TY - JOUR A1 - Sandmann, Michael A1 - Münzberg, Marvin A1 - Bressel, Lena A1 - Reich, Oliver A1 - Hass, Roland T1 - Inline monitoring of high cell density cultivation of Scenedesmus rubescens in a mesh ultra-thin layer photobioreactor by photon density wave spectroscopy JF - BMC Research Notes / Biomed Central N2 - Objective Due to multiple light scattering that occurs inside and between cells, quantitative optical spectroscopy in turbid biological suspensions is still a major challenge. This includes also optical inline determination of biomass in bioprocessing. Photon Density Wave (PDW) spectroscopy, a technique based on multiple light scattering, enables the independent and absolute determination of optical key parameters of concentrated cell suspensions, which allow to determine biomass during cultivation. Results A unique reactor type, called "mesh ultra-thin layer photobioreactor" was used to create a highly concentrated algal suspension. PDW spectroscopy measurements were carried out continuously in the reactor without any need of sampling or sample preparation, over 3 weeks, and with 10-min time resolution. Conventional dry matter content and coulter counter measurements have been employed as established offline reference analysis. The PBR allowed peak cell dry weight (CDW) of 33.4 g L-1. It is shown that the reduced scattering coefficient determined by PDW spectroscopy is strongly correlated with the biomass concentration in suspension and is thus suitable for process understanding. The reactor in combination with the fiber-optical measurement approach will lead to a better process management. KW - Photon density wave spectroscopy KW - Multiple light scattering KW - Process KW - analytical technology KW - Fiber-optical spectroscopy KW - Mesh ultra-thin layer KW - photobioreactor Y1 - 2022 U6 - https://doi.org/10.1186/s13104-022-05943-2 SN - 1756-0500 VL - 15 IS - 1 PB - Biomed Central (London) CY - London ER - TY - JOUR A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Grothusheitkamp, Daniela A1 - Kunz, Thomas A1 - Methner, Frank-Jürgen T1 - Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry JF - Journal of mass spectrometr N2 - The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS. KW - APCI KW - fungus KW - gas chromatography KW - ion mobility spectrometry KW - mass KW - spectrometry KW - mold KW - soft X-ray Y1 - 2020 U6 - https://doi.org/10.1002/jms.4501 SN - 1076-5174 SN - 1096-9888 VL - 55 IS - 5 SP - 1 EP - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Buyinza, Daniel A1 - Derese, Solomon A1 - Ndakala, Albert A1 - Heydenreich, Matthias A1 - Yenesew, Abiy A1 - Koch, Andreas A1 - Oriko, Richard T1 - A coumestan and a coumaronochromone from Millettia lasiantha JF - Biochemical systematics and ecology N2 - The manuscript describes the phytochemical investigation of the roots, leaves and stem bark of Millettia lasiantha resulting in the isolation of twelve compounds including two new isomeric isoflavones lascoumestan and las-coumaronochromone. The structures of the new compounds were determined using different spectroscopic techniques. KW - Millettia lasiantha KW - Leguminosae KW - Coumestan KW - Coumaronochromone Y1 - 2021 U6 - https://doi.org/10.1016/j.bse.2021.104277 SN - 0305-1978 SN - 1873-2925 VL - 97 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schulze-Makuch, Dirk A1 - Wagner, Dirk A1 - Kounaves, Samuel P. A1 - Mangelsdorf, Kai A1 - Devine, Kevin G. A1 - de Vera, Jean-Pierre A1 - Schmitt-Kopplin, Philippe A1 - Grossart, Hans-Peter A1 - Parro, Victor A1 - Kaupenjohann, Martin A1 - Galy, Albert A1 - Schneider, Beate A1 - Airo, Alessandro A1 - Froesler, Jan A1 - Davila, Alfonso F. A1 - Arens, Felix L. A1 - Caceres, Luis A1 - Cornejo, Francisco Solis A1 - Carrizo, Daniel A1 - Dartnell, Lewis A1 - DiRuggiero, Jocelyne A1 - Flury, Markus A1 - Ganzert, Lars A1 - Gessner, Mark O. A1 - Grathwohl, Peter A1 - Guan, Lisa A1 - Heinz, Jacob A1 - Hess, Matthias A1 - Keppler, Frank A1 - Maus, Deborah A1 - McKay, Christopher P. A1 - Meckenstock, Rainer U. A1 - Montgomery, Wren A1 - Oberlin, Elizabeth A. A1 - Probst, Alexander J. A1 - Saenz, Johan S. A1 - Sattler, Tobias A1 - Schirmack, Janosch A1 - Sephton, Mark A. A1 - Schloter, Michael A1 - Uhl, Jenny A1 - Valenzuela, Bernardita A1 - Vestergaard, Gisle A1 - Woermer, Lars A1 - Zamorano, Pedro T1 - Transitory microbial habitat in the hyperarid Atacama Desert JF - Proceedings of the National Academy of Sciences of the United States of America KW - habitat KW - aridity KW - microbial activity KW - biomarker KW - Mars Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1714341115 SN - 0027-8424 VL - 115 IS - 11 SP - 2670 EP - 2675 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Bastian, Philipp U. A1 - Robel, Nathalie A1 - Schmidt, Peter A1 - Schrumpf, Tim A1 - Günter, Christina A1 - Roddatis, Vladimir A1 - Kumke, Michael Uwe T1 - Resonance energy transfer to track the motion of lanthanide ions BT - what drives the intermixing in core-shell upconverting nanoparticles? JF - Biosensors : open access journal N2 - The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process. KW - upconversion nanoparticles KW - lanthanoid migration KW - lanthanides KW - core-shell KW - energy transfer Y1 - 2021 U6 - https://doi.org/10.3390/bios11120515 SN - 2079-6374 VL - 11 IS - 12 PB - MDPI CY - Basel ER -