TY - JOUR A1 - Günther, Oliver A1 - Schüle, Manja A1 - Zurell, Damaris A1 - Jeltsch, Florian A1 - Roeleke, Manuel A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Mikulla, Stefanie A1 - Engbert, Ralf A1 - Elsner, Birgit A1 - Schlangen, David A1 - Agrofylax, Luisa A1 - Georgi, Doreen A1 - Weymar, Mathias A1 - Wagener, Thorsten A1 - Bookhagen, Bodo A1 - Eibl, Eva P. S. A1 - Korup, Oliver A1 - Oswald, Sascha Eric A1 - Thieken, Annegret A1 - van der Beek, Peter T1 - Portal Wissen = Excellence JF - Portal Wissen: The research magazine of the University of Potsdam N2 - When something is not just good or very good, we often call it excellent. But what does that really mean? Coming from the Latin word “excellere,” it describes things, persons, or actions that are outstanding or superior and distinguish themselves from others. It cannot get any better. Excellence is the top choice for being the first or the best. Research is no exception. At the university, you will find numerous exceptional researchers, outstanding projects, and, time and again, sensational findings, publications, and results. But is the University of Potsdam also excellent? A question that will certainly create a different stir in 2023 than it did perhaps 20 years ago. Since the launch of the Excellence Initiative in 2005, universities that succeed in winning the most comprehensive funding program for research in Germany have been considered – literally – excellent. Whether in the form of graduate schools, research clusters, or – since the program was continued in 2019 under the title “Excellence Strategy” – entire universities of excellence: Anyone who wants to be among the best research universities needs the seal of excellence. The University of Potsdam is applying for funding with three cluster proposals in the recently launched new round of the “Excellence Strategy of the German Federal and State Governments.” One proposal comes from ecology and biodiversity research. The aim is to paint a comprehensive picture of ecological processes by examining the role of single individuals as well as the interactions among many species in an ecosystem to precisely determine the function of biodiversity. A second proposal has been submitted by the cognitive sciences. Here, the complex coexistence of language and cognition, development and learning, as well as motivation and behavior will be researched as a dynamic interrelation. The projects will include cooperation with the educational sciences to constantly consider linked learning and educational processes. The third proposal from the geo and environmental sciences concentrates on extreme and particularly devastating natural hazards and processes such as floods and droughts. The researchers examine these extreme events, focusing on their interaction with society, to be able to better assess the risks and damages they might involve and to initiate timely measures in the future. “All three proposals highlight the excellence of our performance,” emphasizes University President Prof. Oliver Günther, Ph.D. “The outlines impressively document our commitment, existing research excellence, and the potential of the University of Potsdam as a whole. The fact that three powerful consortia have come together in different subject areas shows that we have taken a good step forward on our way to becoming one of the top German universities.” In this issue, we are looking at what is in and behind these proposals: We talked to the researchers who wrote them. We asked them about their plans in case their proposals are successful and they bring a cluster of excellence to the university. But we also looked at the research that has led to the proposals, has long shaped the university’s profile, and earned it national and international recognition. We present a small selection of projects, methods, and researchers to illustrate why there really is excellent research in these proposals! By the way, “excellence” is also not the end of the flagpole. After all, the adjective “excellent” even has a comparative and a superlative. With this in mind, I wish you the most excellent pleasure reading this issue! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611456 SN - 2198-9974 IS - 02/2023 ER - TY - JOUR A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Agrofylax, Luisa A1 - Engel, Silke A1 - Kampe, Heike A1 - Mikulla, Stefanie T1 - Portal Wissen = Learning JF - Portal Wissen: The research magazine of the University of Potsdam N2 - Changing through learning is one of the most important characteristics we humans have. We are born and can – it seems – do nothing. We have to comprehend, copy, and acquire everything: grasping and walking, eating and speaking. Of course, we also have to read and do number work. In the meantime, we know: We will never be able to finish this. At best, we learn for a lifetime. If we stop, it harms us. The Greek philosopher Plato said more than 2,400 years ago, “There is no shame in not knowing something. The shame is in not being willing to learn.” As humans we are also capable of learning; thanks to more and more knowledge about the world around us, we have moved from the Stone Age into the digital age. That this development is not a finish line either, but that we still have a long way to go, is shown by man-made climate change – and above all by our inability as a global community to translate what research teaches us into appropriate actions. Let us dare to hope that we also comprehend this. What we tend to ignore in the intensive discussion about the multi-layered levels of learning: We are by no means the only learners. Many, if not all, living beings on our planet learn, some more in a more purposeful and complex and more cognitive way than others. And for some time now, machines have also been able to learn more or less independently. Artificial intelligence sends its regards. The significance of learning for human beings can hardly be overestimated. Science has also understood this and has discovered the learning processes and conditions in almost all contexts for itself, no matter whether it is about our own learning processes and conditions or those around us. We have investigated some of these for the current issue of “Portal Wissen”. Psycholinguist Natalie Boll-Avetisyan has developed a box that can be used to detect language learning disorders already in young children. The behavioral biologists Jana Eccard and Valeria Mazza investigated the behavior of small rodents and found out that they do not only develop different personality traits but they also described how they learn to adapt them different environmental conditions. Computer linguist David Schlangen examines the question what machines have to learn so that our communication with them works even better. Since research is ultimately always a learning process that strives to understand something yet unknown, this time all texts are somehow along the motto of the title theme: It is about what the history of past centuries reveals about “military cultures of violence” and the question of what lessons we should learn from natural hazards for the future. We talked with a legal scholar who looks beyond the university’s backyard and wants to make law comprehensible to everyone. We also talked with a philosopher who analyzes why “having an opinion” means something different today than 100 years ago. We report about an AI-based genome analysis that can change healthcare sustainably. Furthermore, it is about the job profile “YouTuber”, minor cosmopolitanisms, and wildlife management in Africa. When you have finished reading, you will have learnt something. Promised! Enjoy your read! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611464 SN - 2198-9974 IS - 01/2023 ER - TY - JOUR A1 - Zimmermann, Matthias A1 - Agrofylax, Luisa A1 - Scholz, Jana A1 - Kampe, Heike A1 - Horn-Conrad, Antje A1 - Mikulla, Stefanie T1 - Portal Wissen = Humans T2 - Portal Wissen: The research magazine of the University of Potsdam N2 - When humans write and talk about humans, you notice right away: It’s their favorite topic. It is not only that everyone (usually) is closest to themselves. As a species, Homo sapiens also attaches distinct importance to themselves. Aristotle was concerned about the order of things and ranked the human being – as the seemingly most complicated one – at the “very top.” The book of Genesis in the Bible seems to take this up, calling the human being in a way the final point or “pride of creation” who should “rule” over Earth and all living beings. An impressive story, but it did not stand the test of time. The theory of evolution changed the pyramid into a far-branched tree and the human being to a little branch among many others. What has remained is that humans are not so easy to understand, especially to themselves. Or, as Marie von Ebner-Eschenbach said, “The simplest human is still a very complicated being.” This and the ongoing interest of humans in themselves ensure that many sciences also deal with him, her, or us, again and again and from every conceivable angle. Medicine and linguistics, educational research and psychology, history and sociology – many disciplines revolve around human(kind) and their actions. Therefore, it is hardly difficult to take a small exemplary human research journey through the University of Potsdam with this issue of “Portal Wissen.” We begin with a visit to the BabyLAB, where you can rewardingly watch even the youngest children learn languages. An economist points out that differences between men and women on their paychecks are anything but acceptable, and a start-up team showed us an app that can help you do something against dementia before it’s too late. Besides, it should have been clear long ago: If we want to understand ourselves, we must always look at what is surrounding us. This means the social interactions that challenge and shape us on both a small and large scale. That’s why we talked to historians who are investigating corruption in the ancient world. But it also includes the environment, both living and non-living, on which we leave our mark and which, in turn, constantly influences us. A specialist in ancient DNA, for example, is investigating whether even Neanderthals left an ecological footprint, while an ecologist is searching for the consequences of climate change for biodiversity in Africa. And a media scientist has spent years analyzing how various images can help communicate scientific findings on climate change in such a way that they are understood. We have not forgotten that the coronavirus continues to influence both our lives and research: A psychologist is working with partners throughout Germany to study how children and young people with chronic diseases get through the pandemic. In addition, we naturally do not leave aside the diversity of research – created by humans – at the University of Potsdam: We introduce one of Germany’s best gravitational wave researcher and talk about the role of mathematics in earthquake research. Last but not least, we had the work of the new research center for digital data law explained to us. T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565843 SN - 2198-9974 IS - 02/2022 ER - TY - JOUR A1 - Zimmermann, Matthias A1 - Horn-Conrad, Antje A1 - Mikulla, Stefanie A1 - Kampe, Heike A1 - Scholz, Jana T1 - Portal Wissen = Together BT - The research magazine of the University of Potsdam N2 - What makes humans human – and what distinguishes them from other creatures on Earth – has long been fervently discussed and is still being discussed today. “Homo sapiens”, the scientific self-description of our species, is already the characterization as an “understanding, wise, knowledgeable human being”. It could be argued that we owe this additional knowledge to our trait of (basically) feeling particularly attached to our equals. We are what we are, above all, and perhaps even exclusively: together. The development that eventually turned communities into societies in the course of which culture and knowledge emerged, could well be told as a story of more and less togetherness. People were always successful when they lived with instead of against each other. Things that were much admired later came into being when people worked together, knowledge that made history as progress was developed by minds that came into a conversation. It is therefore all the more surprising that this “recipe for success” is being pushed into the background at a time when it is needed more than ever. As a result of the Corona pandemic, we are living in a time in which the world is faced with a – literally – all-encompassing task which it can only overcome together, as has already been said many times. And yet, many people are primarily concerned about their own well-being in various ways – not infrequently without reflecting that the well-being of many others, and possibly ultimately even their own, suffers as a consequence. When there is a need for more togetherness while there is a lot of talk about division, it becomes clear that the success of togetherness is not a foregone conclusion: If we want to achieve something together, we must always keep talking about the goals and the way to get there. For this issue, we have collected what people can achieve together and how research is trying to fathom the “secret of togetherness” in many ways. We visited a team of environmental scientists who are developing forest gardens together with committed residents – as green oases in the middle of cities. We took a first look at the prototype of a national education platform that will bundle all kinds of digital learning in the future. We also present a model project that aims to help teachers and students prevent hate speech. Last but not least, the issue presents a small selection of various collaborations across disciplinary and national borders: We show how researchers from law and political science are working together to examine the ups and downs of international law, and why religious studies scholars from Potsdam and Iraq benefit from each other. Of course, the issue also brings together the entire spectrum of research at the University of Potsdam, we promise! We found out how heavy rain turn into flash floods and how to prepare for such events. We interviewed a migration researcher and visited a geoscientist who is drawn to mountains and valleys alike. It’s about – often unwritten – “body rules” in everyday life, the exploration of our gaze with the help of artificial intelligence, 33 answers full of complexity, and about mathematics at infinity. Enough words. Read for yourself – alone or together. Just as you like! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-562942 SN - 2198-9974 IS - 01/2022 CY - Potsdam ER - TY - JOUR A1 - Zimmermann, Matthias A1 - Mikulla, Stefanie A1 - Kampe, Heike A1 - Horn-Conrad, Antje A1 - Lass, Sander T1 - Portal Wissen = Departure BT - The Research Magazine of the University of Potsdam N2 - On October 20, 1911, the Norwegian Roald Amundsen left the safe base camp “Framheim” at the Bay of Whales together with four other explorers and 52 sledge dogs to be the first person to reach the South Pole. Ahead of them lay the perpetual ice at temperatures of 20 to 30 degrees Celsius below zero and a distance of 1,400 kilometers. After eight weeks, the group reached its destination on December 13. The men planted the Norwegian flag in the lonely snow and shortly afterwards set off to make their way back – celebrated, honored as conquerors of the South Pole and laden with information and knowledge from the world of Antarctica. The voyage of Amundsen and his companions is undoubtedly so extraordinary because the five proved that it was possible and were the first to succeed. It is, however, also a symbol of what enables humans to push the boundaries of their world: the urge to set out into the unknown, to discover what has not yet been found, explored, and described. What distinguishes science - even before each discovery and new knowledge – is the element of departure. Questioning apparent certainties, taking a critical look at outdated knowledge, and breaking down encrusted thought patterns is the starting point of exploratory curiosity. And to set out from there for new knowledge is the essence of scientific activities – neither protected nor supported by the reliable and known. Probing, trying, courageously questioning, and sensing that the solid ground, which still lies hidden, can only be reached again in this way. “Research is always a departure for new shoreless waters,” said chemist Prof. Dr. Hans-Jürgen Quadbeck-Seeger. Leaving behind the safe harbor, trusting that new shores are waiting and can be reached is the impetus that makes science so important and valuable. For the current issue of the University of Potsdam’s research magazine, we looked over the shoulders of some researchers as they set out on new research journeys – whether in the lab, in the library, in space, or in the mind. Astrophysicist Lidia Oskinova, for example, uses the Hubble telescope to search for particularly massive stars, while hydrologist Thorsten Wagener is trying to better understand the paths of water on Earth. Economists and social scientists such as Elmar Kriegler and Maik Heinemann are researching in different projects what politics can do to achieve a turnaround in climate policy and stop climate change. Time and again, however, such departures are themselves the focus of research: And a group of biologists and environmental scientists is investigating how nature revives forest fire areas and how the newly emerging forests can become more resilient to future fires. Since – as has already been said – a departure is inherent in every research question, this time the entire issue of “Portal Wissen” is actually devoted to the cover topic. And so we invite you to set out with Romance linguist Annette Gerstenberg to research language in old age, with immunologist Katja Hanack to develop a quick and safe SARS-CoV-2 test, and with the team of the Potsdam Center for Industry 4.0 to the virtual factory of tomorrow. And we will show you how evidence- based economic research can inform and advise politicians, and how a warning system is intended to prevent future accidents involving cyclists. So, what are you waiting for?! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-537138 SN - 2198-9974 IS - 02/2021 ER - TY - JOUR A1 - Mikulla, Stefanie A1 - Bossier-Steuerwald, Sandy A1 - Kampe, Heike A1 - Pchalek, Magda A1 - Zimmermann, Matthias A1 - Horn-Conrad, Antje T1 - Portal Wissen = Change BT - The Research Magazine of the University of Potsdam N2 - Change makes everything different. Let’s be honest: Just about everything is constantly in transformation. Even huge massifs that seem like eternity turned to stone will eventually dissolve into dust. So is change itself the only constant? The Greek philosopher Heraclitus certainly thought so. He said, “The only thing that is constant is change.” Change is frightening. A change that we cannot explain throws us into turmoil – like a magic trick we cannot decipher. Viruses that mutate, ecosystems that collapse, stars that perish – they all seem to threaten the fragile balance that makes our existence possible. Humanity is late in recognizing that we ourselves are all too often the impetus for dangerous transformations. Change gives hope. People have always been fascinated by change and felt compelled to explore its origin and essence. Quite successfully. We understand many things much better than generations before. But well enough? Not at all. Alexander von Humboldt said, “Every law of nature that reveals itself to the observer suggests a higher, as yet unrecognized one.” There is still much to be done. The current issue of Portal Wissen is all about change. We spoke to an astrophysicist who has found her happiness in researching the formation and change of stars. We also look at different aspects of the very earthly climate change and its consequences: A geoscientist explains how global warming affects the stability of mountain ranges. A legal expert makes clear that the call for a right to climate protection has gone largely unheard until now. How human land use affects biodiversity is being investigated by young researchers of the “Bio- Move” research training group, who have provided us with insights into their work on brown hares, water fleas, and mallard ducks. Other researchers focus on change in the contexts of humans. A group of nutrition scientists at the German Institute of Human Nutrition (DIfE) and sports scientists at the University of Potsdam are investigating the factors that cause our bodies to change as we age – and why some people lose muscles more quickly than others. Despite all these changes, we do not lose sight of the diversity of research at the University of Potsdam. A visit to the laboratory of the project “OptiZeD” gives us an idea of the possibilities offered by optical sensors for the personalized medicine of tomorrow, while an educational researcher explains why cultural diversity is an asset beneficial to our education. In addition, a cultural scientist reports on the fascination of comics. They are all part of the hopeful change that science is initiating and accomplishing! Enjoy the read! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509945 SN - 2198-9974 IS - 01/2021 ER - TY - JOUR A1 - Engel, Silke A1 - Horn-Conrad, Antje A1 - Scholz, Jana A1 - Schapranow, Matthieu-Patrick A1 - Zimmermann, Matthias A1 - Kampe, Heike T1 - Portal Wissen = Health BT - The Research Magazine of the University of Potsdam N2 - The Coronavirus pandemic has made it very clear how much health and well-being determine our lives. And that science led the way in this regard could not be ignored. At the University of Potsdam, too, many researchers deal with aspects of health maintenance, whether in nutritional sciences, sports and rehabilitation medicine, biochemistry, or psychology. Their research includes supporting chronically ill children and the professional handling of risks, as you can read in this issue of our magazine. With the establishment of our seventh faculty, the Faculty of Health Sciences, these and many new medical topics are getting more attention at the University of Potsdam. While in the beginning, the “Brandenburg Health Campus” funded by the federal state of Brandenburg was a virtual network of university and non-university research, it is now getting more points of intersection and, not only since COVID-19, a very practical use and plausible to everyone. The Faculty of Health Sciences, founded in 2018, is supported by three institutions: the University of Potsdam, the Brandenburg Technical University Cottbus-Senftenberg and the Brandenburg Medical School in Neuruppin. They pursue an interdisciplinary approach that holistically develops teaching, transfers new scientific findings from theory to practice and thus further improves overall medical care in Brandenburg. Their vision of being a central platform of research, teaching, and transfer combines socially relevant issues and existing expertise to align them with the needs of people in Brandenburg and use them to their benefit. This interdisciplinary structure has never been more important to advancing patient-oriented basic research and health care models. An innovative concept that can make Brandenburg a pioneer. In the meantime, the Faculty of Health Sciences has established 16 new professorships at the supporting universities, which are concerned with medicine and healthy aging, health services research, nursing and rehabilitation sciences, and telemedicine. Cardiology and physiology will play a central role as well. In general, the innovative faculty counts on strong interdisciplinary relationships, for example with nutritional sciences and the digital health department at the Digital Engineering Faculty. The role of digitization and well-prepared data in combating the Coronavirus pandemic can also be read about in this issue. As usual, the research magazine addresses the full range of research at the university: We introduce historian Dominik Geppert, who deals with the history of unified Germany after 1990 embedded in the tensions created by a context of national unification, European integration, and global networking. In a self-experiment, we explored together with a psycholinguist how to research word-finding disorders. Last but not least, we were able to take part in a trip to Namibia, where ecologists from Potsdam examine wildlife management in the threatened savannah. Let them take you where kudu and springbok live! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-481458 SN - 2198-9974 IS - 02/2020 ER - TY - JOUR A1 - Zimmermann, Matthias A1 - Wilke, Monika A1 - Horn-Conrad, Antje A1 - Kampe, Heike A1 - Scholz, Jana ED - Engel, Silke ED - Zimmermann, Matthias T1 - Portal Wissen = Energy BT - The Research Magazine of the University of Potsdam N2 - Energy – there is something to it. There is, of course, the matter-of-fact definition in every student encyclopedia: “the capacity to do mechanical work, transfer heat, or emit light.” In this way, energy accompanies us, often undetected, all day long: getting out of bed, turning on the heat, switching on the lights, taking a hot shower, getting dressed, making coffee, having breakfast – before we have even left the house, we have already released, transformed, applied, and refueled a lot of energy. And we haven’t even worked, at least not in the traditional sense. But energy is not just a physical quantity that, due to its omnipresence, plays a key role in every natural science discipline, such as biology and chemistry, but also in almost every technical field. It is also indispensable when it comes to how we understand and describe our world and our activities – and it has been for a long time. How about an example? The Greek philosopher Aristotle was the first to speak of enérgeia, for him a rather nonphysical thing, a living “reality and effectiveness ” – that which makes the possible real. About 2,100 years later, the uncrowned king of German literature Johann Wolfgang von Goethe declared it to be a humanistic essence. “What can we call our own if not energy, strength, and will!” And for his contemporary Wilhelm von Humboldt, energy “was the human’s first and only virtue”. Although physics began to dominate the concept of energy when it became the leading science in the 19th century, energy remained significant in many areas. Reason enough for us to take a look at energy-related matters at the University of Potsdam. We found them in a wide range of disciplines: While Iranian physicist Safa Shoaee is researching how organic materials can be used to manufacture the solar cells of the future, Swedish environmental researcher Johan Lilliestam is focusing on the different dimensions of the energy transition to learn what makes it successful. Slavicist Susanne Strätling, on the other hand, crosses the boundaries of her discipline as she examines a complex conceptual history and tries to find out why energy electrifies us today more than ever. And physicist Markus Gühr is able to use ultrashort flashes of light to investigate how molecules change under its influence and convert energy in the process. Of course, we have enough energy to highlight the diversity of research at the University of Potsdam besides the feature topic of this issue. A cognitive researcher, for example, explains why our brain processes both music and language according to its own respective rhythm, while an environmental researcher presents a method that uses particles from outer space to measure soil moisture. Educational researchers have also launched a study on hate speech in schools and we introduce a palaeoclimatologist who is one of twelve researchers in the new postdoc program at the University of Potsdam. We have spared no energy! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472978 SN - 2198-9974 ER - TY - JOUR A1 - Kampe, Heike A1 - Horn-Conrad, Antje A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Görlich, Petra A1 - Eckardt, Barbara A1 - Krafzik, Carolin ED - Engel, Silke ED - Zimmermann, Matthias T1 - Portal Wissen = Data BT - The Research Magazine of the University of Potsdam N2 - Data assimilation? Stop! Don’t be afraid, please, come closer! No tongue twister, no rocket science. Or is it? Let’s see. It is a matter of fact, however, that data assimilation has been around for a long time and (almost) everywhere. But only in the age of supercomputers has it assumed amazing proportions. Everyone knows data. Assimilation, however, is a difficult term for something that happens around us all the time: adaptation. Nature in particular has demonstrated to us for millions of years how evolutionary adaptation works. From unicellular organisms to primates, from algae to sequoias, from dinosaurs ... Anyone who cannot adapt will quickly not fit in anymore. We of course have also learned to adapt in new situations and act accordingly. When we want to cross the street, we have a plan of how to do this: go to the curb, look left and right, and only cross the street if there’s no car (coming). If we do all this and adapt our plan to the traffic we see, we will not just safely cross the street, but we will also have successfully practiced data assimilation. Of course, that sounds different when researchers try to explain how data assimilation helps them. Meteorologists, for example, have been working with data assimilation for years. The German Weather Service writes, “In numerical weather prediction, data assimilation is the approximation of a model run to the actual development of the atmosphere as described by existing observations.” What it means is that a weather forecast is only accurate if the model which is used for its calculation is repeatedly updated, i.e. assimilated, with new measurement data. In 2017 an entire Collaborative Research Center was established at the University of Potsdam, CRC 1294, to deal with the mathematical basics of data assimilation. For Portal Wissen, we asked the mathematicians and speakers of the CRC Prof. Sebastian Reich and Prof. Wilhelm Huisinga how exactly data assimilation works and in which areas of research they can be used profitably in the future. We have looked at two projects at the CRC itself: the analysis of eye movements and the research on space weather. In addition, the current issue is full of research projects that revolve around data in very different ways. Atmospheric physicist Markus Rex throws a glance at the spectacular MOSAiC expedition. Starting in September 2019, the German research icebreaker “Polarstern” will drift through the Arctic Ocean for a year and collect numerous data on ice, ocean, biosphere, and atmosphere. In the project “TraceAge”, nutritionists will use the data from thousands of subjects who participated in a long-term study to find out more about the function of trace elements in our body. Computer scientists have developed a method to filter relevant information from the flood of data on the worldwide web so as to enable visually impaired to surf the Internet more easily. And a geophysicist is working on developing an early warning system for volcanic eruptions from seemingly inconspicuous seismic data. Not least, this issue deals with the fascination of fire and ice, the possibilities that digitization offers for administration, and the question of how to inspire children for sports and exercise. We hope you enjoy reading – and if you send us some of your reading experience, we will assimilate it into our next issue. Promised! T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442574 SN - 2198-9974 IS - 02/2019 ER - TY - JOUR A1 - Zimmermann, Matthias A1 - Horn-Conrad, Antje A1 - Görlich, Petra A1 - Schlegel, Karoline A1 - Kampe, Heike ED - Engel, Silke ED - Zimmermann, Matthias T1 - Portal Wissen = Artificial intelligence BT - The Research Magazine of the University of Potsdam N2 - For a long time, there were things on this planet that only humans could do, but this time might be coming to an end. By using the universal tool that makes us unique – our intelligence – we have worked to eliminate our uniqueness, at least when it comes to solving cognitive tasks. Artificial intelligence is now able to play chess, understand language, and drive a car – and often better than we. How did we get here? The philosopher Aristotle formulated the first “laws of thought” in his syllogisms, and the mathematicians Blaise Pascal and Wilhelm Leibniz built some of the earliest calculating machines. The mathematician George Boole was the first to introduce a formal language to represent logic. The natural scientist Alan Turing created his deciphering machine “Colossus,” the first programmable computer. Philosophers, mathematicians, psychologists, and linguists – for centuries, scientists have been developing formulas, machines, and theories that were supposed to enable us to reproduce and possibly even enhance our most valuable ability. But what exactly is “artificial intelligence”? Even the name calls for comparison. Is artificial intelligence like human intelligence? Alan Turing came up with a test in 1950 to provide a satisfying operational definition of intelligence: According to him, a machine is intelligent if its thinking abilities equal those of humans. It has to reach human levels for any cognitive task. The machine has to prove this by convincing a human interrogator that it is human. Not an easy task: After all, it has to process natural language, store knowledge, draw conclusions, and learn something new. In fact, over the past ten years, a number of AI systems have emerged that have passed the test one way or another in chat conversations with automatically generated texts or images. Nowadays, the discussion usually centers on other questions: Does AI still need its creators? Will it not only outperform humans but someday replace them – be it in the world of work or even beyond? Will AI solve our problems in the age of all-encompassing digital networking – or will it become a part of the problem? Artificial intelligence, its nature, its limitations, its potential, and its relationship to humans were being discussed even before it existed. Literature and film have created scenarios with very different endings. But what is the view of the scientists who are actually researching with or about artificial intelligence? For the current issue of our research magazine, a cognitive scientist, an education researcher, and a computer scientist shared their views. We also searched the University for projects whose professional environment reveals the numerous opportunities that AI offers for various disciplines. We cover the geosciences and computer science as well as economics, health, and literature studies. At the same time, we have not lost sight of the broad research spectrum at the University: a legal expert introduces us to the not-so-distant sphere of space law while astrophysicists work on ensuring that state-of-the-art telescopes observe those regions in space where something “is happening” at the right time. A chemist explains why the battery of the future will come from a printer, and molecular biologists explain how they will breed stress-resistant plants. You will read about all this in this issue as well as about current studies on restless legs syndrome in children and the situation of Muslims in Brandenburg. Last but not least, we will introduce you to the sheep currently grazing in Sanssouci Park – all on behalf of science. Quite clever! Enjoy your read! THE EDITORS T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442469 SN - 2198-9974 IS - 01/2019 CY - 54 ER - TY - JOUR A1 - Görlich, Petra A1 - Horn-Conrad, Antje A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Engel, Silke A1 - Schneider, Simon T1 - Portal Wissen = Cosmos BT - The Research Magazine of the University of Potsdam N2 - Speaking of the cosmos means speaking about nothing less than everything, about the entirety of space filled with matter and energy. We only see a tiny fraction of it from Earth: planets like Venus or stars like the Sun. There are at least 100 billion stars in our home galaxy alone. Bound by gravity, these luminescent celestial bodies of very hot gas form a system visible from Earth as a whitish ribbon, which we call the Milky Way. The observable cosmos contains at least 100 billion such galaxies with stars, cosmic dust, gas, and probably dark matter as well. The universe is 13.8 billion years old; crossing it once would probably take 78 billion light-years. Given these dimensions, it is hardly surprising that for us humans, the mystery of the properties of the cosmos is connected with questions of being. Where do we come from? Where are we going? Are we alone in the universe? Such questions are in the wheelhouse of astrophysicists, who explore the vastness of the cosmos through physical means, even though they, of course, deal with physical laws, mathematical formulas, and complicated measuring methods. In this issue of Portal Wissen, we talked with astrophysicists at the University of Potsdam about their research and everyday work. Lutz Wisotzki showed us a 3D spectrograph, which he has developed in collaboration with colleagues from the Leibniz Institute for Astrophysics (AIP) and six other European institutes. This technical masterpiece enables scientists to look deeply into space and to “journey” through time to galaxies shortly after the Big Bang. Philipp Richter introduced us to the astrophysics research initiative and demonstrated how the University of Potsdam is working together with the AIP, the Albert Einstein Institute (AEI) and the Deutsches Elektronen-Synchrotron (DESY) to train junior researchers. The newly appointed Professor of Stellar Astrophysics, Stephan Geier, presented us with stars so close together to each other that they appear to be one to the naked eye. The physicist, who is also a historian, researches their turbulent relationships. We have not confined ourselves to cosmic themes, though, but also questioned rather earthly matters such as modern consumption. We have thought about potential love relationships with robots and testimonials in literature and art. We learned why the rainforest in Central Africa disappeared 2,600 years ago, how to produce knee prostheses on a production line, and how animals in the field benefit from big data. But back to the cosmos. The writing of late astrophysicist Stephen Hawking fundamentally shaped our concepts and knowledge of the universe. And that is because he was both an important physicist and a literary genius. Hardly anyone has been able to capture difficult facts in such a clear, understandable, and beautiful language. With this exemplary understanding of science in mind, we hope to offer you a stimulating read. The Editors T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2018 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441674 SN - 2198-9974 IS - 02/2018 ER - TY - JOUR A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Eckardt, Barbara A1 - Kampe, Heike A1 - Görlich, Petra A1 - Horn-Conrad, Antje T1 - Portal Wissen = Language BT - The Research Magazine of the University of Potsdam N2 - Language is perhaps the most universal tool of human beings. It enables us to express ourselves, to communicate and understand, to help and get help, to create and share togetherness. However, that does not completely capture the value of language. “Language belongs to the character of man,” said the English philosopher Sir Francis Bacon. If you believe the poet Johann Gottfried von Herder, a human is “only a human through language”. Ultimately, this means that we live in our world not with, but in, language. We not only describe our reality by means of language, but language is the device through which we open up the world in the first place. It is always there and shapes and influences us and the way we perceive, analyze, describe and ultimately determine everything around us. Since it is so deeply connected with human nature, it is hardly surprising that our language has always been in the center of academic research – and not only in those fields that bear the name linguistics. Philosophy and media studies, neurology and psychology, computer science and semiotics – all of them are based on linguistic structures and their premises and possibilities. Since July 2017, a scientific network at the University of Potsdam has been working on exactly this interface: the Collaborative Research Center “Limits of Variability in Language” (SFB 1287), funded by the German Research Foundation (DFG). Linguists, computer scientists, psychologists, and neurologists examine where language is or is not flexible. They hope to find out more about individual languages and their connections. In this issue of Portal Wissen, we asked SFB spokeswoman Isabell Wartenburger and deputy spokesman Malte Zimmermann to talk about language, its variability and limits, and how they investigate these aspects. We also look over the shoulders of two researchers who are working on sub-projects: Germanist Heike Wiese and her team examine whether the pandemonium of the many different languages spoken at a weekly market in Berlin is creating a new language with its own rules. Linguist Doreen Georgi embarks on a typological journey around the world comparing about 30 languages to find out if they have common limits. We also want to introduce other research projects at the University of Potsdam and the people behind them. We talk to biologists about biodiversity and ecological dynamics, and the founders of the startup “visionYOU” explain how entrepreneurship can be combined with social responsibility. Other discussions center round the effective production of antibodies and the question of whether the continued use of smartphones will eventually make us speechless. But do not worry: we did not run out of words – the magazine is full of them! Enjoy your reading! The Editors T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2018 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441666 SN - 2198-9974 IS - 01/2018 ER - TY - JOUR A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Horn-Conrad, Antje A1 - Scholz, Jana A1 - Eckardt, Barbara T1 - Portal Wissen = Earth BT - The Research Magazine of the University of Potsdam N2 - Earth’s surface is constantly changing. It is the synergetic overlap between the geosphere, biosphere, and climatic sphere and influences the development of our planet. It is our habitat and plays a key role in maintaining the wellbeing of humanity. Many aspects of this system as a whole, however, are not yet understood. This needs to change immediately because there is not much time left for the Earth – or for us. Photographer and filmmaker Yann Arthus- Bertrand warned in 2009, “In less than 200 years we have disturbed the balance of the Earth that has been created in over four billion years.” Potsdam and Berlin geoscientists, biologists, and climatologists have now joined forces*: They are investigating processes of the Earth's surface in order to better understand them on various spatial and time scales and to predict how our living environment will develop. In this issue of the research magazine “Portal Wissen”, we present some of the research projects as well as the researchers who drive them. We followed researchers to Ethiopia – to the “cradle of humankind” – where elaborate drilling is offering a glimpse into climate history. Analyses of the several-hundred-thousand- year old deposits provide insights not only for geological and climate researchers. Biologists were able to reconstruct how entire ecosystems developed over long periods using state-of-the-art genetic analysis. A geomicrobiologist shows us the vast insight you get when you cross disciplinary boundaries. His research is no longer taking place on and in the earth but even in outer space. The young researchers of the research training group StRatGy cut large boulders from the Argentinean Andes into the thinnest of slices in order to understand how the mountains developed. And a data analysis expert explains why it is not enough to collect and feed a lot of data into a computer; they also have to be made readable using the right analytic tools. “The world is a fine place and worth the fighting for,” wrote Ernest Hemingway. This is exactly what researchers are doing when they look for solutions to prevent humanity from irreversibly damaging the Earth. We met a researcher who is working with colleagues throughout Europe to learn more about trace elements and using plants as pollutant “vacuum cleaners”. And it was explained to us how satellite images taken from afar are revolutionizing nature conservation. The diversity of research at the University of Potsdam should not be forgotten. We followed administrative scientists on the trail of successful reforms around the world and we looked at how reading can be more successful. We asked what supplementary extracurricular lessons can offer (or not offer) and looked into the networked classroom of the future. Germanists also revealed their Brandenburg linguistic treasures to us, psychologists showed us their experiments, and a historian explained to us why the MfS – the GDR state security ministry – were active as development workers. Last but not least, we visited a chemist in the lab, were introduced to the language of climate images, and listened to a romance philologist who researches with all her senses. Enjoy your read! The Editors T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2017 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441652 SN - 2198-9974 IS - 02/2017 ER - TY - JOUR A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Görlich, Petra A1 - Eckardt, Barbara T1 - Portal Wissen = rich BT - The Research Magazine of the University of Potsdam N2 - The current Issue of Portal Wissen is entitled “reich”, a German word with several meanings. Both an adjective and a noun, it can be translated as rich, wealthy, and abundant, or realm, empire, and kingdom. It is also part of words like Reichtum (wealth, fortune), Reichweite (reach, scope), lehrreich (informative, instructive) and ruhmreich (glorious, renowned*). Realms – a complex subject. While the worldly empires of mankind come and go, even if they often claim the opposite, and the eternal existence of the kingdom of heaven has not been credibly proven, another and much older realm has an almost inexhaustible wealth – the animal and plant kingdom. Speaking of wealth: Some people are rich and want to stay rich at any price. Others still want to become rich and are looking for a path to wealth – some for the fastest, some for the easiest, and some for the perfect path. There are even people who want to leave nothing to chance and use a scientific approach, for example the American author Wallace D. Wattles, who published the book The Science of Getting Rich in 1903. His essay was intended for “for the men and women whose most pressing need is for money; who wish to get rich first, and philosophize afterward.” He was so convinced of his work that he even offered a guarantee of success. Anyone who followed his manual would “undoubtedly become rich because the science that is used here is an exact science, and failure is impossible.” Wattles has been almost forgotten, but the secret of wealth – at least financial wealth – seems anything but deciphered. Some have got it, others want it. There are worlds in between – as well as envy, prejudices and ignorance. More than enough reason for us to look again at Wallace D. Wattles and his self-confidently presented alleged relationship between wealth and science, and to say: Yes! Of course, science makes us rich, but primarily rich in perception, experience and – in knowledge. Science in itself is not glorious but instructive. The great thing is: All can equally benefit from the wealth created by science at the same time. Nobody has to get rich at the expense of others, on the contrary: You can often achieve much more together with others. Everything else comes (almost) by itself. “Those who acquire knowledge are richly rewarded by God,” is the religiously informed praise of sciences by the Islamic prophet Muhammad. The current issue of the Portal Wissen, however, focuses on facts, which is admittedly not in style at the moment. We therefore invite you to a tour of the University of Potsdam and its partners. It is about studies on the rich biodiversity of porpoises and lab mice. We present a historian who studies rich church treasures and talk with an education researcher about the secret of financial wealth. German philologists explain the rich language of literary criticism in the era of Enlightenment, and we follow a geo-scientist into the mountains where he moved large boulders to find the right stones. It is also about the cities of tomorrow, which have many high-rise buildings but are still (rich in) green, abundant water from once-in-acentury flash floods, and insects as an alternative to a rich diet of tomorrow. We take you to the border area of two disciplines where law and philosophy work hand in hand, talk with two literary scholars who are studying the astounding reach of the Schlager phenomenon of traditional German-language pop music, and learn from a sustainability researcher how to work together to achieve long-term solutions for pressing global problems. We wish you a pleasant read! The Editors T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2017 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441642 SN - 2198-9974 IS - 01/2017 ER - TY - JOUR A1 - Kampe, Heike A1 - Scholz, Jana A1 - Zimmermann, Matthias A1 - Eckardt, Barbara A1 - Horn-Conrad, Antje T1 - Portal Wissen = small BT - The Research Magazine of the University of Potsdam N2 - Let’s be honest: even science wants to make it big, at least when it comes to discovering new knowledge. Yet if one thing belongs in the annals of successful research, it is definitely small things. Scientists have long understood that their job is to explore things that they don’t see right away. Seneca once wrote, “If something is smaller than the great, this does not mean at all that it is insignificant.” The smallest units of life, such as bacteria or viruses, can often have powerful effects. And again and again, (seemingly) large things must first be disassembled or reduced to small pieces in order to recognize their nature. One of the greatest secrets of our world – the atom, the smallest, if no longer indivisible, unit of chemical elements – revealed itself only by looking at its diminutive size. By no means is ‘small’ (German: klein) merely a counterpoint to large, at least in linguistic terms; the word comes from West Germanic klaini, which means ‘fine’ or ‘delicate,’ and is also related to the English word ‘clean.’ Fine and clean – certainly something worth striving for in scientific work. And a bit of attention to detail doesn’t hurt either. This doesn’t mean that researchers can be smallminded; they should be ready to expect the unexpected and to adjust their work accordingly. And even if they cannot attain their goals in the short term, they need staying power to keep themselves from being talked down, from giving up. Strictly speaking, research is like putting together a puzzle with tons of tiny pieces; you don’t want it to end. Every discovery worthy of a Nobel Prize, every major research project, has to start with a small idea, with a tiny spark, and then the planning of the minutest details can begin. What follows is work focused on minuscule details: hours of interviews searching for the secret of the cerebellum (Latin for ‘little brain’), days of field studies searching for Lilliputian forms of life, weeks of experimentation meant to render visible the microscopically tiny, months of archival research that brings odds and ends to light, or years of reading fine print. All while hunting for a big hit... This is why we’ve assembled a few ‘little’ stories about research at the University of Potsdam, under the motto: small, but look out! Nutritional scientists are working on rescuing some of the earth’s smaller residents – mice – from the fate of ‘lab rats’ by developing alternatives to animal testing. Linguists are using innovative methods in several projects to investigate how small children learn languages. Astrophysicists in Potsdam are scanning the skies above Babelsberg for the billions of stars in the Magellan Cloud, which only seem tiny from down here. The Research Center Sanssouci, initiated by the Prussian Palaces and Gardens Foundation and the University of Potsdam, is starting small but will bring about great things for Potsdam’s cultural landscape. Biologists are drilling down to the smallest building blocks of life, looking for genes in barley so that new strains with positive characteristics can be cultivated. Like we said: little things. Have fun reading! The Editorial T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2016 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441621 SN - 2198-9974 IS - 02/2016 ER - TY - JOUR A1 - Kampe, Heike A1 - Zimmermann, Matthias A1 - Scholz, Jana A1 - Görlich, Petra A1 - Engel, Silke T1 - Portal Wissen = Point BT - The Research Magazine of the University of Potsdam N2 - A point is more than meets the eye. In geometry, a point is an object with zero dimensions – it is there but takes up little space. You may assume that something so small is easily overlooked. A closer look reveals that points are everywhere and play a significant role in many areas. In physics, for example, a mass point is the highest possible idealization of a body, which is the theoretical notion that the entire mass of a body is concentrated in a point, its “center of mass”. Points are at the beginning (starting points), at intersections (pivot points), and at the end (final points). A point symbolizes great precision. There is a reason we “get to the point”. In writing, a point abbreviates, structures, and finalizes what is said. Physicians puncture, and athletes collect points on playing fields, courses, and on tables. It’s no wonder that researchers are “surrounded” by points and work with them every day: Points bring order to chaos, structure the unexplained, and name the nameless. A point is often the beginning, an entry to worlds, findings, or problems. Points are for everyone, though. German mathematician Oskar Perron wrote, “A point is exactly what the intelligent yet innocent, uncorrupted reader imagines it to be.” We want to follow up on this quotation: The latest edition of Portal Wissen offers exciting starting points, analyzes points of view, and gets right to the point. We follow a physicist to the sun – the center point of our solar system – to ponder the origin of solar eruptions. We talked to a marketing professor about turning contentious points into successful deals during negotiation. Business information experts present leverage points that prepare both humans and machines for factories in the age of Industry 4.0. Enthusiastic entrepreneurs show us how their research became the starting point of a successful business idea – and also make the world a bit better. Geoscientists explain why the weather phenomenon El Niño causes – wet and dry – flashpoints. Just to name a few of many points … We hope our magazine scores points with you and wish you an inspiring read! The Editorial T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2016 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441569 SN - 2198-9974 IS - 01/2016 ER - TY - JOUR A1 - Kimminich, Eva A1 - Jäger, Heidi A1 - Horn-Conrad, Antje A1 - Scholz, Jana A1 - Zimmermann, Matthias A1 - Kampe, Heike T1 - Portal Wissen = Signs BT - The Research Magazine of the University of Potsdam N2 - Signs take a variety of forms. We use or encounter them every day in various areas. They represent perceptions and ideas: A letter represents a sound, a word or picture stands for an idea, a note for a sound, a chemical formula for a substance, a boundary stone for a territorial claim, a building for an ideology, a gesture for a cue or an assessment. On the one hand, we open up the world to ourselves by using signs; we acquire it, ensconce ourselves in it, and we punctuate it to represent ourselves in it. On the other, this reference to the world and ourselves becomes visible in our sign systems. As manifestations of a certain way of interacting with nature, the environment, and fellow human beings, they provide information about the social order or ethnic distinctions of a certain society or epoch as well as about how it perceives the world and humanity. As a man-made network of meanings, sign systems can be changed and, in doing so, change how we perceive the world and humanity. Linguistically, this may, for example, be done by using an evaluative prefix: human – inhuman, sense – nonsense, matter – anti-matter or by hierarchizing terms, as in upper class and lower class. The consequences of such labeling, therefore, may decide on the raison d'être of the signified within an aspect of reality and the nature of this existence. Since ancient times we have reflected on signs, at first mainly in philosophy. Each era has created theories of signs as a means of approaching its essence. Nowadays semiotics is especially concerned with them. While linguistics focuses on linguistic signs, semiotics deals with all types of signs and the interaction of components and processes involved in their communication. Semiotics has developed models, methods, and concepts. Semiosis and semiosphere, for example, are concepts that illuminate the processing of signs, i.e. the construction of meaning and the interaction of different sign systems. A sign is not limited to a monolithic meaning but is culturally contingent and marked by the socioeconomic conditions of the individual decoding it. Sociopolitical and sociocultural developments therefore affect the processing of signs. Dealing with signs and sign systems, their circulation, and reciprocal play with shapes and interpretive possibilities is therefore an urgent and trailblazing task in light of sociocultural communication processes in our increasingly heterogeneous society to optimize communication and promote intercultural understanding as well as to recognize, use, and bolster social trends. The articles in this magazine illustrate the many ways academia is involved in researching, interpreting, and explaining signs. Social scientists at the University of Potsdam are examining whether statistics about petitions made by GDR citizens can be interpreted retrospectively as a premonitory sign of the peaceful revolution of 1989. Colleagues at the Institute of Romance Studies are analyzing what Alexander von Humboldt’s American travel diaries signalize, and young researchers in the Research Training Group on “Wicked Problems, Contested Administrations” are examining challenges that seem to raise question marks for administrations. A project promoting sustainable consumption hopes to prove that academia can contribute to setting an example. An initiative of historians supporting Brandenburg cities in disseminating the history of the Reformation shows that the gap between academia and signs and wonder is not unbridgeable. I wish you an inspiring read! Prof. Dr. Eva Kimminich Professor of Romance Cultural Studies T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2015 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441553 SN - 2198-9974 IS - 02/2015 ER - TY - JOUR A1 - Müller-Röber, Bernd A1 - Zimmermann, Matthias A1 - Eckardt, Barbara A1 - Jäger, Heidi A1 - Kampe, Heike A1 - Horn-Conrad, Antje A1 - Jäger, Sophie T1 - Portal Wissen = Paths BT - The Research Magazine of the University of Potsdam N2 - How traits are inherited from one generation to the next, how mutations change genetic information and consequently contribute to the development of new characteristics and emergence of new species – all these are exciting biological questions. Over millions of years, genetic differentiation has brought about an incredible diversity of species. Evolution has followed many different paths. It has led to an awesome natural biodiversity – to organisms that have adapted to very different environments and are sometimes oddly shaped or behave strangely. Humanmade biodiversity is stunning, too. Just think of the 10,000 rose varieties whose beauty delights, or the myriad wheat, barley, and corn variations; plants that had all once been plain grasses feed us today. We humans create our own biodiversity unknown to nature. And it is serving us well. Thanks to genome research we are now able to read the complete genetic information of organisms within a few hours or days. It takes much longer, however, to functionally map the many genomic sequences. Researchers achieve this through various methods: Activating or deactivating genes systematically, modifying their code, and exchanging genetic information between organisms have become standard procedures worldwide. The path to knowledge is often intricate, though. Elaborate experimental approaches are often necessary to gain insight into biological processes. Methods of genomic research enable us to investigate not only what is “out there” in nature, but also to ask, “How does a living organism, like a moss, react when sent to the International Space Station (ISS)? Can we gain knowledge about the adaptation strategies of living beings in harsh environmental conditions or even for colonizing the Moon or Mars?” Can we use synthetic biology to precisely alter microorganisms, planned on a drawing board so to speak, to create new options for treating diseases or for making innovative biology-based products? The answer to both questions is a resounding Yes! (Although moving to other planets is not on our present agenda.) Human land use determines biodiversity. On the other hand, organisms influence the formation of landscapes and, sooner or later, the composition of our atmosphere. This also leads to exciting scientific questions. Researchers have to strike new paths to reach new conclusions. Paths often cross other paths. A few years ago it was still unforeseeable that ecological research would substantially benefit from fast DNA sequencing methods. Genome researchers could hardly assume that the same techniques would lead to new possibilities for examining the highly complex cellular regulation and optimizing biotechnological processes. You will find examples of the multi-faceted research in biology as well as other very interesting articles in the latest edition of Portal Wissen. I wish you an enjoyable read! Prof. Dr. Bernd Müller-Röber Professor of Molecular Biology T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2015 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441506 SN - 2198-9974 IS - 01/2015 ER - TY - JOUR A1 - Wilkens, Martin A1 - Sütterlin, Sabine A1 - Kampe, Heike A1 - Eckardt, Barbara A1 - Jäger, Sophie A1 - Zimmermann, Matthias T1 - Portal Wissen = Time BT - The Research Magazine of the University of Potsdam N2 - “What then is time?”, Augustine of Hippo sighs melancholically in Book XI of “Confessions” and continues, “If no one asks me, I know; if I want to explain it to a questioner, I don’t know.” Even today, 1584 years after Augustine, time still appears mysterious. Treatises about the essence of time fill whole libraries – and this magazine. However, questions of essence are alien to modern sciences. Time is – at least in physics – unproblematic: “Time is defined so that motion looks simple”, briefly and prosaically phrased, waves goodbye to Augustine’s riddle and to the Newtonian concept of absolute time, whose mathematical flow can only be approximately recorded with earthly instruments anyway. In our everyday language and even in science we still speak of the flow of time but time has not been a natural condition for quite a while now. It is rather a conventional order parameter for change and movement. Processes are arranged by using a class of processes as a counting system in order to compare other processes and to organize them with the help of the temporary categories “before”, “during”, and “after”. During Galileo’s time one’s own pulse was seen as the time standard for the flight of cannon balls. More sophisticated examination methods later made this seem too impractical. The distance-time diagrams of free-flying cannon balls turned out to be rather imprecise, difficult to replicate, and in no way “simple”. Nowadays, we use cesium atoms. A process is said to take one second when a caesium-133 atom completes 9,192,631,770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state. A meter is the length of the path travelled by light in a vacuum in exactly 1/299,792,458 of a second. Fortunately, these data are hard-coded in the Global Positioning System GPS so users do not have to reenter them each time they want to know where they are. In the future, however, they might have to download an app because the time standard has been replaced by sophisticated transitions to ytterbium. The conventional character of the time concept should not tempt us to believe that everything is somehow relative and, as a result, arbitrary. The relation of one’s own pulse to an atomic clock is absolute and as real as the relation of an hourglass to the path of the sun. The exact sciences are relational sciences. They are not about the thing-initself as Newton and Kant dreamt, but rather about relations as Leibniz and, later, Mach pointed out. It is not surprising that the physical time standard turned out to be rather impractical for other scientists. The psychology of time perception tells us – and you will all agree – that the perceived age is quite different from the physical age. The older we get the shorter the years seem. If we simply assume that perceived duration is inversely related to physical age and that a 20-year old also perceives a physical year as a psychological one, we come to the surprising discovery that at 90 years we are 90 years old. With an assumed life expectancy of 90 years, 67% (or 82%) of your felt lifetime is behind you at the age of 20 (or 40) physical years. Before we start to wallow in melancholy in the face of the “relativity of time”, let me again quote Augustine. “But at any rate this much I dare affirm I know: that if nothing passed there would be no past time; if nothing were approaching, there would be no future time; if nothing were, there would be no present time.” Well, – or as Bob Dylan sings “The times they are a-changin”. I wish you an exciting time reading this issue. Prof. Martin Wilkens Professor of Quantum Optics T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2014 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441497 SN - 2198-9974 IS - 02/2014 ER - TY - JOUR A1 - Hafner, Johann Evangelist A1 - Zimmermann, Matthias A1 - Rost, Sophia A1 - Sütterlin, Sabine A1 - Kampe, Heike A1 - Horn-Conrad, Antje A1 - Jäger, Sophie A1 - Eckardt, Barbara A1 - Mangelsdorf, Birgit T1 - Portal Wissen = Believe BT - The Research Magazine of the University of Potsdam N2 - People want to know what is real. Children enjoy listening to a story but when my children were about four years old they started asking whether the story really happened or was just invented. Likewise, only on a higher level, our academic curiosity is fuelled by our interest in knowing what is real. When we analyze poetic texts or dreams we are trying to distinguish between the facts (e.g. neurological ones or linguistic structures) and merely assumed influences. Ideally we can present results that were logically understood by others and that we can repeat empirically. But in most cases this is not possible. We cannot read every book and cannot look through every microscope, not even within our own discipline. In the world we live in we depend on trusting the information of others, like how to get to the train station or what the weather is like in Ulaanbataar. This is why we are used to believing others, our friends or the news anchors. This is not a childish behavior but a necessity. Of course, it is risky because they could all be lying to us, like in a Truman Show situation. The only time we are able to know that we are in reality is when we transcend our selfconsciousness and when we accept two propositions: first, that we are not only objects but also subjects in the consciousness of others and second that our dialogic relations are again observed by a third party that is not part of this intersubjective world. For religious people this is “belief” - belief as the assumption that all human relations only become real, serious and beyond any doubt if they know they are under the eyes of God. Only before Him something is in itself and not only “for me” or “among us”. That is why biblical language distinguishes between three forms of belief: the relationship with the world of things (“to believe that”), the relationship to the world of subjects (“to believe somebody”) and the assumption of a subjective supernatural reality (“to believe in” or “faith”). From an academic point of view belief is a holistic hypothesis. Belief is not the opposite of knowledge but it is the attempt to save reality from doubt by comprehending the fragile empirical world as an expression of a stable transcendent world. When I talk to students they often ask not only about what I know but what I believe. As a professor for Religious Studies and a believing Catholic I am caught in the middle. On the one hand, it is my duty as a professor to doubt everything, i.e. to attribute each religious text to its historical context and sociological functions. On the other hand, I, as a Christian, consider certain religious documents, in my case the Bible, an interpretable but nevertheless irreversible, revealed text about the origin of reality. On weekdays the New Testament is a collection of ancient writings among many others, on Sundays it is the revelation. You can make a clear distinction between these two perspectives but it is difficult to decide whether doubt or belief is more real. This issue of “Portal Wissen” explores this dual relationship of belief. What is the attitude of science towards belief – is it a religious one? Where does science bring things to light that we can hardly believe or that make us believe (again)? What happens if research clears up erroneous assumptions or myths? Is science able to investigate things that are convincing but inexplicable? How can it maintain its credibility and develop even so? These questions appear again and again in the contributions of this “Portal Wissen”. They form a manifold, exciting and surprising picture of the research projects and academics at the University of Potsdam. Believe me, it will be an enjoyable read. Prof. Johann Hafner Professor of Religious Studies with Focus on Christianity Dean of the Faculty of Arts T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2014 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441461 SN - 2198-9974 IS - 01/2014 ER - TY - JOUR A1 - Demske, Ulrike A1 - Sütterlin, Sabine A1 - Rost, Sophia A1 - Zimmermann, Matthias A1 - Kampe, Heike A1 - Eckardt, Barbara A1 - Horn-Conrad, Antje T1 - Portal Wissen = Borders BT - The Research Magazine of the University of Potsdam N2 - The new edition of the Potsdam Research Magazine “Portal Wissen” approaches the subject “Borders” from different perspectives. As a linguist, this headline makes me think of linguistic borders and the effects that might result from the contact of two languages at a particular border. There is, for instance, ample evidence of code-switching, i.e. the use of material from at least two languages in a single utterance. The reasons for code-switching can be manifold. On the one hand, code-switching may result from a limited language competence, for example if a speaker lacks a particular word in a nonnative language. On the other hand, code-switching may be a matter of prestige if the speaker wants to demonstrate his or her affiliation to a certain social group by switching languages. If code-switching does not only occur sporadically but involves whole language communities over a longer period of time, it can result in significant changes of the involved languages. Which language “gives” and which one “takes” is determined by sociolinguistic factors. It is, hence, quite easy to predict that German varieties spoken in language islands in South and Eastern Europe as well as in North and Latin America will absorb more and more language material from their neighbouring languages until they disappear unless political will strives to preserve these language varieties. Increasing mobility of modern societies has multiplied the extent and the intensity of language contact and certainly comprises a large number of different contact situations besides the one most commonly known, i.e. the contact between German and English. From a historic point of view, German witnesses a strong influence of various Romance languages such as Latin, French and Italian. In Potsdam, one cannot help being reminded of the French influence during the 18th century. Overcoming language borders becomes also apparent in the everyday life of an international research university. In March this year, the Annual Conference of the German Linguistic Society took place in Potsdam, with more than 500 participants. Lingua franca of this conference was English. Compared to previous conferences, this further increased the number of international participants. The articles in this edition illustrate various approaches to the topic “Borders”: On the trail of “Boundary Surveys”, we follow the Australian explorer Ludwig Leichhardt. “Travellers Across Borders” is focussed on articles dealing with the literature of the colonial Caribbean or with the work of an Italian geologist deep beneath the earth’s surface, for example. Looking for the “Boundless”, our authors follow scientists who discuss questions like “Why love hurts?”. The present issue of “Portal Wissen” also takes into account “Drawing Up Borders” in an article that is concerned with the limits of workrelated stress. Instances of successful “Border Crossing” are provided by the “Handkerchief Lab” as well as by new biotechnological applications. I would like to wish you inspiring border experiences, hoping that you will get many impulses for crossing professional borders in your field of expertise. Prof. Ulrike Demske Professor of the History and the Varieties of the German Language Vice President International Affairs, Alumni and Fundraising T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 02/2013 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441430 SN - 2198-9974 IS - 02/2013 ER - TY - JOUR A1 - Strecker, Manfred A1 - Kampe, Heike A1 - Sütterlin, Sabine A1 - Horn-Conrad, Antje A1 - Zimmermann, Matthias A1 - Eckardt, Barbara A1 - Görlich, Petra T1 - Portal Wissen = Layers BT - The Research Magazine of the University of Potsdam N2 - The latest edition of our Potsdam Research Magazine “Portal Wissen” addresses the topic “Layers” in many different ways. Geoscientists often deal with layers: layers of soil, sediment, or rock are the evidence of repeated and long-lasting processes of erosion and sedimentation that took place in the early history of the earth. For instance, mountains are eroded by water, ice and wind. The sand that results from that erosion might eventually form a new layer on the ocean floor known as a sediment horizon. After tens of millions of years, tectonic plate movements can deform the ocean floor, pushing it upwards as mountains are created, bringing the layers of sand from former mountain chains together with fossilized sea dwellers into the realm of climbers and mountaineers – a fundamental cycle within the Earth system that was succinctly described by Ibn Sina nearly 1000 years ago, and later by Charles Darwin when he was crossing the Andes. The landscape around us overlays the products of recent processes with those from the past. Slow processes or extreme events that happen very rarely – like floods, earthquakes or rockslides – wipe out certain characteristics, while others remain on the surface. In this sense, the landscape is like a palimpsest – a piece of parchment that monks in the Middle Ages scraped clean again and again to write something new. Analysing rock layers and soil is similar to the work of a detective. Geophysical deep sounding with sound and radar waves, precise measurements of motions related to earthquakes, and deep boreholes each provide a glimpse of the characteristics of what lies beneath us, giving us a better understanding of spatial distribution of the various layers. Fossils can tell us the age of a layer of sediment, while radiometric isotopes in minerals reveal how quickly a rock moved from deep within the Earth up to the surface, perhaps during the process of mountain building. Thin layers of ash tell us when there was a devastating volcanic eruption that influenced environmental conditions. The shape, gradation, and surface conditions of sand grains reflect whether wind or water was responsible for their transport. We know, for instance, that northern Germany was a desert landscape more than 260 million years ago. At that time, the wind made huge dunes migrate across the region. Over time, climate and vegetation slowly alter the physical and chemical characteristics of sand and rock at the surface, turning them into soil, the epidermis of our planet. Mineralogical analyses of layers of the soil layer tell us whether the climate was dry or wet. These kinds of observations allow us to reconstruct links between our climate system and processes that have taken place on the Earth’s surface, as well as those processes that originate at much deeper levels. The clues we use might be hidden under the surface of the earth or clearly visible on the surface, like in the mountains, or even in freshly cut rock alongside roads. On the following pages, we invite you to accompany scientists from Potsdam into their world of research. They track hidden traces of longgone earthquakes in the Tien Shan Mountains; they discover ancient forms of life in deep-sea sediments. They even examine layers in outer space that can tell us something about the formation of planets. “Portal Wissen” not only presents scientists of the University of Potsdam who deal with the sequence of layers formed by solid rock, but also those scientists who deal with levels of education or social strata. Research scientists explain how to implement the social mission of inclusion in teaching, and how pupils from the Berlin district Kreuzberg examine language in urban neighbourhoods together with students from the University of Potsdam. Although these types of “layers” are very different, they all have something in common. Their structure and profile are evidence of continuously changing conditions. The present will leave traces and layers that future geoscientists will measure and examine. We already speak of the Anthropocene, a geological era dominated by humans, which is characterized by far-reaching changes in erosion and sedimentation rates, and the displacement of natural habitats. I hope that you will discover exciting and inspiring stories in this edition. And remember – it is always worth having a look beneath the surface. Prof. Manfred Strecker, PHD Professor of Geology T3 - Portal Wissen: The research magazine of the University of Potsdam [Englische Ausgabe] - 01/2013 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441404 SN - 2198-9974 IS - 01/2013 ER -