TY - JOUR A1 - Wang, Ningzhen A1 - Daniels, Robert A1 - Connelly, Liam A1 - Sotzing, Michael A1 - Wu, Chao A1 - Gerhard, Reimund A1 - Sotzing, Gregory A. A1 - Cao, Yang T1 - All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks JF - Small : nano micro N2 - Due to their electrically polarized air-filled internal pores, optimized ferroelectrets exhibit a remarkable piezoelectric response, making them suitable for energy harvesting. Expanded polytetrafluoroethylene (ePTFE) ferroelectret films are laminated with two fluorinated-ethylene-propylene (FEP) copolymer films and internally polarized by corona discharge. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-coated spandex fabric is employed for the electrodes to assemble an all-organic ferroelectret nanogenerator (FENG). The outer electret-plus-electrode double layers form active device layers with deformable electric dipoles that strongly contribute to the overall piezoelectric response in the proposed concept of wearable nanogenerators. Thus, the FENG with spandex electrodes generates a short-circuit current which is twice as high as that with aluminum electrodes. The stacking sequence spandex/FEP/ePTFE/FEP/ePTFE/FEP/spandex with an average pore size of 3 mu m in the ePTFE films yields the best overall performance, which is also demonstrated by the displacement-versus-electric-field loop results. The all-organic FENGs are stable up to 90 degrees C and still perform well 9 months after being polarized. An optimized FENG makes three light emitting diodes (LEDs) blink twice with the energy generated during a single footstep. The new all-organic FENG can thus continuously power wearable electronic devices and is easily integrated, for example, with clothing, other textiles, or shoe insoles. KW - all-organic ferroelectret nanogenerator (FENG) KW - all-organic KW - piezoelectric nanogenerator (PENG) KW - expanded polytetrafluoroethylene KW - ferroelectret KW - micro-energy harvesting KW - (PEDOT KW - PSS)-coated porous KW - fabric electrodes KW - wearable electronics Y1 - 2021 U6 - https://doi.org/10.1002/smll.202103161 SN - 1613-6810 SN - 1613-6829 VL - 17 IS - 33 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schindler, Daniel A1 - Moldenhawer, Ted A1 - Stange, Maike A1 - Lepro, Valentino A1 - Beta, Carsten A1 - Holschneider, Matthias A1 - Huisinga, Wilhelm T1 - Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows JF - PLoS Computational Biology : a new community journal N2 - Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.
Author summary Amoeboid motion is a crawling-like cell migration that plays an important key role in multiple biological processes such as wound healing and cancer metastasis. This type of cell motility results from expanding and simultaneously contracting parts of the cell membrane. From fluorescence images, we obtain a sequence of points, representing the cell membrane, for each time step. By using regression analysis on these sequences, we derive smooth representations, so-called contours, of the membrane. Since the number of measurements is discrete and often limited, the question is raised of how to link consecutive contours with each other. In this work, we present a novel mathematical framework in which these links are described by regularized flows allowing a certain degree of concentration or stretching of neighboring reference points on the same contour. This stretching rate, the so-called local dispersion, is used to identify expansions and contractions of the cell membrane providing a fully automated way of extracting properties of these cell shape changes. We applied our methods to time-lapse microscopy data of the social amoeba Dictyostelium discoideum. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pcbi.1009268 SN - 1553-734X SN - 1553-7358 VL - 17 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Omel'chenko, Oleh A1 - Ocampo-Espindola, Jorge Luis A1 - Kiss, István Z. T1 - Asymmetry-induced isolated fully synchronized state in coupled oscillator populations JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - A symmetry-breaking mechanism is investigated that creates bistability between fully and partially synchronized states in oscillator networks. Two populations of oscillators with unimodal frequency distribution and different amplitudes, in the presence of weak global coupling, are shown to simplify to a modular network with asymmetrical coupling. With increasing the coupling strength, a synchronization transition is observed with an isolated fully synchronized state. The results are interpreted theoretically in the thermodynamic limit and confirmed in experiments with chemical oscillators. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.L022202 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Physical Society CY - Melville, NY ER - TY - JOUR A1 - Franović, Igor A1 - Omel'chenko, Oleh A1 - Wolfrum, Matthias T1 - Bumps, chimera states, and Turing patterns in systems of coupled active rotators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest are called bump states. Here, we study bumps in an array of active rotators coupled by nonlocal attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.L052201 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Kruse, Marlen A1 - Altattan, Basma A1 - Laux, Eva-Maria A1 - Grasse, Nico A1 - Heinig, Lars A1 - Möser, Christin A1 - Smith, David M. A1 - Hölzel, Ralph T1 - Characterization of binding interactions of SARS-CoV-2 spike protein and DNA-peptide nanostructures JF - Scientific reports N2 - Binding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes. As the analyte, the spike protein and several of its subunits are tested as well as inactivated SARS-CoV-2 and pseudo viruses. While binding of the peptide to the full-length spike protein can be observed, the subunits RBD and S1 do not exhibit binding in the employed concentrations. Variations of the amino acid sequence of the recombinant full-length spike proteins furthermore influence binding behavior. The peptide was coupled to DNA nanostructures that form a geometric complement to the trimeric structure of the spike protein binding sites. An increase in binding strength for trimeric peptide presentation compared to single peptide presentation could be generally observed in ELISA and was quantified in switchSENSE measurements. Binding to inactivated wild type viruses could be shown as well as qualitatively different binding behavior of the Alpha and Beta variants compared to the wild type virus strain in pseudo virus models. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-16914-9 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Grothusheitkamp, Daniela A1 - Kunz, Thomas A1 - Methner, Frank-Jürgen T1 - Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry JF - Journal of mass spectrometr N2 - The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS. KW - APCI KW - fungus KW - gas chromatography KW - ion mobility spectrometry KW - mass KW - spectrometry KW - mold KW - soft X-ray Y1 - 2020 U6 - https://doi.org/10.1002/jms.4501 SN - 1076-5174 SN - 1096-9888 VL - 55 IS - 5 SP - 1 EP - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Codutti, Agnese A1 - Bente, Klaas A1 - Faivre, Damien A1 - Klumpp, Stefan T1 - Chemotaxis in external fields: Simulations for active magnetic biological matter JF - PLoS Computational Biology : a new community journal N2 - The movement of microswimmers is often described by active Brownian particle models. Here we introduce a variant of these models with several internal states of the swimmer to describe stochastic strategies for directional swimming such as run and tumble or run and reverse that are used by microorganisms for chemotaxis. The model includes a mechanism to generate a directional bias for chemotaxis and interactions with external fields (e.g., gravity, magnetic field, fluid flow) that impose forces or torques on the swimmer. We show how this modified model can be applied to various scenarios: First, the run and tumble motion of E. coli is used to establish a paradigm for chemotaxis and investigate how it is affected by external forces. Then, we study magneto-aerotaxis in magnetotactic bacteria, which is biased not only by an oxygen gradient towards a preferred concentration, but also by magnetic fields, which exert a torque on an intracellular chain of magnets. We study the competition of magnetic alignment with active reorientation and show that the magnetic orientation can improve chemotaxis and thereby provide an advantage to the bacteria, even at rather large inclination angles of the magnetic field relative to the oxygen gradient, a case reminiscent of what is expected for the bacteria at or close to the equator. The highest gain in chemotactic velocity is obtained for run and tumble with a magnetic field parallel to the gradient, but in general a mechanism for reverse motion is necessary to swim against the magnetic field and a run and reverse strategy is more advantageous in the presence of a magnetic torque. This finding is consistent with observations that the dominant mode of directional changes in magnetotactic bacteria is reversal rather than tumbles. Moreover, it provides guidance for the design of future magnetic biohybrid swimmers. Author summary In this paper, we propose a modified Active Brownian particle model to describe bacterial swimming behavior under the influence of external forces and torques, in particular of a magnetic torque. This type of interaction is particularly important for magnetic biohybrids (i.e. motile bacteria coupled to a synthetic magnetic component) and for magnetotactic bacteria (i.e. bacteria with a natural intracellular magnetic chain), which perform chemotaxis to swim along chemical gradients, but are also directed by an external magnetic field. The model allows us to investigate the benefits and disadvantages of such coupling between two different directionality mechanisms. In particular we show that the magnetic torque can speed chemotaxis up in some conditions, while it can hinder it in other cases. In addition to an understanding of the swimming strategies of naturally magnetotactic organisms, the results may guide the design of future biomedical devices. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pcbi.1007548 SN - 1553-734X SN - 1553-7358 VL - 15 IS - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Smirnov, Lev A. A1 - Bolotov, Maxim I. A1 - Osipov, Grigorij V. A1 - Pikovskij, Arkadij T1 - Disorder fosters chimera in an array of motile particles JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider an array of nonlocally coupled oscillators on a ring, which for equally spaced units possesses a Kuramoto-Battogtokh chimera regime and a synchronous state. We demonstrate that disorder in oscillators positions leads to a transition from the synchronous to the chimera state. For a static (quenched) disorder we find that the probability of synchrony survival depends on the number of particles, from nearly zero at small populations to one in the thermodynamic limit. Furthermore, we demonstrate how the synchrony gets destroyed for randomly (ballistically or diffusively) moving oscillators. We show that, depending on the number of oscillators, there are different scalings of the transition time with this number and the velocity of the units. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.034205 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 3 PB - American Physical Society CY - Melville, NY ER - TY - JOUR A1 - Yuan, Jun A1 - Zhang, Chujun A1 - Qiu, Beibei A1 - Liu, Wei A1 - So, Shu Kong A1 - Mainville, Mathieu A1 - Leclerc, Mario A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Zou, Yingping T1 - Effects of energetic disorder in bulk heterojunction organic solar cells JF - Energy & environmental science N2 - Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed. Y1 - 2022 U6 - https://doi.org/10.1039/d2ee00271j SN - 1754-5692 SN - 1754-5706 VL - 15 IS - 7 SP - 2806 EP - 2818 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Brügger, Sandra Olivia A1 - Gobet, Erika A1 - Sigl, Michael A1 - Osmont, Dimitri A1 - Papina, Tatyana A1 - Rudaya, Natalia A1 - Schwikowski-Gigar, Margit A1 - Tinner, Willy T1 - Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities JF - Global and planetary change N2 - Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability. KW - Boreal forest diebacks KW - Climatic tipping points KW - Diversity KW - Ice core KW - Moisture change KW - Pollen KW - Microscopic charcoal KW - SCP Y1 - 2018 U6 - https://doi.org/10.1016/j.gloplacha.2018.07.010 SN - 0921-8181 SN - 1872-6364 VL - 169 SP - 188 EP - 201 PB - Elsevier CY - Amsterdam ER -