show irregular population fluctuations reflecting population crashes due to
starvation in the winter [22]. The data were analyzed and fitted to a self-exciting threshold
autoregressive model (SETAR) by Grenfell et al. [43] in 1998. The TAR models are based on
the principle of decomposing the state space (in this case the density of animals) into two (or
more) regimes. Linear autoregressive models are then fitted to each regime

xt+1 =
{ a1,0 + a1,1xt + ε1,t xt ≥ C

a2,0 + a2,1xt + ε2,t xt < C
. (1.4)

The variable xt denotes the logarithm of the sheep numbers and ε1,t, ε2,t are normally dis-
tributed noises in the two regimes and account for the environmental noise. The constants ai,j

are determined by the data. The threshold C can be imagined as a carrying capacity. A short
introduction to TAR models is given in [116], this piecewise linear model is compared with a
fully linear model in [30].

Another long-standing debate in ecology, whether the regulation of a population happens
density-dependent or density-independent, can be addressed with the Soay sheep data. A TAR
model can capture the nonlinearity in density-dependence in contrast to linear models: Below
the threshold C there is no density-dependence in Fig. 1.2(c), above the threshold any increase
in the population density xt in the last year leads to a decrease in the population growth rate
rt. Fig. 1.2(d) shows the logarithm of the sheep numbers on Hirta in two consecutive years and
the fitted SETAR model. The population threshold C lies at xt = 7.06, corresponding to 1171
sheep. The displayed population dynamics is nonlinear with stochastic impacts.

The numbers of sheep on the two islands are highly correlated, as seen in Fig. 1.2(b). However,
the question remains what causes these synchronized fluctuations. The sheep are located on
close but separate (3.5 km apart) islands, thus the role of dispersal as a synchronization mech-
anism can be dismissed. Parasites only contribute to winter mortality in malnourished hosts

9



1 Noise-correlated dynamical systems: The Moran effect

(a) (b)

(c) (d)

Figure 1.2: Temporal dynamics of feral sheep populations on the St. Kilda archipelago
(a) Time series of total sheep counts from Hirta (∗) and Boreray (•) island. (b) Scatter plot
of the logarithm of the population sizes. (c) Plot of the logarithm of the annual population
growth rate rt = xt+1 − xt versus xt, the logarithm of the population size. The data is taken
from the Hirta island. (d) Scatter plot of the logarithm of the Hirta population size (•) and the
fitted SETAR model (-), Eq. (1.4). Reprinted by permission from Macmillan Publishers Ltd:
Nature [43] ©(1998)

[44, 46]. So it seems that a combination of food-shortage, aggravated through parasitism, and
the timing of harsh weather conditions, e. g. March gales, stresses the sheep and causes crashes.
This happens more or less synchronously and demonstrates the Moran effect.

Grenfell et al. argued with the aid of simulations that a correlation as high as r = 0.9 in the
environmental noise between these islands would be required to correlate the two populations
as much as the observed value of rp = 0.68, compare Fig. 1.2(b). This has been controversially
discussed [16, 42, 109]. Blasius et al. [16] argued that this finding could have been an artifact
of the way in which Grenfell et al. analyzed their data. Nonetheless, the observed population
correlation is a sample value estimated from a pair of short data series with many missing years,
and is probably subject to a large estimation error.

A more detailed model [24], including the demographic structure (age, sex) of the population,
indicated that the influence of population structure is strongest at high and intermediate initial
population sizes. Another study considered the reproductive cost in female Soay sheep [122]. In
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1.4 A primer of the logistic map

the mentioned article by Grenfell et al. [43], the environmental noise taken into account was the
April temperature and the duration of March gales. However, a large-scale climate index covers
several months and incorporates the variation of several climate variables. So Forchhammer et
al. [35] used the North Atlantic Oscillation (NAO) winter index and revealed that warm, wet
and windy winters (high NAO) that precede birth depressed juvenile survival. However, these
weather conditions increased adult survival and fecundity due to increased spring/summer grass
availability. So real systems with nonlinear dynamics display the Moran effect.

1.4 A primer of the logistic map

In the following we investigate the Moran effect in nonlinear maps. For this we make extensive
use of the logistic map, because it is simple and well-studied. Therefore, we start with a short
review of its basic properties.

In 1976 May wrote an article [77] about simple mathematical models of animal populations
and their complicated dynamical properties. To analyze the simplest case of temporal non-
overlapping generations he used unimodal maps of the kind: xn+1 = g(xn). Most importantly
he studied the logistic map,

xn+1 = axn(1− xn), (1.5)

which had already been introduced by Verhulst (1845). This study of May became famous,
because he showed that a simple map as Eq. (1.5) can show very complicated dynamics. This
article inspired many studies. Nowadays the logistic map is a toy-model to study properties of
dynamical systems. The variable a is the bifurcation or control parameter. For a ∈ [0, 4] the
iterates of the map stay in the interval [0,1]. The logistic map is a model for the reproduction
of biological populations with discrete, non-overlapping generations as it is the case for many
temperate zone insects, e. g. cockchafers. The linear term describes the growth of the population
and the second, nonlinear term represents the saturation effect due to the limitation of resources
like food or space. Fig. 1.3(a) shows the bifurcation diagram of the logistic map without noise.
For a small growth rate a = a0 < 1 the population always goes extinct: xn → 0 as n → ∞.
For a = a1 ∈ [1, 3], the population grows and reaches a non-zero steady state. This steady
state x∗ is a fixed point, that means it does not change upon further iteration of the map g,
g(x∗) = x∗. A fixed point is stable if |g′(x∗)| < 1. For even larger a = a2 ∈ [3, 1+

√
6], the steady

state becomes unstable and the population oscillates about the former steady state alternating
between two definite population sizes. This type of oscillation, in which xn repeats every two
iterations, is called a period-2 cycle. As a increases, the period-2 orbit doubles at a = a4

to a period-4 orbit. The population approaches a cycle which repeats every four generations.
Further period-doublings occur as a increases and an finally converges to a limiting critical
parameter value of a∞ = 3, 569946 . . . [45]. This way into chaos is called the Feigenbaum route
to chaos that all quadratic maps of the unit interval with a single maximum undergo. This
gives rise to the universality class of the logistic map with characteristic scaling functions and
universal exponents [32]. Note that the Ricker map is in the same class [3].
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1 Noise-correlated dynamical systems: The Moran effect

(a) (b)

Figure 1.3: Bifurcation diagram of the logistic map (a) without noise and (b) in presence of
external additive Gaussian noise with amplitude σ = 0.01.

In this study we are mostly concerned not with the chaotic but the fixed-point and periodic
regimes. In these regimes dynamics are furthermore interesting in the presence of external
additive noise

xn+1 = g(xn) + εn. (1.6)

With external noise the fine structure of the bifurcation diagram is washed out as is demon-
strated in Fig. 1.3(b). Moreover, with noise the bifurcation is detected earlier, which can be
seen in Fig. 1.3(b) by the broadening of the variance of the fluctuations. This effect was discov-
ered by Wiesenfeld [127, 128], who termed the phenomenon noisy precursor. For the logistic
map this has been analyzed in detail by [67]. The higher the noise intensity is, the stronger the
higher period cycles are suppressed.

The main order parameter which is used to detect if the system is in the chaotic regime or not
is the largest Lyapunov exponent. For a map g(x) the Lyapunov exponent is defined as

λ = lim
N→∞

1
N

N∑
i=1

ln ‖g′(xi)‖. (1.7)

The Lyapunov exponent describes how trajectories in phase space that were initially close to
each other evolve after long time. It is an average quantity that describes the shrinking or
stretching of phase space volumes: A large negative value implies great insensitivity to the
initial difference of the trajectories and a vanishing value leads to neither growth nor decay of
the initial difference as it is the case for conservative systems. Whereas a large positive value
implies rapid separation and great sensitivity of the system to the initial conditions, which is the
character of chaos. The scaling of λ in the presence of noise in the vincinity of the critical point
has been reported in 1981 numerically by Crutchfield et al. [26] and theoretically by Shraiman
et al. [112]

λ = (a∞ − a)βL((a∞ − a)−
1
γ σ), (1.8)
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1.5 Review of noise-correlated maps

where σ is the intensity of the noise, β = ln 2/ ln δ and γ = ln δ/ lnµ ≈ 0.819. The scaling
function L describes the change of the scaling variable, here the Lyapunov exponent λ, under
the discrete change of the scale, that is the distance of the system to the critical point. Here, the
variables δ and µ are universal exponents which were introduced and calculated by Feigenbaum
[32]

δ = lim
k→∞

ak+1 − ak

ak+2 − ak+1
= 4.669 . . . , µ−1 = 0.1525. (1.9)

The exponent δ is a kind of a scaling constant. The variable µ−1 can be interpreted as the
factor by which the noise should be increased to wipe out one bifurcation. That means that at
the critical parameter value a∞ where chaos sets in we have λ = 0 and thus

(a∞ − a) ∼ σγ . (1.10)

For vanishing noise one obtains a scaling law which is well known from the theory of critical
phenomena [102]

λ ∼ (a∞ − a)β . (1.11)

This connection has been worked out by Shraiman, Wayne and Martin [112] and in [33]. An
overview of older work is given in [27].

1.5 Review of noise-correlated maps

These findings in the field were and still are a challenge for theory. Many approaches have been
pursued to study noise-induced correlation in nonlinear systems.

In several publications [2, 10, 39, 100, 101] the role of nonlinearity and correlated noise has
been analyzed by means of the Ricker map [103],

xn+1 = xn exp(a(1− xn)), (1.12)

where a is the growth parameter of the population. The exponential takes into account the
negative role of competition at high population densities. Introduced in 1954 by W. E. Ricker,
the map is a model of density-dependence which is widely used in fisheries biology. While the
noisy Ricker map is defined as

xn+1 = xnεn exp(a− xn + ξn) (1.13)

in [10, 100, 101], the authors of [39] use the form

xn+1 = xn exp(a− xn + εn). (1.14)

In the context of analyzing spatial synchronization [2, 10] the noise ξn in Eq. (1.13) accounts
for local stochasticity in each patch and the noise term εn is a global random mortality factor.
Both approaches share the disadvantage that the fixed point x∗ = 1 of the undisturbed Ricker
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1 Noise-correlated dynamical systems: The Moran effect

map Eq. (1.12) is not preserved and that the fixed point x∗ = 0 (extinction of the population)
can become stable. This can be resolved using parametric noise [75]

xn+1 = xn exp (a(1 + εn)(1− xn)) . (1.15)

All mentioned studies employ multiplicative noise. Arguments concerning the scaling of the
noise intensity σ between additive and multiplicative noise for the logistic map are put forward
by Linz in [75]: If a > a1(σ) is sufficiently larger than 1, so that the fixed point is away from
the basin of attraction of −∞, then for small noise intensities multiplicative and additive noise
cause similar response behavior

σadditive ↔
a− 1

a
σmultiplicative, (1.16)

where the scaling factor is the nonzero fixed point of the logistic map. The validity of this
relationship has been checked for a < 3 and a ≥ 3. It can be derived from the requirement that
the moment generating functions of the additive and the multiplicative noise are the same.

The above studies show figures illustrating the interplay between noise correlation, noise inten-
sity and the bifurcation parameter contributing to the correlation of the two systems. Higher
noise correlation, r, provided higher population correlation, rp. Certainly respecting Moran’s
theorem that is rp ≤ r. For an increasing bifurcation parameter (increasing nonlinearity)
the correlation was lost [39, 100]. Depending if the investigated system is in the fixed-point
or period-2 regime, decreasing [39] or increasing [100, 101] noise intensity accounts for high
population correlation.

In the physical context, the synchronization of identical maps with different initial conditions
governed by the same noise has been studied. As argued by Pikovsky [91], the sychronization
can be explained and quantitatively predicted by observing that, at some value of the noise
amplitude, the Lyapunov exponent associated with the dynamics changes from positive to
negative. A necessary condition for the occurrence of synchronization is that the dynamical
system has expanding and contracting regions, so that noise may amplify the role of the latter
against the former. Pikovsky [91] introduced the concept of a distribution exponent, which
describes the distribution of the separations in phase space between the two systems subject to
noise. This idea was elaborated further by Khoury et al. [62, 63].

We do not want to address which particular noise is appropriate for a particular dynamical
system in nature that is represented by such simplified models. We rather present in this thesis
the effects of additive noise.

1.6 Noise-correlated nonlinear maps

After the previous introductory sections an outline of part I of this thesis is given in this section.
We use two noise-correlated logistic maps to study the nonlinear Moran effect systematically.
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Figure 1.4: Correlation rp of two identical logistic maps against the correlation r of the added
Gaussian noise for two different noise intensities: (a) σ = 0.05, (b) σ = 0.3. The bifurcation
parameter has the values a = 2.9 (− · −), a = 3.3 (−−) and a = 3.9 (· · · ) .

Following [16, 39], where other maps are used, we show a diagram relating the noise correlation
r and the population correlation rp. In Fig. 1.4 the selected parameter values a = 2.9, a = 3.3
and a = 3.9 are located in the fixed-point, period-2 and chaotic regime of the logistic map,
respectively. In the limit of increasing noise intensities or decreasing the bifurcation parameter
the system reflects the linear Moran effect, rp = r. This is plausible, because in the fixed-
point regime the map is almost linear. Because of this monotonic behavior of the population
correlation, the noise correlation is fixed in the following in order to analyze the dependency
on the other variables.

In [39, 100, 101] curves of the population correlation in dependence on the bifurcation parameter
of the Ricker map have lead to the conclusion that desynchronization takes place if the chaotic
regime is approached. This can be explained by the fact that for relatively small noise (compared
to the amplitude of the period-2 cycle), the presence of the 2-cycle dynamics remains intact
and the fluctuations for both maps are either highly correlated, r ≈ 1, or almost completely
anticorrelated, r ≈ −1. However, under the influence of noise rare jumps are possible between
these in-phase and out-of-phase states. This leads to contributions of the total correlation which
cancel each other out, and on average lead to a vanishing value of rp. In the period-n (n ≥ 2)
regime, the correlation drops drastically, compare Fig. 1.5(a). This can be explained by the
fact, that the systems have many different possible states. Therefore, the average correlation
is close to zero. For high noise intensities the nonlinearity of the map does not play a role
compared to the dominant noise dynamics, see Fig. 1.5(b). Furthermore Fig. 1.5(b) confirms
the finding that depending on the dynamical regime of the system, decreasing [39] or increasing
[100, 101] noise intensity leads to high population correlation (for smaller noise intensities).

These figures demonstrate a rich behavior in nonlinear maps with additive correlated noise.
In this part of the thesis we perform therefore a systematic study of noise induced correlation
of nonlinear maps. The following chapters are structured according to the regimes of the
bifurcation diagram of the logistic map. In chapter 2 we present ways of constructing correlated

15



1 Noise-correlated dynamical systems: The Moran effect
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Figure 1.5: Plot of the relative correlation coefficient rp/r of two logistic maps with additive
correlated Gaussian noise versus (a) the bifurcation parameter a for different noise intensities:
σ = 0.05 (−), σ = 0.1 (− · −), σ = 0.2 (−−) and σ = 0.5 (· · · ) and (b) the noise intensity σ

in different regimes of the logistic map: fixed-point (−), period-2 (−−), period-4 (− · −) and
chaotic (· · · ). The noise correlation is r = 0.5.

noise and introduce correlation measures. As a starter in chapter 3 we reproduce Moran’s
statement for linear systems. Then we investigate identical quadratic maps with additive noise
in the fixed-point regime analytically and numerically. We obtain as a new result a second
order approximation of the Moran theorem. Furthermore the impact of the boundary conditions
applied to the noisy logistic map is analyzed. In chapter 4 the period-2 regime of the logistic map
and the desynchronization is investigated in detail. Calculating numerically transition rates we
confirm the validity of the Kramers’ rule in our case. Additionally, the approach of a Markov
model is tested and we elaborate on the idea of correlated Markov processes. A more detailed
realization of the previously described correlated Markov processes is studied by courtesy of
piecewise constant maps with additive correlated noise. In chapter 5 we turn our attention to
different methods to achieve an amplification of the linear correlation, that is the correlation
of the processes is higher than the correlation of the added noises. We present numerically a
method for nonlinear maps using a structured joint noise distribution, which to our knowledge
has not been reported before. As a second approach we incorporate temporally correlation
of the noise, which enhances the correlation-coefficient even for linear maps. Ending part I
of the thesis, we summarize our findings and give an outlook on possible directions of further
research. At the end of the thesis, the first two appendices review the basic Frobenius-Perron
equation for the calculation of the invariant distribution and the construction of correlated noise
distributions. In the last two appendices solutions of the bivariate Normal probability function
are reviewed and the transition probabilities of the piecewise constant maps are calculated.
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Chapter 2

Construction of correlated noise

In this chapter we discuss the different possibilities of correlating additive noise and introduce
measures for correlation.

Suppose we ask for the correlation in the scatter plot of two time-series like in Fig. 1.2(b) or
of two random processes, see Fig. 2.1. The linear (Pearson’s) correlation coefficient [96] of two
random variables X, Y is defined by

C(X, Y ) =
〈XY 〉 − 〈X〉〈Y 〉√

〈X2〉 − 〈X〉2
√
〈Y 2〉 − 〈Y 〉2

. (2.1)

The value of the correlation coefficient varies between−1 and +1. A positive value of C(X, Y ) =
+1 corresponds to the case in which the data points or realizations lie on a perfect straight line
with positive slope. This would be the case if for example all realizations in Fig. 2.1 would lie on
the diagonal. The value +1 holds independent of the magnitude of the slope. The correlation
coefficient takes on a value of −1 when the data points lie on a perfect straight line with
negative slope, Y decreasing as X increases. This is called anti-correlation or complete negative
correlation. A value of C(X, Y ) near zero indicates that the variables X and Y are uncorrelated.
However, this does not imply that these variables are independent, because the correlation
coefficient takes only the first and second moments of the variables into account. So there can
be still correlations in the higher (greater than two) moments, even if C(X, Y ) = 0. Only for
Gaussian noise the conclusion ’independent follows from uncorrelated’ holds. In general, if X

and Y are independent, their joint distribution factorizes ρ(X, Y ) = ρ(X)ρ(Y ) and it follows
that C(X, Y ) = 0 but not inversely. A measure for independence, the mutual information, will
be discussed in the Sec. 2.3.

As mentioned in Chap. 1, environmental noise can be composed of two (or more) components.
Following this idea, we consider two pairs of correlated noise sources which are added. The
system of equations for this setup reads as follows:

ε = ξ1 + ξ2,

η = ζ1 + ζ2. (2.2)
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2 Construction of correlated noise

Figure 2.1: Joint probability distribution of two bivariate Gaussian random variables, Eq. (2.10),
σ = 0.05. The linear correlation coefficient, Eq. (2.1), is C(X, Y ) = 0.5.

The assumptions for the particular noises are: 〈ξi〉 = 〈ζi〉 = 0, 〈ξ2
i 〉 = 〈ζ2

i 〉 = σ2
i , C(ξi, ζi) =

ri, C(ξi, ζj) = 0, with i, j ∈ {1, 2} and i 6= j.
Now the first moments read as:

〈ε〉 = 〈η〉 = 0, (2.3)

〈εη〉 = r1σ
2
1 + r2σ

2
2 , (2.4)

〈ε2〉 = 〈η2〉 = σ2
1 + σ2

2 . (2.5)

This results in a linear correlation coefficient of

C(ε, η) =
r1σ

2
1 + r2σ

2
2

σ2
1 + σ2

2

. (2.6)

The result can be easily extended to a sum of N pairs of correlated noises

C(ε, η) =
N∑

n=1

rnσ2
n

/ N∑
n=1

σ2
n. (2.7)

Note, that this leads to a convenient method to generate correlated noise which will be used
in the following sections. A noise corresponding to this structure with a common part r1 =
1 (ξ1 = ζ1) and an independent part r2 = 0 was used for example in [110, 131].

The probability density function f(ε, η) of this noise can be calculated from the Frobenius-
Perron equation, see appendix A, with x ' ε. It is generated by a convolution of the two noise
distributions f1(ξ1, ζ1), f2(ξ2, ζ2)

f = f1 ? f2, (2.8)

=
∫∫ ∞
−∞

dξ1dζ1 f1(ξ1, ζ1) f2(ε− ξ1, η − ζ1), (2.9)
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2.1 (A)symmetrically correlated noise

where ? is the convolution operator. For example, for bivariate Gaussian noise f1,2 this produces
bivariate Gaussian noise again

f(ε, η) =
1

2π
√

1− r2σ2
exp

(
−ε2 + η2 − 2rεη

2
√

1− r2σ2

)
, (2.10)

with r = C(ε, η) of Eq. (2.6) and σ2 = 〈ε2〉 = 〈η2〉 of Eq. (2.5).

2.1 (A)symmetrically correlated noise

Correlated noise can be created in different ways. In the literature correlated noise is often
composed of a common part and a different part [113, 62]. A special case of Eq.( 2.2) is

ε = aξ + bξ′,

η = aξ − bξ′, (2.11)

where ξ, ξ′ are random numbers either drawn uniformly from the interval [−
√

3,
√

3] or Gaussian
distributed with a standard deviation of 1 and a, b ∈ R+. This compares to Eq. (2.2) with
r1 = 1, r2 = −1. In [62] the parameters a, b are chosen as a = 1, b = 1/2 with Gaussian and
uniform noise. In this thesis we have chosen a noise satisfying 〈ε〉 = 〈η〉 = 0,

〈
ε2
〉

=
〈
η2
〉

=
σ2, 〈εη〉 = rσ2, so that C(ε, η) = r. This results in a = σ

√
(1 + r)/2, b = σ

√
(1− r)/2. Thus

the symmetrically correlated noise reads as:

ε = σ

√
1 + r

2
ξ + σ

√
1− r

2
ξ′,

η = σ

√
1 + r

2
ξ − σ

√
1− r

2
ξ′, (2.12)

where the random variables are indistinguishable, that means the joint probability distribu-
tion is symmetric to the diagonal. The asymmetric version, where the random variables are
distinguishable, is

ε = σξ,

η = rε +
√

1− r2σξ′. (2.13)

This kind of noise is used in [113]. For Gaussian noise ξ, ξ′ these definitions of correlated
noise, Eq. (2.12) and Eq. (2.13), make no difference, but for uniform noise the derived joint
probability density functions p(ε, η) are not identical. This results also in differences in the
correlation of two populations with these noises added, as shown in Fig. (2.2). Especially for
high noise intensities there are pronounced differences in the relative correlation coefficient of
the populations. In this thesis we use the symmetrically constructed noise. But this correlated
noise is nevertheless only uniform in the joint distribution, while the projections p(ε), p(η) are
not uniformly distributed. This is demonstrated in Fig. 2.3(a), where both projections are not
uniform. The asymmetrically generated noise has automatically a uniform distribution p(ε),
but p(η) is still not uniform.
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2 Construction of correlated noise

Figure 2.2: Comparing the relative correlation coefficient rp/r of two logistic maps Eq. (1.5)
with additive symmetrically (red), Eq. (2.12), and symmetrically (yellow), Eq. (2.13), correlated
uniform noise. The correlation of the noise is C(ε, η) = r = 0.5.

2.2 Different correlated uniform noises

In order to achieve uniformly distributed noise also in the projections of each noise, we construct
a different noise distribution, which is plotted in Fig. 2.3(c). It is generated as follows:

ε = σ
√

3(2ξ − 1), (2.14)

η = σ
√

3
(

2
[
1−

{
1−

(
ξ + (1− c)(ξ′ − 1

2
)
)

mod 1
}

mod 1
]
− 1
)

,

where ξ, ξ′ are random numbers drawn from the interval [0, 1] with a standard deviation of 1
and c ∈ [0, 1]. The factor

√
3 is incorporated so that

〈
ε2
〉

=
〈
η2
〉

= σ2. The modulo function
has the following sense: The lacking corners in the triangular distribution in Fig. 2.3(a) to the
uniform distribution in Fig. 2.3(b) are added in the corners of the product space [0, 1]× [0, 1],
see Fig. 2.3(c). Computation of the correlation of these two noises shows that C(ε, η) < c for
all parameters. The plot of the relative correlation coefficient, see Fig. 2.4(a)-(b), does not look
qualitatively different for this uniform noise. The only small difference, an amplification of the
correlation coefficient, will be discussed in section 5.1. Another special, localized correlated
uniform noise is described in [39].

2.3 Nonlinear correlation measures

At the end of section 1.2 we mentioned already other correlation measures than Pearson’s corre-
lation. Pearson’s linear correlation coefficient is not invariant under nonlinear transformations
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Figure 2.3: Projections p(ε) and p(η) of correlated uniform noise: (a) is symmetrically correlated
according to Eq. (2.12), r = 0.5 and (b) modulo noise of Eq. (2.14), c = 0.5. 104 realizations
of the noise sorted in 50 histogram bins. (c) Joint probability distribution of modulo uniform
noise Eq. (2.14), c = 0.5

of the data like taking the logarithm of the data points [96]. But if we sort the data points
according to their value and assign to each data point a rank value corresponding to his place
in the sorted data, then the correlation coefficient of the rank list will be invariant under mono-
tonic transformations, because they preserve the rank order. This measure is called Spearman’s
rank correlation

ρS =
∑

i(Ri − R̄)(Si − S̄)√∑
i(Ri − R̄)2

√∑
i(Si − S̄)2

, (2.15)

where Ri and Si denote the rank values of data points from the two data sets X and Y .

Another related nonlinear correlation measure is Kendall’s Tau. Basically it measures the
tendency of the time series to move in the same direction. For any sample of N observations,
there are N(N − 1)/2 possible comparisons of pairs of data points (xi, yi) and (xj , yj) with
i 6= j. We call a pair concordant (discordant), if the relative rank order of the two x’s is the
same (opposite) as that of the y’s. If the two x’s (y’s) have identical values (a so called ‘tie’),
this pair will be called an extra y-pair (extra x-pair). Let NC(ND) be the number of concordant
(discordant) pairs and Nty(Ntx) the number of extra y-pairs (x-pairs). Kendall’s Tau is now
defined as following

τ =
NC −ND√

NC + ND + Ntx

√
NC + ND + Nty

. (2.16)

To be precise, this is Kendall’s Tau b.

If both above described measures are zero, one cannot conclude that the data sets X and Y

are independent. A test for dependence is the mutual information which is based on entropies:
For a random variable X with a finite set of M possible states {x1, x2, . . . , xM}, the Shannon
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Figure 2.4: Relative correlation coefficient for two logistic maps with additive correlated modulo
noise, Eq. (2.14), c = 0.5 : C(ε, η) = r = 0.375, versus (a) the noise intensity σ for a =
1.55 (−), a = 2.4 (− · −), a = 3.1 (−−) and a = 4 (· · · ) and (b) the bifurcation parameter a for
σ = 0.05 (−), σ = 0.1 (− · −), σ = 0.32 (−−) and σ = 0.5 (· · · ). Transient and runtime are 106

iteration steps and the plot is averaged over 100 realizations.

entropy H(X) is defined as [96, 111]

H(X) = −
M∑
i=1

p(xi) log p(xi), (2.17)

where p(xi) denotes the probability of the state xi. For equiprobable events the Shannon
entropy is maximal. If the outcome of the measurement is completely determined to be xk

(p(xk) = 1), then the Shannon entropy is zero. For two variables X and Y the joint entropy
H(X, Y ) is defined analogously

H(X, Y ) = −
M∑
i=1

M∑
j=1

p(xi, yj) log p(xi, yj). (2.18)

The mutual information or transinformation I(X, Y ) between the two variables X and Y mea-
sures the independence of the two random variables

I(X, Y ) =
M∑
i=1

M∑
j=1

p(xi, yj) log
(

p(xi, yj)
p(xi)p(yj)

)
= H(X) + H(Y )−H(X, Y ). (2.19)

If both systems are independent, their joint probability distribution factorizes p(x, y) = p(x)p(y)
and the mutual information is zero! Note that the mutual information is symmetric in X and
Y , i. e. the mutual information says nothing about the direction of the information flow between
X and Y .

In the numerical estimation of the mutual information from data finite-size effects have to be
taken into account. For finite number N of data points, the mutual information gets systemat-
ically overestimated [118, 54]

〈Iobserved〉 = Itrue +
(M − 1)2

2N
+O

(
1

N2

)
. (2.20)
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As a rule of thumb, each ‘bin’ should have a chance to appear (at least) three times, thus
Nmin ≥ 3M2. For the comparison of all correlation measures presented in this chapter we
use two logistic maps, Eq. (1.5), with additive correlated Gaussian noise. The length of the
transient and runtime are 104 steps and so the number of bins was chosen to be M = 24 = 16
for each variable. There are no qualitative differences between the measures for this kind of
noise, compare Fig. 2.5.

For correlated Gaussian noise the mutual information can be nicely expressed through the linear
correlation. Entering the bivariate Gauss distribution Eq. (2.10) into the continuous version of
the definition of the mutual information Eq. (2.19) yields

I(ε, η) =
∫ ∫ ∞
−∞

dεdη p(ε, η) logb

(
e
−

r2(ε2+η2)−2rεη

2σ2(1−r2) · 1√
1− r2

)
. (2.21)

The integral splits into two parts due to the logarithm identities. The first part with the
exponentials sums up to zero after crunching through analytics. The base b of the logarithm
is here for two systems chosen as b = 2. Changing to the natural logarithm, logb x = lnx/ ln b,
this leaves us with

I(ε, η) = −
ln
(√

1− r2
)

ln(b)
. (2.22)

This formula also applies to two linear maps or two logistic maps g with correlated additive
Gaussian noise in the fixed-point regime with weak noise, because their joint distribution has
just another noise intensity σ′ = σ/

√
1− g′(x∗)2 which cancel out in Eq. (2.21). For very

strong noise the dynamics of the maps can be neglected. So we can express the Moran theorem
(1.3) in terms of the mutual information of the two systems

I(X, Y ) = I(ε, η). (2.23)

This result is valid exactly for two identical one-dimensional maps in their fixed-point regime
with weak or very strong noise.
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Figure 2.5: Comparison of the presented correlation measures µC

Pearson’s linear correlation coefficient (−), Spearman’s rank correlation (− ·−), Kendall’s Tau
(· · · ) and the mutual information (−−) of two logistic maps with additive correlated Gaussian
noise versus (a) the linear correlation coefficient r for a = 3.4, σ = 0.05, (b) the noise intensity
σ for a = 3.1, r = 0.5 and (c) the bifurcation parameter a for σ = 0.05, r = 0.5. Transient and
runtime are 104 iteration steps and the plots are averaged over 10 realizations.
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Chapter 3

Dynamics in the fixed-point

regime

In this chapter we investigate and extend Moran’s statement for nonlinear, identical maps. In
particular we focus on the fixed-point regime. First, we reproduce Moran’s statement for linear
maps. Then we develop a second order correction of Moran’s theorem for quadratic maps with
weak noise. Further we examine the implications of the boundary conditions applied to the
noisy logistic map, as they seem to play a role for the correlation. Finally, an approximation
for the logistic map in the trivial fixed-point regime by a piecewise linear map is made.

3.1 Introductory remarks

3.1.1 Two linear maps with correlated additive noise

In this subsection we reproduce the proof of the Moran effect. Let us start by considering two
identical linear maps with correlated additive noise

xn+1 = axn + b + εn (3.1)

yn+1 = ayn + b + ηn,

with a, b ∈ R and |a| < 1 to stay in the interval [0, 1]. The noise satisfies the following conditions:
〈ε2〉 = 〈η2〉 = σ2, 〈ε〉 = 〈η〉 = 0, and is correlated:

C(εn, ηn) = r. (3.2)

The mean values of the variable x are the same in the stationary state,

〈xn〉 = 〈xn+1〉 = 〈axn + b + εn〉. (3.3)
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3 Dynamics in the fixed-point regime

This yields an expression for the mean value

〈xn〉 =
b

1− a
. (3.4)

The second moment of x is determined by

〈x2
n〉 = a2〈x2

n〉+ b2 + 〈ε2
n〉+ 2ab 〈xn〉 , (3.5)

which yields finally

〈x2
n〉 =

σ2

1− a2
+

b2

(1− a)2
. (3.6)

The standard deviation of the map is

σ2
x = 〈x2

n〉 − 〈xn〉2 =
σ2

1− a2
. (3.7)

The cross correlation reads as follows

〈xnyn〉 =
rσ2

1− a2
+

b2

(1− a)2
. (3.8)

By inserting the calculated moments in the definition of the linear correlation coefficient Eq. (2.1)
we reproduce Moran’s statement Eq. (1.3):

C(xn+1, yn+1) =
〈xnyn〉 − 〈xn〉2

σ2
x

= C(εn, ηn). (3.9)

This means the population correlation equals the noise correlation. If we include the preceding
term xn−1 in Eq. (3.1), i.e. consider an AR(2) process, then Moran’s statement still holds
[109]. However, the calculations become lengthier. For non-identical linear maps the population
correlation is always smaller than the noise correlation [18].

3.1.2 Fixed-point regime of maps

In the following we study two identical, one-dimensional, nonlinear systems with correlated
additive noise, which can be described by the equations

xn+1 = g(xn) + εn, (3.10)

yn+1 = g(yn) + ηn.

The random variables ε, η are correlated as introduced in the last chapter.

As a paradigmatic example for the nonlinear map g we choose the logistic map

xn+1 = axn(1− xn) + εn, (3.11)

yn+1 = ayn(1− yn) + ηn,

where a ∈ [0, 4]. A given point x∗ is a fixed point if it does not change upon iteration of the
map, g(x∗) = x∗. A fixed point is stable if |g′(x∗)| < 1.

26



3.2 Linearization around the fixed point
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Figure 3.1: Stable fixed-point regimes of the logistic map Eq. 3.11 with additive noise, σ = 0.05
Plotted is the logistic map (−) (a) in the trivial fixed-point regime, x∗ = 0, a = 0.5, and (b) in
the non-trivial fixed-point regime, x∗ = 0.5, a = 2. The diagonal line (· · · ) indicates g(x) = x.
As an approximation in (a) the piecewise linear map g(xn+1 > 0) = axn, g(xn+1 < 0) = 0 is
drawn (−−). Additionally the probability distribution f(x) of the logistic map with additive
Gaussian noise (gray shaded area) is displayed.

The logistic map has two stable fixed-point regimes which are depicted in Fig. 3.1. The trivial
fixed point x∗ = 0 is stable for 0 < a < 1. Note that the neighborhood of the trivial fixed point
is non-smooth. The other one is the non-trivial fixed point x∗ = 1 − 1/a, which is stable for
1 < a < 3 and has a smooth neighborhood. These different neighborhoods of the fixed points
require different approaches: In Sec. 3.2 we linearize around the fixed point of a quadratic map,
not taking into account the boundary conditions of the map. This is more adequate for the case
shown in Fig. 3.1(b). In Sec. 3.4 we investigate the effects of the boundary conditions applied
to x /∈ [0, 1]. Then in section 3.5 we make another approach in the neighborhood of the trivial
fixed point with a piecewise linear map displayed in Fig. 3.1(a).

3.2 Linearization around the fixed point

In this section we compute a second order extension of the Moran theorem for identical quadratic
maps with weak noise. This correction is proposed by Ripa in [104], where he investigates linear
systems with additive noise and dispersal between the populations.

We consider two identical unimodal one-dimensional maps g in the interval [0, 1] with a fixed
point x∗. Further we make a Taylor expansion of the map g around the fixed point x∗ for small
noise intensities up to the fourth order. The map g is assumed to be a function with at least
four continuous derivatives. The mean value of the deviation δxn = xn − x∗ from the fixed
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3 Dynamics in the fixed-point regime

point can be written as

〈δxn+1〉 = 〈g(xn)− x∗〉 (3.12)

≈ 〈εn + g′(x∗)δxn + g′′(x∗)
δx2

n

2
+ g′′′(x∗)

δx3
n

6
+ g′′′′(x∗)

δx4
n

24
〉.

Note that for the logistic function the fixed point is x∗ = 1 − 1/a for 1 < a < 3 and the third
and fourth derivative are zero. For the sake of simplicity, we use the notation g′∗ ≡ g′(x∗). In
the stationary state we obtain the mean value

〈δxn〉 = g′∗ 〈δxn〉+
g
′′

∗
2
〈
δx2

n

〉
+

g
′′′

∗
6
〈
δx3

n

〉
+

g
′′′′

∗
24
〈
δx4

n

〉
. (3.13)

In order to compute the mean value the following higher moments are needed:

〈
δx2

n

〉
=

〈
ε2

n

〉
+ (g′∗)

2
〈
δx2

n

〉
+ g′∗g

′′

∗
〈
δx3

n

〉
+

(
(g

′′

∗ )
2

4
+

g′∗g
′′′

∗
3

)〈
δx4

n

〉
, (3.14)

〈
δx3

n

〉
= 3g′∗

〈
ε2

n

〉
〈δn〉+ 3

〈
ε2

n

〉 g
′′

∗
2
〈
δ2
n

〉
+ (g′∗)

3
〈
δx3

n

〉
+

(g′∗)
2g

′′

∗
2

3
〈
δx4

n

〉
, (3.15)〈

δx4
n

〉
=

〈
ε4

n

〉
+ (g′∗)

4
〈
δx4

n

〉
+ 6

〈
ε2

n

〉
(g′∗)

2
〈
δx2

n

〉
, (3.16)

〈δxnδyn〉 = 〈εnηn〉+ (g′∗)
2 〈δxnδyn〉+ g∗′g

′′

∗
〈
δx2

nδyn

〉
+

g′∗g
′′′

∗
3

〈
δx3

nδyn

〉
+ (3.17)

+
(g

′′

∗ )
2

4
〈
δx2

nδy2
n

〉
, (3.18)〈

δx2
nδyn

〉
= g′∗

(
2 〈εnηn〉+

〈
ε2

n

〉)
〈δxn〉+ g

′′

∗

(
〈εnηn〉+

1
2
〈
ε2

n

〉) 〈
δx2

n

〉
+ (3.19)

+ (g′∗)
3
〈
δx2

nδyn

〉
+ (g′∗)

2g
′′

∗
〈
δx3

nδyn

〉
+

(g
′

∗)
2g

′′

∗
2

〈
δx2

nδy2
n

〉
, (3.20)〈

δx3
nδyn

〉
=

〈
ε3

nηn

〉
+ 3(g′∗)

2
〈
ε2

n

〉
〈δxnδyn〉+ (g′∗)

4
〈
δx3

nδyn

〉
, (3.21)〈

δx2
nδy2

n

〉
=

〈
ε2

nη2
n

〉
+ 2(g′∗)

2
〈
ε2

n

〉 〈
δx2

n

〉
+ 4(g

′

∗)
2 〈εnηn〉 〈δxnδyn〉+ (g′∗)

4
〈
δx2

nδy2
n

〉
.(3.22)

The odd higher order moments of Gaussian random variables are zero. The even higher order
Gaussian moments of the noise are calculated by summation over all possible combinations of
different pairwise averages of the random variables (Wick’s Theorem) [102]. Solving this system
of linear equations, we can calculate the shift of the mean value due to noise

〈δxn〉 =
g
′′

∗σ
2

2(1− g′∗)2(1 + g′∗)
+

3
(
1 + 2g′∗ + 2(g′∗)

2 + 5(g′∗)
3
)
(g

′′

∗ )
3σ4

8 (1− g′∗)
5 (1 + g′∗)

3 (1 + g′∗ + (g′∗)2)
+ (3.23)

+
σ4
(
2g

′′

∗ g
′′′

∗

(
1 + 3g

′

∗ + 2(g′∗)
2 − (g′∗)

3 − 5(g′∗)
4
)

+
(
1− (g′∗)

2 − (g′∗)
3 + (g′∗)

5
)
g
′′′′

∗

)
8 (1− g′∗)

5 (1 + g′∗)
3 (1 + g′∗ + (g′∗)2)

,

and the variance

〈
δx2

n

〉
− 〈δxn〉2 =

σ2

1− (g′∗)2
+

σ4
((

1 + 2g′∗ + 2(g′∗)
2 + 7(g′∗)

3
)
(g

′′

∗ )
2 + 2g′∗

(
1− (g′∗)

3
)
g
′′′

∗

)
2 (1− g′∗)

4 (1 + g′∗)
3 (1 + g′∗ + (g′∗)2)

.

(3.24)
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The ratio

K =

〈
δx2

n

〉
− 〈δxn〉2

σ2
=

1
1− (g′∗)2

+σ2

((
1 + 2g′∗ + 2(g′∗)

2 + 7(g′∗)
3
)
(g

′′

∗ )
2 + 2g′∗

(
1− (g′∗)

3
)
g
′′′

∗

)
2 (1− g′∗)

4 (1 + g′∗)
3 (1 + g′∗ + (g′∗)2)

(3.25)
is a natural measure of the noise amplification in the proximity of a bifurcation threshold of
the map. The amplification effect was studied in a physical context by Wiesenfeld [127] and
Surovyatkina et al. [67] and in an ecological context in [40]. The term amplification is here
used in the sense of a rise in the amplitude of fluctuations due to noise before a bifurcation and
thus earlier detection of the bifurcation. This is the noisy precursor mentioned in Sec. 1.4. We
confirm the result of Surovyatkina et al. [67] for the logistic map: K = 1/(2(ac − a)) ≈ 1/σ.
Associated with the noisy precursor is a weakening of the amplification effect on quick transitions
through the bifurcation point. The duration of the time series must not be less than the
fluctuation transient time steps

ntrans ≥
1
σ

. (3.26)

The covariance of the two maps can be expressed as

〈δxnδyn〉−〈δxn〉2 =
rσ2

1− (g′∗)2
+

rσ4
((

r + 2g′∗ + 2(g′∗)
2 + (6 + r) (g′∗)

3
)
(g

′′

∗ )
2 + 2g′∗

(
1− (g′∗)

3
)
g
′′′

∗

)
2 (1− g′∗)

4 (1 + g′∗)
3 (1 + g′∗ + (g′∗)2)

.

(3.27)
The correlation coefficient is defined as the quotient of Eq. (3.27) and Eq. (3.24). The denomi-
nator is expanded using the approximation

(A± σ2)−1 ≈ A−1

(
1∓ σ2

A

)
for small noise intensities, |σ2| < A. This yields for the relative correlation

rp

r
= 1−

(1− r)
(
1− g′∗ + (g′∗)

2
)
(g

′′

∗ )
2

2 (1− g′∗)
3 (1 + g′∗) (1 + g′∗ + (g′∗)2)

σ2 +O(σ4). (3.28)

Note that the coefficient of σ2 is always positive (|g′∗| < 1 in the fixed-point regime). This result
is also valid for the fixed point of the nth iterate of g.

For the logistic map in the non-trivial fixed-point regime this new result reads

rp

r
= 1−

2a2
(
a− 1 + (2− a)2

)
(1− r)

(a− 1)3 (3− a)
(
3− a + (2− a)2

)σ2. (3.29)

Recalling the parameter ranges 1 < a < 3 and −1 < r < 1, the fraction in Eq. (3.29) proofs
positive. Therefore, in the fixed-point regime of a one-dimensional quadratic map there is no
correlation enhancement, i.e. rp > r, possible for small additive Gaussian noise.

In Fig.3.2 we compare the analytics presented in this subsection with direct numerical simu-
lations. The simulations have been programmed in C, typically with a transient time and a
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Figure 3.2: Comparison of the small noise expansion and the simulation (−) of two logistic maps
with additive correlated Gaussian noise. Plotted is the relative correlation coefficient rp/r versus
(a) the noise correlation r for a = 2, σ = 0.05, (b) the noise intensity σ for a = 2, r = 0.5, and
(c) the bifurcation parameter a for r = 0.5, σ = 0.05. The relative correlation coefficient is
plotted up to the second order in σ (· · · ). The not expanded correlation coefficient, that is the
quotient of Eq. (3.27) and Eq. (3.24), is additionally shown (−−).

runtime of 107 iteration steps of the map. The assumptions for the calculations are independent
of the noise correlation r and thus the expansion is sufficient for all r for small noise intensities,
as shown in Fig. 3.2(a). As can be seen in Fig. 3.2(b), the analytic approach works as expected
only for small noise intensities σ ≤ 0.1. At the bifurcation thresholds a = 1 and a = 3 the
denominator in Eq. (3.29) is zero and the expansion breaks down as demonstrated in Fig. 3.2(c).
In the simulations the logistic map has been set to zero outside the interval [0, 1] in order to
stay in the convergent regime. Whereas the Taylor-expansion around the fixed point for weak
noise does not take the boundary conditions into account. The correlation is overestimated for
0 < a < 1, as can be seen in Fig. 3.2(c). The effect of the boundary condition will be discussed
in Sec. 3.4.
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3.3 Lowest order calculations of stationary probability density functions

3.3 Lowest order calculations of stationary probability den-

sity functions

In the following we use another approach to calculate the correlation of two logistic maps in
the fixed-point regime. Solving the Frobenius-Perron integral equation we compute the (joint)
probability density function of the maps with additive noise.

3.3.1 Invariant density of one noisy system in the fixed-point regime

The integral equation for the invariant density f of a one-dimensional map, often called Frobenius-
Perron equation, is introduced in detail in App. A. For a map g with additive Gaussian noise
it reads as follows

f(x) =
∫ ∫ ∞
−∞

pσ(ε) f(x′)δ(x− g(x′)− ε)dx′dε (3.30)

=
∫ ∞
−∞

pσ(x− g(x′)) f(x′)dx′, (3.31)

where pσ(x) is the Gaussian distribution. The solution in the fixed-point regime of the map g,
g(x∗) = x∗, can be approximated in first order by a Gaussian distribution

f(x) ≈ pw(x− x∗), (3.32)

with unknown variance w.

Expanding the kernel of Eq. (3.31) at the fixed point to first order, with δx = x− x∗,

pσ(x− g(x′)) ≈ pσ(δx− δx′ g′∗ ) (3.33)

=
1
g′∗

pσ/g′∗

(
δx

g′∗
− δx′

)
, (3.34)

we arrive at a conditional equation for the stationary probability density function∫ ∞
−∞

pσ(x− g(x′)) f(x′)dx′ =
1
g′∗

∫ ∞
−∞

pσ/g′∗

(
δx

g′∗
− δx′

)
pw(δx′) dδx′ (3.35)

=
1
g′∗

p√
(σ/g′∗)

2+w2

(
δx

g′∗

)
(3.36)

= p√
σ2+(wg′∗)

2 (δx). (3.37)

The convolution of two Gaussian functions is a Gaussian function again. We remind the reader
of the abbreviation g′∗ ≡ g′(x∗). This reproduces the ansatz Eq. (3.32), which leads to the
following condition for the variance w

w
!=
√

σ2 + (wg′∗) 2 =
σ√

1− g′ 2∗
. (3.38)

This yields the final result

f(x) = p
σ/
√

1−g′ 2∗
(x− x∗) =

exp
(
−(1− g′2∗ )(x− x∗)2/2σ2

)√
2πσ2/(1− g′2∗ )

. (3.39)
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3 Dynamics in the fixed-point regime

3.3.2 Stationary joint probability density function in the fixed-point

regime

For two identical one-dimensional maps with additive noise the stationary joint probability
distribution can be calculated likewise. The corresponding integral equation is

f(x, y) =
∫∫ ∞
−∞

dx′dy′ f(x′, y′) pr,σ (x− g(x′), y − g(y′)) . (3.40)

The probability density function is approximated by a bivariate Gaussian centered at the fixed-
point

f(x, y) ≈ pρ,w(x− x∗, y − x∗), (3.41)

with unknown correlation ρ and variance w.

Again we expand the kernel of the integral at the fixed point to first order, with δx = x− x∗,

pr,σ(x− g(x′), y − g(y′)) ≈ 1
g′ 2∗

pr,σ/g′∗

(
δx

g′∗
− δx′,

δy

g′∗
− δy′

)
. (3.42)

For bivariate Gaussian distributions, the argument of the last subsection can be used for the
difference and sum of the variables separately. In terms of x′± := (x′ ± y′)/

√
2, the joint

probability density functions f, p factorize in the transformed coordinate system (x′+, x′−) as

pr,σ(x′ − a, y′ − b) =
exp

(
− (x′−a)2+(y′−b)2−2r(x′−a)(y′−b)

2σ2(1−r2)

)
2πσ2

√
1− r2

(3.43)

= pσ
√

1+r

(
x′+ −

a + b√
2

)
pσ
√

1−r

(
x′− −

a− b√
2

)
, (3.44)

where a, b ∈ R. Applying this transformation to the expanded kernel of Eq. (3.40) we obtain
equivalently to the last subsection

ρ = r, w =
σ2√

1− g′ 2∗
. (3.45)

This means, the correlation ρ of the two maps is the same as the correlation r of the noise
(Moran). Whereas the variance of the maps is corrected compared to the noise variance by a
factor containing the slope of the nonlinear map at the fixed point. This yields the following
stationary joint probability distribution

f(x, y) = p
σ

r
(1+r)
1−g′ 2∗

(
δx + δy√

2

)
p

σ

r
(1−r)
1−g′ 2∗

(
δx− δy√

2

)
(3.46)

=

(
1− g′2∗

)
exp

(
−(1− g′2∗ ) (x−x∗)

2+(y−x∗)
2−2r(x−x∗)(y−x∗)

2σ2(1−r2)

)
2πσ2

√
1− r2

, (3.47)

which can be used for example to calculate moments or the correlation.
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3.4 Comparison of different boundary conditions

In the introductory section of this chapter we noted that the neighborhood of the trivial fixed
point is non-smooth. This is due to a well known problem for logistic maps with additive noise:
The logistic map xn+1 = axn(1 − xn), a ∈ [0, 4], escapes to −∞ if xn /∈ [0, 1]. So if we add a
noise term, we can leave this interval. One can assume several boundary conditions to avoid
this problem:

(a) setting the map to zero outside the interval [0, 1]

xn+1 =
{ g(xn) + εn 1 ≥ xn ≥ 0

εn else

(b) periodic continuation of the map:

g(xn + 1) = g(xn)

(c) strictly positive: xn+1 = min(1,max(0, g(xn)+εn)) This has the advantage that in ecology
population numbers must be always positive.

(d) no boundary conditions at all but using only a limited range of parameters, −a
4 < σ <

1− a
4 , to stay in the interval [0, 1]

In Fig. 3.3 the consequences of the different possibilities can be seen. The first variant, setting
the function to zero if we leave the interval [0, 1], comes closest to the original logistic map
without boundary conditions. As the first variant is also ecologically sensible, we focus on this
in the following.

The local minimum in the relative correlation coefficient at the first transcritical bifurcation for
a = 1 is due to the boundary conditions. As Linz et al. explains in [75], the basin of attraction
of −∞ touches the fixed point just at a = 1. Any additive noise, no matter how small, drives the
system towards −∞, independent of its initial condition. In the fixed-point regime for 1 < a < 3
the trivial fixed point x∗ = 0 is unstable, but the boundary conditions map all diverging states
to this unstable fixed point. Therefore, each system can stay in two states and on average the
correlation coefficient decreases after the first bifurcation. This desynchronization of bistable
systems will be explained in detail in Chap. 4.1.

In Fig. 3.4 the joint probability distribution of the different boundary conditions are shown.
The maximum of the distribution is shifted toward positive values of the variables if boundary
conditions are applied.
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Figure 3.3: Comparison of various
boundary conditions for two logistic
maps with additive correlated Gaussian
noise: (−−) setting to zero, (· · · ) pe-
riodic, (− · ·−) strictly positive, (×)
no boundary conditions. The param-
eters are r = 0.5, σ = 0.05, both tran-
sient time and runtime are 105 iteration
steps.
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Figure 3.4: Joint probability distribution of
two logistic maps with additive correlated
Gaussian noise σ = 0.05, r = 0.5, a = 0.5,

gridsize 0.009, 105 realizations, with various
boundary conditions: (a) setting to zero, (b)
periodic, (c) strictly positive, (d) no boundary
conditions.

3.5 Piecewise linear maps

As an approximation of the logistic map in the trivial fixed-point regime (a = 0 . . . 1), depicted
in Fig. 3.1(a), we use the following piecewise linear map with Gaussian distributed noise ε:

xn+1 =
{ axn + εn xn ≥ 0

0 + εn xn < 0
, (3.48)

with a ≤ 1; for the boundary condition ‘setting to zero’.

To test the approximation with this piecewise linear map in the trivial fixed-point regime of
the logistic map, the relative correlation coefficient of both systems is shown in Fig. 3.5. The
piecewise linear map is a good approximation for a < 0.5. The correlation of the two maps is
independent of the noise intensity σ like it is the case for two linear maps. But in contrast to the
latter, the correlation coefficient of piecewise linear maps is not independent of the bifurcation
parameter a. In Fig. 3.5 the effect of different boundary conditions on the correlation coefficient
of two piecewise linear maps is demonstrated. No boundary conditions means that we have also
xn+1 = axn + εn for xn < 0, i.e. the linear map producing the Moran effect. So the strong
nonlinearity at zero leads to a weakening of the linear Moran effect. In the following we make
an estimation of the linear correlation of these piecewise linear maps and approximate further
the probability density function of this piecewise linear map.
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0 0.5 1 1.5 2
a

0.8

0.9

1

r p/r

0 0.5 1 1.5 2
a

0.8

0.9

1

r p/r

0 0.5 1 1.5 2
a

0.8

0.9

1

r p/r

0 0.5 1 1.5 2
a

0.8

0.9

1

r p/r

(a) (b)

(c) (d)

Figure 3.5: Comparison of the piecewise linear map, Eq. 3.48, (· · · ) and the logistic map,
Eq. 3.11 (-) map for Gaussian correlated noise with various boundary conditions: (a) setting to
zero, (b) periodic, (c) ecological, (d) no boundary conditions; r = 0.5, σ = 0.05. Both runtime
and transient time are 105 iteration steps.

3.5.1 Estimation of the correlation

The calculation of moments to compute the correlation is a bit trickier compared to Sec. 3.1.1,
because there is one more variable. Thus, it leads to an under-determined system of equations

〈xn〉 = 〈xn+1〉 = a〈Θ(xn)xn〉, (3.49)

where Θ(x) denotes the Heaviside function with Θ(x < 0) = 0,Θ(x > 0) = 1. But one can
estimate the moments,

〈xn+1〉 = a〈Θ(xn)xn〉 ≥ a〈xn〉. (3.50)

The second moment can be estimated by

〈x2
n+1〉 = a2〈Θ(xn)x2

n〉+ σ2 ≤ a2〈x2
n〉+ σ2. (3.51)

The cross correlation term yields

〈xn+1yn+1〉 = a2〈Θ(xn)xnθ(yn)yn〉+ rσ2. (3.52)

For r ≈ 1 the signum of xn and yn are the same and the following estimation

〈Θ(xn)xnΘ(yn)yn〉 ≤ 〈xnyn〉 (3.53)
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3 Dynamics in the fixed-point regime

holds. Therefore, the correlation coefficient is bounded by

C(xn, yn) =
〈xn+1yn+1〉 − 〈xn〉2

〈x2
n〉 − 〈xn〉2

≤ r. (3.54)

We can conclude that for the piecewise linear map with r ≈ 1, an enhancement of the correlation
can not occur.
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Chapter 4

Dynamics in the period-2 regime

In the previous chapter we have studied the Moran effect in the fixed-point regime. However,
one of the most remarkable results from Fig. 1.5(a) in the introductory chapter 1 is the sharp
reduction of rp at the transition to the period-2 regime (at a = 3). In this chapter we study
this effect. As we show this de-correlation can be understood from transitions between states
of phase and anti-phase locking. Therefore we use symbolic dynamics, calculate transition
probabilities and study the approach of Markov models.

4.1 Description of desynchronization

4.1.1 Primer of the period-2 regime

In this chapter we are mostly concerned with a logistic map (3.11) with additive Gaussian noise
in the period-2 regime. Because it will be important in the following, we shortly recapture
the bifurcation diagram in this regime. The fixed point of the logistic map g, x∗ = 1 − 1/a,
becomes unstable for a > 3 (see Fig. 4.1). Through the bifurcation at a = 3 two stable fixed
points x1,2 of the second iterate g2 emerge, so that g(x1) = x2, and g(x2) = x1. These points
x1,2 = (1 + a ±

√
(a + 1)(a− 3))/2a are stable for 3 < a < 1 +

√
6 ≈ 3.445. The unstable

fixed point x∗ separates the basin of attraction of x1 and this of x2. In equilibrium there are
two possible states for the system, x1,2, between those the system switches consecutively. With
noise the situation changes: The system switches not only between these two discrete states,
but between the basins of attractions of x1,2. The fixed points x1,2 of the second iterate have
different distances from the unstable fixed point x∗. This asymmetry will show up throughout
this chapter. For example, the fluctuations around x1 are smaller than those at x2 [67].
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4 Dynamics in the period-2 regime

Figure 4.1: Enlargement of the bifurcation
diagram of the logistic map in the period-2
regime. The fixed point x∗ becomes un-
stable at a = 3 and two new points x1,2

appear. Note the asymmetry.

3650 3655 3660 3665 3670 3675

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x

Figure 4.2: Time-series of two logistic
maps in the period-2 regime with additive
correlated Gaussian noise, a = 3.3, σ =
0.02, r = 0.5.

4.1.2 Decorrelation at the transition to the period-2 regime

In this section we describe the main mechanism of desynchronization. Furthermore we track
special points like extrema and inflection points in the relative correlation of two systems with
additive correlated Gaussian noise in order to uncover the mechanisms of desynchronization.

Two independent logistic maps in the period-2 regime are either highly correlated rp ≈ 1, or
almost completely anticorrelated rp ≈ −1. If we add to each map correlated noise, with a noise
intensity considerably smaller than the amplitude of the period-2 cycle, then from time to time
rare jumps between these in-phase and out-of-phase solutions are induced. One of those jumps
or phase-slips is depicted in Fig. 4.2. In the beginning, the two maps are synchronized, then one
map experiences a noise shock and they are anticorrelated. Overall, this leads to contributions
to the total correlation which cancel out each other, and averaging leads to a vanishing value
of rp.

In Fig. 1.5(b) the relative correlation coefficient rp/r of two logistic maps with additive corre-
lated noise in dependence on the noise intensity σ displays in the period-2 regime a local maxi-
mum at σmax and a local minimum at σmin. The local minimum is also present in the fixed-point
regime. In Fig. 4.3(a) the local extrema are plotted with their noise intensity and the corre-
sponding bifurcation parameter for r = 0.5. The local minimum and maximum merge when the
period-4 regime starts at a4 ≈ 3.445. Note that the maximal noise intensity of the local minimum
occurs in the fixed-point regime at a = 2.4,max(σmin) = 0.2. To the extremal noise intensities
the following functions are fitted: σmax(a) = 0.22a − 0.66(−−), σmin(a) = 0.25

√
|a∞ − a|(−).

For the Ricker map, Eq. (1.12) the noise intensity of the maximum σmax is also a linear function
of the bifurcation parameter, but for σmin a function of

√
|a4 − a| seems more appropriate.

In the fixed-point regime the two identical systems are correlated (synchronized) with r = 1 in
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Figure 4.3: Tracking local special points in the relative correlation rp/r of two logistic maps
with correlated Gaussian noise in dependence of the bifurcation parameter a while varying the
noise intensity σ, r = 0.5. Plotted are (a) the local maximum in the relative correlation at the
noise intensity σmax(·), its linear fit 0.22a − 0.66 (- -), the local minimum at σmin(∗) and the
corresponding fit 0.25

√
|a∞ − a|(−). (b) Displayed is the inflection point in rp/r at aWP while

varying the noise intensity σ.

the case of zero noise. The desynchronization starts in the period-doubling regime at a2 = 3.
This is the starting point of the curve in Fig. 4.3(b), which displays the inflection point aWP in
the curve of the the relative correlation coefficient in dependence of the bifurcation parameter a

that marks desynchronization. If both identical systems had different initial conditions, then in
the period-2 regime both systems will be correlated a while and the other time anti-correlated
and so the average correlation is zero for zero noise. For small noise intensities, i. e. smaller
than the basin size max(x1 − x∗) ≈ 0.14, the systems are still highly correlated in the period-2
regime, aWP > 3. For larger noise intensities the decorrelation sets in earlier, already in the
fixed-point regime, aWP < 3. The minimum of aWP(σ) is again around (2.4, 0.12).

The relative correlation of two logistic maps correlated by noise in dependence on the bifurcation
parameter a has a step at the beginning of the period-2 regime for weak noise. As a guess, we
fit a sigmoid function to the relative correlation:

rp

r
= 1− h(σ) +

h(σ)

1 + exp
(

a−3−m(σ)
b(σ)

) . (4.1)

This approach allows for the noise dependence on the height of the step h(σ), the width b(σ)
and the mid m(σ) of the step. We use the least-square method to fit Eq. (4.1) to the data of the
relative correlation of two logistic maps with additive correlated Gaussian noise in dependence
on the bifurcation parameter a. This is shown in Fig. 4.4(a) in comparison to the relative
correlation of the time-series. Using the least-square method, one obtains also the dependencies
of the details of this step on the noise intensity σ, which are depicted in Fig. 4.4(b). The
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Figure 4.4: (a) Using the least-square method to fit the step-like function Eq. (4.1) (−) to the of
the relative correlation (+) of two logistic maps correlated by Gaussian noise in dependence on
the bifurcation parameter a. (b) Details of the step-like function Eq. (4.1): Mid m(σ)(�), width
b(σ)(◦) and height h(σ)(?) for varying noise intensity and their fits for σ = 0.06 . . . 0.5 (−), see
Eq. (4.2).

following fits are chosen

b(σ) = 1.5σ + 0.1,

h(σ) = −1.15σ + 1.05, (4.2)

m(σ) = α + βx + γx2 + δx3 + νx4,

where α = −0.09, β = 8.8, γ = −102.6, δ = 324 and ν = −306.6.

4.2 Invariant distribution in the period-2 regime

4.2.1 Invariant distribution of a single map

In the period-2 regime one can either apply the approach of section 3.2, i. e. linearize around
the fixed points x1,2 of the second iterate g2 and calculate the moments. Or one can expand
the probability distribution f of the map around the two points x1, x2 and solve the integral
equation like in Sec. 3.3. This will be done in the following. An approach for the probability
distribution of one logistic map with additive Gaussian noise is

f(x) = A−pw1(x− x1) + A+pw2(x− x2), (4.3)
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Figure 4.5: Probability distribution of the logistic map g with additive Gaussian noise in the
period-2 regime (−). Indicated are the fixed points x∗ of g and x1,2 of g2. Additionally plotted
is the approach Eq.(4.3) as a sum of two Gaussian distributions (· · · ). The parameters are
a = 3.1, σ = 0.01.

where pwi(x) stands for the Gauss distribution and A± are normalization factors. The integral
equation for the probability distribution, see App. A, reads as

f(x) =
∫ ∫ ∞
−∞

pσ(ε) f(x′)δ(x− g(x′)− ε)dx′dε (4.4)

=
∫ ∞
−∞

pσ(x− g(x′)) f(x′)dx′. (4.5)

Entering Eq.(4.3) and expanding g around each point of the period-2 cycle leads to

f(x) ≈ A−
g′1

∫ ∞
−∞

pσ/g′1

(
x− x2

g′1
− (x′ − x1)

)
pw1(x

′ − x1) dx′ + (4.6)

+
A+

g′2

∫ ∞
−∞

pσ/g′2

(
x− x1

g′2
− (x′ − x2)

)
pw2(x

′ − x2) dx′

= A−p√
σ2+(w1g′1)

2 (x− x2) + A+p√
σ2+(w2g′2)

2 (x− x1), (4.7)

where the abbreviation g′i = g′(xi) was introduced. This is supposed to reproduce the ansatz
(4.3), so we arrive at the conditions

w2
!=
√

σ2 + (w1g′1) 2, w1
!=
√

σ2 + (w2g′2) 2, (4.8)

which result in

w2
2 = σ2 1 + g′ 21

1− g′ 21 g′ 22
, w2

1 = σ2 1 + g′ 22
1− g′ 21 g′ 22

. (4.9)

For the amplitudes the approach yields A+ = A−, with A+ + A− = 1 we have A± = 1/2.
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4 Dynamics in the period-2 regime

Thus, as a first approximation, the probability distribution of one logistic map in the period-2
regime with additive noise can be approximated by two Gaussian distributions for small noise
intensities.

4.2.2 Joint probability distribution of two maps

Now we explore the probability density in the product space of two logistic maps.

For two systems the integral equation for the joint probability distribution is

f(x, y) =
∫ ∫ ∞
−∞

dx′dy′ f(x′, y′) p (x− g(x′), y − g(y′)) . (4.10)

We can approximate the distribution in the period-2 cycle by four Gaussian distributions, with,
however, an unknown weight factor,

f(x, y) ≈ A−−pw1(x− x1, y − x1) + A−+pw2(x− x1, y − x2) +

+ A+−pw3(x− x2, y − x1) + A++pw4(x− x2, y − x2).

In order to obtain the relative weights, e. g. A−−, we have to calculate the probability that a
pair (x, y) close to (x1, x1) is mapped not to a pair close to (x2, x2) but to a pair again close to
(x1, x1) due to the noise.

4.3 Transition probabilities

Since the natural measure in phase space is concentrated around the four points (xi, xj), with
i, j ∈ {1, 2}, it is convenient to introduce a symbolic dynamics [86]. For this, we use a partition
of the phase space, where the unstable fixed point x∗ is used as a border for separating the
states in the period-2 regime. For a single map we denote all points in the set M+ = {x|x > x∗}
with the symbol “+” and all points M− = {x|x ≤ x∗} with the symbol “-”. The symbol set is
denoted by S = {+,−}. Similar, in the product space we introduce the sets M++,M+−,M−+

and M−−, with e. g. M++ = {(x, y)|x > x∗, y > x∗}, and the corresponding symbol set
Ŝ = {++,+−,−+,−−}. A sketch is depicted in Fig. 4.6. Further we denote the probabilities
A+(A−) to be in the set M+(M−), with A−+A+ = 1. Correspondingly, Axy is the probability
to be in the set Mxy, xy ∈ Ŝ, and A++ + A+− + A−+ + A−− = 1.

In principle we have to consider sixteen transition rates which contribute to the joint distribu-
tion. The transition rate for two logistic maps in the period-2 regime with correlated noise can
be expressed as:

Γ−−←++ =
∫ ∫ ∫ ∫ x′,y′∈M++

x,y∈M−−

dxdydx′dy′f(x′, y′)p(x− g(x′), y − g(y′)) (4.11)

=: Γ−−++,
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Figure 4.6: Contour plot of the joint probability distribution of two logistic maps with additive
bivariate Gaussian noise. The highest probability densities are located at the points x1,2 of
the period-2 cycle. Indicated are the partitions of the phase space M++ = {(x, y)|x > x∗, y >

x∗},M+−,M−+ and M−−. The parameters are a = 3.44, σ = 0.02, r = 0.5.

where we omit the arrow from now for the sake of simplicity.

To obtain the transition probability, we have to normalize the above expression

w−−++ =
Γ−−++

N++
, (4.12)

with N++ =
∫∫

x′,y′∈M++
dx′dy′f(x′, y′), so that w−−++ + w+−++ + w−+++ + w++++ = 1.

If the noise is Gaussian, the integrals cannot be calculated except for special cases [1]. Here,
x1,2 6= 0, the only solvable case is uncorrelated Gaussian noise, r = 0, which leads to rp = 0,
independent of the bifurcation parameter or the noise intensity.

But nevertheless, the transition rates can be obtained from direct simulation of the system.
In Fig. 4.7 the four transition probabilities for one logistic map with uniform noise are shown.
The state “+” (x > x∗) is emptying for all noise intensities, w++ < w−+. For a noise intensity
σ & 0.12 the probability to stay in the state “-” (x < x∗) is larger than the probability to
jump away, w+− < w−−. A possible explanation for this is that a noise intensity larger than
max(x1(a)− x∗(a)) ≈ 0.13 is necessary in order to stay in “-”.

For two noisy logistic maps there are sixteen transition probabilities, which are shown in Fig. 4.8.
Notice that, due to symmetry reasons, the two identical maps with symmetric noise are indis-
tinguishable, which leaves only 10 different transition probabilities.
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Figure 4.7: Transition probabilities of one logistic map with uniform noise as a function of
the noise intensity σ for different bifurcation parameter values: a = 2.8 (−−), a = 3.1 (−),
a = 3.44 (· · · ) and a = 3.8 (− · −).

4.3.1 Kramers’ rate

Even though we are not able to write down the transition probabilities analytically, we study
here a simple estimation of the transition rates in terms of the Kramers’ theory. The idea is
as follows. In the period-2 regime of the logistic map g, the system without noise switches
consecutively between these two states. With additive noise it has the additional possibility
to change between the basins of attraction of the fixed points of g2 by means of a fluctuation
and effectively stay in one state. This is the phase-slip depicted in Fig. 4.2. It corresponds to
a jump in the second iterate g2 of the logistic map. The smaller the fluctuations or the larger
the distance between the two fixed points of g2, the smaller is the possibility to stay in one
state. This jump to the other fixed point of the second iterate g2 is a noise-induced escape from
a metastable state. The escape rate rK over the barrier of a metastable potential has been
derived by H.A. Kramers [65] in 1940:

rK = κ exp
(
−∆U

D

)
, (4.13)

where ∆U is the potential barrier to cross over and the diffusion constant D = σ2 is here
the standard deviation of the noise. The exponential term is also called the Arrhenius factor,
and it was already mentioned by Arrhenius in the theory of chemical reactions (1889). The
pre-exponential term κ depends only weakly on the noise and on the details of the potential.
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Figure 4.8: Transition probabilities of two logistic maps with additive correlated (r = 0.5) Gaus-
sian noise for different bifurcation parameter values: a = 3.1 (−−), a = 3.2 (−), a = 3.3 (· · · )
and a = 3.4(− · −) in dependence of the noise intensity σ. Shown are simulation results av-
eraged over 100 realizations. For each realization both the transient time and the runtime are
106 steps.

The inverse of the escape rate is the mean first passage time 〈τ〉 of the barrier crossing

〈τ〉 =
1
κ

e
∆U
D . (4.14)

If the system has no potential, that means it is not in thermodynamical equilibrium under the
influence of noise, the theory of quasipotentials [66, 50] may be applied to calculate invariant
densities or mean first passage exit times. In this study we do not enter this discussion, but we
examine if the Kramers’ theory holds in our case.

In Fig. 4.9 we compare the Kramers’ theory (4.13) with a direct simulation of the rates. Plotted
are the probabilities to stay , w++ and w−−, for one noisy logistic map (solid line) and their
approximation by the Kramers’ rate (dashed line), see Fig. 4.9(a). The other two transition
probabilities can be derived from them w−+ = 1−w++, w+− = 1−w−−. The probabilities are
computed by averaging 100 realizations of the simulated system. For comparison, the confidence
interval for the confidence level of 95% is also shown (· · · ), that means the interval [x ± 2σx]
contains at least 95% of the predictions; where σx denotes the standard deviation. But of course
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Figure 4.9: Transition probabilities w++ and w−− (a) and their logarithms (b) from the nu-
merical simulation of one logistic map, a = 3.25, with Gaussian noise (−) and the fit (- -) of the
Kramers’ rate (4.13) for σ = 0.024 . . . 0.2. Further indicated is the confidence interval of the
confidence level 95% of the fit(· · · ). Averaged over 100 realizations, each transient and runtime
are 106 steps.

as mentioned at the end of Sec. 1.2, this test assumes that the data is independent and Gaussian
distributed which is not true here. In order to test for the Kramers’ rate, in Fig. 4.9(b) we also
plot ln(w) versus 1/σ2 which should yield a straight line.

In Fig. 4.9 we find that the Kramers’ theory is a good description as the semilogarithmical plot
4.9(b) displays a nearly straight line. The slope of the line should be height of the potential
barrier. Now we seek to find the dependence on the bifurcation parameter a. In Fig. 4.10(a)
the ‘potential barrier’ ∆U and in Fig. 4.10(b) the pre-exponential term ln(κ) are plotted. If
the point x2(a) of the period-2 cycle is for the first time smaller than the super-stable point
x = 0.5, this happens at a = 1+

√
5 ≈ 3.236, then the slope of the potential and the slope of the

pre-exponential term changes its sign. However, there does not seem to be a simple dependence
of the potential on a.

As we have shown, the transition rates in the period-2 regime for small noise intensities can be
well approximated as a Markov process where the rates are given by the Kramers’ theory. In
the following we come back to the Moran problem.
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Figure 4.10: Verifying the validity of the Kramers’ Ansatz Eq. (4.13) for the transition probabil-
ities w++ and w−− of one logistic map with Gaussian noise. Displayed are in (a) the ‘potential
barrier’ ∆U and in (b) the pre-exponential term ln(κ) with fits for σ = 0.024 . . . 0.2 (−), also
shown in Fig. 4.9, and for σ = 0.039 . . . 0.2 (· · · ). Averaged over 100 realizations of a simulation
where each transient and runtime steps are 106.

4.4 Markov-model with correlated noise

In the next sections, we build a Markov-model for the logistic map in the period-2 regime.
We use a Markov process [56, 102] and see which features of the nonlinear logistic map in the
period-2 regime it describes. This approach is more appropriate for small noise intensities.

4.4.1 Approximation as a Markov process

In section 4.3 we introduced a partition of the phase space in the states “+” and “-”. Given
this discretization of the space, the time-series of the logistic map translates into a sequence
of symbols, which we model in this section by a Markov process. We denote the probability
that a random variable X has a value s(t) at time t by P (s, t) = Ps(t), where s ∈ S = {+,−}.
The joint probability P (s1, t1; s2, t2) is the probability that the random variable has value s1

at time t1 and value s2 at time t2. A process is called stationary if

Ps(t) = Ps ∀t. (4.15)
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4 Dynamics in the period-2 regime

The conditional probability P (s, t+1|s′, t), here called transition probability, is the probability
that the random variable X is in the state s at time t + 1 given that it was before in the state
s′ at time t. We denote the transition probability with

P (s, t + 1|s′, t) =: ws←s′ =: wss′ . (4.16)

If the random variable has memory only of its immediate past, the joint conditional probability
P (sn, tn|s1, t1; . . . ; sn−1, tn−1), where t1 < t2 < · · · < tn, must have the form

P (sn, tn|s1, t1; . . . ; sn−1, tn−1) = P (sn, tn|sn−1, tn−1). (4.17)

A process for which Eq. (4.17) is satisfied is called a Markov process (of first order).

Let us introduce the transition matrix T, whose elements are the transition probabilities

T =

(
w++ w+−

w−+ w−−

)
.

The transition matrix is a stochastic matrix, that is the sum over each column is equal to one,∑
i tij = 1, and each element is a probability: 0 ≤ tij ≤ 1 [102]. In other words, transition

probabilities with the same initial state are arranged in the same column and transition prob-
abilities with the same final state are in the same row. The transition matrix, T, in general is
not a symmetric matrix. Therefore, the left and right eigenvectors of T will be different. The
stationary state of the system, ~Pstat, is the eigenvector to the left eigenvalue 1,

T · ~Pstat = 1 · ~Pstat, (4.18)

with ~Pstat = (P+, P−).

Now we apply this theory to the logistic map in the period-2 regime. With noise the system
has the possibility to stay in one state: If the system is in the state “-” and it happens that
the noise is negative and with a large absolute value, the logistic function maps it to “+” but
the negative noise brings it back to “-”. On the other hand, if the system is in the state “+”,
only large positive noise lets it stay in “+”. This is illustrated in Fig. 4.11. The described
transition probabilities to stay in a state for Gaussian noise, w−− = 1/2 erfc((x1 − x∗)/(

√
2σ))

and w++ = 1/2 erfc((x∗ − x2)/(
√

2σ)), are indicated as gray-shaded areas.

Thus a random number ε is drawn (e. g. throwing a dice) and depending on a threshold value
the next state is chosen. The dynamic rules for the Markov model are the following:

+ −→ + : 1
2 erfc

(
−ε/

√
2
)
≤ p

+ −→ − : 1
2 erfc

(
−ε/

√
2
)

> p

− −→ + : 1
2 erfc

(
−ε/

√
2
)

< 1− q

− −→ − : 1
2 erfc

(
−ε/

√
2
)
≥ 1− q

(4.19)

This is a Markov process with the transition rates w++ = p and w−− = q. For p = q = 0,
the system switches between the two states constantly. The random number ε is Gaussian
distributed, in order to obtain positive values between in [0, 1] we use the complementary error
function.

48
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Figure 4.11: Gaussian distributed noise centered at the fixed points x1,2 of the second iterate of
the logistic map g(x). Drawn as gray-shaded area are the probabilities to stay (a) in the state “-
”, w−− = 1/2 erfc((x1−x∗)/(

√
2σ)) and (b) in the state “+”, w++ = 1/2 erfc((x∗−x2)/(

√
2σ)).

Further indicated are the fixed point x∗ of g and the partitioning of the phase space. The
parameters are a = 3.1, σ = 0.05.

4.4.2 Correlated Markov processes

Now we take two of the systems Eq. (4.19) with correlated random numbers, so to say the two
dices are connected with a ribbon. The joint probability density function of the noises ε and η

acting each on one of the processes is a bivariate Gaussian

pr,σ(ε, η) =
exp(− ε2+η2−2rεη

2σ2(1−r2) )

2πσ2
√

1− r2
. (4.20)

We set the standard deviation to one. Note that p(ε, η) 6= p(−ε, η) (except for zero correlation,
i. e. r = 0).

The transition probability that the random variables X1 and X2 are in the state s1 respectively
s2 at time t + 1 given that they were before in the state s′1 respectively s′2 at time t is denoted
by

P ((s1, s2), t + 1|(s′1, s′2), t) =: ws1s2s′1s′2
, (4.21)

with si, s
′
i ∈ S = {+,−}. The transition matrix for these two correlated Markov systems (4.19)

is

T =


w++++ w+++− w++−+ w++−−

w+−++ w+−+− w+−−+ w+−−−

w−+++ w−++− w−+−+ w−+−−

w−−++ w−−+− w−−−+ w−−−−

 , (4.22)

and has due to the symmetry of the probability distribution, p(ε, η) = p(−ε,−η) = p(η, ε), the
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Figure 4.12: Possible states of the Markov model (4.19) and the corresponding transition prob-
abilities

form 
t1 t4 t4 t8

t2 t5 t6 t9

t2 t6 t5 t9

t3 t7 t7 t10

 , (4.23)

where ti ∈ [0, 1] for i = 1 . . . 10. The same structure of the transition matrix displays the system
of two logistic maps with additive, symmetrically correlated noise too, see Fig. 4.8. From the
transition matrix T the correlation of the two systems can be calculated. The stationary state
of the whole system is denoted by ~Pstat = (P++, P+−, P−+, P−−). The mean value of the first
system can be calculated by

〈X1〉 =
∑

s1,s2∈S

s1Ps1s2 = (+1)P++ + (+1)P+− + (−1)P−+ + (−1)P−−. (4.24)

More generally, the m-th moment of the i-th variable of this process reads as

〈Xm
i 〉 =

∑
s1,s2∈S

sm
i Ps1s2 , (4.25)

with i ∈ {1, 2}. The cross correlation can be expressed as

〈X1X2〉 =
∑

s1,s2∈S

s1s2Ps1s2 . (4.26)

By inserting the calculated moments in Eq. (2.1), the linear correlation coefficient of two systems
described by Eq. (4.19) reads as

rT :=
P−− + P++ − P−+ − P+− − (P++ + P+− − P−− − P−+)(P−+ + P++ − P−− − P+−)√

1− (P++ + P+− − P−− − P−+)2
√

1− (P−+ + P++ − P−− − P+−)2
.

(4.27)
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Figure 4.13: The relative correlation rp/r of two correlated Markov systems (4.19):
(a) contour-plot of rp/r for the threshold parameters p and q, r = 0.5, and
(b) section of p = q for different random number correlations: r = 0.1 (· · · ), r = 0.5 (−) and
r = 0.9 (−−). Both plots are averaged over 10 realizations, each transient and runtime are 106

steps.

For a Markov process of first order the linear correlation obtained from its time-series, rp, and
the correlation from the transition matrix, rT , are equal due to the lack of further memory
terms, i. e. rT = rp.

In Fig. 4.13(a) the relative correlation rp/r of the two Markov systems (4.19) with correlated
Gaussian random numbers is shown in dependence of the transition probabilities p, q. Addition-
ally the section of p = q for different correlation coefficients of the random numbers is displayed
in Fig. 4.13(b). In the following we calculate analytically the correlation of the Markov systems
(4.19) in some special cases.

The transition probability that both systems are staying in the state “+” is

w++++ =
∫ ∫ √2 erf−1(2p−1)

−∞
dε dη pr,1(ε, η), (4.28)

= L(
√

2 erf−1(1− 2p),
√

2 erf−1(1− 2p), r), (4.29)

where L(h, k, r) is the bivariate normal probability function [1]. This integral is in general not
analytically solvable except for special cases, see App. C. These special cases are indicated in
the integral limits of Eq. (4.28) and are given in the following:

� Uncorrelated noise r = 0
The two systems act independently and the probabilities just multiply w++++ = p2, w+−++ =
p(1−p), . . . The moments factorize 〈xy〉 = 〈x〉〈y〉 and thus the linear correlation coefficient
is zero,

rT = 0. (4.30)
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4 Dynamics in the period-2 regime
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Figure 4.14: Linear correlation of two logistic maps as a function of the bifurcation parameter
The correlation of two Markov systems (4.19), each with the transition probabilities of one
logistic map with additive Gaussian noise obtained by direct numerical simulation, is drawn as
solid line. As a comparison the correlation of the symbolic dynamics of two logistic maps with
correlated Gaussian noise computed with Eq. (4.27) is shown (· · · ) and the correlation of their
time-series (- -). The parameters are σ = 0.02, r = 0.5.

� Equiprobable states p = q = 1/2
Writing down the integrals for the transition probabilities reveals additional symmetries
and the transition matrix has the following structure

t1 t1 t1 t1

t2 t2 t2 t2

t2 t2 t2 t2

t1 t1 t1 t1

 . (4.31)

The correlation can be expressed as

rT = −1 + w++++ =
2
π

arcsin(r) ≤ r. (4.32)

This is the maximal correlation, compare Fig. 4.13(b).

Application to the logistic maps

In the following we take the transition probabilities w++, w−− of one logistic map with Gaussian
noise obtained by direct numerical simulation and use them as transition probabilities p, q for
the Markov model. The correlation of these Markov models is compared in Fig. 4.14 to the
correlation of two logistic maps with correlated Gaussian noise. The time-series of the logistic
maps is reduced like in Sec. 4.3 to the symbols “+,-” and the correlation is then computed by
Eq. (4.27). For larger noise intensities the approximation gets worse. The reason is that the
correlation of two logistic maps cannot be reduced to that of its symbols because fluctuations
around the points x1,2 are neglected.
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4.5 Two piecewise constant maps

4.5 Two piecewise constant maps

Suppose two identical piecewise constant maps with correlated noise. This is an exact realization
of the previously described correlated Markov process and has the advantage, that fluctuations
around the period-2 orbits are not neglected.

One piecewise constant maps looks as follows

xn+1 =
{ a + εn xn ≤ 0

c + εn xn > 0
, (4.33)

with c < 0, a > 0. For negative values of the bifurcation parameter a the map has a fixed point
in a; for positive a the map has a period-2 cycle, switching between c and a.

Now we could proceed as in the last section with Gaussian noise, but the analytics were not
satisfying. Thus we take symmetrically correlated uniform noise, introduced in Chap. 2:

ε = σ

√
1 + r

2
ξ + σ

√
1− r

2
ξ′, (4.34)

η = σ

√
1 + r

2
ξ − σ

√
1− r

2
ξ′. (4.35)

The properties of the noise are: 〈ε〉 = 0,
〈
ε2
〉

= σ2, 〈εη〉 = rσ2, where ξ and ξ′ are uniformly
distributed between [−

√
3,
√

3] to assure 〈ξ2〉 = 1. The joint probability density function can
be calculated (see appendix B):

p(ε, η) =
1

12
√

1− r2σ2
Θ
(√

6σ
√

1 + r − (ε + η)
)

Θ
(√

6σ
√

1 + r + (ε + η)
)

×Θ
(√

6σ
√

1− r − (ε− η)
)

Θ
(√

6σ
√

1− r + (ε− η)
)

. (4.36)

The integral equation for the joint distribution of the two maps reads as:

f(x, y) =
∫∫ ∞
−∞

dx′dy′ f(x′, y′)p(x− g(x′), y − g(y′)). (4.37)

Using the piecewise constant map (4.33) we arrive at

f(x, y)=
∫∫ ∞

0

dx′dy′ f(x′, y′)p(x− c, y − c) +
∫ ∞

0

dx′
∫ 0

−∞
dy′ f(x′, y′)p(x− c, y − a) +

+
∫∫ 0

−∞
dx′dy′ f(x′, y′)p(x− a, y − a) +

∫ 0

−∞
dx′
∫ ∞

0

dy′ f(x′, y′)p(x− a, y − c).

This is also a zeroth order approximation for the noise-correlated logistic maps in the period-2
regime if we choose g(x′) = x1,2. As in Sec.4.3 we label the state xn > x∗ = 0 “+”, and xn < 0
“-”. The probability that both systems are in state “+” is

A++ :=
∫∫ ∞

0

dxdy f(x, y) (4.38)

= A++

∫∫ ∞
0

dxdy p(x− c, y − c) + A+−

∫∫ ∞
0

dxdy p(x− c, y − a) + (4.39)

+ A−+

∫∫ ∞
0

dxdy p(x− a, y − c) + A−−

∫∫ ∞
0

dxdy p(x− a, y − a).
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4 Dynamics in the period-2 regime

The integral pre-factors of the probabilities A++, A+−, A−+ and A−− in Eq. (4.39) are the
transition probabilities. The transition probabilities are defined leftward like in the previous
section: w++++ := w++←++.

In App. D we calculate this transition probability exemplarily

w++++ =
∫ ∞

0

dx

∫ ∞
0

dy p(x− c, y − c) (4.40)

=
∫ ∞
−c

dx

∫ ∞
−c

dy Θ
(√

6σ
√

1 + r − (x + y)
)

Θ
(√

6σ
√

1 + r + (x + y)
)

× 1
12
√

1− r2σ2
Θ
(√

6σ
√

1− r − (x− y)
)

Θ
(√

6σ
√

1− r + (x− y)
)

.

For convenience we introduce the abbreviation σ+ =
√

3σ
√

1 + r, σ− =
√

3σ
√

1− r. Solving
the integrals leads to

w++++ =
1

12
√

1− r2σ2

[
2σ−

(
σ+ +

√
2c− σ−

)
Θ
(
σ+ − σ− +

√
2c
)

Θ
(
σ+ + σ− −

√
2c
)

+ 4σ+σ−Θ
(√

2c− σ+ − σ−

)
Θ
(√

2c− σ+

)
+ 4

√
2cσ+Θ

(
σ− −

√
2c− σ+

)
Θ
(√

2c− σ+

)
+
(
σ+ +

√
2c
)2

Θ
(
σ− −

√
2c− σ+

)
Θ
(
σ+ +

√
2c
)

Θ
(
−
√

2c + σ+

)
+
(

σ2
− −

(
σ+ −

√
2c
)2
)

Θ
(
σ+ − σ− +

√
2c
)

Θ
(√

2c− σ+

)
Θ
(
σ− + σ+ −

√
2c
)

+ σ2
−Θ

(
σ+ − σ− +

√
2c
)

Θ
(
−
√

2c + σ+

) ]
. (4.41)

The other transition probabilities can be computed by solving the Frobenius-Perron equa-
tion, analogously to w++++, or by constructing geometrically the areas in phase space which
correspond to the transition probabilities, like in Fig. 4.11.

From the ten transition probabilities, only three have to be calculated, all others can be derived
from them through transformations. One transition probability is noted already, see Eq. (4.41),
the other two are also calculated in appendix D. Calculating the stationary state of the transition
matrix, the correlation rT of these two piecewise constant maps with additive correlated noise
can be computed with Eq. (4.27). This correlation is depicted in Fig. 4.15(a) with the line of
diamonds (�).

With the use of the formula (2.6) for the correlation of two additive noises the correlation of
the time-series can also be calculated, because the noise is an additive process to the Markov
process. The variance of this Markov process is ((a− c)/2)2, so the correlation reads as

C(x, y) =
rT

(
a−c
2

)2 + rσ2(
a−c
2

)2 + σ2
, (4.42)

where r denotes the correlation and σ the variance of the additive noise. This is the dashed
line in Fig. 4.15(a) and it corresponds to the correlation of the simulated process (line of stars
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Figure 4.15: Correlation C(x, y) of two (a) piecewise constant and (b) logistic maps in zeroth
order with symmetrically correlated additive uniform noise when changing the bifurcation pa-
rameter a. Plotted is the correlation of the simulated time-series (?), the correlation computed
with Eq. (4.27) from the analytically derived transition matrix (�) rT and from the transition
matrix acquired by simulation (−) and the correlation for two additive noises calculated in
Eq. (4.42) (−−). The parameters are for (a) σ = 0.1, c = −0.1, r = 0.5 and (b) σ = 0.1, r = 0.5;
the simulations are averaged over 10 realizations.

(?)). The correlation of the symbolic dynamics of this process is depicted as the solid line in
Fig. 4.15(a) and coincides with the analytically derived correlation (�). If in the transition
probabilities of the logistic map, Eq. (4.11), with uniform noise the map g is only expanded
to zeroth order, i. e. g(x′ > x∗) = x2, then the transition probabilities are reduced to those of
the piecewise constant map, compare Eq. (4.39). The corresponding fixed points of the second
iterate are a = x1 − x∗, c = x2 − x∗. This comparison is shown in Fig. 4.15(b).

Special cases of two piecewise constant maps with additive correlated noise, which we could
solve are the following:

� Uncorrelated noise r = 0
The two systems act independently and the correlation vanishes.

� Case a = −c = 0 and large noise intensities σ −→∞, i. e. σ � max (‖a‖, ‖c‖)
The transition matrix has the structure

t1 t1 t1 t1

t2 t2 t2 t2

t2 t2 t2 t2

t1 t1 t1 t1

 . (4.43)

Thus the correlation of the symbolic dynamics reduces to

rT = −1 + 4w++++, (4.44)

and using Eq. (2.6) the correlation of the time-series yields

rp = r. (4.45)
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4 Dynamics in the period-2 regime

More precisely, for uniform noise the correlation computes to rT = −1+
(
2−

√
1−r
1+r

)
Θ(r)+√

1+r
1−r Θ(−r), and for Gaussian noise to rT = 2

π arcsin(r) ≤ r.

� Symmetric case a = −c

This implies another symmetry to the transition matrix, which now looks like
t1 t4 t4 t3

t2 t5 t6 t2

t2 t6 t5 t2

t3 t4 t4 t1

 . (4.46)

The corresponding correlations yield

rT =
w+++− − w−+++

w+++− + w−+++
, (4.47)

rp =
rT a2 + rσ2

a2 + σ2
. (4.48)

In the special case that there are no jumps between the two states, i. e. a = −c > 2σ, the
‘transition matrix’ reads as 

0 1
1

1

1 0

 , (4.49)

with rT = ±1, because the eigenvalue 1 is twice degenerated.
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Chapter 5

Amplification of the correlation

In the previous chapters we saw always that the correlation of the processes is smaller (or equal)
the correlation of the added noises. In this chapter we discuss two different ways in which an
amplification of the correlation can appear, so that the correlation rp of the two systems is
larger than that of the noise, rp > r.

5.1 X-noise

We show that a counterintuitive amplification of the correlation can arise if the joint noise
probability distribution is structured. The most simple example is given by the following joint
distribution

f(ε, η) = q p(ε)δ(ε− η) + (1− q)p(ε)δ(ε + η). (5.1)

The particular noise distribution p(ε) can be of any kind, in the following a Gaussian is assumed.
The joint noise distribution is a simple case of Eq. (2.2), a mixture of a perfect correlated and
an anti-correlated component, where q is the mixing parameter. An example for this kind
of noise in the ecological context could be climate with a distinct correlated and a distinct
anticorrelated component. For noise satisfying 〈ε〉 = 〈η〉 = 0, 〈ε2〉 = 〈η2〉 = σ2, the linear
correlation coefficient reads as C(ε, η) = 2q − 1. In Fig. 5.1(a) the joint probability density
of noise corresponding to Eq. (5.1) is depicted. Due to the shape of the distribution we call
this X-noise. For q = 1/2, the linear correlation coefficient is zero, although the distribution is
apparently dependent: From the knowledge of ε the absolute value of η can be predicted.

If we now apply this uncorrelated X-noise additively to uncoupled logistic maps, the distribution
of the maps is smeared out and slightly biased compared to the noise distribution, see Fig. 5.1(b).
Varying the noise correlation in Fig. 5.2(a) reveals an amplification regime rp > r, e. g. for
r ∈ [−0.1, 0.63] with a = 2.4, σ = 0.2. This result is at first glance astonishing. For uncorrelated
X-noise in the fixed-point regime of the logistic map a resonance-like dependence on the noise
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Figure 5.1: (a) Density distribution of Gaussian X-noise Eq. (5.1), q = 0.5, σ = 0.1 and (b) the
density distribution of two logistic maps with this uncorrelated Gaussian X-noise, a = 2.4, q =
0.5, σ = 0.1. Both plots show an ensemble of 104 realizations with each 106 iteration steps.

intensity σ is observed in Fig. 5.2(b). Additionally we vary the bifurcation parameter in order
to see in which regime the amplification of the noise correlation through the system is most
pronounced. In Fig. 5.3(b) we see that for the logistic map in the fixed-point regime, a ∈ [1, 3],
the correlation is most enhanced.

Following the naming of other noise-related resonance effects, we denote the effect as corre-
lation resonance. Stochastic resonance [11] is observed in a broad class of nonlinear systems,
e. g. bistable or excitable, that are driven by an external signal and noise. A finite optimal noise
intensity results in a maximal response of the system to the signal. Too large noise destroys the
cooperative effect of noise and the external signal. Excitable systems with additive noise, which
lack an external signal, show also a resonant behavior if the noise intensity corresponds to the
eigenfrequency of the system [37]. This is called coherence resonance (CR) [92] or autonomous
stochastic resonance [76]. A detailed analysis of coherence and stochastic resonance is given in
[73]. As a measure of the resonance effect the signal-to-noise ratio (SNR) is used. Coherence
resonance was reported by Neiman et al. [85] for one noisy logistic map or two coupled noisy
logistic maps. The authors interpreted CR as a noisy precursor of a period-doubling bifurcation
at subcritical control parameter values.
The difference to coherence resonance is that correlation resonance is a mutual phenomenon of
two nonlinear systems that have a structured noise distribution. Therefore we use as a measure
the correlation (coeffcient).

We have tested correlated Laplacian noise with a probability distribution p(x) = 1/
√

2e−|x|
√

2,
correlated uniform noise, correlated dichotomous noise where the four points are not on the
diagonals of the joint noise distribution and correlated uniform noise distributed on the unit
disk {(x, y)|x2 + y2 < 1}, all correlated symmetrically according to Eq. (2.12). If the four
points of the dichotomous joint distribution are on the diagonals like in [39], the correlation
is zero. The comparison of the correlation coefficient of two logistic maps with the mentioned
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Figure 5.2: Amplification of the noise: (a) The correlation coefficient rp of two logistic maps
with r correlated Gaussian X-noise Eq. (5.1), σ = 0.2. (b) The correlation coefficient rp of
two logistic maps with additive Gaussian X-noise Eq. (5.1), q = 0.5. Shown are results for
bifurcation parameters in the fixed-point regime a = 1.6 (−·−), a = 2.4 (−) and in the period-2
regime a = 3.3 (−−). Averaged over 100 realizations with runtime 106 steps.

different structured noise distributions is shown in Fig. 5.4. For the logistic maps the maximal
amplification is around a = 2.4, σ = 0.2, independent of the structured noise distribution.
Though the amplification factor depends on the particular distribution as shown in Fig. 5.4.
Our numerics suggests that this effect plays a role for every non-Gaussian noise to a different
degree. Simulations indicate that for the Ricker map, Eq. (1.12), the maximal amplification is
also in the fixed-point regime at a ∈ [1.3, 1.4] for σ ∈ [0.55, 0.65]. The amplification is most
pronounced for linearly uncorrelated noise r = 0. Note, that there is no correlation resonance
in linear systems.

Nevertheless, the mutual information of the two logistic maps with additive X-noise is always
smaller than that of the X-noise. So we do not have an information gain transmitting the noise
signals through the nonlinear systems. This can be seen in Fig. 5.3(a)-(b). The uncertainty
coefficient [96], a normalized mutual information, yields no different results to the mutual
information. But the resonance effect still holds when measuring the dependence of these two
systems with the mutual information. Concludingly, one can say that the linear correlation
coefficient, which measures how well a straight line fits the data, is a not well suited measure
for this kind of structured noise distribution.

5.2 Autocorrelated noise

So far we have always neglected correlations in time in the noises. However, in natural sys-
tems the environment is often temporally correlated [115, 124]. In the following we show that
correlation enhancement can be achieved for linear systems with additive, autocorrelated noise.
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Figure 5.3: Dependence of various correlation measures µC as a function of the noise intensity
σ (a) and the bifurcation parameter a (b) of two logistic maps with additive Gaussian X-noise
Eq. (5.1). Shown are Spearman’s rank correlation (−·−), Pearson’s correlation coefficient (−),
Kendall’s Tau (· · · ) and the mutual information I of the two logistic maps (−−). The mutual
information of the Gaussian X-noise is I(ε, η) ≈ 1.6, the other correlation measures of the noise
are zero. Parameters are q = 0.5 and for (a) a = 2.4, for (b) σ = 0.2, and both plots are
averaged over 10 realizations of each transient and runtime 104 steps.

Autocorrelated noise can be modeled with the help of the theory of autoregressive processes,
which have well known statistical properties [56]. A first order autoregressive (AR(1)) process
reads as

εt+1 = αεt + ξt, (5.2)

ηt+1 = βηt + ξ′t,

where α, β ∈ [−1, 1] are the autocorrelation parameters, independent of time. The generat-
ing noises ξt, ξ

′

t are drawn from a bivariate Gaussian distribution with correlation coefficient
C(ξt, ξ

′
t) = ρ, zero mean and variance σ2. The autocorrelation parameter, e. g. α, determines

the ‘color’ of the resulting time-series {εt}: For α > 0, the time-series is positively correlated
(red-shifted) with long-period cycles, whereas α < 0 results in negative correlation (blue-shifted)
and short-period cycles. Negatively autocorrelated noise is unlikely to be important in nature
and might be harder to detect. If there is no autocorrelation at all, the times-series is white
Gaussian noise.

The following computations are done analogously to section 3.1.1. Calculating the first moments
of the autocorrelated noise yields

〈ε2
t 〉 =

σ2

1− α2
, 〈εtηt〉 =

ρσ2

1− αβ
. (5.3)

The correlation coefficient of the generated autocorrelated noise reads as

C(εt, ηt) = ρ

√
1− β2

√
1− α2

1− αβ
. (5.4)

60



5.2 Autocorrelated noise

0 0.1 0.2 0.3 0.4 0.5
−0.1

−0.05

0

0.05

0.1

0.15

0.2

σ

r p 

Figure 5.4: Comparison of two logistic maps with additive uncorrelated (r = 0) different noises
according to Eq. (2.12). The correlation coefficient rp in dependence of the noise intensity σ is
shown for Gaussian X-noise Eq. (5.1) (?), Laplacian noise (· · · ), noise distributed on the unit
disk (−), uniform noise (−−) and dichotomous noise (− · −). The simulations are averaged
over 10 realizations with transient and runtime 106 steps. a = 2.4.

Rewriting the correlation gives an estimation in dependence of the correlation of the generating
noise

C(εt, ηt) = ρ

√
(1− β2)(1− α2)√

(1− α2)(1− β2) + (α− β)2
≤ ρ. (5.5)

Therefore, if α 6= β, the correlation of the environmental processes will always be smaller than
the correlation of the generating noise. If the environmental processes have very different auto-
correlation or just one process is very unstable (|α| ≈ 1), they are unlikely to be substantially
correlated. Note, that given simple, first order population processes, Eq.( 5.5) offers a correction
of the Moran theorem for the case of nonidentical populations.

The simplest possible model for a time-discrete, one species, two populations model around the
population equilibrium is

xt+1 = axt + εt, (5.6)

yt+1 = ayt + ηt,

with autocorrelated noises εt, ηt described by Eq. (5.2). The process depends on the slope of
the recruitment function a(|a| < 1) at the population equilibrium and on the noise.

Now the variance and the first joint moment of the two AR(1) processes can be calculated

〈x2
t 〉 =

σ2(1 + aα)
(1− a2)(1− α2)(1− aα)

, (5.7)

〈xtyt〉 =
ρσ2(1− a2αβ)

(1− a2)(1− αβ)(1− aβ)(1− aα)
. (5.8)
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Figure 5.5: Table of the correlation enhancement of two linear maps with autocorrelated noise,
Eq. (5.6). Shown is the amplification factor Eq. (5.11) depending on the autocorrelation param-
eters α, β of the noise for different bifurcation parameter values of the maps a = 0.1, 0.3, 0.5, 0.9.

The variance corresponds to the one calculated in [105, 106]. Finally the correlation coefficient
of two AR(1) processes with autocorrelated noise computes to

C(xt, yt) = C(εt, ηt)
(1− a2αβ)√

(1− a2β2)(1− a2α2)
. (5.9)

From Eq. (5.9) it can be deduced that the sign of the correlation of the two processes is
determined by the sign of the correlation of the noise, because all other terms are positive.
Rewriting the correlation coefficient of the two AR(1) processes according to Eq. (5.5), yields

C(xt, yt) = C(εt, ηt)

√
(1− a2α2)(1− a2β2) + a2(α− β)2√

(1− a2β2)(1− a2α2)
≥ C(εt, ηt). (5.10)

The correlation of the two processes is always higher than or equal to that the correlation of
the added autocorrelated noise. The correlation enhancement is most pronounced if one noise
is “red” and the other “blue”, i. e. a short- and a long-period environmental noise is used.

The exact condition for the correlation enhancement is

1− a2 sgn(α) sgn(β)|α||β| >
√

(1− a2α2)(1− a2β2), (5.11)

where sgn(x) denotes the signum function, sgn(x > 0) = 1, sgn(x < 0) = −1, sgn(0) = 0.
In Fig. 5.5 the amplification factor Eq. (5.11) depending on the autocorrelation parameters
α, β of the noise for different bifurcation parameter values a of the maps is shown. If both
autocorrelation parameters are equal, α = β, the Moran effect is reproduced. The correlation
enhancement is most pronounced for unstable systems a ≈ 1 and different signs of large auto-
correlation parameters.
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5.2 Autocorrelated noise

Note that the correlation of the processes is nevertheless always smaller than the correlation
of the generating noises, C(xt, yt) ≤ ρ. But in nature often the correlation of the generating
noises or even the generating noises itself are unknown, so a correlation enhancement might be
observable in nature.
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Chapter 6

Summary and Perspectives

In the first part of this thesis we have systematically studied noise-induced correlation of non-
linear maps.

In Chap. 2 we have given a simple expression for the correlation coefficient of processes which
consists of pairs of additive correlated noise. Moreover, we have expressed the Moran theorem
differently in terms of the mutual information. This expression is valid for two one-dimensional
maps in the fixed-point regime with weak or very strong Gaussian noise.

The second order analytical approximation of the Moran theorem in Chap. 3 for weak noise in
the fixed-point regime of quadratic maps is a novel result. We have shown that in the fixed-
point regime of a one-dimensional quadratic map there is no correlation enhancement possible
for small additive Gaussian noise. This result is also valid for the fixed-point regime of the nth
iterate of the map. Additionally, boundary conditions have been shown to account for a local
minimum in the correlation coefficient at the first transcritical bifurcation of the logistic map.

In Chap. 4 we have described the desynchronization mechanism of one-dimensional maps in
the period-2 regime. The transition rates between phase and antiphase dynamics of two noise-
correlated logistic maps in the period-2 regime for very small noise intensities could be well
approximated as a Markov process where the rates are given by the Kramers’ theory. Never-
theless this approach of using a Markov process of first order remains a coarse approximation
to calculate the correlation of noise-correlated logistic maps. In addition we have introduced
correlated Markov processes and we have examined it using the example of two noise-correlated
piecewise constant maps. The notion of correlated Markov processes should be closer investi-
gated.

In the period-n regime of the logistic map the Markov approach of partitioning the phase space
to analyze transition probabilities may be used, but it gets more tedious as n increases. Solving
the Frobenius-Perron integral equation to calculate the stationary joint probability density
function also in the chaotic regime is numerically feasible, analytically it is a challenge.
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6 Summary and Perspectives

In Chap. 5 we wanted to emphasize the possibility of a larger linear correlation coefficient of
the populations than that of the noise. We have suggested two possible methods to create
correlation enhancement, either by using a structured joint noise distribution or by using spa-
tially and temporally correlated noise, which to our knowledge have not been reported before.
Using the mutual information as a measure for the dependence of the two systems, this yielded
no information gain transmitting the noise through the nonlinear systems. Nevertheless, the
resonance effect still held. But these methods still leave open questions, which are discussed
below.

The mechanism of the correlation resonance in the case of a structured noise distribution is to be
uncovered. Furthermore, an analytic expression for the resonance curve is worthwile. A noisy
precursor of the period-doubling bifurcation at subcritical bifurcation parameter values can be
ruled out as a mechanism of the enhancement, because the amplification does not increase with
vanishing distance to the bifurcation, instead it decreases.

An experimental verification of both methods for correlation enhancement is desirable. The
effect of correlated environmental noise with positive or no temporal autocorrelation on popu-
lation dynamics in aquatic microcosms has been experimentally studied [23, 34, 89]. Negative
temporal autocorrelation of the environment would be a prerequisite for the correlation en-
hancement, but has not, to our knowledge, been realized. A structured joint noise distribution
could be implemented in experiments by using correlated noise with identical amplitudes and
opposite signs with respect to a mean value. This would represent environmental noise with a
positively correlated and an anticorrelated component.

It would be interesting to transfer the achieved results to spatially extended systems and to
incorporate coupling between the systems. Especially it would be tantalizing to study the effect
of coupling on the phenomenon of correlation resonance.

Furthermore, the environment is known [68] to cause a change in the fitness of species. In this
sense a possible direction for further research could be the analysis of the influence of correlated
environments on the evolution of uncoupled species.
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Chapter 7

Control of phase synchronization

in two coupled oscillators

In this chapter we investigate the synchronization properties of two nonlinear oscillators, which
are coupled by a feedback loop which is inspired from phase-locked loops. In contrast to other,
usually diffusively coupling schemes, the presented approach supposes the existence of a special
controller, which allows to change the parameters of the controlled systems. First, we study the
simplest possible case of two regular oscillators for which the typical synchronization properties
(synchronization threshold, Arnold tongues etc.) can easily be derived. Finally we apply this
method of phase synchronization to foodweb models.

7.1 Introduction

Considering the models of coupled systems in biology, neuroscience or ecology, one can see that
in many of them the coupling between interacting elements is nonlinear. Such a coupling serves
as the basis of an internal self-organization mechanism leading to a balanced motion in these
systems. Coupled neurons [99], phase transitions in human hand movement [48] or ecological
systems [84], are only some well known examples of balanced cooperative oscillatory motion,
caused by a nonlinear coupling. In engineering, nonlinear coupling, is used, for example, in
coupled lasers [129]. Usually this coupling has the form of a quadratic function of the interacting
elements [121]. This type of coupling is able to lock the oscillators’ phase and therefore leads
to synchronization.

Different methods for controlling the behavior of dynamical systems have been used for chaos
control [87, 98]. For a review of control techniques and algorithms see Boccaletti et al. [17].
An adaptation of these methods for the stabilization of a chaotic trajectory of one system to a
chaotic trajectory of another identical system, i. e. for a control of complete synchronization, was
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presented in [71, 78]. In [94] it was shown that the main problems of complete synchronization,
being regarded as a control problem, can be solved on the basis of control theory methods. On
the other hand, the problem of phase synchronization (PS) has not been formulated and hence
considered before as a control theory problem.

In contrast to the aforementioned methods, our novel approach is directed at controlling the
phases via characteristic time scales of two (or many) different interacting oscillators. We
propose an automatic control method to achieve phase locking of regular and chaotic non-
identical oscillations, when all subsystems interact via a feedback [5, 7]. This method is based
on the well known principle of feedback control which takes place in nature and is successfully
used in engineering. This principle of obtaining synchronization is effectively used in applica-
tions of phase-locked loops (PLL) in a large number of radio- and telecommunication devices,
e. g. radio-location [74]. Before we introduce our control method, we review shortly the phase
synchronization of coupled oscillators.

7.2 Review: Two coupled limit cycle systems

Recall the usual equations of two diffusively coupled phase oscillators [119]

φ̇1 = ω1 + ε Γ(φ2 − φ1),

φ̇2 = ω2 + ε Γ(φ1 − φ2). (7.1)

Here, ε is the coupling strength, ω1,2 is the natural frequency and φ1,2 the phase of the oscil-
lators. The function Γ(φ2 − φ1) determines the interaction between the oscillators. Usually,
it is assumed that the interaction disappears for vanishing phase difference. Therefore, it is
customary to set Γ(0) = 0. The simplest 2π-periodic function with this property is the sinus
function and leads to the Kuramoto model [69, 93]

φ̇1 = ω1 + ε sin(φ2 − φ1),

φ̇2 = ω2 + ε sin(φ1 − φ2). (7.2)

To study the synchronization properties we investigate the time evolution of the phase difference
θ = φ2 − φ1

θ̇ = ∆ω − 2ε sin(θ), (7.3)

where ∆ω = ω2−ω1. In Fig. 7.1(a) the difference of observed frequencies ∆Ω = 2π/
∫ 2π

0
dθ/θ̇ =√

(∆ω)2 − 4ε2 is plotted against the coupling parameter ε. If the coupling exceeds a threshold
εc = ∆ω/2, the frequency difference disappears, ∆Ω = 0, and the oscillators are synchronized
to a common frequency. The synchronization takes place for ε > εc independent of the initial
values of the variables. In this regime the system is characterized by the phase difference
θ∗ = arcsin

(
∆ω
2ε

)
.

The fact that the phase difference in the synchronized state is bounded, |θ(t)| < const., is
called phase locking or phase synchronization (PS). In Fig. 7.1(b) the synchronized region, the
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Figure 7.1: Discussion of the Kuramoto model Eq. (7.2) (a) Frequency difference ∆Ω (solid
line) and phase difference θ (dashed line) of the two phase oscillators as a function of the
coupling strength ε. (b) Locking region (Arnold tongue) of the oscillators in dependence of
the natural frequency difference ∆ω and the coupling strength ε. The upper gray part is the
synchronization region.

so called Arnold tongue, is described by the condition

ε >
|∆ω|

2
. (7.4)

In the synchronized regime, the locked oscillators rotate with the mean observed frequency,

Ω̄ :=
φ̇1 + φ̇2

2
=

ω1 + ω2

2
= ω̄, (7.5)

which is simply given by the mean of the natural frequencies (as can be seen from Eq. (7.2))

7.3 General principle of automatic phase synchronization

To begin with, we describe automatic phase locking for two arbitrary regular or chaotic oscil-
lators

ẋ1,2 = F1,2(x1,2, ω1,2), (7.6)

where x1,2 and F1,2 are n-dimensional vectors, ω1,2 are parameters defining the time dependence
rate (in some cases, frequencies) of oscillators x1,2(t). Often, the time dependence rates (or fre-
quencies) can be expressed in terms of multipliers of the right hand parts: ẋ1,2 = ω1,2 F1,2(x1,2).
In contrast to direct unidirectional (Fig. 7.2(a) and direct bidirectional (Fig. 7.2(b) coupling,
the approach presented here supposes the existence of a special controller, which allows to
change the parameters of the controlled systems (Fig. 7.2(c). Our purpose is to synchronize
such two oscillators by using a feedback control of the time scales of the coupled oscillators in
such a way that the new characteristic time scales Ω−1

1,2 become identical. Here Ω1,2 are the
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Figure 7.2: Three main schemes of inter-element coupling between two oscillators having
natural frequencies ω1 and ω2: a) direct unidirectional, b) direct bidirectional, and c) coupling
via a feedback loop with a controller composed of a quadratic form Q, Eq. (7.9), and a linear
operator L, Eq. (7.8).

mean observed frequencies of the controlled oscillators. In addition to the comparison of the
observed frequencies of the controlled systems, we are also interested in the evolution of their
phase difference, which is typically used in the study of PS. In order to synchronize the coupled
subsystems, we apply a feedback control in the following form:

ẋ1,2 = F1,2(x1,2, ω1,2(1 + α1,2u)), (7.7)

Lu = Q(x1, x2).

Here L is a linear operator

L = γk
dk

dtk
+ γk−1

dk−1

dtk−1
+ ... + γ1

d

dt
+ γ0 (7.8)

acting as a low-pass filter, where all γk are non-negative constants. Q(x1, x2) is a quadratic
form

Q = xT
1 Hx2, (7.9)

where H is a n× n matrix, which is usually taken as a diagonal matrix. The variables α1,2 are
the feedback controlling coefficients, acting on the subsystems 1 and 2, respectively, and u(t) is
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the control variable, which is added in the first equation of (7.7) in such a way that it is able
to change the characteristic time scales of the interacting subsystems.

The scheme modeled by Eqs. (7.7)-(7.9) works in the following simple manner: First, the two
signals x1 and x2 taken from both interacting systems are fed to the multiplier, Q(x1, x2),
which is acting as a correlator between the variables of the interacting systems (first part Q of
the “Controller” presented in Fig. 7.2(c). The spectrum of oscillations Q(t) consists of a “low”
part defined by the difference Ω2 − Ω1 and a “high” part defined by the sum Ω2 + Ω1. Then,
the signal Q(t) is conducted through the low-pass filter (second part L of the “Controller”
presented in Fig. 7.2(c), which damps the “high” frequency part due to a specially designed
transfer function. Hence, the control variable u(t) becomes a slow-varying function in time,
whose spectral band goes to zero. After the filtering, u(t) is added to both interacting systems
(7.7) in such a way that it may change their characteristic time scales. The main goal is that
this procedure provides a balance between the new time scales, i. e. Ω2 = Ω1. Note, that due to
the boundedness of the form Q(x∗1, x

∗
2) at the attractor and due to the stability of the operator

L, the control variable u is bounded too, i. e. ||u(t)|| < K, where K = const.

7.4 Two coupled Poincaré systems.

As the simplest case, we consider feedback control of PS in two coupled Poincaré systems

ẋ1 = −ω1(1 + α1u)y1 − λ(x2
1 + y2

1 − p2)x1,

ẏ1 = ω1(1 + α1u)x1 − λ(x2
1 + y2

1 − p2)y1,

ẋ2 = −ω2(1 + α2u)y2 − λ(x2
2 + y2

2 − p2)x2, (7.10)

ẏ2 = ω2(1 + α2u)x2 − λ(x2
2 + y2

2 − p2)y2,

τ u̇ = −γu + βx1x2 .

Here, (xi, yi) describe the Cartesian coordinates of two Poincaré systems and u is the control
variable. The coefficients ω1,2 are the frequencies of the systems, p is the amplitude of oscilla-
tions and λ > 0 determines the relaxation to the limit cycle. β and γ are the parameters of the
controller. The constants α1,2 determine the coupling scheme. In contrast to the Kuramoto
phase model (7.2), there are overall three coupling parameters α1, α2, β. By a simple modi-
fication of αi it is possible to realize both bidirectional (αi 6= 0, i ∈ {1, 2}) or unidirectional
coupling (αi = 0, αj 6= 0). Notice, that in this scheme the coupling parameter αi may as
well take negative numbers. In Eq. (7.10) we have chosen very simple analytic forms for the
quadratic form Q(x1, x2) = βx1x2 and the linear operator L = τ d

dt + γ. However, we note that
also different, more sophisticated, functions may be used with similar results.

Using polar coordinates xi = ρi cos φi, yi = ρi sinφi, we rewrite system (7.10) in the form:

ρ̇1,2 = λρ1,2(p2 − ρ2
1,2),

φ̇1,2 = ω1,2(1 + α1,2u), (7.11)

τ u̇ = −γu + βρ1ρ2 cos(φ1) cos(φ2).
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The product of cosine functions in Eq. (7.11) can be decomposed into a slow and a rapidly
oscillating term. In the limit ω1 + ω2 > γ, the low pass filter L is damping out the ‘high’
frequencies, which further simplifies the dynamics. Let ω2 = ω1 + ∆ω. After relaxation of the
radial equation, ρ̇i = 0, the amplitude of each oscillator is fixed to ρi = p. Thus, after averaging
we arrive at the following simplified equations for the control variable u and the phase difference
θ = φ2 − φ1:

θ̇ = ∆ω + (α2ω2 − α1ω1)u, (7.12)

τ u̇ = −γu +
β p2

2
cos θ.

Rewritten as a second order differential equation this leads to

τ θ̈ + γθ̇ − γ∆ω − β

2
p2(α2ω2 − α1ω1) cos θ = 0. (7.13)

This pendulum-like equation for the evolution of the phase difference describes the synchro-
nization regime of the two oscillators interacting via feedback control. The existence of this
regime is defined by a stable steady state in Eq. (7.12) with the coordinates

cos θ∗ =
2γ

βp2
u∗, u∗ =

∆ω

α1ω1 − α2ω2
, (7.14)

which does exist in the range
βp2

2γ
>

∣∣∣∣ ∆ω

α2ω2 − α1ω1

∣∣∣∣ . (7.15)

Synchronization is achieved when the effective coupling strength, here εeff = βp2/(2γ), is larger
than a function of the frequencies, i. e. εeff > |∆ω/(α2ω2 − α1ω1)|. Note the similarity to
Eq. (7.4). However, we want to stress that here the synchronization threshold, Eq. (7.15),
depends on the amplitude of oscillation, p. Larger values of p lead to an onset of phase syn-
chronization at smaller values of the coupling strength β.

In Fig. 7.3 the locking (or synchronization) regions of system (7.12), as described by condition
(7.15), are plotted in the parameter plane of effective coupling and natural frequency difference.
By variations of different coupling schemes, i. e. uni- and bidirectional coupling, basically four
different scenarios for the form of the locking regions can be found. Obviously in the feedback
coupling scheme, depending on the values of αi, the locking regions are not necessarily defined by
straight lines. Furthermore there are specific values of the natural frequencies, (α2ω2 = α1ω1),
which arise from the singularities of Eq. (7.15), for which synchronization can never be achieved.
These special frequency values divide the parameter plane into different locking regimes. In some
regions of ∆ω, synchronization is inhibited. In compensation, in other regimes of parameter
space the synchronization is strongly promoted and the border of synchronization is moved
toward smaller values of effective coupling strength.

Further indicated in Fig. 7.3 is also the phase difference of the two oscillators at the onset of
synchronization. As a consequence of the cosine term in Eq.(7.13), the phase difference may be
either 0◦ or 180◦. Therefore, for the minimal coupling strength when synchronization sets in,
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Figure 7.3: Synchronization regions (gray) of two Poincaré oscillators Eq. (7.13) as described by
condition (7.15) for different coupling scenarios and fixed ω1 = 1, γ = 1, p = 1. a) α2 = −α1 = 1,
b) α2 = α1 = 1, c) α1 = 0, α2 = 1, d) α1 = 1, α2 = 0. Further indicated is the phase
difference of both oscillators at the synchronization threshold, which is either θ∗ = 0◦ (solid
line), θ∗ = 180◦ (dashed line), or undetermined, if the transition leads to oscillation death
(dotted line). Compare to Fig.7.1(b).

the time lag between two nearby maxima of xi(t) is either 0 or π/Ω̄, where we have used the
mean observed frequency

Ω̄ =

〈
φ̇1 + φ̇2

2

〉
. (7.16)

Consequently, at the onset of synchronization the two limit cycle oscillators are either fully
synchronized or fully anti-synchronized.

Before the synchronization sets in, the observed frequency difference in the small coupling
regime can be calculated in the case τ � 1 as

∆Ω =
2π∫ 2π

0
dθ/θ̇

=

√
∆ω2 − β2p4

4γ2
(α2ω2 − α1ω1)2. (7.17)

In the following we compare this analytical approximation with numerical simulations of Eq. (7.10).
The phase of a limit cycle can be computed in the form

φ1,2 = arctan
(

y1,2

x1,2

)
, (7.18)
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7 Control of phase synchronization in two coupled oscillators

Figure 7.4: Locking regions of two Poincaré oscillators Eq. (7.10) for unidirectional coupling
α1 = 0, α2 = 1 in dependence on the coupling strength β and the natural frequency difference
∆ω. γ = 1, p = 1, ω1 = 1. In order to ensure synchronization, i. e. to avoid the multistability
regime discussed in Sec. 7.4.3, we use the initial state in the middle of the two fixed points
θ = π on the θ̇ = 0 nullcline.

and the respective mean frequency as

Ω1,2 = lim
T→∞

φ1,2(T )− φ1,2(0)
T

. (7.19)

The numerically calculated values of ∆Ω can also be used to visualize the locking regions.
A numerically computed synchronization surface is shown in Fig. 7.4. Compare this to the
analytically derived Fig. 7.3(c).

7.4.1 Impossibility of synchronization with symmetrical coupling

We now study the special case of symmetrical coupling where α1 = α2. Inspection of Fig. 7.3
reveals the special role which is played by this coupling scheme because seemingly the synchro-
nization threshold in this case is independent of the natural frequency difference between the
oscillators. This result can also be found from Eq. (7.15). However, the picture is somewhat
misleading because as we now show in this case it is impossible to synchronize the two oscilla-
tors at all. In order to calculate the mean observed frequency (7.16) of two Poincaré systems
(7.11) in the locked state, we require

φ̇1 + φ̇2 = ω1 + ω2 + u∗(α1ω1 + α2ω2). (7.20)
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7.4 Two coupled Poincaré systems.

After inserting the steady state value of the control variable u∗, Eq. (7.14), this results in

Ω̄ =
ω1 + ω2

2
+

α1ω1 + α2ω2

α1ω1 − α2ω2

∆ω

2
, (7.21)

and replaces the usual formula Ω̄ = ω̄, Eq. (7.5), for two simply symmetrically directly coupled
phase oscillators.

In the case of symmetrical coupling Eq. (7.21) this has the implication that the mean observed
frequency disappears

α1 = α2 → Ω̄ =
φ̇1 + φ̇2

2
= 0. (7.22)

Since in the synchronized state further ∆Ω = 0, we follow that Ω1 = Ω2 = 0 and the oscillators
effectively stop to rotate. This result is also evident by going back to the feedback coupling
scheme (Fig. 7.2). If α1 = α2, then both oscillators always obtain identical feedback. The only
way in which then the observed frequencies can become identical is when they are controlled to
zero, i. e. to oscillation death. This is also valid if u is introduced only in the second equation of
system (7.10), whereas for different oscillator types in this case this does not hold, see section
7.5.

7.4.2 Anti-symmetrical coupling

A special interest attains the scheme of anti-symmetrical coupling, where the feedback to the
two oscillators has the same strength but opposite sign, α1 = −α2. In this case, obviously the
mean coupling parameter disappears, ᾱ = α1+α2

2 = 0, which leads with u̇ = 0 to the simplified
phase equation (7.12)

θ̇ = ∆ω + α
β ω̄p2

γ
cos(θ). (7.23)

Similarly, the synchronization regime in the parameter space simplifies to

α
β ω̄p2

γ
> |∆ω| . (7.24)

This expression for the synchronization threshold resembles very much the usual synchronization
of two coupled oscillators (compare Fig. 7.1(b) and Fig. 7.3(a). However, note that even in this
case there remain important differences. For example, synchronization sets in with a phase
difference of either 0◦ or 180◦.

We again calculate the mean locking frequency in the synchronized state

φ̇1 + φ̇2 = ω1 + ω2 +
(ω1 − ω2)2

ω1 + ω2
, (7.25)

which leads to

Ω̄ =
ω2

1 + ω2
2

ω1 + ω2
. (7.26)

Therefore, in the case of anti-symmetrical coupling the observed mean frequency in general is
not the arithmetic mean of the natural frequencies.
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Figure 7.5: Typical phase flow of Eq. (7.12) in three different parameter regimes. a) No
synchronization. For all initial values the phase difference is drifting (parameters α1 = α2 =
1, γ = 1, β = 1, ω1 = 1.3, ω2 = 1). b) Global stability of locked state (parameters α1 =
α2 = 1, γ = 1, β = 3, ω1 = 1.3, ω2 = 1). c) Bistability between locking and drifting solutions
(parameters α1 = α2 = 1.5, γ = 1.5, β = 2.1, ω1 = 4, ω2 = 2). The dashed lines indicate the
nullclines. p = 1.

It is also straightforward to calculate the forbidden frequency ratio, i. e. the ratio for which
synchronization cannot be achieved in the scheme with antisymmetrical coupling. We are led
to the condition ω̄ = 0 or ω2 = −ω1. Therefore, synchronization cannot be achieved when
both oscillators rotate in opposite direction with exactly the same frequency. In contrast to
the Kuramoto phase model (7.3), here in the limit ω̄ → 0 the mean observed frequency goes to
infinity Ω̄ →∞ and not Ω̄ → 0.

7.4.3 Bistability of phase locking

Eq. (7.15) seems to imply that in the case when locking can be achieved in the model (u, φ),
this leads to synchronization for all initial values. However this is not the case. To explore
this in more detail, we now analyze the phase plane of Eq. (7.12). In Fig. 7.5 we depict the
nullclines given by Eq. (7.14) and the phase flow for three different parameter sets. The fixed
points are located at the intersection of the nullclines. If there are no fixed points, of course,
synchronization does not occur.

When varying the coupling strength, we can distinguish between three different dynamical
regimes: For small values of the coupling strength β the nullclines do not intersect and there is
no synchronization. In contrast for large values of β a locking regime is found. When increasing
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parameter β over the critical level, two fixed points are created in a saddle node bifurcation.
However for coupling parameter values in the transition regime near the bifurcation point, we
find multistability. Depending on the initial states of the two Poincaré systems, they may
synchronize or not. Starting above the nullclines in the phase space, the system is only able to
reach a periodic, non synchronized state. This scenario can be seen in Fig. 7.5(c). Recall that
such bistable behavior is absent in the Kuramoto model. However, similar bistability is known
to arise in two coupled oscillators with varying nonisochronicities [4].

7.5 Coupled foodweb models

In this section we apply the method of automatic phase synchronization to foodweb models from
ecology. First, we study the synchronization of two coupled limit-cycle Rosenzweig-MacArthur
[84] systems

ẋ1,2 = ax1,2 (1− x1,2/K)− kfH(x1,2, y1,2),

ẏ1,2 = −b1,2 (1 + α1,2u) y1,2 + kfH(x1,2, y1,2),

u̇ = −γu + βy1y2. (7.27)

Here, x1,2 denotes the prey and y1,2 the predator species, a and b1,2 are the birth and death
rates, K is the prey carrying capacity, k the predation rate and κ the half saturation constant
of the Holling type II functional response fH(x, y) = xy/(1 + κx). Throughout this section we
use the parameter values a = 1, k = 3,K = 3, κ = 1. The two oscillators are nonidentical and
vary in the value of predator death rates b1 = 1.0 and b2 = 0.95.

The control variable u is introduced into the model as in the previous models. Ecologically,
quadratic forms Q of Eq. (7.9) can arise very naturally as Lotka-Volterra interactions. Here, u

either represents a species that is affected and grows only in the presence of the predator y1,2 of
both sites and has a mortality γ. On the other hand, the predators’ death rates b1,2 are modified
by the abundance of the species u. In a different interpretation of Eq. (7.27) u represents an
abiotic environmental variable. In the absence of predators the environmental variable u decays
with rate γ to the ground state u = 0, however with positive predator density u is disturbed
to a positive value. Positive (negative) values of αi imply that the predator mortality increases
(decreases) with u. It is assumed that the mortality of the predators depends linearly on the
environment. This is described multiplicatively, i. e. the presence of both predator species is
necessary to change the environment.

Without coupling, system (7.27) is well known to exhibit limit cycle oscillations with a frequency
roughly determined by ωi =

√
abi. Nevertheless, feedback control can induce synchronization,

see Fig. 7.6. Depending on the coupling scheme synchronization may be achieved or not. Note
that in Fig. 7.6 the control parameter α is varied in the whole range from negative to positive
values.

Interestingly, in system (7.27) synchronization can be achieved even in the symmetrical scheme
where the values of α are identical, i. e. α1 = α2 = α. This is astonishing because then the
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Figure 7.6: Transition to synchronization for two limit cycle predator-prey models Eq.(7.27)
coupled via feedback loop. Solid lines) bidirectional coupling with either symmetric (α1 = α2 =
α) or antisymmetric (α1 = −α2 = α) coupling scheme; dashed lines) unidirectional coupling
(α1 = 0 or α2 = 0).

parameters in both systems (and consequently also the natural frequencies) are modified by
exactly the same amount bi(1+αu). This is in contrast to the simple theory with two Poincaré
oscillators Eq. (7.10) where identical αi only lead to oscillation death, see Section 7.4.1. Of
course, in the foodweb case u is only introduced into the second equation of system (7.27) and
not also to ẋ as in Eq. (7.10). However, the principal behavior of the Poincaré system remains
unchanged even if u is only introduced into the second equation, i. e. symmetrical coupling only
results in oscillation death. Similar behavior, i. e. synchronization in symmetrical coupling, was
also observed in the Rössler system, if u is affecting only the equation of the ẏ-variable [7].

Next, we study feedback control in a model for chaotic predator-prey cycles, which has been
proposed in [13, 15]

ẋ1,2 = ax1,2 − e fH(x1,2, y1,2),

ẏ1,2 = −b1,2(1 + α1,2u)y1,2 + e fH(x1,2, y1,2)− g y1,2 z1,2,

ż1,2 = −c(z1,2 − z0) + g y1,2 z1,2,

u̇ = −γu + βy1y2 . (7.28)

This model describes a three trophic “vertical” food chain where the vegetation x is consumed
by herbivores y which themselves are preyed upon by the top predator z. In the absence of
interspecific interactions the dynamics is linearly expanded around the steady state (0, 0, z0)
with coefficients a, b1,2 and c that represent the respective nett growth and death rates of each
species. Predator-prey and consumer-resource interactions are incorporated into the equations
via either the Lotka-Volterra term xy, or the Holling type II term fH(x, y) = xy/(1 + κx)
with strengths set by the coefficients e and g. Again, feedback control is implemented by the
biotic or abiotic variable u. Despite their minimal structure, the above equations might sketch
the major ecological transfers involved in the Canadian lynx-hare-vegetation foodweb [13, 15].
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Figure 7.7: Transition to synchronization for two chaotic foodweb models coupled via feedback
loop. a) Bidirectional coupling with either symmetric (α1 = α2 = α) or antisymmetric (α1 =
−α2 = α) coupling scheme; b) unidirectional coupling (α1 = 0 or α2 = 0).

For simulation runs reported here, parameter values are taken as in [13, 15]: a=1, c=10, e=
0.2, g = 1, κ = 0.05, z0 = 0.006. The parameter mismatch between the two oscillators is given
by b1 = 0.96; b2 = 0.98. In this parameter range the model shows phase coherent chaotic
dynamics, where the trajectory rotates with nearly constant frequency in the (x, y)-plane but
with chaotic dynamics that appear as irregular spikes in the top predator z. This behavior of
the foodweb model is reminiscent to the Rössler system [86] and therefore one might expect
similar synchronization properties in both systems.

Simulation results are shown in Fig. 7.7. Also in the chaotic ecological model synchronization in
phase can be obtained. However, we find a rich behavior. In the unidirectional coupling scheme
for positive α, synchronization is achieved in both cases. For negative α synchronization is
achieved only in the case α2 = 0, see Fig. 7.7(b). In the bidirectional coupling schemes, depicted
in Fig. 7.7(a), synchronization is found in all cases if the absolute value of α is sufficiently large.
In the antisymmetric coupling scheme, e. g. α1 = −α2 = α, for positive values of α the
transition to synchronization is characterized by the fact that with the onset of coupling the
frequency difference is first increasing with a maximal difference for intermediate values (here
α ≈ 0.00025). Whereas frequencies become attracted and locking arises only for larger values
of the coupling strength. Similar behavior is known to arise also in two diffusively coupled
foodweb models and has been called anomalous phase synchronization [14, 79].

7.6 Summary and Perspectives

In contrast to the directly coupled limit cycles of the Kuramoto phase model (7.3), in the
feedback coupling scheme we obtain a frequency-dependent coupling. One consequence is the
existence of specific values of natural frequencies for which synchronization in principle cannot
be achieved, in particular when α1ω1 = α2ω2. As we have shown for Poincaré oscillators, for
symmetrical bidirectional coupling, α1 = α2, the critical coupling value is independent of the
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7 Control of phase synchronization in two coupled oscillators

natural frequency ratio, and synchronization can never be achieved: In this case strong coupling
leads to oscillation death. Whereas in the case if the control variable u only influences the y-
variable directly, for Rosenzeig-McArthur or Rössler systems synchronization could be achieved
even for symmetrical coupling. This deserves closer investigation.

In the PLL coupling scheme the increase of coupling acts somewhat counterintuitive. Take
the case where both oscillators rotate identically at the onset of synchronization. With further
increase of coupling strength, the two oscillators are more and more driven out of phase. Until
finally, in the limit of very large coupling, they are related with a phase difference of π/2. This
is just the opposite behavior of the Kuramoto phase model, where at threshold the oscillators
are related with phase difference of |θ∗| = π/2, whereas in the limit of large coupling θ∗ → 0.
Therefore, in the feedback coupled model the interaction does not disappear in the limit of
large coupling.

Another difference is the extra equation for u, which gives rise to an additional degree of
freedom in the phase space of the system. Thus, the phase difference is determined by a
second order equation. This allows for new rich behavior. Whereas in the usual case the
phase difference must necessarily approach the equilibrium locking state monotonically, here
damped oscillations around this locked state are possible (see Fig. 7.5). Further, depending on
initial values of u the phase difference can increase (or decrease) several multiples of 2π before
reaching synchronization. In principle this new degree of freedom allows for new applications.
For example by external forcing it might be possible to excite such oscillating modes of the
frequency difference.

The advantages of this novel feedback control method compared to more conventional schemes
are the following:

� The effect of the amplitudes of the interacting subsystems on the difference of their phases
provides a high efficiency of this approach: large amplitudes lead to a small phase differ-
ence.

� The proposed method can be used for automatic synchronization of oscillators of different
nature (regular and chaotic).

� Phase synchronization already sets in at very small values of control parameters, which
is very important from an energetical point of view. On the other hand, for specific
parameter values synchronization can not be obtained at all, that seems to be a trade-off.

It is important to emphasize that this principle can be applied not only to coupled self-oscillatory
systems [5, 7]. Note that this method can also be applied to synchronize oscillators of different
topology (e .g. coupled Rössler and Lorenz oscillators) and complexity (e. g. chaotic and hyper-
chaotic Rössler oscillators). Furthermore, the method can also be used to synchronize elements
coupled in chains and lattices. In the latter case the coupling can be local or global [6, 7]. An
experimental realization of our method is desired.
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Appendix A

Derivation of the

Frobenius-Perron equation

In this appendix we derive the integral equation for the stationary density, the so called
Frobenius-Perron equation, and clarify the methods used for its calculation. The dynamical
equations under consideration are

xn+1 = g(xn) + εn, (A.1)

yn+1 = g(yn) + ηn. (A.2)

The random variables ε and η are correlated. From these equations, we obtain a condition for
the correlated stationary (i. e. fn+1 = fn ≡ f) distribution density

f(x, y) =
∫ ∫ ∞
−∞

dεndηn

∫ ∫ ∞
−∞

dxndyn f(xn, yn) p(εn, ηn) δ(x− xn+1)δ(y − yn+1) (A.3)

=
∫ ∫ ∞
−∞

dεndηn

∫ ∫ ∞
−∞

dxndyn f(xn, yn) p(εn, ηn) δ(x− g(xn)− εn)δ(y − g(yn)− ηn),

the so called Frobenius-Perron-Equation. This is the probability density that the system is
after infinite iteration steps in the state (x, y). The averaging is meant as an average over all
simulations with different initial conditions. We rename (xn, yn) → (x′, y′) and perform the
noise-average

f(x, y) =
∫ ∞
−∞

dx′
∫ ∞
−∞

dy′ f(x′, y′) p (x− g(x′), y − g(y′)) . (A.4)

Eq. (A.4) is discretized on a equidistant grid with gridsize ∆; the integrals are approximated
by Riemann sums. With the definitions

x −→ xi,

f(x, y) −→ f{ij} ≡ f(xi, yj),

p (x− f(u), y − g(v)) −→ K{ij}{mn} ≡ p (xi − g(um), yj − g(vn))∆2,

83



A Derivation of the Frobenius-Perron equation

it takes the form
f{ij} =

∑
{mn}

K{ij}{mn}f{mn}. (A.5)

One should think of the pair {ij} as one vector index. This makes f{ij} a vector and K{ij}{mn}

a matrix. Depending on taste and efficiency of available numerical packages, the equation can
be considered as
(a) system of homogeneous linear equations

0 =
∑
{mn}

(
K{ij}{mn} − δ{ij}{mn}

)
f{mn} ∀{ij} (A.6)

(b) integral equation (A.4)
(c) eigenvalue equation, where only the left eigenvalue Λ = 1 is of interest

Λ~f = K ~f

(d) iteration equation for the population

~f [j + 1] = K ~f [j]

Once, this integral equation is solved, the cross correlation

C(x, y) =
〈xy〉 − 〈x〉 〈y〉√

(〈x2〉 − 〈x〉2)(〈y2〉 − 〈y〉2)
(A.7)

can be obtained from integrals such as

〈xy〉 =
∫ ∞
−∞

dx

∫ ∞
−∞

dy f(x, y) xy =
∑
{ij}

f{ij} xixj ∆2. (A.8)
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Appendix B

Uniform correlated noise

In this appendix we calculate the probability distribution function of symmetrically correlated
uniform noise and derive some of its properties. The corresponding noise equations are:

ε = σ

√
1 + r

2
ξ + σ

√
1− r

2
ξ′, (B.1)

η = σ

√
1 + r

2
ξ − σ

√
1− r

2
ξ′. (B.2)

The properties of the noise are: 〈ε〉 = 0,
〈
ε2
〉

= σ2, 〈εη〉 = rσ2, where ξ and ξ′ are independent
and uniformly distributed in the interval [−

√
3,
√

3] to assure 〈ξ2〉 = 1. The linear correlation
coefficient C(ε, η) = r lies in the interval [−1, 1] by definition. The joint distribution of ξ and ξ′

reads as follows:

p(ξ, ξ′) =
1
12

Θ(
√

3 + ξ)Θ(
√

3− ξ)Θ(
√

3 + ξ′)Θ(
√

3− ξ′). (B.3)

With the use of the construction formula

p(ε, η) =
p(ξ(ε, η), ξ′(ε, η))

|det(J)|
, J =

(
∂ε
∂ξ

∂ε
∂ξ′

∂η
∂ξ

∂η
∂ξ′

)
, (B.4)

see [56], and ξ = 1√
2σ
√

1+r
(ε + η), ξ′ = 1√

2σ
√

1−r
(ε− η), we arrive at:

p(ε, η) =
1

12
√

1− r2σ2
Θ
(√

6σ
√

1 + r − (ε + η)
)

Θ
(√

6σ
√

1 + r + (ε + η)
)

×Θ
(√

6σ
√

1− r − (ε− η)
)

Θ
(√

6σ
√

1− r + (ε− η)
)

. (B.5)

One can easily compute the area of the rectangle created by the Θ-functions if we make a
transformation into a 45°-rotated and at the new x-axis mirrored coordinate system, depicted
in Fig. B.1. The transformation is given by

ε′ =
ε + η√

2
, η′ =

ε− η√
2

, (B.6)
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Figure B.1: Transformation of the coordinate system (ε, η) to (ε′, η′) with ε′ = (ε+η)/
√

2, η′ =
(ε − η)/

√
2. Indicated are the boundaries a and b of the probability density function of sym-

metrically correlated noise, Eq. (B.7).

and the matching determinant of the Jacobian det(J) = −1. This yields the following joint
distribution function:

p(ε′, η′) =
1

12
√

1− r2σ2
Θ
(√

3σ
√

1 + r − ε′
)

Θ
(√

3σ
√

1 + r + ε′
)

×Θ
(√

3σ
√

1− r − η′
)

Θ
(√

3σ
√

1− r + η′
)

, (B.7)

which indicates the area of the rectangle in Fig. B.1:

ab = 2
√

3σ
√

1− r 2
√

3σ
√

1 + r = 12σ2
√

1− r2.

This is of course exactly the normalization constant.

In this thesis we often have to compute intersections of probability density function with one
of the four quadrants, for example in Sect. 4.5. The intersections represent here transition
probabilities. An exemplary transition probability might read as

w =
∫ ∞

0

dx

∫ ∞
0

dy p(x− c1, y − c2) =
∫ ∞

c1

dx

∫ ∞
c2

dy p(x, y). (B.8)

To calculate this, we use the above transformation (B.6) respecting the integral limits

w =
∫ ∞

c′1

dx′
∫ c′2+(x′−c′1)

c′2−(x′−c′1)

dy′ p(x′, y′). (B.9)

The integral limits transform accordingly to the transformation (B.6)

c′1 = (c1 + c2)/
√

2, c′2 = (c1 − c2)/
√

2, (B.10)

which factorizes the integral

w =
∫ ∞

c1+c2√
2

dx′ p(x′)
∫ −√2c2+x′

√
2c1−x′

dy′ p(y′). (B.11)
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Appendix C

Bivariate Normal probability

function

In this appendix we discuss the transition probabilities of two correlated Gaussian noise, men-
tioned in Sec. 4.3 and 4.4. Exemplarily we derive the quadrant probability

w++←++ =
∫ ∞

h

dε

∫ ∞
k

dη pr,σ(ε, η),

=
1

2πσ2
√

1− r2

∫ ∞
h

dε

∫ ∞
k

dη exp
(
−ε2 + η2 − 2rεη

2σ2(1− r2)

)
.

Using the transformation s = ε/(
√

2σ), t = (η − rε)/(σ
√

2(1− r2)) with the Jacobi-Matrix(
σ
√

2 0
rσ
√

2 σ
√

2(1− r2)

)
, the probability reads as

w++←++ =
1
π

∫ ∞
h/σ
√

2

ds exp(−s2)
∫ ∞

k−rσ
√

2s

σ
√

2(1−r2)

dt exp(−t2),

=
1

2
√

π

∫ ∞
h/σ
√

2

ds exp(−s2) erfc

(
k − rσ

√
2s

σ
√

2(1− r2)

)
.

The solution of the integral ∫ ∞
0

dx erf(ax)e−px−cx2
(C.1)

leads to the confluent hypergeometric function of two variables Ψ1, see 2.8.6.5 in [97]. A
review of multiple Gaussian (confluent) hypergeometric series is e. g. given in [114]. But the
hypergeometric functions of two variables are not yet implemented in numerical software like
Mathematica, Matlab, Maple, GSL.

Therefore we define the bivariate normal probability function L following [1] as

L(h, k, r) :=
1

2π
√

1− r2

∫ ∞
h

dx

∫ ∞
k

dy exp
(
−x2 + y2 − 2rxy

2(1− r2)

)
(C.2)
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C Bivariate Normal probability function

with h, k ∈ R. It is related to the cumulative bivariate normal distribution function by
Φ(h, k, r) = L(−h,−k, r). Solvable cases are

L(h, k, 0) =
1
4

erfc
(

h√
2

)
erfc

(
k√
2

)
, (C.3)

L(0, 0, r) =
1
4

+
1
2π

arcsin (r) , (C.4)

L

(
h, 0,

1√
2

)
=

1
2

erfc
(

h√
2

)
− 1

8
erfc2

(
h√
2

)
. (C.5)

A package for calculating L(h, k, r) numerically in Fortran or Matlab is given in [38]. Another
way of numerically solving it is using the MultinormalDistribution package of Mathematica.
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Appendix D

Transition probabilities of two

piecewise constant maps

In this appendix we display the transition probabilities of two identical piecewise constant maps
with uniform, symmetric correlated noise, discussed in Sect. 4.5. As discussed there, only three
of the sixteen transition probabilities have to be calculated, the others can be derived from
them due to the symmetry p(ε, η) = p(η, ε) = p(−ε,−η).

First, we calculate the following transition probability examplarily

w++++ =
∫ ∞

0

dx

∫ ∞
0

dy p(x− c, y − c) (D.1)

=
∫ ∞
−c

dx

∫ ∞
−c

dy Θ
(√

6σ
√

1 + r − (x + y)
)

Θ
(√

6σ
√

1 + r + (x + y)
)

× 1
12
√

1− r2σ2
Θ
(√

6σ
√

1− r − (x− y)
)

Θ
(√

6σ
√

1− r + (x− y)
)

.

For convenience we introduce the abbreviation σ+ =
√

3σ
√

1 + r, σ− =
√

3σ
√

1− r. The trans-
formation x′ = (x + y)/

√
2, y′ = (x − y)/

√
2 with the matching determinant of the Jacobian

det(J) = −1 leaves us with distinctions of cases to solve the integral

w++++ =
1

12
√

1− r2σ2

∫ ∞
−
√

2c

dx′
∫ √2c+x′

−
√

2c−x′
dy′Θ(σ+ − x′) Θ (σ+ + x′)

×Θ(σ− − y′) Θ (σ− + y′) . (D.2)

To distinct the cases it is useful to remember the conditions σ > 0 and − 1 < r < 1. At the
integration in y′ we have to distinguish between

√
2c + x′ > σ− and

√
2c + x′ < σ− :

w++++ =
1

12
√

1− r2σ2

∫ ∞
−
√

2c

dx′Θ(σ+ − x′) Θ (σ+ + x′) (D.3)

×

[∫ σ−

−σ−

dy′Θ
(√

2c + x′ − σ−

)
+
∫ √2c+x

−
√

2c−x

dy′Θ
(
σ− −

√
2c− x′

)]
.
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D Transition probabilities of two piecewise constant maps

The first integral leaves two choices being x′ > σ− −
√

2c > −
√

2c and x′ > −σ+ > σ− −
√

2c.

whereas in the second integral there are four cases: σ−−
√

2c > σ+ > x′ > −
√

2c > −σ+, σ+ >

σ− −
√

2c > x′ > −
√

2c, σ− −
√

2c > σ+ > x′ > −σ+ > −
√

2c and σ+ > σ− −
√

2c > x′ >

−
√

2c > −σ+. So collecting all cases sums up to

w++++ =
1

12
√

1− r2σ2

[
2σ−

(
σ+ +

√
2c− σ−

)
Θ
(
σ+ − σ− +

√
2c
)

Θ
(
σ+ + σ− −

√
2c
)

+ 4σ+σ−Θ
(√

2c− σ+ − σ−

)
Θ
(√

2c− σ+

)
+ 4

√
2cσ+Θ

(
σ− −

√
2c− σ+

)
Θ
(√

2c− σ+

)
+
(
σ+ +

√
2c
)2

Θ
(
σ− −

√
2c− σ+

)
Θ
(
σ+ +

√
2c
)

Θ
(
−
√

2c + σ+

)
+
(

σ2
− −

(
σ+ −

√
2c
)2
)

Θ
(
σ+ − σ− +

√
2c
)

Θ
(√

2c− σ+

)
Θ
(
σ− + σ+ −

√
2c
)

+ σ2
−Θ

(
σ+ − σ− +

√
2c
)

Θ
(
−
√

2c + σ+

) ]
. (D.4)

The derived transition probabilities are

w−−−− = w++++(−a,−a),

w−−++ = w++++(−c,−c),

w++−− = w++++(a, a).

From w+−−+(a, c) =
∫ ∫∞

0
dxdy p(x−a,−y−c) can be deduced by transformation of one variable

w−+++ = w+−−+(c, c),

w+−−− = w+−−+(a, a),

w−+−+ = w+−−+(c, a).

And finally from w−−+−(c, a) =
∫ ∫∞

0
dxdy p(x + c, y + a) can be derived

w+++− = w−−+−(−c,−a).
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