TY - JOUR A1 - Shubchynskyy, Volodymyr A1 - Boniecka, Justyna A1 - Schweighofer, Alois A1 - Simulis, Justinas A1 - Kvederaviciute, Kotryna A1 - Stumpe, Michael A1 - Mauch, Felix A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Boutrot, Freddy A1 - Zipfel, Cyril A1 - Meskiene, Irute T1 - Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae JF - Journal of experimental botany N2 - Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance. KW - Callose KW - defense genes KW - MAPK KW - MAPK phosphatase KW - PAMP KW - PP2C phosphatase KW - Pseudomonas syringae KW - salicylic acid KW - transcription factors Y1 - 2017 U6 - https://doi.org/10.1093/jxb/erw485 SN - 0022-0957 SN - 1460-2431 VL - 68 IS - 5 SP - 1169 EP - 1183 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Machens, Fabian A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Messerschmidt, Katrin T1 - Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae JF - Frontiers in Bioengineering and Biotechnology N2 - Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems. KW - JUB1 KW - synthetic biology KW - transcriptional regulation KW - gene expression KW - synthetic circuits KW - dead Cas9 KW - chimeric transcription factors Y1 - 2017 U6 - https://doi.org/10.3389/fbioe.2017.00063 SN - 2296-4185 VL - 5 SP - 1 EP - 11 PB - Frontiers CY - Lausanne ER -