TY - THES A1 - Riedel, Katja T1 - Elucidation of the epithelial sodium channel as a salt taste receptor candidate and search for novel salt taste receptor candidates T1 - Validierung des epithelialen Natriumkanals als Salzgeschmacksrezeptor und Suche nach unbekannten menschlichen Salzgeschmacksrezeptoren N2 - Salty taste has evolved to maintain electrolyte homeostasis, serving as a detector for salt containing food. In rodents, salty taste involves at least two transduction mechanisms. One is sensitive to the drug amiloride and specific for Na+, involving epithelial sodium channel (ENaC). A second rodent transduction pathway, which is triggered by various cations, is amiloride insensitive and not almost understood to date. Studies in primates showed amiloride-sensitive as well as amiloride-insensitive gustatory responses to NaCl, implying a role of both salt taste transduction pathways in humans. However, sensory studies in humans point to largely amiloride-insensitive sodium taste perception. An involvement of ENaC in human sodium taste perception was not shown, so far. In this study, ENaC subunit protein and mRNA could be localized to human taste bud cells (TBC). Thus, basolateral αβγ-ENaC ion channels are likely in TBC of circumvallate papillae, possibly mediating basolateral sodium entry. Similarly, basolateral βγ-ENaC might play a role in fungiform TBC. Strikingly, δ-ENaC subunit was confined to taste bud pores of both papillae, likely mediating gustatory sodium entry in TBC, either apical or paracellular via tight junctions. However, regional separation of δ-ENaC and βγ-ENaC in fungiform and circumvallate TBC indicate the presence of unknown interaction partner necessary to assemble into functional ion channels. However, screening of a macaque taste tissue cDNA library did neither reveal polypeptides assembling into a functional cation channel by interaction with δ-ENaC or βγ-ENaC nor ENaC independent salt taste receptor candidates. Thus, ENaC subunits are likely involved in human taste transduction, while exact composition and identity of an amiloride (in)sensitive salt taste receptors remain unclear. Localization of δ-ENaC in human taste pores strongly suggests a role in human taste transduction. In contrast, δ-ENaC is classified as pseudogene Scnn1d in mouse. However, no experimental detected sequences are annotated, while evidences for parts of Scnn1d derived mRNAs exist. In order to elucidate if Scnn1d is possibly involved in rodent salt taste perception, Scnn1d was evaluated in this study to clarify if Scnn1d is a gene or a transcribed pseudogene in mice. Comparative mapping of human SCNN1D to mouse chromosome 4 revealed complete Scnn1d sequence as well as its pseudogenization by Mus specific endogenous retroviruses. Moreover, tissue specific transcription of unitary Scnn1d pseudogene was found in mouse vallate papillae, kidney and testis and led to identification of nine Scnn1d transcripts. In vitro translation experiments showed that Scnn1d transcripts are coding competent for short polypeptides, possibly present in vivo. However, no sodium channel like function or sodium channel modulating activity was evident for Scnn1d transcripts and/or derived polypeptides. Thus, an involvement of mouse δ-ENaC in sodium taste transduction is unlikely and points to species specific differences in salt taste transduction mechanisms. N2 - Der Salzgeschmack ermöglicht elektrolytreiche Nahrungsquellen zu erkennen und ist eine essentielle Komponente für den Erhalt des Elektrolythaushalts. In Nagern sind bisher zwei Mechanismen bekannt, welche an der Vermittlung des Salzgeschmacks beteiligt sind. Ein Natrium-spezifischer, Amilorid-sensitiver Signaltransduktionsweg wird über den epithelialen Natriumkanal (ENaC) vermittelt. Ein weiterer, bisher ungeklärter Transduktionsweg, ist Amilorid-unempfindlich und wird durch verschiedene Kationen vermittelt. Studien in Primaten konnten Amilorid-sensitive als auch -insensitive gustatorische Signaltransduktionswege nachweisen, wohingegen sensorische Studien auf eine Amilorid-Unempfindlichkeit des Natrium-spezifischen humanen Salzgeschmacks hinweisen. Eine Beteiligung des ENaC bei der Vermittlung des menschlichen Salzgeschmacks wurde bislang nicht gezeigt. In dieser Arbeit konnte die mRNA als auch Proteine von ENaC Untereineiten in menschlichen Geschmacksrezeptorzellen (GRZ) lokalisiert werden. Demzufolge, sind αβγ-ENaC Ionenkanäle möglicherweise an einem basolateralen Natriumeinstrom in circumvallaten GRZ beteiligt. Die basolaterale Lokalisation von βγ-ENaC in fungiformen GRZ weißt auf eine gleichartige Funktion hin. Die außergewöhnliche Lokalisation der δ-ENaC Untereineit ausschließlich in der Porenregion von Geschmacksknospen beider Geschmackspapillen, legt eine Beteiligung dieser ENaC Untereinheit bei der Vermittlung geschmacksrelevanter apikaler bzw. transzellulärer Natriumströme nahe. Gleichwohl weist die räumliche Trennung von apikalen δ-ENaC und basolateralen βγ-ENaC auf die Existenz unbekannter Interaktionspartner hin, da beide getrennt voneinander nicht in der Lage sind effektive Natriumkanäle zu assemblieren. Die Durchmusterung einer geschmacksrelevanten cDNA Bibliothek führte weder zur Identifikation von ENaC Interaktionspartnern, noch von ENaC unabhängigen Polypeptiden, welche in der Lage sind einen Kationenkanal zu bilden. Die genaue Zusammensetzung humaner Amilorid- (in)sensitiver Salzrezeptoren bleibt daher unklar und ein spannendes Feld. Der Nachweis von ENaC in humanen GRZ und insbesondere die Poren assoziierte Lokalisation der δ-ENaC Untereinheit impliziert eine wichtige Rolle bei der gustatorischen Signaltransduktion. Erstaunlicherweise ist die orthologe δ-ENaC Untereinheit der Maus als Scnn1d Pseudogen klassifiziert. Neben dieser automatischen Annotierung sind keine experimentell ermittelten Sequenzen in Datenbanken hinterlegt obwohl Scnn1d abgeleitete mRNA nachgewiesen werden konnte. Im Rahmen dieser Arbeit wurde untersucht ob Scnn1d ein Gen oder ein transkribiertes Pseudogen ist, um eine mögliche Rolle bei der Transduktion des murinen Salzgeschmacks zu klären. Durch Sequenzabgleich mit humanen SCNN1D konnte das vollständige Scnn1d Gen auf dem Chromosom 4 der Maus identifiziert werden, wobei sich dessen Pseudogenisierung durch Mus spezifische endogene Retroviren zeigte. Darüber hinaus wurden neun gewebsspezifische Scnn1d Transkripte nachgewiesen, welche für kurze Polypeptide kodieren. Eine mögliche Funktion derselben als Ionenkanal bzw. eine modulatorische Funktion konnte nicht gezeigt werden. Eine Beteiligung des pseudogenisierten δ-ENaC an der Vermittlung des Salzgeschmacks der Maus ist daher unwahrscheinlich und deutet auf Speziesunterschiede der Salzgeschmacksvermittlung hin. KW - ENaC KW - Salzgeschmack KW - ENaC KW - salt taste perception Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58764 ER - TY - THES A1 - Loßow, Kristina T1 - Erzeugung und Charakterisierung von Mausmodellen mit lichtsensitivem Geschmackssystem zur Aufklärung der neuronalen Geschmackskodierung T1 - Generation and characterization of transgenic lines of mice to elucidate neuralnetworks engaged in processing of gustatory information N2 - Die Wahrnehmung von Geschmacksempfindungen beruht auf dem Zusammenspiel verschiedener Sinneseindrücke wie Schmecken, Riechen und Tasten. Diese Komplexität der gustatorischen Wahrnehmung erschwert die Beantwortung der Frage wie Geschmacksinformationen vom Mund ins Gehirn weitergeleitet, prozessiert und kodiert werden. Die Analysen zur neuronalen Prozessierung von Geschmacksinformationen erfolgten zumeist mit Bitterstimuli am Mausmodell. Zwar ist bekannt, dass das Genom der Maus für 35 funktionelle Bitterrezeptoren kodiert, jedoch war nur für zwei unter ihnen ein Ligand ermittelt worden. Um eine bessere Grundlage für tierexperimentelle Arbeiten zu schaffen, wurden 16 der 35 Bitterrezeptoren der Maus heterolog in HEK293T-Zellen exprimiert und in Calcium-Imaging-Experimenten funktionell charakterisiert. Die Daten belegen, dass das Funktionsspektrum der Bitterrezeptoren der Maus im Vergleich zum Menschen enger ist und widerlegen damit die Aussage, dass humane und murine orthologe Rezeptoren durch das gleiche Ligandenspektrum angesprochen werden. Die Interpretation von tierexperimentellen Daten und die Übertragbarkeit auf den Menschen werden folglich nicht nur durch die Komplexität des Geschmacks, sondern auch durch Speziesunterschiede verkompliziert. Die Komplexität des Geschmacks beruht u. a. auf der Tatsache, dass Geschmacksstoffe selten isoliert auftreten und daher eine Vielzahl an Informationen kodiert werden muss. Um solche geschmacksstoffassoziierten Stimuli in der Analyse der gustatorischen Kommunikationsbahnen auszuschließen, sollten Opsine, die durch Licht spezifischer Wellenlänge angeregt werden können, für die selektive Ersetzung von Geschmacksrezeptoren genutzt werden. Um die Funktionalität dieser angestrebten Knockout-Knockin-Modelle zu evaluieren, die eine Kopplung von Opsinen mit dem geschmacksspezifischen G-Protein Gustducin voraussetzte, wurden Oozyten vom Krallenfrosch Xenopus laevis mit dem Zwei-Elektroden-Spannungsklemm-Verfahren hinsichtlich dieser Interaktion analysiert. Der positiven Bewertung dieser Kopplung folgte die Erzeugung von drei Mauslinien, die in der kodierenden Region eines spezifischen Geschmacksrezeptors (Tas1r1, Tas1r2, Tas2r114) Photorezeptoren exprimierten. Durch RT-PCR-, In-situ-Hybridisierungs- und immunhistochemische Experimente konnte der erfolgreiche Knockout der Rezeptorgene und der Knockin der Opsine belegt werden. Der Nachweis der Funktionalität der Opsine im gustatorischen System wird Gegenstand zukünftiger Analysen sein. Bei erfolgreichem Beleg der Lichtempfindlichkeit von Geschmacksrezeptorzellen dieser Mausmodelle wäre ein System geschaffen, dass es ermöglichen würde, gustatorische neuronale Netzwerke und Hirnareale zu identifizieren, die auf einen reinen geschmacks- und qualitätsspezifischen Stimulus zurückzuführen wären. N2 - Taste impression is based on the interaction of taste, smell and touch. To evaluate the nutritious content of food mammals possess five distinct taste qualities: sweet, bitter, umami (taste of amino acids), sour and salty. For bitter, sweet, and umami compounds taste signaling is initiated by binding of tastants to G protein-coupled receptors. The interactions of taste stimuli, usually watersoluble chemicals, with their cognate receptors lead to the activation of the G protein gustducin, which, in turn, initiates a signal resulting in the activation of gustatory afferents. However, details of gustatory signal transmission and processing as well as neural coding are only incompletely understood. This is partly due to the property of some tastants to elicit several sensations simultaneously, unspecific effects caused by the temperature, viscosity, osmolarity, and pH of the solvents, as well as by mechanical stimulation of the tongue during stimulus application. The analysis of gustatory processing of taste information are mainly based on mouse models after stimulation with bitter taste stimuli. Even though it is known that the mouse genome codes for 35 bitter taste receptor genes only few of them had been analysed so far. For better understanding and interpretation of animal experiments 16 mouse bitter receptors had been analysed by Calcium Imaging experiments with HEK293T cells. The data reveal that mouse bitter taste receptors are more narrow tuned than human bitter taste receptors, proving that the ligand spectra of murine and human orthologous receptors are not complient. In order to avoid the disturbing effects of solvents and stimulus application on the analysis of gustatory information transfer and processing, I employ an optogenetical approach to address this problem. For this purpose I generated three strains of gene-targeted mice in which the coding regions of the genes for the umami receptor subunit Tas1r1, the sweet receptor subunit Tas1r2 or the bitter taste receptor Tas2r114 have been replaced by the coding sequences of different opsins (photoreceptors of visual transduction) that are sensitive to light of various wavelengths. In these animals I should be able to activate sweet, bitter, or umami signalling by light avoiding any solvent effects. In initial experiments of this project I demonstrated that the various visual opsins indeed functionally couple to taste signal transduction pathway in oocyte expression system, generating basic knowledge and foundation for the generation of the gene-targeted animals. The knockout-knockin strategies have been successfully realized in the case of all three mouse models, revealed by RT-PCR, in situ hybridization and immunohistochemical analysis of taste papillae. All data confirm that the particular taste receptors have been replaced by the different opsins in taste cells. Further analysis concerning the functional consequences of opsin knockin and taste receptor knockout are part of prospective work. KW - Geschmack KW - G-Protein-gekoppelte Rezeptoren KW - Bitterrezeptoren KW - Optogenetik KW - taste KW - G protein-coupled receptors KW - bitter taste receptors KW - optogenetic Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58059 ER - TY - THES A1 - Schatz, Daniela T1 - LNA-clamp-PCR zum sensitiven Nachweis von Punktmutationen im Rahmen der Entwicklung eines Darmkrebsfrüherkennungstests T1 - LNA-clamp-PCR as a method for sensitive detection of point mutations as part of the development of an assay for the early diagnosis of colon cancer N2 - Darmkrebs ist die zweithäufigste malignombedingte Todesursache in den westlichen Industrieländern. Durch eine frühzeitige Diagnose besteht jedoch eine hohe Chance auf Heilung. Der Goldstandard zur Darmkrebsfrüherkennung ist gegenwärtig die Koloskopie. Eine Darmspiegelung ist jedoch invasiv und mit Unannehmlichkeiten für den Patienten verbunden. Die Akzeptanz in der Bevölkerung ist daher gering. Ziel des BMBF- Projektes „Entwicklung eines nichtinvasiven Nachweissystems zur Früherkennung von humanem Darmkrebs“, in dessen Rahmen diese Arbeit entstand, ist die Bereitstellung eines nichtinvasiven Nachweisverfahrens zur Darmkrebsfrüherkennung. Der Nachweis soll über die Detektion von aus neoplastischen Zellen stammender DNA in Stuhl erfolgen. Die Entartung dieser Zellen beruht auf Veränderungen im Erbgut, welches unter anderem Mutationen sind. Im ersten Teil des BMBF-Projektes wurde ein Set von Mutationen zusammengestellt, welches eine hohe Sensitivität für Vorstufen von Darmkrebs aufweist. Ziel dieser Arbeit war es, eine Nachweismethode für die zuvor identifizierten Punktmutationen zu entwickeln. Das Nachweisverfahren musste dabei unempfindlich gegen einen hohen Hintergrund nichtmutierter DNA sein, da im Stuhl geringe Mengen DNA aus neoplastischen Zellen bei einem hohen Hintergrund von DNA aus gesunden Zellen vorliegen. Hierzu wurden Plasmidmodellsysteme für die aus dem Marker-Set stammenden Genfragmente BRAF und dessen Mutante V600E, CTNNB1 und T41I, T41A, S45P und K-ras G12C hergestellt. Mit Hilfe dieser Plasmidmodellsysteme wurde dann das Nachweissystem entwickelt. Der entscheidende Schritt für die Detektion von Punktmutationen bei hohem Wildtypüberschuss ist eine vorhergehende Anreicherung. In der vorliegenden Arbeit wurde dazu die Methode der LNA-clamp-PCR (locked nucleic acid) etabliert. Die Bewertung der erzielten Anreicherung erfolgte über das relative Detektionslimit. Zur Bestimmung des Detektionslimits wurde die Schmelzkurvenanalyse von Hybridisierungssonden eingesetzt; diese wurde im Rahmen dieser Arbeit für die drei oben genannten Genfragmente und ihre Mutanten entwickelt. Die LNA-clamp-PCR wird in Anwesenheit eines LNA-Blockers durchgeführt. Das Nukleotidanalogon LNA weist im Vergleich zu DNA eine erhöhte Affinität zu komplementären DNA-Strängen auf. Gleichzeitig kommt es bei Anwesenheit einer Basenfehlpaarung zu einer größeren Destabilisierung der Bindung. Als Blocker werden kurze LNA-DNA-Hybridoligonukleotide eingesetzt, die den mutierten Sequenzbereich überspannen und selbst der Wildtypsequenz entsprechen. Durch Bindung an die Wildtypsequenz wird deren Amplifikation während der PCR verhindert (clamp = arretieren, festklemmen). Der Blocker selbst wird dabei nicht verlängert. Der Blocker bindet unter optimalen Bedingungen jedoch nicht an die mutierte Sequenz. Die Mutante wird daher ungehindert amplifiziert und somit gegenüber dem Wildtyp-Fragment angereichert. Die Position des Blockers kann im Bindungsbereich eines der Primer sein und hier dessen Hybridisierung an dem Wildtyp-Fragment verhindern oder zwischen den beiden Primern liegen und so die Synthese durch die Polymerase inhibieren. Die Anwendbarkeit beider Systeme wurde in dieser Arbeit gezeigt. Die LNA-clamp-PCR mit Primerblocker wurde für BRAF etabliert. Es wurde ein Detektionslimit von mindestens 1:100 erzielt. Die LNA-clamp-PCR mit Amplifikationsblocker wurde erfolgreich für BRAF, K-ras und CTNNB1: T41I, T41A mit einem Detektionslimit von 1:1000 bis 1:10 000 entwickelt. In Stuhlproben liegt DNA aus neoplastischen Zellen nach Literaturangaben zu einem Anteil von 1% bis 0,1% vor. Die LNA-clamp-PCR weist also mit Amplifikationsblockern ein ausreichend hohes Detektionslimit für die Analyse von Stuhlproben auf. Durch die erfolgreiche Etablierung der Methode auf drei verschiedenen Genfragmenten und vier unterschiedlichen Punktmutationen konnte deren universelle Einsetzbarkeit gezeigt werden. Für die Ausweitung der LNA-clamp-PCR auf die übrigen Mutationen des Marker-Sets wurden Richtlinien ausgearbeitet und die Blockereffizienz als Kennzahl eingeführt. Die LNA-clamp-PCR ist ein schnelles, kostengünstiges Verfahren, welches einen geringen Arbeitsaufwand erfordert und wenig fehleranfällig ist. Sie ist somit ein geeignetes Anreicherungsverfahren für Punktmutationen in einem diagnostischen System zur Darmkrebsfrüherkennung. Darüber hinaus kann die LNA-clamp-PCR auch in anderen Bereichen, in denen die Detektion von Punktmutationen in einem hohen Wildtyphintergrund erforderlich ist, eingesetzt werden. N2 - Colon cancer is the second leading cause of cancer related deaths in the western world. However if diagnosed early there is a great chance curing the disease. Coloscopy is the gold standard for early detection of colorectal cancer today. Its greatest disadvantage is the fact that it is an invasive technique and provides some discomfort for the patients. Therefore, the compliance to undergo such a procedure is extremely low. This work was generated in the context of the BMBF-project „Development of a non-invasive assay for the early detection of preneoplastic and neoplastic lesions in the human colon“. The aim of the work described here is the development of a non-invasive assay for the early detection of colon cancer. The assay should detect DNA from neoplastic cells in feces samples. The transformation of these cells is based on alterations in the genome predominantly mutations. In the first part of the BMBF-project a mutation panel with high sensitivity for preneoplastic lesions of colon cancer was determined. The aim of this work was to develop a detection method for the point mutations of the determined mutation panel. The rare mutant DNA needs to be detected in the presence of a great amount of wild-type DNA shed from healthy tissue. The assay system needs to be insensitive to this high background of healthy DNA. Therefore a model system of plasmid DNA containing gene fragments of BRAF and its mutation V600E, CTNNB1 and T41I, T41A, S45P and K-ras G12C obtained from the marker panel was established. Using these plasmid system the detection method was developed. The most critical parameter for the detection of rare point mutations is an enrichment of these rare DNA molecules. In this work LNA-clamp-PCR (locked nucleic acid) technology was used to enrich the mutant DNA.. For the estimation of the achieved enrichment the relative detection limit was used. The detection limit was determined by melting curve analysis of hybridization probes. These assays were established in the present work for the three above mentioned gene fragments. LNA-clamp-PCR is performed in the presence of an LNA blocker. LNA is a synthetic DNA analog. LNA nucleotide analog bind to complementary DNA strands with higher affinity. In addition a single mismatch in the LNA-DNA duplex causes a much greater destabilization compared to a DNA-DNA duplex. Short LNA-DNA-hybrids were used as clamp, which cover the mutated region and represent the wild-type sequence. Within an appropriate temperature range, LNA can specifically bind to wild type template and can inhibit its amplification. The clamp itself will not be elongated. Under optimal conditions the LNA clamp will not interfere with the amplification of the mismatched template. Therefore the mutated gene fragment will be enriched in comparison to the wild-type. The position of the LNA clamp can either be at the primer binding site inhibiting primer hybridization on the wild-type fragment or the LNA clamp is positioned between the two primer binding sites inhibiting chain elongation of the perfectly matched template. In the present work both systems were applied. For the gene fragment BRAF the LNA was used at the primer binding site. The achieved detection limit was at least 1:100. The LNA-clamp-PCR with LNA inhibiting the chain elongation were developed successfully for BRAF, K-ras and CTNNB1: T41I, T41A achieving a detection limit of 1:1000 to 1:10 000. According to the literature 1% to 0.1% of the DNA in feces derives from neoplastic cells. Therefore the detection limit achieved by LNA-clamp-PCR with LNA inhibiting chain elongation would be sufficient for analyzing feces samples. LNA-clamp-PCR protocols were established for three different gene fragments and four diverse point mutations indicating that the technology can generally be used for high sensitive detection of DNA mutations. For the development of LNA-clamp-PCR protocols for the other mutations of the marker panel development guidelines were established. Clamp efficiency was identified as a quantitative parameter for protocol optimization. The LNA-clamp-PCR is a robust, fast and cost-saving technique which needs low labor input. Therefore the method is adequate for enriching point mutated gene fragments in a diagnostic assay for the detection of early colon cancer stages. In addition LNA-clamp-PCR can be applied in other fields where rare sequence variations need to be detected in the presence of high wild-type DNA background. KW - LNA-clamp-PCR KW - Darmkrebsdiagnostik KW - Punktmutation KW - BRAF KW - K-ras KW - LNA- clamp-PCR KW - colon cancer diagnosis KW - point mutation KW - BRAF KW - K-ras Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52308 ER -