TY - THES A1 - Lisec, Jan T1 - Identification and characterization of metabolic Quantitative Trait Loci (QTL) in Arabidopsis thaliana T1 - Identifizierung und Charakterisierung von metabolischen Loci quantitativer Merkmale (QTL) in Arabidopsis thaliana N2 - Plants are the primary producers of biomass and thereby the basis of all life. Many varieties are cultivated, mainly to produce food, but to an increasing amount as a source of renewable energy. Because of the limited acreage available, further improvements of cultivated species both with respect to yield and composition are inevitable. One approach to further progress in developing improved plant cultivars is a systems biology oriented approach. This work aimed to investigate the primary metabolism of the model plant A.thaliana and its relation to plant growth using quantitative genetics methods. A special focus was set on the characterization of heterosis, the deviation of hybrids from their parental means for certain traits, on a metabolic level. More than 2000 samples of recombinant inbred lines (RILs) and introgression lines (ILs) developed from the two accessions Col-0 and C24 were analyzed for 181 metabolic traces using gas-chromatography/ mass-spectrometry (GC-MS). The observed variance allowed the detection of 157 metabolic quantitative trait loci (mQTL), genetic regions carrying genes, which are relevant for metabolite abundance. By analyzing several hundred test crosses of RILs and ILs it was further possible to identify 385 heterotic metabolic QTL (hmQTL). Within the scope of this work a robust method for large scale GC-MS analyses was developed. A highly significant canonical correlation between biomass and metabolic profiles (r = 0.73) was found. A comparable analysis of the results of the two independent experiments using RILs and ILs showed a large agreement. The confirmation rate for RIL QTL in ILs was 56 % and 23 % for mQTL and hmQTL respectively. Candidate genes from available databases could be identified for 67 % of the mQTL. To validate some of these candidates, eight genes were re-sequenced and in total 23 polymorphisms could be found. In the hybrids, heterosis is small for most metabolites (< 20%). Heterotic QTL gave rise to less candidate genes and a lower overlap between both populations than was determined for mQTL. This hints that regulatory loci and epistatic effects contribute to metabolite heterosis. The data described in this thesis present a rich source for further investigation and annotation of relevant genes and may pave the way towards a better understanding of plant biology on a system level. N2 - Pflanzen sind die Primärproduzenten von Biomasse und damit Grundlage allen Lebens. Sie werden nicht nur zur Gewinnung von Nahrungsmitteln, sondern zunehmend auch als Quelle erneuerbarer Energien kultiviert. Aufgrund der Begrenztheit der weltweit zu Verfügung stehenden Anbaufläche ist eine zielgerichtete Selektion und Verbesserung der verwendeten Sorten unabdingbar. Um solch eine kontinuierliche Verbesserung zu gewährleisten, ist ein grundlegendes Verständnis des biologischen Systems Pflanze nötig. Diese Arbeit hatte zum Ziel, den Primärmetabolismus der Modellpflanze A. thaliana mit Methoden der quantitativen Genetik zu untersuchen und in Beziehung zu Wachstum und Biomasse zu stellen. Insbesondere sollte Heterosis, die Abweichung von Hybriden in ihren Merkmalen vom Mittelwert der Eltern, auf Stoffwechselebene charakterisiert werden. Mit Hilfe der Gas Chromatographie/ Massen Spektrometrie (GC-MS) wurden über 2000 Proben von rekombinanten Inzucht Linien (RIL) und Introgressions Linien (IL) der Akzessionen Col 0 und C24 bezüglich des Vorkommens von 181 Metaboliten untersucht. Die beobachtete Varianz erlaubte die Bestimmung von 157 metabolischen QTL (mQTL), genetischen Regionen, die für die Metabolitkonzentrationen relevante Gene enthalten. Durch die Untersuchung von Testkreuzungen der RILs und ILs konnten weiterhin 385 heterotische metabolische QTL (hmQTL) identifiziert werden. Im Rahmen dieser Arbeit wurde eine robuste Methode zur Auswertung von GC-MS Analysen entwickelt. Es wurde eine hoch signifikante kanonische Korrelation (r=0.73) zwischen Biomasse und Metabolitprofilen gefunden. Die unterschiedlichen Ansätze zur QTL Analyse, RILs und ILs, wurden verglichen. Dabei konnte gezeigt werden, daß die Methoden komplementär sind, da mit RILs gefundene mQTL zu 56% und hmQTL zu 23% in ILs bestätigt wurden. Durch den Vergleich mit Datenbanken wurden für 67% der mQTL Kandidatengene identifiziert. Um diese zu überprüfen wurden acht dieser Gene resequenziert und insgesamt 23 Polymorphismen darin bestimmt. Die Heterosis in den Hybriden ist für die meisten Metabolite gering (<20%). Für hmQTL konnten weniger Kandidatengene als für mQTL bestimmt werden und sie zeigten eine geringere Übereinstimmung in den beiden Populationen. Dies deutet darauf hin, daß regulatorische Loci und epistatische Effekte einen wichtigen Beitrag zur Heterosis besteuern. Die gewonnenen Daten stellen eine reiche Quelle für die weitergehende Untersuchung und Annotation relevanter Gene dar und ebnen den Weg für ein besseres Verständnis des Systems Pflanze. KW - Arabidopsis thaliana KW - Metabolomics KW - QTL Analyse KW - Arabidopsis thaliana KW - Metabolomics KW - QTL mapping Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-25903 ER - TY - THES A1 - Martinez-Seidel, Federico T1 - Ribosome Heterogeneity and Specialization during Temperature Acclimation in Plants N2 - Ribosomes decode mRNA to synthesize proteins. Ribosomes, once considered static, executing machines, are now viewed as dynamic modulators of translation. Increasingly detailed analyses of structural ribosome heterogeneity led to a paradigm shift toward ribosome specialization for selective translation. As sessile organisms, plants cannot escape harmful environments and evolved strategies to withstand. Plant cytosolic ribosomes are in some respects more diverse than those of other metazoans. This diversity may contribute to plant stress acclimation. The goal of this thesis was to determine whether plants use ribosome heterogeneity to regulate protein synthesis through specialized translation. I focused on temperature acclimation, specifically on shifts to low temperatures. During cold acclimation, Arabidopsis ceases growth for seven days while establishing the responses required to resume growth. Earlier results indicate that ribosome biogenesis is essential for cold acclimation. REIL mutants (reil-dkos) lacking a 60S maturation factor do not acclimate successfully and do not resume growth. Using these genotypes, I ascribed cold-induced defects of ribosome biogenesis to the assembly of the polypeptide exit tunnel (PET) by performing spatial statistics of rProtein changes mapped onto the plant 80S structure. I discovered that growth cessation and PET remodeling also occurs in barley, suggesting a general cold response in plants. Cold triggered PET remodeling is consistent with the function of Rei-1, a REIL homolog of yeast, which performs PET quality control. Using seminal data of ribosome specialization, I show that yeast remodels the tRNA entry site of ribosomes upon change of carbon sources and demonstrate that spatially constrained remodeling of ribosomes in metazoans may modulate protein synthesis. I argue that regional remodeling may be a form of ribosome specialization and show that heterogeneous cytosolic polysomes accumulate after cold acclimation, leading to shifts in the translational output that differs between wild-type and reil-dkos. I found that heterogeneous complexes consist of newly synthesized and reused proteins. I propose that tailored ribosome complexes enable free 60S subunits to select specific 48S initiation complexes for translation. Cold acclimated ribosomes through ribosome remodeling synthesize a novel proteome consistent with known mechanisms of cold acclimation. The main hypothesis arising from my thesis is that heterogeneous/ specialized ribosomes alter translation preferences, adjust the proteome and thereby activate plant programs for successful cold acclimation. N2 - Ribosomen dekodieren mRNA, um Proteine zu synthetisieren. Ribosomen, früher als statische, ausführende Maschinen betrachtet, werden heute als dynamische Modulatoren der Translation angesehen. Zunehmend detailliertere Analysen der Strukturheterogenität von Ribosomen führte zu einem Paradigmenwechsel hin zu einer Spezialisierung von Ribosomen für eine selektive Translation. Als sessile Organismen können Pflanzen schädlichen Umwelteinflüssen nicht ausweichen und haben Strategien entwickelt, um diesen zu widerstehen. Zytosolische Ribosomen von Pflanzen sind in mancher Hinsicht vielfältiger, als die von anderen Metazoen. Diese Vielfalt könnte zur Stressakklimatisierung der Pflanzen beitragen. Ziel dieser Arbeit war es, festzustellen, ob Pflanzen die Heterogenität der Ribosomen nutzen, um die Proteinsynthese durch spezialisierte Translation zu regulieren. Ich habe mich auf die Temperaturakklimatisierung konzentriert, insbesondere auf den Wechsel zu niedrigen Temperaturen. Im Verlauf der Kälteakklimatisierung stellt Arabidopsis das Wachstum für sieben Tage ein. Währenddessen etabliert sie die für die Wiederaufnahme des Wachstums erforderlichen Anpassungen. Vorherige Ergebnisse deuten darauf hin, dass Ribosomenbiogenese für die Kälteakklimatisierung essentiell ist. REIL-Mutanten (reil-dkos), denen ein 60S-Reifungsfaktor fehlt, akklimatisieren sich nicht erfolgreich und nehmen das Wachstum nicht wieder auf. Anhand dieser Genotypen habe ich kältebedingte Defekte der Ribosomenbiogenese auf den Aufbau des Polypeptidaustritts-Tunnels (PET) zurückgeführt, indem ich räumliche statistische Analysen von rProtein-Veränderungen auf die pflanzliche 80S-Struktur abgebildet habe. Ich habe entdeckt, dass Wachstumsstillstand und PET-Umbau auch in Gerste auftreten, was auf eine allgemeine Kältereaktion in Pflanzen hindeutet. Der durch Kälte ausgelöste PET-Umbau stimmt über ein mit der Funktion von Rei-1, einem REIL-homologen Protein aus Hefe, in der Rei-1 die PET-Qualitätskontrolle durchführt. Anhand bahnbrechender Daten zur Ribosomenspezialisierung zeige ich, dass Hefe die tRNA-Eintrittsstelle von Ribosomen bei einem Wechsel von Kohlenstoffquellen umbaut, und demonstriere, dass ein räumlich begrenzter Umbau von Ribosomen in Metazoen die Proteinsynthese modulieren kann. Ich argumentiere, dass die regionale Umgestaltung eine Form der Ribosomenspezialisierung sein kann, und zeige, dass nach einer Kälteakklimatisierung heterogene zytosolische Polysomen akkumulieren, was zu Verschiebungen im Translationsoutput führt, der sich zwischen Wildtyp und reil-dkos unterscheidet. Ich habe festgestellt, dass die heterogenen Komplexe aus neu synthetisierten und wiederverwendeten Proteinen bestehen. Ich schlage vor, dass maßgeschneiderte Ribosomenkomplexe freie 60S-Untereinheiten in die Lage versetzen, spezifische 48S-Initiationskomplexe für die Translation auszuwählen. Kälte-akklimatisierte Ribosomen synthetisieren durch Ribosomenumbau ein neues Proteom, das mit bekannten Mechanismen der Kälteakklimatisierung übereinstimmt. Die Haupthypothese, die sich aus meiner Arbeit ergibt, ist, dass heterogene/spezialisierte Ribosomen ihre Translationspräferenzen verändern, das Proteom anpassen und dadurch Pflanzenprogramme für eine erfolgreiche Kälteakklimatisierung aktivieren. T2 - Ribosomenheterogenität und -spezialisierung während der Temperaturakklimatisierung in Pflanzen KW - Ribosome specialization KW - Ribosomal protein heterogeneity KW - Ribosomal protein substoichiometry KW - Protein synthesis KW - Translational regulation KW - Plant cytosolic translation KW - Cold acclimation KW - Ribosome biogenesis KW - 60S maturation KW - Hordeum vulgare KW - Arabidopsis thaliana KW - 60S-Reifung KW - Kälteakklimatisierung KW - Cytosolische Translation in Pflanzen KW - Proteinsynthese KW - Ribosomale Proteinheterogenität KW - Ribosomale Protein Substöchiometrie KW - Ribosomen-Biogenese KW - Ribosomen-Spezialisierung KW - Translationsregulation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-580724 ER - TY - THES A1 - Schaarschmidt, Stephanie T1 - Evaluation and application of omics approaches to characterize molecular responses to abiotic stresses in plants T1 - Evaluierung und Anwendung von Omics-Methoden zur Charakterisierung von abiotischem Stress in Pflanzen auf molekularer Ebene N2 - Aufgrund des globalen Klimawandels ist die Gewährleistung der Ernährungssicherheit für eine wachsende Weltbevölkerung eine große Herausforderung. Insbesondere abiotische Stressoren wirken sich negativ auf Ernteerträge aus. Um klimaangepasste Nutzpflanzen zu entwickeln, ist ein umfassendes Verständnis molekularer Veränderungen in der Reaktion auf unterschiedlich starke Umweltbelastungen erforderlich. Hochdurchsatz- oder "Omics"-Technologien können dazu beitragen, Schlüsselregulatoren und Wege abiotischer Stressreaktionen zu identifizieren. Zusätzlich zur Gewinnung von Omics-Daten müssen auch Programme und statistische Analysen entwickelt und evaluiert werden, um zuverlässige biologische Ergebnisse zu erhalten. Ich habe diese Problemstellung in drei verschiedenen Studien behandelt und dafür zwei Omics-Technologien benutzt. In der ersten Studie wurden Transkript-Daten von den beiden polymorphen Arabidopsis thaliana Akzessionen Col-0 und N14 verwendet, um sieben Programme hinsichtlich ihrer Fähigkeit zur Positionierung und Quantifizierung von Illumina RNA Sequenz-Fragmenten („Reads“) zu evaluieren. Zwischen 92% und 99% der Reads konnten an die Referenzsequenz positioniert werden und die ermittelten Verteilungen waren hoch korreliert für alle Programme. Bei der Durchführung einer differentiellen Genexpressionsanalyse zwischen Pflanzen, die bei 20 °C oder 4 °C (Kälteakklimatisierung) exponiert wurden, ergab sich eine große paarweise Überlappung zwischen den Programmen. In der zweiten Studie habe ich die Transkriptome von zehn verschiedenen Oryza sativa (Reis) Kultivaren sequenziert. Dafür wurde die PacBio Isoform Sequenzierungstechnologie benutzt. Die de novo Referenztranskriptome hatten zwischen 38.900 bis 54.500 hoch qualitative Isoformen pro Sorte. Die Isoformen wurden kollabiert, um die Sequenzredundanz zu verringern und danach evaluiert z.B. hinsichtlich des Vollständigkeitsgrades (BUSCO), der Transkriptlänge und der Anzahl einzigartiger Transkripte pro Genloci. Für die hitze- und trockenheitstolerante Sorte N22 wurden ca. 650 einzigartige und neue Transkripte identifiziert, von denen 56 signifikant unterschiedlich in sich entwickelnden Samen unter kombiniertem Trocken- und Hitzestress exprimiert wurden. In der letzten Studie habe ich die Veränderungen in Metabolitprofilen von acht Reissorten gemessen und analysiert, die dem Stress hoher Nachttemperaturen (HNT) ausgesetzt waren und während der Trocken- und Regenzeit im Feld auf den Philippinen angebaut wurden. Es wurden jahreszeitlich bedingte Veränderungen im Metabolitspiegel sowie für agronomische Parameter identifiziert und mögliche Stoffwechselwege, die einen Ertragsrückgang unter HNT-Bedingungen verursachen, vorgeschlagen. Zusammenfassend konnte ich zeigen, dass der Vergleich der RNA-seq Programme den Pflanzenwissenschaftler*innen helfen kann, sich für das richtige Werkzeug für ihre Daten zu entscheiden. Die de novo Transkriptom-Rekonstruktion von Reissorten ohne Genomsequenz bietet einen gezielten, kosteneffizienten Ansatz zur Identifizierung neuer Gene, die durch verschiedene Stressbedingungen reguliert werden unabhängig vom Organismus. Mit dem Metabolomik-Ansatz für HNT-Stress in Reis habe ich stress- und jahreszeitenspezifische Metabolite identifiziert, die in Zukunft als molekulare Marker für die Verbesserung von Nutzpflanzen verwendet werden könnten. N2 - Due to global climate change providing food security for an increasing world population is a big challenge. Especially abiotic stressors have a strong negative effect on crop yield. To develop climate-adapted crops a comprehensive understanding of molecular alterations in the response of varying levels of environmental stresses is required. High throughput or ‘omics’ technologies can help to identify key-regulators and pathways of abiotic stress responses. In addition to obtain omics data also tools and statistical analyses need to be designed and evaluated to get reliable biological results. To address these issues, I have conducted three different studies covering two omics technologies. In the first study, I used transcriptomic data from the two polymorphic Arabidopsis thaliana accessions, namely Col-0 and N14, to evaluate seven computational tools for their ability to map and quantify Illumina single-end reads. Between 92% and 99% of the reads were mapped against the reference sequence. The raw count distributions obtained from the different tools were highly correlated. Performing a differential gene expression analysis between plants exposed to 20 °C or 4°C (cold acclimation), a large pairwise overlap between the mappers was obtained. In the second study, I obtained transcript data from ten different Oryza sativa (rice) cultivars by PacBio Isoform sequencing that can capture full-length transcripts. De novo reference transcriptomes were reconstructed resulting in 38,900 to 54,500 high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g. for protein completeness level (BUSCO), transcript length, and number of unique transcripts per gene loci. For the heat and drought tolerant aus cultivar N22, I identified around 650 unique and novel transcripts of which 56 were significantly differentially expressed in developing seeds during combined drought and heat stress. In the last study, I measured and analyzed the changes in metabolite profiles of eight rice cultivars exposed to high night temperature (HNT) stress and grown during the dry and wet season on the field in the Philippines. Season-specific changes in metabolite levels, as well as for agronomic parameters, were identified and metabolic pathways causing a yield decline at HNT conditions suggested. In conclusion, the comparison of mapper performances can help plant scientists to decide on the right tool for their data. The de novo reconstruction of rice cultivars without a genome sequence provides a targeted, cost-efficient approach to identify novel genes responding to stress conditions for any organism. With the metabolomics approach for HNT stress in rice, I identified stress and season-specific metabolites which might be used as molecular markers for crop improvement in the future. KW - Arabidopsis thaliana KW - Oryza sativa KW - RNA-seq KW - PacBio IsoSeq KW - metabolomics KW - high night temperature KW - combined heat and drought stress KW - natural genetic variation KW - differential gene expression KW - Arabidopsis thaliana KW - Oryza sativa KW - PacBio IsoSeq KW - RNA-seq KW - kombinierter Hitze- und Trockenstress KW - erhöhte Nachttemperaturen KW - Differenzielle Genexpression KW - Metabolomik KW - natürliche genetische Variation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509630 ER - TY - THES A1 - Vyse, Kora T1 - Elucidating molecular determinants of the loss of freezing tolerance during deacclimation after cold priming and low temperature memory after triggering N2 - Während ihrer Entwicklung müssen sich Pflanzen an Temperaturschwankungen anpassen. Niedrige Temperaturen über dem Gefrierpunkt induzieren in Pflanzen eine Kälteakklimatisierung und höhere Frosttoleranz, die sich bei wärmeren Temperaturen durch Deakklimatisierung wieder zurückbildet. Der Wechsel zwischen diesen beiden Prozessen ist für Pflanzen unerlässlich, um als Reaktion auf unterschiedliche Temperaturbedingungen eine optimale Fitness zu erreichen. Die Kälteakklimatisierung ist umfassend untersucht worden,über die Regulierung der Deakklimatisierung ist jedoch wenig bekannt. In dieser Arbeit wird der Prozess der Deakklimatisierung auf physiologischer und molekularer Ebene in Arabidopsis thaliana untersucht. Messungen des Elektrolytverlustes während der Kälteakklimatisierung und bis zu vier Tagen nach Deakklimatisierung ermöglichten die Identifizierung von vier Knockout-Mutanten (hra1, lbd41, mbf1c und jub1), die im Vergleich zum Wildtyp eine langsamere Deakklimatisierungsrate aufwiesen. Eine transkriptomische Studie mit Hilfe von RNA-Sequenzierung von A. thaliana Col-0, jub1 und mbf1c zeigte die Bedeutung der Hemmung von stressreaktiven und Jasmonat-ZIM-Domänen-Genen sowie die Regulierung von Zellwandmodifikationen während der Deakklimatisierung. Darüber hinaus zeigten Messungen der Alkoholdehydrogenase Aktivität und der Genexpressionsänderungen von Hypoxiemarkern während der ersten vier Tagen der Deakklimatisierung, dass eine Hypoxie-Reaktion während der Deakklimatisierung aktiviert wird. Es wurde gezeigt, dass die epigenetische Regulierung während der Kälteakklimatisierung und der 24-stündigen Deakklimatisierung in A. thaliana eine große Rolle spielt. Darüber hinaus zeigten beide Deakklimatisierungsstudien, dass die frühere Hypothese, dass Hitzestress eine Rolle bei der frühen Deakklimatisierung spielen könnte, unwahrscheinlich ist. Eine Reihe von DNA- und Histondemethylasen sowie Histonvarianten wurden während der Deakklimatisierung hochreguliert, was auf eine Rolle im pflanzlichen Gedächtnis schließen lässt. In jüngster Zeit haben mehrere Studien gezeigt, dass Pflanzen in der Lage sind, die Erinnerung an einen vorangegangenen Kältestress auch nach einer Woche Deakklimatisierung zu bewahren. In dieser Arbeit ergaben Transkriptom- und Metabolomanalysen von Arabidopsis während 24 Stunden Priming (Kälteakklimatisierung) und Triggering (wiederkehrender Kältestress nach Deakklimatisierung) eine unikale signifikante und vorübergehende Induktion der Transkriptionsfaktoren DREB1D, DREB1E und DREB1F während des Triggerings, die zur Feinabstimmung der zweiten Kältestressreaktion beiträgt. Darüber hinaus wurden Gene, die für Late Embryogenesis Abundant (LEA) und Frostschutzproteine kodieren, sowie Proteine, die reaktive Sauerstoffspezies entgiften, während des späten Triggerings (24 Stunden) stärker induziert als nach dem ersten Kälteimpuls, während Xyloglucan- Endotransglucosylase/Hydrolase Gene, deren Produkte für eine Restrukturierung der Zellwand verantwortlich sind, früh auf das Triggering reagierten. Die starke Induktion dieser Gene, sowohl bei der Deakklimatisierung als auch beim Triggering, lässt vermuten, dass sie eine wesentliche Rolle bei der Stabilisierung der Zellen während des Wachstums und bei der Reaktion auf wiederkehrende Stressbedingungen spielen. Zusammenfassend gibt diese Arbeit neue Einblicke in die Regulierung der Deakklimatisierung und des Kältestress-Gedächtnisses in A. thaliana und eröffnet neue Möglichkeiten für künftige, gezielte Studien von essentiellen Genen in diesem Prozess. N2 - Throughout their lifetime plants need to adapt to temperature changes. Plants adapt to nonfreezing cold temperatures in a process called cold priming (cold acclimation) and lose the acquired freezing tolerance during warmer temperatures through deacclimation. The alternation of both processes is essential for plants to achieve optimal fitness in response to different temperature conditions. Cold acclimation has been extensively studied, however, little is known about the regulation of deacclimation. This thesis elucidates the process of deacclimation on a physiological and molecular level in Arabidopsis thaliana. Electrolyte leakage measurements during cold acclimation and up to four days of deacclimation enabled the identification of four knockout mutants (hra1, lbd41, mbf1c and jub1) with a slower rate of deacclimation compared to the wild type. A transcriptomic study using RNA-Sequencing in A. thaliana Col-0, jub1 and mbf1c identified the importance of the inhibition of stress responsive and Jasmonate-ZIM-domain genes as well as the regulation of cell wall modifications during deacclimation. Moreover, measurements of alcohol dehydrogenase activity and gene expression changes of hypoxia markers during the first four days of deacclimation evidently showed that a hypoxia response is activated during deacclimation. Epigenetic regulation was observed to be extensively involved during cold acclimation and 24 h of deacclimation in A. thaliana. Further, both deacclimation studies showed that the previous hypothesis that heat stress might play a role in early deacclimation, is not likely. A number of DNA- and histone demethylases as well as histone variants were upregulated during deacclimation suggesting a role in plant memory. Recently, multiple studies have shown that plants are able to retain memory of a previous cold stress even after a week of deacclimation. In this work, transcriptomic and metabolomic analyses of Arabidopsis during 24 h of priming (cold acclimation) and triggering (recurring cold stress after deacclimation) revealed a uniquely significant and transient induction of DREB1D, DREB1E and DREB1F transcription factors during triggering contributing to fine-tuning of the second cold stress response. Furthermore, genes encoding Late Embryogenesis Abundant (LEA) and antifreeze proteins and proteins detoxifying reactive oxygen species were higher induced during late triggering (24 h) compared to primed samples, while cell wall remodelers of the class xyloglucan endotransglucosylase/hydrolase were early responders of triggering. The high induction of cell wall remodelers during deacclimation as well as triggering proposes that these proteins play an essential role in the stabilization of the cells during growth as well as the response to recurring stresses. Collectively this work gives new insights on the regulation of deacclimation and cold stress memory in A. thaliana and opens the door to future targeted studies of essential genes in this process. KW - cold stress KW - deacclimation KW - Arabidopsis thaliana KW - epigenetics KW - co-expression network analysis KW - WGCNA KW - RNA-sequencing KW - differential gene expression KW - hypoxia KW - transcription factors KW - Kältestress KW - Deakklimatisierung KW - Epigenetik KW - Koexpression Netzwerk Analysen KW - RNA-Sequenzierung KW - Differenzielle Genexpression KW - Hypoxie KW - Transkriptionsfaktoren Y1 - 2022 ER - TY - THES A1 - von Bismarck, Thekla T1 - The influence of long-term light acclimation on photosynthesis in dynamic light N2 - Photosynthesis converts light into metabolic energy which fuels plant growth. In nature, many factors influence light availability for photosynthesis on different time scales, from shading by leaves within seconds up to seasonal changes over months. Variability of light energy supply for photosynthesis can limit a plant´s biomass accumulation. Plants have evolved multiple strategies to cope with strongly fluctuation light (FL). These range from long-term optimization of leaf morphology and physiology and levels of pigments and proteins in a process called light acclimation, to rapid changes in protein activity within seconds. Therefore, uncovering how plants deal with FL on different time scales may provide key ideas for improving crop yield. Photosynthesis is not an isolated process but tightly integrates with metabolism through mutual regulatory interactions. We thus require mechanistic understanding of how long-term light acclimation shapes both, dynamic photosynthesis and its interactions with downstream metabolism. To approach this, we analyzed the influence of growth light on i) the function of known rapid photosynthesis regulators KEA3 and VCCN1 in dynamic photosynthesis (Chapter 2-3) and ii) the interconnection of photosynthesis with photorespiration (PR; Chapter 4). We approached topic (i) by quantifying the effect of different growth light regimes on photosynthesis and photoprotection by using kea3 and vccn1 mutants. Firstly, we found that, besides photosynthetic capacity, the activities of VCCN1 and KEA3 during a sudden high light phase also correlated with growth light intensity. This finding suggests regulation of both proteins by the capacity of downstream metabolism. Secondly, we showed that KEA3 accelerated photoprotective non-photochemical quenching (NPQ) kinetics in two ways: Directly via downregulating the lumen proton concentration and thereby de-activating pH-dependent NPQ, and indirectly via suppressing accumulation of the photoprotective pigment zeaxanthin. For topic (ii), we analyzed the role of PR, a process which recycles a toxic byproduct of the carbon fixation reactions, in metabolic flexibility in a dynamically changing light environment. For this we employed the mutants hpr1 and ggt1 with a partial block in PR. We characterized the function of PR during light acclimation by tracking molecular and physiological changes of the two mutants. Our data, in contrast to previous reports, disprove a generally stronger physiological relevance of PR under dynamic light conditions. Additionally, the two different mutants showed pronounced and distinct metabolic changes during acclimation to a condition inducing higher photosynthetic activity. This underlines that PR cannot be regarded purely as a cyclic detoxification pathway for 2PG. Instead, PR is highly interconnected with plant metabolism, with GGT1 and HPR1 representing distinct metabolic modulators. In summary, the presented work provides further insight into how energetic and metabolic flexibility is ensured by short-term regulators and PR during long-term light acclimation. N2 - Photosynthese wandelt Lichtenergie in metabolische Energie um, welche das Pflanzenwachstum antreibt. In der Natur wird die Verfügbarkeit von Licht von vielerlei Faktoren auf unterschiedlichen Zeitskalen beeinflusst, z. B. von der Beschattung durch Blätter innerhalb von Sekunden bis hin zu jahreszeitlichen Veränderungen über Monate. Fluktuationen in der Lichtenergieverfügbarkeit in der Natur kann die Biomasseakkumulation der Pflanzen limitieren. Pflanzen haben verschiedene Strategien entwickelt, um stark fluktuierendes Licht nutzen zu können. Diese reichen von der langfristigen Optimierung der Blattmorphologie und Physiologie und des Gehalts an Pigmenten und Proteinen in dem Prozess der Lichtakklimatisierung bis hin zu schnellen Veränderungen der Proteinaktivität innerhalb von Sekunden. Daher kann die Aufdeckung der Art und Weise, wie Pflanzen mit FL auf verschiedenen Zeitskalen umgehen, wichtige Ideen zur Verbesserung der Ernteerträge liefern. Die Photosynthese ist kein isolierter Prozess, sondern steht in enger Interaktion mit den nachgeschalteten Stoffwechselwegen. Daher benötigen wir mechanistisches Verständnis, wie Lichtakklimatisierung die dynamische Photosynthese als auch deren Interaktion mit Downstream-Metabolismus moduliert. Dafür haben wir den Einfluss von Lichtakklimatisierung auf i) die Funktion der schnellen Photosyntheseregulatoren KEA3 und VCCN1 in der dynamischen Photosynthese und ii) die flexible Interaktion von Photorespiration mit Photosynthese analysiert. Im ersten Themenkomplex (i) wurden die Auswirkungen verschiedener Wachstumslicht-bedingungen auf Photosynthese und Photoprotektion anhand von kea3- und vccn1-Mutanten quantifiziert. Zum einen konnten wir zeigen, dass neben der photosynthetischen Kapazität auch die Aktivitäten von VCCN1 und KEA3 während eines Hochlichtpulses mit der Wachstumslichtintensität korrelierten. Dies deutet auf eine Regulierung beider Proteine durch die Kapazität des Downstream-Metabolismus hin. Zum anderen beschleunigte KEA3 die Kinetik des photoprotektiven nicht-photochemischen Quenchings (NPQ) auf zweifache Weise: Direkt über die Herabregulierung der lumenalen Protonenkonzentration, was den pH-abhängigen NPQ deaktivierte, und indirekt über die Unterdrückung der Akkumulation des photoprotektiven Pigments Zeaxanthin. Für das zweite Thema (ii) untersuchten wir die Rolle des photorespiratorischen Metabolismus (PR), welcher ein toxisches Nebenprodukt der Kohlenstofffixierungsreaktionen recycelt, in der metabolischen Flexibilität in einer sich dynamisch verändernden Lichtumgebung. Dazu verwendeten wir die Mutanten hpr1 und ggt1 mit teilweise blockiertem PR Flux. Unsere Daten widerlegen, im Gegensatz zu früheren Berichten, eine allgemein größere physiologische Bedeutung von PR unter dynamischen Lichtbedingungen. Die beiden Mutanten zeigten ausgeprägte und distinkte metabolische Veränderungen während der Akklimatisierung an eine Bedingung mit höherer photosynthetischer Aktivität. Dies zeigt, dass PR nicht ausschließlich als zyklischer Entgiftungsweg für 2PG angesehen werden kann. Vielmehr ist PR tief in den pflanzlichen Stoffwechsel eingebettet, wobei GGT1 und HPR1 als distinkte Stellschrauben des Downstream-Metabolismus agieren. Zusammenfassend liefert die vorliegende Arbeit weitere Erkenntnisse darüber, wie die energetische und metabolische Flexibilität durch kurzfristige Regulatoren und den photorespiratorischen Metabolismus während der langfristigen Lichtakklimatisierung gewährleistet wird. KW - photosynthesis KW - fluctuating light KW - Arabidopsis thaliana KW - Photosynthese KW - fluktuierendes Licht Y1 - 2023 ER - TY - JOUR A1 - Malinova, Irina A1 - Mahto, Harendra A1 - Brandt, Felix A1 - AL-Rawi, Shadha A1 - Qasim, Hadeel A1 - Brust, Henrike A1 - Hejazi, Mahdi A1 - Fettke, Jörg T1 - EARLY STARVATION1 specifically affects the phosphorylation action of starch-related dikinases JF - The plant journal N2 - Starch phosphorylation by starch-related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50-kDa starch-binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various invitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, -glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface. KW - Arabidopsis thaliana KW - EARLY STARVATION1 KW - glucan KW - phosphoglucan KW - starch granule surface KW - starch phosphorylation KW - water dikinase Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13937 SN - 0960-7412 SN - 1365-313X VL - 95 IS - 1 SP - 126 EP - 137 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Merida, Angel A1 - Fettke, Jörg T1 - Starch granule initiation in Arabidopsis thaliana chloroplasts JF - The plant journal N2 - The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs. KW - starch granules KW - starch metabolism KW - starch granule initiation KW - starch KW - granule number per chloroplast KW - starch morphology KW - Arabidopsis thaliana Y1 - 2021 U6 - https://doi.org/10.1111/tpj.15359 SN - 0960-7412 SN - 1365-313X VL - 107 IS - 3 SP - 688 EP - 697 PB - Wiley CY - Hoboken ER - TY - THES A1 - Skirycz, Aleksandra T1 - Functional analysis of selected DOF transcription factors in the model plant Arabidopsis thaliana T1 - Funktionsanalyse ausgewählter DOF-Transkriptionsfaktoren bei der Modellpflanze Arabidopsis thaliana N2 - Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To identify biological processes regulated by OBP1, OBP2 and AtDOF4;2 in detail molecular and physiological characterization of transgenic plants with modified levels of OBP1, OBP2 and AtDOF4;2 expression (constitutive and inducible over-expression, RNAi) was performed using both targeted and profiling technologies. Additionally expression patterns of studied TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally selected target genes were confirmed by chromatin immuno-precipitation and electrophoretic-mobility shift assays. This combinatorial approach revealed distinct biological functions of OBP1, OBP2 and AtDOF4;2. Specifically OBP2 controls indole glucosinolate / auxin homeostasis by directly regulating the enzyme at the branch of these pathways; CYP83B1 (Skirycz et al., 2006). Glucosinolates are secondary compounds important for defence against herbivores and pathogens in the plants order Caparales (e.g. Arabidopsis, canola and broccoli) whilst auxin is an essential plant hormone. Hence OBP2 is important for both response to biotic stress and plant growth. Similarly to OBP2 also AtDOF4;2 is involved in the regulation of plant secondary metabolism and affects production of various phenylpropanoid compounds in a tissue and environmental specific manner. It was found that under certain stress conditions AtDOF4;2 negatively regulates flavonoid biosynthetic genes whilst in certain tissues it activates hydroxycinnamic acid production. It was hypothesized that this dual function is most likely related to specific interactions with other proteins; perhaps other TFs (Skirycz et al., 2007). Finally OBP1 regulates both cell proliferation and cell expansion. It was shown that OBP1 controls cell cycle activity by directly targeting the expression of core cell cycle genes (CYCD3;3 and KRP7), other TFs and components of the replication machinery. Evidence for OBP1 mediated activation of cell cycle during embryogenesis and germination will be presented. Additionally and independently on its effects on cell proliferation OBP1 negatively affects cell expansion via reduced expression of cell wall loosening enzymes. Summing up this work provides an important input into our knowledge on DOF TFs function. Future work will concentrate on establishing exact regulatory networks of OBP1, OBP2 and AtDOF4;2 and their possible biotechnological applications. N2 - Biologische Prozesse, wie beispielsweise das Wachstum von Organen und ganzen Organismen oder die Reaktion von Lebewesen auf ungünstige Umweltbedingungen, unterliegen zahlreichen Regulationsmechanismen. Besonders wichtige Regulatoren sind die sogenannten Transkriptionsfaktoren. Dabei handelt es sich um Proteine, die die Aktivität von Erbeinheiten, den Genen, beeinflussen. In Pflanzen gibt es etwa 2000 solcher Regulatoren. Da sie wichtige Kontrollelemente darstellen, sind sie von großem wissenschaftlichen und biotechnologischen Interesse. Im Rahmen der Doktorarbeit sollte die Funktion von drei Transkriptionsfaktoren, genannt OBP1, OBP2 und AtDOF4;2, untersucht werden. Sie wurden bei der Suche nach neuen Wachstumsregulatoren identifiziert. Als Untersuchungsobjekt diente die in der Öffentlichkeit kaum bekannte Pflanze Ackerschmalwand, lateinisch als Arabidopsis thaliana bezeichnet. Um die Funktion der Regulatoren zu entschlüsseln, wurden an der Modellpflanze genetische Veränderungen durchgeführt und die Pflanzen dann mit molekularbiologischen und physiologischen Methoden analysiert. Es zeigte sich, dass OBP1 an der Regulation der Zellteilung beteiligt ist. Alle Lebewesen sind aus Zellen aufgebaut. Gelingt es, die Zellteilung gezielt zu steuern, kann damit beispielsweise die Produktion von pflanzlicher Biomasse verbessert werden. Das OBP1-Protein übt auch einen Einfluss auf die Zellstreckung aus und beeinflusst auch auf diesem Wege das pflanzliche Wachstum. Die beiden anderen Proteine steuern Prozesse, die im Zusammenhang mit der Bildung von Pflanzeninhaltsstoffen stehen. OBP2 ist Teil eines zellulären Netzwerkes, dass die Synthese von sogenannten Glucosinolaten steuert. Glucosinolate kommen unter anderem in Broccoli und Kohl vor. Sie fungieren als Abwehrstoffe gegen Fraßinsekten. Einigen Glucosinolaten wird auch gesundheitsfördernde Wirkung zugesprochen. Das Protein AtDOF4;2 ist Komponente eines anderen Netzwerkes, dass die Bildung von Phenylpropanoiden steuert. Diese Substanzen haben strukturelle Funktion und spielen darüber hinaus eine Rolle bei der pflanzlichen Toleranz gegenüber tiefen Temperaturen. Mit der Doktorarbeit konnte das Wissen über die Transkriptionsfaktoren erheblich erweitert und die Grundlage für interessante zukünftige Arbeiten gelegt werden. Von großer Bedeutung wird es dabei sein, die Netzwerke, in die die Transkriptionsfaktoren eingebunden sind, noch besser zu verstehen. Dann wird es möglich sein, auch Teilnetzwerke gezielt zu beeinflussen, was für biotechnologische Anwendungen, beispielsweise bei der Präzisionszüchtung von nachwachsenden Rohstoffen, von zentraler Bedeutung ist. KW - Transkriptionsfaktoren KW - Arabidopsis thaliana KW - transcription factors KW - Arabidopsis thaliana KW - cell cycle KW - secondary metabolism Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16987 ER - TY - THES A1 - Krebs, Jonas T1 - Molecular and physiological characterisation of selected DOF transcription factors in the model plant Arabidopsis thaliana T1 - Molekulare und physiologische Charakterisierung ausgewählter DOF Transkriptionsfaktoren in der Modellpflanze Arabidopsis thaliana N2 - About 2,000 of the more than 27,000 genes of the genetic model plant Arabidopsis thaliana encode for transcription factors (TFs), proteins that bind DNA in the promoter region of their target genes and thus act as transcriptional activators and repressors. Since TFs play essential roles in nearly all biological processes, they are of great scientific and biotechnological interest. This thesis concentrated on the functional characterisation of four selected members of the Arabidopsis DOF-family, namely DOF1.2, DOF3.1, DOF3.5 and DOF5.2, which were selected because of their specific expression pattern in the root tip, a region that comprises the stem cell niche and cells for the perception of environmental stimuli. DOF1.2, DOF3.1 and DOF3.5 are previously uncharacterized members of the Arabidopsis DOF-family, while DOF5.2 has been shown to be involved in the phototrophic flowering response. However, its role in root development has not been described so far. To identify biological processes regulated by the four DOF proteins in detail, molecular and physiological characterization of transgenic plants with modified levels of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 expression (constitutive and inducible over-expression, artificial microRNA) was performed. Additionally expression patterns of the TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally putative protein-protein interaction partners and upstream regulating TFs were identified using the yeast two-hybrid and one-hybrid system. This combinatorial approach revealed distinct biological functions of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 in the context of root development. DOF1.2 and DOF3.5 are specifically and exclusively expressed in the root cap, including the central root cap (columella) and the lateral root cap, organs which are essential to direct oriented root growth. It could be demonstrated that both genes work in the plant hormone auxin signaling pathway and have an impact on distal cell differentiation. Altered levels of gene expression lead to changes in auxin distribution, abnormal cell division patterns and altered root growth orientation. DOF3.1 and DOF5.2 share a specific expression pattern in the organizing centre of the root stem cell niche, called the quiescent centre. Both genes redundantly control cell differentiation in the root´s proximal meristem and unravel a novel transcriptional regulation pathway for genes enriched in the QC cells. Furthermore this work revealed a novel bipartite nuclear localisation signal being present in the protein sequence of the DOF TF family from all sequenced plant species. Summing up, this work provides an important input into our knowledge about the role of DOF TFs during root development. Future work will concentrate on revealing the exact regulatory networks of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 and their possible biotechnological applications. N2 - Mehr noch als Tiere, die ihren Lebensraum unter widrigen Umständen verlassen können, sind Pflanzen mit einem festen Standort auf ihre Anpassungsfähigkeit angewiesen. Einen entscheidenden Beitrag dazu leistet die Genregulation, d.h. das gezielte An- und Ausschalten von Erbanlagen, den Genen. Vermittelt wird dieser Regulationsprozess unter anderem durch Transkriptionsfaktoren: Proteine, die die Fähigkeit besitzen, an bestimmte Regionen der Gene zu binden und damit deren Aktivität zu beeinflussen. In der Ackerschmalwand (Arabidopsis thaliana), die als Modellpflanze in der Genetik verwendet wird, existieren etwa 2000 solcher Transkriptionsfaktoren, eingeteilt in Familien, von denen einige auch in tierischen Organismen auftreten, andere pflanzenspezifisch sind. Auf Grund ihrer Funktion als wichtige Kontrollelemente sind sie von großem wissenschaftlichem und biotechnologischem Interesse. Im Rahmen dieser Doktorarbeit sollte die Funktion von vier pflanzenspezifischen Transkriptionsfaktoren, genannt DOF1.2, DOF3.1, DOF3.5 und DOF5.2, untersucht werden, welche durch ihre spezifische Aktivität in der Wurzelspitze der Ackerschmalwand identifiziert wurden. Um die Funktion dieser vier Regulatoren aufzuklären, wurden an der Modellpflanze gentechnische Veränderungen durchgeführt und die so veränderten, auch als transgen bezeichneten Pflanzen mit molekularbiologischen und physiologischen Methoden untersucht. Es konnte gezeigt werden, dass DOF1.2 und DOF3.5 eine wesentliche Funktion beim gerichteten Wurzelwachstum spielen und ein seitliches Wachsen der Wurzel aufgrund veränderter Umwelteinflüsse verhindern, bzw. hervorrufen können. Die beiden anderen Proteine DOF3.1 und DOF5.2 erfüllen ihre Funktion in der Stammzellnische der Wurzel. Vergleichbar mit tierischen Stammzellen sind auch pflanzliche Stammzellen nicht zu einem bestimmten Zelltyp herangereift, sondern verbleiben in einem sogenannten undifferenzierten Zustand. Es konnte gezeigt werden, dass DOF3.1 und DOF5.2 zum Erhalt dieses Zustands benötigt werden, da nach Inaktivierung beider Proteine Zellspezialisierungen auftreten, die bei gentechnisch unveränderten Pflanzen nicht auftreten. Desweiteren konnte in dieser Arbeit geklärt werden, welcher Proteinabschnitt der DOF-Proteine für ihren Transport in den Zellkern notwendig ist. Denn da die pflanzlichen Erbanlagen im Zellkern vorliegen, muss für eine Einflussnahme auf deren Aktivität zunächst ein Transport der Regulationsproteine in den Zellkern stattfinden. Zusammengenommen konnte mit dieser Doktorarbeit das Wissen über Transkriptionsfaktoren und Entwicklungsprozesse der Wurzel erheblich erweitert werden. Zudem ist die Grundlage für interessante zukünftige Arbeiten gelegt worden. Dabei wird es von zentraler Bedeutung sein, komplexe Regulationsnetzwerke verstehen zu lernen und durch gezielte Manipulationen biotechnologisch nutzen zu können. KW - DOF Transkriptionsfaktoren KW - Arabidopsis thaliana KW - Wurzel KW - Ruhezentrum KW - Columella KW - DOF transcription factors KW - Arabidopsis thaliana KW - root KW - quiescent center KW - columella Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-41831 ER - TY - GEN A1 - Riano-Pachon, Diego Mauricio A1 - Nagel, Axel A1 - Neigenfind, Jost A1 - Wagner, Robert A1 - Basekow, Rico A1 - Weber, Elke A1 - Müller-Röber, Bernd A1 - Diehl, Svenja A1 - Kersten, Birgit T1 - GabiPD : the GABI primary database - a plant integrative "omics" database N2 - The GABI Primary Database, GabiPD (http:// www.gabipd.org/), was established in the frame of the German initiative for Genome Analysis of the Plant Biological System (GABI). The goal of GabiPD is to collect, integrate, analyze and visualize primary information from GABI projects. GabiPD constitutes a repository and analysis platform for a wide array of heterogeneous data from high-throughput experiments in several plant species. Data from different ‘omics’ fronts are incorporated (i.e. genomics, transcriptomics, proteomics and metabolomics), originating from 14 different model or crop species. We have developed the concept of GreenCards for textbased retrieval of all data types in GabiPD (e.g. clones, genes, mutant lines). All data types point to a central Gene GreenCard, where gene information is integrated from genome projects or NCBI UniGene sets. The centralized Gene GreenCard allows visualizing ESTs aligned to annotated transcripts as well as displaying identified protein domains and gene structure. Moreover, GabiPD makes available interactive genetic maps from potato and barley, and protein 2DE gels from Arabidopsis thaliana and Brassica napus. Gene expression and metabolic-profiling data can be visualized through MapManWeb. By the integration of complex data in a framework of existing knowledge, GabiPD provides new insights and allows for new interpretations of the data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 137 KW - Phosphorylation sites KW - Arabidopsis thaliana KW - Information KW - Proteins KW - Families Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45075 ER -