TY - THES A1 - Langer, Marco T1 - The effect of native forest dynamics upon the arrangements of species in oak forests-analysis of heterogeneity effects at the example of epigeal arthropods N2 - The heterogeneity in species assemblages of epigeal spiders was studied in a natural forest and in a managed forest. Additionally the effects of small-scale microhabitat heterogeneity of managed and unmanaged forests were determined by analysing the spider assemblages of three different microhabitat structures (i. vegetation, ii. dead wood. iii. litter cover). The spider were collected in a block design by pitfall traps (n=72) in a 4-week interval. To reveal key environmental factors affecting the spider distribution abiotic and biotic habitat parameters (e.g. vegetation parameters, climate parameters, soil moisture) were assessed around each pitfall trap. A TWINSPAN analyses separated pitfall traps from the natural forest from traps of the managed forest. A subsequent discriminant analyses revealed that the temperature, the visible sky, the plant diversity and the mean diameter at breast height as key discriminant factors between the microhabitat groupings designated by the TWINSPAN analyses. Finally a Redundant analysis (RDA) was done revealing similar environmental factors responsible for the spider species distribution, as a good separation of the different forest types as well as the separation of the microhabitat groupings from the TWINSPAN. Overall the study revealed that the spider communities differed between the forest types as well as between the microhabitat structures and thus species distribution changed within a forest stand on a fine spatial scale. It was documented that the structure of managed forests affects the composition of spider assemblages compared to natural forests significantly and even small scale-heterogeneity seems to influence the spider species composition. N2 - Um die Anpassungsfähigkeit von Organismen, bei sich ändernden Umweltbedingungen, sicher zu stellen, spielt die Erhaltung der Biologischen Vielfalt auf allen ökosystemaren Ebenen eine entscheidende Rolle. Eben diese Anpassungsfähigkeit kann durch waldbauliche Maßnahmen einschränkt werden, und zur Instabilität des Systems führen. Daher kommt der Untersuchung von aus der Nutzung genommenen Naturwaldzellen eine immer größere Bedeutung zu. Einerseits um die potentiell natürliche Diversität in Naturwäldern mit der in Wirtschaftswäldern zu vergleichen, andererseits um die ökologischen Zusammenhänge in einer natürlichen Waldentwicklung zu verstehen. Ziel diese Studie war es eben diese natürlichen Waldynamiken auf das Artengefüge von Spinnen (Araneae) zu untersuchen. Dabei sollte Mithilfe eines experimentellen Fangdesigns, auch der kleinräumige Einfluss von Strukturheterogenität untersucht werden. KW - Wald KW - Spinnen KW - Ökologie KW - Naturwald KW - bodenlebende Gliederfüßer KW - forest KW - spiders KW - virgin forest KW - ecology KW - epigeal arthropods Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55588 ER - TY - GEN A1 - Henze, Andrea A1 - Aumer, Franziska A1 - Grabner, Arthur A1 - Raila, Jens A1 - Schweigert, Florian J. T1 - Genetic differences in the serum proteome of horses, donkeys and mules are detectable by protein profiling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Although horses and donkeys belong to the same genus, their genetic characteristics probably result in specific proteomes and post-translational modifications (PTM) of proteins. Since PTM can alter protein properties, specific PTM may contribute to species-specific characteristics. Therefore, the aim of the present study was to analyse differences in serum protein profiles of horses and donkeys as well as mules, which combine the genetic backgrounds of both species. Additionally, changes in PTM of the protein transthyretin (TTR) were analysed. Serum protein profiles of each species (five animals per species) were determined using strong anion exchanger ProteinChips (R) (Bio-Rad, Munich, Germany) in combination with surface-enhanced laser desorption ionisation-time of flight MS. The PTM of TTR were analysed subsequently by immunoprecipitation in combination with matrix-assisted laser desorption ionisation-time of flight MS. Protein profiling revealed species-specific differences in the proteome, with some protein peaks present in all three species as well as protein peaks that were unique for donkeys and mules, horses and mules or for horses alone. The molecular weight of TTR of horses and donkeys differed by 30Da, and both species revealed several modified forms of TTR besides the native form. The mass spectra of mules represented a merging of TTR spectra of horses and donkeys. In summary, the present study indicated that there are substantial differences in the proteome of horses and donkeys. Additionally, the results probably indicate that the proteome of mules reveal a higher similarity to donkeys than to horses. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 567 KW - mass spectrometry KW - post-translational modifications KW - proteome KW - species differences Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412886 SN - 1866-8372 IS - 567 ER - TY - THES A1 - Vosloh, Daniel T1 - Subcellular compartmentation of primary carbon metabolism in mesophyll cells of Arabidopsis thaliana T1 - Subzelluläre Kompartimentierung des primären Kohlenstoffmetabolismus in Mesophyllzellen von Arabidopsis thaliana N2 - Metabolismus in Pflanzenzellen ist stark kompartimentiert. Viele Stoffwechselwege haben Reaktionen in mehr als einem Kompartiment. Zum Beispiel wird während der Photosynthese in pflanzlichen Mesophyllzellen Kohlenstoff in Form von Stärke in den Chloroplasten synthetisiert, während es im Zytosol in Form von Sacharose gebildet und in der Vakuole gespeichert wird. Diese Reaktionen sind strikt reguliert um ein Gleichgewicht der Kohlenstoffpools der verschiedenen Kompartimente aufrecht zu erhalten und die Energieversorgung aller Teile der Zelle für anabolische Reaktionen sicher zu stellen. Ich wende eine Methode an, bei der die Zellen unter nicht-wässrigen Bedingungen fraktioniert werden und daher der metabolische Status der während der Ernte herrschte über den ganzen Zeitraum der Auftrennung beibehalten wird. Durch die Kombination von nichtwässriger Fraktionierung und verschiedener Massenspektrometrietechniken (Flüssigchromotagraphie- und Gaschromotagraphie basierende Massenspekrometrie) ist es möglich die intrazelluläre Verteilung der meisten Intermediate des photosynthetischen Kohlenstoffstoffwechsels und der Produkte der nachgelagerten metabolischen Reaktionen zu bestimmen. Das Wissen über die in vivo Konzentrationen dieser Metabolite wurde genutzt um die Änderung der freien Gibbs Energie in vivo zu bestimmen. Mit Hilfe dessen kann bestimmt werden, welche Reaktion sich in einem Gleichgewichtszustand befinden und welche davon entfernt sind. Die Konzentration der Enzyme und der Km Werte wurden mit den Konzentrationen der Metabolite in vivo verglichen, um festzustellen, welche Enzyme substratlimitiert sind und somit sensitiv gegenüber Änderungen der Substratkonzentration sind. Verschiedene Intermediate des Calvin-Benson Zyklus sind gleichzeitig Substrate für andere Stoffwechselwege, als da wären Dihyroxyaceton-phosphat (DHAP, Saccharosesynthese), Fructose 6-phosphat (Fru6P, Stärkesynthese), Erythrose 4-phosphat (E4P, Shikimat Stoffwechselweg) und Ribose 5-phosphat (R5P, Nukleotidbiosynthese). Die Enzyme, die diese Intermediate verstoffwechseln, liegen an den Abzweigungspunkten zu diesen Stoffwechselwegen. Diese sind Trisose phosphat isomerase (DHAP), Transketolase (E4P), Sedoheptulose-1,7 biphosphat aldolase (E4P) und Ribose-5-phosphat isomerase (R5P), welche nicht mit ihren Substraten gesättigt sind, da die jeweilige Substratkonzentration geringer als der zugehörige Km Wert ist. Für metabolische Kontrolle bedeutet dies, dass diese Schritte am sensitivsten gegenüber Änderungen der Substratkonzentrationen sind. Im Gegensatz dazu sind die regulierten irreversiblen Schritte von Fructose-1,6.biphosphatase und Sedoheptulose-1,7-biphosphatase relativ insensitiv gegenüber Änderungen der Substratkonzentration. Für den Stoffwechselweg der Saccharosesynthese konnte gezeigt werden, dass die zytosolische Aldolase eine geringer Bindeseitenkonzentration als Substratkonzentration (DHAP) aufweist, und dass die Konzentration von Saccharose-6-phosphat geringer als der Km Wert des synthetisierenden Enzyms Saccharose-phosphatase ist. Sowohl die Saccharose-phosphat-synthase, also auch die Saccharose-phosphatase sind in vivo weit von einem Gleichgewichtszustand entfernt. In Wildtyp Arabidopsis thaliana Columbia-0 Blättern wurde der gesamte Pool von ADPGlc im Chloroplasten gefunden. Das Enzyme ADPGlc pyrophosphorylase ist im Chloroplasten lokalisiert und synthetisiert ADPGlc aus ATP und Glc1P. Dieses Verteilungsmuster spricht eindeutig gegen die Hypothese von Pozueta-Romero und Kollegen, dass ADPGlc im Zytosol durch ADP vermittelte Spaltung von Saccharose durch die Saccharose Synthase erzeugt wird. Basierend auf dieser Beobachtung und anderen veröffentlichten Ergebnissen wurde geschlußfolgert, dass der generell akzeptierte Stoffwechselweg der Stärkesynthese durch ADPGlc Produktion via ADPGlc pyrophosphorylase in den Chloroplasten korrekt ist, und die Hypothese des alternativen Stoffwechselweges unhaltbar ist. Innerhalb des Stoffwechselweges der Saccharosesynthsese wurde festgestellt, dass die Konzentration von ADPGlc geringer als der Km Wert des Stärkesynthase ist, was darauf hindeutet, dass das Enzym substratlimitiert ist. Eine generelle Beobachtung ist, dass viele Enzmye des Calvin-Benson Zyklus ähnliche Bindeseitenkonzentrationen wie Metabolitkonzentrationen aufweisen, wohingegen in den Synthesewegen von Saccharose und Stärke die Bindeseitenkonzentrationen der Enzyme viel geringer als die Metabolitkonzentrationen sind. N2 - Metabolism in plant cells is highly compartmented, with many pathways involving reactions in more than one compartment. For example, during photosynthesis in leaf mesophyll cells, primary carbon fixation and starch synthesis take place in the chloroplast, whereas sucrose is synthesized in the cytosol and stored in the vacuole. These reactions are tightly regulated to keep a fine balance between the carbon pools of the different compartments and to fulfil the energy needs of the organelles. I applied a technique which fractionates the cells under non-aqueous conditions, whereby the metabolic state is frozen at the time of harvest and held in stasis throughout the fractionation procedure. With the combination of non-aqueous fractionation and mass spectrometry based metabolite measurements (LC-MS/MS, GC-MS) it was possible to investigate the intracellular distributions of the intermediates of photosynthetic carbon metabolism and its products in subsequent metabolic reactions. With the knowledge about the in vivo concentrations of these metabolites under steady state photosynthesis conditions it was possible to calculate the mass action ratio and change in Gibbs free energy in vivo for each reaction in the pathway, to determine which reactions are near equilibrium and which are far removed from equilibrium. The Km value and concentration of each enzyme were compared with the concentrations of its substrates in vivo to assess which reactions are substrate limited and so sensitive to changes in substrate concentration. Several intermediates of the Calvin-Benson cycle are substrates for other pathways, including dihydroxyacetone-phosphate (DHAP,sucrose synthesis), fructose 6-phosphate (Fru6P, starch synthesis), erythrose 4-phosphate (E4P,shikimate pathway) and ribose 5-phosphate (R5P, nucleotide synthesis). Several of the enzymes that metabolise these intermediates, and so lie at branch points in the pathway, are triose-phosphate isomerase (DHAP), transketolase (E4P, Fru6P), sedoheptulose-1,7-bisphosphate aldolase (E4P) and ribose-5-phosphate isomerase (R5P) are not saturated with their respective substrate as the metabolite concentration is lower than the respective Km value. In terms of metabolic control these are the steps that are most sensitive to changes in substrate availability, while the regulated irreversible reactions of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase are relatively insensitive to changes in the concentrations of their substrates. In the pathway of sucrose synthesis it was shown that the concentration of the catalytic binding site of the cytosolic aldolase is lower than the substrate concentration of DHAP, and that the concentration of Suc6P is lower than the Km of sucrose-phosphatase for this substrate. Both the sucrose-phosphate synthase and sucrose-phosphatase reactions are far removed from equilibrium in vivo. In wild type A. thaliana Columbia-0 leaves, all of the ADPGlc was found to be localised in the chloroplasts. ADPglucose pyrophosphorylase is localised to the chloroplast and synthesises ADPGlc from ATP and Glc1P. This distribution argues strongly against the hypothesis proposed by Pozueta-Romero and colleagues that ADPGlc for starch synthesis is produced in the cytosol via ADP-mediated cleavage of sucrose by sucrose synthase. Based on this observation and other published data it was concluded that the generally accepted pathway of starch synthesis from ADPGlc produced by ADPglucose pyrophosphorylase in the chloroplasts is correct, and that the alternative pathway is untenable. Within the pathway of starch synthesis the concentration of ADPGlc was found to be well below the Km value of starch synthase for ADPGlc, indicating that the enzyme is substrate limited. A general finding in the comparison of the Calvin-Benson cycle with the synthesis pathways of sucrose and starch is that many enzymes in the Calvin Benson cycle have active binding site concentrations that are close to the metabolite concentrations, while for nearly all enzymes in the synthesis pathways the active binding site concentrations are much lower than the metabolite concentrations. KW - Pflanze KW - Kohlenstoffmetabolismus KW - Mesophyll KW - Zelle KW - plant KW - carbon metabolism KW - mesophyll KW - cell Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55534 ER - TY - THES A1 - Barbosa Pfannes, Eva Katharina T1 - Probing the regulatory mechanisms of the actomyosin system in motile cells T1 - Erforschung von Regulationsmechanismen des Aktomyosinsystems in bewegliche Zellen N2 - Actin-based directional motility is important for embryonic development, wound healing, immune responses, and development of tissues. Actin and myosin are essential players in this process that can be subdivided into protrusion, adhesion, and traction. Protrusion is the forward movement of the membrane at the leading edge of the cell. Adhesion is required to enable movement along a substrate, and traction finally leads to the forward movement of the entire cell body, including its organelles. While actin polymerization is the main driving force in cell protrusions, myosin motors lead to the contraction of the cell body. The goal of this work was to study the regulatory mechanisms of the motile machinery by selecting a representative key player for each stage of the signaling process: the regulation of Arp2/3 activity by WASP (actin system), the role of cGMP in myosin II assembly (myosin system), and the influence of phosphoinositide signaling (upstream receptor pathway). The model organism chosen for this work was the social ameba Dictyostelium discoideum, due to the well-established knowledge of its cytoskeletal machinery, the easy handling, and the high motility of its vegetative and starvation developed cells. First, I focused on the dynamics of the actin cytoskeleton by modulating the activity of one of its key players, the Arp2/3 complex. This was achieved using the carbazole derivative Wiskostatin, an inhibitor of the Arp2/3 activator WASP. Cells treated with Wiskostatin adopted a round shape, with no of few pseudopodia. With the help of a microfluidic cell squeezer device, I could show that Wiskostatin treated cells display a reduced mechanical stability, comparable to cells treated with the actin disrupting agent Latrunculin A. Furthermore, the WASP inhibited cells adhere stronger to a surface and show a reduced motility and chemotactic performance. However, the overall F-actin content in the cells was not changed. Confocal microscopy and TIRF microscopy imaging showed that the cells maintained an intact actin cortex. Localized dynamic patches of increased actin polymerization were observed that, however, did not lead to membrane deformation. This indicated that the mechanisms of actin-driven force generation were impaired in Wiskostatin treated cells. It is concluded that in these cells, an altered architecture of the cortical network leads to a reduced overall stiffness of the cell, which is insufficient to support the force generation required for membrane deformation and pseudopod formation. Second, the role of cGMP in myosin II dynamics was investigated. Cyclic GMP is known to regulate the association of myosin II with the cytoskeleton. In Dictyostelium, intracellular cGMP levels increase when cells are exposed to chemoattractants, but also in response to osmotic stress. To study the influence of cyclic GMP on actin and myosin II dynamics, I used the laser-induced photoactivation of a DMACM-caged-Br-cGMP to locally release cGMP inside the cell. My results show that cGMP directly activates the myosin II machinery, but is also able to induce an actin response independently of cAMP receptor activation and signaling. The actin response was observed in both vegetative and developed cells. Possible explanations include cGMP-induced actin polymerization through VASP (vasodilator-stimulated phosphoprotein) or through binding of cGMP to cyclic nucleotide-dependent kinases. Finally, I investigated the role of phosphoinositide signaling using the Polyphosphoinositide-Binding Peptide (PBP10) that binds preferentially to PIP2. Phosphoinositides can recruit actin-binding proteins to defined subcellular sites and alter their activity. Neutrophils, as well as developed Dictyostelium cells produce PIP3 in the plasma membrane at their leading edge in response to an external chemotactic gradient. Although not essential for chemotaxis, phosphoinositides are proposed to act as an internal compass in the cell. When treated with the peptide PBP10, cells became round, with fewer or no pseudopods. PH-CRAC translocation to the membrane still occurs, even at low cAMP stimuli, but cell motility (random and directional) was reduced. My data revealed that the decrease in the pool of available PIP2 in the cell is sufficient to impair cell motility, but enough PIP2 remains so that PIP3 is formed in response to chemoattractant stimuli. My data thus highlights how sensitive cell motility and morphology are to changes in the phosphoinositide signaling. In summary, I have analyzed representative regulatory mechanisms that govern key parts of the motile machinery and characterized their impact on cellular properties including mechanical stability, adhesion and chemotaxis. N2 - Das Ziel der Arbeit war es, die regulatorischen Mechanismen der Zellmotilität zu untersuchen. Dazu habe ich für jedes Stadium dieses Prozesses einen repräsentativen regulatorischen Schritt ausgewählt und genauer untersucht: Die Regelung des Arp2/3 Komplexes durch WASP (Aktinsystem), die Rolle von cGMP in der Myosin II-Regulation (Myosinsystem) und der Einfluss von Phosphoinositiden im intrazellulären Signalprozess (Rezeptor-Signalweg). Die soziale Amöbe Dictyostelium discoideum wurde als Modellorganismus für diese Arbeiten gewählt. Gründe für diese Wahl waren die bereits vorliegenden detaillierten Kenntnisse über das Zytoskelett dieser Zellen, ihre einfache Handhabbarkeit im Labor, und die hohe Motilität der Zellen im vegetativen und entwickelten Zustand. Als Erstes analysierte ich die Dynamik des Aktin-Zytoskeletts durch Modulation der Aktivität des Arp2/3-Komplexes. Dafür benutzte ich das Carbazol-Derivat Wiskostatin, ein Inhibitor des Arp2/3-Aktivators WASP. Zellen, die mit Wiskostatin behandelt wurden, zeigten eine runde Form mit wenigen oder keinen Pseudopodien. Mit Hilfe des mikrofluidischen cell squeezer device konnte ich zeigen, dass Wiskostatin-behandelte Zellen eine geringere mechanische Stabilität aufweisen, vergleichbar mit Zellen unter dem Einfluss des Aktin-depolymerisierenden Wirkstoffes Latrunculin A. Darüber hinaus zeigen Wiskostatin behandelten Zellen eine erhöhte Substratadhäsion und eine verringerte Motilität und chemotaktische Effizienz. Der F-Aktingehalt der Zelle insgesamt blieb jedoch unverändert. Konfokal- und TIRF-mikroskopische Aufnahmen zeigten, dass die Zellen einen intakten Aktinkortex aufweisen. Es konnten lokalisierte dynamische Regionen erhöhter Aktinpolymerisation beobachtet werden, die jedoch nicht zur Ausbildung von Membrandeformationen führten. Daraus kann man rückschließen, dass die Mechanismen der Krafterzeugung im Aktin-Zytoskelett in WASP-inhibierten Zellen beeinträchtigt sind. Vermutlich liegt in diesen Zellen eine veränderte Mikroarchitektur des kortikalen Netzwerks vor, die zu einer verminderten Steifigkeit der Zelle führt, so dass die zur Bildung von Pseudopodien erforderlichen Kräfte nicht entfaltet werden können. Als Zweites wurde die Rolle von cGMP in der Myosin II-Dynamik untersucht. Es ist bekannt, dass cGMP die Assoziation von Myosin II mit dem Zytoskelett reguliert. In Dictyostelium steigt die intrazelluläre Konzentration von cGMP in Gegenwart von chemoattraktiven Lockstoffen sowie in Antwort auf osmotischen Stress. Um den Einfluss von cGMP auf die Aktin und Myosin II -Dynamik zu untersuchen, benutzte ich laserinduzierte Photoaktivierung von DMACM-caged-Br-cGMP, um cGMP lokal innerhalb der Zelle freizusetzen. Meine Ergebnisse zeigten, dass intrazelluläres cGMP direkt zur Aktivierung von Myosin II führt, jedoch auch Aktinantworten unabhängig vom cAMP-Rezeptorsignalweg induzieren kann. Die Aktinreaktion wurde sowohl in vegetativen als auch in entwickelten Zellen beobachtet. Eine mögliche Erklärung könnte die cGMP-induzierte Aktinpolymerisation über VASP (vasodilator-stimulated phosphoprotein) sein oder über die Bindung von cGMP an Nukleotid-abhängige Proteinkinasen. Als dritten Punkt meiner Arbeit untersuchte ich die Rolle der Phosphoinositide mit Hilfe des Phosphoinositide-bindenden Proteins PBP10, das bevorzugt an PIP2 bindet. Phosphoinositiden können Aktin-bindende Proteine zu definierten subzellulären Orten rekrutieren und ihre Aktivität verändern. Sowohl Neutrophile als auch entwickelte Dictyostelium Zellen produzieren PIP3 in der Plasmamembran an ihrer leading edge in Antwort auf externe Gradienten chemischer Lockstoffe. Obwohl Zellen auch ohne PIP3 chemotaktisches Verhalten zeigen, werden Phosphoinositide im Allgemeinen mit dem inneren chemotaktischen Kompass der Zelle in Verbindung gebracht. Mit dem Peptid PBP10 behandelte Zellen nahmen eine runde Form an, mit wenigen oder keinen Pseudopodien. PH-CRAC -Translokation zur Membran konnte in PBP10-behandelten Zellen selbst bei geringen cAMP-Stimuli weiterhin beobachtet werden. Ungerichtete wie auch gerichtete Zellmotiliät waren jedoch beeinträchtigt. Meine Daten zeigen, dass die Abnahme des PIP2-Pools in der Zelle durch PBP10 ausreicht, um die Zellmotilität zu beeinträchtigen, dass jedoch genug PIP2 erhalten bleibt um in Folge einer Rezeptorstimulation PIP3 zu produzieren. Die Ergebnisse demonstrieren daher, wie empfindlich Zellmotilität und -morphologie gegenüber Modifikationen im Phosphoinositid-Signalweg sind. Zusammenfassend habe ich mehrere repräsentative Beispiele für regulatorische Mechanismen der Zellmotilität untersucht und deren Auswirkung auf Eigenschaften der Zelle wie mechanische Stabilität, Zelladhäsion und Chemotaxis charakterisiert. KW - Dictyostelium KW - Aktomyosin KW - Wiskostatin KW - cGMP KW - PBP10 KW - Dictyostelium KW - actomyosin KW - Wiskostatin KW - cGMP KW - PBP10 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57812 ER - TY - THES A1 - Massie, Thomas Michael T1 - Dynamic behavior of phytoplankton populations far from steady state : chemostat experiments and mathematical modeling N2 - Nature changes continuously and is only seemingly at equilibrium. Environmental parameters like temperature, humidity or insolation may strongly fluctuate on scales ranging from seconds to millions of years. Being part of an ecosystem, species have to cope with these environmental changes. For ecologists, it is of special interest how individual responses to environmental changes affect the dynamics of an entire population – and, if this behavior is predictable. In this context, the demographic structure of a population plays a decisive role since it originates from processes of growth and mortality. These processes are fundamentally influenced by the environment. But, how exactly does the environment influence the behavior of populations? And what does the transient behavior look like? As a result from environmental influences on demography, so called cohorts form. They are age or size classes that are disproportionally represented in the demographic distribution of a population. For instance, if most old and young individuals die due to a cold spell, the population finally consists of mainly middle-aged individuals. Hence, the population got synchronized. Such a population tends to show regular fluctuations in numbers (denoted as oscillations) since the alternating phases of individual growth and population growth (due to reproduction) are now performed synchronously by the majority of the population.That is, one time the population growths, and the other time it declines due to mortality. Synchronous behavior is one of the most pervasive phenomena in nature. Gravitational synchrony in the solar system; fireflies flashing in unison; coordinate firing of pacemaker cells in the heart; electrons in a superconductor marching in lockstep. Whatever scale one looks at, in animate as well as inanimate systems, one is likely to encounter synchrony. In experiments with phytoplankton populations, I could show that this principle of synchrony (as used by physicists) could well-explain the oscillations observed in the experiments, too. The size of the fluctuations depended on the strength by which environmental parameters changed as well as on the demographic state of a population prior to this change. That is, two population living in different habitats can be equally influenced by an environmental change, however, the resulting population dynamics may be significantly different when both populations differed in their demographic state before. Moreover, specific mechanisms relevant for the dynamic behavior of populations, appear only when the environmental conditions change. In my experiments, the population density declined by 50% after ressource supply was doubled. This counter-intuitive behavior can be explained by increasing ressource consumption. The phytoplankton cells grew larger and enhanced their individual constitution. But at the same time, reproduction was delayed and the population density declined due to the losses by mortality. Environmental influences can also synchronize two or more populations over large distances, which is denoted as Moran effect. Assume two populations living on two distant islands. Although there is no exchange of individuals between them, both populations show a high similarity when comparing their time series. This is because the globally acting climate synchronizes the regionally acting weather on both island. Since the weather fluctuations influence the population dynamics, the Moran effect states that the synchrony between the environment equals the one between the populations. My experiments support this theory and also explain deviations arising when accounting for differences in the populations and the habitats they are living in. Moreover, model simulations and experiments astonishingly show that the synchrony between the populations can be higher than between the environment, when accounting for differences in the environmental fluctuations (“noise color”). N2 - Die Natur unterliegt ständigen Veränderungen und befindet sich nur vermeintlich in einem Gleichgewicht. Umweltparameter wie Temperatur, Luftfeuchtigkeit oder Sonneneinstrahlung schwanken auf einer Zeitskala von Sekunden bis Jahrmillionen und beinhalten teils beträchtliche Unterschiede. Mit diesen Umweltveränderungen müssen sich Arten als Teil eines Ökosystems auseinandersetzen. Für Ökologen ist interessant, wie sich individuelle Reaktionen auf die Umweltveränderungen im dynamischen Verhalten einer ganzen Population bemerkbar machen und ob deren Verhalten vorhersagbar ist. Der Demografie einer Population kommt hierbei eine entscheidende Rolle zu, da sie das Resultat von Wachstums- und Sterbeprozessen darstellt. Eben jene Prozesse werden von der Umwelt maßgeblich beeinflusst. Doch wie genau beeinflussen Umweltveränderungen das Verhalten ganzer Populationen? Wie sieht das vorübergehende, transiente Verhalten aus? Als Resultat von Umwelteinflüssen bilden sich in Populationen sogenannte Kohorten, hinsichtlich der Zahl an Individuen überproportional stark vertretene Alters- oder Größenklassen. Sterben z.B. aufgrund eines außergewöhnlich harten Winters, die alten und jungen Individuen einer Population, so besteht diese anschließend hauptsächlich aus Individuen mittleren Alters. Sie wurde sozusagen synchronisiert. Eine solche Populationen neigt zu regelmäßigen Schwankungen (Oszillationen) in ihrer Dichte, da die sich abwechselnden Phasen der individuellen Entwicklung und der Reproduktion nun von einem Großteil der Individuen synchron durchschritten werden. D.h., mal wächst die Population und mal nimmt sie entsprechend der Sterblichkeit ab. In Experimenten mit Phytoplankton-Populationen konnte ich zeigen, dass dieses oszillierende Verhalten mit dem in der Physik gebräuchlichen Konzept der Synchronisation beschrieben werden kann. Synchrones Verhalten ist eines der verbreitetsten Phänomene in der Natur und kann z.B. in synchron schwingenden Brücken, als auch bei der Erzeugung von Lasern oder in Form von rhythmischem Applaus auf einem Konzert beobachtet werden. Wie stark die Schwankungen sind, hängt dabei sowohl von der Stärke der Umweltveränderung als auch vom demografischen Zustand der Population vor der Veränderung ab. Zwei Populationen, die sich in verschiedenen Habitaten aufhalten, können zwar gleich stark von einer Umweltveränderung beeinflusst werden. Die Reaktionen im anschließenden Verhalten können jedoch äußerst unterschiedlich ausfallen, wenn sich die Populationen zuvor in stark unterschiedlichen demografischen Zuständen befanden. Darüber hinaus treten bestimmte, für das Verhalten einer Population relevante Mechanismen überhaupt erst in Erscheinung, wenn sich die Umweltbedingungen ändern. So fiel in Experimenten beispielsweise die Populationsdichte um rund 50 Prozent ab nachdem sich die Ressourcenverfügbarkeit verdoppelte. Der Grund für dieses gegenintuitive Verhalten konnte mit der erhöhten Aufnahme von Ressourcen erklärt werden. Damit verbessert eine Algenzelle zwar die eigene Konstitution, jedoch verzögert sich dadurch die auch die Reproduktion und die Populationsdichte nimmt gemäß ihrer Verluste bzw. Sterblichkeit ab. Zwei oder mehr räumlich getrennte Populationen können darüber hinaus durch Umwelteinflüsse synchronisiert werden. Dies wird als Moran-Effekt bezeichnet. Angenommen auf zwei weit voneinander entfernten Inseln lebt jeweils eine Population. Zwischen beiden findet kein Austausch statt – und doch zeigt sich beim Vergleich ihrer Zeitreihen eine große Ähnlichkeit. Das überregionale Klima synchronisiert hierbei die lokalen Umwelteinflüsse. Diese wiederum bestimmen das Verhalten der jeweiligen Population. Der Moran-Effekt besagt nun, dass die Ähnlichkeit zwischen den Populationen jener zwischen den Umwelteinflüssen entspricht, oder geringer ist. Meine Ergebnisse bestätigen dies und zeigen darüber hinaus, dass sich die Populationen sogar ähnlicher sein können als die Umwelteinflüsse, wenn man von unterschiedlich stark schwankenden Einflüssen ausgeht. T2 - Dynamisches Verhalten von Phytoplanktonblüten fern vom Gleichgewicht : Chemostatexperimente und mathematische Modellierung KW - Chemostatexperimente KW - Chlorella vulgaris KW - Nichtgleichgewichts-Dynamiken KW - Phytoplanktonpopulationen KW - Synchronisation KW - chemostat experiments KW - Chlorella vulgaris KW - non-equilibrium dynamics KW - phytoplankton populations KW - synchronization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58102 ER - TY - THES A1 - Andrade Linares, Diana Rocío T1 - Characterization of tomato root-endophytic fungi and analysis of their effects on plant development, on fruit yield and quality and on interaction with the pathogen Verticillium dahliae T1 - Charakterisierung wurzelendophytischer Pilze von Tomate und Analyse ihrer Effekte auf Pflanzenentwicklung, auf Ertrag und Fruchtqualität und auf die Wechselwirkung mit dem Pathogen Verticillium dahliae N2 - Non-mycorrhizal fungal endophytes are able to colonize internally roots without causing visible disease symptoms establishing neutral or mutualistic associations with plants. These fungi known as non-clavicipitaceous endophytes have a broad host range of monocot and eudicot plants and are highly diverse. Some of them promote plant growth and confer increased abiotic-stress tolerance and disease resistance. According to such possible effects on host plants, it was aimed to isolate and to characterize native fungal root endophytes from tomato (Lycopersicon esculentum Mill.) and to analyze their effects on plant development, plant resistance and fruit yield and quality together with the model endophyte Piriformospora indica. Fifty one new fungal strains were isolated from desinfected tomato roots of four different crop sites in Colombia. These isolates were roughly characterized and fourteen potential endophytes were further analyzed concerning their taxonomy, their root colonization capacity and their impact on plant growth. Sequencing of the ITS region from the ribosomal RNA gene cluster and in-depth morphological characterisation revealed that they correspond to different phylogenetic groups among the phylum Ascomycota. Nine different morphotypes were described including six dark septate endophytes (DSE) that did not correspond to the Phialocephala group. Detailed confocal microscopy analysis showed various colonization patterns of the endophytes inside the roots ranging from epidermal penetration to hyphal growth through the cortex. Tomato pot experiments under glass house conditions showed that they differentially affect plant growth depending on colonization time and inoculum concentration. Three new isolates (two unknown fungal endophyte DSE48, DSE49 and one identified as Leptodontidium orchidicola) with neutral or positiv effects were selected and tested in several experiments for their influence on vegetative growth, fruit yield and quality and their ability to diminish the impact of the pathogen Verticillium dahliae on tomato plants. Although plant growth promotion by all three fungi was observed in young plants, vegetative growth parameters were not affected after 22 weeks of cultivation except a reproducible increase of root diameter by the endophyte DSE49. Additionally, L. orchidicola increased biomass and glucose content of tomato fruits, but only at an early date of harvest and at a certain level of root colonization. Concerning bioprotective effects, the endophytes DSE49 and L. orchidicola decreased significantly disease symptoms caused by the pathogen V. dahliae, but only at a low dosis of the pathogen. In order to analyze, if the model root endophytic fungus Piriformospora indica could be suitable for application in production systems, its impact on tomato was evaluated. Similarly to the new fungal isolates, significant differences for vegetative growth parameters were only observable in young plants and, but protection against V. dahliae could be seen in one experiment also at high dosage of the pathogen. As the DSE L. orchidicola, P. indica increased the number and biomass of marketable tomatoes only at the beginning of fruit setting, but this did not lead to a significant higher total yield. If the effects on growth are due to a better nutrition of the plant with mineral element was analyzed in barley in comparison to the arbuscular mycorrhizal fungus Glomus mosseae. While the mycorrhizal fungus increased nitrogen and phosphate uptake of the plant, no such effect was observed for P. indica. In summary this work shows that many different fungal endophytes can be also isolated from roots of crops and, that these isolates can have positive effects on early plant development. This does, however, not lead to an increase in total yield or in improvement of fruit quality of tomatoes under greenhouse conditions. N2 - Endophyten, die nicht zu den Mykorrhizapilzen gehören, können das Innere von Wurzeln ohne sichtbare Krankheitssymptome besiedeln und bilden so mit der Pflanze neutrale oder mutualistische Wechselwirkungen. Diese Pilze, auch als nicht-clavicipetale Endophyten bekannt, haben ein breites Wirtsspektrum von mono- und dikotyledonen Pflanzen und weisen eine hohe Diversität auf. Einige von ihnen fördern Pflanzenwachstum und erhöhen Resistenz und Toleranz gegenüber biotischem und abiotischem Stress. Ausgehenden von diesen möglichen Effekten auf ihre Wirtspflanzen war das Ziel der vorliegenden Arbeit die Isolierung und Charakterisierung neuer pilzlicher Wurzelendophyten der Tomate (Lycopersicon esculentum Mill.) und die Analyse ihres Einflusses auf Pflanzenentwicklung und Pflanzenresistenz, sowie auf Ertrag und Fruchtqualität unter Einbeziehung des Modellendophyten Piriformospora indica. Aus vier verschiedenen Anbaugebieten in Kolumbien konnten 51 neue Pilzstämme von oberflächensterilisierten Tomatenwurzeln isoliert werden. Diese Isolate wurden vorcharakterisiert und 14 potentielle Endophyten bezüglich ihrer Taxonomie, ihrer Besiedlungsmuster und ihres Einfluss auf das Pflanzenwachstum näher untersucht. Sequenzierung der ITS Region des ribosomalen RNA Genclusters und genaue morphologische Charakterisierung zeigten, dass sie zu verschiedenen phylogenetischen Gruppen innerhalb der Ascomycota gehören. Neun Morphotypen ließen sich beschreiben, wobei sechs zu den ‚Dark Septate Endophytes’ (DSEs) gehören, aber nicht mit der bekannten Phialocephala Gruppe verwandt waren. Ausführliche konfokale mikroskopische Untersuchungen ergaben sehr verschiedene Besiedelungsmuster der Wurzelendophyten vom Endringen in die Epidermis bis zum Hyphenwachstum durch den Kortex. Topfexperimente unter Gewächshausbedingungen zeigten dass die Isolate in Abhängigkeit von der Inokulumkonzentration und der Zeit der Besiedlung das Wachstum der Tomaten sehr unterschiedlich beeinflussten. Drei neue Isolate (die beiden unbekannte pilzlichen Endophyten DSE48 und DSE49 und eines identifiziert als Leptodontidium orchidicola) mit neutralen oder positiven Effekten wurden für weitere Versuche ausgewählt. In mehreren Experimenten sollte ihr Einfluss auf das vegetative Wachstum, auf Ertrag und auf Fruchtqualität untersucht werden, sowie ihre Fähigkeit die Auswirkungen des Pathogens Verticillium dahliae auf Tomatenpflanzen zu vermindern. Obwohl wachstumsfördernde Effekte durch alle drei Pilze in jungen Pflanzen beobachtet wurden, waren vegetative Wachstumsparameter nach 22 Wochen der Besiedlung nicht mehr beeinflusst bis auf ein signifikante Erhöhung des Wurzeldurchmessers durch den Endophyten DSE49. L. orchidicola dagegen erhöhte die Biomasse und den Glukosegehalt der Früchte, aber nur zu frühen Ernteterminen und bei einer bestimmten Intensität der Wurzelbesiedelung. Hinsichtlich eines schützenden Effekts, konnten die Endophyten DSE49 und L. orchidicola die Krankheitssymptome, die durch V. dahliae verursacht wurden, vermindern, aber nur bei einem geringen Pathogendruck. Um zu überprüfen, ob der Modellendophyt P. indica in Produktionssytemen eingesetzt werden kann, wurde seine Auswirkungen auf Tomaten untersucht. Ähnlich wie die neuen pilzlichen Isolate, zeigte aber auch er seinen fördernden Einfluss nur auf das frühe vegetative Wachstum. Schützende Effekte gegen V. dahliae konnten ebenfalls nur bei niedrigem Pathogendruck konstant beobachtet werden. Wie L. orchidicola erhöhte P. indica die Biomasse an marktfähigen Tomaten am Anfang des Fruchtansatzes, was nicht zu einem insgesamt höheren Ertrag führte. Ob die beobachteten Effekte auf ein verbesserte Nährstoffversorgung der Pflanze zurückzuführen seien, wurde in Gerste im Vergleich mit dem arbuskulären Mykorrhizapilz Glomus mosseae untersucht. Während der Mykorrhizapilz sowohl Phosphat wie Stickstoffaufnehme der Pflanze erhöhte, konnte dies für P. indica nicht festgestellt werden. Zusammenfassend zeigt diese Arbeit, dass auch aus Wurzeln von Kulturpflanzen viele verschiedene pilzliche Endophyten isoliert werden können, und dass einige von diesen durchaus einen positiven Effekt auf die frühe Pflanzenentwicklung aufweisen. Zumindest für Tomate unter Gewächshausbedingungen führen diese Effekte aber nicht zu einer Erhöhung des Gesamtertrags oder einer nachhaltigen Verbesserung der Fruchtqualität. KW - Pilz-Endophyten KW - Ascomycota KW - Wurzelbesiedlung KW - Tomaten (Solanum lycopersicum) KW - Pflanze-Pilz-Interaktionen KW - Fungal endophyte KW - Ascomycota KW - root colonization KW - tomato (Solanum lycopersicum) KW - plant-fungal interactions Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51375 ER - TY - THES A1 - Winck, Flavia Vischi T1 - Nuclear proteomics and transcription factor profiling in Chlamydomonas reinhardtii T1 - Nukleare Proteomics und Transkriptionsfaktoren : Profiling in Chlamydomonas reinhardtii N2 - The transcriptional regulation of the cellular mechanisms involves many different components and different levels of control which together contribute to fine tune the response of cells to different environmental stimuli. In some responses, diverse signaling pathways can be controlled simultaneously. One of the most important cellular processes that seem to possess multiple levels of regulation is photosynthesis. A model organism for studying photosynthesis-related processes is the unicellular green algae Chlamydomonas reinhardtii, due to advantages related to culturing, genetic manipulation and availability of genome sequence. In the present study, we were interested in understanding the regulatory mechanisms underlying photosynthesis-related processes. To achieve this goal different molecular approaches were followed. In order to indentify protein transcriptional regulators we optimized a method for isolation of nuclei and performed nuclear proteome analysis using shotgun proteomics. This analysis permitted us to improve the genome annotation previously published and to discover conserved and enriched protein motifs among the nuclear proteins. In another approach, a quantitative RT-PCR platform was established for the analysis of gene expression of predicted transcription factor (TF) and other transcriptional regulator (TR) coding genes by transcript profiling. The gene expression profiles for more than one hundred genes were monitored in time series experiments under conditions of changes in light intensity (200 µE m-2 s-1 to 700 µE m-2 s-1), and changes in concentration of carbon dioxide (5% CO2 to 0.04% CO2). The results indicate that many TF and TR genes are regulated in both environmental conditions and groups of co-regulated genes were found. Our findings also suggest that some genes can be common intermediates of light and carbon responsive regulatory pathways. These approaches together gave us new insights about the regulation of photosynthesis and revealed new candidate regulatory genes, helping to decipher the gene regulatory networks in Chlamydomonas. Further experimental studies are necessary to clarify the function of the candidate regulatory genes and to elucidate how cells coordinately regulate the assimilation of carbon and light responses. N2 - Pflanzen nutzen das Sonnenlicht um Substanzen, sogenannte Kohlenhydrate, zu synthetisieren. Diese können anschließend als Energielieferant für das eigene Wachstum genutzt werden. Der aufbauende Prozess wird als Photosynthese bezeichnet. Ein wichtiges Anliegen ist deshalb zu verstehen, wie Pflanzen äußere Einflüsse wahrnehmen und die Photosynthese dementsprechend regulieren. Ihre Zellen tragen diese Informationen in den Genen. Die Pflanzen nutzen aber in der Regel nicht alle ihre Gene gleichzeitig, die sie zur Anpassung an Umwelteinflüsse besitzen. Zu meist wird nur eine Teilfraktion der gesamten Information benötigt. Wir wollten der Frage nachgehen, welche Gene die Zellen für welche Situation regulieren. Im Zellkern gibt es Proteine, sogenannte Transkriptionsfaktoren, die spezifische Gene finden können und deren Transkription modulieren. Wenn ein Gen gebraucht wird, wird seine Information in andere Moleküle übersetzt (transkribiert), sogenannte Transkripte. Die Information dieser Transkripte wird benutzt um Proteine, Makromoleküle aus Aminsäuren, zu synthetisieren. Aus der Transkription eines Gens kann eine große Zahl des Transkripts entstehen. Es ist wahrscheinlich, dass ein Gen, dass gerade gebraucht wird, mehr Transkriptmoleküle hat als andere Gene. Da die Transkriptionsfaktoren mit der Transkription der Gene interferieren können, entwickelten wir in der vorliegenden Arbeit Strategien zur Identifikation dieser im Zellkern zu findenden Proteine mittels eines „Proteomics“-Ansatzes. Wir entwickelten weiterhin eine Strategie zur Identififikation von Transkripten Transkriptionsfaktor-codierender Gene in der Zelle und in welche Menge sie vorkommen. Dieser Ansatz wird als „Transcript-Profiling“ bezeichnet. Wir fanden Zellkern-lokalisierte Proteine, die als Signalmoleküle funktionieren könnten und Transkripte, die bei unterschiedlichen Umweltbedingungen in der Zelle vorhanden waren. Wir benutzten, die oben genannten Ansätze um die einzellige Grünalge Chlamydomonas zu untersuchen. Die Informationen, die wir erhielten, halfen zu verstehen welche Transkriptionsfaktoren notwendig sind, damit Chlamydomonas bei unterschiedlichen Umweltbedingungen, wie z.B. unterschiedliche Lichtintensitäten und unterschiedlicher Konzentration von Kohlenstoffdioxid, überlebt. KW - Proteomics KW - Transkriptionsfaktoren KW - Pflanzen KW - Chlamydomonas KW - Transcriptomics KW - Proteomics KW - Transcription factors KW - Plants KW - Chlamydomonas KW - Transcriptomics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53909 ER - TY - THES A1 - Schönheit, Jörg T1 - A phagocyte-specific Irf8 gene enhancer establishes early conventional dendritic cell commitment T1 - Ein Phagozyten spezifischer Enhancer des Irf8 Gens steuert die Entwicklung konventioneller dendritischer Zellen N2 - Haematopoietic development is a complex process that is strictly hierarchically organized. Here, the phagocyte lineages are a very heterogeneous cell compartment with specialized functions in innate immunity and induction of adaptive immune responses. Their generation from a common precursor must be tightly controlled. Interference within lineage formation programs for example by mutation or change in expression levels of transcription factors (TF) is causative to leukaemia. However, the molecular mechanisms driving specification into distinct phagocytes remain poorly understood. In the present study I identify the transcription factor Interferon Regulatory Factor 8 (IRF8) as the specification factor of dendritic cell (DC) commitment in early phagocyte precursors. Employing an IRF8 reporter mouse, I showed the distinct Irf8 expression in haematopoietic lineage diversification and isolated a novel bone marrow resident progenitor which selectively differentiates into CD8α+ conventional dendritic cells (cDCs) in vivo. This progenitor strictly depends on Irf8 expression to properly establish its transcriptional DC program while suppressing a lineage-inappropriate neutrophile program. Moreover, I demonstrated that Irf8 expression during this cDC commitment-step depends on a newly discovered myeloid-specific cis-enhancer which is controlled by the haematopoietic transcription factors PU.1 and RUNX1. Interference with their binding leads to abrogation of Irf8 expression, subsequently to disturbed cell fate decisions, demonstrating the importance of these factors for proper phagocyte cell development. Collectively, these data delineate a transcriptional program establishing cDC fate choice with IRF8 in its center. N2 - Die Differenzierung von hämatopoietischen Zellen ist ein komplexer Prozess, der strikt hierarchisch organisiert ist. Dabei stellen die Phagozyten eine sehr heterogene Zellpopulation dar, mit hochspezialisierten Funktionen im angeborenen Immunsystem sowie während der Initialisierung der adaptiven Immunreaktion. Ihre Entwicklung, ausgehend von einer gemeinsamen Vorläuferzelle, unterliegt einer strikten Kontrolle. Die Beeinträchtigung dieser Linienentscheidungsprogramme, z.B. durch Mutationen oder Änderungen der Expressionslevel von Transkriptionsfaktoren kann Leukämie auslösen. Die molekularen Mechanismen, welche die linienspezifische Entwicklung steuern, sind allerdings noch nicht im Detail bekannt. In dieser Arbeit zeige ich den maßgeblichen Einfluss des Transkriptionsfaktors Interferon Regulierender Faktor 8 (IRF8) auf die Entwicklung von dendritischen Zellen (DC) innerhalb der Phagozyten. Mittels einer IRF8-Reporter Maus stellte ich die sehr differenziellen Expressionsmuster von Irf8 in der hämatopoietischen Entwicklung dar. Dabei konnte ich eine neue, im Knochenmark lokalisierte, Vorläuferpopulation isolieren, die in vivo spezifisch Differenzierung in CD8α+ konventionelle dendritische Zellen (cDC) steuert. Dieser Vorläufer ist dabei absolut von der Expression von Irf8 abhängig und etabliert auf transkriptioneller Ebene die dendritische Zellentwicklung, während gleichzeitig die Entwicklung neutrophiler Zellen unterdrückt wird. Darüber hinaus zeigte ich, dass Irf8 Expression während der cDC Entwicklung von einem neu charakterisierten cis-regulatorischen Enhancer abhängt, der spezifisch in myeloiden Zellen agiert. Ich konnte zeigen, dass die hämatopoietischen Transkriptionfaktoren PU.1 und RUNX1 mittels dieses Enhancers die Irf8 Expression steuern. Können diese beiden Faktoren nicht mit dem Enhancer interagieren, führt das zu stark verminderter Irf8 Expression, damit zu Veränderungen in den Differnzierungsprogrammen der Zellen, was die Bedeutung dieses regulatorischen Mechanismus unterstreicht. Zusammengefasst beschreiben diese Daten die Etablierung der frühen cDC Entwicklung, in der IRF8 die zentrale Rolle spielt. KW - Hämatopoiese KW - dendritische Zelle KW - Immunologie KW - Transkiptionsfaktor KW - Genregulation KW - haematopoiesis KW - dendritic cell KW - immunology KW - transcription factor KW - gene regulation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55482 ER - TY - GEN A1 - Eccard, Jana A1 - Fey, Karen A1 - Caspers, Barbara A. A1 - Ylönen, Hannu T1 - Breeding state and season affect interspecific interaction types BT - indirect resource competition and direct interference T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either–or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual’s reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 729 KW - rodents KW - aggression KW - seasonality KW - space use KW - winter biology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429398 SN - 1866-8372 IS - 729 SP - 623 EP - 633 ER -