TY - JOUR A1 - Witt, Barbara A1 - Stiboller, Michael A1 - Raschke, Stefanie A1 - Friese, Sharleen A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers JF - Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS N2 - Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. KW - Copper KW - Astrocytes KW - Toxicity KW - Mitochondria KW - ROS KW - Trace elements Y1 - 2021 U6 - https://doi.org/10.1016/j.jtemb.2021.126711 SN - 1878-3252 VL - 65 PB - Elsevier CY - München ER - TY - JOUR A1 - Wigger, Dominik A1 - Schumacher, Fabian A1 - Schneider-Schaulies, Sibylle A1 - Kleuser, Burkhard T1 - Sphingosine 1-phosphate metabolism and insulin signaling JF - Cellular signalling N2 - Insulin is the main anabolic hormone secreted by 13-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic 13-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D. KW - Insulin resistance KW - Type 2 diabetes KW - Sphingolipids KW - Hepatocytes KW - Adipocytes KW - Skeletal muscle cells Y1 - 2021 U6 - https://doi.org/10.1016/j.cellsig.2021.109959 SN - 0898-6568 SN - 1873-3913 VL - 82 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Wetzel, Alexandra Nicole A1 - Scholtka, Bettina A1 - Schumacher, Fabian A1 - Rawel, Harshadrai Manilal A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard T1 - Epigenetic DNA methylation of EBI3 modulates human interleukin-35 formation via NFkB signaling BT - a promising therapeutic option in ulcerative colitis JF - International journal of molecular sciences N2 - Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein-Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNF alpha led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NF kappa B signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESIMS/MS analysis of DAC/TNF alpha-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNF alpha-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis. KW - decitabine KW - DNMT inhibitor KW - EBI3 KW - inhibitory cytokines KW - interleukin-35 KW - TNF alpha KW - Ulcerative colitis Y1 - 2021 U6 - https://doi.org/10.3390/ijms22105329 SN - 1422-0067 VL - 22 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wardelmann, Kristina A1 - Rath, Michaela A1 - Castro, José Pedro A1 - Blümel, Sabine A1 - Schell, Mareike A1 - Hauffe, Robert A1 - Schumacher, Fabian A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Wernitz, Andreas A1 - Hosoi, Toru A1 - Ozawa, Koichiro A1 - Kleuser, Burkhard A1 - Weiß, Jürgen A1 - Schürmann, Annette A1 - Kleinridders, André T1 - Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus JF - Antioxidants N2 - Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance. KW - brain insulin signaling KW - mitochondria KW - oxidative stress KW - fatty acid metabolism Y1 - 2021 U6 - https://doi.org/10.3390/antiox10050711 SN - 2076-3921 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tchewonpi Sagu, Sorel A1 - Landgräber, Eva A1 - Henkel, Ina M. A1 - Huschek, Gerd A1 - Homann, Thomas A1 - Bußler, Sara A1 - Schlüter, Oliver K. A1 - Rawel, Harshadrai Manilal T1 - Effect of cereal α-amylase/trypsin inhibitors on developmental characteristics and abundance of digestive enzymes of mealworm larvae (Tenebrio molitor L.) JF - Insects N2 - The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21% to 42% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8% and 14% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant. KW - growth behavior KW - Tenebrio molitor larvae KW - feeding KW - cereal meals KW - α-amylase/trypsin inhibitors KW - digestive enzymes quantification KW - LC-MS/MS Y1 - 2021 U6 - https://doi.org/10.3390/insects12050454 SN - 2075-4450 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rausch, Ann-Kristin A1 - Brockmeyer, Robert A1 - Schwerdtle, Tanja T1 - Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry JF - Analytical & bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (−85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide. KW - 2D-LC-MS/MS KW - Multi-method KW - Mycotoxins KW - Modified mycotoxins KW - Pesticides KW - Cereals Y1 - 2021 U6 - https://doi.org/10.1007/s00216-021-03239-1 SN - 1618-2650 SN - 1618-2642 VL - 413 IS - 11 SP - 3041 EP - 3054 PB - Springer CY - Berlin ER - TY - THES A1 - Nieschalke, Kai T1 - Proteinaddukte und Urinmetaboliten des Nagetierkanzerogens Methyleugenol als Biomarker der Exposition Y1 - 2021 ER - TY - JOUR A1 - Naser, Eyad A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Mohamed, Zainelabdeen H. A1 - Kappe, Christian A1 - Hessler, Gabriele A1 - Pollmeier, Barbara A1 - Kleuser, Burkhard A1 - Arenz, Christoph A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Characterization of the small molecule ARC39 BT - a direct and specific inhibitor of acid sphingomyelinase in vitro[S] JF - Journal of Lipid Research N2 - Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo. KW - sphingolipids KW - sphingomyelin KW - cerami-des KW - lipid metabolism KW - enzymology KW - lysosome KW - lysosomal hydrolases KW - acid ceramidase KW - bisphosphonates KW - functional inhibitors of acid sphin-gomyelinase KW - 1-aminodecylidene bis-phosphonic acid Y1 - 2021 U6 - https://doi.org/10.1194/jlr.RA120000682 SN - 1539-7262 SN - 0022-2275 VL - 61 IS - 6 SP - 896 EP - 910 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Klaus, Susanne A1 - Igual Gil, Carla A1 - Ost, Mario T1 - Regulation of diurnal energy balance by mitokines JF - Cellular and molecular life sciences : CMLS N2 - The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease. KW - Mitochondria KW - FGF21 KW - GDF15 KW - Circadian rhythm KW - Hormones KW - Nutrition Y1 - 2021 U6 - https://doi.org/10.1007/s00018-020-03748-9 SN - 1420-682X SN - 1420-9071 VL - 78 IS - 7 SP - 3369 EP - 3384 PB - Springer International Publishing AG CY - Cham (ZG) ER - TY - JOUR A1 - Johann, Kornelia A1 - Kleinert, Maximilian A1 - Klaus, Susanne T1 - The role of GDF15 as a myomitokine JF - Cells N2 - Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15-GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy. KW - anorexia KW - appetite regulation KW - cardiokine KW - cytokine KW - exercise KW - mitochondria KW - muscle KW - myokine KW - myopathy KW - sarcopenia Y1 - 2021 U6 - https://doi.org/10.3390/cells10112990 SN - 2073-4409 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Jannasch, Franziska A1 - Nickel, Daniela A1 - Schulze, Matthias Bernd T1 - The reliability and relative validity of predefined dietary patterns were higher than that of exploratory dietary patterns in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam population JF - British journal of nutrition : BJN : an international journal of nutritional science / published on behalf of The Nutrition Society N2 - The aim of this study was to assess the ability of the FFQ to describe reliable and valid dietary pattern (DP) scores. In a total of 134 participants of the European Prospective Investigation into Cancer and Nutrition-Potsdam study aged 35-67 years, the FFQ was applied twice (baseline and after 1 year) to assess its reliability. Between November 1995 and March 1997, twelve 24-h dietary recalls (24HDR) as reference instrument were applied to assess the validity of the FFQ. Exploratory DP were derived by principal component analyses. Investigated predefined DP were the Alternative Healthy Eating Index (AHEI) and two Mediterranean diet indices. From dietary data of each FFQ, two exploratory DP were retained, but differed in highly loading food groups, resulting in moderate correlations (r 0 center dot 45-0 center dot 58). The predefined indices showed higher correlations between the FFQ (r(AHEI) 0 center dot 62, r(Mediterranean Diet Pyramid Index (MedPyr)) 0 center dot 62 and r(traditional Mediterranean Diet Score (tMDS)) 0 center dot 51). From 24HDR dietary data, one exploratory DP retained differed in composition to the first FFQ-based DP, but showed similarities to the second DP, reflected by a good correlation (r 0 center dot 70). The predefined DP correlated moderately (r 0 center dot 40-0 center dot 60). To conclude, long-term analyses on exploratory DP should be interpreted with caution, due to only moderate reliability. The validity differed extensively for the two exploratory DP. The investigated predefined DP showed a better reliability and a moderate validity, comparable to other studies. Within the two Mediterranean diet indices, the MedPyr performed better than the tMDs in this middle-aged, semi-urban German study population. KW - dietary patterns KW - reliability KW - validity Y1 - 2020 U6 - https://doi.org/10.1017/S0007114520003517 SN - 1475-2662 SN - 0007-1145 VL - 125 IS - 11 SP - 1270 EP - 1280 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Henkel-Oberländer, Janin A1 - Klauder, Julia A1 - Statz, Meike A1 - Wohlenberg, Anne-Sophie A1 - Kuipers, Sonja A1 - Vahrenbrink, Madita A1 - Püschel, Gerhard T1 - Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E₂ JF - Biomedicines : open access journal N2 - Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E₂ (PGE₂) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE₂ to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE₂ synthesis. PGE₂ in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE₂ in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle. KW - macrophages KW - insulin KW - prostaglandin E2 KW - interleukin-8 KW - inflammation Y1 - 2021 U6 - https://doi.org/10.3390/biomedicines9050449 SN - 2227-9059 VL - 9 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Gohlke, Sabrina A1 - Mancini, Carola A1 - Garcia-Carrizo, Francisco A1 - Schulz, Tim J. T1 - Loss of the ciliary gene Bbs4 results in defective thermogenesis due to metabolic inefficiency and impaired lipid metabolism JF - The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology N2 - Adipose tissue is central to the regulation of energy balance. While white adipose tissue (WAT) is responsible for triglyceride storage, brown adipose tissue specializes in energy expenditure. Deterioration of brown adipocyte function contributes to the development of metabolic complications like obesity and diabetes. These disorders are also leading symptoms of the Bardet-Biedl syndrome (BBS), a hereditary disorder in humans which is caused by dysfunctions of the primary cilium and which therefore belongs to the group of ciliopathies. The cilium is a hair-like organelle involved in cellular signal transduction. The BBSome, a supercomplex of several Bbs gene products, localizes to the basal body of cilia and is thought to be involved in protein sorting to and from the ciliary membrane. The effects of a functional BBSome on energy metabolism and lipid mobilization in brown and white adipocytes were tested in whole-body Bbs4 knockout mice that were subjected to metabolic challenges. Chronic cold exposure reveals cold-intolerance of knockout mice but also ameliorates the markers of metabolic pathology detected in knockouts prior to cold. Hepatic triglyceride content is markedly reduced in knockout mice while circulating lipids are elevated, altogether suggesting that defective lipid metabolism in adipose tissue creates increased demand for systemic lipid mobilization to meet energetic demands of reduced body temperatures. These findings taken together suggest that Bbs4 is essential for the regulation of adipose tissue lipid metabolism, representing a potential target to treat metabolic disorders. KW - adipose tissue KW - Bbs4 KW - BBsome KW - browning KW - cilium KW - lipid metabolism Y1 - 2021 U6 - https://doi.org/10.1096/fj.202100772RR SN - 1530-6860 VL - 35 IS - 11 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Figueroa Campos, Gustavo Adolfo A1 - Perez, Jeffrey Paulo H. A1 - Block, Inga A1 - Sagu Tchewonpi, Sorel A1 - Saravia Celis, Pedro A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency JF - Processes : open access journal N2 - The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions. KW - coffee by-products KW - spent coffee grounds KW - parchment KW - valorization KW - calcination KW - activated carbon KW - organic compounds adsorption Y1 - 2021 U6 - https://doi.org/10.3390/pr9081396 SN - 2227-9717 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - THES A1 - Engel, Anika T1 - Endocrine effects of plasticizers and the development of a breast cell-based toxicity screening system N2 - Humans are frequently exposed to a variety of endocrine disrupting chemicals (EDCs), which can cause harmful effects, e.g. disturbance of growth, development and reproduction, and cancer (UBA, 2016). EDCs are often components of synthetically manufactured products. Materials made of plastics, building materials, electronic items, textiles or cosmetic products can be particularly contaminated (Ain et al., 2021). One group of EDCs that has gained increased interest in recent years is phthalates. They are used as plasticizers in plastic materials to which people are daily exposed to. Phthalate plasticizers exert their harmful effects among others via activation of the estrogen receptor α (ERα), the estrogen receptor β (ERβ) and via inhibition of the androgen receptor (AR). Some phthalates have already been classified by the EU as Cancerogenic-, Mutagenic-, Reprotoxic- (CMR) substances and their use in industry has been restricted. After oral ingestion, phthalates are metabolized and are finally excreted with the urine. Numerous toxicological studies exist on phthalates, but mainly with the parent substances, not with their primary and secondary metabolites. In the course of the restriction of phthalates by the EU, the phthalate-free plasticizer di-isononylcyclohexane-1,2-dicarboxylate (DINCH®), was introduced to the market. So far, almost no toxicologically relevant properties have been identified for DINCH®. However, the effects of DINCH® have only been studied in animal experiments and, as with phthalates, almost exclusively with the parent substance. However, toxic effects of a particular compound may be induced by its metabolites and not by the parent compound itself. Therefore, potential endocrine effects of 15 phthalates, 19 phthalate metabolites, DINCH®, and five of its metabolites were investigated using reporter gene assays on the ERα, ERβ, and the AR. In addition, studies of the influence of some selected plasticizers on peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor γ (PPARγ) activity were performed. Furthermore, a H295R steroidogenesis assay was performed to determine the influence of DINCH® and its metabolites on estradiol or testosterone synthesis. Analysis of the experiments shows that the phthalates either stimulated or inhibited ERα and ERβ activity and inhibited AR activity, whereas the phthalate metabolites did not affect the activity of these human hormone receptors. In contrast, metabolites of di-(2-ethylhexyl) phthalate (DEHP) stimulated transactivation of the human PPARα and PPARγ in analogous reporter gene assays, although DEHP itself did not activate these nuclear receptors. Therefore, primary and secondary phthalate metabolites appear to exert different effects at the molecular level compared to the parent compounds. Similarly, the results showed that the phthalate-free plasticizer DINCH® itself did not affect the activity of ERα, ERβ, AR, PPARα and PPARγ, while the DINCH® metabolites were shown to activate all these receptors. In the case of AR, DINCH® metabolites mainly enhanced AR activity stimulated by dihydrotestosterone (DHT). In the H295R steroidogenesis assay, neither DINCH® nor any of its metabolites affected estradiol or testosterone synthesis. Primary and secondary metabolites of DINCH® thus exert different effects at the molecular level than DINCH® itself. However, all these in vitro effects of DINCH® metabolites were observed only at high concentrations, which were about three orders of magnitude higher than the reported DINCH® metabolite concentrations in human urine. Therefore, the in vitro data does not support the assumption that DINCH® or any of the metabolites studied could have significant endocrine effects in vivo at relevant exposure levels in humans. Following the demonstration of direct and indirect endocrine effects of the studied plasticizers, a new effect-based in vitro 3D screening tool for toxicity assays of non-genotoxic carcinogens was developed using estrogen receptor-negative (ER-) MCF10-A cells and estrogen receptor-positive (ER+) MCF-12A cells. This arose from the background that breast cancer is the most common cancer occurring in women and estrogenic substances, such as phthalates, can probably influence the disease. The human mammary epithelial cell lines MCF-10A and MCF-12A form well-differentiated acini-like structures when cultured in three-dimensional Matrigel culture for a period of 20 days. The model should make it possible to detect substance effects on cell differentiation and growth, on mammary cell acini, and to differentiate between estrogenic and non-estrogenic effects at the same time. In the present study, both cell lines were tested for their suitability as an effect-based in vitro assay system for non-genotoxic carcinogens. An Automated Acinus Detection And Morphological Evaluation (ADAME) software solution has been developed for automatic acquisition of acinus images and determination of morphological parameters such as acinus size, lumen size, and acinus roundness. Several test substances were tested for their ability to affect acinus formation and cellular differentiation. Human epithelial growth factor (EGF) stimulated acinus growth for both cell lines, while all trans retinoic acid (RA) inhibited acinar growth. The potent estrogen 17β-estradiol had no effect on acinus formation of MCF-10A cells but resulted in larger MCF-12A acini. Thus, the parallel use of both cell lines together with the developed high content screening and evaluation tool allows the rapid identification of the estrogenic and cancerogenic properties of a given test compound. The morphogenesis of the acini was only slightly affected by the test substances. On the one hand, this suggests a robust test system, on the other hand, it probably cannot detect low-potent estrogenic compounds such as phthalates or DINCH®. The advantage of the robustness of the system, however, may be that vast numbers of "positive" results with questionable biological relevance could be avoided, such as those observed in sensitive reporter gene assays. N2 - Der Mensch ist häufig einer Vielzahl von endokrin wirksamen Chemikalien (EDCs) ausgesetzt, die schädliche Auswirkungen haben können, z. B. Störungen von Wachstum, Entwicklung und Fortpflanzung sowie Krebs (UBA, 2016). Eine Gruppe von EDCs, die in den letzten Jahren vermehrt an Interesse gewonnen hat, sind die Phthalate. Diese werden als Weichmacher in Kunststoffen verwendet. Einige Phthalate wurden bereits von der EU als Kanzerogene-, Mutagene-, Reproduktionstoxische- (CMR) Stoffe klassifiziert und ihre Verwendung in der Industrie beschränkt. Nach der oralen Aufnahme werden Phthalate metabolisiert und schließlich mit dem Urin ausgeschieden. Für die Phthalate existieren zwar zahlreiche toxikologische Studien, allerdings vorwiegend mit den Ausgangssubstanzen, nicht mit ihren primären und sekundären Metaboliten. Im Zuge der Beschränkung der Phthalate durch die EU wurde der phthalatfreie Weichmacher Diisononylcyclohexan-1,2-dicarboxylat (DINCH®), auf den Markt gebracht. DINCH® werden bisher kaum toxikologisch relevante Eigenschaften zugeordnet. Bislang wurden die Auswirkungen von DINCH® jedoch lediglich in Tierexperimenten untersucht und fast ausschließlich mit der Stamm-Substanz. Aus diesem Grund wurden potentiell endokrine Effekte von 15 Phthalaten, 19 Phthalat-Metaboliten, DINCH® und fünf seiner Metabolite unter Verwendung von Reportergen-Assays auf den ERα, ERβ und den AR untersucht. Zusätzlich wurden Untersuchungen des Einflusses einiger ausgewählter Substanzen auf die Aktivität des Peroxisom-Proliferator-aktivierten Rezeptor α (PPARα) und des Peroxisom-Proliferator-aktivierten Rezeptor γ (PPARγ) durchgeführt. Weiterhin wurde ein H295R-Steroidogenese-Assay durchgeführt, um den Einfluss von DINCH® und seinen Metaboliten auf die Estradiol- oder Testosteronsynthese zu bestimmen. Die Auswertung der Experimente zeigt, dass die Phthalate entweder die ERα- und ERβ-Aktivität stimulierten oder hemmten und die AR-Aktivität hemmten, während die Phthalatmetaboliten keinen Einfluss auf die Aktivität dieser menschlichen Hormonrezeptoren hatten. Im Gegensatz dazu stimulierten die Metaboliten von Di-(2-ethylhexyl) phthalat (DEHP) die Transaktivierung des humanen PPARα und PPARγ in analogen Reportergen-Assays, obwohl DEHP selbst diese Kernrezeptoren nicht aktivierte. Daher scheinen primäre und sekundäre Phthalatmetaboliten im Vergleich zu den Ausgangsverbindungen unterschiedliche Wirkungen auf molekularer Ebene auszuüben. Ebenso zeigten die Ergebnisse, dass der phthaltfreie Weichmacher DINCH® selbst keinen Einfluss auf die Aktivität von ERα, ERβ, AR, PPARα und PPARγ hatte, während die DINCH®-Metaboliten nachweislich alle diese Rezeptoren aktivierten. Im Falle des AR verstärkten die DINCH®-Metaboliten vor allem die durch Dihydrotestosteron (DHT) stimulierte AR-Aktivität. Im H295R-Steroidogenese-Assay beeinflusste weder DINCH® noch einer seiner Metaboliten die Estradiol- oder Testosteronsynthese. Primäre und sekundäre Metabolite von DINCH® üben demnach auf molekularer Ebene andere Effekte aus als DINCH® selbst. Die hier gewonnenen in vitro-Daten unterstützen die Annahme nicht, dass DINCH® oder einer der untersuchten Metaboliten erhebliche endokrine Wirkungen in vivo bei relevanten Expositionsmengen beim Menschen haben könnten. Nachdem endokrine Wirkungen der untersuchten Weichmacher nachgewiesen werden konnten, wurde ein neues wirkungsbasiertes in vitro 3D-Screening-Tool für Toxizitäts-Tests nicht genotoxischer Karzinogene mit östrogenrezeptor-negativen (ER-) MCF10-A-Zellen und östrogenrezeptor-positiven (ER+) MCF-12A-Zellen entwickelt. Dies geschah aus dem Hintergrund, dass Brustkrebs die häufigste Krebsart bei Frauen ist und östrogene Stoffe wie Phthalate die Krankheit vermutlich beeinflussen können. Die humanen Brustepithelzelllinien MCF-10A und MCF-12A bilden gut differenzierte azinusartige Strukturen, wenn sie in dreidimensionaler Matrigel-Kultur über einen Zeitraum von 20 Tagen kultiviert werden. Das Modell sollte es ermöglichen Substanzeffekte auf die Zelldifferenzierung und das Zellwachstum der Brustzell-Azini zu detektieren und dabei gleichzeitig zwischen östrogenen und nicht östrogenen Effekten differenzieren. Eine Softwarelösung zur automatisierten Acinus Detection And Morphological Evaluation (ADAME) wurde zur automatischen Erfassung von Acinus-Bildern und zur Bestimmung morphologischer Parameter wie Azinus-Größe, Lumengröße und Azinus-Rundheit entwickelt. Eine Reihe von Testsubstanzen wurde auf ihre Fähigkeit getestet, die Azinusbildung und die zelluläre Differenzierung zu beeinflussen. Der humane epitheliale Wachstumsfaktor (EGF) stimulierte das Azinuswachstum für beide Zelllinien, während all-trans-Retinsäure (RA) das Azinuswachstum hemmte. Das starke Östrogen 17β-Östradiol hatte keinen Einfluss auf die Azinusbildung von MCF-10A-Azini, führte aber zu größeren MCF-12A-Azini. Die parallele Verwendung beider Zelllinien zusammen mit dem hierbei entwickelten High-Content-Screening- und Evaluierungstool ermöglicht somit die schnelle Identifizierung der östrogenen oder kanzerogenen Eigenschaften einer gegebenen Testverbindung. Die Morphogenese der Azini wurde durch die Testsubstanzen nur geringfügig beeinflusst. Dies spricht einerseits für ein robustes Testsystem, andererseits kann es wahrscheinlich keine niedrigpotenten östrogenen Verbindungen wie Phthalate oder DINCH® erkennen. Der Vorteil der Robustheit des Systems kann jedoch darin liegen, dass eine große Zahl "positiver" Ergebnisse mit fragwürdiger biologischer Relevanz vermieden werden könnte, wie sie bei empfindlichen Reportergen-Assays zu beobachten sind. KW - phthalates KW - 3D breast cell model KW - endocrine disruption Y1 - 2021 U6 - https://doi.org/10.25932/publishup-53117 ER - TY - JOUR A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis JF - Molecular Nutrition and Food Research N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - https://doi.org/10.1002/mnfr.202001176 SN - 1613-4133 SN - 1613-4125 VL - 65 IS - 8 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim ER -