TY - JOUR A1 - Zou, Jie A1 - Wang, Weiwei A1 - Neffe, Axel T. A1 - Xu, Xun A1 - Li, Zhengdong A1 - Deng, Zijun A1 - Sun, Xianlei A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel) JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Polymeric matrices mimicking multiple functions of the ECM are expected to enable a material induced regeneration of tissues. Here, we investigated the adipogenic differentiation of human adipose derived mesenchymal stem cells (hADSCs) in a 3D architectured gelatin based hydrogel (ArcGel) prepared from gelatin and L-lysine diisocyanate ethyl ester (LDI) in an one-step process, in which the formation of an open porous morphology and the chemical network formation were integrated. The ArcGel was designed to support adipose tissue regeneration with its 3D porous structure, high cell biocompatibility, and mechanical properties compatible with human subcutaneous adipose tissue. The ArcGel could support initial cell adhesion and survival of hADSCs. Under static culture condition, the cells could migrate into the inner part of the scaffold with a depth of 840 +/- 120 mu m after 4 days, and distributed in the whole scaffold (2mm in thickness) within 14 days. The cells proliferated in the scaffold and the fold increase of cell number after 7 days of culture was 2.55 +/- 0.08. The apoptotic rate of hADSCs in the scaffold was similar to that of cells maintained on tissue culture plates. When cultured in adipogenic induction medium, the hADSCs in the scaffold differentiated into adipocytes with a high efficiency (93 +/- 1%). Conclusively, this gelatin based 3D scaffold presented high cell compatibility for hADSC cultivation and differentiation, which could serve as a potential implant material in clinical applications for adipose tissue reparation and regeneration. KW - Mesenchymal stem cells KW - gelatin based scaffold KW - adipose tissue regeneration KW - adipogenic differentiation Y1 - 2017 U6 - https://doi.org/10.3233/CH-179210 SN - 1386-0291 SN - 1875-8622 VL - 67 IS - 3-4 SP - 297 EP - 307 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Schwiebs, Anja A1 - Thomas, Dominique Jeanette A1 - Kleuser, Burkhard A1 - Pfeilschifter, Josef A1 - Radeke, Heinfried H. T1 - Nuclear translocation of SGPP-1 and decrease of SGPL-1 activity contribute to sphingolipid rheostat regulation of inflammatory dendritic cells JF - Mediators of inflammation N2 - A balanced sphingolipid rheostat is indispensable for dendritic cell function and survival and thus initiation of an immune response. Sphingolipid levels are dynamically maintained by the action of sphingolipid enzymes of which sphingosine kinases, S1P phosphatases (SGPP-1/2) and S1P lyase (SGPL-1), are pivotal in the balance of S1P and sphingosine levels. In this study, we present that SGPP-1 and SGPL-1 are regulated in inflammatory dendritic cells and contribute to S1P fate. TLR-dependent activation caused SGPL-1 protein downregulation with subsequent decrease of enzymatic activity by two-thirds. In parallel, confocal fluorescence microscopy revealed that endogenous SGPP-1 was expressed in nuclei of naive dendritic cells and was translocated into the cytoplasmatic compartment upon inflammatory stimulation resulting in dephosphorylation of S1P. Mass spectrometric determination showed that a part of the resulting sphingosine was released from the cell, increasing extracellular levels. Another route of diminishing intracellular S1P was possibly taken by its export via ATP-binding cassette transporter C1 which was upregulated in array analysis, while the S1P transporter, spinster homolog 2, was not relevant in dendritic cells. These investigations newly describe the sequential expression and localization of the endogenous S1P regulators SGPP-1 and SGPL-1 and highlight their contribution to the sphingolipid rheostat in inflammation. Y1 - 2017 U6 - https://doi.org/10.1155/2017/5187368 SN - 0962-9351 SN - 1466-1861 PB - Hindawi Publishing Corp. CY - London ER - TY - JOUR A1 - Westbury, Michael V. A1 - Dalerumb, Fredrik A1 - Noren, Karin A1 - Hofreiter, Michael T1 - Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations JF - Mitochondrial DNA. Part B N2 - The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae. KW - Phylogenetics KW - mitochondria KW - iterative mapping KW - Canidae Y1 - 2017 U6 - https://doi.org/10.1080/23802359.2017.1331325 SN - 2380-2359 VL - 2 IS - 1 SP - 298 EP - 299 PB - Routledge, Taylor & Francis Group CY - London ER - TY - JOUR ED - Kleine-Vehn, Jürgen ED - Sauer, Michael T1 - Plant Hormones BT - Methods and Protocols JF - Methods in Molecular Biology N2 - This volume aims to present a representative cross-section of modern experimental approaches relevant to Plant Hormone Biology, ranging from relatively simple physiological to highly sophisticated methods. Chapters describe physiological, developmental, microscopy-based techniques, measure hormone contents, and heterologous systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. KW - phenotyping KW - four-dimensional tissue reconstruction KW - hormonal pathways KW - measure hormone contents KW - heterologous systems Y1 - 2017 SN - 978-1-4939-6467-3 SN - 978-1-4939-8210-3 SN - 978-1-4939-6469-7 U6 - https://doi.org/10.1007/978-1-4939-6469-7 SN - 1064-3745 SN - 1940-6029 IS - 1497 PB - Springer CY - New York ER - TY - GEN A1 - Kleine-Vehn, Jürgen A1 - Sauer, Michael ED - Kleine-Vehn, Jürgen ED - Sauer, Michael T1 - Preface T2 - Plant Hormones: Methods and Protocols Y1 - 2017 SN - 978-1-4939-6469-7 SN - 978-1-4939-6467-3 U6 - https://doi.org/10.1007/978-1-4939-6469-7 SN - 1064-3745 SN - 1940-6029 VL - 1497 SP - V EP - V PB - Springer CY - New York ET - 3 ER - TY - THES A1 - Janowski, Marcin Andrzej T1 - Investigating role of the essential GTPase - AtRsgA in the assembly of the small ribosomal subunit in Arabidopsis thaliana chloroplast Y1 - 2017 ER - TY - JOUR A1 - Henkel, Janin A1 - Coleman, Charles Dominic A1 - Schraplau, Anne A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Schulz, Tim Julius A1 - Krämer, Stephanie A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Induction of Steatohepatitis (NASH) with Insulin Resistance in Wild-type B6 Mice by a Western-type Diet Containing Soybean Oil and Cholesterol JF - Molecular medicine N2 - Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru-and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH. KW - Nonalcoholic Steatohepatitis (NASH) KW - Typical Western Diet KW - Nonalcoholic Fatty Liver Disease (NAFLD) KW - Dietary Cholesterol KW - Kupffer Cells Y1 - 2017 U6 - https://doi.org/10.2119/molmed.2016.00203 SN - 1076-1551 SN - 1528-3658 VL - 23 SP - 70 EP - 82 PB - Feinstein Inst. for Medical Research CY - Manhasset ER - TY - JOUR A1 - Bergholz, Kolja A1 - May, Felix A1 - Giladi, Itamar A1 - Ristow, Michael A1 - Ziv, Yaron A1 - Jeltsch, Florian T1 - Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment JF - Perspectives in plant ecology, evolution and systematics N2 - Spatial environmental heterogeneity is considered a fundamental factor for the maintenance of plant species richness. However, it still remains unclear whether heterogeneity may also facilitate coexistence at fine grain sizes or whether other processes, like mass effects and source sink dynamics due to dispersal, control species composition and diversity at these scales. In this study, we used two complimentary analyses to identify the role of heterogeneity within 15 m x 15 m plots for the coexistence of species-rich annual communities in a semi-arid environment along a steep precipitation gradient. Specifically, we: (a) analyzed the effect of environmental heterogeneity on species, functional and phylogenetic diversity within microsites (alpha diversity, 0.06 m(2) and 1 m(2)), across microsites (beta diversity), and diversity at the entire plot (gamma diversity); (b) further we used two null models to detect non-random trait and phylogenetic patterns in order to infer assembly processes, i.e. whether co-occurring species tend to share similar traits (trait convergence) or dissimilar traits (trait divergence). In general, our results showed that heterogeneity had a positive effect on community diversity. Specifically, for alpha diversity, the effect was significant for functional diversity, and not significant for either species or phylogenetic diversities. For beta diversity, all three measures of community diversity (species, functional, and phylogenetic) increased significantly, as they also did for gamma diversity, where functional measures were again stronger than for species or phylogenetic measures. In addition, the null model approach consistently detected trait convergence, indicating that species with similar traits tended to co-occur and had high abundances in a given microsite. While null model analysis across the phylogeny partly supported these trait findings, showing phylogenetic underdispersion at the 1m(2) grain size, surprisingly when species abundances in microsites were analyzed they were more evenly distributed across the phylogenetic tress than expected (phylogenetic overdispersion). In conclusion, our results provide compelling support that environmental heterogeneity at a relatively fine scale is an important factor for species co-existence as it positively affects diversity as well as influences species assembly. Our study underlines the need for trait-based approaches conducted at fine grain sizes in order to better understand species coexistence and community assembly. (C) 2017 Elsevier GmbH. All rights reserved. KW - Community assembly KW - Plant functional trait KW - Habitat heterogeneity KW - Limiting similarity KW - Environmental filtering KW - Heterogeneity species diversity relationship Y1 - 2017 U6 - https://doi.org/10.1016/j.ppees.2017.01.001 SN - 1433-8319 VL - 24 SP - 138 EP - 146 PB - Elsevier CY - Jena ER - TY - THES A1 - Knecht, Volker T1 - Modeling Biomolecular Association Y1 - 2017 ER - TY - JOUR A1 - Spijkerman, Elly A1 - Lukas, Marcus A1 - Wacker, Alexander T1 - Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility JF - Phytochemistry : an international journal of plant biochemistry N2 - Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes. KW - Chlamydomonas acidophila KW - Chlorella vulgaris KW - Chlorophyceae KW - Ecophysiology on freshwater phytoplankton KW - Glucose KW - Mixotrophy KW - Osmotrophy KW - Heterotrophy KW - Photosynthesis KW - Fatty acids Y1 - 2017 U6 - https://doi.org/10.1016/j.phytochem.2017.08.018 SN - 0031-9422 SN - 1873-3700 VL - 144 SP - 43 EP - 51 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Gall, Andrea A1 - Uebel, Udo A1 - Ebensen, Uwe A1 - Hillebrand, Helmut A1 - Meier, Sandra A1 - Singer, Gabriel A1 - Wacker, Alexander A1 - Striebel, Maren T1 - Planktotrons BT - a novel indoor mesocosm facility for aquatic biodiversity and food web research JF - Limnology and oceanography-methods N2 - We established a new indoor mesocosm facility, 12 fully controlled Planktotrons, designed to conduct marine and freshwater experiments for biodiversity and food web approaches using natural or artificial, benthic or planktonic communities. The Planktotrons are a unique and custom-tailored facility allowing long-term experiments. Wall growth can be inhibited by a rotating gate paddle with silicone lips. Additionally, temperature and light intensity are individually controllable for each Planktotron and the large volume (600 L) enables high-frequency or volume-intense measurements. In a pilot freshwater experiment various trophic levels of a pelagic food web were maintained for up to 90 d. First, an artificially assembled phytoplankton community of 11 species was inoculated in all Planktotrons. After 22 d, two ciliates were added to all, and three Daphnia species were added to six Planktotrons. After 72 d, dissolved organic matter (DOM, an alkaline soil extract) was added as an external disturbance to six of the 12 Planktotrons, involving three Planktotrons stocked with Daphnia and three without, respectively. We demonstrate the suitability of the Planktotrons for food web and biodiversity research. Variation among replicated Planktotrons (n=3 minimum) did not differ from other laboratory systems and field experiments. We investigated population dynamics and interactions among the different trophic levels, and found them affected by the sequence of ciliate and Daphnia addition and the disturbance caused by addition of DOM. Y1 - 2017 U6 - https://doi.org/10.1002/lom3.10196 SN - 1541-5856 VL - 15 SP - 663 EP - 677 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Koussoroplis, Apostolos-Manuel A1 - Schwarzenberger, Anke A1 - Wacker, Alexander T1 - Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex JF - Biology open : BiO N2 - We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments. KW - Cyanobacteria KW - Digestive enzyme activity KW - Nutritional quality KW - Lipases Y1 - 2017 U6 - https://doi.org/10.1242/bio.022046 VL - 6 SP - 210 EP - 216 PB - The company of Biologists CY - Cambridge ER - TY - THES A1 - Bremer, Anne T1 - Structural and functional characterization of three closely related intrinsically disordered proteins from the model plant Arabidopsiis thaliana Y1 - 2017 ER - TY - THES A1 - Diez Cocero, Mercedes T1 - Analysis of Rubisco – carbonic anhydrase fusions in tobacco as an approach to reduce photorespiration N2 - Rubisco catalyses the first step of CO2 assimilation into plant biomass. Despite its crucial role, it is notorious for its low catalytic rate and its tendency to fix O2 instead of CO2, giving rise to a toxic product that needs to be recycled in a process known as photorespiration. Since almost all our food supply relies on Rubisco, even small improvements in its specificity for CO2 could lead to an improvement of photosynthesis and ultimately, crop yield. In this work, we attempted to improve photosynthesis by decreasing photorespiration with an artificial CCM based on a fusion between Rubisco and a carbonic anhydrase (CA). A preliminary set of plants contained fusions between one of two CAs, bCA1 and CAH3, and the N- or C-terminus of RbcL connected by a small flexible linker of 5 amino acids. Subsequently, further fusion proteins were created between RbcL C-terminus and bCA1/CAH3 with linkers of 14, 23, 32, and 41 amino acids. The transplastomic tobacco plants carrying fusions with bCA1 were able to grow autotrophically even with the shortest linkers, albeit at a low rate, and accumulated very low levels of the fusion protein. On the other hand, plants carrying fusions with CAH3 were autotrophic only with the longer linkers. The longest linker permitted nearly wild-type like growth of the plants carrying fusions with CAH3 and increased the levels of fusion protein, but also of smaller degradation products. The fusion of catalytically inactive CAs to RbcL did not cause a different phenotype from the fusions with catalytically active CAs, suggesting that the selected CAs were not active in the fusion with RbcL or their activity did not have an effect on CO2 assimilation. However, fusions to RbcL did not abolish RbcL catalytic activity, as shown by the autotrophic growth, gas exchange and in vitro activity measurements. Furthermore, Rubisco carboxylation rate and specificity for CO2 was not altered in some of the fusion proteins, suggesting that despite the defect in RbcL folding or assembly caused by the fusions, the addition of 60-150 amino acids to RbcL does not affect its catalytic properties. On the contrary, most growth defects of the plants carrying RbcL-CA fusions are related to their reduced Rubisco content, likely caused by impaired RbcL folding or assembly. Finally, we found that fusions with RbcL C-terminus were better tolerated than with the N-terminus, and increasing the length of the linker relieved the growth impairment imposed by the fusion to RbcL. Together, the results of this work constitute considerable relevant findings for future Rubisco engineering. N2 - Rubisco katalysiert den ersten Schritt der CO2-Assimilierung. Trotz seiner bedeutenden Rolle, zeichnet sich Rubisco durch eine niedrige katalytische Geschwindigkeit aus. Außerdem, entsteht bei der Bindung von O2 anstatt CO2 ein toxisches Zwischenprodukt, welches in einem Prozess, genannt Photorespiration, aufbereitet wird. Da fast die gesamte Nahrungsmittelversorgung auf der Aktivität von Rubisco basiert, könnten schon kleine Verbesserungen in der Spezifität für CO2 zu einem großen Effekt in der Photosysntheserate und letztendlich größeren Ernteerträgen führen. In dieser Arbeit wurde versucht die Effizienz der Photosynthese zu verbessern, indem ein künstlicher CO2 konzentrierender Mechanismus aus einer Fusion von RbcL und einer Carboanhydrase (CA) gebildet wird. Als Vorversuch wurden je bCA1 und CAH3 an Rubiscos C- beziehungsweise N-Terminus mittels eines kleinen, flexiblen Linkers aus 5 Aminosäuren fusioniert. Anschließend wurden weitere Fusionsproteine zwischen dem C-Terminus von RbcL und bCA1/CAH3 mittels Linkern von 14, 23, 32 und 41 Aminosäuren Länge in Chloroplasten von Tabak eingebracht. Die entstandenen transplastomischen Pflanzen mit bCA1-Fusionen waren trotz ihres sehr langsamen Wachstums dazu fähig schon bei kurzen Linkern autotroph zu wachsen und geringe Mengen an Fusionsproteinen zu akkumulieren. Pflanzen mit CAH3 Fusionsproteinen hingegen waren nur mit längeren Linkern autotroph, zeigten aber dafür ähnliche Wachstumsraten zum Wildtyp bei Nutzung des längsten Linkers. Außerdem enthielten diese Pflanzen größere Mengen an Fusionsproteinen aber auch eine erhöhte Anreicherung von kleineren Abbauprodukten. Bei den in dieser Arbeit gewählten CA als Fusionsprotein mit RbcL konnte im Vergleich mit katalytisch inaktiven Varianten kein Effekt auf die CO2-Assimilierung gefunden werden. Wie das autotroph Wachstum sowie die Gaswechsel- und in-vitro-Aktivitätsmessungen zeigen, haben die Fusionen allerdings nicht die katalytische Aktivität von Rubisco blockiert. Ebenso verhielt sich die Carboxylierungsrate von Rubisco und deren Spezifität für CO2 unverändert. Dies weist darauf hin, dass trotz Rubiscos Faltungs- oder Assemblierungsdefekten das Anfügen von 60-150 Aminosäure an den C-Terminus von RbcL nicht die katalytische Leistung des Enzyms beeinträchtigt. Im Gegenteil, die Wachstumsdefekte waren durch die geringe Menge an Rubisco begründet, vermutlich verursacht durch Defekte in der Faltung oder Assemblierung von RbcL. Schlussendlich konnten wichtige Erkenntnisse für zukünftige gentechnische Veränderungen von Rubisco gemacht werden: Fusionen mit dem C-Terminus von RbcL wurden besser toleriert als mit dem N-Terminus und längere Linker verringerten die von der Fusion ausgelösten Wachstumsdefekte. KW - Rubisco KW - fusion Y1 - 2017 ER - TY - JOUR A1 - Fischbach, Jens A1 - Loh, Qiuting A1 - Bier, Frank Fabian A1 - Lim, Theam Soon A1 - Frohme, Marcus A1 - Glökler, Jörn T1 - Alizarin Red S for Online Pyrophosphate Detection Identified by a Rapid Screening Method JF - Scientific reports N2 - We identified Alizarin Red S and other well known fluorescent dyes useful for the online detection of pyrophosphate in enzymatic assays, including the loop mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assays. An iterative screening was used for a selected set of compounds to first secure enzyme compatibility, evaluate inorganic pyrophosphate sensitivity in the presence of manganese as quencher and optimize conditions for an online detection. Of the selected dyes, the inexpensive alizarin red S was found to selectively detect pyrophosphate under LAMP and PCR conditions and is superior with respect to its defined red-shifted spectrum, long shelf life and low toxicity. In addition, the newly identified properties may also be useful in other enzymatic assays which do not generate nucleic acids but are based on inorganic pyrophosphate. Finally, we propose that our screening method may provide a blueprint for rapid screening of compounds for detecting inorganic pyrophosphate. Y1 - 2017 U6 - https://doi.org/10.1038/srep45085 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - THES A1 - Kersting, Sebastian T1 - Isothermal nucleic acid amplification for the detection of infectious pathogens Y1 - 2017 ER - TY - JOUR A1 - Lah, Ljerka A1 - Löber, Ulrike A1 - Hsiang, Tom A1 - Hartmann, Stefanie T1 - A genomic comparison of putative pathogenicity-related gene families in five members of the Ophiostomatales with different lifestyles JF - Fungal biology N2 - Ophiostomatoid fungi are vectored by their bark-beetle associates and colonize different host tree species. To survive and proliferate in the host, they have evolved mechanisms for detoxification and elimination of host defence compounds, efficient nutrient sequestration, and, in pathogenic species, virulence towards plants. Here, we assembled a draft genome of the spruce pathogen Ophiostoma bicolor. For our comparative and phylogenetic analyses, we mined the genomes of closely related species (Ophiostoma piceae, Ophiostoma ulmi, Ophiostoma novo-ulmi, and Grosmannia clavigera). Our aim was to acquire a genomic and evolutionary perspective of gene families important in host colonization. Genome comparisons showed that both the nuclear and mitochondrial genomes in our assembly were largely complete. Our O. bicolor 25.3 Mbp draft genome had 10 018 predicted genes, 6041 proteins with gene ontology (GO) annotation, 269 carbohydrate-active enzymes (CAZymes), 559 peptidases and inhibitors, and 1373 genes likely involved in pathogen-host interactions. Phylogenetic analyses of selected protein families revealed core sets of cytochrome P450 genes, ABC transporters and backbone genes involved in secondary metabolite (SM) biosynthesis (polyketide synthases (PKS) and non-ribosomal synthases), and species-specific gene losses and duplications. Phylogenetic analyses of protein families of interest provided insight into evolutionary adaptations to host biochemistry in ophiostomatoid fungi. KW - Bark beetle KW - Bluestain fungi KW - Ips typographus Y1 - 2016 U6 - https://doi.org/10.1016/j.funbio.2016.12.002 SN - 1878-6146 SN - 1878-6162 VL - 121 SP - 234 EP - 252 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kehlmaier, Christian A1 - Barlow, Axel A1 - Hastings, Alexander K. A1 - Vamberger, Melita A1 - Paijmans, Johanna L. A. A1 - Steadman, David W. A1 - Albury, Nancy A. A1 - Franz, Richard A1 - Hofreiter, Michael A1 - Fritz, Uwe T1 - Tropical ancient DNA reveals relationships of the extinct bahamian giant tortoise Chelonoidis alburyorum JF - Proceedings of the Royal Society of London : Series B, Biological sciences N2 - Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galapagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galapagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact. KW - Bahamas KW - biogeography KW - extinction KW - palaeontology KW - phylogeny Y1 - 2017 U6 - https://doi.org/10.1098/rspb.2016.2235 SN - 0962-8452 SN - 1471-2954 VL - 284 PB - The Royal Society CY - London ER - TY - JOUR A1 - Maddock, Simon T. A1 - Childerstone, Aaron A1 - Fry, Bryan Grieg A1 - Williams, David J. A1 - Barlow, Axel A1 - Wuester, Wolfgang T1 - Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler, 1830: Elapidae: Serpentes) JF - Molecular phylogenetics and evolution N2 - Genetic analyses of Australasian organisms have resulted in the identification of extensive cryptic diversity across the continent. The venomous elapid snakes are among the best-studied organismal groups in this region, but many knowledge gaps persist: for instance, despite their iconic status, the species-level diversity among Australo-Papuan blacksnakes (Pseudechis) has remained poorly understood due to the existence of a group of cryptic species within the P. australis species complex, collectively termed "pygmy mulga snakes". Using two mitochondrial and three nuclear loci we assess species boundaries within the genus using Bayesian species delimitation methods and reconstruct their phylogenetic history using multispecies coalescent approaches. Our analyses support the recognition of 10 species, including all of the currently described pygmy mulga snakes and one undescribed species from the Northern Territory of Australia. Phylogenetic relationships within the genus are broadly consistent with previous work, with the recognition of three major groups, the viviparous red-bellied black snake P. porphyriacus forming the sister species to two clades consisting of ovoviviparous species. KW - Australia KW - New Guinea KW - Molecular phylogenetics KW - BPP KW - Snakes KW - Multispecies coalescent Y1 - 2017 U6 - https://doi.org/10.1016/j.ympev.2016.09.005 SN - 1055-7903 SN - 1095-9513 VL - 107 SP - 48 EP - 55 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Romao, Maria Joao A1 - Coelho, Catarina A1 - Santos-Silva, Teresa A1 - Foti, Alessandro A1 - Terao, Mineko A1 - Garattini, Enrico A1 - Leimkühler, Silke T1 - Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics JF - Current Opinion in Chemical Biology N2 - Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. Mammals are characterized by a complement of species specific AOX isoenzymes, that varies from one in humans (AOX1) to four in rodents (AOX1, AOX2, AOX3 and AOX4). The physiological function of mammalian AOX isoenzymes is unknown, although human AOX1 is an emerging enzyme in phase-I drug metabolism. Indeed, the number of therapeutic molecules under development which act as AOX substrates is increasing. The recent crystallization and structure determination of human AOX1 as well as mouse AOX3 has brought new insights into the mechanisms underlying substrate/inhibitor binding as well as the catalytic activity of this class of enzymes. Y1 - 2017 U6 - https://doi.org/10.1016/j.cbpa.2017.01.005 SN - 1367-5931 SN - 1879-0402 VL - 37 SP - 39 EP - 47 PB - Elsevier CY - Oxford ER -