TY - GEN A1 - Prát, Tomáš A1 - Hajny ́, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnár, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1123 KW - apical-basal axis KW - arabidopsis-thaliana KW - root gravitropism KW - DNA-binding KW - gene-expression KW - transport KW - efflux KW - canalization KW - plants KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446331 SN - 1866-8372 IS - 1123 ER - TY - GEN A1 - Powell, Anahid E. A1 - Lenhard, Michael T1 - Control of organ size in plants T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The size of plant organs, such as leaves and flowers, is determined by an interaction of genotype and environmental influences. Organ growth occurs through the two successive processes of cell proliferation followed by cell expansion. A number of genes influencing either or both of these processes and thus contributing to the control of final organ size have been identified in the last decade. Although the overall picture of the genetic regulation of organ size remains fragmentary, two transcription factor/microRNA-based genetic pathways are emerging in the control of cell proliferation. However, despite this progress, fundamental questions remain unanswered, such as the problem of how the size of a growing organ could be monitored to determine the appropriate time for terminating growth. While genetic analysis will undoubtedly continue to advance our knowledge about size control in plants, a deeper understanding of this and other basic questions will require including advanced live-imaging and mathematical modeling, as impressively demonstrated by some recent examples. This should ultimately allow the comparison of the mechanisms underlying size control in plants and in animals to extract common principles and lineage-specific solutions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 898 KW - BHLH transcription factor KW - genome-wide association KW - arabidopsis-thaliana KW - cell-proliferation KW - leaf development KW - developing leaves KW - petal growth KW - gene family KW - tor kinase KW - auxin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438029 SN - 1866-8372 IS - 898 ER - TY - GEN A1 - Lenhard, Michael T1 - All's well that ends well BT - arresting cell proliferation in leaves T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The transition from cell proliferation to cell expansion is critical for determining leaf size. Andriankaja et al. (2012) demonstrate that in leaves of dicotyledonous plants, a basal proliferation zone is maintained for several days before abruptly disappearing, and that chloroplast differentiation is required to trigger the onset of cell expansion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 906 KW - arabidopsis-thaliana KW - genetic-control KW - growth KW - size KW - curvature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438035 SN - 1866-8372 IS - 906 SP - 9 EP - 11 ER -