TY - JOUR A1 - Guislain, Alexis A1 - Beisner, Beatrix E. A1 - Köhler, Jan T1 - Variation in species light acquisition traits under fluctuating light regimes BT - implications for non-equilibrium coexistence JF - Oikos N2 - Resource distribution heterogeneity offers niche opportunities for species with different functional traits to develop and potentially coexist. Available light (photosynthetically active radiation or PAR) for suspended algae (phytoplankton) may fluctuate greatly over time and space. Species-specific light acquisition traits capture important aspects of the ecophysiology of phytoplankton and characterize species growth at either limiting or saturating daily PAR supply. Efforts have been made to explain phytoplankton coexistence using species-specific light acquisition traits under constant light conditions, but not under fluctuating light regimes that should facilitate non-equilibrium coexistence. In the well-mixed, hypertrophic Lake TaiHu (China), we incubated the phytoplankton community in bottles placed either at fixed depths or moved vertically through the water column to mimic vertical mixing. Incubations at constant depths received only the diurnal changes in light, while the moving bottles received rapidly fluctuating light. Species-specific light acquisition traits of dominant cyanobacteria (Anabaena flos-aquae, Microcystis spp.) and diatom (Aulacoseira granulata, Cyclotella pseudostelligera) species were characterized from their growth-light relationships that could explain relative biomasses along the daily PAR gradient under both constant and fluctuating light. Our study demonstrates the importance of interspecific differences in affinities to limiting and saturating light for the coexistence of phytoplankton species in spatially heterogeneous light conditions. Furthermore, we observed strong intraspecific differences in light acquisition traits between incubation under constant and fluctuating light - leading to the reversal of light utilization strategies of species. This increased the niche space for acclimated species, precluding competitive exclusion. These observations could enhance our understanding of the mechanisms behind the Paradox of the Plankton. KW - niche partitioning KW - phytoplankton photoacclimation Y1 - 2018 U6 - https://doi.org/10.1111/oik.05297 SN - 0030-1299 SN - 1600-0706 VL - 128 IS - 5 SP - 716 EP - 728 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tabares Jimenez, Ximena del Carmen A1 - Zimmermann, Heike Hildegard A1 - Dietze, Elisabeth A1 - Ratzmann, Gregor A1 - Belz, Lukas A1 - Vieth-Hillebrand, Andrea A1 - Dupont, Lydie A1 - Wilkes, Heinz A1 - Mapani, Benjamin A1 - Herzschuh, Ulrike T1 - Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers JF - Ecology and evolution N2 - Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state. KW - climate change KW - fossil pollen KW - land-use change KW - savanna ecology KW - sedimentary ancient DNA KW - state and transition KW - tree-grass interactions Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5955 SN - 2045-7758 VL - 10 IS - 2 SP - 962 EP - 979 PB - Wiley CY - Hoboken ER - TY - GEN ED - Berlin-Brandenburgisches Institut für Biodiverstätsforschung, T1 - Vielfalt in der Uckermark BT - Forschungsprojekte 2015 - 2018 Y1 - 2019 PB - oerding print GmbH CY - Braunschweig ER - TY - GEN A1 - Dierschke, Hartmut A1 - Heinken, Thilo T1 - Vorwort T2 - Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft Y1 - 2019 UR - https://www.tuexenia.de/publications/tuexenia/Tuexenia_2019_NS_039_0007-0007.pdf SN - 0722-494X IS - 39 SP - 7 EP - 7 PB - Floristisch-Soziologische Arbeitsgemeinschaft CY - Göttingen ER - TY - GEN A1 - Wiebke, Ullmann T1 - Warum hat Bayern mehr Feldhasen als Brandenburg? T2 - Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018 Y1 - 2019 SP - 46 EP - 47 PB - oerding print GmbH CY - Braunschweig ER - TY - JOUR A1 - Busch, Verena A1 - Klaus, Valentin Helmut A1 - Schaefer, Deborah A1 - Prati, Daniel A1 - Boch, Steffen A1 - Müller, Jörg A1 - Chiste, Melanie A1 - Mody, Karsten A1 - Blüthgen, Nico A1 - Fischer, Markus A1 - Hölzel, Norbert A1 - Kleinebecker, Till T1 - Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems JF - Journal of vegetation science KW - community composition KW - ecological strategies KW - Ellenberg indicator values KW - land-use intensity niche KW - plant functional traits KW - species-specific niche breadth KW - species-specific niche optima KW - temperate grasslands KW - vegetation dynamics Y1 - 2019 U6 - https://doi.org/10.1111/jvs.12749 SN - 1100-9233 SN - 1654-1103 VL - 30 IS - 4 SP - 674 EP - 686 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Baesler, Jessica A1 - Kopp, Johannes Florian A1 - Pohl, Gabriele A1 - Aschner, Michael A1 - Haase, Hajo A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Zn homeostasis in genetic models of Parkinson’s disease in Caenorhabditis elegans JF - Journal of Trace Elements in Medicine and Biology N2 - While the underlying mechanisms of Parkinson’s disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD. KW - Caenorhabditis elegans KW - Zinc KW - Zinc homeostasis KW - Parkinson disease KW - Labile zinc Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.05.005 VL - 55 SP - 44 EP - 49 PB - Elsevier CY - München ER -