TY - JOUR A1 - Romao, Maria Joao A1 - Coelho, Catarina A1 - Santos-Silva, Teresa A1 - Foti, Alessandro A1 - Terao, Mineko A1 - Garattini, Enrico A1 - Leimkühler, Silke T1 - Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics JF - Current Opinion in Chemical Biology N2 - Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. Mammals are characterized by a complement of species specific AOX isoenzymes, that varies from one in humans (AOX1) to four in rodents (AOX1, AOX2, AOX3 and AOX4). The physiological function of mammalian AOX isoenzymes is unknown, although human AOX1 is an emerging enzyme in phase-I drug metabolism. Indeed, the number of therapeutic molecules under development which act as AOX substrates is increasing. The recent crystallization and structure determination of human AOX1 as well as mouse AOX3 has brought new insights into the mechanisms underlying substrate/inhibitor binding as well as the catalytic activity of this class of enzymes. Y1 - 2017 U6 - https://doi.org/10.1016/j.cbpa.2017.01.005 SN - 1367-5931 SN - 1879-0402 VL - 37 SP - 39 EP - 47 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Leimkühler, Silke A1 - Bühning, Martin A1 - Beilschmidt, Lena T1 - Shared sulfur mobilization routes for tRNA thiolation and molybdenum cofactor biosynthesis in prokaryotes and eukaryotes JF - Biomolecules N2 - Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm(5)s(2)U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron-sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes. KW - tRNA KW - molybdenum cofactor KW - persulfide KW - thiocarboxylate KW - thionucleosides KW - sulfurtransferase KW - l-cysteine desulfurase Y1 - 2017 U6 - https://doi.org/10.3390/biom7010005 SN - 2218-273X VL - 7 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hasan, Ahmed Abdallah Abdalrahman Mohamed A1 - Hocher, Berthold T1 - Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy JF - Journal of Molecular Endocrinology N2 - Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membranebound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure-and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations. KW - DPP-4 KW - diabetic nephropathy KW - DPP-4 inhibitors KW - GLP-1 and SDF-1a Y1 - 2017 U6 - https://doi.org/10.1530/JME-17-0005 SN - 0952-5041 SN - 1479-6813 VL - 59 SP - R1 EP - R10 PB - Bioscientifica LTD CY - Bristol ER - TY - JOUR A1 - Yang, Xiaoping A1 - Darko, Kwame Oteng A1 - Huang, Yanjun A1 - He, Caimei A1 - Yang, Huansheng A1 - He, Shanping A1 - Li, Jianzhong A1 - Li, Jian A1 - Hocher, Berthold A1 - Yin, Yulong T1 - Resistant starch regulates gut microbiota BT - structure, biochemistry and cell signalling JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota. KW - Resistant starch KW - Gut microbiota KW - Nutrition Y1 - 2017 U6 - https://doi.org/10.1159/000477386 SN - 1015-8987 SN - 1421-9778 VL - 42 IS - 1 SP - 306 EP - 318 PB - Karger CY - Basel ER - TY - JOUR A1 - Cabral, Juliano Sarmento A1 - Valente, Luis A1 - Hartig, Florian T1 - Mechanistic simulation models in macroecology and biogeography BT - state-of-art and prospects JF - Ecography : pattern and diversity in ecology N2 - Macroecology and biogeography are concerned with understanding biodiversity patterns across space and time. In the past, the two disciplines have addressed this question mainly with correlative approaches, despite frequent calls for more mechanistic explanations. Recent advances in computational power, theoretical understanding, and statistical tools are, however, currently facilitating the development of more system-oriented, mechanistic models. We review these models, identify different model types and theoretical frameworks, compare their processes and properties, and summarize emergent findings. We show that ecological (physiology, demographics, dispersal, biotic interactions) and evolutionary processes, as well as environmental and human-induced drivers, are increasingly modelled mechanistically; and that new insights into biodiversity dynamics emerge from these models. Yet, substantial challenges still lie ahead for this young research field. Among these, we identify scaling, calibration, validation, and balancing complexity as pressing issues. Moreover, particular process combinations are still understudied, and so far models tend to be developed for specific applications. Future work should aim at developing more flexible and modular models that not only allow different ecological theories to be expressed and contrasted, but which are also built for tight integration with all macroecological data sources. Moving the field towards such a ‘systems macroecology’ will test and improve our understanding of the causal pathways through which eco-evolutionary processes create diversity patterns across spatial and temporal scales. Y1 - 2016 U6 - https://doi.org/10.1111/ecog.02480 SN - 0906-7590 SN - 1600-0587 VL - 40 IS - 2 SP - 267 EP - 280 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Duncan, Susan A1 - Rosa, Stefanie Nunes T1 - Gaining insight into plant gene transcription using smFISH JF - Transcription N2 - Single molecule RNA fluorescent in situ hybridization (smFISH) enables gene transcription to be assessed at the cellular level. In this point of view article, we describe our recent smFISH research in the model plant Arabidopsis thaliana and discuss how this technique could further knowledge of plant gene transcription in the future. KW - Arabidopsis KW - lncRNA KW - mRNA Quantification KW - RNA Imaging KW - smFISH Y1 - 2017 U6 - https://doi.org/10.1080/21541264.2017.1372043 SN - 2154-1264 SN - 2154-1272 VL - 9 IS - 3 SP - 166 EP - 170 PB - Taylor & Francis Group CY - Philadelphia ER - TY - JOUR A1 - Bäurle, Isabel T1 - Can't remember to forget you BT - Chromatin-based priming of somatic stress responses JF - Seminars in cell & developmental biology N2 - In nature plants are exposed to frequent changes in their abiotic and biotic environment. While some environmental cues are used to gauge the environment and align growth and development, others are beyond the regularly encountered spectrum of a species and trigger stress responses. Such stressful conditions provide a potential threat to survival and integrity. Plants adapt to extreme environmental conditions through physiological adaptations that are usually transient and are maintained until stressful environments subside. It is increasingly appreciated that in some cases environmental cues activate a stress memory that persists for some time after the extreme condition has subsided. Recent research has shown that this stress-induced environmental memory is mediated by epigenetic and chromatin-based mechanisms and both histone methylation and nucleosome occupancy are associated with it. KW - Priming KW - Transcriptional memory KW - Chromatin KW - H3K4 methylation KW - Nucleosome occupancy Y1 - 2017 U6 - https://doi.org/10.1016/j.semcdb.2017.09.032 SN - 1084-9521 VL - 83 SP - 133 EP - 139 PB - Elsevier CY - London ER -