TY - JOUR A1 - Koetz, Joachim T1 - The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance JF - Nanomaterials N2 - A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au³⁺ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4′-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes. KW - undulated KW - spiked and crumble gold nanotriangles KW - SERS enhancement factor KW - dimerization of 4-nitrothiophenol KW - AOT bilayer KW - PEI coating Y1 - 2020 U6 - https://doi.org/10.3390/nano10112187 SN - 2079-4991 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Fudickar, Werner A1 - Metz, Melanie A1 - Mai-Linde, Yasemin A1 - Krüger, Tobias A1 - Kelling, Alexandra A1 - Sperlich, Eric A1 - Linker, Torsten T1 - Influence of functional groups on the ene reaction of singlet oxygen with 1,4-cyclohexadienes JF - Photochemistry and photobiology : the official journal of the American Society for Photobiology N2 - The photooxygenation of 1,4-cyclohexadienes has been studied with a special focus on regio- and stereoselectivities. In all examples, only the methyl-substituted double bond undergoes an ene reaction with singlet oxygen, to afford hydroperoxides in moderate to good yields. We explain the high regioselectivities by a "large-group effect" of the adjacent quaternary stereocenter. Nitriles decrease the reactivity of singlet oxygen, presumably by quenching, but can stabilize proposed per-epoxide intermediates by polar interactions resulting in different stereoselectivities. Spiro lactams and lactones show an interesting effect on regio- and stereoselectivities of the ene reactions. Thus, singlet oxygen attacks the double bond preferentially anti to the carbonyl group, affording only one regioisomeric hydroperoxide. If the reaction occurs from the opposite face, the other regioisomer is exclusively formed by severe electrostatic repulsion in a perepoxide intermediate. We explain this unusual behavior by the fixed geometry of spiro compounds and call it a "spiro effect" in singlet oxygen ene reactions. Y1 - 2021 U6 - https://doi.org/10.1111/php.13422 SN - 0031-8655 SN - 1751-1097 VL - 97 IS - 6 SP - 1289 EP - 1297 PB - Wiley CY - Malden, Mass. ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Vranic, Marija A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, María A1 - Möller, Heiko Michael A1 - Weller, Michael G. T1 - Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺ JF - International Journal of Molecular Sciences N2 - Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. KW - hepcidin-25 KW - copper KW - nickel KW - copper complex KW - ATCUN motif KW - metal complex KW - MS KW - NMR structure KW - metal peptide KW - metalloprotein KW - metallopeptide KW - isomerization KW - racemization KW - purity KW - reference material Y1 - 2018 U6 - https://doi.org/10.3390/ijms19082271 SN - 1422-0067 SN - 1661-6596 VL - 19 IS - 8 PB - Molecular Diversity Preservation International CY - Basel ER - TY - GEN A1 - Abbas, Ioana M. A1 - Vranic, Marija A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, María A1 - Möller, Heiko Michael A1 - Weller, Michael G. T1 - Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺ T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 701 KW - hepcidin-25 KW - copper KW - nickel KW - copper complex KW - ATCUN motif KW - metal complex KW - MS KW - NMR structure KW - metal peptide KW - metalloprotein KW - metallopeptide KW - isomerization KW - racemization KW - purity KW - reference material Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427926 SN - 1866-8372 IS - 701 ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Koetz, Joachim T1 - Inner rotation of Pickering Janus emulsions JF - Nanomaterials : open access journal N2 - Janus droplets were prepared by vortex mixing of three non-mixable liquids, i.e., olive oil, silicone oil and water, in the presence of gold nanoparticles (AuNPs) in the aqueous phase and magnetite nanoparticles (MNPs) in the olive oil. The resulting Pickering emulsions were stabilized by a red-colored AuNP layer at the olive oil/water interface and MNPs at the oil/oil interface. The core–shell droplets can be stimulated by an external magnetic field. Surprisingly, an inner rotation of the silicon droplet is observed when MNPs are fixed at the inner silicon droplet interface. This is the first example of a controlled movement of the inner parts of complex double emulsions by magnetic manipulation via interfacially confined magnetic nanoparticles. KW - Janus droplets KW - Pickering emulsions KW - magnetic manipulation KW - gold nanoparticles KW - magnetite nanoparticles Y1 - 2021 U6 - https://doi.org/10.3390/nano11123312 SN - 2079-4991 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Picconi, David T1 - Nonadiabatic quantum dynamics of the coherent excited state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline JF - Photochemical & photobiological sciences N2 - The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are studied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling Hamiltonian, which includes the two lowest pi pi* excited states and a n pi* state, which has high energy in the Franck-Condon zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict a time scale of 10-15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in time- resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experiments, it is found that the reaction initiated by 1 pi pi* <- S-0 photoexcitation proceeds essentially on a single potential energy surface, and the observed coherences bear signatures of Duschinsky mode-mixing along the reaction path. The dynamics after the 2 pi pi* <- S-0 excitation are instead nonadiabatic, and the n pi* state plays a major role in the relaxation process. The simulations suggest a mainly active role of the proton in the isomerization, rather than a passive migration assisted by the vibrations of the benzoquinoline backbone.
[GRAPHICS]
. KW - Excited state proton transfer KW - Quantum dynamics KW - Nonadiabatic effects KW - Spectroscopy KW - Coherences Y1 - 2021 U6 - https://doi.org/10.1007/s43630-021-00112-z SN - 1474-905X SN - 1474-9092 VL - 20 IS - 11 SP - 1455 EP - 1473 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Zabel, André A1 - Winter, Alette A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strauch, Peter T1 - Tetrabromidocuprates(II)-Synthesis, Structure and EPR JF - International journal of molecular sciences N2 - Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several “onium” cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids. KW - tetrabromidocuprate(II) KW - X-ray structure KW - electron paramagnetic resonance KW - copper(II) Y1 - 2016 U6 - https://doi.org/10.3390/ijms17040596 VL - 17 IS - 4 PB - MDPI CY - Basel ER - TY - GEN A1 - Zabel, André A1 - Winter, Alette A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strauch, Peter T1 - Tetrabromidocuprates(II)-Synthesis, Structure and EPR N2 - Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several “onium” cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 226 KW - tetrabromidocuprate(II) KW - X-ray structure KW - electron paramagnetic resonance KW - copper(II) Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91470 ER - TY - JOUR A1 - Meyer, S. A1 - Raber, G. A1 - Ebert, Franziska A1 - Leffers, L. A1 - Müller, Sandra Marie A1 - Taleshi, M. S. A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites JF - Toxicology research N2 - Arsenic-containing fatty acids are a group of fat-soluble arsenic species (arsenolipids) which are present in marine fish and other seafood. Recently, it has been shown that arsenic-containing hydrocarbons, another group of arsenolipids, exert toxicity in similar concentrations comparable to arsenite although the toxic modes of action differ. Hence, a risk assessment of arsenolipids is urgently needed. In this study the cellular toxicity of a saturated (AsFA 362) and an unsaturated (AsFA 388) arsenic-containing fatty acid and three of their proposed metabolites (DMAV, DMAPr and thio-DMAPr) were investigated in human liver cells (HepG2). Even though both arsenic-containing fatty acids were less toxic as compared to arsenic-containing hydrocarbons and arsenite, significant effects were observable at μM concentrations. DMAV causes effects in a similar concentration range and it could be seen that it is metabolised to its highly toxic thio analogue thio-DMAV in HepG2 cells. Nevertheless, DMAPr and thio-DMAPr did not exert any cytotoxicity. In summary, our data indicate that risks to human health related to the presence of arsenic-containing fatty acids in marine food cannot be excluded. This stresses the need for a full in vitro and in vivo toxicological characterisation of these arsenolipids. Y1 - 2015 U6 - https://doi.org/10.1039/c5tx00122f SN - 2045-4538 VL - 5 IS - 4 SP - 1289 EP - 1296 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Meyer, S. A1 - Raber, G. A1 - Ebert, Franziska A1 - Leffers, L. A1 - Müller, Sandra Marie A1 - Taleshi, M. S. A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites N2 - Arsenic-containing fatty acids are a group of fat-soluble arsenic species (arsenolipids) which are present in marine fish and other seafood. Recently, it has been shown that arsenic-containing hydrocarbons, another group of arsenolipids, exert toxicity in similar concentrations comparable to arsenite although the toxic modes of action differ. Hence, a risk assessment of arsenolipids is urgently needed. In this study the cellular toxicity of a saturated (AsFA 362) and an unsaturated (AsFA 388) arsenic-containing fatty acid and three of their proposed metabolites (DMAV, DMAPr and thio-DMAPr) were investigated in human liver cells (HepG2). Even though both arsenic-containing fatty acids were less toxic as compared to arsenic-containing hydrocarbons and arsenite, significant effects were observable at μM concentrations. DMAV causes effects in a similar concentration range and it could be seen that it is metabolised to its highly toxic thio analogue thio-DMAV in HepG2 cells. Nevertheless, DMAPr and thio-DMAPr did not exert any cytotoxicity. In summary, our data indicate that risks to human health related to the presence of arsenic-containing fatty acids in marine food cannot be excluded. This stresses the need for a full in vitro and in vivo toxicological characterisation of these arsenolipids. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 199 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82008 ER - TY - GEN A1 - Kort, C. A. D. de A1 - Peter, Martin G. A1 - Koopmanschap, A. B. T1 - Binding and degradation of juvenile hormone III by haemolymph proteins of the Colorado potato beetle: a re-examination N2 - The haemolymph of the adult Colorado potato beetle, Lepinotarsa decemlineata Say, contains a high molecular weight (MW > 200,000) JH-III specific binding protein. The Kd value of the protein for racemic JH-III is 1.3 ± 0.2 × 10−7 M. It has a lower affinity for racemic JH-I and it does not bind JH-III-diol or JH-III-acid. The binding protein does discriminate between the enantiomers of synthetic, racemic JH-III as was determined by stereochemical anaysis of the bound and the free JH-III. Incubation of racemic JH-III with crude haemolymph results in preferential formation of (10S)-JH-III-acid, the unnatural configuration. The JH-esterase present in L. decemlineata haemolymph is not enantioselective. It is concluded that the most important function of the binding protein is that of a specific carrier, protecting the natural hormone against degradation by esterases. The carrier does not protect JH-I as efficiently as the lower homologue. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 068 KW - Juvenile hormone KW - Leptinotarsa decemlineata KW - JH-III-specific carrier protein KW - enantioselectivity Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16777 ER - TY - JOUR A1 - Reschke, Stefan A1 - Mebs, Stefan A1 - Sigfridsson-Clauss, Kajsa G. V. A1 - Kositzki, Ramona A1 - Leimkühler, Silke A1 - Haumann, Michael T1 - Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy JF - Inorganic chemistry N2 - Enzymes of the xanthine oxidase family are among the best characterized mononuclear molybdenum enzymes. Open questions about their mechanism of transfer of an oxygen atom to the substrate remain. The enzymes share a molybdenum cofactor (Moco) with the metal ion binding a molybdopterin (MPT) molecule via its dithiolene function and terminal sulfur and oxygen groups. For xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus, we used X-ray absorption spectroscopy to determine the Mo site structure, its changes in a pH range of 5-10, and the influence of amino acids (Glu730 and Gln179) close to Moco in wild-type (WT), Q179A, and E730A variants, complemented by enzyme kinetics and quantum chemical studies. Oxidized WT and Q179A revealed a similar Mo (VI) ion with each one MPT, Mo=O, Mo-O-, and Mo=S ligand, and a weak Mo-O(E730) bond at alkaline pH. Protonation of an oxo to a hydroxo (OH) ligand (pK similar to 6.8) causes inhibition of XDH at acidic pH, whereas deprotonated xanthine (pK similar to 8.8) is an inhibitor at alkaline pH. A similar acidic pK for the WT and Q179A. variants, as well as the metrical parameters of the Mo site and density functional theory calculations, suggested protonation at the equatorial oxo group. The sulfido was replaced with an oxo ligand in the inactive E730A variant, further showing another oxo and one Mo OH ligand at Mo, which are independent of pH. Our findings suggest a reaction mechanism for XDH in which an initial oxo rather than a hydroxo group and the sulfido ligand are essential for xanthine oxidation. Y1 - 2017 U6 - https://doi.org/10.1021/acs.inorgchem.6b02846 SN - 0020-1669 SN - 1520-510X VL - 56 IS - 4 SP - 2165 EP - 2176 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Braune, Steffen A1 - Latour, Robert A. A1 - Reinthaler, Markus A1 - Landmesser, Ulf A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - In Vitro Thrombogenicity Testing of Biomaterials JF - Advanced healthcare materials N2 - The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed. KW - biomaterials KW - blood tests KW - implants KW - in vitro KW - thrombogenicity Y1 - 2019 U6 - https://doi.org/10.1002/adhm.201900527 SN - 2192-2640 SN - 2192-2659 VL - 8 IS - 21 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel KW - Gestational diabetes KW - Metabolomics KW - Phosphatidylcholine acyl-alkyl C 32:1 KW - Proline Y1 - 2018 U6 - https://doi.org/10.1159/000487119 SN - 1015-8987 SN - 1421-9778 VL - 45 IS - 2 SP - 625 EP - 638 PB - Karger CY - Basel ER - TY - JOUR A1 - López de Guereñu Kurganova, Anna A1 - Klier, Dennis Tobias A1 - Haubitz, Toni A1 - Kumke, Michael Uwe T1 - Influence of Gd3+ doping concentration on the properties of Na(Y,Gd)F-4 BT - Yb3+, Tm3+ upconverting nanoparticles and their long-term aging behavior JF - Photochemical & photobiological sciences / European Society for Photobiology N2 - We present a systematic study on the properties of Na(Y,Gd)F-4-based upconverting nanoparticles (UCNP) doped with 18% Yb3+, 2% Tm3+, and the influence of Gd3+ (10-50 mol% Gd3+). UCNP were synthesized via the solvothermal method and had a range of diameters within 13 and 50 nm. Structural and photophysical changes were monitored for the UCNP samples after a 24-month incubation period in dry phase and further redispersion. Structural characterization was performed by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as dynamic light scattering (DLS), and the upconversion luminescence (UCL) studies were executed at various temperatures (from 4 to 295 K) using time-resolved and steady-state spectroscopy. An increase in the hexagonal lattice phase with the increase of Gd3+ content was found, although the cubic phase was prevalent in most samples. The Tm3+-luminescence intensity as well as the Tm3+-luminescence decay times peaked at the Gd3+ concentration of 30 mol%. Although the general upconverting luminescence properties of the nanoparticles were preserved, the 24-month incubation period lead to irreversible agglomeration of the UCNP and changes in luminescence band ratios and lifetimes. KW - Upconversion luminescence KW - Lanthanides KW - Near infra-red KW - Ultra-low KW - temperature KW - Time-resolved spectroscopy Y1 - 2022 U6 - https://doi.org/10.1007/s43630-021-00161-4 SN - 1474-905X SN - 1474-9092 VL - 21 IS - 2 SP - 235 EP - 245 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Peter, Martin G. T1 - Products of in vitro oxidation of N-acetyldopamine as possible components in the sclerotization of insect cuticle N2 - [1-14C]-N-Acetyldopamine (NADA) was oxidized in the presence of methyl [3-3H]-β-alanate with mushroom tyrosinase. The complex mixture of reaction products was partly resolved by chromatographic procedures and analyzed by spectroscopic methods. Methyl-β-alanate is incorporated to only a small extent into oxidation products of NADA which inter alia are presumed to be oligomeric hydroxyquinones. After oxidation of [1-14C, 2-3H]-NADA with preparations from tanning Manduca sexta pupal cuticle, N-acetylnoradrenalin was identified as one of the products. Binding of radioactivity to melanin-like material was also observed. These results suggest that oxidation products different from those formulated usually for the crosslinkages between protein amino groups and N-acetyldopaquinone are deposited in darkly brown coloured insect cuticles during sclerotization. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 041 KW - N-acetyldopamine KW - sclerotization KW - tyrosinase; o-quinones KW - tanning agents Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16759 ER - TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - On demand sequential release of (sub)micron particles controlled by size and temperature JF - Small : nano micro N2 - Polymeric devices capable of releasing submicron particles (subMP) on demand are highly desirable for controlled release systems, sensors, and smart surfaces. Here, a temperature-memory polymer sheet with a programmable smooth surface served as matrix to embed and release polystyrene subMP controlled by particle size and temperature. subMPs embedding at 80 degrees C can be released sequentially according to their size (diameter D of 200 nm, 500 nm, 1 mu m) when heated. The differences in their embedding extent are determined by the various subMPs sizes and result in their distinct release temperatures. Microparticles of the same size (D approximate to 1 mu m) incorporated in films at different programming temperatures T-p (50, 65, and 80 degrees C) lead to a sequential release based on the temperature-memory effect. The change of apparent height over the film surface is quantified using atomic force microscopy and the realization of sequential release is proven by confocal laser scanning microscopy. The demonstration and quantification of on demand subMP release are of technological impact for assembly, particle sorting, and release technologies in microtechnology, catalysis, and controlled release. KW - on demand particle release KW - temperature-memory effect KW - thermosensitive KW - polymer surface Y1 - 2022 U6 - https://doi.org/10.1002/smll.202104621 SN - 1613-6810 SN - 1613-6829 VL - 18 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Koetz, Joachim T1 - The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au³⁺ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4′-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1022 KW - undulated KW - spiked and crumble gold nanotriangles KW - SERS enhancement factor KW - dimerization of 4-nitrothiophenol KW - AOT bilayer KW - PEI coating Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-485172 SN - 1866-8372 IS - 1022 ER - TY - JOUR A1 - Deng, Zijun A1 - Zou, Jie A1 - Wang, Weiwei A1 - Nie, Yan A1 - Tung, Wing-Tai A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Dedifferentiation of mature adipocytes with periodic exposure to cold JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10 degrees C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37 degrees C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1 alpha, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37 degrees C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells. KW - Adipocyte KW - dedifferentiation KW - cold KW - lipid Y1 - 2019 U6 - https://doi.org/10.3233/CH-199005 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 415 EP - 424 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Ebel, Kenny A1 - Bald, Ilko T1 - Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA JF - International Journal of Molecular Sciences N2 - The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A₄), d(A₈), d(A₁₂), d(A₁₆), and d(A₂₀)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A₄) to d(A₁₆), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A₂₀), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA₂₀ sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy. KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - low-energy electrons KW - sequence dependence Y1 - 2019 U6 - https://doi.org/10.3390/ijms21010111 SN - 1422-0067 VL - 21 IS - 1 PB - Molecular Diversity Preservation International CY - Basel ER -