TY - GEN A1 - Schmidt, Ruth A1 - Baumann, Otto A1 - Walz, Bernd T1 - cAMP potentiates InsP3-induced Ca2+ release from the endoplasmic reticulum in blowfly salivary glands T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Background Serotonin induces fluid secretion from Calliphora salivary glands by the parallel activation of the InsP3/Ca2+ and cAMP signaling pathways. We investigated whether cAMP affects 5-HT-induced Ca2+ signaling and InsP3-induced Ca2+ release from the endoplasmic reticulum (ER). Results Increasing intracellular cAMP level by bath application of forskolin, IBMX or cAMP in the continuous presence of threshold 5-HT concentrations converted oscillatory [Ca2+]i changes into a sustained increase. Intraluminal Ca2+ measurements in the ER of ß-escin-permeabilized glands with mag-fura-2 revealed that cAMP augmented InsP3-induced Ca2+ release in a concentration-dependent manner. This indicated that cAMP sensitized the InsP3 receptor Ca2+ channel for InsP3. By using cAMP analogs that activated either protein kinase A (PKA) or Epac and the application of PKA-inhibitors, we found that cAMP-induced augmentation of InsP3-induced Ca2+ release was mediated by PKA not by Epac. Recordings of the transepithelial potential of the glands suggested that cAMP sensitized the InsP3/Ca2+ signaling pathway for 5-HT, because IBMX potentiated Ca2+-dependent Cl- transport activated by a threshold 5-HT concentration. Conclusion This report shows, for the first time for an insect system, that cAMP can potentiate InsP3-induced Ca2+ release from the ER in a PKA-dependent manner, and that this crosstalk between cAMP and InsP3/Ca2+ signaling pathways enhances transepithelial electrolyte transport. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 842 KW - endoplasmic reticulum KW - salivary gland KW - physiological solution KW - fluid secretion KW - cAMP analog Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429770 SN - 1866-8372 IS - 842 ER - TY - JOUR A1 - Pitzen, Valentin A1 - Sander, Sophia A1 - Baumann, Otto A1 - Gräf, Ralph A1 - Meyer, Irene T1 - Cep192, a novel missing link between the centrosomal core and corona in Dictyostelium amoebae JF - Cells : open access journal N2 - The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure. KW - Cep192 KW - SPD-2 KW - centrosome KW - Dictyostelium KW - microtubule-organization KW - MTOC Y1 - 2021 U6 - https://doi.org/10.3390/cells10092384 SN - 2073-4409 VL - 10 IS - 9 PB - MDPI CY - Basel ER - TY - GEN A1 - Rein, Julia A1 - Voss, Martin A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A N2 - The vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V-0 and V-1 subcomplexes to V-ATPase holoenzymes and increases V-ATPase-driven proton transport. Here, we analyze whether the effect of cAMP on V-ATPase is mediated by protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac), the cAMP target proteins that are present within the salivary glands. Immunofluorescence microscopy shows that PKA activators, but not Epac activators, induce the translocation of V1 components from the cytoplasm to the apical membrane, indicative of an assembly of V-ATPase holoenzymes. Measurements of transepithelial voltage changes and microfluorometric pH measurements at the luminal surface of cells in isolated glands demonstrate further that PKA-activating cAMP analogs increase cation transport to the gland lumen and induce a V-ATPase-dependent luminal acidification, whereas activators of Epac do not. Inhibitors of PKA block the 5-HT-induced V-1 translocation to the apical membrane and the increase in proton transport. We conclude that cAMP exerts its effects on V-ATPase via PKA. KW - Vacuolar h+-atpase KW - camp binding-sites KW - cyclic-amp KW - plasma-membrane KW - drosophila-melanogaster Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-46126 ER - TY - JOUR A1 - Klose, Sascha Peter A1 - Rolke, Daniel A1 - Baumann, Otto T1 - Morphogenesis of honeybee hypopharyngeal gland during pupal development JF - Frontiers in zoology N2 - Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. KW - Exocrine gland KW - Insect KW - Epithelial tube KW - Organogenesis KW - Cell polarity KW - Actin cytoskeleton KW - Apoptosis KW - Invagination Y1 - 2017 U6 - https://doi.org/10.1186/s12983-017-0207-z SN - 1742-9994 VL - 14 PB - BioMed Central CY - London ER - TY - GEN A1 - Klose, Sascha Peter A1 - Rolke, Daniel A1 - Baumann, Otto T1 - Morphogenesis of honeybee hypopharyngeal gland during pupal development N2 - Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 337 KW - Exocrine gland KW - Insect KW - Epithelial tube KW - Organogenesis KW - Cell polarity KW - Actin cytoskeleton KW - Apoptosis KW - Invagination Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395712 ER - TY - JOUR A1 - Barchewitz, Tino A1 - Guljamow, Arthur A1 - Meißner, Sven A1 - Timm, Stefan A1 - Henneberg, Manja A1 - Baumann, Otto A1 - Hagemann, Martin A1 - Dittmann, Elke T1 - Non-canonical localization of RubisCO under high-light conditions in the toxic cyanobacterium Microcystis aeruginosa PCC7806 JF - Environmental microbiology N2 - The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community. Y1 - 2019 U6 - https://doi.org/10.1111/1462-2920.14837 SN - 1462-2912 SN - 1462-2920 VL - 21 IS - 12 SP - 4836 EP - 4851 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Blenau, Wolfgang A1 - Rotte, Cathleen A1 - Witte, Jeannine A1 - Baumann, Otto A1 - Walz, Bernd T1 - Source, topography and excitatory effects of GABAergic innervation in cockroach salivary glands N2 - Cockroach salivary glands are innervated by dopaminergic and serotonergic neurons. Both transmitters elicit saliva secretion. We studied the distribution pattern of neurons containing gamma-aminobutyric acid ( GABA) and their physiological role. Immunofluorescence revealed a GABA-immunoreactive axon that originates within the subesophageal ganglion at the salivary neuron 2 (SN2) and this extends within the salivary duct nerve towards the salivary gland. GABA-positive fibers form a network on most acinar lobules and a dense plexus in the interior of a minor fraction of acinar lobules. Co-staining with anti-synapsin revealed that some putative GABAergic terminals seem to make pre-synaptic contacts with GABA-negative release sites. Many putative GABAergic release sites are at some distance from other synapses and at distance from the acinar tissue. Intracellular recordings from isolated salivary glands have revealed that GABA does not affect the basolateral membrane potential of the acinar cells directly. When applied during salivary duct nerve stimulation, GABA enhances the electrical response of the acinar cells and increases the rates of fluid and protein secretion. The effect on electrical cell responses is mimicked by the GABA(B) receptor agonists baclofen and SKF97541, and blocked by the GABAB receptor antagonists CGP52432 and CGP54626. These findings indicate that GABA has a modulatory role in the control of salivation, acting presynaptically on serotonergic and/or dopaminergic neurotransmission. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 111 KW - GABA KW - salivary gland KW - innervation KW - cockroach KW - Periplaneta americana Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44353 ER - TY - GEN A1 - Batsios, Petros A1 - Ren, Xiang A1 - Baumann, Otto A1 - Larochelle, Denis A. A1 - Gräf, Ralph T1 - Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81 N2 - The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11–646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 263 KW - Dictyostelium KW - HeH-protein KW - LEM-domain protein KW - lamin KW - nuclear lamina KW - nucleolus KW - nucleus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97033 ER - TY - JOUR A1 - Batsios, Petros A1 - Ren, Xiang A1 - Baumann, Otto A1 - Larochelle, Denis A. A1 - Gräf, Ralph T1 - Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81 JF - Cells N2 - The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11–646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture. KW - Dictyostelium KW - lamin KW - nuclear lamina KW - nucleus KW - nucleolus KW - HeH-protein KW - LEM-domain protein Y1 - 2016 U6 - https://doi.org/10.3390/cells5010013 SN - 2073-4409 VL - 5 IS - 1 PB - MDPI CY - Basel ER - TY - GEN A1 - Voss, Martin A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C N2 - The activity of vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT). 5-HT induces, via protein kinase A, the phosphorylation of V-ATPase subunit C and the assembly of V-ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V-ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK-506) do not prevent V-ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA-AM leads to the activation of proton pumping in the absence of 5-HT, prolongs the 5-HT-induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V-ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc. KW - vacuolar H+-ATPase KW - assembly KW - regulation KW - protein phosphatise KW - dephosphorylation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44360 ER -