TY - JOUR A1 - Zheng, Chunming A1 - Toenjes, Ralf A1 - Pikovskij, Arkadij T1 - Transition to synchrony in a three-dimensional swarming model with helical trajectories JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate the transition from incoherence to global collective motion in a three-dimensional swarming model of agents with helical trajectories, subject to noise and global coupling. Without noise this model was recently proposed as a generalization of the Kuramoto model and it was found that alignment of the velocities occurs discontinuously for arbitrarily small attractive coupling. Adding noise to the system resolves this singular limit and leads to a continuous transition, either to a directed collective motion or to center-of-mass rotations. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.014216 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Yildiz, Tugba A1 - Leimkühler, Silke T1 - TusA is a versatile protein that links translation efficiency to cell division in Escherichia coli JF - Journal of bacteriology N2 - To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U-34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.
IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm(5)s(2)U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm(5)s(2)U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis. KW - iron-sulfur clusters KW - tRNA thio modifications KW - FtsZ ring formation KW - cell KW - division KW - TusA KW - RpoS KW - Fis KW - FtsZ Y1 - 2021 U6 - https://doi.org/10.1128/JB.00659-20 SN - 1098-5530 VL - 203 IS - 7 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Xu, Rudan A1 - Razaghi-Moghadam, Zahra A1 - Nikoloski, Zoran T1 - Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli JF - Bioinformatics N2 - Motivation: Constraint-based modeling approaches allow the estimation of maximal in vivo enzyme catalytic rates that can serve as proxies for enzyme turnover numbers. Yet, genome-scale flux profiling remains a challenge in deploying these approaches to catalogue proxies for enzyme catalytic rates across organisms. Results: Here, we formulate a constraint-based approach, termed NIDLE-flux, to estimate fluxes at a genome-scale level by using the principle of efficient usage of expressed enzymes. Using proteomics data from Escherichia coli, we show that the fluxes estimated by NIDLE-flux and the existing approaches are in excellent qualitative agreement (Pearson correlation > 0.9). We also find that the maximal in vivo catalytic rates estimated by NIDLE-flux exhibits a Pearson correlation of 0.74 with in vitro enzyme turnover numbers. However, NIDLE-flux results in a 1.4-fold increase in the size of the estimated maximal in vivo catalytic rates in comparison to the contenders. Integration of the maximum in vivo catalytic rates with publically available proteomics and metabolomics data provide a better match to fluxes estimated by NIDLE-flux. Therefore, NIDLE-flux facilitates more effective usage of proteomics data to estimate proxies for kcatomes. Y1 - 2021 U6 - https://doi.org/10.1093/bioinformatics/btab575 SN - 1367-4803 SN - 1460-2059 VL - 37 IS - 21 SP - 3848 EP - 3855 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Wolff, Martin A1 - Gast, Klaus A1 - Evers, Andreas A1 - Kurz, Michael A1 - Pfeiffer-Marek, Stefania A1 - Schüler, Anja A1 - Seckler, Robert A1 - Thalhammer, Anja T1 - A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4 JF - Biomolecules N2 - Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix–helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers. KW - biophysics KW - diabetes KW - peptides KW - oligomerization KW - conformational change KW - molecular modeling KW - static and dynamic light scattering KW - spectroscopy Y1 - 2021 U6 - https://doi.org/10.3390/biom11091305 SN - 2218-273X VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wojcik, Laurie Anne A1 - Ceulemans, Ruben A1 - Gaedke, Ursula T1 - Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs JF - Ecology and Evolution N2 - Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems’ ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines. KW - functional diversity KW - nutrient spike KW - pulse perturbation KW - regime shift KW - robustness KW - tritrophic food web Y1 - 2021 U6 - https://doi.org/10.1002/ece3.8214 SN - 2045-7758 N1 - Wojcik and Ceulemans shared first authorship. VL - 11 IS - 22 SP - 15639 EP - 15663 PB - John Wiley & Sons, Inc. CY - Hoboken (New Jersey) ER - TY - JOUR A1 - Witte, Leonie A1 - Linnemannstoens, Karen A1 - Honemann-Capito, Mona A1 - Groß, Julia Christina T1 - Visualization and quantitation of Wg trafficking in the Drosophila wing imaginal epithelium JF - Bio-protocol N2 - Secretory Wnt trafficking can be studied in the polarized epithelial monolayer of Drosophila wing imaginal discs (WID). In this tissue, Wg (Drosophila Wnt-I) is presented on the apical surface of its source cells before being internalized into the endosomal pathway. Long-range Wg secretion and spread depend on secondary secretion from endosomal compartments, but the exact post-endocytic fate of Wg is poorly understood. Here, we summarize and present three protocols for the immunofluorescencebased visualization and quantitation of different pools of intracellular and extracellular Wg in WID: (1) steady-state extracellular Wg; (2) dynamic Wg trafficking inside endosomal compartments; and (3) dynamic Wg release to the cell surface. Using a genetic driver system for gene manipulation specifically at the posterior part of the WID (EnGal4) provides a robust internal control that allows for direct comparison of signal intensities of control and manipulated compartments of the same WID. Therefore, it also circumvents the high degree of staining variability usually associated with whole-tissue samples. In combination with the genetic manipulation of Wg pathway components that is easily feasible in Drosophila, these methods provide a tool-set for the dissection of secretory Wg trafficking and can help us to understand how Wnt proteins travel along endosomal compartments for short-and long-range signal secretion. KW - Wingless/Wnt secretion KW - Morphogen signaling KW - Drosophila wing imaginal disc KW - Recycling assay KW - Extracelluar wingless KW - Imaginal disc dissection Y1 - 2021 U6 - https://doi.org/10.21769/BioProtoc.4040 SN - 2331-8325 VL - 11 IS - 11 PB - bio-protocol.org CY - Sunnyvale, CA ER - TY - JOUR A1 - Witt, Barbara A1 - Stiboller, Michael A1 - Raschke, Stefanie A1 - Friese, Sharleen A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers JF - Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS N2 - Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. KW - Copper KW - Astrocytes KW - Toxicity KW - Mitochondria KW - ROS KW - Trace elements Y1 - 2021 U6 - https://doi.org/10.1016/j.jtemb.2021.126711 SN - 1878-3252 VL - 65 PB - Elsevier CY - München ER - TY - JOUR A1 - Wigger, Dominik A1 - Schumacher, Fabian A1 - Schneider-Schaulies, Sibylle A1 - Kleuser, Burkhard T1 - Sphingosine 1-phosphate metabolism and insulin signaling JF - Cellular signalling N2 - Insulin is the main anabolic hormone secreted by 13-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic 13-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D. KW - Insulin resistance KW - Type 2 diabetes KW - Sphingolipids KW - Hepatocytes KW - Adipocytes KW - Skeletal muscle cells Y1 - 2021 U6 - https://doi.org/10.1016/j.cellsig.2021.109959 SN - 0898-6568 SN - 1873-3913 VL - 82 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Wetzel, Alexandra Nicole A1 - Scholtka, Bettina A1 - Schumacher, Fabian A1 - Rawel, Harshadrai Manilal A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard T1 - Epigenetic DNA methylation of EBI3 modulates human interleukin-35 formation via NFkB signaling BT - a promising therapeutic option in ulcerative colitis JF - International journal of molecular sciences N2 - Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein-Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNF alpha led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NF kappa B signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESIMS/MS analysis of DAC/TNF alpha-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNF alpha-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis. KW - decitabine KW - DNMT inhibitor KW - EBI3 KW - inhibitory cytokines KW - interleukin-35 KW - TNF alpha KW - Ulcerative colitis Y1 - 2021 U6 - https://doi.org/10.3390/ijms22105329 SN - 1422-0067 VL - 22 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wendt, Martin A1 - Senftleben, Nele A1 - Gros, Patrick A1 - Schmitt, Thomas T1 - Coping with environmental extremes BT - population ecology and behavioural adaptation of Erebia pronoe, an Alpine butterfly species JF - Insects : open access journal N2 - Simple Summary:& nbsp;High alpine meadows are home to numerous endemic butterfly species. A combination of climate change and changes in agricultural practices has led to a severe decline in many species. A seemingly unaffected representative of this habitat is Erebia pronoe. We studied the behaviour, resource use and population structure of this species to explain its resilience and estimate its future survival potential. This species shows pronounced protandry in combination with serial eclosion. Males were significantly more active and mobile and were also caught significantly more often than females, resulting in a pronounced shift in sex ratio in the predicted population structure. The adults use a wide range of nectar plants and establish homeranges in areas of high habitat quality. Thus, Erebia pronoe adults use a wide array of resources combined with a slight specialisation to avoid niche overlap with closely related species. The resulting ecological flexibility seems to be an adaptation to unpredictable environmental conditions, which should be the result of a long-lasting adaptation process. Moreover, the combination of opportunism and modest specialisation should also be a good basis for coping with future changes caused by climate and land-use change.




A mark-recapture study of the nominotypical Erebia pronoe in the Alps was conducted to survey its ecological demands and characteristics. Population structure analysis revealed a combination of protandry (one-week earlier eclosion of males) and serial eclosion. Significant differences between both sexes were found in population density (males: 580/ha & PLUSMN; 37 SE; females: 241/ha & PLUSMN; 66 SE), sex-ratio (2.4) and behaviour (57.7 vs. 11.9% flying). Both sexes used a wide range of nectar plants (Asteraceae, 77.3%; Dipsacaceae, 12.3%; Gentianaceae, 9.7%). The use of nectar plants shows a non-specific spectrum, which, however, completely avoids overlap with the locally co-occurring species Erebia nivalis. Movement patterns show the establishment of homeranges, which significantly limits the migration potential. Due to its broad ecological niche, E. pronoe will probably be able to react plastically to the consequences of climate change. The formation of high population densities, the unconcerned endangerment status, the unspecific resource spectrum and the sedentary character of the species make E. pronoe a potential indicator of the quality and general resource occurrence of alpine rupicolous grasslands. KW - mark-release-recapture KW - movement patterns KW - opportunistic behaviour KW - partial protandry KW - population demography Y1 - 2021 U6 - https://doi.org/10.3390/insects12100896 SN - 2075-4450 VL - 12 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wehrhan, Marc A1 - Puppe, Daniel A1 - Kaczorek, Danuta A1 - Sommer, Michael T1 - Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment BT - results from UAS-based high-resolution remote sensing JF - Biogeosciences : BG N2 - Various studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in terrestrial biogeosystems. Most studies are deliberately designed on the plot scale to ensure low heterogeneity in soils and plant composition, hence similar environmental conditions. Due to the immanent spatial soil variability, the transferability of results to larger areas, such as catchments, is therefore limited. However, the emergence of new technical features and increasing knowledge on details in Si cycling lead to a more complex picture at landscape and catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not only the species composition of natural vegetation but also its biomass distribution and related Si stocks. Maximum likelihood (ML) classification was applied to multispectral imagery captured by an unmanned aerial system (UAS) aiming at the identification of land cover classes (LCCs). Subsequently, the normalized difference vegetation index (NDVI) and ground-based measurements of biomass were used to quantify aboveground Si stocks in two Si-accumulating plants (Calamagrostis epige-jos and Phragmites australis) in a heterogeneous catchment and related corresponding spatial patterns of these stocks to soil properties. We found aboveground Si stocks of C. epige-jos and P. australis to be surprisingly high (maxima of Si stocks reach values up to 98 g Sim(-2)), i.e. comparable to or markedly exceeding reported values for the Si storage in aboveground vegetation of various terrestrial ecosystems. We further found spatial patterns of plant aboveground Si stocks to reflect spatial heterogeneities in soil properties. From our results, we concluded that (i) aboveground biomass of plants seems to be the main factor of corresponding phytogenic Si stock quantities, and (ii) a detection of biomass heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools at landscape scales. Y1 - 2021 U6 - https://doi.org/10.5194/bg-18-5163-2021 SN - 1726-4170 SN - 1726-4189 VL - 18 IS - 18 SP - 5163 EP - 5183 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wardelmann, Kristina A1 - Rath, Michaela A1 - Castro, José Pedro A1 - Blümel, Sabine A1 - Schell, Mareike A1 - Hauffe, Robert A1 - Schumacher, Fabian A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Wernitz, Andreas A1 - Hosoi, Toru A1 - Ozawa, Koichiro A1 - Kleuser, Burkhard A1 - Weiß, Jürgen A1 - Schürmann, Annette A1 - Kleinridders, André T1 - Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus JF - Antioxidants N2 - Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance. KW - brain insulin signaling KW - mitochondria KW - oxidative stress KW - fatty acid metabolism Y1 - 2021 U6 - https://doi.org/10.3390/antiox10050711 SN - 2076-3921 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024105 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Wang, Ningzhen A1 - Daniels, Robert A1 - Connelly, Liam A1 - Sotzing, Michael A1 - Wu, Chao A1 - Gerhard, Reimund A1 - Sotzing, Gregory A. A1 - Cao, Yang T1 - All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks JF - Small : nano micro N2 - Due to their electrically polarized air-filled internal pores, optimized ferroelectrets exhibit a remarkable piezoelectric response, making them suitable for energy harvesting. Expanded polytetrafluoroethylene (ePTFE) ferroelectret films are laminated with two fluorinated-ethylene-propylene (FEP) copolymer films and internally polarized by corona discharge. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-coated spandex fabric is employed for the electrodes to assemble an all-organic ferroelectret nanogenerator (FENG). The outer electret-plus-electrode double layers form active device layers with deformable electric dipoles that strongly contribute to the overall piezoelectric response in the proposed concept of wearable nanogenerators. Thus, the FENG with spandex electrodes generates a short-circuit current which is twice as high as that with aluminum electrodes. The stacking sequence spandex/FEP/ePTFE/FEP/ePTFE/FEP/spandex with an average pore size of 3 mu m in the ePTFE films yields the best overall performance, which is also demonstrated by the displacement-versus-electric-field loop results. The all-organic FENGs are stable up to 90 degrees C and still perform well 9 months after being polarized. An optimized FENG makes three light emitting diodes (LEDs) blink twice with the energy generated during a single footstep. The new all-organic FENG can thus continuously power wearable electronic devices and is easily integrated, for example, with clothing, other textiles, or shoe insoles. KW - all-organic ferroelectret nanogenerator (FENG) KW - all-organic KW - piezoelectric nanogenerator (PENG) KW - expanded polytetrafluoroethylene KW - ferroelectret KW - micro-energy harvesting KW - (PEDOT KW - PSS)-coated porous KW - fabric electrodes KW - wearable electronics Y1 - 2021 U6 - https://doi.org/10.1002/smll.202103161 SN - 1613-6810 SN - 1613-6829 VL - 17 IS - 33 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wang, Meng A1 - Li, Panpan A1 - Ma, Yao A1 - Nie, Xiang A1 - Grebe, Markus A1 - Men, Shuzhen T1 - Membrane sterol composition in Arabidopsis thaliana affects root elongation via auxin biosynthesis JF - International journal of molecular sciences N2 - Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (beta-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation. KW - Arabidopsis thaliana KW - auxin KW - auxin biosynthesis KW - cycloeucalenol KW - CPI1 KW - sitosterol KW - sterol Y1 - 2021 U6 - https://doi.org/10.3390/ijms22010437 SN - 1422-0067 VL - 22 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola Lisa A1 - Bornhorst, Julia A1 - Witt, Barbara A1 - Raschke, Stefanie A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A matter of concern BT - trace element dyshomeostasis and genomic stability in neurons JF - Redox Biology N2 - Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability Y1 - 2021 U6 - https://doi.org/10.1016/j.redox.2021.101877 VL - 41 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Verbancic, Jana T1 - Carbon supply and the regulation of primary cell wall synthesis in Arabidopsis thaliana N2 - Cellulose is the most abundant biopolymer on Earth and cell wall (CW) synthesis is one of the major carbon consumers in the plant cell. Structure and several interaction partners of plasma membrane (PM)-bound cellulose synthase (CESA) complexes, CSCs, have been studied extensively, but much less is understood about the signals that activate and translocate CESAs to the PM and how exactly cellulose synthesis is being regulated during the diel cycle. The literature describes CSC regulation possibilities through interactions with accessory proteins upon stress conditions (e.g. CC1), post-translational modifications that regulate CSC speed and their possible anchoring in the PM (e.g. with phosphorylation and S-acylation, respectively). In this thesis, 13CO2 labeling and imaging techniques were employed in the same Arabidopsis seedling growth system to elucidate how and when new carbon is incorporated into cell wall (CW) sugars and UDP-glucose, and to follow CSC behavior during the diel cycle. Additionally, an ubiquitination analysis was performed to investigate a possible mechanism to affect CSC trafficking to and/or from the PM. Carbon is being incorporated into CW glucose at a 3-fold higher rate during the light period in comparison to the night in wild-type seedlings. Furthermore, CSC density at the PM, as an indication of active cellulose synthesizing machinery, is increasing in the light and falling during the night, showing that CW biosynthesis is more active in the light. Therefore, CW synthesis might be regulated by the carbon status of the cell. This regulation is broken in the starchless pgm mutant where light and dark carbon incorporation rates into CW glucose are similar, possibly due to the high soluble sugar content in pgm during the first part of the night. Strikingly, pgm CSC abundance at the PM is constantly low during the whole diel cycle, indicating little or no cellulose synthesis, but can be restored with exogenous sucrose or a longer photoperiod. Ubiquitination was explored as a possible regulating mechanism for translocation of primary CW CSCs from the PM and several potential ubiquitination sites have been identified.. The approach in this thesis enabled to study cellulose/CW synthesis from different angles but in the same growth system, allowing direct comparison of those methodologies, which could help understand the relationship between the amount of available carbon in a plant cell and the cells capacity to synthesize cellulose/CW. Understanding which factors contribute to cellulose synthesis regulation and addressing those fundamental questions can provide essential knowledge to manage the need for increased crop production. KW - cellulose KW - cell wall KW - 13CO2 labeling KW - UDP-glucose KW - ubiquitination Y1 - 2021 ER - TY - THES A1 - Uflewski, Michal T1 - Characterizing the regulation of proton antiport across the thylakoid membrane N2 - Die Energie, die zum Antrieb photochemischer Reaktionen benötigt wird, stammt aus der Ladungstrennung an der Thylakoidmembran. Aufrgrund des Unterschieds in der Protonenkonzentration zwischen dem Stroma der Chloroplasten und dem Thylakoidlumen wird eine Protonenmotorische Kraft (pmf) erzeugt. Die pmf setzt sich aus dem Protonengradienten (ΔpH) und dem Membranpotential (ΔΨ) zusammen, die gemeinsam die ATP-Synthese antreiben. In der Natur schwankt die Energiemenge, die die Photosynthese antreibt, aufgrund häufiger Änderungen der Lichtintensität. Der Thylakoid-Ionentransport kann den Energiefluss durch einen Photosyntheseapparat an die Lichtverfügbarkeit anpassen, indem er die pmf-Zusammensetzung verändert. Die Dissipation von ΔΨ verringert die Ladungsrekombination am Photosystem II, so dass ein Anstieg der ΔpH-Komponente eine Rückkopplung zur Herabregulierung der Photosynthese auslösen kann. Der durch den K+-Austausch-Antiporter 3 (KEA3) gesteuerte K+/H+-Antiport reduziert den ΔpH-Anteil von pmf und dämpft dadurch das nicht-photochemische Quenching (NPQ). Infolgedessen erhöht sich die Photosyntheseeffizienz beim Übergang zu geringerer Lichtintensität. Ziel dieser Arbeit war es, Antworten auf Fragen zur Regulierung der KEA3-Aktivität und ihrer Rolle in der Pflanzenentwicklung zu finden. Die vorgestellten Daten zeigen, dass KEA3 in Pflanzen, denen der Chloroplasten-ATP-Synthase-Assembly-Faktor CGL160 fehlt und die eine verminderte ATP-Synthase-Aktivität aufweisen, eine zentrale Rolle bei der Regulierung der Photosynthese und des Pflanzenwachstums unter stationären Bedingungen spielt. Das Fehlen von KEA3 in der cgl160-Mutante führt zu einer starken Beeinträchtigung des Wachstums, da die Photosynthese aufgrund des erhöhten pH-abhängigen NPQs und des verringerten Elektronenflusses durch den Cytochrom b6f-Komplex eingeschränkt ist. Die Überexpression von KEA3 in der cgl160-Mutante erhöht die Ladungsrekombination im Photosystem II und fördert die Photosynthese. In Zeiten geringer ATP-Synthase-Aktivität profitieren die Pflanzen also von der KEA3-Aktivität. KEA3 unterliegt einer Dimerisierung über seinen regulatorischen C-Terminus (RCT). Der RCT reagiert auf Veränderungen der Lichtintensität, da die Pflanzen, die KEA3 ohne diese Domäne exprimieren, einen reduzierten Lichtschutzmechanismus bei Lichtintensitätsschwankungen aufweisen. Allerdings fixieren diese Pflanzen während der Photosynthese-Induktionsphase mehr Kohlenstoff als Gegenleistung für einen langfristigen Photoprotektor, was die regulierende Rolle von KEA3 in der Pflanzenentwicklung zeigt. Der KEA3-RCT ist dem Thylakoidstroma zugewandt, so dass seine Regulierung von lichtinduzierten Veränderungen in der Stroma-Umgebung abhängt. Die Regulierung der KEA3-Aktivität überschneidet sich mit den pH-Änderungen im Stroma, die bei Lichtschwankungen auftreten. Es hat sich gezeigt, dass ATP und ADP eine Affinität zum heterolog exprimierten KEA3 RCT haben. Eine solche Wechselwirkung verursacht Konformationsänderungen in der RCT-Struktur. Die Faltung der RCT-Liganden-Interaktion hängt vom pH-Wert der Umgebung ab. Mit einer Kombination aus Bioinformatik und In-vitro-Ansatz wurde die ATP-Bindungsstelle am RCT lokalisiert. Das Einfügen einer Punktmutation in der KEA3-RCT Bindungsstelle in planta führte zu einer Deregulierung der Antiporteraktivität beim Übergang zu wenig Licht. Die in dieser Arbeit vorgestellten Daten ermöglichten es uns, die Rolle von KEA3 bei der Anpassung der Photosynthese umfassender zu bewerten und Modelle zur Regulierung der KEA3-Aktivität während des Übergangs zwischen verschiedenen Lichtintensitäten vorzuschlagen. N2 - The energy required to drive photochemical reactions is derived from charge separation across the thylakoid membrane. As the consequence of difference in proton concentration between chloroplasts stroma and thylakoid lumen, a proton motive force (pmf) is generated. The pmf is composed out of the proton gradient (ΔpH) and membrane potential (ΔΨ), and together they drive the ATP synthesis. In nature, the amount of energy fueling photosynthesis varies due to frequent changes in the light intensity. Thylakoid ion transport can adapt the energy flow through a photosynthetic apparatus to the light availability by adjusting the pmf composition. Dissipation of ΔΨ reduces the charge recombination at the photosystem II, allowing for an increase in ΔpH component to trigger a feedback downregulation of photosynthesis. K+ Exchange Antiporter 3 (KEA3) driven K+/H+ antiport reduces the ΔpH fraction of pmf, thereby dampening a non-photochemical quenching (NPQ). As a result, it increases the photosynthesis efficiency during the transition to lower light intensity. This thesis aimed to find the answers for questions concerning KEA3 activity regulation and its role in plant development. Presented data shows that in plants lacking chloroplast ATP synthase assembly factor CGL160 with decreased ATP synthase activity, KEA3 has a pivotal role in photosynthesis regulation and plant growth during steady-state conditions. Lack of KEA3 in cgl160 mutant results in a strong growth impairment, as photosynthesis is limited due to increased pH-dependent NPQ and decreased electron flow through cytochrome b6f complex. Overexpression of KEA3 in cgl160 mutant increases charge recombination at photosystem II, promoting photosynthesis. Thus, during periods of low ATP synthase activity, plants benefit from KEA3 activity. The KEA3 undergoes dimerization via its regulatory C-terminus (RCT). The RCT responds to changes in light intensity as the plants expressing KEA3 without this domain show reduced photo-protective mechanism in light intensity transients. However, those plants fix more carbon during the photosynthesis induction phase as a trade-off for a long-term photoprotection, showing KEA3 regulatory role in plant development. The KEA3 RCT is facing thylakoid stroma, thus its regulation depends on light-induced changes in the stromal environment. KEA3 activity regulation overlaps with the stromal pH changes occurring during light fluctuations. The ATP and ADP has shown to have an affinity towards heterologously expressed KEA3 RCT. Such interaction causes conformational changes in RCT structure. The fold change of RCT-ligand interaction depends on the environmental pH value. With a combination of bioinformatics and in vitro approach, the ATP binding site at RCT was located. Introduction of binding site point mutation in planta KEA3 RCT resulted in antiporter activity deregulation during transition to low light. Together, the data presented in this thesis allowed us to assess more broadly a KEA3 role in photosynthesis adjustment and propose the models of KEA3 activity regulation throughout transition in light intensity. KW - plant KW - photosynthesis KW - thylakoid KW - ion transport KW - fluctuating light KW - Pflanze KW - Photosynthese KW - Thylakoid KW - Ionentransport KW - schwankendes Licht Y1 - 2021 ER - TY - THES A1 - Tung, Wing Tai T1 - Polymeric fibrous scaffold on macro/microscale towards tissue regeneration Y1 - 2021 ER - TY - JOUR A1 - Tong, Hao A1 - Küken, Anika A1 - Razaghi-Moghadam, Zahra A1 - Nikoloski, Zoran T1 - Characterization of effects of genetic variants via genome-scale metabolic modelling JF - Cellular and molecular life sciences : CMLS N2 - Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism. KW - Single-nucleotide polymorphisms KW - Metabolic models KW - Genome-wide KW - association studies KW - Genomic selection Y1 - 2021 U6 - https://doi.org/10.1007/s00018-021-03844-4 SN - 1420-682X SN - 1420-9071 VL - 78 IS - 12 SP - 5123 EP - 5138 PB - Springer International Publishing AG CY - Cham ER -