TY - JOUR A1 - Brechun, Katherine Emily A1 - Arndt, Katja Maren A1 - Woolley, G. Andrew T1 - Selection of protein-protein interactions of desired affinities with a bandpass circuit JF - Journal of molecular biology : JMB N2 - We have developed a genetic circuit in Escherichia coli that can be used to select for protein-protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein-protein interaction strength to beta-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for beta-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein-protein interactions. We show that the circuit can be used to recover protein-protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein-protein interactions of defined strength. (C) 2018 Elsevier Ltd. All rights reserved. KW - synthetic biology KW - genetic circuit KW - biological engineering KW - protein-protein interactions KW - twin-arginine translocation KW - selection system Y1 - 2018 U6 - https://doi.org/10.1016/j.jmb.2018.11.011 SN - 0022-2836 SN - 1089-8638 VL - 431 IS - 2 SP - 391 EP - 400 PB - Elsevier CY - London ER - TY - JOUR A1 - Keller, Sebastian A1 - Kunze, Cindy A1 - Bommer, Martin A1 - Paetz, Christian A1 - Menezes, Riya C. A1 - Svatos, Ales A1 - Dobbek, Holger A1 - Schubert, Torsten T1 - Selective Utilization of Benzimidazolyl-Norcobamides as Cofactors by the Tetrachloroethene Reductive Dehalogenase of Sulfurospirillum multivorans JF - Journal of bacteriology N2 - The organohalide-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B-12, which serves as cofactor of the tetrachloroethene (PCE) reductive dehalogenase (PceA). As previously reported, a replacement of the adeninyl moiety, the lower base of the cofactor, by exogenously applied 5,6-dimethylbenzimidazole led to inactive PceA. To explore the general effect of benzimidazoles on the PCE metabolism, the susceptibility of the organism for guided biosynthesis of various singly substituted benzimidazolyl-norcobamides was investigated, and their use as cofactor by PceA was analyzed. Exogenously applied 5-methylbenzimidazole (5-MeBza), 5-hydroxybenzimidazole (5-OHBza), and 5-methoxybenzimidazole (5-OMeBza) were found to be efficiently incorporated as lower bases into norcobamides (NCbas). Structural analysis of the NCbas by nuclear magnetic resonance spectroscopy uncovered a regioselectivity in the utilization of these precursors for NCba biosynthesis. When 5-MeBza was added, a mixture of 5-MeBza-norcobamide and 6-MeBza-norcobamide was formed, and the PceA enzyme activity was affected. In the presence of 5-OHBza, almost exclusively 6-OHBza-norcobamide was produced, while in the presence of 5-OMeBza, predominantly 5-OMeBza-norcobamide was detected. Both NCbas were incorporated into PceA, and no negative effect on the PceA activity was observed. In crystal structures of PceA, both NCbas were bound in the base-off mode with the 6-OHBza and 5-OMeBza lower bases accommodated by the same solvent-exposed hydrophilic pocket that harbors the adenine as the lower base of authentic norpseudo-B-12. In this study, a selective production of different norcobamide isomers containing singly substituted benzimidazoles as lower bases is shown, and unique structural insights into their utilization as co-factors by a cobamide-containing enzyme are provided. IMPORTANCE Guided biosynthesis of norcobamides containing singly substituted benzimidazoles as lower bases by the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans is reported. An unprecedented specificity in the formation of norcobamide isomers containing hydroxylated or methoxylated benzimidazoles was observed that implicated a strict regioselectivity of the norcobamide biosynthesis in the organism. In contrast to 5,6-dimethylbenzimidazolyl-norcobamide, the incorporation of singly substituted benzimidazolyl-norcobamides as a cofactor into the tetrachloroethene reductive dehalogenase was not impaired. The enzyme was found to be functional with different isomers and not limited to the use of adeninyl-norcobamide. Structural analysis of the enzyme equipped with either adeninyl-or benzimidazolyl-norcobamide cofactors visualized for the first time structurally different cobamides bound in base-off conformation to the cofactor-binding site of a cobamide-containing enzyme. KW - benzimidazoles KW - corrinoid-containing enzymes KW - reductive dehalogenase KW - vitamin B-12 Y1 - 2018 U6 - https://doi.org/10.1128/JB.00584-17 SN - 0021-9193 SN - 1098-5530 VL - 200 IS - 8 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Solovyev, Nikolay A1 - Prakash, N. Tejo A1 - Bhatia, Poonam A1 - Prakash, Ranjana A1 - Drobyshev, Evgenii J. A1 - Michalke, Bernhard T1 - Selenium-rich mushrooms cultivation on a wheat straw substrate from seleniferous area in Punjab, India JF - Journal of trace elements in medicine and biology N2 - Intensive rice-wheat cultivation cycle in Northern belt of India in general and in the State of Punjab in particular results in large volumes of straw and other post-harvest residue annually. The agricultural area, bordering the districts of Nawanshahr and Hoshiarpur, is popularly known as the seleniferous belt of India. The agri-residues, generated in seleniferous region of this state, are observed to contain significantly high concentration of selenium (Se). The present study was aimed to evaluate the Se uptake by different mushroom species: Pleurotus sajorcaju, Pleurotus ostreatus, Pleurotus citrinopileatus, Agaricus bisporus, and Volvariella volvacea, cultivated on Se-rich wheat and paddy straw from the seleniferous region. Wheat (Pleurotus species and A. bisporus) and paddy straw (V. volvacea) was inoculated with the mycelium spawn and left for 7-20 days, depending on the species, to grow. Control mushrooms were grown analogously using the agricultural residues from non-seleniferous area of the State of Punjab. All fruiting bodies were collected and analyzed in triplicate. Se was quantified using inductively coupled plasma sector field mass spectrometry. The Se accumulation was high in all species under study, being the highest in A. bisporus (1396 mu g/g vs. 46.8 mu g/g in controls - dry weight) and V. volvacea (231 mu g/g vs. 3.77 mu g/g - dry weight). The observed biological efficiency and total yield for all mushroom species showed good and unaltered productivity in Se-rich conditions, if compared to the controls. The Se-rich mushrooms can be prospective Se-supplements sourcing and biofortified foods, providing readily bioavailable and accessible Se for the diets deficient of this biologically essential element. KW - Selenium KW - Mushrooms KW - Cultivation KW - Bioaccumulation KW - Seleniferous area KW - Supplements Y1 - 2018 U6 - https://doi.org/10.1016/j.jtemb.2018.07.027 SN - 0946-672X VL - 50 SP - 362 EP - 366 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Piluso, Susanna A1 - Vukicevie, Radovan A1 - Nöchel, Ulrich A1 - Braune, Steffen A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation JF - European polymer journal N2 - While click chemistry reactions for biopolymer network formation are attractive as the defined reactions may allow good control of the network formation and enable subsequent functionalization, tailoring of gelatin network properties over a wide range of mechanical properties has yet to be shown. Here, it is demonstrated that copper-catalyzed alkyne-azide cycloaddition of alkyne functionalized gelatin with diazides gave hydrogel networks with properties tailorable by the ratio of diazide to gelatin and diazide rigidity. 4,4′-diazido-2,2′-stilbenedisulfonic acid, which has been used as rigid crosslinker, yielded hydrogels with Young’s moduli E of 50–390 kPa and swelling degrees Q of 150–250 vol.%, while the more flexible 1,8-diazidooctane resulted in hydrogels with E = 125–280 kPa and Q = 225–470 vol.%. Storage moduli could be varied by two orders of magnitude (G′ = 100–20,000 Pa). An indirect cytotoxicity test did not show cytotoxic properties. Even when employing 1:1 ratios of alkyne and azide moieties, the hydrogels were shown to contain both, unreacted alkyne groups on the gelatin backbone as well as dangling chains carrying azide groups as shown by reaction with functionalized fluorescein. The free groups, which can be tailored by the employed ratio of the reactants, are accessible for covalent attachment of drugs, as was demonstrated by functionalization with dexamethasone. The sequential network formation and functionalization with click chemistry allows access to multifunctional materials relevant for medical applications. KW - Click chemistry KW - Hydrogel KW - Polymer functionalization KW - Biopolymer KW - Rheology KW - Multifunctionality Y1 - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.01.017 SN - 0014-3057 SN - 1873-1945 VL - 100 SP - 77 EP - 85 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Martin-Creuzburg, Dominik A1 - Massier, Tamara A1 - Wacker, Alexander T1 - Sex-Specific differences in essential lipid requirements of Daphnia magna JF - Frontiers in Ecology and Evolution N2 - Sex-specific differences in nutritional requirements may crucially influence the performances of the sexes, which may have implications for sexual reproduction and thus is of great ecological and evolutionary interest. In the freshwater model species Daphnia magna, essential lipid requirements have been extensively studied. Dietary deficiencies in sterols and polyunsaturated fatty acids (PUFA) have been shown to constrain somatic growth and parthenogenetic reproduction of female Daphnia. In contrast, nutrient requirements of male Daphnia have not been studied yet. Supplementation experiments were conducted to investigate differences in sterol (cholesterol) and PUFA (eicosapentaenoic acid, EPA) requirements between female and male D. magna. Thresholds for sterol-limited juvenile growth were higher in females than in males, suggesting that females are more susceptible to dietary sterol deficiencies than males. Sex-specific differences in maximum somatic growth rates were evident primarily in the presence of dietary EPA; females could not exploit their generally higher growth potential in the absence of dietary PUFA. However, the thresholds for EPA-limited growth did not differ between sexes, suggesting that both sexes have similar dietary EPA requirements during juvenile growth. During a life history experiment, the gain in body dry mass was higher in females than in males, irrespective of food treatment. In both sexes, the gain in body dry mass increased significantly upon EPA supplementation, indicating that both sexes benefited from dietary EPA supply also later in life. However, the positive effects of EPA supplementation were most pronounced for female reproduction-related traits (i.e., clutch sizes, egg dry masses, and total dry mass investment in reproduction). The high maternal investment in reproduction resulted in a depletion of nutrients in female somata. In contrast, the comparatively low paternal investment in reproduction allowed for the accumulation of nutrients in male somata. We conclude that males are generally less susceptible to dietary nutrient deficiencies than females, because they can rely more on internal body stores. Our data suggest that the performances of the sexes are differentially influenced by lipid-mediated food quality, which may have consequences for sexual reproduction and thus the production of resting eggs and the maintenance of Daphnia populations. KW - allocation KW - cholesterol KW - eicosapentaenoic acid KW - food quality KW - male Daphnia KW - polyunsaturated fatty acids KW - sterols KW - lipid limitation thresholds Y1 - 2018 U6 - https://doi.org/10.3389/fevo.2018.00089 SN - 2296-701X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Porada, Philipp A1 - Van Stan, John T. A1 - Kleidon, Axel T1 - Significant contribution of non-vascular vegetation to global rainfall interception JF - Nature geoscience N2 - Non-vascular vegetation has been shown to capture considerable quantities of rainfall, which may affect the hydrological cycle and climate at continental scales. However, direct measurements of rainfall interception by non-vascular vegetation are confined to the local scale, which makes extrapolation to the global effects difficult. Here we use a process-based numerical simulation model to show that non-vascular vegetation contributes substantially to global rainfall interception. Inferred average global water storage capacity including non-vascular vegetation was 2.7 mm, which is consistent with field observations and markedly exceeds the values used in land surface models, which average around 0.4 mm. Consequently, we find that the total evaporation of free water from the forest canopy and soil surface increases by 61% when non-vascular vegetation is included, resulting in a global rainfall interception flux that is 22% of the terrestrial evaporative flux (compared with only 12% for simulations where interception excludes non-vascular vegetation). We thus conclude that non-vascular vegetation is likely to significantly influence global rainfall interception and evaporation with consequences for regional-to continental-scale hydrologic cycling and climate. Y1 - 2018 U6 - https://doi.org/10.1038/s41561-018-0176-7 SN - 1752-0894 SN - 1752-0908 VL - 11 IS - 8 SP - 563 EP - + PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Simulation of herbicide impacts on a plant community BT - comparing model predictions of the plant community model IBC-grass to empirical data JF - Environmental Sciences Europe N2 - Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment. KW - Plant community model KW - Non-target terrestrial plants KW - Community-level effects KW - Herbicide risk assessment KW - Individual-based modeling Y1 - 2018 U6 - https://doi.org/10.1186/s12302-018-0174-9 SN - 2190-4715 SN - 2190-4707 VL - 30 IS - 44 PB - Springer CY - Berlin und Heidelberg ER - TY - JOUR A1 - van Grunsven, Roy Hendrikus Antonius A1 - Jaehnichen, David A1 - Grubisic, Maja A1 - Hölker, Franz T1 - Slugs (Arionidae) benefit from nocturnal artificial illumination JF - Journal of Experimental Zoology Part A: Ecological and Integrative Physiology N2 - Artificial illumination increases around the globe and this has been found to affect many groups of organisms and ecosystems. By manipulating nocturnal illumination using one large experimental field site with 24 streetlights and one dark control, we assessed the impact of artificial illumination on slugs over a period of 4 years. The number of slugs, primarily Arionidae, increased strongly in the illuminated site but not on the dark site. There are several nonexclusive explanations for this effect, including reduced predation and increased food quality in the form of carcasses of insects attracted by the light. As slugs play an important role in ecosystems and are also important pest species, the increase of slugs under artificial illumination cannot only affect ecosystem functioning but also have important economic consequences. KW - ALAN KW - Arionidae KW - gastropoda KW - light pollution KW - phototaxis Y1 - 2018 U6 - https://doi.org/10.1002/jez.2170 SN - 2471-5646 VL - 329 IS - 8-9 SP - 429 EP - 433 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Mantzouki, Evanthia A1 - Beklioglu, Meryem A1 - Brookes, Justin D. A1 - Domis, Lisette Nicole de Senerpont A1 - Dugan, Hilary A. A1 - Doubek, Jonathan P. A1 - Grossart, Hans-Peter A1 - Nejstgaard, Jens C. A1 - Pollard, Amina I. A1 - Ptacnik, Robert A1 - Rose, Kevin C. A1 - Sadro, Steven A1 - Seelen, Laura A1 - Skaff, Nicholas K. A1 - Teubner, Katrin A1 - Weyhenmeyer, Gesa A. A1 - Ibelings, Bastiaan W. T1 - Snapshot surveys for lake monitoring, more than a shot in the dark JF - Frontiers in Ecology and Evolution KW - multi-lake snapshot surveys KW - lake monitoring KW - Nyquist-shannon sampling theorem KW - space-for-time substitution KW - phytoplankton ecology Y1 - 2018 U6 - https://doi.org/10.3389/fevo.2018.00201 SN - 2296-701X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Kunstmann, Ruth Sonja A1 - Gohlke, Ulrich A1 - Bröker, Nina Kristin A1 - Roske, Yvette A1 - Heinemann, Udo A1 - Santer, Mark A1 - Barbirz, Stefanie T1 - Solvent networks tune thermodynamics of oligosaccharide complex formation in an extended protein binding site JF - Journal of the American Chemical Society N2 - The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site. Y1 - 2018 U6 - https://doi.org/10.1021/jacs.8b03719 SN - 0002-7863 VL - 140 IS - 33 SP - 10447 EP - 10455 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ullmann, Wiebke A1 - Fischer, Christina A1 - Pirhofer-Walzl, Karin A1 - Kramer-Schadt, Stephanie A1 - Blaum, Niels T1 - Spatiotemporal variability in resources affects herbivore home range formation in structurally contrasting and unpredictable agricultural landscapes JF - Landscape ecology N2 - We investigated whether a given landscape structure affects the level of home range size adaptation in response to resource variability. We tested whether increasing resource variability forces herbivorous mammals to increase their home ranges. In 2014 and 2015 we collared 40 European brown hares (Lepus europaeus) with GPS-tags to record hare movements in two regions in Germany with differing landscape structures. We examined hare home range sizes in relation to resource availability and variability by using the normalized difference vegetation index as a proxy. Hares in simple landscapes showed increasing home range sizes with increasing resource variability, whereas hares in complex landscapes did not enlarge their home range. Animals in complex landscapes have the possibility to include various landscape elements within their home ranges and are more resilient against resource variability. But animals in simple landscapes with few elements experience shortcomings when resource variability becomes high. The increase in home range size, the movement related increase in energy expenditure, and a decrease in hare abundances can have severe implications for conservation of mammals in anthropogenic landscapes. Hence, conservation management could benefit from a better knowledge about fine-scaled effects of resource variability on movement behaviour. KW - Resource variability KW - Resource availability KW - Home range size KW - European brown hare KW - GPS tracking KW - Telemetry KW - Lepus europaeus Y1 - 2018 U6 - https://doi.org/10.1007/s10980-018-0676-2 SN - 0921-2973 SN - 1572-9761 VL - 33 IS - 9 SP - 1505 EP - 1517 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Senczuk, Gabriele A1 - Havenstein, Katja A1 - Milana, Valentina A1 - Ripa, Chiara A1 - De Simone, Emanuela A1 - Tiedemann, Ralph A1 - Castiglia, Riccardo T1 - Spotlight on islands BT - on the origin and diversification of an ancient lineage of the Italian wall lizard Podarcis siculus in the western Pontine Islands JF - Scientific reports N2 - Groups of proximate continental islands may conceal more tangled phylogeographic patterns than oceanic archipelagos as a consequence of repeated sea level changes, which allow populations to experience gene flow during periods of low sea level stands and isolation by vicariant mechanisms during periods of high sea level stands. Here, we describe for the first time an ancient and diverging lineage of the Italian wall lizard Podarcis siculus from the western Pontine Islands. We used nuclear and mitochondrial DNA sequences of 156 individuals with the aim of unraveling their phylogenetic position, while microsatellite loci were used to test several a priori insular biogeographic models of migration with empirical data. Our results suggest that the western Pontine populations colonized the islands early during their Pliocene volcanic formation, while populations from the eastern Pontine Islands seem to have been introduced recently. The inter-island genetic makeup indicates an important role of historical migration, probably due to glacial land bridges connecting islands followed by a recent vicariant mechanism of isolation. Moreover, the most supported migration model predicted higher gene flow among islands which are geographically arranged in parallel. Considering the threatened status of small insular endemic populations, we suggest this new evolutionarily independent unit be given priority in conservation efforts. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-33326-w SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Hackenberg, Claudia A1 - Hakanpaeae, Johanna A1 - Cai, Fei A1 - Antonyuk, Svetlana A1 - Eigner, Caroline A1 - Meissner, Sven A1 - Laitaoja, Mikko A1 - Janis, Janne A1 - Kerfeld, Cheryl A. A1 - Dittmann, Elke A1 - Lamzin, Victor S. T1 - Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine beta-synthase (CBS)-chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS-CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS-CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS-CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS-CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS-CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS-CP12 expand its regulatory function beyond those of CP12 in cyanobacteria. KW - crystal structure KW - hexamer KW - redox KW - Microcystis aeruginosa Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1806668115 SN - 0027-8424 VL - 115 IS - 27 SP - 7141 EP - 7146 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Biterova, Ekaterina A1 - Esmaeeli Moghaddam Tabalvandani, Mariam A1 - Alanen, Heli I. A1 - Saaranen, Mirva A1 - Ruddock, Lloyd W. T1 - Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease JF - Scientific reports N2 - Coronary artery disease is the most common cause of death globally and is linked to a number of risk factors including serum low density lipoprotein, high density lipoprotein, triglycerides and lipoprotein(a). Recently two proteins, angiopoietin-like protein 3 and 4, have emerged from genetic studies as being factors that significantly modulate plasma triglyceride levels and coronary artery disease. The exact function and mechanism of action of both proteins remains to be elucidated, however, mutations in these proteins results in up to 34% reduction in coronary artery disease and inhibition of function results in reduced plasma triglyceride levels. Here we report the crystal structures of the fibrinogen-like domains of both proteins. These structures offer new insights into the reported loss of function mutations, the mechanisms of action of the proteins and open up the possibility for the rational design of low molecular weight inhibitors for intervention in coronary artery disease. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-25237-7 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Braga, Raul Renno A1 - Gomez-Aparicio, Lorena A1 - Heger, Tina A1 - Simoes Vitule, Jean Ricardo A1 - Jeschke, Jonathan M. T1 - Structuring evidence for invasional meltdown BT - broad support but with biases and gaps JF - Biological invasions : unique international journal uniting scientists in the broad field of biological invasions N2 - Negative interactions have been suggested as a major barrier for species arriving in a new habitat. More recently, positive interactions drew attention from community assembly theory and invasion science. The invasional meltdown hypothesis (IMH) introduced the idea that positive interactions among non-native species could facilitate one another’s invasion, even increasing their impact upon the native community. Many studies have addressed IMH, but with contrasting results, reflecting various types of evidence on a multitude of scales. Here we use the hierarchy-of-hypotheses (HoH) approach to differentiate key aspects of IMH, organizing and linking empirical studies to sub-hypotheses of IMH. We also assess the level of empirical support for each sub-hypothesis based on the evidence reported in the studies. We identified 150 studies addressing IMH. The majority of studies support IMH, but the evidence comes from studies with different aims and questions. Supporting studies at the community or ecosystem level are currently rare. Evidence is scarce for marine habitats and vertebrates. Few sub-hypotheses are questioned by more than 50% of the evaluated studies, indicating that non-native species do not affect each other’s survival, growth, reproduction, abundance, density or biomass in reciprocal A ↔ B interactions. With the HoH for IMH presented here, we can monitor progress in empirical tests and evidences of IMH. For instance, more tests at the community and ecosystem level are needed, as these are necessary to address the core of this hypothesis. KW - Facilitation KW - Mutualism KW - Review KW - Nonindigenous KW - Exotic Y1 - 2018 U6 - https://doi.org/10.1007/s10530-017-1582-2 SN - 1387-3547 SN - 1573-1464 VL - 20 IS - 4 SP - 923 EP - 936 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Geiger, Daniel L. A1 - Kocyan, Alexander T1 - Studies on Oberonia 3. Aberrant flowers and other floral modifications in the orchid genus Oberonia JF - Nordic Journal of botany N2 - Orchid flowers are amongst the most conspicuous attractions that plants have generated over evolutionary epochs. However, organ homology in particular of androecium and gynoecium of orchid flowers have been, and are still, the subject of long-term discussion. Studies of aberrant - teratologic - flowers have traditionally helped to clarify organ identity in orchids. We here present for the first time teratological flowers within the florally smallest and inconspicuous orchid genus Oberonia and illustrate them by light and scanning electron microscopy. Pseudopeloria with half of a lateral petal transformed into a lip was found in O. costeriana J.J.Sm. and O. mucronata (D.Don) Ormerod & Seidenf. A supernumerary lip is known from O. mucronata. Oberonia rufilabris Lindl. is documented with multiple aberrations: triple gynostemium and a total of 10 tepals, twin flowers, and duplicate lips. We interpret these aberrations in light of known floral developmental and organ identity information. Y1 - 2018 U6 - https://doi.org/10.1111/njb.01699 SN - 0107-055X SN - 1756-1051 VL - 36 IS - 1-2 PB - Wiley CY - Hoboken ER - TY - THES A1 - Scheffler, Christiane T1 - Studies on plasticity within the universal pattern of growth and developmet of children and adolescents N2 - The anatomically modern human Homo sapiens sapiens is distinguished by a high adaptability in physiology, physique and behaviour in short term changing environmental conditions. Since our environmental factors are constantly changing because of anthropogenic influences, the question arises as to how far we have an impact on the human phenotype in the very sensitive growth phase in children and adolescents. Growth and development of all children and adolescents follow a universal and typical pattern. This pattern has evolved as the result of trade-offs in the 6-7 million years of human evolution. This typically human growth pattern differs from that of other long-living social primate species. It can be divided into different biological age stages, with specific biological, cognitive and socio-cultural signs. Phenotypic plasticity is the ability of an organism to react to an internal or external environmental input with a change in the form, state, and movement rate of activity (West-Eberhard 2003). The plasticity becomes visible and measurable particularly when, in addition to the normal variability of the phenotypic characteristics within a population, the manifestation of this plasticity changes within a relatively short time. The focus of the present work is the comparison of age-specific dimensional changes. The basic of the presented studies are more than 75,000 anthropometric data-sets of children and adolescence from 1980 up today and historical data of height available in scientific literature. Due to reduced daily physical activity, today's 6-18 year-olds have lower values of pelvic and elbow breadths. The observed increase in body height can be explained by hierarchies in social networks of human societies, contrary to earlier explanations (influence of nutrition, good living conditions and genetics). A shift towards a more feminine fat distribution pattern in boys and girls is parallel to the increase in chemicals in our environment that can affect the hormone system. Changing environmental conditions can have selective effects over generations so that that genotype becomes increasingly prevalent whose individuals have a higher progeny rate than other individuals in this population. Those then form the phenotype which allows optimum adaptation to the changes of the environmental conditions. Due to the slow patterns of succession and the low progeny rate (Hawkes et al. 1998), fast visible in the phenotype due to changes in the genotype of a population are unlikely to occur in the case of Homo sapiens sapiens within short time. In the data sets on which the presented investigations are based, such changes appear virtually impossible. The study periods cover 5-30 to max.100 years (based on data from the body height from historical data sets). N2 - Der anatomisch moderne Mensch Homo sapiens sapiens zeichnet sich durch eine hohe Anpassungsfähigkeit von Physiologie, Körperbau und Verhalten an sich kurzfristig ändernde Umweltbedingungen aus. Daraus ergibt sich die Frage inwieweit anthropogene Umweltbedingungen die sehr sensible Wachstumsphase von Kindern und Jugendlichen beeinflussen können. Das universelle und für den Menschen typische Wachstums- und Entwicklungsmuster mit unterschiedlichen biologisch, kognitiv und soziokulturell abgrenzbaren Entwicklungsstadien, welches sich in 6-7 Millionen Jahren menschlicher Evolution herausgebildet hat, unterscheidet sich von dem anderer langlebender sozialer Primaten. Phänotypische Plastizität ist die Fähigkeit eines Organismus sich in Form, Zustand, Aktivitätsrate oder Verhalten an unterschiedliche Umweltbedingungen anzupassen (West-Eberhard 2003). Beim Menschen wird diese Plastizität u.a. sichtbar, wenn sich anthropometrisch bestimmbare Merkmale im Vergleich von Populationen in relativ kurzer Zeit ändern. Der Schwerpunkt der vorliegenden Arbeit ist es, altersspezifische Änderung von Körpermaßen (Skelettbreiten, Körperendhöhe und Fettverteilungsmuster) aufeinanderfolgender Populationen in Abhängigkeit von neuen Umweltparametern zu vergleichen. Dem liegen ca. 75 000 anthropo-metrische Datensätzen von Kindern und Jugendlichen seit 1980 bis heute und historische Datensätze aus der Literatur zugrunde. Aufgrund verringerter alltäglicher Bewegung haben heutige 6-18-Jährige geringere Werte der Becken- und der Ellenbogenbreiten. Die beobachtete Zunahme der Körperhöhe lässt sich entgegen früherer Erklärungen (Einfluss von Ernährung, guter Lebensbedingungen und Genetik) durch Hierarchien in sozialen Netzwerken menschlicher Gesellschaften erklären. Eine Verschiebung zu einem eher weiblichen Fettverteilungsmuster bei Jungen und Mädchen findet sich parallel zur Zunahme von Chemikalien in unserer Umwelt, die das Hormonsystem beeinflussen können. Die beschriebene Plastizität des Phänotyps findet im Rahmen des genetisch manifestierten Wachstumsmusters bei Kindern und Jugendlichen statt. Epigenetische Einflüsse können nicht ausgeschlossen werden, sind aber an Körpermaßdaten per se nicht bestimmbar. Die Veränderung der analysierten Körpermaße unterstreicht, dass der Phänotyp des Menschen sich an veränderte Umweltbedingungen sehr plastisch anpassen kann. Wegen der langsamen Generationenfolge und Entwicklung des Menschen sind derartige eigentlich kurzfristige Veränderungen nur über einen Zeitraum von mindestens 5-30 Jahren zu beobachten. KW - plasticity KW - skeletal breadth measurement KW - Fat Patterning KW - secular trend KW - body height Y1 - 2018 ER - TY - JOUR A1 - Hermanussen, Michael A1 - Bogin, Barry A1 - Scheffler, Christiane T1 - Stunting, starvation and refeeding BT - a review of forgotten 19th and early 20th century literature JF - Acta paediatrica : nurturing the child N2 - Aim: To scrutinize to what extent modern ideas about nutrition effects on growth are supported by historic observations in European populations. Method: We reviewed 19th and early 20th century paediatric journals in the Staatsbibliothek zu Berlin, the third largest European library with an almost complete collection of the German medical literature. During a three-day visit, we inspected 15 bookshelf meters of literature not available in electronic format. Results: Late 19th and early 20th century breastfed European infants and children, independent of social strata, grew far below World Health Organisation (WHO) standards and 15-30% of adequately-fed children would be classified as stunted by the WHO standards. Historic sources indicate that growth in height is largely independent of the extent and nature of the diet. Height catch-up after starvation was greater than catch-up reported in modern nutrition intervention studies, and allowed for unimpaired adult height. Conclusion: Historical studies are indispensable to understand why stunting does not equate with undernutrition and why modern diet interventions frequently fail to prevent stunting. Appropriateness and effect size of modern nutrition interventions on growth need revision. KW - Child growth KW - Historic literature KW - Refeeding KW - Stunting KW - Undernutrition Y1 - 2018 U6 - https://doi.org/10.1111/apa.14311 SN - 0803-5253 SN - 1651-2227 VL - 107 IS - 7 SP - 1166 EP - 1176 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Streubel, Susanna A1 - Fritz, Michael Andre A1 - Teltow, Melanie A1 - Kappel, Christian A1 - Sicard, Adrien T1 - Successive duplication-divergence mechanisms at the RCO locus contributed to leaf shape diversity in the Brassicaceae JF - Development : Company of Biologists N2 - Gene duplication is a major driver for the increase of biological complexity. The divergence of newly duplicated paralogs may allow novel functions to evolve, while maintaining the ancestral one. Alternatively, partitioning the ancestral function among paralogs may allow parts of that role to follow independent evolutionary trajectories. We studied the REDUCED COMPLEXITY (RCO) locus, which contains three paralogs that have evolved through two independent events of gene duplication, and which underlies repeated events of leaf shape evolution within the Brassicaceae. In particular, we took advantage of the presence of three potentially functional paralogs in Capsella to investigate the extent of functional divergence among them. We demonstrate that the RCO copies control growth in different areas of the leaf. Consequently, the copies that are retained active in the different Brassicaceae lineages contribute to define the leaf dissection pattern. Our results further illustrate how successive gene duplication events and subsequent functional divergence can increase trait evolvability by providing independent evolutionary trajectories to specialized functions that have an additive effect on a given trait. KW - Plant development KW - Gene duplication KW - Leaf shape KW - Morphological evolution KW - Capsella KW - Arabidopsis Y1 - 2018 U6 - https://doi.org/10.1242/dev.164301 SN - 0950-1991 SN - 1477-9129 VL - 145 IS - 8 PB - Company of Biologists CY - Cambridge ER - TY - JOUR A1 - Schnitzler, Joseph G. A1 - Reckendorf, Anja A1 - Pinzone, Marianna A1 - Autenrieth, Marijke A1 - Tiedemann, Ralph A1 - Covaci, Adrian A1 - Malarvannan, Govindan A1 - Ruser, Andreas A1 - Das, Krishna A1 - Siebert, Ursula T1 - Supporting evidence for PCB pollution threatening global killer whale population JF - Aquatic Toxicology N2 - A recent Science report predicted the global killer whale population to collapse due to PCB pollution. Here we present empirical evidence, which supports and extends the reports’ statement. In 2016, a neonate male killer whale stranded on the German island of Sylt. Neonatal attributes indicated an age of at least 3 days. The stomach contained ∼20 mL milk residue and no pathologies explaining the cause of death could be detected. Blubber samples presenting low lipid concentrations were analysed for persistent organic pollutants. Skin samples were collected for genotyping of the mitochondrial control region. The blubber PCB concentrations were very high [SPCBs, 225 mg/kg lipid weight (lw)], largely exceeding the PCB toxicity thresholds reported for the onset of immunosuppression [9 mg/kg lw ∑PCB] and for severe reproductive impairment [41 mg/kg lw ∑PCB] reported for marine mammals. Additionally, this individual showed equally high concentrations in p,p’-DDE [226 mg/kg lw], PBDEs [5 mg/kg lw] and liver mercury levels [1.1 μg/g dry weight dw]. These results suggest a high placental transfer of pollutants from mother to foetus. Consequently, blubber and plasma PCB concentrations and calf mortality rates are both high in primiparous females. With such high pollutant levels, this neonate had poor prerequisites for survival. The neonate belonged to Ecotype I (generalist feeder) and carried the mitochondrial haplotype 35 present in about 16% of the North Atlantic killer whale from or close to the North Sea. The relevance of this data becomes apparent in the UK West Coast Community, the UK's only residentorca population, which is currently composed of only eight individuals (each four males and females) and no calves have been reported over the last 19 years.Despite worldwide regulations, PCBs persist in the environment and remain a severe concern for killer whale populations, placing calves at high risk due to the mother-offspring PCB-transfer resulting in a high toxicological burden of the neonates. KW - Killer whale KW - PCB KW - DDT KW - PBDE KW - Mercury KW - North Sea Y1 - 2018 U6 - https://doi.org/10.1016/j.aquatox.2018.11.008 SN - 0166-445X SN - 1879-1514 VL - 206 SP - 102 EP - 104 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wischke, Christian A1 - Baehr, Elen A1 - Racheva, Miroslava A1 - Heuchel, Matthias A1 - Weigel, Thomas A1 - Lendlein, Andreas T1 - Surface immobilization strategies for tyrosinase as biocatalyst applicable to polymer network synthesis JF - MRS Advances N2 - Enzymes have recently attracted increasing attention in material research based on their capacity to catalyze the conversion of polymer-bound moieties for synthesizing polymer networks, particularly bulk hydrogels. hi this study. the surface immobilization of a relevant enzyme. mushroom tyrosinase, should be explored using glass as model surface. In a first step. the glass support was functionalized with silanes to introduce either amine or carboxyl groups, as confirmed e.g. by X-ray photoelectron spectroscopy. By applying glutaraldehyde and EDC/NHS chemistry, respectively, surfaces have been activated for subsequent successful coupling of tyrosinase. Via protein hydrolysis and amino acid characterization by HPLC, the quantity of bound tyrosinase was shown to correspond to a full surface coverage. Based on the visualized enzymatic conversion of a test substrate at the glass support. the functionalized surfaces may be explored for surface-associated material synthesis in the future. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.630 SN - 2059-8521 VL - 3 IS - 63 SP - 3875 EP - 3881 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Obertegger, Ulrike A1 - Cieplinski, Adam A1 - Raatz, Michael A1 - Colangeli, Pierluigi T1 - Switching between swimming states in rotifers - case study Keratella cochlearis JF - Marine and Freshwater Behaviour and Physiology N2 - Swimming is of vital importance for aquatic organisms because it determines several aspects of fitness, such as encounter rates with food, predators, and mates. Generally, rotifer swimming speed is measured by manual tracking of the swimming paths filmed in videos. Recently, an open-source package has been developed that integrates different open-source software and allows direct processing and analysis of the swimming paths of moving organisms. Here, we filmed groups of females and males of Keratella cochlearis separately and in a mixed experimental setup. We extracted movement trajectories and swimming speeds and applied the classification method random forest to assign sex to individuals of the mixed setup. Finally, we used advanced statistical methods of movement ecology, namely a hidden Markov model, to investigate swimming states of females and males. When not discriminating swimming states, females swam faster than males, while when discriminating states males swam faster. Specifically, females and males showed two main states of movement with many individuals switching between states resulting in four modes of swimming. We suggest that switching between states is related to predator avoidance. Males of K. cochlearis especially exhibited switching between turning in a restricted area and swimming over longer distances. No mating or other male-female interactions were observed. Our study elucidates the steps necessary for automatic analysis of rotifer trajectories with open-source software. Application of sophisticated software and analytical models will broaden our understanding of zooplankton ecology from the individual to the population level. KW - BEMOVI KW - dwarf males KW - hidden markov model KW - Monogononta KW - swimming modes Y1 - 2018 U6 - https://doi.org/10.1080/10236244.2018.1503541 SN - 1023-6244 SN - 1029-0362 VL - 51 IS - 3 SP - 159 EP - 173 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Zabihi, Fatemeh A1 - Graff, Patrick A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Haag, Rainer T1 - Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery JF - Nanoscale N2 - Due to the low cutaneous bioavailability of tacrolimus (TAC), penetration enhancers are used to improve its penetration into the skin. However, poor loading capacity, non-biodegradability, toxicity, and in some cases inefficient skin penetration are challenging issues that hamper their applications for the dermal TAC delivery. Here we present poly(lactide-co-glycerol) (PLG) as a water soluble, biodegradable, and biocompatible TAC-carrier with high loading capacity (14.5% w/w for TAC) and high drug delivery efficiencies into the skin. PLG was synthesized by cationic ring-opening copolymerization of a mixture of glycidol and lactide and showed 35 nm and 300 nm average sizes in aqueous solutions before and after loading of TAC, respectively. Delivery experiments on human skin, quantified by fluorescence microscopy and LC-MS/MS, showed a high ability for PLG to deposit Nile red and TAC into the stratum corneum and viable epidermis of skin in comparison with Protopic (R) (0.03% w/w, TAC ointment). The cutaneous distribution profile of delivered TAC proved that 80%, 16%, and 4% of the cutaneous drug level was deposited in the stratum corneum, viable epidermis, and upper dermis, respectively. TAC delivered by PLG was able to efficiently decrease the IL-2 and TSLP expressions in human skin models. Taking advantage of the excellent physicochemical and biological properties of PLG, it can be used for efficient dermal TAC delivery and potential treatment of inflammatory skin diseases. Y1 - 2018 U6 - https://doi.org/10.1039/c8nr05536j SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 35 SP - 16848 EP - 16856 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Reinhardt, Julia A1 - Liersch, Stefan A1 - Abdeladhim, Mohamed Arbi A1 - Diallo, Mori A1 - Dickens, Chris A1 - Fournet, Samuel A1 - Hattermann, Fred A1 - Kabaseke, Clovis A1 - Muhumuza, Moses A1 - Mul, Marloes L. A1 - Pilz, Tobias A1 - Otto, Ilona M. A1 - Walz, Ariane T1 - Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management BT - evidence from four case studies in Africa JF - Ecology and society : a journal of integrative science for resilience and sustainability N2 - Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems. KW - Africa KW - global and regional change KW - integrated assessments KW - participatory research KW - sustainability science Y1 - 2018 U6 - https://doi.org/10.5751/ES-09728-230105 SN - 1708-3087 VL - 23 IS - 1 PB - Resilience Alliance CY - Wolfville ER - TY - JOUR A1 - Otten, Cecile A1 - Knox, Jessica A1 - Boulday, Gwenola A1 - Eymery, Mathias A1 - Haniszewski, Marta A1 - Neuenschwander, Martin A1 - Radetzki, Silke A1 - Vogt, Ingo A1 - Haehn, Kristina A1 - De Luca, Coralie A1 - Cardoso, Cecile A1 - Hamad, Sabri A1 - Igual Gil, Carla A1 - Roy, Peter A1 - Albiges-Rizo, Corinne A1 - Faurobert, Eva A1 - von Kries, Jens P. A1 - Campillos, Monica A1 - Tournier-Lasserve, Elisabeth A1 - Derry, William Brent A1 - Abdelilah-Seyfried, Salim T1 - Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations JF - EMBO molecular medicine N2 - Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients. KW - angiogenesis KW - CCM KW - ERK5 KW - indirubin-3-monoxime KW - KLF2 Y1 - 2018 U6 - https://doi.org/10.15252/emmm.201809155 SN - 1757-4676 SN - 1757-4684 VL - 10 IS - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Förster, Daniel W. A1 - Bull, James K. A1 - Lenz, Dorina A1 - Autenrieth, Marijke A1 - Paijmans, Johanna L. A. A1 - Kraus, Robert H. S. A1 - Nowak, Carsten A1 - Bayerl, Helmut A1 - Kühn, Ralph A1 - Saveljev, Alexander P. A1 - Sindicic, Magda A1 - Hofreiter, Michael A1 - Schmidt, Krzysztof A1 - Fickel, Jörns T1 - Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species JF - Molecular ecology resources N2 - Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species’ European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species. KW - CDS KW - conservation genetics KW - Eurasian lynx KW - genetic monitoring KW - hybridization capture KW - single nucleotide polymorphism Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12924 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 6 SP - 1356 EP - 1373 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Taron, Ulrike H. A1 - Lell, Moritz A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. T1 - Testing of Alignment Parameters for Ancient Samples BT - Evaluating and Optimizing Mapping Parameters for Ancient Samples Using the TAPAS Tool JF - Genes N2 - High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present ‘TAPAS’, (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material. KW - ancient DNA KW - short-read mapping KW - palaeogenomics KW - alignment sensitivity / specificity Y1 - 2018 U6 - https://doi.org/10.3390/genes9030157 SN - 2073-4425 VL - 9 IS - 3 SP - 1 EP - 12 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Taron, Ulrike H. A1 - Lell, Moritz A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. T1 - Testing of Alignment Parameters for Ancient Samples BT - Evaluating and Optimizing Mapping Parameters for Ancient Samples Using the TAPAS Tool JF - Genese N2 - High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present ‘TAPAS’, (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material. KW - ancient DNA KW - short-read mapping KW - palaeogenomics KW - paleogenomics KW - alignment sensitivity/specificity Y1 - 2018 U6 - https://doi.org/10.3390/genes9030157 SN - 2073-4425 VL - 9 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Darwall, William A1 - Bremerich, Vanessa A1 - De Wever, Aaike A1 - Dell, Anthony I. A1 - Freyhof, Joerg A1 - Gessner, Mark O. A1 - Grossart, Hans-Peter A1 - Harrison, Ian A1 - Irvine, Ken A1 - Jähnig, Sonja C. A1 - Jeschke, Jonathan M. A1 - Lee, Jessica J. A1 - Lu, Cai A1 - Lewandowska, Aleksandra M. A1 - Monaghan, Michael T. A1 - Nejstgaard, Jens C. A1 - Patricio, Harmony A1 - Schmidt-Kloiber, Astrid A1 - Stuart, Simon N. A1 - Thieme, Michele A1 - Tockner, Klement A1 - Turak, Eren A1 - Weyl, Olaf T1 - The alliance for freshwater life BT - a global call to unite efforts for freshwater biodiversity science and conservation JF - Aquatic Conservation: Marine and Freshwater Ecosystems N2 - 1. Global pressures on freshwater ecosystems are high and rising. Viewed primarily as a resource for humans, current practices of water use have led to catastrophic declines in freshwater species and the degradation of freshwater ecosystems, including their genetic and functional diversity. Approximately three-quarters of the world's inland wetlands have been lost, one-third of the 28 000 freshwater species assessed for the International Union for Conservation of Nature (IUCN) Red List are threatened with extinction, and freshwater vertebrate populations are undergoing declines that are more rapid than those of terrestrial and marine species. This global loss continues unchecked, despite the importance of freshwater ecosystems as a source of clean water, food, livelihoods, recreation, and inspiration. 2. The causes of these declines include hydrological alterations, habitat degradation and loss, overexploitation, invasive species, pollution, and the multiple impacts of climate change. Although there are policy initiatives that aim to protect freshwater life, these are rarely implemented with sufficient conviction and enforcement. Policies that focus on the development and management of fresh waters as a resource for people almost universally neglect the biodiversity that they contain. 3. Here we introduce the Alliance for Freshwater Life, a global initiative, uniting specialists in research, data synthesis, conservation, education and outreach, and policymaking. This expert network aims to provide the critical mass required for the effective representation of freshwater biodiversity at policy meetings, to develop solutions balancing the needs of development and conservation, and to better convey the important role freshwater ecosystems play in human well-being. Through this united effort we hope to reverse this tide of loss and decline in freshwater biodiversity. We introduce several short- and medium-term actions as examples for making positive change, and invite individuals, organizations, authorities, and governments to join the Alliance for Freshwater Life. KW - biodiversity KW - conservation evaluation KW - endangered species KW - fish KW - invertebrates KW - macrophytes Y1 - 2018 U6 - https://doi.org/10.1002/aqc.2958 SN - 1052-7613 SN - 1099-0755 VL - 28 IS - 4 SP - 1015 EP - 1022 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lisowska, Justyna A1 - Rödel, Claudia Jasmin A1 - Manet, Sandra A1 - Miroshnikova, Yekaterina A. A1 - Boyault, Cyril A1 - Planus, Emmanuelle A1 - De Mets, Richard A1 - Lee, Hsiao-Hui A1 - Destaing, Olivier A1 - Mertani, Hichem A1 - Boulday, Gwenola A1 - Tournier-Lasserve, Elisabeth A1 - Balland, Martial A1 - Abdelilah-Seyfried, Salim A1 - Albiges-Rizo, Corinne A1 - Faurobert, Eva T1 - The CCM1-CCM2 complex controls complementary functions of ROCK1 and ROCK2 that are required for endothelial integrity JF - Journal of cell science N2 - Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease. KW - CCM KW - ROCK KW - Endothelial integrity KW - Mechanotransduction Y1 - 2018 U6 - https://doi.org/10.1242/jcs.216093 SN - 0021-9533 SN - 1477-9137 VL - 131 IS - 15 PB - Company biologists LTD CY - Cambridge ER - TY - JOUR A1 - van Kleunen, Mark A1 - Essl, Franz A1 - Pergl, Jan A1 - Brundu, Giuseppe A1 - Carboni, Marta A1 - Dullinger, Stefan A1 - Early, Regan A1 - Gonzalez-Moreno, Pablo A1 - Groom, Quentin J. M. A1 - Hulme, Philip E. A1 - Kueffer, Christoph A1 - Kühn, Ingolf A1 - Maguas, Cristina A1 - Maurel, Noelie A1 - Novoa, Ana A1 - Parepa, Madalin A1 - Pysek, Petr A1 - Seebens, Hanno A1 - Tanner, Rob A1 - Touza, Julia A1 - Verbrugge, Laura A1 - Weber, Ewald A1 - Dawson, Wayne A1 - Kreft, Holger A1 - Weigelt, Patrick A1 - Winter, Marten A1 - Klonner, Guenther A1 - Talluto, Matthew V. A1 - Dehnen-Schmutz, Katharina T1 - The changing role of ornamental horticulture in alien plant invasions JF - Biological reviews N2 - The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions. KW - botanical gardens KW - climate change KW - horticulture KW - naturalised plants KW - ornamental plants KW - pathways KW - plant invasions KW - plant nurseries KW - trade KW - weeds Y1 - 2018 U6 - https://doi.org/10.1111/brv.12402 SN - 1464-7931 SN - 1469-185X VL - 93 IS - 3 SP - 1421 EP - 1437 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Folkertsma, Remco A1 - Westbury, Michael V. A1 - Eccard, Jana A1 - Hofreiter, Michael T1 - The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae) JF - Mitochondrial DNA Part B N2 - The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. In this study, the complete mitochondrial genome of M. arvalis was recovered using shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic analyses using the sequence of 21 arvicoline species place the common vole as a sister species to the East European vole (Microtus levis), but as opposed to previous results we find no support for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as the genus Lasiopodomys, found within the Microtus genus. KW - Microtus arvalis KW - Arvicolinae KW - mitochondrial genome KW - common vole KW - phylogeny Y1 - 2018 U6 - https://doi.org/10.1080/23802359.2018.1457994 SN - 2380-2359 VL - 3 IS - 1 SP - 446 EP - 447 ER - TY - GEN A1 - Kleuser, Burkhard T1 - The enigma of sphingolipids in health and disease T2 - International journal of molecular sciences Y1 - 2018 U6 - https://doi.org/10.3390/ijms19103126 SN - 1422-0067 VL - 19 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mazza, Valeria A1 - Eccard, Jana A1 - Zaccaroni, Marco A1 - Jacob, Jens A1 - Dammhahn, Melanie T1 - The fast and the flexible BT - cognitive style drives individual variation in cognition in a small mammal JF - Animal behaviour KW - animal personality KW - associative learning KW - behavioural syndrome KW - fast and slow learner KW - individual differences KW - Myodes glareolus KW - rodent KW - speed-accuracy trade-off KW - temperament Y1 - 2018 U6 - https://doi.org/10.1016/j.anbehav.2018.01.011 SN - 0003-3472 SN - 1095-8282 VL - 137 SP - 119 EP - 132 PB - Elsevier CY - London ER - TY - JOUR A1 - Schedina, Ina Maria A1 - Groth, Detlef A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna JF - BMC Genomics N2 - Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40% of the transcripts for each species were functionally annotated and about 70% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species. KW - Differential gene expression KW - Gynogenesis KW - Hybrid speciation KW - Meiosis KW - Poecilia formosa KW - Poecilia latipinna KW - Poecilia mexicana Y1 - 2018 U6 - https://doi.org/10.1186/s12864-017-4382-2 SN - 1471-2164 VL - 19 IS - 12 SP - 1 EP - 18 PB - BioMed Central CY - London ER - TY - JOUR A1 - Synodinos, Alexis D. A1 - Tietjen, Britta A1 - Lohmann, Dirk A1 - Jeltsch, Florian T1 - The impact of inter-annual rainfall variability on African savannas changes with mean rainfall JF - Journal of theoretical biology N2 - Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520–780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580–780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during ‘dry’ extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. KW - Rainfall variability KW - Savanna-grassland bistability KW - Stochastic differential equations KW - Coexistence mechanisms KW - Fire Y1 - 2017 U6 - https://doi.org/10.1016/j.jtbi.2017.10.019 SN - 0022-5193 SN - 1095-8541 VL - 437 SP - 92 EP - 100 PB - Elsevier Ltd. CY - London ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - The influence of pH on the molecular degradation mechanism of PLGA JF - MRS Advances N2 - Poly[(rac-lactide)-co-glycolide] (PLGA) is used in medicine to provide mechanical support for healing tissue or as matrix for controlled drug release. The properties of this copolymer depend on the evolution of the molecular weight of the material during degradation. which is determined by the kinetics of the cleavage of hydrolysable bonds. The generally accepted description of the degradation of PLGA is a random fragmentation that is autocatalyzed by the accumulation of acidic fragments inside the bulk material. Since mechanistic studies with lactide oligomers have concluded a chain-end scission mechanism and monolayer degradation experiments with polylactide found no accelerated degradation at lower pH, we hypothesize that the impact of acidic fragments on the molecular degradation kinetics of PLGA is overestimated By means of the Langmuir monolayer degradation technique. the molecular degradation kinetics of PLGA at different pH could be determined. Protons did not catalyze the degradation of PLGA. The molecular mechanism at neutral pH and low pH is a combination of random and chainend-cut events, while the degradation under strongly alkaline conditions is determined by rapid chainend cuts. We suggest that the degradation of bulk PLGA is not catalyzed by the acidic degradation products. Instead. increased concentration of small fragments leads to accelerated mass loss via fast chain-end cut events. In the future, we aim to substantiate the proposed molecular degradation mechanism of PLGA with interfacial rheology. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.602 SN - 2059-8521 VL - 3 IS - 63 SP - 3883 EP - 3889 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Paolini, Alessio A1 - Abdelilah-Seyfried, Salim T1 - The mechanobiology of zebrafish cardiac valve leaflet formation JF - Current opinion in cell biology : review articles, recommended reading, bibliography of the world literature N2 - Over a lifetime, rhythmic contractions of the heart provide a continuous flow of blood throughout the body. An essential morphogenetic process during cardiac development which ensures unidirectional blood flow is the formation of cardiac valves. These structures are largely composed of extracellular matrix and of endocardial cells, a specialized population of endothelial cells that line the interior of the heart and that are subjected to changing hemodynamic forces. Recent studies have significantly expanded our understanding of this morphogenetic process. They highlight the importance of the mechanobiology of cardiac valve formation and show how biophysical forces due to blood flow drive biochemical and electrical signaling required for the differentiation of cells to produce cardiac valves. Y1 - 2018 U6 - https://doi.org/10.1016/j.ceb.2018.05.007 SN - 0955-0674 SN - 1879-0410 VL - 55 SP - 52 EP - 58 PB - Elsevier CY - London ER - TY - THES A1 - Pham, Phuong Anh T1 - The metabolic significance of the NAD+ salvage pathway and the alternative pathway of respiration in Arabidopsis thaliana Y1 - 2018 ER - TY - JOUR A1 - Montiglio, Pierre-Olivier A1 - Dammhahn, Melanie A1 - Messier, Gabrielle Dubuc A1 - Reale, Denis T1 - The pace-of-life syndrome revisited BT - the role of ecological conditions and natural history on the slow-fast continuum JF - Behavioral ecology and sociobiology N2 - The pace-of-life syndrome (i.e., POLS) hypothesis posits that behavioral and physiological traits mediate the trade-off between current and future reproduction. This hypothesis predicts that life history, behavioral, and physiological traits will covary under clearly defined conditions. Empirical tests are equivocal and suggest that the conditions necessary for the POLS to emerge are not always met. We nuance and expand the POLS hypothesis to consider alternative relationships among behavior, physiology, and life history. These relationships will vary with the nature of predation risk, the challenges posed by resource acquisition, and the energy management strategies of organisms. We also discuss how the plastic response of behavior, physiology, and life history to changes in ecological conditions and variation in resource acquisition among individuals determine our ability to detect a fast-slow pace of life in the first place or associations among these traits. Future empirical studies will provide most insights on the coevolution among behavior, physiology, and life history by investigating these traits both at the genetic and phenotypic levels in varying types of predation regimes and levels of resource abundance. KW - Behavior KW - Immunity KW - Life history strategies KW - Metabolism KW - Personality KW - Trait interaction Y1 - 2018 U6 - https://doi.org/10.1007/s00265-018-2526-2 SN - 0340-5443 SN - 1432-0762 VL - 72 IS - 7 PB - Springer CY - New York ER - TY - THES A1 - de Vera, Jean-Pierre Paul T1 - The relevance of ecophysiology in astrobiology and planetary research T1 - Die Relevanz der Ökophysiologie in der Astrobiologie und Planetenforschung BT - implications for the characterization of the habitability of planets and biosignatures BT - Implikationen für die Charakterisierung der Habitabilität von Planeten und Biosignaturen N2 - Eco-physiological processes are expressing the interaction of organisms within an environmental context of their habitat and their degree of adaptation, level of resistance as well as the limits of life in a changing environment. The present study focuses on observations achieved by methods used in this scientific discipline of “Ecophysiology” and to enlarge the scientific context in a broader range of understanding with universal character. The present eco-physiological work is building the basis for classifying and exploring the degree of habitability of another planet like Mars by a bio-driven experimentally approach. It offers also new ways of identifying key-molecules which are playing a specific role in physiological processes of tested organisms to serve as well as potential biosignatures in future space exploration missions with the goal to search for life. This has important implications for the new emerging scientific field of Astrobiology. Astrobiology addresses the study of the origin, evolution, distribution and future of life in the universe. The three fundamental questions which are hidden behind this definition are: how does life begin and evolve? Is there life beyond Earth and, if so, how can we detect it? What is the future of life on Earth and in the universe? It means that this multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System. It comprises the search for the evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System like the icy moons of the Jovian and Saturnian system, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space. For this purpose an integrated research strategy was applied, which connects field research, laboratory research allowing planetary simulation experiments with investigation enterprises performed in space (particularly performed in the low Earth Orbit. N2 - Ökophysiologische Prozesse sind durch Interaktionen der Organismen mit der Umwelt in ihrem Habitat, durch ihren Grad der Anpassungsfähigkeit, dem Grad der Resistenz als auch durch die Begrenzungen des Lebens in einer sich verändernden Umwelt gekennzeichnet. Die hier vorliegende Studie konzentriert sich auf die Ergebnisse, die durch die Anwendung der Methoden aus der wissenschaftlichen Disziplin „Ökophysiologie“ erzielt wurden und erlaubt eine Erweiterung dieses wissenschaftlichen Kontextes mit mehr universalem Charakter. Die vorliegende Ökophysiologische Arbeit bildet die Grundlage für eine Klassifizierung und Erkundung des Grades der Habitabilität eines anderen Planeten wie dem Mars durch experimentelle Ansätze. Sie zeigt auch neue Wege für die Identifizierung von Schlüsselmolekülen, die eine besondere Rolle in physiologischen Prozessen getesteter Organismen spielt, um auch als mögliche Biosignaturen für zukünftige Weltraumerkundungsmissionen mit dem Ziel der Suche nach Leben im All zu dienen. Das wirkt sich auch im besonderen Maße auf das sich neu ausbildende wissenschaftliche Feld der Astrobiologie aus. Die Astrobiologie befaßt sich mit der Erforschung des Ursprungs, der Entwicklung, der Verbreitung und Zukunft des Lebens im Universum. Die drei grundlegenden Fragen, die sich hinter dieser Definition verbergen, sind: wie entstand und entwickelte sich das Leben? Gibt es Leben außerhalb der Erde, und falls ja, wie können wir es nachweisen? Was ist die Zukunft des Lebens auf der Erde und im Universum? Das bedeutet, dass dieses viele Disziplinen umfassende Arbeitsfeld die Suche nach einer anderen habitablen Umwelt in unserem Sonnensystem und anderen habitablen Planeten außerhalb unseres Sonnensystems, die Suche nach der Evidenz präbiotischer Chemie und Leben auf dem Mars und anderen Himmelskörpern in unserem Sonnensystem, wie beispielsweise auf den Eismonden des Jupiter- und Saturnsystems, Labor- und Feldforschung bis hin zu den Ursprüngen und der Evolution des Lebens auf der Erde beinhaltet und Untersuchungen über das Potential von Leben, sich den Herausforderungen auf der Erde und im All anzupassen, mit einschließt. Zu diesem Zweck wurde eine ganzheitliche Forschungsstrategie angewendet, welche die Feldforschung, Laborforschung mit Planetensimulations-Experimenten und die Forschung im All(insbesondere die Untersuchungen im nahen Erdorbit) miteinander verbindet. KW - astrobiology KW - eco-physiology KW - planetary simulation KW - biosignatures KW - habitability KW - Astrobiologie KW - Ökophysiologie KW - Planetensimulation KW - Biosignaturen KW - Habitabilität Y1 - 2018 ER - TY - JOUR A1 - Guo, Tong A1 - Weise, Hanna A1 - Fiedler, Sebastian A1 - Lohmann, Dirk A1 - Tietjen, Britta T1 - The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - 1. Savanna systems exhibit a high plant functional diversity. While aridity and livestock grazing intensity have been widely discussed as drivers of savanna vegetation composition, physical soil properties have received less attention. Since savannas can show local differences in soil properties, these might act as environmental filters and affect plant diversity and ecosystem functioning at the patch scale. However, research on the link between savanna vegetation diversity and ecosystem function is widely missing. 2. In this study, we aim at understanding the impact of local heterogeneity in soil conditions on plant diversity and on ecosystem functions. For this, we used the ecohydrological savanna model EcoHyD. The model simulates the fate of multiple plant functional types and their interactions with local biotic and abiotic conditions. We applied the model to a set of different landscapes under a wide range of livestock grazing and precipitation scenarios to assess the impact of local heterogeneity in soil conditions on the composition and diversity of plant functional types and on ecosystem functions. 3. Comparisons between homogeneous and heterogeneous landscapes revealed that landscape soil heterogeneity allowed for a higher functional diversity of vegetation under conditions of high competition, i.e. scenarios of low grazing stress. However, landscape heterogeneity did not have this effect under low grazing stress in combination with high mean annual precipitation. Further, landscape heterogeneity led to a higher community biomass, especially for lower rainfall conditions, but also dependent on grazing stress. Total transpiration of the plant community decreased in heterogeneous landscapes under arid conditions. 4. This study highlights that local soil conditions interact with precipitation and grazing in driving savanna vegetation. It clearly shows that vegetation diversity and resulting ecosystem functioning can be driven by landscape heterogeneity. We therefore suggest that future research on ecosystem functioning of savanna systems should focus on the links between local environmental conditions via plant functional diversity to ecosystem functioning. KW - Plant functional type KW - Trait diversity KW - Ecosystem functioning KW - Plant coexistence KW - Soil texture KW - Ecohydrological model Y1 - 2018 U6 - https://doi.org/10.1016/j.ecolmodel.2018.04.009 SN - 0304-3800 SN - 1872-7026 VL - 379 SP - 1 EP - 9 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Radloff, Katrin T1 - The role of the fatty acid profile and its modulation by cytokines in the systemic inflammation in cancer cachexia Y1 - 2018 ER - TY - JOUR A1 - Bents, Dominik A1 - Groth, Detlef A1 - Satake, Takashi T1 - The secular trend and network effects on height of male Japanese students from 1955 to 2015 JF - Journal of biological and clinical anthropology JF - Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft für Anthropologie N2 - Introduction: Body height is influenced by biological factors such as genetics, nutrition and health, but also by the social network, and environmental and economical factors. During centuries, the Japanese society has developed on islands. This setting provides ideal natural conditions for studying the influence of social networks on human height. Material and methods: We investigated body height of male Japanese students aged 17.5 years obtained in 47 prefectures, from the Japanese school health survey of the years 1955, 1975, 1995, and 2015. Results: Japanese students increased in height from 163.23 cm in 1955 to 170.84 cm in 1995, with no further increase thereafter (170.63 cm in 2015). Students living in neighboring prefectures were similar in height. The correlation of height between neighboring prefectures ranged between r = 0.79 and r = 0.49 among first degree neighbors, between r = 0.49 and r = 0.21 among second degree neighbors and dropped to insignificance among third degree neighbors indicating psychosocial effects of the community on body height. Tall stature and short stature prefectures did not remain tall or short throughout history. Autocorrelations of height within the same prefectures decreased from the 20 years periods of 1955-1975, 1975-1995 and 1995-2015 (r = 0.52, r = 0.61, r = 0.63, respectively) to the 40 years periods of 1955-1995 and 1975-2015 (r = 0.49, r = 0.52), down to the 60 years period of 1955-2015 (r = 0.27), indicating significant volatility of height. Conclusion: Body height of 17.5 years old Japanese students increased since 1955. Body height depended on height of the neighboring prefecture, but was volatile with decreasing autocorrelation during a period of 60 years. KW - body height KW - community effect KW - neighbor correlation KW - Japan Y1 - 2018 U6 - https://doi.org/10.1127/anthranz/2018/0838 SN - 0003-5548 VL - 74 IS - 5 SP - 423 EP - 429 PB - Schweizerbart CY - Stuttgart ER - TY - JOUR A1 - Börnke, Frederik A1 - Rocksch, Thorsten T1 - Thigmomorphogenesis BT - Control of plant growth by mechanical stimulation JF - Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science N2 - Controlled regulation of plant growth is a general prerequisite for the production of marketable ornamental plants. Consumers as well as retailers prefer stronger, more compact plants with greener leaves as these not only better meet a certain desired visual quality but also allow for a maximization of production per unit area as well as facilitation of packaging and transport. The same applies for the production of young vegetable plants. Special attention is paid to solid, compact and resilient plants that survive transport and planting without any problems. During the last decades plant growth control has mainly been achieved through the application of chemical plant growth regulators that generally interfere with the function of growth regulating hormones. However, there is an increasing demand to replace chemical treatments by other means such as the modulation of growth conditions, including temperature, light and fertilization. Alternatively, the application of mechanical stimulation has been shown to induce plant responses that yield some of the commercially relevant phenotypes including increased compactness, higher girth, darker leaves and a delay in flowering. The ability of plants to sense and respond to mechanical stimuli is an adaptive trait associated with increased fitness in many environmental settings. Mechanical stimulation in nature occurs e.g. through wind, rain, neighboring plants or predatory animals and induces a range of morphogenic responses that have been summarized under the term thigmomorphogenesis. We are only just about to begin to understand the molecular mechanisms underlying mechanosensing and the associated morphogenic changes in plants. However, a number of examples suggest that mechanical stimulation applied in a greenhouse setting can be used to alter plant growth in order to produce marketable plants. In this review will briefly summarize the current knowledge concerning the biological principles of thigmomorphogenesis and discuss the potential of mechanical growth regulation in commercial plant production especially with respect to organic horticulture. KW - Alternative growth regulators KW - Ornamental plants KW - Vegetable KW - Plant growth regulation KW - Mechanical stimulation KW - Mechanically-induced stress KW - Mechanosensing KW - Mechanoperception Y1 - 2018 U6 - https://doi.org/10.1016/j.scienta.2018.02.059 SN - 0304-4238 SN - 1879-1018 VL - 234 SP - 344 EP - 353 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Farhan, Muhammad A1 - Rudolph, Tobias A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Torsional Fiber Actuators from Shape-memory Polymer JF - MRS Advances N2 - Humanoid robots, prosthetic limbs and exoskeletons require soft actuators to perform their primary function, which is controlled movement. In this wont we explored whether crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) fibers, with different vinyl acetate (VA) content can serve as torsional fiber actuators. exhibiting temperature controlled reversible rotational changes. Broad melting transitions ranging from 50 to 90 degrees C for cPEVA18-165 or from 40 to 80 degrees C for cPEVA28-165 fibers in combination with complete crystallization at temperatures around 10 degrees C make them suitable actuating materials with adjustable actuation temperature ranges between 10 and 70 degrees C during repetitive cooling and heating. The obtained fibers exhibited a circular cross section with diameters around 0.4 +/- 0.1 mm, while a length of 4 cm was employed for the investigation of reversible rotational actuation after programming by twist insertion using 30 complete rotations at a temperature above melting transition. Repetitive heating and cooling between 10 to 60 degrees C or 70 degrees C of one-end-tethered programmed fibers revealed reversible rotations and torsional force. During cooling 3 +/- 1 complete rotations (Delta theta(r) = + 1080 +/- 360 degrees) in twisting direction were observed, while 4 +/- 1 turns in the opposite direction (Delta theta(r) = - 1440 +/- 1360 degrees) were found during heating. Such torsional fiber actuators, which are capable of approximately one rotation per cm fiber length, can serve as miniaturized rotary motors to provide rotational actuation in futuristic humanoid robots. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.621 SN - 2059-8521 VL - 3 IS - 63 SP - 3861 EP - 3868 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Hilonga, S. A1 - Otieno, Joseph N. A1 - Ghorbani, Abdolbaset A1 - Pereus, D. A1 - Kocyan, Alexander A1 - de Boer, H. T1 - Trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation JF - South African journal of botany : an international interdisciplinary journal for botanical sciences N2 - In Tanzania, about 10% of the reported 12,000 species of higher plants are estimated to be used as medicine for treating different human health problems. Most of the medicinal plants are collected from wild populations, but their trade and quantities are not properly recorded. Monitoring of trade in wild-harvested medicinal plants is challenging asmostmaterials are traded in various processed forms and most vendors practice informal trade. Yet, monitoring is important for conservation and sustainability. This study aims to assess the trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation. Semi-structured interviews were used to record frequency, volume of trade and uses of wild-harvested medicinal plants in Arusha, Dodoma, Mbeya, Morogoro and Mwanza regions. Relative frequency of citation and informant consensus factor were calculated for each species and mentioned use category. Forty vendors were interviewed, and 400 out of 522 collected market samples were identified to 162 species from herbarium-deposited collections. Plant parts with the largest volume of trade were roots (3818 kg), bark (1163 kg) and leaves (492 kg). The most frequently traded species were Zanthoxylum chalybaeum Engl., Albizia anthelmintica Brongn., Zanha africana (Radlk.) Exell, Warburgia stuhlmannii and Vachellia nilotica (L.) P.J.H. Hurter & Mabb. The most popular medicinal plants in the markets are connected to local health problems including malaria, libido disorders or infertility. The high diversity of commercialized plants used for medicinal issues mainly relies on wild stock for local consumption and international trade, and this has significant implications for conservation concerns. (C) 2018 SAAB. Published by Elsevier B.V. All rights reserved. KW - Ethnobotany KW - Medicinal plants KW - Tanzania KW - Trade chain Y1 - 2018 U6 - https://doi.org/10.1016/j.sajb.2018.08.012 SN - 0254-6299 SN - 1727-9321 VL - 122 SP - 214 EP - 224 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kamranfar, Iman A1 - Xue, Gang-Ping A1 - Tohge, Takayuki A1 - Sedaghatmehr, Mastoureh A1 - Fernie, Alisdair R. A1 - Balazadeh, Salma A1 - Mueller-Roeber, Bernd T1 - Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence JF - New phytologist : international journal of plant science N2 - Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy. KW - Arabidopsis KW - fatty acid KW - primary metabolism KW - protein and amino acid degradation KW - respiration KW - senescence Y1 - 2018 U6 - https://doi.org/10.1111/nph.15127 SN - 0028-646X SN - 1469-8137 VL - 218 IS - 4 SP - 1543 EP - 1557 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schulze-Makuch, Dirk A1 - Wagner, Dirk A1 - Kounaves, Samuel P. A1 - Mangelsdorf, Kai A1 - Devine, Kevin G. A1 - de Vera, Jean-Pierre A1 - Schmitt-Kopplin, Philippe A1 - Grossart, Hans-Peter A1 - Parro, Victor A1 - Kaupenjohann, Martin A1 - Galy, Albert A1 - Schneider, Beate A1 - Airo, Alessandro A1 - Froesler, Jan A1 - Davila, Alfonso F. A1 - Arens, Felix L. A1 - Caceres, Luis A1 - Cornejo, Francisco Solis A1 - Carrizo, Daniel A1 - Dartnell, Lewis A1 - DiRuggiero, Jocelyne A1 - Flury, Markus A1 - Ganzert, Lars A1 - Gessner, Mark O. A1 - Grathwohl, Peter A1 - Guan, Lisa A1 - Heinz, Jacob A1 - Hess, Matthias A1 - Keppler, Frank A1 - Maus, Deborah A1 - McKay, Christopher P. A1 - Meckenstock, Rainer U. A1 - Montgomery, Wren A1 - Oberlin, Elizabeth A. A1 - Probst, Alexander J. A1 - Saenz, Johan S. A1 - Sattler, Tobias A1 - Schirmack, Janosch A1 - Sephton, Mark A. A1 - Schloter, Michael A1 - Uhl, Jenny A1 - Valenzuela, Bernardita A1 - Vestergaard, Gisle A1 - Woermer, Lars A1 - Zamorano, Pedro T1 - Transitory microbial habitat in the hyperarid Atacama Desert JF - Proceedings of the National Academy of Sciences of the United States of America KW - habitat KW - aridity KW - microbial activity KW - biomarker KW - Mars Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1714341115 SN - 0027-8424 VL - 115 IS - 11 SP - 2670 EP - 2675 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Mitrova, Biljana A1 - Tadjoung Waffo, Armel Franklin A1 - Kaufmann, Paul A1 - Iobbi-Nivol, Chantal A1 - Leimkühler, Silke A1 - Wollenberger, Ulla T1 - Trimethylamine N-Oxide Electrochemical Biosensor with a Chimeric Enzyme JF - ChemElectroChem N2 - For the first time, an enzyme-based electrochemical biosensor system for determination of trimethylamine N-oxide (TMAO) is described. It employs an active chimeric variant of TorA in combination with an enzymatically deoxygenating system and a low-potential mediator for effective regeneration of the enzyme and cathodic current generation. TMAO reductase (TorA) is a molybdoenzyme found in marine and most enterobacteria that specifically catalyzes the reduction of TMAO to trimethylamine (TMA). The chimeric TorA, named TorA-FDH, corresponds to the apoform of TorA from Escherichia coli reconstituted with the molybdenum cofactor from formate dehydrogenase (FDH). Each enzyme, TorA and TorA-FDH, was immobilized on the surface of a carbon electrode and protected with a dialysis membrane. The biosensor operates at an applied potential of -0.8V [vs. Ag/AgCl (1M KCl)] under ambient air conditions thanks to an additional enzymatic O-2-scavenger system. A comparison between the two enzymatic sensors revealed a much higher sensitivity for the biosensor with immobilized TorA-FDH. This biosensor exhibits a sensitivity of 14.16nA/M TMAO in a useful measuring range of 2-110M with a detection limit of LOD=2.96nM (S/N=3), and was similar for TMAO in buffer and in spiked serum samples. With a response time of 16 +/- 2 s, the biosensor is stable over prolonged daily measurements (n=20). This electrochemical biosensor provides suitable applications in detecting TMAO levels in human serum. KW - trimethylamine N-oxide (TMAO) KW - TMAO reductase KW - chimeric enzyme KW - molybdoenzyme KW - electrochemical biosensor Y1 - 2018 U6 - https://doi.org/10.1002/celc.201801422 SN - 2196-0216 VL - 6 IS - 6 SP - 1732 EP - 1737 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Franco-Obregon, Alfredo A1 - Cambria, Elena A1 - Greutert, Helen A1 - Wernas, Timon A1 - Hitzl, Wolfgang A1 - Egli, Marcel A1 - Sekiguchi, Miho A1 - Boos, Norbert A1 - Hausmann, Oliver A1 - Ferguson, Stephen J. A1 - Kobayashi, Hiroshi A1 - Würtz-Kozak, Karin T1 - TRPC6 in simulated microgravity of intervertebral disc cells JF - European Spine Journal N2 - Purpose Prolonged bed rest and microgravity in space cause intervertebral disc (IVD) degeneration. However, the underlying molecular mechanisms are not completely understood. Transient receptor potential canonical (TRPC) channels are implicated in mechanosensing of several tissues, but are poorly explored in IVDs. Methods Primary human IVD cells from surgical biopsies composed of both annulus fibrosus and nucleus pulposus (passage 1-2) were exposed to simulated microgravity and to the TRPC channel inhibitor SKF-96365 (SKF) for up to 5days. Proliferative capacity, cell cycle distribution, senescence and TRPC channel expression were analyzed. Results Both simulated microgravity and TRPC channel antagonism reduced the proliferative capacity of IVD cells and induced senescence. While significant changes in cell cycle distributions (reduction in G1 and accumulation in G2/M) were observed upon SKF treatment, the effect was small upon 3days of simulated microgravity. Finally, downregulation of TRPC6 was shown under simulated microgravity. Conclusions Simulated microgravity and TRPC channel inhibition both led to reduced proliferation and increased senescence. Furthermore, simulated microgravity reduced TRPC6 expression. IVD cell senescence and mechanotransduction may hence potentially be regulated by TRPC6 expression. This study thus reveals promising targets for future studies. KW - Intervertebral disc KW - Simulated microgravity KW - Senescence KW - TRP channels KW - Mechanotransduction KW - Gene expression Y1 - 2018 U6 - https://doi.org/10.1007/s00586-018-5688-8 SN - 0940-6719 SN - 1432-0932 VL - 27 IS - 10 SP - 2621 EP - 2630 PB - Springer CY - New York ER - TY - JOUR A1 - Lehmann, Andreas A1 - Eccard, Jana A1 - Scheffler, Christiane A1 - Kurvers, Ralf H. J. M. A1 - Dammhahn, Melanie T1 - Under pressure: human adolescents express a pace-of-life syndrome JF - Behavioral ecology and sociobiology N2 - The pace-of-life syndrome (POLS) hypothesis posits that life-history characteristics, among individual differences in behavior, and physiological traits have coevolved in response to environmental conditions. This hypothesis has generated much research interest because it provides testable predictions concerning the association between the slow-fast life-history continuum and behavioral and physiological traits. Although humans are among the most well-studied species and similar concepts exist in the human literature, the POLS hypothesis has not yet been directly applied to humans. Therefore, we aimed to (i) test predicted relationships between life history, physiology, and behavior in a human population and (ii) better integrate the POLS hypothesis with other similar concepts. Using data of a representative sample of German adolescents, we extracted maturation status for girls (menarche, n = 791) and boys (voice break, n = 486), and a set of health-related risk-taking behaviors and cardiovascular parameters. Maturation status and health-related risk behavior as well as maturation status and cardiovascular physiology covaried in boys and girls. Fast maturing boys and girls had higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing boys and girls, supporting general predictions of the POLS hypothesis. Only some physiological and behavioral traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently. Moreover, some aspects of POLS were sex-specific. Overall, the POLS hypothesis shares many similarities with other conceptual frameworks from the human literature and these concepts should be united more thoroughly to stimulate the study of POLS in humans and other animals. Significance statement The pace-of-life syndrome (POLS) hypothesis suggests that life history, behavioral and physiological traits have coevolved in response to environmental conditions. Here, we tested this link in a representative sample of German adolescents, using data from a large health survey (the KIGGs study) containing information on individual age and state of maturity for girls and boys, and a set of health-related risk-taking behaviors and cardiovascular parameters. We found that fast maturing girls and boys had overall higher blood pressure and expressed more risk-taking behavior than same-aged slow maturing girls and boys. Only some behavioral and physiological traits were positively correlated, suggesting that behavioral and physiological traits might mediate life-history trade-offs differently and not necessarily form a syndrome. Our results demonstrate a general link between life history, physiological and behavioral traits in humans, while simultaneously highlighting a more complex and rich set of relationships, since not all relationships followed predictions by the POLS hypothesis. KW - Adolescence KW - Humans KW - Life history KW - Menarche KW - Physiology KW - Risk taking Y1 - 2018 U6 - https://doi.org/10.1007/s00265-018-2465-y SN - 0340-5443 SN - 1432-0762 VL - 72 IS - 3 PB - Springer CY - New York ER - TY - THES A1 - Zhang, Yunming T1 - Understanding the functional specialization of poly(A) polymerases in Arabidopsis thaliana Y1 - 2018 ER - TY - JOUR A1 - Knebel, Constanze A1 - Neeb, Jannika A1 - Zahn, Elisabeth A1 - Schmidt, Flavia A1 - Carazo, Alejandro A1 - Holas, Ondej A1 - Pavek, Petr A1 - Püschel, Gerhard Paul A1 - Zanger, Ulrich M. A1 - Süssmuth, Roderich A1 - Lampen, Alfonso A1 - Marx-Stoelting, Philip A1 - Braeuning, Albert T1 - Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells JF - Toxicological sciences N2 - Analyzing mixture toxicity requires an in-depth understanding of the mechanisms of action of its individual components. Substances with the same target organ, same toxic effect and same mode of action (MoA) are believed to cause additive effects, whereas substances with different MoAs are assumed to act independently. Here, we tested 2 triazole fungicides, propiconazole, and tebuconazole (Te), for individual and combined effects on liver toxicity-related endpoints. Both triazoles are proposed to belong to the same cumulative assessment group and are therefore thought to display similar and additive behavior. Our data show that Te is an antagonist of the constitutive androstane receptor (CAR) in rats and humans, while propiconazole is an agonist of this receptor. Both substances activate the pregnane X-receptor (PXR) and further induce mRNA expression of CYP3A4. CYP3A4 enzyme activity, however, is inhibited by propiconazole. For common targets of PXR and CAR, the activation of PXR by Te overrides CAR inhibition. In summary, propiconazole and Te affect different hepatotoxicity-relevant cellular targets and, depending on the individual endpoint analyzed, act via similar or dissimilar mechanisms. The use of molecular data based on research in human cell systems extends the picture to refine cumulative assessment group grouping and substantially contributes to the understanding of mixture effects of chemicals in biological systems. KW - triazole fungicides KW - constitutive androstane receptor KW - pregnane X-receptor KW - enzyme induction KW - liver toxicity KW - mixtures Y1 - 2018 U6 - https://doi.org/10.1093/toxsci/kfy026 SN - 1096-6080 SN - 1096-0929 VL - 163 IS - 1 SP - 170 EP - 181 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Pancrace, Claire A1 - Ishida, Keishi A1 - Briand, Enora A1 - Pichi, Douglas Gatte A1 - Weiz, Annika R. A1 - Guljarmow, Arthur A1 - Scalvenzi, Thibault A1 - Sassoon, Nathalie A1 - Hertweck, Christian A1 - Dittmann, Elke A1 - Gugger, Muriel T1 - Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cytotoxic Aeruginoguanidines and Microguanidines JF - ACS chemical biology N2 - The cyanobacterial genus Microcystis is known to produce an elaborate array of structurally unique and biologically active natural products, including hazardous cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of peptides featuring a trisubstituted benzene unit and farnesylated arginine derivatives. In this study, we aimed at assigning these compounds to a biosynthetic gene cluster by utilizing biosynthetic attributes deduced from public genomes of Microcystis and the sporadic distribution of the metabolite in axenic strains of the Pasteur Culture Collection of Cyanobacteria. By integrating genome mining with untargeted metabolomics using liquid chromatography with mass spectrometry, we linked aeruginoguanidine (AGD) to a nonribosomal peptide synthetase gene cluster and coassigned a significantly smaller product to this pathway, microguanidine (MGD), previously only reported from two Microcystis blooms. Further, a new intermediate class of compounds named microguanidine amides was uncovered, thereby further enlarging this compound family. The comparison of structurally divergent AGDs and MGDs reveals an outstanding versatility of this biosynthetic pathway and provides insights into the assembly of the two compound subfamilies. Strikingly, aeruginoguanidines and microguanidines were found to be as widespread as the hepatotoxic microcystins, but the occurrence of both toxin families appeared to be mutually exclusive. Y1 - 2018 U6 - https://doi.org/10.1021/acschembio.8b00918 SN - 1554-8929 SN - 1554-8937 VL - 14 IS - 1 SP - 67 EP - 75 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - de Abreu e Lima, Francisco Anastacio A1 - Li, Kun A1 - Wen, Weiwei A1 - Yan, Jianbing A1 - Nikoloski, Zoran A1 - Willmitzer, Lothar A1 - Brotman, Yariv T1 - Unraveling lipid metabolism in maize with time-resolved multi-omics data JF - The plant journal N2 - Maize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improving the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets from leaves of B73 and the high-oil line By804 in two distinct time-series experiments. The integrative analysis based on high-dimensional regularized regression yielded lipid-transcript associations indirectly validated by Gene Ontology and promoter motif enrichment analyses. The co-localization of lipid-transcript associations using the genetic mapping of lipid traits in leaves and seedlings of a B73 x By804 recombinant inbred line population uncovered 323 genes involved in the metabolism of phospholipids, galactolipids, sulfolipids and glycerolipids. The resulting association network further supported the involvement of 50 gene candidates in modulating levels of representatives from multiple acyl-lipid classes. Therefore, the proposed approach provides high-confidence candidates for experimental testing in maize and model plant species. KW - Zea mays KW - lipid metabolism KW - omics KW - GFLASSO KW - QTL Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13833 SN - 0960-7412 SN - 1365-313X VL - 93 IS - 6 SP - 1102 EP - 1115 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Liu, Qinsong A1 - Vain, Thomas A1 - Viotti, Corrado A1 - Doyle, Siamsa M. A1 - Tarkowska, Danuse A1 - Novak, Ondrej A1 - Zipfel, Cyril A1 - Sitbon, Folke A1 - Robert, Stephanie A1 - Hofius, Daniel T1 - Vacuole integrity maintained by DUF300 proteins is required for brassinosteroid signaling regulation JF - Molecular plant N2 - Brassinosteroid (BR) hormone signaling controls multiple processes during plant growth and development and is initiated at the plasma membrane through the receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) together with co-receptors such as BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). BRI1 abundance is regulated by endosomal recycling and vacuolar targeting, but the role of vacuole-related proteins in BR receptor dynamics and BR responses remains elusive. Here, we show that the absence of two DUF300 domain-containing tonoplast proteins, LAZARUS1 (LAZ1) and LAZ1 HOMOLOG1 (LAZ1H1), causes vacuole morphology defects, growth inhibition, and constitutive activation of BR signaling. Intriguingly, tonoplast accumulation of BAK1 was substantially increased and appeared causally linked to enhanced BRI1 trafficking and degradation in laz1 laz1h1 plants. Since unrelated vacuole mutants exhibited normal BR responses, our findings indicate that DUF300 proteins play distinct roles in the regulation of BR signaling by maintaining vacuole integrity required to balance subcellular BAK1 pools and BR receptor distribution. KW - brassinosteroid signaling KW - vacuole integrity KW - DUF300 proteins KW - tonoplast KW - Arabidopsis Y1 - 2018 U6 - https://doi.org/10.1016/j.molp.2017.12.015 SN - 1674-2052 SN - 1752-9867 VL - 11 IS - 4 SP - 553 EP - 567 PB - Cell Press CY - Cambridge ER - TY - THES A1 - Lehmann, Andreas T1 - Variability in human life history traits BT - an analysis of spatial and temporal variation and their integration into recent conceptual frameworks Y1 - 2018 ER - TY - JOUR A1 - Fujikura, Ushio A1 - Jing, Runchun A1 - Hanada, Atsushi A1 - Takebayashi, Yumiko A1 - Sakakibara, Hitoshi A1 - Yamaguchi, Shinjiro A1 - Kappel, Christian A1 - Lenhard, Michael T1 - Variation in splicing efficiency underlies morphological evolution in capsella JF - Developmental cell N2 - Understanding the molecular basis of morphological change remains a central challenge in evolutionary-developmental biology. The transition from outbreeding to selfing is often associated with a dramatic reduction in reproductive structures and functions, such as the loss of attractive pheromones in hermaphroditic Caenorhabditis elegans and a reduced flower size in plants. Here, we demonstrate that variation in the level of the brassinosteroid-biosynthesis enzyme CYP724A1 contributes to the reduced flower size of selfing Capsella rubella compared with its outbreeding ancestor Capsella grandiflora. The primary transcript of the C. rubella allele is spliced more efficiently than that of C. grandiflora, resulting in higher brassinosteroid levels. These restrict organ growth by limiting cell proliferation. More efficient splicing of the C. rubella allele results from two de novo mutations in the selfing lineage. Thus, our results highlight the potentially widespread importance of differential splicing efficiency and higher-than-optimal hormone levels in generating phenotypic variation. Y1 - 2017 U6 - https://doi.org/10.1016/j.devcel.2017.11.022 SN - 1534-5807 SN - 1878-1551 VL - 44 IS - 2 SP - 192 EP - 203 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Hermanussen, Michael A1 - Bilogub, Maria A1 - Lindl, A. C. A1 - Harper, D. A1 - Mansukoski, L. A1 - Scheffler, Christiane T1 - Weight and height growth of malnourished school-age children during re-feeding BT - three historic studies published shortly after World War I JF - European journal of clinical nutrition N2 - Background In view of the ongoing debate on "chronic malnutrition" and the concept of "stunting" as "a better measure than underweight of the cumulative effects of undernutrition and infection (WHO)", we translate, briefly comment and republish three seminal historic papers on catch-up growth following re-feeding after severe food restriction of German children during and after World War I. The observations were published in 1920 and 1922, and appear to be of particular interest to the modern nutritionist. Results The papers of Abderhalden (1920) and Bloch (1920) describe German children of all social strata who were born shortly before World War I, and raised in apparently "normal" families. After severe long-standing undernutrition, they participated in an international charity program. They experienced exceptional catch-up growth in height of 3-5 cm within 6-8 weeks. Goldstein (1922) observed 512 orphans and children from underprivileged families. Goldstein described very different growth patterns. These children were much shorter (mean height between -2.0 and -2.8 SDS, modern WHO reference). They mostly failed to catch-up in height, but tended to excessively increase in weight particularly during adolescence. Y1 - 2018 U6 - https://doi.org/10.1038/s41430-018-0274-z SN - 0954-3007 SN - 1476-5640 VL - 72 IS - 12 SP - 1603 EP - 1619 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Mrochen, Daniel M. A1 - Schulz, Daniel A1 - Fischer, Stefan A1 - Jeske, Kathrin A1 - El Gohary, Heba A1 - Reil, Daniela A1 - Imholt, Christian A1 - Truebe, Patricia A1 - Suchomel, Josef A1 - Tricaud, Emilie A1 - Jacob, Jens A1 - Heroldova, Marta A1 - Bröker, Barbara M. A1 - Strommenger, Birgit A1 - Walther, Birgit A1 - Ulrich, Rainer G. A1 - Holtfreter, Silva T1 - Wild rodents and shrews are natural hosts of Staphylococcus aureus JF - International Journal of Medical Microbiology N2 - Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012-2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4%), followed by CC1956 (14/48, 29.2%) and ST890 (9/48, 18.8%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant. In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation. KW - Staphylococcus aureus KW - Colonization KW - Wild mice KW - Host adaptation KW - Immune evasion cluster KW - mecC Y1 - 2018 U6 - https://doi.org/10.1016/j.ijmm.2017.09.014 SN - 1438-4221 SN - 1618-0607 VL - 308 IS - 6 SP - 590 EP - 597 PB - Elsevier CY - Jena ER - TY - THES A1 - Meyer, Susann T1 - Wirkung und Wirkungsweise von Ectoin auf DNA-Moleküle Y1 - 2018 ER - TY - JOUR A1 - Prat, Tomas A1 - Hajny, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnar, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pgen.1007177 SN - 1553-7404 VL - 14 IS - 1 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Lohmann, Dirk A1 - Guo, Tong A1 - Tietjen, Britta T1 - Zooming in on coarse plant functional types-simulated response of savanna vegetation composition in response to aridity and grazing JF - Theoretical ecology N2 - Precipitation and land use in terms of livestock grazing have been identified as two of the most important drivers structuring the vegetation composition of semi-arid and arid savannas. Savanna research on the impact of these drivers has widely applied the so-called plant functional type (PFT) approach, grouping the vegetation into two or three broad types (here called meta-PFTs): woody plants and grasses, which are sometimes divided into perennial and annual grasses. However, little is known about the response of functional traits within these coarse types towards water availability or livestock grazing. In this study, we extended an existing eco-hydrological savanna vegetation model to capture trait diversity within the three broad meta-PFTs to assess the effects of both grazing and mean annual precipitation (MAP) on trait composition along a gradient of both drivers. Our results show a complex pattern of trait responses to grazing and aridity. The response differs for the three meta-PFTs. From our findings, we derive that trait responses to grazing and aridity for perennial grasses are similar, as suggested by the convergence model for grazing and aridity. However, we also see that this only holds for simulations below a MAP of 500 mm. This combined with the finding that trait response differs between the three meta-PFTs leads to the conclusion that there is no single, universal trait or set of traits determining the response to grazing and aridity. We finally discuss how simulation models including trait variability within meta-PFTs are necessary to understand ecosystem responses to environmental drivers, both locally and globally and how this perspective will help to extend conceptual frameworks of other ecosystems to savanna research. KW - Traits KW - Dryland KW - Degradation KW - Shrub encroachment KW - Simulation KW - Eco-hydrological model KW - EcoHyD Y1 - 2018 U6 - https://doi.org/10.1007/s12080-017-0356-x SN - 1874-1738 SN - 1874-1746 VL - 11 IS - 2 SP - 161 EP - 173 PB - Springer CY - Heidelberg ER -