TY - JOUR A1 - Schuurmans, Jasper Merijn A1 - Brinkmann, Bregje W. A1 - Makower, Katharina A1 - Dittmann, Elke A1 - Huisman, Jef A1 - Matthijs, Hans C. P. T1 - Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria JF - Harmful algae N2 - Harmful cyanobacteria producing toxic microcystins are a major concern in water quality management. In recent years, hydrogen peroxide (H2O2) has been successfully applied to suppress cyanobacterial blooms in lakes. Physiological studies, however, indicate that microcystin protects cyanobacteria against oxidative stress, suggesting that H2O2 addition might provide a selective advantage for microcystin-producing (toxic) strains. This study compares the response of a toxic Microcystis strain, its non-toxic mutant, and a naturally non-toxic Microcystis strain to H2O2 addition representative of lake treatments. All three strains initially ceased growth upon H2O2 addition. Contrary to expectation, the non-toxic strain and non-toxic mutant rapidly degraded the added H2O2 and subsequently recovered, whereas the toxic strain did not degrade H2O2 and did not recover. Experimental catalase addition enabled recovery of the toxic strain, demonstrating that rapid H2O2 degradation is indeed essential for cyanobacterial survival. Interestingly, prior to H2O2 addition, gene expression of a thioredoxin and peroxiredoxin was much lower in the toxic strain than in its non-toxic mutant. Thioredoxin and peroxiredoxin are both involved in H2O2 degradation, and microcystin may potentially suppress their activity. These results show that microcystin-producing strains are less prepared for high levels of oxidative stress, and are therefore hit harder by H2O2 addition than non-toxic strains. KW - Cyanobacteria KW - Harmful algal blooms KW - Microcystins KW - Hydrogen peroxide KW - Microarrays KW - Microcystis aeruginosa Y1 - 2018 U6 - https://doi.org/10.1016/j.hal.2018.07.008 SN - 1568-9883 SN - 1878-1470 VL - 78 SP - 47 EP - 55 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arias-Andres, Maria A1 - Kluemper, Uli A1 - Rojas-Jimenez, Keilor A1 - Grossart, Hans-Peter T1 - Microplastic pollution increases gene exchange in aquatic ecosystems JF - Environmental pollution N2 - Pollution by microplastics in aquatic ecosystems is accumulating at an unprecedented scale, emerging as a new surface for biofilm formation and gene exchange. In this study, we determined the permissiveness of aquatic bacteria towards a model antibiotic resistance plasmid, comparing communities that form biofilms on microplastics vs. those that are free-living. We used an exogenous and red-fluorescent E. coli donor strain to introduce the green-fluorescent broad-host-range plasmid pKJKS which encodes for trimethoprim resistance. We demonstrate an increased frequency of plasmid transfer in bacteria associated with microplastics compared to bacteria that are free-living or in natural aggregates. Moreover, comparison of communities grown on polycarbonate filters showed that increased gene exchange occurs in a broad range of phylogenetically-diverse bacteria. Our results indicate horizontal gene transfer in this habitat could distinctly affect the ecology of aquatic microbial communities on a global scale. The spread of antibiotic resistance through microplastics could also have profound consequences for the evolution of aquatic bacteria and poses a neglected hazard for human health. KW - Microplastics KW - Aquatic ecosystems KW - Biofilm KW - Horizontal gene transfer KW - Antibiotic resistance Y1 - 2018 U6 - https://doi.org/10.1016/j.envpol.2018.02.058 SN - 0269-7491 SN - 1873-6424 VL - 237 SP - 253 EP - 261 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Arias Andrés, María de Jesús A1 - Kettner, Marie Therese A1 - Miki, Takeshi A1 - Grossart, Hans-Peter T1 - Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Heterotrophic microbes with the capability to process considerable amounts of organic matter can colonize microplastic particles (MP) in aquatic ecosystems. Weather colonization of microorganisms on MP will alter ecological niche and functioning of microbial communities remains still unanswered. Therefore, we compared the functional diversity of biofilms on microplastics when incubated in three lakes in northeastern Germany differing in trophy and limnological features. For all lakes, we compared heterotrophic activities of MP biofilms with those of microorganisms in the surrounding water by using Biolog (R) EcoPlates and assessed their oxygen consumption in microcosm assays with and without MP. The present study found that the total biofilm biomass was higher in the oligo-mesotrophic and dystrophic lakes than in the eutrophic lake. In all lakes, functional diversity profiles of MP biofilms consistently differed from those in the surrounding water. However, solely in the oligo-mesotrophic lake MP biofilms had a higher functional richness compared to the ambient water. These results demonstrate that the functionality and hence the ecological role of MP-associated microbial communities are context-dependent, i.e. different environments lead to substantial changes in biomass build up and heterotrophic activities of MP biofilms. We propose that MP surfaces act as new niches for aquatic microorganisms and that the constantly increasing MP pollution has the potential to globally impact carbon dynamics of pelagic environments by altering heterotrophic activities. (C) 2018 Elsevier B.V. All rights reserved. KW - Microplastics KW - Microorganisms KW - Biofilms KW - Total biomass KW - Heterotrophic activity KW - Functional diversity KW - Multi-functionality index Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.04.199 SN - 0048-9697 SN - 1879-1026 VL - 635 SP - 1152 EP - 1159 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mühlenbruch, Marco A1 - Grossart, Hans-Peter A1 - Eigemann, Falk A1 - Voss, Maren T1 - Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria JF - Environmental microbiology N2 - Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products – mainly polysaccharides – directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the ‘phycosphere’ and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria. Y1 - 2018 U6 - https://doi.org/10.1111/1462-2920.14302 SN - 1462-2912 SN - 1462-2920 VL - 20 IS - 8 SP - 2671 EP - 2685 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Quiterio, Ana A1 - Martins, Joao A1 - Onofre, Marcos A1 - Costa, Joao A1 - Rodrigues, Joao Mota A1 - Gerlach, Erin A1 - Scheur, Claude A1 - Herrmann, Christian T1 - MOBAK 1 assessment in primary physical education BT - exploring basic motor competences of portuguese 6-Year-Olds JF - Perceptual & motor skills N2 - Children’s motor competence is known to have a determinant role in learning and engaging later in complex motor skills and, thus, in physical activity. The development of adequate motor competence is a central aim of physical education, and assuring that pupils are learning and developing motor competence depends on accurate assessment protocols. The MOBAK 1 test battery is a recent instrument developed to assess motor competence in primary physical education. This study used the MOBAK 1 to explore motor competence levels and gender differences among 249 (Mage = 6.3, SD = 0.5 years; 127 girls and 122 boys) Grade 1 primary school Portuguese children. On independent sample t tests, boys presented higher object movement motor competence than girls (boys: M = 5.8, SD = 1.7; girls: M = 4.0, SD = 1.7; p < .001), while girls were more proficient among self-movement skills (girls: M = 5.1, SD = 1.8; boys: M = 4.3, SD = 1.7; p < .01). On “total motor competence,” boys (M = 10.3, SD = 2.6) averaged one point ahead of girls (M = 9.1, SD = 2.9). The percentage of girls in the first quartile of object movement was 18.9%, while, for “self movement,” the percentage of boys in the first quartile was almost double that of girls (30.3% and 17.3%, respectively). The confirmatory model to test for construct validity confirmed the assumed theoretical two-factor structure of MOBAK 1 test items in this Portuguese sample. These results support the MOBAK 1 instrument for assessing motor competence and highlighted gender differences, of relevance to intervention efforts. KW - physical education KW - MOBAK 1 KW - instrument KW - assessment KW - motor competence Y1 - 2018 U6 - https://doi.org/10.1177/0031512518804358 SN - 0031-5125 SN - 1558-688X VL - 125 IS - 6 SP - 1055 EP - 1069 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Garcia, Sarahi L. A1 - Buck, Moritz A1 - Hamilton, Joshua J. A1 - Wurzbacher, Christian A1 - Grossart, Hans-Peter A1 - McMahon, Katherine D. A1 - Eiler, Alexander T1 - Model communities hint at promiscuous metabolic linkages between ubiquitous free-living freshwater bacteria JF - mSphere N2 - Genome streamlining is frequently observed in free-living aquatic microorganisms and results in physiological dependencies between microorganisms. However, we know little about the specificity of these microbial associations. In order to examine the specificity and extent of these associations, we established mixed cultures from three different freshwater environments and analyzed the cooccurrence of organisms using a metagenomic time series. Free-living microorganisms with streamlined genomes lacking multiple biosynthetic pathways showed no clear recurring pattern in their interaction partners. Free-living freshwater bacteria form promiscuous cooperative associations. This notion contrasts with the well-documented high specificities of interaction partners in host-associated bacteria. Considering all data together, we suggest that highly abundant free-living bacterial lineages are functionally versatile in their interactions despite their distinct streamlining tendencies at the single-cell level. This metabolic versatility facilitates interactions with a variable set of community members. KW - community KW - interactions KW - metagenomics KW - microbial ecology KW - mixed cultures KW - promiscuous Y1 - 2018 U6 - https://doi.org/10.1128/mSphere.00202-18 SN - 2379-5042 VL - 3 IS - 3 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Kaufmann, Hans Paul A1 - Duffus, Benjamin R. A1 - Mitrova, Biljana A1 - Iobbi-Nivol, Chantal A1 - Teutloff, Christian A1 - Nimtz, Manfred A1 - Jaensch, Lothar A1 - Wollenberger, Ulla A1 - Leimkühler, Silke T1 - Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamie N-Oxide Reductase JF - Biochemistry N2 - The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA. Y1 - 2018 U6 - https://doi.org/10.1021/acs.biochem.7b01108 SN - 0006-2960 VL - 57 IS - 7 SP - 1130 EP - 1143 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Lawas, Lovely Mae F. T1 - Molecular characterization of rice exposed to heat and drought stress at flowering and early grain filling Y1 - 2018 ER - TY - JOUR A1 - Jetzschmann, Katharina J. A1 - Yarman, Aysu A1 - Rustam, L. A1 - Kielb, P. A1 - Urlacher, V. B. A1 - Fischer, A. A1 - Weidinger, I. M. A1 - Wollenberger, Ulla A1 - Scheller, Frieder W. T1 - Molecular LEGO by domain-imprinting of cytochrome P450 BM3 JF - Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces N2 - Hypothesis: Electrosynthesis of the MIP nano-film after binding of the separated domains or holocytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Experiments: Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). Findings: The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the hiss-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The hiss-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. KW - Molecularly imprinted polymers KW - Protein imprinting KW - Electropolymerization KW - Cytochrome P450 Y1 - 2018 U6 - https://doi.org/10.1016/j.colsurfb.2018.01.047 SN - 0927-7765 SN - 1873-4367 VL - 164 SP - 240 EP - 246 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Rud, R. A1 - Käthner, Jana A1 - Giesser, J. A1 - Pasche, R. A1 - Giebel, Antje A1 - Selbeck, Jörn A1 - Shenderey, C. A1 - Fleury, D. A1 - Zude, Manuela A1 - Alchanatis, Victor T1 - Monitoring spatial variability in an apple orchard under different water regimes T2 - International Symposium on Sensing Plant Water Status - Methods and Applications in Horticultural Science N2 - Precision fruticulture addresses site or tree-adapted crop management. In the present study, soil and tree status, as well as fruit quality at harvest were analysed in a commercial apple (Malus × domestica 'Gala Brookfield'/Pajam1) orchard in a temperate climate. Trees were irrigated in addition to precipitation. Three irrigation levels (0, 50 and 100%) were applied. Measurements included readings of apparent electrical conductivity of soil (ECa), stem water potential, canopy temperature obtained by infrared camera, and canopy volume estimated by LiDAR and RGB colour imaging. Laboratory analyses of 6 trees per treatment were done on fruit considering the pigment contents and quality parameters. Midday stem water potential (SWP), normalized crop water stress index (CWSI) calculated from thermal data, and fruit yield and quality at harvest were analysed. Spatial patterns of the variability of tree water status were estimated by CWSI imaging supported by SWP readings. CWSI ranged from 0.1 to 0.7 indicating high variability due to irrigation and precipitation. Canopy volume data were less variable. Soil ECa appeared homogeneous in the range of 0 to 4 mS m-1. Fruit harvested in a drought stress zone showed enhanced portion of pheophytin in the chlorophyll pool. Irrigation affected soluble solids content and, hence, the quality of fruit. Overall, results highlighted that spatial variation in orchards can be found even if marginal variability of soil properties can be assumed. KW - apple KW - CWSI KW - precision agriculture KW - management zone Y1 - 2018 SN - 978-94-62611-93-1 U6 - https://doi.org/10.17660/ActaHortic.2018.1197.19 SN - 0567-7572 SN - 2406-6168 VL - 1197 SP - 139 EP - 146 PB - International Society for Horticultural Science CY - The Hague ER -