TY - JOUR A1 - Arboleda-Zapata, Mauricio A1 - Guillemoteau, Julien A1 - Tronicke, Jens T1 - A comprehensive workflow to analyze ensembles of globally inverted 2D electrical resistivity models JF - Journal of applied geophysics N2 - Electrical resistivity tomography (ERT) aims at imaging the subsurface resistivity distribution and provides valuable information for different geological, engineering, and hydrological applications. To obtain a subsurface resistivity model from measured apparent resistivities, stochastic or deterministic inversion procedures may be employed. Typically, the inversion of ERT data results in non-unique solutions; i.e., an ensemble of different models explains the measured data equally well. In this study, we perform inference analysis of model ensembles generated using a well-established global inversion approach to assess uncertainties related to the nonuniqueness of the inverse problem. Our interpretation strategy starts by establishing model selection criteria based on different statistical descriptors calculated from the data residuals. Then, we perform cluster analysis considering the inverted resistivity models and the corresponding data residuals. Finally, we evaluate model uncertainties and residual distributions for each cluster. To illustrate the potential of our approach, we use a particle swarm optimization (PSO) algorithm to obtain an ensemble of 2D layer-based resistivity models from a synthetic data example and a field data set collected in Loon-Plage, France. Our strategy performs well for both synthetic and field data and allows us to extract different plausible model scenarios with their associated uncertainties and data residual distributions. Although we demonstrate our workflow using 2D ERT data and a PSObased inversion approach, the proposed strategy is general and can be adapted to analyze model ensembles generated from other kinds of geophysical data and using different global inversion approaches. KW - Near-surface geophysics KW - Electrical resistivity tomography KW - Non-uniqueness KW - Global inversion KW - Particle swarm optimization KW - Ensemble KW - analysis Y1 - 2021 U6 - https://doi.org/10.1016/j.jappgeo.2021.104512 SN - 0926-9851 SN - 1879-1859 VL - 196 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Klose, Tim A1 - Guillemoteau, Julien A1 - Vignoli, Giulio A1 - Tronicke, Jens T1 - Laterally constrained inversion (LCI) of multi-configuration EMI data with tunable sharpness JF - Journal of applied geophysics N2 - Frequency-domain electromagnetic (FDEM) data are commonly inverted to characterize subsurface geoelectrical properties using smoothness constraints in 1D inversion schemes assuming a layered medium. Smoothness constraints are suitable for imaging gradual transitions of subsurface geoelectrical properties caused, for example, by varying sand, clay, or fluid content. However, such inversion approaches are limited in characterizing sharp interfaces. Alternative regularizations based on the minimum gradient support (MGS) stabilizers can, instead, be used to promote results with different levels of smoothness/sharpness selected by simply acting on the so-called focusing parameter. The MGS regularization has been implemented for different kinds of geophysical data inversion strategies. However, concerning FDEM data, the MGS regularization has only been implemented for vertically constrained inversion (VCI) approaches but not for laterally constrained inversion (LCI) approaches. We present a novel LCI approach for FDEM data using the MGS regularization for the vertical and lateral direction. Using synthetic and field data examples, we demonstrate that our approach can efficiently and automatically provide a set of model solutions characterized by different levels of sharpness and variable lateral consistencies. In terms of data misfit, the obtained set of solutions contains equivalent models allowing us also to investigate the non-uniqueness of FDEM data inversion. KW - frequency-domain electromagnetics KW - laterally constrained inversion KW - minimum gradient support regularization KW - peat characterization Y1 - 2022 U6 - https://doi.org/10.1016/j.jappgeo.2021.104519 SN - 0926-9851 VL - 196 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengiesser, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging JF - Advanced engineering materials N2 - While the problem of the identification of mechanisms of hydrogen-assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. Herein, it is shown how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in the literature, but this time using a nondestructive technique, it is shown that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, it is deduced that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. It is shown that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and it is deduced that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - computed tomography KW - fractography KW - hydrogen KW - embrittlement KW - microcracking KW - synchrotron radiation KW - X-ray refraction Y1 - 2022 U6 - https://doi.org/10.1002/adem.202101287 SN - 1527-2648 VL - 24 IS - 6 PB - Wiley-VCH CY - Weinheim ER -