TY - JOUR A1 - Nunes-Nesi, Adriano A1 - Alseekh, Saleh A1 - de Oliveira Silva, Franklin Magnum A1 - Omranian, Nooshin A1 - Lichtenstein, Gabriel A1 - Mirnezhad, Mohammad A1 - Romero Gonzalez, Roman R. A1 - Sabio y Garcia, Julia A1 - Conte, Mariana A1 - Leiss, Kirsten A. A1 - Klinkhamer, Peter Gerardus Leonardus A1 - Nikoloski, Zoran A1 - Carrari, Fernando A1 - Fernie, Alisdair R. T1 - Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds JF - Metabolomics N2 - IntroductionTo date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism.ObjectiveThis study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues.MethodsThe analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses.ResultsChanges in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism.ConclusionsOverall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits. KW - Metabolite QTL KW - Tomato KW - Leaf metabolism KW - Metabolite network Y1 - 2019 U6 - https://doi.org/10.1007/s11306-019-1503-8 SN - 1573-3882 SN - 1573-3890 VL - 15 IS - 46 PB - Springer CY - New York ER -