TY - JOUR A1 - Maares, Maria A1 - Keil, Claudia A1 - Koza, Jenny A1 - Straubing, Sophia A1 - Schwerdtle, Tanja A1 - Haase, Hajo T1 - In Vitro Studies on Zinc Binding and Buffering by Intestinal Mucins JF - International Journal of Molecular Sciences N2 - The investigation of luminal factors influencing zinc availability and accessibility in the intestine is of great interest when analyzing parameters regulating intestinal zinc resorption. Of note, intestinal mucins were suggested to play a beneficial role in the luminal availability of zinc. Their exact zinc binding properties, however, remain unknown and the impact of these glycoproteins on human intestinal zinc resorption has not been investigated in detail. Thus, the aim of this study is to elucidate the impact of intestinal mucins on luminal uptake of zinc into enterocytes and its transfer into the blood. In the present study, in vitro zinc binding properties of mucins were analyzed using commercially available porcine mucins and secreted mucins of the goblet cell line HT-29-MTX. The molecular zinc binding capacity and average zinc binding affinity of these glycoproteins demonstrates that mucins contain multiple zinc-binding sites with biologically relevant affinity within one mucin molecule. Zinc uptake into the enterocyte cell line Caco-2 was impaired by zinc-depleted mucins. Yet this does not represent their form in the intestinal lumen in vivo under zinc adequate conditions. In fact, zinc-uptake studies into enterocytes in the presence of mucins with differing degree of zinc saturation revealed zinc buffering by these glycoproteins, indicating that mucin-bound zinc is still available for the cells. Finally, the impact of mucins on zinc resorption using three-dimensional cultures was studied comparing the zinc transfer of a Caco-2/HT-29-MTX co-culture and conventional Caco-2 monoculture. Here, the mucin secreting co-cultures yielded higher fractional zinc resorption and elevated zinc transport rates, suggesting that intestinal mucins facilitate the zinc uptake into enterocytes and act as a zinc delivery system for the intestinal epithelium. KW - intestinal zinc resorption KW - zinc binding KW - mucus layer KW - intestinal mucins KW - in vitro intestinal model KW - goblet cells KW - Caco-2/HT-29-MTX-model Y1 - 2018 U6 - https://doi.org/10.3390/ijms19092662 SN - 1422-0067 VL - 19 IS - 9 ER - TY - JOUR A1 - Fritz, Michael Andre A1 - Rosa, Stefanie A1 - Sicard, Adrien T1 - Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology JF - Frontiers in genetics N2 - The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation. KW - plants KW - leaf morphology KW - environment KW - developmental plasticity KW - gene regulatory networks KW - sensory system KW - gene responsiveness Y1 - 2018 U6 - https://doi.org/10.3389/fgene.2018.00478 SN - 1664-8021 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Galbete, Cecilia A1 - Schwingshackl, Lukas A1 - Schwedhelm, Carolina A1 - Boeing, Heiner A1 - Schulze, Matthias Bernd T1 - Evaluating Mediterranean diet and risk of chronic disease in cohort studies BT - an umbrella review of meta-analyses JF - European journal of epidemiology N2 - Several meta-analyses have been published summarizing the associations of the Mediterranean diet (MedDiet) with chronic diseases. We evaluated the quality and credibility of evidence from these meta-analyses as well as characterized the different indices used to define MedDiet and re-calculated the associations with the different indices identified. We conducted an umbrella review of meta-analyses on cohort studies evaluating the association of the MedDiet with type 2 diabetes, cardiovascular disease, cancer and cognitive-related diseases. We used the AMSTAR (A MeaSurement Tool to Assess systematic Reviews) checklist to evaluate the methodological quality of the meta-analyses, and the NutriGrade scoring system to evaluate the credibility of evidence. We also identified different indices used to define MedDiet; tests for subgroup differences were performed to compare the associations with the different indices when at least 2 studies were available for different definitions. Fourteen publications were identified and within them 27 meta-analyses which were based on 70 primary studies. Almost all meta-analyses reported inverse associations between MedDiet and risk of chronic disease, but the credibility of evidence was rated low to moderate. Moreover, substantial heterogeneity was observed on the use of the indices assessing adherence to the MedDiet, but two indices were the most used ones [Trichopoulou MedDiet (tMedDiet) and alternative MedDiet (aMedDiet)]. Overall, we observed little difference in risk associations comparing different MedDiet indices in the subgroup meta-analyses. Future prospective cohort studies are advised to use more homogenous definitions of the MedDiet to improve the comparability across meta-analyses. KW - Mediterranean diet KW - Chronic diseases KW - Umbrella review KW - Meta-analyses KW - Cohort studies KW - Heterogeneity Y1 - 2018 U6 - https://doi.org/10.1007/s10654-018-0427-3 SN - 0393-2990 SN - 1573-7284 VL - 33 IS - 10 SP - 909 EP - 931 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Albers, Philip A1 - Uestuen, Suayib A1 - Witzel, Katja A1 - Bornke, Frederik T1 - Identification of a novel target of the bacterial effector HopZ1a T2 - Phytopathology N2 - The plant pathogen Pseudomonas syringae is a gram-negative bacterium which infects a wide range of plant species including important crops plants. To suppress plant immunity and cause disease P.syringae injects type-III effector proteins (T3Es) into the plant cell cytosol. In this study, we identified a novel target of the well characterized bacterial T3E HopZ1a. HopZ1a is an acetyltransferase that was shown to disrupt vesicle transport during innate immunity by acetylating tubulin. Using a yeast-two-hybrid screen approach, we identified a REMORIN (REM) protein from tobacco as a novel HopZ1a target. HopZ1a interacts with REM at the plasma membrane (PM) as shown by split-YFP experiments. Interestingly, we found that PBS1, a well-known kinase involved in plant immunity also interacts with REM in pull-down assays, and at the PM as shown by BiFC. Furthermore, we confirmed that REM is phosphorylated by PBS1 in vitro. Overexpression of REM provokes the upregulation of defense genes and leads to disease-like phenotypes pointing to a role of REM in plant immune signaling. Further protein-protein interaction studies reveal novel REM binding partners with a possible role in plant immune signaling. Thus, REM might act as an assembly hub for an immune signaling complex targeted by HopZ1a. Taken together, this is the first report describing that a REM protein is targeted by a bacterial effector. How HopZ1a might mechanistically manipulate the plant immune system through interfering with REM function will be discussed. Y1 - 2018 SN - 0031-949X SN - 1943-7684 VL - 108 IS - 10 PB - American Phytopathological Society CY - Saint Paul ER - TY - JOUR A1 - Franco-Obregon, Alfredo A1 - Cambria, Elena A1 - Greutert, Helen A1 - Wernas, Timon A1 - Hitzl, Wolfgang A1 - Egli, Marcel A1 - Sekiguchi, Miho A1 - Boos, Norbert A1 - Hausmann, Oliver A1 - Ferguson, Stephen J. A1 - Kobayashi, Hiroshi A1 - Würtz-Kozak, Karin T1 - TRPC6 in simulated microgravity of intervertebral disc cells JF - European Spine Journal N2 - Purpose Prolonged bed rest and microgravity in space cause intervertebral disc (IVD) degeneration. However, the underlying molecular mechanisms are not completely understood. Transient receptor potential canonical (TRPC) channels are implicated in mechanosensing of several tissues, but are poorly explored in IVDs. Methods Primary human IVD cells from surgical biopsies composed of both annulus fibrosus and nucleus pulposus (passage 1-2) were exposed to simulated microgravity and to the TRPC channel inhibitor SKF-96365 (SKF) for up to 5days. Proliferative capacity, cell cycle distribution, senescence and TRPC channel expression were analyzed. Results Both simulated microgravity and TRPC channel antagonism reduced the proliferative capacity of IVD cells and induced senescence. While significant changes in cell cycle distributions (reduction in G1 and accumulation in G2/M) were observed upon SKF treatment, the effect was small upon 3days of simulated microgravity. Finally, downregulation of TRPC6 was shown under simulated microgravity. Conclusions Simulated microgravity and TRPC channel inhibition both led to reduced proliferation and increased senescence. Furthermore, simulated microgravity reduced TRPC6 expression. IVD cell senescence and mechanotransduction may hence potentially be regulated by TRPC6 expression. This study thus reveals promising targets for future studies. KW - Intervertebral disc KW - Simulated microgravity KW - Senescence KW - TRP channels KW - Mechanotransduction KW - Gene expression Y1 - 2018 U6 - https://doi.org/10.1007/s00586-018-5688-8 SN - 0940-6719 SN - 1432-0932 VL - 27 IS - 10 SP - 2621 EP - 2630 PB - Springer CY - New York ER - TY - GEN A1 - Kleuser, Burkhard T1 - The enigma of sphingolipids in health and disease T2 - International journal of molecular sciences Y1 - 2018 U6 - https://doi.org/10.3390/ijms19103126 SN - 1422-0067 VL - 19 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ambarli, Hüseyin A1 - Mengüllüoğlu, Deniz A1 - Fickel, Jörns A1 - Förster, Daniel W. T1 - Hotel AMANO Grand Central of brown bears in southwest Asia JF - PeerJ N2 - Genetic studies of the Eurasian brown bear (Ursus arctos) have so far focused on populations from Europe and North America, although the largest distribution area of brown bears is in Asia. In this study, we reveal population genetic parameters for the brown bear population inhabiting the Grand Kackar Mountains (GKM) in the north east of Turkey, western Lesser Caucasus. Using both hair (N = 147) and tissue samples (N = 7) collected between 2008 and 2014, we found substantial levels of genetic variation (10 microsatellite loci). Bear samples (hair) taken from rubbing trees worked better for genotyping than those from power poles, regardless of the year collected. Genotyping also revealed that bears moved between habitat patches, despite ongoing massive habitat alterations and the creation of large water reservoirs. This population has the potential to serve as a genetic reserve for future reintroduction in the Middle East. Due to the importance of the GKM population for on-going and future conservation actions, the impacts of habitat alterations in the region ought to be minimized; e.g., by establishing green bridges or corridors over reservoirs and major roads to maintain habitat connectivity and gene flow among populations in the Lesser Caucasus. KW - Ursus arctos KW - Microsatellite KW - Conservation KW - Anatolia KW - Isolation KW - Source population KW - Noninvasive sampling KW - Rubbing tree KW - Turkey Y1 - 2018 U6 - https://doi.org/10.7717/peerj.5660 SN - 2167-8359 VL - 6 PB - PeerJ Inc. CY - London ER - TY - JOUR A1 - Götz, Klaus-Peter A1 - Naher, Jobadatun A1 - Fettke, Jörg A1 - Chmielewski, Frank M. T1 - Changes of proteins during dormancy and bud development of sweet cherry (Prunus avium L.) JF - Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science N2 - Trees control the flowering processes in response to both environmental and endogenous (mechanisms at cellular/tissue level) conditions. Dormancy of flower buds is characterized by the reduction of growth and the enhancement of frost and desiccation resistance. The release of endodormancy and the beginning of ontogenetic development, as two important dates for developing reliable phenological models, escape from any visible signs. Thus, we identified - to our knowledge as first - relevant proteins in sweet cherry buds occurring during these phenological phases at high time resolution in three seasons (2012/13–2014/15) under natural conditions in Northeast Germany. The protein content of buds from the first week of October to leaf fall, from leaf fall to the end of endodormancy (t1), from t1 to the beginning of ontogenetic development (t1*), and from t1* until swollen bud, was comparable in each of the seasons. The increase of the protein content began after swollen bud and markedly differences occurred at side green, green tip, tight and open cluster. SDS gel electrophoresis followed by peptide mass fingerprinting accomplished by MALDI-TOF MS was applied for protein identification. ‘Volume intensity’ has been used to demonstrate the pattern and changes of proteins. None of the analysed proteins like for cell proliferation/differentiation (Phytosulfokines 3), carbon fixation (Rubisco), and defense against pathogenes (Major allergen Pru sv 1) indicates the date of endodormancy release or the beginning of the (invisible) ontogenetic development. The stages around green tip, tight, and open cluster resulted in markedly increase of the volume intensity of the protein for cell proliferation/differentiation and the carbon fixation, whereas the volume intensity of a protein for defense against pathogens markedly decreased. The pattern and changes of the volume intensity of neoxanthin synthase (NXS) in sweet cherry buds followed the increasing demand during endo- and ecodormancy to produce neoxanthin, which is a prominent member of the group of reactive oxygen species (ROS) scavengers. KW - Dormancy phases KW - Buds KW - Prunus avium L. KW - Peptide mass fingerprinting Y1 - 2018 U6 - https://doi.org/10.1016/j.scienta.2018.05.016 SN - 0304-4238 SN - 1879-1018 VL - 239 SP - 41 EP - 49 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Navarro-Retamal, Carlos A1 - Bremer, Anne A1 - Ingolfsson, Helgi I. A1 - Alzate-Morales, Jans A1 - Caballero, Julio A1 - Thalhammer, Anja A1 - Gonzalez, Wendy A1 - Hincha, Dirk K. T1 - Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A JF - Biophysical journal N2 - Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic alpha-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results. Y1 - 2018 U6 - https://doi.org/10.1016/j.bpj.2018.08.014 SN - 0006-3495 SN - 1542-0086 VL - 115 IS - 6 SP - 968 EP - 980 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Brügger, Sandra Olivia A1 - Gobet, Erika A1 - Sigl, Michael A1 - Osmont, Dimitri A1 - Papina, Tatyana A1 - Rudaya, Natalia A1 - Schwikowski-Gigar, Margit A1 - Tinner, Willy T1 - Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities JF - Global and planetary change N2 - Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability. KW - Boreal forest diebacks KW - Climatic tipping points KW - Diversity KW - Ice core KW - Moisture change KW - Pollen KW - Microscopic charcoal KW - SCP Y1 - 2018 U6 - https://doi.org/10.1016/j.gloplacha.2018.07.010 SN - 0921-8181 SN - 1872-6364 VL - 169 SP - 188 EP - 201 PB - Elsevier CY - Amsterdam ER -